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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor in Structural Engineering at the Norwegian University
of Science and Technology. The work has been carried out at the Structural
Impact Laboratory (SIMLab), Centre for Research-based Innovation, housed at
the Department of Structural Engineering, under the supervision of Professor
Tore Børvik and Professor Magnus Langseth.

The thesis consists of four parts. Part I gives the background and motivation,
a brief review of previous work, objectives and scope, and the contributions
of this thesis. Part II focuses on thin steel and aluminium plates exposed
to free-field airblast loading, where the numerical simulations are performed
using an uncoupled approach during the blast-structure interaction. Part III
presents the shock tube technique as an alternative to explosive detonations and
the design of a new shock tube facility established at SIMLab. Experimental
and numerical studies on the dynamic response of blast-loaded plates are also
presented in Part III, where the numerical simulations are performed using
both uncoupled and coupled approaches during the blast-structure interac-
tion. Part IV summarize this work by giving some general conclusions and
suggestions for further work.

The reader should be aware that a wide range of topics related to the behaviour
and modelling of blast-loaded structures are covered in this work. It is therefore
chosen to include some basic theory in the beginning of Parts II and III for
the completeness of this thesis. Moreover, it is emphasized that this thesis
is written from a structural engineering point of view where the main focus
is on the dynamic response of blast-loaded plates. The shock physics and
thermodynamics necessary to understand compressible fluid flow in Part III
are therefore kept at a basic level. Compressible fluid flow is an active field
of research and detailed studies within this topic is beyond the scope of this
thesis.

Vegard Aune
Trondheim, Norway

April 3, 2017
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Abstract
The last two decades have seen a significant increase in the research activity on
blast-loaded structures. This is to a large extent related to the increased threat
of deliberate use of high explosives against civilian targets. Blast events in
urban environments introduce new materials, lightweight and flexible structures
to the scope of protective design. Historically, the blast-resistant design mostly
involved conflict areas and hardened structures. It is therefore a need to
review the capabilities of the current computational methods in predicting the
response of flexible structures subjected to blast loading. This thesis presents
both experimental and numerical investigations on the dynamic response of thin
aluminium and steel plates exposed to blast loading, where the experimental
data serve as a basis of comparison for the numerical simulations. The numerical
simulations are mainly performed in the finite element code EUROPLEXUS.
Material tests are also performed to determine the materials’ behaviour at
large plastic strains and for calibration of an energy-based failure criterion.

The dynamic response of the blast-loaded plates is first studied using free-field
airblast testing. The blast loading was varied by detonating spherical charges
of plastic explosives at various stand-off distances relative to the centre point
of the plates. The tests covered the entire range of response from complete
failure at the support to a more counter-intuitive behaviour (CIB) where the
permanent mid-point deflection was in the opposite direction to the incident
blast wave due to reversed snap buckling (RSB). The trend in all tests was that
the maximum response is driven by the positive impulse from the airblast, as it
occurred after the positive duration of the pressure pulse. However, depending
on the blast intensity and the structural properties, the response of the plates
may become significantly different. RSB attracted special attention since this
is an unstable configuration sensitive to small changes in the loading and
in structural properties. The dynamic response of the plates was therefore
studied numerically, where the loading was represented using parameters for
the positive and negative phase recommended in traditional design manuals.
The numerical results were in good agreement with the tests and predicted
the entire range of experimental observations. The negative phase of the blast
load is usually neglected in blast-resistant design. However, the numerical
simulations showed that the negative overpressure dominated the response
and led to RSB at some loading and structural conditions. Two distinctive
types of CIB were identified and both were found to depend on the timing and
magnitude of the peak negative overpressure relative to the dynamic response
of the plates. The partial and complete failure along the boundaries observed
in some of the tests was also successfully recreated in the simulations by using
element erosion.
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Then, the development of a new shock tube facility to produce controlled,
repeatable blast loading in laboratory environments is presented. The facility
was found to generate a planar shock wave over the tube cross-section by
measuring the pressure distribution on a massive steel plate located at the
end of the tube. The properties of the shock wave proved to be a function
of driver length and driver pressure, and the positive phase of the measured
pressure histories was similar as those generated from actual far-field explosive
detonations. This shock tube therefore allows for the evaluation of fluid-
structure interaction (FSI) effects without the need to consider the inherent
complexity in close-in and near-field detonations. Shock tube experiments were
therefore carried out to investigate the influence of FSI effects and pre-formed
holes on the response of blast-loaded plates. Both massive and flexible plates
were located at the tube end during testing, where the massive plate tests
served as a basis for comparison with respect to FSI effects. Both the plates
with and without holes resulted in a reduced reflected overpressure, where
the reduction was more distinct in the plates with pre-formed holes. The
introduction of holes in the plates resulted in increased mid-point deflections
and failure at the largest blast intensities. Finally, numerical simulations
were performed to study the wave patterns and FSI effects during the shock
tube experiments. The wave patterns were studied using a purely Eulerian
analysis to evaluate the capabilities of the idealized gas theory in predicting
the pressure histories obtained in the massive plate tests. Even though the
numerical simulations of the wave propagation captured most of the events
occurring in the experiments, the pressure histories were overestimated at larger
magnitudes of pressure. The investigation of FSI effects was therefore studied
qualitatively by comparing the results from fully coupled simulations to those
obtained with an uncoupled approach, where the uncoupled approach used the
loading from the purely Eulerian simulations. The reduction of the reflected
pressure was also observed in the fully coupled simulations, and increasing
magnitudes of pressure resulted in reduced deformation of the plates compared
to those in the uncoupled approach. Moreover, the experimental observations
of crack growth along the diagonals were successfully recreated in both the
uncoupled and coupled simulations by using adaptive mesh refinement and
element erosion. The mesh refinement was driven by the damage parameter in
the material model and occurred at user-defined levels of this parameter.

The experiments and simulations presented herein provide valuable insight to
the behaviour and modelling of flexible structures subjected to blast loading.
Parameters influencing the dynamic response have been investigated and iden-
tified, and the experimental data may therefore be used in the evaluation of
computational methods used in blast-resistant design. It is emphasized that
an accurate description of the loading is necessary for quantitative investiga-
tions of the dynamic response and failure mechanisms in flexible structures.
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Depending on the blast intensity, the response of the structure may become
significantly different. Moreover, the reduction in reflected pressure in the
vicinity of the plate and corresponding decrease in deformation during FSI are
interesting in view of blast mitigation. Provided that the structural member
can sustain the deformation that arise without experiencing failure, this implies
that ductile materials may be utilized in the design of flexible structures by
allowing for finite deformations. The FSI may then reduce the transmitted
impulse and serve as alternative load paths. However, this requires a thorough
understanding of the governing physics in the problem.
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Part I
Description of Thesis





1
Introduction
The first chapter presents the background and motivation for this thesis, a
brief review of previous research within the field of blast-loaded structures, as
well as the objectives, scope and contributions of this work.

1.1 Background and motivation

Protection of civilian infrastructure against blast loading has received a lot of
attention in recent years. Explosions can be either intentional or accidental
and occur in a large variety of circumstances, both in conflict areas as well as
in various industrial applications such as petrochemical, chemical or nuclear
industries. Unfortunately, explosive devices have also become the weapon of
choice for the majority of terrorist attacks. The readily available information
on the construction and manufacturing of improvised explosive devices (IEDs),
their mobility and portability coupled with their huge potential for damage,
are responsible for the significant increase in deliberate use of high explosives
against civilian targets all over the world [1]. It is therefore an increased
need to be able to design structural components to resist the effect of blast
loading. Today’s design of civilian infrastructure also extend the scope of
traditional blast-resistant design by introducing new materials and lightweight
structures.

The first of the two terrorist attacks on the 22 July 2011 in Norway is an
example of this trend. A large vehicle-borne IED (VBIED) exploded in the
Executive Government District in Oslo. The bomb was assumed to comprise
a mixture of 950 kg ammonium nitrate and fuel oil (ANFO), and was later
estimated to be a trinitrotoluene (TNT) equivalent somewhere between 400
and 700 kg. The shock wave from the explosion caused severe damage on the
surrounding buildings, especially the buildings inside a distance of 100 m (see
Figure 1.1a). Eight people were killed and at least 209 were injured, twelve
of them seriously [2]. The dominant effects of such an explosive detonation
are typically the blast overpressure (Figure 1.1b), fragments generated by the
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explosion itself (Figure 1.1b) and the shock loads produced by the shock wave
transmitted through the air or the ground (Figure 1.1d). Of these three effects,
the blast overpressure are usually the governing factor in the determination
of the structural response and the main consequence of the blast wave in
urban areas is the breaking of windows and the creation of large quantities of
hazardous secondary fragments of glass (Figure 1.1c). Another consequence of
the shattering windows is that the blast pressure enters the building at these
locations (Figure 1.1e). This may cause additional injuries to the occupants.
Although the secondary fragments will have relatively low velocities compared to
primary fragments, they are created throughout the zone around the explosion,
wherever windows are broken, and may completely permeate the blast-affected
area. A car bomb may break windows of up to 400 m away and therefore affect
a zone of approximately half a square kilometer.

The most appealing alternative for blast wave mitigation is increased distance
between the explosive charge and the target. However, this is not always
feasible in urban areas because at some point the cost of increased distance
becomes questionable. Hence, there is a need for innovative and optimized
solutions considering safety as well as architectural requirements. Figure 1.1
illustrates that a successful assessment of blast-loaded structures requires a
thorough understanding of the governing physics in such scenarios. Not only
should the design prevent a total structural collapse, but it should also protect
the people inside the building so that the building itself does not pose an added
threat to the occupants (Figure 1.1e). This requires structural members that
are able to withstand the extreme loading conditions occuring during blast
events. Such structures often consist of thin steel or aluminium plates. Steel is
often preferred due to its combination of high strength, high ductility and good
formability, resulting in an effective load carrying capability at a relatively low
cost compared to many other materials. During the last decades aluminium
alloys have become increasingly more attractive for structural applications,
particularly due to its relatively high strength to weight ratio.

Due to the complexity in both the loading and the resulting response, numerical
methods are often required for sufficient insight in the structural component
optimization. Before using such computational methods their performance
should be evaluated in terms of reliability, robustness and effectiveness in
predicting both the loading and the response. Experimental validation is ideal
since it represents the actual physics of the problem, and controlled small-scale
experiments could therefore be used to evaluate the current computational
methods and improve the understanding of the dynamic response during blast
events. This thesis will therefore perform experimental investigations of thin
aluminium and steel plates before using this data to evaluate the performance of
typical computational methods in predicting the experimental observations.
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(a)

(b) (c)

(d) (e)

Figure 1.1: Pictures from the terror attack against the Executive Government
Quarter in Norway 22 July 2011 [2]: (a) Executive Government Building after the
explosion, (b) detonation of the car bomb, (c) shattering windows from adjacent
building, (d) location of the car bomb and (e) inside the building.



6 1. Introduction

1.2 Previous work

The response of blast-loaded structures is an active field of research and
considerable work already exists on the subject. A brief overview of previous
work related to this thesis is therefore presented. The review is limited to the
representation of airblast loading, response of blast-loaded plates, fluid-structure
interaction and experimental techniques.

1.2.1 Representation of blast loading

To study the response of blast-loaded structures, it is essential with an accurate
description of the blast loading. A typical pressure-time history experienced by
a fixed point in space after an exposure to a blast wave is shown in Figure 1.2.
The positive phase of the blast wave is characterized by an almost instantaneous
rise (within the timescale of nanoseconds) from atmospheric pressure p1 to a
peak incident overpressure pso,max followed by an exponential decay in pressure
back to the ambient pressure p1 (see Figure 1.2). The positive phase has short
time duration td+ (typically milliseconds). When the blast wave interacts with
a structure that is not parallel to the direction of the wave, it is reflected and
reinforced. This is known as the peak reflected overpressure pr,max and the
reflected blast wave has the same general shape as the incident wave. The
magnitude, duration and distribution of the blast load are a function of the
explosive properties (i.e., the explosive material, weight W and shape), the
location of the detonation relative to the structure (i.e., the stand-off distance R),
potential objects located between the detonation and the structure, and finally
the amplification of the pressure during its interaction with the surroundings
or the structure itself.

Positive phase

Negative phase

p(t)

t

ta ta + td+ ta + td+ + td−

pr,max

pso,max

p1
pr,min

Figure 1.2: Typical incident and reflected pressure profiles after reflecting on an
infinite and planar surface.
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Some well-established references for the properties of the positive phase from
an ideal airblast are the works by Baker et al. [3], Kingery and Bulmash [4] and
Kinney and Graham [5]. Kingery and Bulmash [4] and Kinney and Graham [5]
used a large range of experimental data from spherical and hemispherical
charges [6–13] which were curve-fitted to high-order polynomials representing
the necessary blast parameters of a TNT equivalent charge using Hopkinson-
Cranz scaling (Z = R/W 1/3) [14]. A comparison of the properties predicted
for free airbursts by Kingery and Bulmash [4] with those of Kinney and
Graham [5] is performed in [15], where the peak reflected overpressures are
found to be in good agreement while the impulses in the work by Kinney
and Graham are slightly lower than the corresponding impulses reported by
Kingery and Bulmash. In view of these references [3–5], it seems that the blast
properties suggested by Kingery and Bulmash [4] are most widely used in the
literature (see e.g. [16]). However, these empirical equations are only valid in
the experimental range in which they were obtained. In particular, the data
in [4] were limited to blast wave interactions with plane and infinite reflecting
surfaces and contained limited data for blast parameters at scaled distances
beyond the range of 0.40 m/kg1/3 < Z < 40 m/kg1/3. Some of the parameters
were therefore extrapolated to smaller distances using the available data and
theoretical considerations. These experiments and empirical equations form
the basis for various simplified tools to predict blast loading from a given
explosive weight W at a known distance R from the target, where the most
commonly used tool is known as the Conventional Weapons Effects Program
(ConWep) [17]. When the parameters governing the positive phase are known,
the modified Friedlander equation [18–20] with an exponential decay coefficient
is typically used to represent the pressure-time history. Karlos et al. [21]
reviewed several approaches for calculating the exponential decay parameter
and suggested new polynomial equations in determining this parameter for
spherical and hemispherical charge conditions.

As the blast wave expands, the pressure decays back to ambient pressure p1
and a negative phase occurs (where the pressure is below p1) which typically
has a longer duration td− than the positive phase. The negative phase re-
sults from the momentum of air which generates an overexpansion so that
the absolute pressure at the tail of the blast wave falls below atmospheric
pressure (see Figure 1.2). This underpressure slows down the surrounding gas
molecules, producing a reversed flow back towards the explosion centre. The
most commonly used negative phase parameters seem to be those given in the
traditional diagrams in the U.S. Army Technical Manual [16]. However, there
still seems to be some uncertainty regarding the modelling and treatment of the
negative phase of the pressure-time history. The literature reveals three basic
representations of the pressure-time history when modelling this phase, i.e., a
bilinear approximation [16,22, 23], an extended Friedlander equation based on
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the waveform of the positive phase [24–26] and a cubic representation [27–31].
Rigby et al. [30] reviewed the existing methods in representing the negative
phase and evaluated these methods using pressure measurements of a blast
wave from a hemispherical charge acting on a rigid target. It was found that
bilinear and cubic representations of the negative phase resulted in the best
agreement with experimental data.

The blast loading from high-explosive detonations is typically categorized based
on the stand-off distance R and the equivalent mass W of TNT by using
the scaled distance Z = R/W 1/3, where it is commonly referred to close-in
(Z < 0.5 m/kg1/3), near-field (0.5 ≤ Z ≤ 2.0 m/kg1/3) and far-field (Z > 2.0
m/kg1/3) detonations as distinct loading domains [32]. As the loading becomes
increasingly near-field (Z ≤ 2.0), the use of the empirical equations requires that
the non-uniform spatial distribution of the loading is included in the calculation.
This can be done by considering both the incident overpressure pso,max and
the angle of incidence α when determining the reflected pressure acting on
the structure. The use of the empirical methods are found to provide good
estimates of the blast properties within the underlying range of experimental
data (see e.g. [33–37]), i.e., for scaled distances in the range of 0.40 m/kg1/3 <

Z < 40 m/kg1/3. However, the use of these simplified methods is questionable
at close-in detonations and numerical simulations are often necessary for an
adequate representation of the loading in these environments [36,38]. This is
due to the inherent complexity in such blast environments where the target
is often located inside the fireball and there is an interaction between the
expanding detonation products and the blast overpressure [37,39].

1.2.2 Response of blast-loaded plates

In blast-resistant design of protective structures the focus is usually on the
structural response due to the positive phase of the blast loading (see e.g. [15–
17,40–42]). This is particularly the case for small values of the scaled distance
Z, resulting in high magnitudes of overpressure. In such events the structure
is expected to deform in the same direction as the incoming blast wave, i.e., in
the intuitive direction. Nurick and Martin [43,44] presented a comprehensive
literature review of thin plates subjected to blast loading. These studies
included theoretical considerations, experimental techniques and experimental
results for relatively large permanent displacements. Nurick and Martin [44]
also suggested a non-dimensional empirical analysis in an attempt to compare
experimental results from various studies using different loading parameters,
plate dimensions and materials. This approach has proven to be a useful
guideline to predict the maximum deflection of impulsively loaded plates.

The dynamic elasto-plastic structural response under pulse loading may be
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divided into three categories depending on the intensity of the loading and the
permanent mid-point deflection (see Figure 1.3 and [45,46]). If the structural
component oscillates on both sides of its original configuration with a positive
permanent deflection this is called Type I. However, if the pulse is more
intense the structural component will oscillate only on the positive side of
the original configuration (Type II). Finally, the structural component may
first deform in the positive direction and then rebound to the negative side
of the original configuration (Type III). The two first types of response are
intuitive as the final deflection is positive (i.e., in the same direction as the
external loading), while the latter type confounds intuition as the permanent
deflection is negative (i.e., in the direction opposite to the external loading).
This phenomenon was first reported during numerical studies by Symonds and
Yu [47] and called counter-intuitive behaviour (CIB). They noted that this
behaviour was extremely sensitive to the structural and loading parameters,
and concluded that the response pattern was strongly dependent on the peak
deflection and the corresponding rotation in the plastic hinges at which reverse
motion starts. Thus, CIB only occurred within a narrow range of structural
and loading conditions during the transition from elastic to moderate plastic
deformations and is frequently referred to as reversed snap buckling (RSB). The
unexpected nature of this behaviour has received much attention during the
years [48–50], and is still a topic of interest in the literature [51]. Theoretical
and numerical investigations have managed to associate the phenomenon
with chaotic and complex vibrations [50, 52], and this insight has motivated
experiments to evaluate both theoretical and numerical investigations [46,53,54].
The experiments found in the literature observing CIB due to RSB mainly
consider projectile impacts where there is no negative loading phase [46–48] or
blast events where only the positive phase is considered [51].

While the effect of the positive phase on blast-loaded structures seems to
be well understood, the current literature indicates that the research on the
influence of the negative phase is rather sparse. The U.S. Army Technical
Manual [16] states that the negative phase may influence the response of flexible
structures in some blast loading situations, without going into any details of
the governing parameters in such events. After reviewing the existing methods
in representing the negative phase, Rigby et al. [30] discussed the consequences
of choosing an inappropriate model by using an elastic SDOF system. It
was shown that the dynamic response was highly dependent on an accurate
description of the negative part of the pressure-time history. Bryant et al. [31]
used a cubic representation of the negative phase and investigated its influence
on the response of blast-loaded reinforced concrete panels and flexible metal
wall systems. The negative phase was found to either mitigate or dominate the
structural response depending on the timing and pressure magnitude relative
to the dynamic response of the structure. Krauthammer and Altenberg [22]
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Figure 1.3: Typical response of blast-loaded plates in terms of mid-point deflection-
time histories. Dashed lines illustrates the permanent deflections for each type of
response.

followed the recommendations in [16] and used a piecewise linear representation
of the pressure-time history to investigate the influence of the negative phase
on glass panels. Their numerical study indicated that the negative phase
dominated the dynamic response for relatively small pressures, i.e., when the
peak reflected overpressure was of similar magnitude to the peak negative
overpressure. The influence of the negative phase was also found to depend
on the dynamic characteristics of the flexible panel relative to the explosive
load. In particular, the negative phase was found to dominate the response if
it occurred during the elastic rebound. Enhancement of the elastic rebound
after maximum deflection was also observed experimentally by Galiev [54] for
blast-loaded aluminium plates.

It is evident that depending on the blast intensity the dynamic response of
flexible structures may become significantly different. Menkes and Opat [55]
reported failure modes on clamped aluminium beams subjected to blast loading
using sheet explosives (see Figure 1.4). By monotonically increasing the impulse
they identified three different damage modes, i.e., large inelastic deformation
(Mode I in Figure 1.4a), tensile tearing at supports (Mode II in Figure 1.4b)
and transverse shear at supports (Mode III in Figure 1.4c). Teeling-Smith
and Nurick [56] found the same failure modes for clamped circular plates
subjected to impulsive loading, and reported that the magnitude and shape
of the deformed plates depend on the intensity of the loading. These failure
modes were also observed for square plates by Olson et al. [57]. However, a
slight change in the interpretation was needed to account for tensile tearing at
the supports as failure was first observed at the centre of the boundary before
progressing towards the corners with increasing impulse. Subsequent work by
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Nurick et al. [58,59] extended these failure modes by including necking at the
boundary for Mode I, and some geometric additions to Mode II by including
the amount of tearing at the boundary (called Mode II* in the literature).
Experimental evidence was used to show a significant effect of the boundary
conditions when predicting tearing. Similar results were also reported by
Wierzbicki and Nurick [60].

(a)

(b)

(c)

Figure 1.4: Failure modes for impulsively loaded beams and plates [55, 59]: (a)
Mode I - Large inelastic deformation, (b) Mode II - Tensile tearing at supports and
(c) Mode III - Shear failure at supports.

It is observed that the Type I and Type II responses in Figure 1.3 resemble
the Mode I response in Figure 1.4a, and that the plate will respond in a
ductile manner and experience a permanently deformed shape (see Figure 1.4a)
when subjected to imposed velocities less than a certain value (see Jones [61]).
However, when the imposed velocities are equal to this critical value, the plate
will fail due to tearing at the supports (see Figure 1.4b). If the impulsive
velocities are further increased beyond this critical value, failure will occur
and the plastic deformation of the plate will become more localized near the
supports until another critical velocity is reached. At this second critical
velocity transverse shear failure will occur at the supports (see Figure 1.4c).
Thus, as the blast intensity increases and the loading becomes increasingly
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impulsive, structural elements exposed to intensive blast loading must have
adequate shear capacity to ensure that they do not fail in Mode III if Mode I
or Mode II failure is required.

Even though blast events often involve plated structures with holes, the current
literature indicates that there is limited research on the influence of holes on
the dynamic response of these types of structures. Holes may be induced in
plated structures for various applications and reasons, e.g. due to perforations
in combined blast and fragmentation events [62] and pre-formed holes in façade
systems or passive mitigation systems [63,64]. Rakvåg et al. [65] investigated the
response of medium-strength steel plates exposed to pressure pulse loading and
the influence of pre-formed holes with different geometries. Although the plates
experienced large deformations, there were no signs of failure other than some
localization of plastic strain in the extremities of the holes. Schleyer et al. [66]
also studied the inelastic deformation of mild steel plates with pre-formed
holes subjected to a pressure pulse loading, and evaluated the capabilities of
energy-based analytical solutions in predicting the experimental observations.
The predictions by the approximate methods were found to be in acceptable
agreement with the experimental data, which indicated that such methods may
provide design guidelines for blast-loaded plates. Veldman et al. [67] studied the
response of pre-pressurized aluminium plates subjected to blast loading. The
test panels were reinforced with aluminium extrusions attached to the plates
using rivet joints. Consistent failure of the rivet joints motivated tests without
reinforcement and only the drilled holes at the rivet locations. It was found
that the crack initiation emerged from these holes due to stress concentrations.
Complex failure patterns were also observed for thin steel sheets supported on
a cellular metal foundation [68], where the cracks originated at laser welded
joints.

1.2.3 Fluid-structure interaction

Blast-loaded structures may experience severe blast-structure interaction and
considerable work already exists on this subject (see e.g. [69–73]). As discussed
in Section 1.2.1, blast-structure interaction occurs when the blast wave en-
counters a structural surface that is not parallel to the direction of the wave.
The blast wave is then reflected and reinforced. Depending on the blast and
structural properties, the structure typically behaves as either a rigid or a de-
formable surface. Fluid-structure interaction (FSI) takes place if the structural
surface is allowed to move or deform.

Taylor [74] is considered to be one of the pioneers in the field of FSI in blast
environments, suggesting that lightweight structures undertake less momentum
compared to heavier structures when exposed to the same blast intensity.
That is, the motion of the reflecting surface reduces the pressure acting on
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it. Recent years have seen a significant increase in the amount of research
investigating the influence of FSI effects on the response of blast-loaded plates.
Much of this research was focused on plated structures in underwater blast
environments [75–79]. These investigations typically assumed an acoustic
medium characterized by an incompressible fluid and linear superposition of
weak shock waves. Although the need to account for a compressible fluid
behaviour was recognized [73,76,80,81], this was not taken into account during
FSI in airblast environments until the works of Kambouchev et al. [70,82–84]
and Hutchinson et al. [85,86]. The acoustic assumption holds for underwater
explosions, but compressibility effects are significant in air even for small
magnitudes of blast overpressures. The compressible behaviour of air may
results in a significant increase in the magnitude of the stagnation pressure
experienced by the structure during the blast-structure interaction, since the
reflected overpressure increases with the incident pressure in a highly non-linear
manner. A basic understanding of the influence of FSI when the blast wave
(in a compressible fluid) interacts with a movable or deformable surface is
given in the works of Courant and Friedrichs [87], Toro [88] and Subramaniam
et al. [72]. If the structure starts to move, the motion alters the pressure at
its surface. Previous research has shown that FSI effects can mitigate the
blast load acting on the structure [83–85,89], especially in situations involving
large deformations [70–72]. The blast mitigation has been related to both the
induced velocity [71, 72] and to the deformed shape of the structure [89–91].
This is interesting in view of lightweight and flexible structures. Lightweight
structures will experience a higher induced velocity after impact and a reduction
in the transmitted impulse, while flexible structures will experience the Mode
I deformation (see Figure 1.4) and a possible overlapping of the dynamic
response and the positive phase duration. This implies that large deformations
and energy absorption in structural members are favourable, since the blast
wave is partially absorbed through various deformation mechanisms in the
structure. Provided that the structural member can sustain the deformation
that arise without experiencing failure, this indicates that ductile materials may
be utilized in the design of flexible structures by allowing for finite deformations.
The FSI may then reduce the transmitted impulse and serve as alternative
load paths. However, this requires a thorough understanding of the governing
physics in the problem.

A large variety of methods have been proposed during the years to predict
the response of blast-loaded structures. These methods range from equivalent
static loads based on conventional static design methods, to simplified dynamic
solutions based on single-degree-of-freedom (SDOF) methods accounting for
the dynamic properties and ductility of the structural component, and finally
to more advanced methods like the finite element (FE) method. Thus, the
methods and procedures used in blast-resistant design can vary considerably in
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complexity, accuracy, computational cost and efficiency. Although approximate
methods may provide design guidance, these methods are often based on several
assumptions regarding the spatial and temporal distribution of the loading.
Advanced numerical techniques are therefore often required for a sufficient
insight in both the loading and the resulting dynamic response. A widely used
design tool for this class of problems is the explicit non-linear FE method [92].
The uncoupled approach is often the preferred procedure in today’s blast-
resistant design. The loading is then obtained using either empirical relations
from the literature or numerical simulations of the blast wave propagation
in an Eulerian (fixed) reference frame. The underlying assumption in this
approach is rigid boundary conditions and no deformation of the structure,
where the numerical simulations are typically performed in a computational
fluid dynamics (CFD) code. These types of codes compute the spatial and
temporal pressure distribution along the fluid boundary. Then the obtained
pressure history is applied in a computational structural dynamics (CSD) code
to determine the corresponding dynamic response. The uncoupled approach
therefore makes the inherent assumption that the blast properties are unaltered
by the structural motion and vice versa. Since the response of blast-loaded
plates is highly non-linear (both in geometry and in material behaviour),
this may not be an adequate approach and could result in a non-physical
response. Both the pressure distribution and the dynamic response may be
significantly influenced due to FSI effects. This was illustrated by Casadei et
al. [69] and Børvik et al. [71] by comparing uncoupled and fully coupled FSI
simulations for typically industrial applications. Børvik et al. [71] observed
considerable variations in the predicted results from uncoupled and coupled
methods and emphasized the importance of an accurate quantification of the
loading. Recent advancements [93, 94] in the field of FE methods make it now
possible to study the FSI effects in blast events involving complex geometries,
large deformations, failure and fragmentation. In particular, adaptive mesh
refinement (AMR) [95–98] in both the fluid and structural sub-domains allows
for a sufficiently fine mesh size to represent the near instantaneous rise in
pressure over the blast wave and to predict crack propagation in the structure
without too much loss of mass when using element erosion. This can be used
to investigate the effect of FSI on the dynamic response of plated structures,
both with and without holes.

1.2.4 Experimental techniques

As discussed in Section 1.2.3, numerical methods are often required for sufficient
insight during blast-structure interaction. Before using such computational
methods their performance should be validated in terms of reliability, robustness
and effectiveness in predicting both the loading and the response. Experimental
validation is ideal since it represents the actual physics of the problem. Full-scale
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testing of realistic blast scenarios is normally too expensive and time consuming.
This requires explosive charges in the range of 100-30,000 kg TNT and large
outdoor areas [99, 100]. Even medium-scale detonations (1-100 kg TNT at
stand-off distances of several meters [101,102]) are challenging to perform in non-
military laboratory settings. At these scales instrumentation becomes difficult
which often results in a qualitative rather than a quantitative assessment of the
experimental observations. Controlled small-scale experiments in laboratory
environments should therefore be used to evaluate current computational
methods and improve the understanding of the underlying physics during blast
events.

Research on blast-loaded plates using small-scale explosive detonations typically
involves plate dimensions up to 0.5 m, explosive charges are less than 100 g and
detonated at distances up to 0.5 m from the test specimen [44,103,104]. This
is often carried out in controlled laboratory environments at scaled distances
corresponding to close-in or near-field detonations (Z < 2.0 m/kg1/3) using
either the ballistic pendulum approach (see e.g. [44, 104–109]), or free-field
airblast experiments using an explosive charge at a given stand-off distance
from the plate (see e.g. [54, 68, 103, 110]). In the latter setup, the plate is
typically installed in a mounting frame which is fixed to the ground. All
setups are in general interested in an accurate quantification of the loading
and on the resulting structural response. The ballistic pendulum approach
uses the maximum angle reached by the pendulum to determine the impulse
imparted to the plate, while pressure sensors positioned in the vicinity of the
plate may be used to indicate the loading in free airblast tests. The spatial
and temporal distribution of the blast loading are controlled by varying the
explosive material, charge geometry, explosive mass and stand-off distance.
The structural response are often reported in terms of the permanent deflection
and deformed shape of the plate.

Experimentation involving small-scale detonations have many benefits and are
necessary to investigate the inherent complexity in such blast environments
(e.g. highly non-uniform spatial and temporal pressure distributions and the
interaction between the fireball and the blast overpressure in the vicinity of
the target). However, such experiments also introduce some challenges (e.g.
ground reflections, light flashes and fireballs) and special care must be taken
to ensure accurate geometries and alignments of the charge relative to the
structure. Small geometric imperfections and deviations in the alignment may
lead to non-symmetric spatial and temporal distributions of the pressure and
variations in blast parameters between each test at the same configuration [111].
Moreover, high-explosives may be hazardous and involves legal restrictions
which often make such experiments less available for research purposes.

Due to these challenges, alternative techniques have been developed to generate



16 1. Introduction

a blast loading similar to those from actual free-field detonations. Examples of
such techniques are the pressure blow down apparatus [65,66,112] and shock
tube facilities [113–121]. These alternative techniques and scaled explosive
detonations cover distinct loading regimes. Scaled explosive detonations are
ideal for close-in and near-field testing, while the pressure blow down apparatus
and shock tubes produce a blast environment resembling that of far-field
detonations. Briefly stated, scaled explosive detonations typically result in
peak reflected overpressures above 1 MPa and durations shorter than 1 ms,
while the pressure blow down apparatus and shock tubes are characterized by
peak reflected overpressures below 1 MPa and durations greater than 1 ms. In
the pressure blow down apparatus, the transient loading is generated by using a
pressure vessel where the test component is clamped between the centre flanges.
The test component then divides the pressure vessel in two pressure chambers
and a rapid evacuation of the pressure in one of the chambers will produce a
uniform pulse pressure loading on the test specimen. The shock tube technique
is well-known within the field of gas dynamics using well-defined and easily
controllable initial conditions [122–125]. It typically consists of a gas-filled tube
in which a high-pressure chamber is separated from a low-pressure chamber
using multiple diaphragms. A sudden opening of the diaphragms generates a
shock wave propagating downstream the diaphragms and into the low-pressure
chamber, while rarefaction waves expand into the high-pressure chamber. Using
a relatively small ratio between the lengths of the two pressure chambers, this
experimental setup differs from traditional shock tubes in the way that the
reflected rarefaction waves catch up with the shock wave resulting in pressure
profiles similar to that from an explosive detonation. It should be noted that
the blast wave may also be generated using explosive-driven shock tubes where
the pressurized air is replaced by an explosive detonation in the high-pressure
chamber [118]. The interaction between a planar blast wave and a structure
may then be studied by placing a test object inside or at the end of the tube.
Pressure blow down apparatuses and shock tube facilities therefore allow for
the evaluation of blast-structure interaction without the need to considering
the inherent complexity in close-in and near-field detonations.

Finally, it is emphasized that measurement techniques are equally important
as the experimental setup since they determine the usefulness, reliability and
validity of the experimental data. Until recently it was difficult to measure
the deflection-time history of plates exposed to blast loading. However, the
recent development of three-dimensional digital image correlation (3D-DIC)
techniques has enabled such measurements of the complete deformation history
during blast experiments [103,126,127]. The two most common techniques are
the subset-based local DIC [128] and the finite element-based global DIC [129].
Tiwari et al. [126] and Zhao et al. [127] used subset-based local 3D-DIC to
obtain transient deformations of thin aluminium plates during buried blast



1.3. Objectives 17

events to simulate realistic ground conditions and to validate a dimensional
analysis, respectively. Spranghers et al. [103] used a similar subset-based DIC
technique for measurements of aluminium plates under free airblast loading
conditions.

1.3 Objectives

The increased demand for computer-aided design of safer and more cost-effective
protective structures introduces a need to evaluate the performance of current
computational methods in predicting both the loading and the response in blast
events involving flexible structures. The objective of this thesis is therefore to
develop an improved understanding of the behaviour and modelling of flexible
structures subjected to blast loading.

The overall research objectives are as following:

• Obtain knowledge and understanding of the current state-of-the-art in
testing, behaviour and modelling of blast-loaded structures.

• Establish test setups to produce controlled, repeatable blast loading in
laboratory environments. Special focus is placed on the establishment of
a shock tube facility capable of producing a loading similar to that from
actual explosive detonations.

• Use the test setups to obtain experimental data covering a wide range of
dynamic responses of thin aluminium and steel plates.

• Evaluate the capabilities of computational methods typically used in
protective design in predicting the experimental observations, i.e., both
the loading and the resulting response.

• Identify parameters influencing the dynamic response of thin aluminium
and steel plates in the experimental and numerical studies.

This type of knowledge, understanding and investigations are important to
meet the current demand for innovative and optimized solutions considering
safety as well as architectural requirements in blast-resistant design.

1.4 Scope

Due to the wide range of topics related to the behaviour and modelling of
flexible structures subjected to blast loading, it is necessary to impose some
limitations on the present work:
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• The test setups are limited to small-scale free-field airblasts and shock
tube tests in controlled environments.

• The blast environments are limited to those from non-contact and uncon-
fined explosive detonations external to the target where the dominant
effect is considered to be the blast overpressure.

• The material modelling in the numerical simulations of the blast-loaded
plates are limited to isotropic behaviour and ductile materials.

• The shock physics and thermodynamics necessary to understand com-
pressible fluid flow are limited to the idealized gas theory. Compressible
fluid flow is an active field of research and detailed studies within this
topic are not considered in this work.

• Numerical simulations are restricted to the finite element software EU-
ROPLEXUS [130].

Other, more detailed restrictions, are presented where needed.

1.5 Contributions of this work

This thesis contributes to an improved understanding of the behaviour and
modelling of flexible structures subjected to blast loading. The works of
this thesis have been presented at international conferences and published in
international peer-reviewed journals and in the form of EC-JRC Technical
reports. The main publications from this thesis are:

Journal publications

I V. Aune, E. Fagerholt, K. O. Hauge, M. Langseth, T. Børvik. Experimen-
tal study on the response of thin aluminium and steel plates subjected to
airblast loading. International Journal of Impact Engineering 90 (2016),
p. 106-121. DOI: 10.1016/j.ijimpeng.2015.11.017.

II V. Aune, E. Fagerholt, M. Langseth, T. Børvik. A shock tube facility to
generate blast loading on structures. International Journal of Protective
Structures 7(3) (2016), p. 340-366. DOI: 10.1177/2041419616666236.

III V. Aune, G. Valsamos, F. Casadei, M. Larcher, M. Langseth, T. Børvik.
Numerical study on the structural response of blast-loaded thin aluminium
and steel plates. International Journal of Impact Engineering 99 (2017),
p. 131-144. DOI: 10.1016/j.ijimpeng.2016.08.010.
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Conference proceedings and contributions

IV V. Aune, T. Børvik, M. Langseth. Behaviour of plated structures subjected
to blast loading. European Physical Journal - Web of Conference 94 (2015),
01015. DOI: 10.1051/epjconf/20159401015.

V V. Aune, T. Børvik, M. Langseth. On the fluid-structure interaction
effects of plated structures subjected to blast loading – An experimental
and numerical investigation. In: B. Skallerud & H. I. Andersson (eds.).
Proceedings of the 8th National Conference on Computational Mechanics
(MekIT’15), Trondheim, Norway, 18-19 May 2015, pages 59-83. ISBN
978-84-944244-9-6.

VI V. Aune, G. Valsamos, F. Casadei, M. Larcher, M. Langseth, T. Børvik.
Inelastic response of thin aluminium plates exposed to blast loading. In: 1st
International Conference on Impact Loading of Structures and Materials
(ICILSM), Turin, Italy, 22-26 May 2016.

Books/Compendiums/Technical reports

VII V. Aune, T. Børvik, M. Langseth. Lecture Notes in TKT4128 Impact
Mechanics: An introduction to blast mechanics. Norwegian University of
Science and Technology, Department of Structural Engineering, SIMLab
(2015).

VIII V. Aune, F. Casadei, G. Valsamos, T. Børvik. Formulation and imple-
mentation of the VPJC material model in EUROPLEXUS. Technical
Report EUR 27982 EN. European Commission, Luxembourg (2016). DOI:
10.2788/609529. ISBN: 978-92-79-59746-6.

Other publications related to this work, but not explicitly covered in this thesis,
are:

Conference proceedings and contributions

IX M. Kristoffersen, K. Osnes, S.R. Haug, V. Aune, T. Børvik. Shock tube
testing and numerical simulations of concrete slabs. In: 1st International
Conference on Impact Loading of Structures and Materials (ICILSM),
Turin, Italy, 22-26 May 2016.

Technical reports

X F. Casadei, V. Aune, G. Valsamos, M. Larcher. Description of the
elasto-plastic material routine SGDI. Technical Report EUR 27434 EN.
European Commission, Luxembourg (2015). DOI: 10.2788/403240. ISBN:
978-92-79-51226-1.
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XI F. Casadei, G. Valsamos, M. Larcher, V. Aune. Some notes on the
organization of routines for solid materials in EUROPLEXUS. Technical
Report EUR 27683 EN. European Commission, Luxembourg (2015). DOI:
10.2788/98573. ISBN: 978-92-79-54259-6.

XII F. Casadei, V. Aune, G. Valsamos, M. Larcher. Testing of the Johnson-
Cook material model VPJC in EUROPLEXUS. Technical Report EUR
27594 EN. European Commission, Luxembourg (2015). DOI: 10.2788/02760.
ISBN: 978-92-79-53999-2.

XIII F. Casadei, V. Aune, G. Valsamos, M. Larcher. Accounting for large
membrane strains in Q4GS and T3GS elements in EUROPLEXUS. Tech-
nical Report EUR 27836 EN. European Commission, Luxembourg (2016).
DOI: 10.2788/888282. ISBN: 978-92-79-57731-4.

XIV F. Casadei, V. Aune, G. Valsamos, M. Larcher. Generalization of the pin-
ball contact/impact model for use with mesh adaptivity in EUROPLEXUS.
Technical Report EUR 27888 EN. European Commission, Luxembourg
(2016). DOI: 10.2788/333017. ISBN: 978-92-79-57972-1.

XV F. Casadei, V. Aune, F. Daude, P. Galon, G. Valsamos, M. Larcher.
Shock tube tests with coupled 1D-3D models in EUROPLEXUS. Technical
Report EUR 27890 EN. European Commission, Luxembourg (2016). DOI:
10.2788/702507. ISBN: 978-92-79-57976-9.

In addition, several master’s theses at NTNU [131–137] have been produced
related to this work. All of these master’s theses have contributed positively in
writing this thesis.
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2
Blast loading
The typical protection scenario in blast-resistant design of civilian infrastructure
is a high-explosive (HE) detonation (see e.g. [16,100–102,138–140]), where the
dominant effect of the HE detonation is the blast overpressure. Part II of
this thesis is therefore limited to the blast overpressure origination from an
HE detonation and the resulting dynamic response of flexible structures. The
objective of this chapter is to introduce the definitions and phenomena that
are essential to model and understand the loading generated by an explosive
detonation. Although the fundamental aspects of these topics are well estab-
lished in the literature [3,15,16,32,141–143], such a presentation is necessary
for the understanding and discussion of the results later in this thesis.

2.1 Blast phenomena

Solid explosives must detonate to produce any explosive effect other than a
fire. The term detonation refers to a very rapid and stable chemical reaction
which proceeds through the explosive material at a speed (called the detonation
velocity) which is supersonic in the unreacted explosive. Detonation velocities
range from 1900 to 9000 m/s for most high explosives. The detonation wave
rapidly converts the solid or liquid explosive into a very hot, dense, high-pressure
gas, and the volume of this gas which initially was the explosive material is
then the source of a blast wave propagating into the surrounding air. Pressures
immediately behind the detonation front range from approximately 10 GPa to
30 GPa and temperatures of about 3000 - 4000 ◦C [143]. Only about one-third
of the total chemical energy available in most high explosives is released in
the detonation process. The remaining two-thirds are released more slowly as
the detonation products mix with air and burn. This afterburning process is
much slower than the detonation and its influence on the blast wave properties
diminishes with the distance. However, close to the point of detonation or at
later stages of the process the blast wave can be affected by the afterburning,
particularly for explosions in confined spaces.
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Figure 2.1: Detonation of a VBIED comprising a mixture of 950 kg ANFO. The
copyright of this picture is the property of the Norwegian Defence Estate Agency.

Figure 2.1 illustrates the events occurring during a typical HE detonation. This
is a photo taken immediately after the detonation of a vehicle-born improvised
explosive device (VBIED), where the bomb comprised a mixture of 950 kg
ammonium nitrate and fuel oil (ANFO). The bomb is estimated to explode
with an energy similar to that of approximately 400 to 700 kg trinitrotoluene
(TNT). It is observed that the energy (i.e., high-pressure gas) expands radially
and compresses the surrounding air to produce an incident shock (or blast)
wave. The blast wave is visible in Figure 2.1 due to the jump in density across
the shock wave and, since the explosion takes place at the surface and in free
air, it expands hemispherically. The high-temperature gases arising from the
detonation form a fireball. This fireball is lagging behind the blast wave, and
may last for a considerable time radiating heat and may cause thermal damage
or fires close to the point of detonation. It is also noticed hazardous fragments
accelerated by the blast wave. These types of fragments are often categorized
as primary and secondary fragments. Primary fragments are defined as parts
initially contained in the explosive device (e.g. ball bearings or nails) or parts
from the fractured casing (or container) of the explosive (e.g. the vehicle).
Secondary fragments are a result of objects external to the explosive device
that are accelerated by the blast wave and corresponding pressures. Typical
examples of secondary fragments are building debris caused by the blast wave
(e.g. shattering windows) or loose items (e.g. gravel and sand). Thus, if the
explosive device is close to the target, the target may experience the combined
effect of fragmentation and blast loading. This is a complex loading situation
outside the scope of this thesis.
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As the distance from the point of detonation increases, the dominant effect of
an explosion is mainly the blast wave itself. This is composed of a high-intensity
shock front which expands outward from the surface of the explosive into the
surrounding air (Figure 2.1). This is due to the fact that the compressed layer
(i.e., the shock wave) conserves most of the energy released by the explosion as
pressure energy. The shock wave (or blast wave) therefore propagates outwards
from the centre of the explosion due to the disequilibrium between the highly
compressed air in the blast wave and the undisturbed air in front of it. As
the wave expands, it decays in strength, increases in duration, and decreases
in velocity (Figure 2.2). The pressure decreases rapidly (with the cube of the
distance) due to geometrical (i.e., spherical) divergence and the dissipation of
energy in heating the air. At this stage the chemical reaction is completed,
except from some afterburning associated with the hot explosion products
mixing with the surrounding atmosphere. Thus, an explosion can be visualized
as a sphere of highly compressed air that expands until reaching equilibrium
with the surrounding air.

p

Distance

Figure 2.2: Influence of the distance from the explosion on the blast pressure
(inspired by [15]).

This expanding sphere is called the incident blast wave and is characterized
by an almost instantaneous rise (within a timescale of nanoseconds) from
ambient pressure p1 to a peak incident overpressure pso,max (see Figure 2.3).
The pressure decays exponentially back to the ambient condition p1 within
a very short duration td+ in time (i.e., typically in milliseconds). This is
known as the positive (overpressure) phase. As the shock front expands, a
negative phase occurs (where the pressure is below p1) which typically has a
longer duration td− than the positive phase. The negative phase results from
the momentum of air which generates an overexpansion so that the absolute
pressure at the tail of the blast wave falls below the ambient pressure (Figure
2.3). This underpressure slows down the surrounding gas molecules, producing
a reversal of flow back towards the point of detonation.
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Figure 2.3: Typical pressure-time history for the incident blast wave.

As the wave expands, it impinges on structures located within its path and
then the structure is loaded by the blast pressure (Figure 2.4). The magnitude,
duration and distribution of the blast load are a function of the explosive
properties (i.e., the explosive material, weight and shape), the location of the
detonation relative to the structure (i.e., the stand-off distance R), potential
objects located between the detonation and the structure, and finally the
magnitude and amplification of the pressure by its interaction with the ground
or the structure itself.

Explosive charge

Structure

R
α

Figure 2.4: Distribution of reflected pressure depending on the angle of incidence
α. The angle of incidence is defined as the angle between the normal vector and the
direct vector between the charge and point of interest on the structure. The normal
vector is also known as the stand-off distance R and is the shortest distance from the
explosive charge to the structure [144].

Thus, when the blast wave interacts with a structure that is not parallel to
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the direction of the wave, it is reflected and reinforced. This is known as the
reflected overpressure pr and the reflected blast wave has the same general shape
as the incident wave (Figure 2.5). The reflected overpressure is also the actual
loading to be used in the blast-resistant design, and may be represented as a
pressure-time history described by exponential functions such as the modified
Friedlander equation [18,143], i.e.,

pr(t) = pr,max

(
1 − t − ta

td+

)
exp

(
−b(t − ta)

td+

)
(2.1)

where pr,max is the peak reflected overpressure and b is the exponential decay
coefficient. It can be shown that the peak reflected overpressure is a function
of the peak incident overpressure pso,max through the well-known relation (see
e.g. [143,145])

pr,max = 2pso,max

(
7p1 + 4pso,max

7p1 + pso,max

)
(2.2)

where it is assumed an ideal gas behaviour of the gas and the Rankine-Hugoniot
relations [146–149]. Eq. (2.2) also proves that the peak reflected overpressure
pr,max is always greater than the peak incident overpressure pso,max for the
same explosive properties and at the same distance from the explosion. It is
seen that small magnitudes of the incident overpressure (pso,max → 0) result in
a reflected overpressure twice the incident overpressure, while strong shocks
(pso,max → ∞) result in an upper limit of pr,max/pso,max = 8.

Positive phase

Negative phase

p(t)

t

ta ta + td+ ta + td+ + td−

pr,max

pso,max

p1
pr,min

Figure 2.5: Typical incident and reflected pressure profiles after reflecting on an
infinite and planar surface.

The integrated area under the pressure-time history is defined as the specific
impulse i, where both the positive and negative phase contributes to the total
specific impulse. The specific impulse of the positive phase ir+ may be expressed
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using Eq. (2.1) as

ir+ =
∫ ta+td+

ta

pr,max

(
1 − t − ta

td+

)
exp

(
−b(t − ta)

td+

)
dt

= pr,maxtd+

b2 [b − 1 + exp(−b)]
(2.3)

This non-linear equation can also be solved iteratively to determine the value
of the decay parameter b which produces the impulse ir+ when the parameters
pr,max, td+ and ir+ are known. Also note that the same expressions are valid
for the incident blast wave when substituting pr,max with pso,max in Eqs. (2.1)
and (2.3).

The magnitude of the peak reflected overpressure is dependent on both the
angle of incidence α and the peak incident overpressure pso,max, where the
latter is a function of the explosive weight and distance from the point of
detonation (Figure 2.4). The point of impact on the structure will experience
the maximum reflected pressure when the blast wave encounters a surface that
is perpendicular to the direction of propagation (see Figure 2.6a), while the
structure will only experience the incident pressure when the surface is parallel
to the incoming blast wave (see Figure 2.6b).

pr

(a)

vso

pso

(b)

Figure 2.6: Illustration of side-on and head-on pressure loading (inspired by [143]):
(a) head-on loading (α = 0◦) and (b) side-on loading (α = 90◦).

Figure 2.7 shows the reflected pressure coefficient Crα = prα/pso,max for typical
angles of incidence. These data are based on measurements from experiments
using TNT and Pentolite where the shock wave impacts the structure at an
oblique angle [16,150].

It is observed that the peak reflected overpressure prα can be almost 13 times
greater than the peak incident overpressure, and the reflected pressure coefficient
are significantly greater at smaller stand-off distances (i.e., for larger incident
pressures). Also note that the upper limit predicted by the Rankine-Hugoniot
relations and Eq. (2.2) is clearly exceeded at higher values of the incident
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overpressure pso,max. This is due to the fact that air ionizes and dissociates as
the shock strength increases and γ is no longer constant. In fact, the real upper
limit ratio may be as high as 20 [3]. This pressure amplification is explained
by the propagation of the blast wave. As the wave travels, it accelerates air
particles that collide with the structural surface upon impact. In an ideal
linear elastic case the particles would be able to bounce back freely resulting
in a reflected pressure equal to the incident pressure. The structure would
then experience a doubling of the acting pressure. In a strong blast wave, as
for a shock wave which is a non-linear phenomenon, the reflection of these
particles is obstructed by subsequent air particles arriving at the reflecting
surface. Thus, the air molecules adjacent to the structure are unable to move
freely which again result in compression and heating of the shock wave and
the structure would experience a pressure significantly larger than the incident
pressure. This is called gas ionization and dissociation effects, and is often
related to strong shocks and close range detonations [3, 143].
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Figure 2.7: Reflected pressure coefficient Crα versus angle of incidence α [16]. Note
that α = 0◦ means that the shock wave is perpendicular to the surface (head-on),
while α = 90◦ implies that the propagation of the wave is parallel to the surface
(side-on).

Thus, when considering the reflection of a blast wave from a surface, the angle
of incidence α and the peak incident overpressure pso,max must be defined.
Moreover, oblique reflection is classified as either regular or Mach reflection.
Regular reflections occur at angles of incidence from 0◦ up to approximately
40◦ in air (Figure 2.8a). For this particular type of reflection the incident shock
wave travels through still air (i.e., region 1 in Figure 2.8a) at velocity vso where
the front is oriented with α relative to the structural surface. Properties behind
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this front (i.e., region 2 in Figure 2.8a) are those for a free airburst blast wave
and at contact with the surface the flow behind the incident shock is reversed.
This is due to the component of the flow normal to the surface which has to be
zero at impact. Thus, the shock is reflected from the structure at a reflection
angle αr that is different from α and the conditions in region 3 in Figure 2.8a
represent the reflected shock properties. From a physical point of view, a
pressure sensor flush mounted at the structural surface would record only the
ambient pressure p1 and the reflected overpressure prα (i.e., a direct jump from
region 1 to region 3) as the wave propagate along the wall. However, a sensor
mounted at a short distance from the surface would record p1, then pso, and
finally pr. The Mach reflection process occurs when α exceeds some critical
angle, depending on the shock strength. This critical angle is about 40◦ in air.
Mach reflection is a complex process and is sometimes described as a burst-of-
pressure-type effect where the incident wave graze the reflecting surface (see
Figure 2.8b) rather than bouncing back as is the case at lower values of α. The
result is that the reflected wave catch up and coalesces with the incident wave
at some point above the reflected surface to produce a third wave front called
the Mach stem (or Mach front). The point of coalescence of the three waves is
called the triple point. A slipstream region occurs at the boundary behind the
Mach stem and reflected waves where different densities and particle velocities
exist (i.e., a contact discontinuity). However, the pressure is constant over this
region. Thus, when the Mach wave is formed at the structural surface (or due
to reflections from the ground), it grows with the locus of the triple point as
the shock systems move along the surface (Figure 2.8b). Mach reflection is also
evident in Figure 2.7 for angles of incidence above 40◦. Note that although
head-on loading (i.e., normal reflection) usually provides upper limits for blast
loads on structures, smaller values of the peak incident overpressure pso,max at
larger angles of incident may result in a larger reflected pressure coefficient.

Reflected wave Incident wave
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Reflected wave Incident wave
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pM(t) vM
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Figure 2.8: Illustration of oblique reflection (inspired by [3, 143]): (a) regular
reflection (0 < α � 40◦) and (b) Mach reflection (α � 40◦).
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Typical examples of scenarios where the formation of the Mach stem is important
is when an explosive device detonates at a height H above the ground that
is smaller than the distance to the structure (H < R in Figure 2.9), and also
when a device is detonated inside a structure where the angles of incidence
on the internal surfaces can vary over a wide range. The former example is
illustrated in Figure 2.9 for an airburst detonation. It is seen that the reflection
from the ground (i.e., an enhanced shock) interacts with the incident shock
wave and produces the Mach front. For design purposes, it is assumed that
the Mach front is a plane wave with a uniform pressure distribution, and that
the pressure magnitude is about the same as that of the incident overpressure
pso (it is also sometimes larger) [142]. If the triple point is above the structure
(i.e., the Mach front is taller than the structure), it can be further assumed
that the entire structure is loaded by a uniform pressure distribution.

α
H

R

Mach front

Path of
Reflected wave

Incident wave

HT

Explosive

triple point
charge

Figure 2.9: Illustration of a blast environment from an airburst (inspired by [16]).

However, if the triple point is below the structure’s full height, the pressure dis-
tribution must be adjusted accordingly (i.e., a uniform pressure distribution up
to the triple point and the oblique incident pressure above it). The calculation
of the pressure acting on the structure is then performed by first determining
the distance between the explosive charge and the respective points of interest
(see Figure 2.4). Then, the blast parameters are computed according to a
suitable method (e.g. the empirical equations by Kingery and Bulmash [4]),
and finally, the pressure-time history pr(t) at the structural surface is computed
as a function of α according to Figure 2.7. Diagrams for the estimation of
the height of the triple point HT as a function of stand-off distance R and
explosive weight W may be found in [16]. Finally, the corresponding reflected
impulse irα+ for the positive phase as a function of α can be found in Figure
2.10. Note that the impulse in Figure 2.10 is scaled with respect to the cube
root of the explosive mass (̄irα+ = irα+/W 1/3), and that if the incident iso+
and reflected ir+ impulses are known the oblique impulse irα+ can be found by
the following interpolation equation [143]

irα+ = iso+
(
1 + cos α − 2 cos2 α

)
+ ir+ cos2 α (2.4)
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Figure 2.10: Reflected scaled impulse irα+ versus angle of incidence α [16].

2.2 Blast environments

The explosion may be categorized into three distinct airblast environments
depending on the position of the charge relative to the target (see e.g. [16]).
The differentiation is typically based on the height above the ground H and
the shortest distance R from the point of detonation to the target (i.e., the
stand-off distance). In the particular case of a free airburst detonation (see
Figure 2.11), the charge is detonated in the air and the blast wave expands
spherically and impact the target before encountering any other obstacles or
surfaces (i.e., H > R).

H

R

Explosive charge

Shock wave
propagation

Figure 2.11: Illustration of a free airburst blast environment.
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If the charge is detonated closer to the ground than the target (i.e., H < R),
the explosion is called an airburst detonation (Figure 2.12). The blast wave
will then impact the target after being reflected from the ground. Depending
on the height of the triple point, the target will be partly or entirely loaded by
the Mach front (see also Figure 2.9).

R

Shock wave
propagation

H

Explosive charge

Figure 2.12: Illustration of an airburst blast environment.

The Mach front is typical for airbursts since the reflected wave (dotted line in
Figure 2.13) catch up with and coalesces with the incident wave (solid line in
Figure 2.13), forming the path of the triple point (see dashed-dotted line in
Figure 2.13).

Explosive charge

Reflected wave
Incident wave

Path of
triple point

Figure 2.13: Illustration of shock wave reflection and path of the triple point in an
airburst (inspired by [15]).

Finally, if the explosive charge is detonated at or very close to the ground, the
blast wave immediately interacts with the ground before expanding hemispher-
ically towards the target (Figure 2.14). As already illustrated in Figure 2.1,
this is the typical loading scenario for a VBIED and is defined as a surface
burst. Note that instead of producing a Mach front, the incident blast wave is
reflected immediately from the ground resulting in higher pressures.

If the ground was a rigid surface, the resulting pressure would be twice that
produced by the same charge under free airburst conditions. This implies that
the pressure relations developed for free airbursts may be applicable also in the
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charge
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Figure 2.14: Illustration of a surface burst environment.

case of surface bursts by using twice the explosive weight. However, depending
on the soil and type of explosive, some of the energy will be absorbed by
the ground due to cratering (i.e., through displacement and fragmentation of
material from the ground surface) and experience indicates that a multiplying
factor between 1.7 and 1.8 should be applied (see e.g. [151] and Figure 1.1d).
Moreover, the characteristics of the blast wave generated from a surface burst
are similar to that of the Mach front. That is, for a sufficiently large stand-off
distance R (i.e., far-field loading), the blast wave can be assumed to be plane
and uniformly distributed over the target (see Figure 2.15).

R

Assumed plane

Explosive

Ground reflected wave

wave front

charge

Figure 2.15: Assumed plane wave front in surface burst blast environment (inspired
by [16]).

This shows that the magnitude and pressure distribution of a blast-loaded
structure are not only dependent on the properties of the explosives, but also
the location of the detonation relative to the structure which may result in
reinforcement of the pressure through interactions with the ground or other
surrounding surfaces.
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2.3 Explosives and TNT equivalence

Explosive materials are commonly distinguished based on their sensitivity to
detonation. An explosive is classified as a primary explosive if it is easily
detonated by a simple ignition, such as a spark, flame or impact. Examples
of such materials are mercury fulminate, lead and silver azide, and lead sty-
phnate [143]. Secondary explosives are detonated less easily than primary
explosives. To detonate a secondary explosive it is necessary to use a detonator
(typically a primary explosive). The high-velocity shock wave produced by the
detonator travels at the detonation velocity through the secondary explosive
charge, compresses it and causes it to undergo adiabatic heating. A well-known
and much used secondary explosive is Composition C-4 (hereafter denoted
C-4), which is a member of the Composition C family consisting primarily of
RDX. C-4 can easily be moulded into any desired shape, it can be pressed into
any gaps, cracks, holes and voids, and it is extremely stable. Other examples
of these materials are TNT and RDX.

Of all explosives available today (far too many to be mentioned), TNT holds
a special position. As well as being a very effective explosive, TNT is widely
accepted as the basis for comparison with other high-explosive materials. This
is known as the free air equivalent weight of TNT (or TNT equivalent) [16].
This is the weight of TNT required to produce a particular blast parameter of
equal magnitude as that produced by a unit weight of the explosive of inter-
est [142]. The TNT equivalent is typically determined based on thermodynamic
calculations and the energy released during the detonation. Thus, first the
chemical equations have to be balanced. As an example, and without going into
any details, TNT has the chemical formula C6H2 (NO2)3 CH3, which gives
the molecular formula C7H5N3O6 (or 7C + 5H + 3N + 6O). The balanced
equation, showing the products of reaction resulting from the detonation of
TNT, is given as [141]

C6H2 (NO2)3 CH3 → 1.5N2 + 2.5H2O + 3.5CO + 3.5C (2.5)

Thermodynamic calculations can then be conducted from Eq. (2.5), but this
is outside the scope of this thesis and the reader is referred to [141,142] for a
more detailed presentation.

The result of such calculations and some characteristic properties of typical
explosives are given in Table 2.1. It is observed that 1 kg of TNT typically
releases 4100 - 4900 kJ upon detonation.

The TNT equivalent is a universal quantity and is commonly used in the
estimation of blast parameters. An equivalent weight of TNT WTNT may
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Table 2.1: Some characteristic properties of typical explosives [142].

Explosive type Explosive density Detonation velocity Heat of detonation
ρexp [g/cm3] vexp [km/s] Eexp [kJ/kg]

Nitroglycerin 1.60 7.58 6300
PETN 1.77 8.40 6120-6320
RDX 1.82 8.75 5130-6190
HMX 1.91 9.10 5130
TNT 1.64 6.90 4100-4900
C-4 1.59 8.04 5860-6057

ANFO* 1.30 3.20 1590

* The properties are dependent on the particular mixture of solid ammonium
nitrate and fuel oil.

therefore be calculated for any explosive with a given weight Wexp by using
the ratio of the heat produced during the detonation, i.e.,

WTNT = Wexp
Eexp

ETNT
(2.6)

A measure of the detonation energy ETNT is found to be 4520 kJ/kg in the
literature [19]. As an example, the TNT equivalent for C-4 can then be found
using Table 2.1 and is estimated to be EC−4/ETNT = 6057/4520 = 1.34. This
implies that 1 kg of C-4 is equivalent to 1.34 kg of TNT. Table 2.2 presents
TNT equivalents for typical explosives found in the literature. These factors
result from Eq. (2.6) and can be used to determine the weight of TNT that
generates the same blast properties as that from another type of explosive of a
given weight. It is observed that the blast properties may be compared either
in terms of the peak pressure or impulse. Thus, the blast properties will not
only depend on the explosive material but also on the nature of the loading.

2.4 Blast scaling laws

Scaling of the blast properties from an explosive detonation is common practice,
and with the basic understanding of blast engineering these scaling laws may
be used to predict the blast properties from large-scale explosions based on
experiments at much smaller scales (or vice versa). Since the blast properties are
usually normalized to sea level ambient conditions, such results may also be used
to predict the blast properties from detonations at high-altitude conditions [144].
The scalability of blast waves is therefore an important characteristic within
the field of blast engineering.

A comprehensive review and derivation of the various scaling laws are given by
Baker et al. [14]. The most common approach of blast scaling is the so-called
Hopkinson-Cranz (or cube-root) scaling. This law states that two explosive
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Table 2.2: TNT equivalents for typical explosive materials [19,32,142,152].

Explosive type TNT equivalent mass factor
Peak pressure Impulse

TNT 1.00 1.00
Composition B 1.11 0.98

Composition C-3 1.08 1.01
Composition C-4 1.34-1.38 1.19

HMX 1.02 1.03
Octol 75/25 1.06 1.06

PETN 1.27 1.11
RDX 1.14 1.09

RDX/TNT 60/40 (Cyclotol) 1.14 1.09
Tetryl 1.07 1.05

Tritonal 1.07 0.96
Amatol 0.99 0.98
ANFO* 0.82 -
Pentolite 1.42 1.00

Nitroglycerine 1.48 -

* The properties are dependent on the particular mixture of solid ammonium
nitrate and fuel oil.

charges of similar geometry and the same material, but of different mass,
will produce self-similar blast waves at identical scaled distances and times
if detonated in the same atmosphere. If R is the stand-off distance from the
reference explosive charge, E is the total heat of detonation of the explosive,
and W is the total weight of the reference explosive source (typically TNT),
then the blast properties of the reference explosion can be related to those
arising from another charge W1 with a total energy E1 and located at a distance
R1 as follows

R

R1
=

(
E

E1

)1/3
=

(
W

W1

)1/3
(2.7)

If W1 and E1 are chosen as a unit of mass (e.g. 1 kg) or energy (e.g. 1 kJ), it
is convenient to introduce the scaled distance Z as [14]

Z = R1 = R

E1/3 = ΛR (2.8)

or
Z = R1 = R

W 1/3 = ΛR (2.9)

where also the parameter Λ is introduce as the scaling factor. The application
of either Eq. (2.8) or Eq. (2.9) will depend on the particular problem. However,
Eq. (2.9) is often used when considering chemical explosives. Since chemical
explosives are the aim of Part II, the definition in Eq. (2.9) is used in the
following.

The implications of the Hopkinson-Cranz scaling are shown schematically in
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Figure 2.16. That is, a sensor located at a distance R from the centre of the
explosive charge with characteristic dimension d will experience a blast wave
of magnitude p, duration td+, where the integral of the corresponding pressure-
time history is the specific impulse i+. Then, according to the Hopkinson-Cranz
scaling law, a sensor positioned at a distance ΛR from the centre of a similar
explosive charge of dimension Λd detonated in the same atmosphere would
experience a blast wave of similar form with magnitude p, duration Λtd+ and
specific impulse Λi+.
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ta
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Λd p

Λtd+

Λta
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Figure 2.16: Hopkinson-Cranz blast wave scaling (inspired by [14]).

Following the argumentation of Eq. (2.9), an appropriate value of Λ would
be

Λ = 1
W 1/3 (2.10)

resulting in a scaled specific impulse ī and time of arrival t̄a given by [14]

ī = Λi = i

W 1/3 (2.11a)

t̄a = Λta = ta

W 1/3 (2.11b)

Thus, the cube-root scaling implies that all physical quantities with dimensions
of pressure and velocity remain unchanged in the scaling. The scaling rela-
tionships also assume that the charge-to-surface geometries are identical (i.e.,
similar blast environments). Under other conditions, the same scaling laws
may be used to obtain approximate blast properties. However, in such cases
the relationships should be used with caution. Even though the Hopkinson-
Cranz scaling laws has been thoroughly validated experimentally over a large
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range of explosive charges, the lack of experimental data at very small scaled
distances (i.e., Z < 0.32 m/kg1/3) make validation in this area difficult (see
e.g. [142,144]).

It is noticed that the basic principles of cube-root scaling follows the same
principles introduced earlier for the blast phenomenon. That is, the energy
released from an explosion results in a shock wave propagating as an expanding
sphere. The blast properties will therefore be proportional to the energy
per unit volume (i.e., the specific energy). Since the volume of a sphere is
proportional to R3, the scaling will involve the cube root. An important result
of this argumentation is that the scaling is dependent on the geometry of the
explosive charge and that the scaling laws in Eqs. (2.7)-(2.11) may change for
other geometries than spherical charges. As an example, square-root scaling
may be a better choice for the scaling of an explosive line or cylindrical charge
since the energy will propagate with the expanding cylindrical shock front.
These differences are important in the case of close-in detonations, in which the
charge shape is essential in defining the shock front. However, for explosions
farther away from the target, the blast wave will eventually take on the form
of a plane shock wave and the scaling laws based on a spherical charge (i.e., a
point detonation) is reasonable and cube-root scaling should be used [142].

The scaled distance Z in Eq. (2.9) is also commonly used to distinguish
between various loading scenarios. A differentiation in loading categories is
convenient because the structural response depends on both the distribution
and magnitude of the loading, in which the stand-off distance is the governing
parameter. Three loading categories are found in the literature, i.e., contact (or
close-in), near-field and far-field detonations (see e.g. [32]). Close-in detonations
are characterized through high pressure magnitudes (typically in the order of 10
to 30 GPa) within the timescale of microseconds and include both detonation
products (e.g. fireballs) and compressed air. Although the duration of the
loading is very short, the reflection coefficient can be as high as 13 resulting
in very large impulses (see Figures 2.7 and 2.10). Due to the small distances
between the explosive charge and the target, these types of detonations involve
highly localized effects on the structure and also fragments (both primary
and secondary) can be an issue. Typically, the failure modes of the structure
are categorized by shear, spalling, punching or petalling, depending on the
thickness and material properties of the structure. Both near-field and far-
field detonations are characterized by a more distant blast wave that mainly
involves the compression of ambient air. Near-field loading is characterized
by a non-uniform spatial distribution of the pressure on the structural surface
and may involve both global and local effects in the structural response. A
common assumption at far-field loading is a uniform and plane shock wave
over the entire structural surface resulting in a global response (see Figures 2.9
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and 2.15). The following categories are often given in the literature [32]

Z ≤ 0.5 (Close-in)
0.5 < Z ≤ 2.0 (Near-field)

Z > 2.0 (Far-field)
(2.12)

This classification is convenient in the blast-resistant design and may provide an
important indication of the necessary complexity in the computational method.
However, one should be aware that when discussing the local or global effects
on the structural response this categorization could be somewhat misleading.
Eq. (2.9) implies that a small charge exploding near the structure may result in
the same values for Z as that from a large charge detonating farther away from
the structure. Only considering Eq. (2.12) may result in the same category
although the behaviour of a structure exposed to a relatively small detonation
near the structure could be totally different from its behaviour under a large
explosion far away from it. Depending on the blast intensity the structural
behaviour may become significantly different.

2.5 Prediction of blast loads

The objective of this section is to briefly review the basic approaches used
to predict the blast parameters required in blast-resistant design. These
approaches are often divided into empirical, semi-empirical and numerical (or
computational) methods [143]. Empirical methods are basically correlations
with experimental data, which implies that this approach is limited by the extent
of the underlying experimental database. The accuracy of all empirical methods
diminishes as the blast becomes increasingly near-field and approaches close-in
detonations. Semi-empirical methods are based on simplified models of physical
phenomena. They attempt to model the underlying physics in a simplified way.
These methods rely on extensive data and case studies and their accuracy is
generally better than that provided by the empirical methods. Numerical (or
computational) methods are based on the mathematical equations that describe
the basic laws of physics governing a problem. These principles typically
include conservation of mass, momentum and energy. In addition, the material
behaviour of the air is described by constitutive relations (known as equations
of state). These models are commonly called computational fluid dynamic
(CFD) models. Note that semi-empirical methods are developed primarily by
defence-related agencies and the distribution are therefore restricted to the
government and its contractors (see e.g. [153, 154]). This thesis is therefore
limited to empirical and CFD methods which are readily available to the public.
The empirical method are presented in Part II of this thesis, while the CFD
method are discussed in more detail in Part III.



2.5. Prediction of blast loads 41

Of the many available references in the literature (see e.g. [3, 5, 15, 142, 143,
150]) the most reliable and referenced works dates back to a few U.S. Army
publications. That is, the technical report by Kingery and Bulmash [4] and
the Army Technical Manual TM 5-1300 [16]. The latter was updated and
replaced by UFC 3-340-02 in recent years and provides detailed information
and procedures for the design of structures to resist the effects of explosions.
However, many of the blast properties predicted by this manual also dates
back to the former publication. The most common reference in predicting
blast loading is therefore the work by Kingery and Bulmash [4], in which
experimental data from idealized conditions (i.e., spherical and hemispherical
high-explosive detonations) were gathered and curve-fitted to higher-order
polynomial equations for the necessary blast parameters using the Hopkinson-
Cranz scaling laws for a large range of TNT equivalent charges (1 kg < WTNT <

400, 000 kg). As already mentioned in Section 1.2.1, the data used by Kingery
and Bulmash [4] contained limited data for blast parameters at scaled distances
less than 0.40 m/kg1/3, and some of the parameters were therefore extrapolated
at smaller distances using the available data and theoretical considerations.
These experiments and empirical equations, together with the Friedlander
equation in Eq. (2.1), form the basis for various simplified tools to predict blast
loading from a given explosive weight at a known distance from the target. The
most common and widely used tool is known as the Conventional Weapons
Effects Program (ConWep, formerly TM 5-855-1) [17]. These simplified tools
are often called empirical methods in the literature and present an idealized
representation of blast loads for design purposes. Due to the idealized nature,
these methods have significant advantages compared to other methods in
terms of time consumption and are therefore frequently used in so-called quick
assessments. This is a typical starting point of a blast-load analysis, providing
useful insight in the performance of structures and may be used for a first
optimization before more elaborate analyses and methods may be considered.

The empirical equations by Kingery and Bulmash [4] are given for spherical
free airbursts in Figure 2.17a and hemispherical surface bursts in Figure 2.17b.
It is observed that the blast properties in Figure 2.17b are similar to those
in Figure 2.17a. However, in a surface burst the parameters will be larger in
magnitude due to the instantaneous reflection from the ground (see Figure 2.14).
Note that the parameters in terms of specific impulses i, positive duration
td+ and time-of-arrival ta are scaled using Hopkinson-Cranz scaling [14]. That
is, scaled by the cube-root of the charge mass. Also note that Figures 2.17a
and 2.17b do not provide a value for the exponential decay coefficient b in
Eq. (2.1). This may be found by solving the implicit non-linear equation in
Eq. (2.3) since the value of the reflected specific impulse īr+, peak reflected
overpressure pr,max and duration t̄d+ of the positive phase is known. As the
loading becomes increasingly near-field (Z ≤ 2.0), the use of the empirical
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Figure 2.17: Blast parameters for a charge of TNT, detonated in free air at sea
level, given by Kingery and Bulmash [4].

equations requires that the non-uniform spatial distribution of the loading is
included in the calculation. This can be done by considering both the incident
overpressure pso,max and the angle of incidence α when determining the reflected
pressure acting on the structure (see Section 2.1 and Figures 2.4, 2.7 and 2.10).
Intermediate values of the peak incident overpressure pso,max in Figure 2.7
may be found by interpolation between adjacent curves. If the charge shape
is spherical or hemispherical, the reflecting surface is considered plane and of
infinite size, and the scaled distance is defined as a near- or far-field detonation
(Z ≥ 0.5), the simplified methods based on Figures 2.17a and 2.17b are in
general found to provide good estimates of the blast properties [33].

However, at scaled distances defined as a close-in detonation (Z ≤ 0.5), the
use of simplified methods is questionable due to the increasing complexity
of the load in the vicinity of the structure [38, 39]. That is, the empirical
methods do not consider potential interactions between the fireball and the
blast overpressure. Moreover, these methods are not valid for blast environments
involving complex geometries. Complex geometries and structures of finite
surfaces involves clearing, shielding and confinement between neighboring
buildings. This introduces the need for more elaborate methods (e.g. semi-
empirical or numerical methods), since the reflected pressure will be relieved by
a rarefaction wave generated during the diffraction of the reflected shock around
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the boundary of the reflecting surface (see e.g. [16,155]). This requires advanced
numerical methods based on computational fluid dynamics (CFD) to estimate
the loading for contact detonations or complicated geometries [38]. Thus, when
using the empirical methods, it is necessary with a proper understanding of
the blast phenomenon and underlying limitations of the method to ensure that
the blast properties are valid estimates.

Finally, although the effects of the negative phase are usually neglected in the
design of hardened structures (e.g. reinforced concrete or similar), this phase
may be of importance when considering the response of flexible structures
where the overall motion will be affected by the timing of the negative phase.
The most commonly used negative phase parameters seem to be those given
in [16, 27]. These parameters are presented in Figures 2.18a and 2.18b for
spherical and hemispherical charges, respectively. Note that pr,max, t̄d+ and īr+
from Figures 2.17a and 2.17b are included for comparison to the corresponding
negative phase parameters (pr,min, t̄d− and īr−). It is observed that although
there is a relatively large difference between peak reflected pressure pr,max
and peak negative pressure pr,min, the corresponding impulses (̄ir+ and īr−)
approaches the same order of magnitude for Z > 1. Studies by Rigby et al. [30]
also suggest that the angle of incidence α has limited influence of the negative
phase parameters (pr,min, t̄d− and īr−).
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Figure 2.18: Parameters for the positive and negative phase from a charge of TNT
detonated in free air at sea level [4, 16].





3
Airblast experiments
This chapter is mainly based on the first paper published in International
Journal of Impact Engineering [156]. It presents an experimental investigation
on the influence of stand-off distance on the dynamic response of thin aluminium
and steel plates subjected to airblast loading and covers the experimental work
related to Part II of this thesis. The experimental results provide a set of
data which can be used to evaluate the performance of current computational
methods in predicting the structural response of thin ductile plates exposed to
blast loading.

3.1 Introduction

As discussed in Section 1.2.4, experiments involving high-explosive detonations
are necessary to investigate the inherent complexity in such blast environments
(e.g. highly non-uniform spatial and temporal pressure distributions and the
interaction between the fireball and the blast overpressure in the vicinity of the
target). A series of airburst detonations was therefore carried out to obtain
knowledge and an improved understanding of near-field blast events. The
experimental results presented in this chapter will also serve as a basis of
comparison for the numerical simulations in Chapter 5.

The blast intensity and pressure distribution were varied by detonating small-
scale spherical charges of plastic explosive at various stand-off distances relative
to the centre of the plates. Piezoelectric pressure sensors were used for pressure
recordings and synchronized with two high-speed cameras in a stereovision
setup to capture the dynamic response using a finite element-based three-
dimensional digital image correlation (3D-DIC) technique. Material tests were
also performed to determine the materials’ behaviour at large plastic strains.
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3.2 Experimental study

This section starts with a presentation of the experimental setup and programme
before presenting the material tests and the procedure used in the three-
dimensional digital image correlation analyses.

3.2.1 Experimental setup and programme

All tests were performed at an indoor test facility possessed by the Research
and Development Section at the Norwegian Defence Estates Agency. The
experimental setup is shown in Figures 3.1a and 3.1b and was inspired by
Spranghers et al. [103]. The setup consisted of a steel mounting frame fixed
to the concrete floor with outer dimensions 1.0 m × 1.0 m × 0.015 m and a
square opening of 0.3 m × 0.3 m in the centre. The square plate specimens
with dimensions of 0.4 m × 0.4 m × 0.0008 m were clamped to the rigid frame
using bolted connections and a clamping frame in an attempt to achieve fixed
boundary conditions. The 16 bolts were tightened using a wrench with a torque
Mt of 200 Nm, which is equivalent to a pre-tensioning force Fp of 92.6 kN [157]
for the M12 bolts used in this study.

Two high-speed cameras in a stereoscopic setup were used to capture the
response of the thin plates with a framing rate of 21,000 fps. The plates were
painted with a speckle pattern to measure the transient deformation fields
using a three-dimensional digital image correlation (3D-DIC) technique (Figure
3.1c). It was necessary with additional lighting for the speckle pattern to have
enough contrast to calculate the transient deformation fields using DIC. The
cameras were triggered manually and the trigger mode was centred such that
an equal number of frames before and after the explosion were stored. A blast
pencil was used to determine when the shock wave arrived at the cameras (see
Figures 3.1a and 3.1b). From this point on the correlation of the images had
reduced accuracy due to possible oscillations of the cameras, resulting in a loss
of calibration of the system.

The explosive mass W was positioned at various stand-off distances R relative
to the centre point of the plate depending on the material, and the test matrix
is given in Table 3.1. The explosive material was Composition C-4 with a
spherical shape, a mass of 30 g (equivalent to 40.2 g of TNT) and a diameter
of approximately 34.5 mm. The blast was initiated by an electric detonator
of type RP-83 exploding bridgewire (EBW) with a TNT equivalent of 1 g.
The explosive charge and detonator were held together using a black electrical
insulation tape (Figure 3.1d).
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Figure 3.1: Experimental setup: (a) sketch of the setup, (b) picture of the setup, (c)
DIC speckle pattern, (d) spherical charge and (e) calibration plate. Both the speckle
pattern in (c) and the calibration plate in (e) are seen from the cameras.
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Table 3.1: Test matrix.
Plate thickness [mm] Stand-off

distance R [m]
Test number*

1 2 3 4 5
15 (rigid steel plate) 0.250 R11 R12 R13 - -

0.375 R21 R22 R23 - -
0.500 R31 R32 R33 - -

0.8 (steel plate) 0.125 S11 S12 S13 S14 S15
0.250 S21 S22 S23 - -
0.375 S31 S32 S33 - -

0.8 (aluminium plate) 0.250 A01 - - - -
0.375 A11 A12 A13 - -
0.500 A21 A22 A23 - -
0.625 A31 A32 A33 - -

*The tests are numbered XYZ in which X denotes the rigid steel (R), deformable
steel (S) or aluminium (A) test specimens, Y is the subsequent stand-off distance
(0, 1, 2 and 3) and Z is the test number.

Piezoelectric pressure sensors (Kistler 603B), corresponding charge amplifiers
(Kistler 5064) and data acquisition systems from National Instruments (NI
USB-6356) and Yokogawa (DL850E ScopeCorder) were used to measure the
pressure at selected locations during the experiments (see sensors in Figures
3.1c and 3.1e). These sensors are designed to measure fluctuations of high
frequency with short rise time, and are capable of measuring pressures up to 20
MPa at temperatures up to 200 ◦C [158]. The pressure sensors were positioned
in threaded adapters which were fastened at the desirable locations. The
pressure was recorded using two independently operating acquisition systems
and sampling frequencies, i.e., 10 MHz and 21 kHz. The first frequency enabled
the recording of the steep gradient and short rise time of the blast wave, while
the second frequency was the same as for the high-speed cameras enabling a
synchronization of the pressure and the 3D-DIC measurements. No low-pass
filtering was used in the pressure measurements.

Before testing the thin steel and aluminium plates, similar tests were performed
on a massive steel plate with a thickness of 15 mm. The main objective
with these experiments was to investigate the pressure distribution on a rigid
calibration plate, and to use these measurements as a basis to investigate
potential fluid-structure interaction (FSI) effects in the thin-plate tests. To
enable the investigation of the FSI effects the clamping frame had to be
positioned at the same location for both the pressure measurements and the
subsequent thin-plate tests. The calibration plate was therefore placed on
the same side as the high-speed cameras, i.e., on the opposite side of the
steel mounting frame compared to the clamping frame (see Figure 3.1a). This
resulted in a slightly different stand-off distance for the loading of the calibration
plate compared to the steel and aluminium plates (Figures 3.1c and 3.1e).

The calibration tests were performed using three different stand-off distances
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and with a sufficient amount of pressure sensors to determine the pressure
distribution along the vertical and diagonal of the calibration plate. The
position of the 10 sensors used in these tests are shown in Figure 3.2a. To
reduce the risk of damaging the sensors, the calibration tests were not performed
at a stand-off distance of 0.125 m (see Table 3.1). Sensors 1-4 and 8-10 were
mounted on the calibration plate, while 5-7 were located on the clamping
frame. Sensor 1 was moved to the remaining position (lower centre part) in the
clamping frame for the thin-plate experiments and renamed sensor 11 (Figure
3.2b). A break wire was synchronized with the pressure measurements and
used to determine the time of detonation. This is an analog device with an
electric circuit which registers the time of a potential break in the wire as a
change in the signal. As soon as the explosive charge detonates, the wire will
break and thus define the time of detonation.
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Figure 3.2: Position of pressure sensors (seen from the cameras) in the calibration
plate (a) and clamping frame (b). All measurements are in mm.

3.2.2 Materials

The 0.8-mm-thick steel plates used in these tests were manufactured from
medium-strength, high-hardening and cold-rolled sheets of type Docol 600DL
produced by Swedish Steel Ltd. (SSAB). Heat treatment is used to produce
a two-phase structure of ferrite and martensite, where the ferrite gives the
forming properties and the martensite gives the strength. This material is
often used in the automotive industry. Table 3.2 gives the nominal chemical
composition of the material [159]. The nominal yield stress was reported by
the manufacturer to be in the range from 280 MPa to 360 MPa, while the
nominal tensile strength was stated to be between 600 MPa and 700 MPa.
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Table 3.2: Chemical composition of Docol 600DL (in wt.%).
C Si Mn P S Al

0.10 0.40 1.50 0.010 0.002 0.040

Gruben et al. [160, 161] investigated the mechanical properties of Docol 600DL
steel by performing a comprehensive experimental study on 2 mm thick plates,
while Rakvåg et al. [65] and Holmen et al. [162] performed material tests on
respectively 0.7 mm and 0.8 mm thick plates of the same material. These
studies compared the material behaviour in three different directions (0◦, 45◦

and 90◦) regarding the rolling direction of the plate, and concluded that the
material is isotropic with a small variation in failure strain. The material was
also found to be moderately strain rate sensitive at elevated strain rates [65].
It should further be noted that the material specimens used by Holmen et
al. [162] were taken from the same plates as those used in this study. Thus,
the material data provided in [162] also apply in this study, and no additional
material tests were performed for the steel sheets.

The 0.8-mm-thick aluminium plates were manufactured from low-strength,
strain-hardened and cold-rolled sheets of the alloy EN AW 1050A-H14 produced
by Norsk Hydro ASA. This is 99.5 % pure aluminium subjected to annealing
before work hardened by rolling until a yield stress which is approximately
half of the ultimate tensile strength is achieved. The material is often used
for sheet metal work where high mechanical properties are not required. The
nominal chemical composition is provided in Table 3.3, while the nominal yield
and ultimate tensile strengths were given by the producer to be about 75 MPa
and 105-145 MPa, respectively.

Table 3.3: Chemical composition of EN AW 1050A-H14 (in wt.%).
Si Fe Cu Mn Mg Zn Ti Al

0.030 0.360 0.001 0.002 0.000 0.003 0.010 Rest

Uniaxial tensile tests were carried out on dog-bone specimens cut from the
aluminium plates using the same geometry as in [162] (see Figure 3.3). The
tests were performed in a Zwick/Roell Z030 testing machine at a constant
deformation rate of 2.1 mm/min. This corresponds to an initial strain rate
of ε̇ = 5 × 10−4 s−1 for a gauge length of 70 mm. Three parallel tests were
performed in three different directions (0◦, 45◦ and 90◦) with respect to the
rolling direction of the plate. The force and displacement were measured
by the hydraulic test machine at 4 Hz for all tests, and the displacement
field was measured using DIC. In addition, the first test in each series was
instrumented with an extensometer to measure the displacement of the gauge
length for comparison with the DIC measurements. The DIC measurements
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were validated by using a vector at the same location and of the same length
as the extensometer. The DIC measurements and the extensometer showed
excellent agreement, and only the DIC recordings are therefore used in the
following.
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Figure 3.3: Geometry of the uniaxial tension tests. All measurements are in mm.

Nominal stress-strain curves from quasi-static uniaxial tensile tests of both
materials are shown in Figure 3.4. It is observed that the aluminium is slightly
anisotropic both in flow stress and failure strain (Figure 3.4b). Diffuse necking
occurs at very small plastic strains (approximately 0.7 %) in all three directions,
which indicates that the deformation before necking is very low for this alloy.
This can be explained by the manufacturing process since these sheets were
formed and work-hardened by cold-rolling until half hard, i.e., to a yield stress
approximately half the ultimate tensile strength [163]. It is well known that
increasing the yield stress by cold-working may reduce the ductility before
necking.
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Figure 3.4: Nominal stress-strain curves from uniaxial tensile tests at three different
loading directions for (a) Docol 600DL [162] and (b) EN AW 1050A-H14.

Diffuse necking in the tensile test indicates the end of the uniform deformation
in the gauge area and a triaxial stress state will increase the value of the
longitudinal stress. Usually this is seen on the nominal stress-strain curve as a
rapid decrease in the stress until failure (as e.g. seen for the Docol 600DL steel
in Figure 3.4a). However, for the EN AW 1050A-H14 aluminium alloy only a
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small and rapid decrease in stress before a long-lasting stagnation in stress level
before failure is observed (see Figure 3.4b). This behaviour was most evident
in the specimens taken from the rolling direction of the sheet. From a physical
point of view this indicates that the load-carrying capacity of the material is
noticeably increased immediately after the onset of diffuse necking, which may
be explained by the high rate-sensitivity of the material [164–167]. As the neck
develops, this instability will increase the strain rate in the localised area of
the neck which for this material seems to result in a severe increase in the
load-carrying capacity of the specimen.

3.2.3 3D-DIC measurements

Three-dimensional digital image correlation (3D-DIC) analyses were conducted
for all blast tests using a stereovision setup with two Phantom v1610 high-speed
cameras. The separation angle between the optical axes of the cameras was
approximately 25◦ (Figure 3.1a). The recording rate was chosen to 21,000
fps in all tests with an image resolution of 896 × 800 pixels and 12-bit grey
level digitization. The camera calibration and image analyses were carried
out in a post-processing phase using an in-house finite element-based DIC
code (see [168] for further details regarding the DIC software applied in this
thesis).

The calibration of the stereovision setup involved recordings of a calibration
target with known geometry - in this case a cylinder of diameter 80 mm with
a checkerboard pattern printed on the surface as shown in Figure 3.5a. The
calibration target was translated and rotated between each recording, and this
process was done both prior to and in-between the blast tests to capture any
potential permanent movement of the cameras during testing. The calibration
target was initially pre-calibrated so that the dimensions, i.e., the diameter,
square size and possible deviations, of the cylinder were known with as high
accuracy as possible. The location of the corners in the checkerboard pattern
was extracted from the images (Figure 3.5b) and the 16 camera parameters
including correction of radial and tangential lens distortion were optimized for
each of the two cameras. The camera calibration and the 3D-DIC technique
have been validated using shock tube experiments and a laser displacement
sensor (optoNCDT 2300) with similar experimental setup and sampling rate of
data (see Part III). The measured mid-point deflection based on the laser and
the 3D-DIC were in excellent agreement, and the 3D-DIC technique is therefore
considered as well suited to measure the displacements in this study.

Prior to each test, the plates were spray-painted with a speckle pattern. The
thin plates were first spray-painted white before a template was used to apply
black speckles with appropriate sizes on the white surface (see Figure 3.1c).
The image sequences recorded during the blast tests were analysed using a
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(a) (b)

Figure 3.5: Calibration of the stereovision setup: (a) a recorded image of the
calibration target (cylinder) is analysed to find the corners of the checkerboard
pattern, and (b) the extracted corner positions in the image (pixels) and in the
three-dimensional target coordinate system (mm) is used to calibrate the camera
models [168]. Multiple recordings of the calibration target are used to obtain reliable
camera models.

finite-element formulation of DIC [168,169] on a mesh of Q4 elements. Zero-
shifting and normalization of the grey values were carried out element-wise in
the DIC analyses to handle large background light variations caused by the
explosion.

Conversion between pixel locations in the images for the two cameras and
the target space were carried out using the camera models presented in [168].
Figure 3.6 illustrates an example of recorded images from test S21 using the
two synchronized high-speed cameras with the resulting DIC meshes plotted
on top. The corresponding 3D model calculated from the DIC results is also
illustrated in the figure.

Some challenges were encountered in the DIC analyses due to reflecting specular
highlights, which occurred at various stages during the deformation of the plates.
Also flaking of the paint, especially at the centre of the plates, were encountered
in some of the tests. These challenges were however easily recognized and the
results from the DIC analyses at these locations were disregarded.

3.3 Experimental results

The experimental results are presented in terms of pressure measurements for
the calibration tests and both pressure measurements and deformation histories
for the steel and aluminium tests.
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Figure 3.6: Results from 3D-DIC in test S21. The top images show two corresponding
images from Camera 1 (top-left) and Camera 2 (top-right). The resulting DIC mesh
is plotted on-top of the recorded images. The corresponding 3D model from DIC is
presented in the lower image. The colour scale on the 3D-model indicates out-of-plane
displacement (in mm).

3.3.1 Pressure measurements

The measured blast properties from all tests against the rigid 15 mm thick
steel plate are summarized in Table 3.4, while representative pressure-time
histories for each stand-off distance are given in Figure 3.7. The pressure
measurements were numbered RXY, where X denotes the subsequent stand-off
distance (1, 2 and 3 - see Table 3.1) and Y is the test number. Since it is
generally accepted that the structural response is mainly driven by the positive
phase of the blast load (see e.g. [40,41]), this study will merely focus on this
phase. The reported blast properties are therefore limited to the time of
arrival ta, peak reflected overpressure prα, positive duration td+ and impulse
irα+ for typical pressure curves. These data were taken from the frame and
the sensor where the blast wave arrived first. The impulse was found by
numerical integration of the pressure-time curve during the positive duration
at the respective sensor. Measurements from the centre of the calibration plate
(Sensor 1) were also included in Table 3.4 for comparison. It should be noted
that the blast parameters were not identical for the three pressure sensors in
the frame at the same stand-off distance, but the sensor listed in Table 3.4
gives a good representation of these measurements from each test. All results
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were corrected according to the time of detonation using the signal from the
break wire.

Table 3.4: Experimental results from pressure measurements. The location of the
pressure sensors are given in Figure 3.2.

Test R Z Sensor ta prα td+ irα+
[m] [m/kg1/3] [#] [ms] [MPa] [ms] [kPa ms]

R11 0.235 0.69 7 0.12 8.3 0.18 148.6
0.265 0.77 1 0.10 5.5 0.15 189.8

R12 0.235 0.69 7 0.14 6.9 0.16 148.9
0.265 0.77 1 0.11 20.4 0.18 303.0

R13 0.235 0.69 6 0.13 7.0 0.15 167.6
0.265 0.77 1 0.12 10.8 0.17 207.2

R21 0.360 1.05 7 - 3.3 0.22 121.4
0.390 1.14 1 - 4.8 0.23 168.1

R22 0.360 1.05 5 - 3.6 0.25 123.1
0.390 1.14 1 - 4.6 0.22 167.7

R23 0.360 1.05 6 0.25 3.4 0.25 128.9
0.390 1.14 1 0.23 3.9 0.23 151.2

R31 0.485 1.42 6 0.38 1.7 0.39 101.2
0.515 1.50 1 0.39 1.9 0.51 143.5

R32 0.485 1.42 5 0.40 1.6 0.38 97.0
0.515 1.50 1 0.39 1.2 0.51 95.6

R33 0.485 1.42 6 0.37 1.5 0.38 101.3
0.515 1.50 1 0.37 2.0 0.51 144.9

The pressure measurements show that the loading on the rigid calibration plate
is in good agreement with the characteristics of an idealized blast wave, i.e.,
short rise time, exponential pressure decay and a positive phase followed by
a negative phase. The variation in arrival time and peak reflected pressure
for the blast wave at the respective sensors confirm that the pressure wave
is spherical and propagates in a radial manner. This can be observed as the
peak reflected pressure is decreasing and the time of arrival is increasing with
increasing stand-off distance and oblique angle (Figure 3.7). This behaviour
was further confirmed by the difference in arrival time at the respective sensors,
which became smaller at larger stand-off distances. It should also be noted that
the sensors in the frame (i.e., Sensors 5-7) were located about 30 mm closer
to the charge than the sensors in the calibration plate (see Figures 3.1a and
3.2a). These sensors were included for a later comparison with the experiments
involving the thin steel and aluminium plates.

For some reason the pressure seemed to arrive simultaneously at Sensors 1 and
8 (see Figure 3.7) independent of stand-off distance. According to theory, it is
expected that the blast wave would first arrive at Sensor 1 and then the other
sensors depending on their distance and oblique angle from the centre of the
explosive charge. The same tendency was observed for the pressure recordings
in the frame, where it was noticed that the pressure arrived somewhat earlier
at Sensor 6 compared to Sensors 5 and 7. Since Sensor 6 was on the same
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Figure 3.7: Pressure measurements from selected experiments limited to only include
the positive phase of the blast load: (a) R13, (b) R23 and (c) R33. The measurements
are taken from the pressure sensors located along the vertical (left), diagonal (middle)
and frame (right) in the calibration tests (see Figure 3.2).

half of the calibration plate as Sensor 8, these deviations may be explained
by an imperfect shape and alignment of the explosive charge. However, since
these deviations were relatively small it seems reasonable to assume a spherical
shape and centred alignment in the following.

Other deviations worth noticing are the positive impulses from Sensors 4 and
10 which were larger than expected compared to the other sensors. A plausible
explanation for these irregular profiles may be a pressure build-up due to
geometrical effects at the boundary, as the calibration plate was positioned
differently than the clamping frame (Figure 3.1a). This was also confirmed by
experimental and numerical investigations by Bonorchis and Nurick [170]. They
showed that increased thickness of the clamping frame resulted in a pressure
build-up at the plate boundary. However, this did not influence the mid-point
deflection in subsequent experiments with deformable plates. It was also noted
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abnormal recordings in some sensors, e.g. Sensor 7 in Figure 3.7b and Sensor 9
in Figure 3.7c, in some of the tests. The reason for this is not known.
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Figure 3.8: Secondary reflections and pressure drift in pressure sensors from test
R33.

Figure 3.8 shows that the pressure did not always return to the ambient
pressure at the end of the experiments. This indicates that the reference value
(or zero level) of the pressure sensors was altered during the experiment, which
may be explained by the fact that the Kistler 603B sensors are only designed
for temperatures up to 200 ◦C [158]. It is therefore possible that the zero
level changed due to the high temperature from the explosion, which seems
reasonable since the drift was larger at the smallest stand-off distances where
the temperature exposure was higher. This made it difficult to determine the
exact duration of the negative phase. However, by assuming that the drift in
pressure appeared after the positive phase, it was possible to determine the
duration of the positive phase. This assumption seems reasonable since the
fireball from the detonation is lagging behind the pressure wave. Reflection
waves from e.g. secondary shocks and ground reflections were also observed
in the pressure curves (seen as the peaks between 1 and 2 ms in Figure 3.8),
making it even harder to determine the exact duration of the negative phase.
Nevertheless, the overall performance of the pressure sensors seemed to be
acceptable.

3.3.2 Steel plates

Figure 3.9 shows measured out-of-plane displacement at the centre point versus
time for some of the tests based on the DIC analyses, while all experimental
results are summarized in Table 3.5. The figure indicates that all plates
experienced severe plastic deformation due to the blast load, and that the
elastic rebound became smaller as the load-intensity increased. The specimens
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at the nearest stand-off distances of 125 mm and 250 mm (S11-S15 and S21-S23)
experienced an intuitive response as the test specimen deformed in the same
direction as the incident blast wave, before it started to oscillate around its
final shape. However, the specimens at the largest stand-off distance of 375 mm
(S31-S33) revealed a counter-intuitive behaviour (CIB) as the test specimen
experienced reversed snap buckling (RSB) during the elastic rebound, before
it started to oscillate around the final configuration in the opposite direction
of the incident blast wave. Due to trigger problems and flaking of the paint
at the centre part in some specimens, DIC analyses were only possible in 6
out of the 12 experiments conducted (see Table 3.5). Further, the blast pencil
recorded that the shock wave reached the cameras after about 9 ms. Beyond
this point the correlation of the images has reduced accuracy due to small
oscillations of the cameras. Figure 3.9 also shows a non-physical deviation
of the displacement curves from the permanent equilibrium configuration in
the final part of the experiment. This is due to the slight movement of the
mounting frame during the tests.

0 2 4 6 8 10 12 14 16
−10

−5

0

5

10

15

20

25

30

35

Time [ms]

D
is

p
la

c
e
m

e
n
t 
[m

m
]

 

 

S15

S21

S22

S31

S32

S33

Figure 3.9: Deformation versus time of the centre point for the steel plates based
on 3D-DIC.

As already mentioned, Table 3.5 gives characteristic blast parameters for a
given pressure sensor and the permanent mid-point deflection from each test.
The selected data were taken from the sensor in the clamping frame (see
Figure 3.2b) that first recorded reasonable results. Thus, the variation in
results observed at each stand-off distance represents both the spread between
the sensors and the natural spread in this type of tests. The final mid-point
deflection measured with DIC (dz,p1) and the in-situ permanent displacement
(dz,p2) of the same point measured using a sliding caliper after the experiment
also reveal some differences. The DIC measurements, defined as the average
displacement during the elastic rebound phase, are in general slightly larger
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than the permanent displacements. One reason for this may be that the plates
were not completely at rest when the final picture for the DIC analyses was
taken and that the displacement measured by DIC was not corrected for the
slight movement of the mounting frame. The contribution from the movement
of the mounting frame is indicated in Table 3.5 by including the corrected
values in parentheses for dz,p1.

Table 3.5: Experimental results for the steel plates. The permanent mid-point
deflections (dz,p1) which are corrected for the slight movement of the mounting frame
are given in parentheses.

Test R Z Sensor* prα td+ irα+ td+/Tn dz,p1 dz,p2 DIC
[m] [m/kg1/3] [#] [MPa] [ms] [kPa ms] [-] [mm] [mm] [Y/N]

S11 0.125 0.36 11 14.2 0.07 135.7 0.005 - 30.0 N
S12 0.125 0.36 11 14.6 0.07 169.5 0.005 - 29.2 N
S13 0.125 0.36 11 16.2 0.07 156.0 0.005 - 28.8 N
S14 0.125 0.36 11 14.9 0.07 169.8 0.005 - 30.3 N
S15 0.125 0.36 11 11.5 0.07 138.2 0.005 31.7(29.4) 28.0 Y
S21 0.250 0.73 11 7.7 0.17 162.5 0.013 20.7(18.8) 16.5 Y
S22 0.250 0.73 6 6.8 0.14 142.2 0.011 21.0(18.0) 18.3 Y
S23 0.250 0.73 7 7.7 0.14 168.7 0.011 - 18.3 N
S31 0.375 1.09 11 3.5 0.25 139.2 0.019 -6.4(-8.5) -8.1 Y
S32 0.375 1.09 6 4.9 0.23 154.2 0.017 -6.1(-7.8) -7.9 Y
S33 0.375 1.09 6 3.3 0.21 136.2 0.016 -6.2(-8.6) -9.1 Y

*Stand-off distance R refers to the respective plate, and not to the sensor located
in the frame.

Pictures of typical steel plates after the tests are shown in Figure 3.10. For
the closest stand-off distance (Figure 3.10a), the deformed shape was square
pyramidal with plastic hinges around the boundaries and along the diagonals
of the plate. Plastic hinges were also observed for the two largest stand-off
distances (Figures 3.10b and 3.10c), although not that distinct. In these plates,
a local dent at the centre with diameter similar to the spherical charge was
observed. Furthermore, there were no visible signs of tearing at the boundaries
for the steel plates and these experiments may therefore be classified as failure
Mode I [57], i.e., large inelastic deformation. The only visible sign of failure in
the test specimens was caused by some minor fragments from the detonator
which had perforated the plate at the closest stand-off distance.

Figure 3.11 shows an example of synchronized loading and response histories
during an experiment at the intermediate stand-off distance (from test S21).
This figure also contains a selection of corresponding DIC images in terms of 3D
topography maps, contours of the transverse displacement field and deformation
profiles at characteristic times. It is observed from the synchronization of the
pressure recordings and the DIC measurements that there was limited fluid-
structure interactions (FSI) effects during the positive phase, since the positive
duration of the pressure pulse was almost over before the plate started to
move. Thus, subsequent motion took place during the negative phase and the
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(a) S15 (b) S22 (c) S33

Figure 3.10: Photographs of deformed shapes for selected steel plates (seen from
the explosive charge).

structural response seemed to be driven mainly by the positive impulse from the
airblast. The influence of the negative phase on the structural response seemed
to be small until maximum deflection, as the shape of the displacement curve was
barely altered during this phase. However, abnormal oscillations were observed
subsequent to the elastic rebound (see Figure 3.9). The synchronization of
pressure and mid-point deflection in Figure 3.11 indicates that this unexpected
behaviour may be due to the underpressure during the negative phase, i.e., the
elastic rebound was enhanced by the negative phase. From the deformation
profiles it is further observed that the maximum displacement had a small offset
from the centre of the test specimen. This may stem from the positioning of
the charge, which may have had an imperfect alignment relative to the centre
of the plate. However, since the structural response seems to be driven by the
imparted momentum, this offset may also stem from the boundary conditions
or some other geometrical effect.

It was noted that the time of arrival ta may be determined from the detonation
pulse from the EBW detonator or taken from the calibration tests at the same
stand-off distance, and the latter approach was used here. The former approach
was only used at the closest stand-off distance (S11-S15), as no calibration
tests were performed at this configuration. The time of arrival ta for these
tests was determined to be 0.07 ms. It should also be emphasized that the
pressure measurements in Table 3.5 must be treated with some caution, since
the pressure sensors were located at the clamping frame and not in the centre
of the deforming plate. Keep in mind that the pressure may change as the thin
plates deform, and this is not captured by these measurements. However, the
limited FSI effects shown in Figure 3.11 and the pressure measurements from
Section 3.3.1 indicate that the pressure measured at the clamping frame gives
a good estimate of the loading on the plates.
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(a) t = 0.612 ms
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(b) t = 0.850 ms
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(c) t = 1.326 ms
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(d) t = 1.565 ms
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(e) t = 3.707 ms

Figure 3.11: A selection of DIC images from test S21 with 3D topography maps
and contours of the transverse displacement (left), its corresponding pressure and
centre deformation (middle) and deformation profile at the centre along the x-axis
(right). Pressure recordings from Sensor 11 are used in the synchronization. Red
diamonds show the corresponding time of recordings.
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3.3.3 Aluminium plates

The aluminium plates showed in general a similar dynamic response as the steel
specimens, but with some distinct differences. Figure 3.12 shows measured
out-of-plane displacement at the centre point versus time for some of the tests
based on the DIC analyses, while all results are summarized in Table 3.6.
Compared to the steel specimens, it was observed a larger variation in the test
results and a wider range in response as the aluminium specimens experienced
both larger plastic deformations and failure (see Figure 3.13). It was only
possible to perform DIC analyses on 7 out of 9 experiments due to flaking of
the paint at the centre part in two of the tests. To reduce the risk of damaging
the high-speed cameras it was decided not to use DIC at the closest stand-off
distance of 250 mm (A01), as the plate was torn out of the clamping frame
due to complete failure at the plate boundary (Figure 3.13a-3.13c). Due to
the limited possibility to measure the structural response, it was chosen to
only perform one experiment at this stand-off distance. The failure mode
observed at the closest stand-off distance (A01) was similar to Mode II as
reported by e.g. [55, 58, 59], i.e., tensile tearing at the supports, while the
tests at the subsequent stand-off distance of 375 mm (A11-A13) experienced
only partial tearing along the boundary (Figure 3.13d). The failure at this
stand-off distance was therefore classified as Mode II*, in accordance with [57].
Thus, there was a transition between large inelastic deformations and complete
tearing at the plate boundary. The failure was expected to start at the centre
of the respective sides and propagate towards the corners with increasing
impulse [57, 59]. However, since the pressure sensors were located at these
points in the clamping frame (Figure 3.13c), the clamping was locally reduced
and failure was first observed at the bolts closest to the centre of the plate
boundary (Figure 3.13d). It was also observed a significant inward in-plane
deflection at the centre of the plates for these experiments (Figure 3.13c-3.13d).
This is sometimes called the "pulling-in" effect [57] and is a result of the plate
deformation which continues between the time of first tearing at the boundary
(Mode II*) and complete tearing at the corners (Mode II). As shown in Figure
3.13d-3.13f this effect seems to increase with increasing impulse as it was more
evident at the closest stand-off distance. Before failure, "pulling-in" was not
present and the plate experienced very limited sliding at the supports. As soon
as failure occurred, there was a noticeably inward deflection at the centre of
the plate. This resulted in some sliding at the supports and some deformation
at the bolt holes, which is highlighted for the most evident case in Figure 3.13c.
The deformation was most severe at the holes closest to the pressure sensors
due to the reduced clamping along the centre lines of the frame. Thus, it is
possible that the "pulling-in" effect was enhanced by the reduced clamping at
the centre lines of the plate, as experimental evidence (e.g. [59]) has shown a
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significant effect of the boundary conditions when predicting tearing.
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Figure 3.12: Deformation versus time of the centre point for the aluminium plates
based on 3D-DIC.

The remaining two stand-off distances of 500 mm and 625 mm (A21-A23 and
A31-A33) resulted in large inelastic deformation (Mode I) and RSB, respectively,
as shown in Figure 3.13e-3.13f. Synchronized loading and response histories
from test A31, i.e., at the largest stand-off distance, can be found in Figure
3.14. In a similar way as for the steel plate in Figure 3.11, this figure contains
a selection of DIC images in terms of 3D topography maps, contours of the
transverse displacement field and deformation profiles for characteristic times
from the same test. Also these results revealed limited FSI effects during
the positive phase as the duration of the positive part of the pressure pulse
was almost over before the plate started to respond. Besides, the influence
of the negative phase on the response up to maximum deformation seemed
to be small since the shape of the displacement curve was barely altered
during the negative phase. The selected DIC images for this particular test
enabled a more detailed investigation of the CIB. Comparing Figure 3.9 and
Figure 3.12, it is observed that the CIB in the aluminium plates was somewhat
different than in the steel plates, since the RSB did not occur during the elastic
rebound. These plates experienced RSB during the oscillations around its new
equilibrium position, subsequent to the elastic rebound, and not during the
rebound itself. This support previous observations by Symonds and Yu [47],
which noted that the RSB phenomenon is extremely sensitive to small changes
in the structural and loading properties. The narrow range of structural and
loading properties related to this behaviour could be seen from the experiments
at the intermediate stand-off distances (A21-A23 in Figure 3.12 and S21-S23
in Figure 3.9). Here abnormal oscillations subsequent to the elastic rebound
were observed, indicating that these experiments were close to RSB and that
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the transition between intuitive and counter-intuitive behaviour was between
the two largest stand-off distances for both materials. Thus, a slight change
in the intensity of the loading may result in a severe change in the structural
response.

Table 3.6: Experimental results for the aluminium plates. The permanent mid-point
deflections (dz,p1) which are corrected for the slight movement of the mounting frame
are given in parentheses.

Test R Z Sensor* prα td+ irα+ td+/Tn dz,p1 dz,p2 DIC
[m] [m/kg1/3] [#] [MPa] [ms] [kPa ms] [-] [mm] [mm] [Y/N]

A01 0.250 0.73 6 9.8 0.11 185.7 0.008 - - N
A11 0.375 1.09 6 3.1 0.22 119.5 0.016 41.2(39.7) 39.1 Y
A12 0.375 1.09 7 3.8 0.18 127.5 0.013 42.2(41.4) 39.5 Y
A13 0.375 1.09 11 4.3 0.23 137.0 0.017 43.4(42.6) 43.3 Y
A21 0.500 1.46 11 1.7 0.40 111.5 0.030 28.3(23.4) 24.5 Y
A22 0.500 1.46 7 1.5 0.35 99.8 0.026 31.6(29.4) 30.8 Y
A23 0.500 1.46 7 1.5 0.36 102.8 0.026 - 25.8 N
A31 0.625 1.82 6 1.0 0.54 82.0 0.040 -17.3(-19.7) -15.9 Y
A32 0.625 1.82 11 0.9 0.48 83.0 0.036 - -23.4 N
A33 0.625 1.82 6 0.8 0.54 80.9 0.040 -20.8(-22.9) -23.7 Y

*Stand-off distance R refers to the respective plate, and not to the sensor located
in the frame.

A closer look on Figure 3.12 shows a drop in the displacement curve starting
at approximately 3 ms for all experiments with aluminium plates. This drop is
more evident at increasing stand-off distances, which makes it reasonable to
relate the RSB in tests A31-A33 to the duration of the negative phase. Unfor-
tunately, the drift in the pressure measurements made it difficult to determine
the duration of the negative phase and it is challenging to conclude on the
effect of the negative phase based on Figure 3.14. The influence of the negative
phase on the structural response therefore needs further investigations.

As for the steel plate experiments, the DIC analyses showed that the maximum
response was not always appearing at the centre of the plates (see Figure 3.14).
However, the offset was small in all tests. This may stem from the positioning
of the charge, which may have had a small offset from the centre of the plate.
Since the deformation was driven by the impulse from the airblast it is more
likely to assume that the boundary conditions, or some other geometrical effect,
had a greater influence than the positioning of the charge on the deformed
shape. As the plate was given an initial velocity by the transferred impulse,
the deformed shape will be determined by the constraints at the boundary and
the material properties.

The permanent deformation profile of the test specimens at the largest stand-off
distance revealed a local dent at the centre of the thin plate (see Figure 3.13f),
similar to that in the steel plate experiments. A closer examination of Figure
3.14b-3.14c indicates that the local dent developed during the elastic rebound.
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(a) A01 (b) A01 (c) A01

(d) A11 (e) A22 (f) A31

Figure 3.13: Photographs of deformed shapes for selected aluminium plates. All
pictures are seen from the explosive charge except for (b).

This is also observed for the steel plate in Figure 3.11b-3.11c. Thus, as for the
phenomenon of RSB, it was observed that the amount of plastic deformation
determines the influence of the elastic rebound on the final shape. That is,
large deformations (as in e.g. A11) result in intuitively deformed shape profiles,
while smaller deformations reveal local dents at the centre and RSB (as in e.g.
A31).

Since no calibration tests were performed at the largest stand-off distance (see
Table 3.4), the arrival time ta for tests A31-A33 was determined using the
detonation pulse from the detonator. The shock wave produced by the EBW
used to detonate the charge of C-4 was seen on the pressure measurements as
an initial peak, and this was used as the best available estimate for the time of
detonation. By using this approach, the time of arrival for tests A31-A33 was
found to be 0.56 ms.

It should also be noted that the duration of the positive phase was taken from
the pressure sensors located on the clamping frame, and that this duration was
found to be slightly less compared to the recordings on the calibration plate
(Figure 3.7 and Table 3.4). Depending on the stand-off distance, the time of
arrival is somewhat different at the calibration plate and the clamping frame.
It was also observed that the end time of the positive phase (t = ta + td+)
was approximately the same at both locations. This implies that the pressure
recordings in the clamping frame could be used as an estimate of the end-time
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(a) t = 1.087 ms
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(b) t = 1.372 ms
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(c) t = 1.753 ms
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(d) t = 3.658 ms
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(e) t = 5.372 ms

Figure 3.14: A selection of DIC images from test A31 with 3D topography maps
and contours of the transverse displacement (left), its corresponding pressure and
centre deformation (middle) and deformation profile at the centre along the x-axis
(right). Pressure recordings from Sensor 6 are used in the synchronization. Green
diamonds show the corresponding time of recordings.
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of the positive phase in the experiments. Despite this minor disagreement in
pressure recordings, the loading was still defined as impulsive and the pressure
measurements in the clamping frame were assumed reasonable to evaluate
potential FSI effects. In a similar way as for the steel plates, the pressure
measurements in Table 3.6 should be treated with some caution since the
pressure may change as the plate deforms.

3.4 Concluding remarks

The influence of stand-off distance on the dynamic response of thin steel
and aluminium plates subjected to airblast loading has been investigated
experimentally. The loading was generated by detonating spherical charges
of C-4 at various stand-off distances relative to the centre point of the plates,
while the structural response was measured using two high-speed cameras in a
stereovision setup combined with 3D-DIC analyses. The observations covered
the entire range of structural response from complete ductile failure at the
supports to CIB in terms of RSB at larger stand-off distances.

The overall trends in the experimental results were increased mid-point dis-
placement of the plates and increased impulse as the intensity of the blast
loading increased. This is shown in Figure 3.15 where the measured mid-point
deflection-thickness ratio and scaled impulse as a function of scaled distance
are plotted for all tests. Both the mid-point deflection and the impulse seem
to have a rather linear decrease with increasing stand-off distance. However,
the impulse at the closest stand-off distance differs somewhat from this linear
trend. This is probably due to reduced accuracy of the pressure sensors due
to high temperatures, which is supported by the observation in Figure 3.10a
where it is evident that the plate is slightly burned by the fireball at the closest
stand-off distance. It is also noted that the plates experiencing RSB deviate
from the linear trend in Figure 3.15a.

The increased mid-point displacement with increasing impulse is intuitive as
long as the final deflection is in the same direction as the external load. This
behaviour is also in accordance with the theory of impulsively loaded plates as
discussed by Jones [61]. First, a phase with plastic hinges that starts at the
boundary corners of the plate and propagate along the diagonals toward the
centre is observed (see Figure 3.11a and Figure 3.14a). Then, when the plastic
hinges meet in the centre of the plate (see Figure 3.11b and Figure 3.14b),
a final phase develops with oscillations around a permanent deformed shape.
However, the response at the largest stand-off distance for both materials was
counter-intuitive as the plates experience RSB and the final deflection was in
the opposite direction of the incident blast wave.
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(b)

Figure 3.15: Measured mid-point deflection-thickness ratio dz,p/t (a) and scaled
impulse irα/W 1/3from a representative sensor in the frame (b) versus scaled distance
Z = R/W 1/3. In (a) the open symbols are from the 3D-DIC measurements, while
the closed symbols are from the manual measurements using a slide caliper.

The RSB attracted special attention as it occurred both during and subsequent
to the elastic rebound. The RSB observed in Figure 3.9 during the elastic
rebound is also observed in previous studies [45,46,54]. However, to the author’s
best knowledge there are no previous experimental studies on metallic plates
observing RSB during the free vibrations around its new equilibrium position
after the elastic rebound as shown in Figure 3.12. Based on the tests carried out,
it is challenging to give an explanation of the observed phenomenon and also
on how the negative phase will influence the observed response. The influence
of the negative phase needs further investigations to determine the loading
properties where this may dominate the response. This will be investigated in
a subsequent numerical study in Chapter 5. It is also interesting to note that
the response of the steel and aluminium plates at the same stand-off distance
of 375 mm (S31-S33 in Figure 3.9 and A11-A13 in Figure 3.12) results in a
completely different final deformed shape, as the steel plates experience RSB
whereas the permanent displacement of the aluminium plates is in the intuitive
direction.

These experiments also illustrate the possibilities of using finite element-based
3D-DIC for a thorough examination of the displacement field of blast-loaded
structures. A comparison of the final mid-point deflections measured with
DIC (dz,p1) and the corresponding permanent displacement (dz,p2) measured
manually after the experiment indicated that there were some deviations in
the two measurements. This was mainly due to the slight movement of the
mounting frame during the tests and the DIC measurements were in very good
agreement when corrected for this movement (see Tables 3.5 and 3.6). It is
therefore assumed that the DIC measurements are more accurate than the
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manually measured permanent displacement with the sliding caliper. The
permanent displacement (dz,p2) was included to indicate the accuracy in the
DIC measurements and to give experimental results when difficulties were
observed with DIC. Thus, considering the potential sources of error in the
manual measurements, DIC measurements should be used when available. The
DIC technique also enabled a synchronization of the loading and response
histories during the entire experiment, which provided new and accurate results
under such extreme loading conditions.





4
Material modelling
Before performing the numerical study on the blast-loaded plates presented in
Chapter 3, it is necessary to ensure that the computational model is able to
predict the material behaviour in these types of loading environments. The
observations in Chapter 3 showed that the dynamic response of the plates
may become significantly different under varying blast intensity and structural
properties. The dynamic response may therefore be highly dependent upon
a proper treatment of the material modelling. This chapter presents the
computational framework, constitutive equations and the implementation of
an elastic-thermoviscoplastic material model in the explicit non-linear finite
element code EUROPLEXUS.

4.1 Introduction

Blast events often involve large strains, elevated strain rates, temperature
softening and ductile failure. A widely used design tool for this type of
problems is the non-linear finite element (FE) method. In the FE method,
the formulation and numerical solution of non-linear problems in continuum
mechanics rely on the weak form of the momentum balance equation (also
known as the principal of virtual power [171]). The integral form of the principal
of virtual power is well suited for direct application to the FE method, and by
spatial discretization the solution is integrated in time. In the particular case
of blast events, it is often used an explicit time integration scheme based on
the central difference method. Iterations for FE analyses involving non-linear
material behaviour can in general be divided into two levels, hereby denoted
the global and local level. The global level involves the explicit establishment
of global equilibrium between internal stresses and external loads, while the
local level updates the corresponding stress state in each FE integration point
(for a given strain increment) in terms of the governing constitutive equations.
Constitutive equations (also known as material models) are mathematical
descriptions of the material behaviour which gives the stress as a function
of the deformation history of the body [171]. This implies that the local
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integration of the constitutive equations controls the accuracy and stability of
the global equilibrium, and that the overall solution in the FE model may be
considerably influenced by the accuracy, robustness and effectiveness of the
integration algorithm.

A commonly used scheme for the local stress integration is the predictor-
corrector method (often called return mapping). The basis for this return
mapping is two successive steps, i.e., the predictor step and the corrector
step. The predictor step is used to estimate a trial stress state, while the
corrector step applies a flow rule by using a return mapping scheme to ensure
the consistency condition. That is, ensuring that the stress state is on the
yield surface. This thesis uses the explicit cutting plane method proposed by
Ortiz and Simo [172]. During this approach an elastic predictor uses the total
strain increment to obtain a trial stress state. Then, if the elastic trial stress is
outside the plastic domain, the predicted stresses are corrected to return to the
updated yield surface by iterations of the plastic corrector. The basis for the
cutting plane method is to utilize the known stress state at the last converged
time increment to determine the normal to the yield surface.

This work considers a well-known constitutive relation proposed by Johnson
and Cook [173] where von Mises plasticity and associated flow are used to
update the stresses. A model including elastic-thermoviscoplasticity and duc-
tile failure is implemented as a new material called VPJC in EUROPLEXUS
(EPX) [130]. The implementation uses a fully vectorized version of the forward
Euler integration algorithm. Ductile failure is included in the model through
the Cockcroft-Latham criterion [174] which is uncoupled from the constitu-
tive equations. Large deformations are accounted for by using a hypoelastic-
thermoviscoplastic formulation of the constitutive equations and a corotational
formulation in EPX. This implies that the constitutive equations are defined in
a local coordinate system in which the basis system rotates with the material.
The subroutine interface uses the Cauchy stress components and all stress and
strain quantities are defined in terms of the rate of deformation tensor. The
model is applicable for one- (1D), two- (2D) and three-dimensional (3D) stress
analyses (i.e., for bar, shell, solid, axisymmetric and plane strain elements).
The model is also coupled with the element deletion options available in EPX
by introducing a state variable controlling the element erosion. That is, as
the failure variable reaches its critical value DC = 1.0 the element is removed.
Finally, material parameters are identified and the performance of the model is
evaluated based on the tension tests in Section 3.2.2. A complete description of
the formulation and implementation of the model is given in [175], while most
of the theory presented herein is based on Hopperstad and Børvik [176].
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4.2 Computational framework

There are in general two categories within the theory of plasticity, i.e., the
mathematical theories and the physical theories [177]. Mathematical theories
are purely phenomenological and aim to represent experimental observations
through mathematical relations. Most of the common material models today are
phenomenological. Physical theories try to describe the underlying mechanisms
and quantify the plastic deformation at a microscopical level. A well-known
and acknowledged physical theory is the crystal plasticity theory [176]. This
section considers the phenomenological-based formulation of the constitutive
equations for the computational model used in this thesis.

To account for finite strains and finite rotations, EPX defines all variables
in a local coordinate system êi in which the basis system rotates with the
material [130]. This is illustrated in Figure 4.1 where the base vectors of an
integration point are expressed as

êi = R · ei (4.1)

where R is the rotation tensor representing the rigid body motion in the polar
decomposition F = R · U while U is the symmetric right stretch tensor. The
corotated Cauchy stress σ̂ and rate-of-deformation tensor D̂ then read

σ̂ = RT · σ · R (4.2a)

D̂ = RT · D · R (4.2b)

Assuming negligible elastic strains compared to the plastic strains, an hypoe-
lastic formulation is adopted through an additive decomposition of the rate of
deformation tensor [171]

D̂ = D̂
e

+ D̂
p

(4.3)

where D̂
e

and D̂
p

are the elastic and plastic part, respectively. The rate-of-
deformation tensor D̂ is also called velocity strain and is a rate measure of the
deformation and stretching of the elements.

The starting point for hypoelastic models is the formulation of the constitutive
equations in terms of objective stress rates [178]. A generalized form of Hooke’s
law on rate form is therefore introduced, i.e.,

˙̂σ = Ĉ : D̂
e

= λel

(
trD̂

e)
I + 2µelD̂

e
(4.4)

where ˙̂σ is the time derivative of the corotated Cauchy stress tensor and Ĉ is
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Figure 4.1: Polar decomposition of a typical homogeneous deformation. The Carte-
sion coordinate system with coordinate axes (x1, x2) refers to the global reference
frame ei, while (x̂1, x̂2) represents the local (or corotated) coordinate system êi.

the fourth order elasticity tensor given by

Ĉ = λelI ⊗ I + 2µelI (4.5)

and I is the second order identity tensor, while λel and µel are the Lamè
constants given as

λel = νE

(1 + ν)(1 − 2ν) and µel = E

2(1 + ν) (4.6)

The elasticity tensor Ĉ is assumed to be constant, E is the Young’s modulus
and ν the Poisson’s ratio. The objective (or frame-invariant) stress rate σ̂∇

typically reads
σ̂∇ = ˙̂σ − A · σ̂ + σ̂ · A (4.7)

where A is an appropriate angular velocity tensor. Combining Eqs. (4.4) and
(4.7) the rate of the corotated Cauchy stress is obtained as

˙̂σ = A · σ̂ − σ̂ · A + λel

(
trD̂

e)
I + 2µelD̂

e
(4.8)

The choice of an appropriate angular velocity tensor A is typically done by the
respective FE codes, where EPX uses the Jaumann rate of the Cauchy stress
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σ̂∇J [130] given as

σ̂∇J = ˙̂σ − W · σ̂ + σ̂ · W , A = W = 1
2

(
L − LT

)
(4.9)

where W is the spin tensor indicating the rate of rotation of an element and
L = D + W is the velocity gradient (see e.g. [171] for more details). It is worth
noting that when using polar decomposition F = R · U the spin tensor W can
be expressed as [179]

W = Ṙ · RT + R · 1
2

(
U̇ · U−1 − U−1 · U̇

)
· RT (4.10)

where it is used that Ḟ = L · F . Thus, for pure rigid motion (U̇ = 0) the spin
tensor W reads

W = Ṙ · RT (4.11)

Using the Jaumann rate in Eq. (4.4), the corotational elastic rate-of-deformation
tensor is given as

D̂
e

= 1 + ν

E
σ̂∇J − ν

E
tr

(
σ̂∇J

)
I (4.12)

The static yield function is defined as

f(σ̂, p, T ) = σeq (σ̂) − σy (p, T ) (4.13)

where σeq is the equivalent stress, σy is the flow stress, p is the equivalent
plastic strain and T is the absolute temperature.

Assuming the plastic flow to be associative, the corotational plastic rate-of-
deformation may be written as

D̂
p

= λ̇
∂f

∂σ̂
(4.14)

where λ̇ ≥ 0 is a scalar denoted the plastic multiplier. The plastic multiplier is
zero in the elastic domain and positive in the plastic domain. An important
remark to the assumption of associated flow is that the shape of the yield
surface also determines the direction of the plastic flow, as well as the stress
state at which yielding initiates.

The plastic deformation process is governed by the important physical restriction
that

Dp = σ̂ : D̂
p

≥ 0 (4.15)

where Dp expresses the plastic dissipation per unit volume, which is assumed
to be dissipated as heat. Eq. (4.15) ensures that work has to be done to the
body all the time for the deformation to continue.
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The equivalent plastic strain rate ṗ is defined to be energy conjugate to σeq,
i.e.,

σ̂ : D̂
p

= σeqṗ (4.16)

This implies that, under the assumption that σeq is a positive homogeneous
function of order one and using Euler’s theorem for such functions (see [176]),
ṗ equals the plastic multiplier

ṗ = λ̇ (4.17)

Finally, Eq. (4.17) can be integrated to find the equivalent plastic strain p

p =
∫ t

0
ṗdt =

∫ t

0
λ̇dt (4.18)

4.3 Constitutive equations

Based on the materials tests in Section 3.2.2 it was assumed that the materials
used herein can be considered as isotropic. These experiments also supported
the assumption of small elastic strains compared to the plastic strains. The
material response is therefore modelled with isotropic hardening and the plastic
flow is independent of direction (isotropic) and volume preserving (isochoric).
Thermodynamic coupling is not included, however, the temperature evolution
is assumed to be adiabatic. Ductile failure is considered by using a simple
one-parameter failure criterion which is based on plastic work per unit volume.
The implementation of the failure criterion follows an uncoupled approach
where the yield criterion, plastic flow and strain hardening are unaffected by
the damage evolution.

4.3.1 The von Mises yield criterion

Geometrically, the yield criterion in Eq. (4.13) defines a surface in stress space
given by the components of the stress tensor σ̂ (i.e., the vector space in Figure
4.2). The elastic domain is given by the stress space inside this yield surface
f < 0, while the plastic domain is the surface itself f = 0 (see Figure 4.3).

Assuming isotropic behaviour and no kinematic hardening, the von Mises (or
J2) flow theory for pressure insensitive materials is adopted. From Figure 4.3
it can be shown that the von Mises yield surface is a circular cylinder of radius
Rv =

√
2
3 σy. The stress state on the yield surface could then be represented in

the principal stress space as the vector r = [σ1 σ2 σ3], which has to satisfy
the following equation [179]
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Figure 4.2: Illustration of the von Mises yield criterion in the principal stress space.
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Figure 4.3: The von Mises yield criterion in the deviatoric plane (π-plane).

r · r − (e · r) (e · r) = R2
v (4.19)

Splitting the stress into deviatoric and hydrostatic parts

σ̂
′

= σ̂ − σHI (4.20a)

σH = 1
3tr(σ̂) = 1

3 (σ1 + σ2 + σ3) (4.20b)

where σ̂
′

is the deviatoric stress and σH is the hydrostatic stress, the radius of
the yield surface Rv could be expressed as

R2
v = σ̂ : σ̂ −

(
1√
3

tr(σ̂)
)2

= (σ
′

ij + σHδij)(σ
′

ij + σHδij) − 3σ2
H

= σ
′

ijσ
′

ij = σ̂
′
: σ̂

′
= 2

3σ2
y

(4.21)

Eq. (4.21) implies that isotropic (or hydrostatic) stress states do not result in
yielding. Thus, the von Mises yield criterion is purely deviatoric and additional
hydrostatic stress only translates the stress state along the hydrostatic axis in
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Figure 4.2. The result in Eq. (4.21) could then be presented in terms of the
yield function f from Eq. (4.13), i.e.,

f(σ̂, p, T ) = σeq(σ̂) − σy(p, T )

=
√

3
2 σ̂

′ : σ̂
′ − σy(p, T ) =

√
3J2 − σy(p, T )

(4.22)

where the von Mises equivalent stress σeq, in terms of the stress components,
reads

σeq =

√√√√ σ̂2
11 + σ̂2

22 + σ̂2
33 − σ̂11σ̂22 − σ̂22σ̂33 − σ̂33σ̂11

+ 3(σ̂2
12 + σ̂2

23 + σ̂2
31)

(4.23)

and the associated flow rule in Eq. (4.14) is then given as

D̂
p

= λ̇
∂f

∂σ̂
= λ̇

3
2

σ̂
′

σeq
(4.24)

Finally, the rate of the equivalent plastic strain ṗ, in the particular case of
associated flow and von Mises isotropic behaviour, is given as

ṗ =
√

2
3D̂

p
: D̂

p
(4.25)

4.3.2 The modified Johnson-Cook constitutive model

As discussed earlier, blast-loaded structures may experience large strains,
elevated strain rates and temperature softening in the material. A widely used
material model allowing for these effects is the constitutive relation proposed
by Johnson and Cook [173], which is empirical and dates back to 1983. This
constitutive relation has a multiplicative formulation and is given by

σy = (A + Bpn) (1 + cln(ṗ∗)) (1 − T ∗m) (4.26)

where A, B, c, n and m are material constants determined from material tests,
and

ṗ∗ = ṗ

ṗ0
and T ∗ = T − Tr

Tm − Tr
(4.27)

represent the dimensionless strain rate ṗ∗ and the non-dimensional homologous
temperature T ∗, respectively. The parameter ṗ0 is a user-defined reference
strain rate, while Tr and Tm are defined as the room and melting temperature,
respectively. The first term in Eq. (4.26) represents the strain hardening, the
second term describes the strain rate hardening, and the last term represents
the temperature softening behaviour. The second and third terms shift the
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hardening curve up or down, depending on the strain rate and the temperature
conditions. It is observed from Eq. (4.26) that the flow stress σy increases with
increasing plastic strain rate (which is a necessary characteristic in viscoplastic-
ity), while it decreases with increasing temperature. Thus, an increase in the
plastic strain rate expands the yield surface whereas an increase in temperature
contracts the yield surface.

To avoid non-physical softening effects when ṗ∗ < 1, the strain-rate-sensitivity
term in the Johnson-Cook model can be adjusted [180]. This leads to a modified
version of the constitutive model given as [181]

σy = (A + Bpn) (1 + ṗ∗)c (1 − T ∗m) (4.28)

This is illustrated by a comparison of Eqs. (4.26) and (4.28) in Figure 4.4, where
the ordinate axis refers to the normalized stress σy/ [(A + Bpn)] at ambient
temperature. Note that, since the formulations in Eqs. (4.26) and (4.28) are
slightly different, the calibration of the viscoplastic material parameter c may
be slightly different in the two versions of the Johnson-Cook model.
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Figure 4.4: Original versus modified Johnson-Cook model when cJC = 0.014,
cMJC = 0.013, and ṗ0 = 5 × 10−4.

The first term of the Johnson-Cook model increases indefinitely with increasing
strain and could lead to numerical instabilities when n < 1 due to the initial
value of p, i.e., p equals zero before any plasticity occurs. This results in
an infinite value of the hardening modulus HR = Bnpn−1 during the return
mapping in the plastic corrector step. Defining the initial plastic strain as
an infinitely small value would avoid this problem. However, it is desirable
to formulate the material model as general as possible. Therefore, the first
term of Eq. (4.28) is replaced by another hardening rule than that proposed
by Johnson and Cook. Replacing the first term of Eq. (4.28) with a two terms
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saturation type of hardening rule proposed by Voce [182], the flow stress could
be expressed as

σy = (A + R(p)) (1 + ṗ∗)c (1 − T ∗m)

= (A +
2∑

k=1
Qk[1 − exp (−Ckp)]) (1 + ṗ∗)c (1 − T ∗m)

(4.29)

where the constant A is the initial yield strength of the material, R(p) is
introduced as the isotropic hardening variable, and Qk and Ck (k = 1, 2) define
the strain hardening. As before, the rate sensitivity is governed by the constant
c while m defines the thermal softening behaviour. The hardening modulus
HR is found from the rate of change in R(p) given as

Ṙ = dR

dt
= dR

dp

dp

dt
= HR

dp

dt
, HR = dR

dp
=

2∑
k=1

QkCke(−Ckp) (4.30)

It is seen from Eq. (4.30) that no numerical instabilities are expected for
the hardening modulus HR when the plastic strain equals zero and that the
hardening tends to zero at increasing strain.

Evaluating yielding in the viscoplastic domain and combining Eqs. (4.22) and
(4.29), the strain-rate sensitivity of the material is controlled by

ṗ = λ̇ =




0 , f ≤ 0

ṗ0

[(
σeq(σ̂)
σy(p,T )

) 1
c − 1

]
, f > 0 (4.31)

Thus, in the viscoplastic domain (f > 0) the equivalent stress is found from
Eq. (4.31) as

σeq(σ̂) = σy(p, T ) (1 + ṗ∗)c

= (A +
2∑

k=1
Qk[1 − exp (−Ckp)]) (1 + ṗ∗)c (1 − T ∗m)

(4.32)

and the dynamic yield function fd reads

fd(σ̂, p, ṗ, T ) = σeq(σ̂) − σy(p, T ) (1 + ṗ∗)c (4.33)

4.3.3 Adiabatic thermal softening

Assuming that the plastic work is dissipated as heat implies that large plastic
deformation results in an increase in temperature. The result of this increase



4.3. Constitutive equations 81

in temperature is a decrease in flow stress. This is already introduced in the
last term of Eq. (4.29), which accounts for the thermal softening of the flow
stress at elevated temperatures. However, the evolution of the temperature
remains to be established. Since the plastic response of the material is of a very
short time duration in blast events, the temperature evolution is modeled by
assuming adiabatic conditions. This implies that there is no heat transfer into
or out of the system during the plastic straining. Using the thermal energy
balance per unit volume given by [176]

Dp = χσ̂ : Dp = χσeqṗ = ρcpṪ (4.34)

where ρ is the material density, cp is the specific heat capacity of the solid
material and χ is the Taylor-Quinney coefficient. The temperature increase
due to adiabatic heating can be computed as

Ṫ = Dp

ρcp
= χσeqṗ

ρcp
(4.35)

From Eq. (4.34) it is seen that the Taylor-Quinney coefficient χ represents the
fraction of the plastic power that is converted into heat. The remaining fraction
1 − χ is assumed to be stored in the material due to structural rearrangements
(e.g. elastic "fields" around dislocations). Typical values used in simulations
are χ = 0 for isothermal conditions and χ = 0.9 for adiabatic conditions.
However, a conservative choice would be χ = 1.0 in adiabatic conditions which
ensures maximum thermal softening. In reality the χ-value will not be constant,
however, advanced experimental techniques are necessary to determine the
evolution of this parameter. Moreover, one should always keep in mind that
while strain hardening (i.e., work hardening due to generation and movements
of dislocations) increases the strength locally in the material and distributes
the plasticity, softening results in localization of plasticity.

4.3.4 Ductile failure

A material model is not complete without some form of material degradation
or failure. The degradation or failure in a material is usually given in terms
of a damage parameter and failure occurs through damage evolution. Ductile
fracture arises from the nucleation, growth and coalescence of microscopic voids
that initiate at inclusions and second phase particles. The voids around particles
grow when the material is subjected to plastic straining and hydrostatic tension,
and fracture occurs when the growing voids reach a critical size, relative to
their spacing, resulting in a local plastic instability between the voids [183].
This work considers only ductile failure which is defined as the first sign of
fracture, i.e., the coalescence of voids. This means that the fracture criterion is
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uncoupled from the constitutive equations, and is therefore denoted a failure
criterion in the following.

Cockcroft and Latham [174] suggested a simple failure criterion which is based
on "plastic work" per unit volume. They reasoned that the failure criterion
needed to be based on some combination of stress and strain, and that damage
accumulates during plastic straining. To account for hydrostatic tension they
based the criterion on the magnitude of the major principal stress σ1, i.e.,

D = W

Wc
= 1

Wc

∫ p

0
〈σ1〉 dp (4.36)

where Wc is the failure parameter which can be found by integrating the major
principal stress in a uniaxial tension test during the entire equivalent plastic
strain path until the plastic strain at failure pf . The Macaulay brackets imply
that 〈a〉 = 1

2 (a + |a|) for any real number a and that only positive values of
the major principal stress σ1 contribute to the damage evolution. Material
failure emerges when the damage parameter D in Eq. (4.36) reaches unity.
This failure criterion is attractive in structural design, since only one damage
parameter obtained from a single uniaxial tension test is required for calibration.
Moreover, experimental studies by Langdon et al. [184] on blast-loaded steel
and aluminium plates indicated that the failure of ductile plates could be
related to the specific energy giving tensile failure, and that failure under such
conditions could be predicted from simple quasi-static tension tests.

Previous studies in terminal ballistics [185–187] have proven the robustness
of the Cockcroft-Latham (CL) criterion. The dependence of both deviatoric
and hydrostatic stress states were discussed by Holmen et al. [162, 188], where
it was shown that damage will not evolve for sufficiently low values of stress
triaxiality. This is seen by using an alternative expression for the major
principal stress [188], i.e.,

σ1 = σH + 3 + µσ

3
√

3 + µ2
σ

σeq =
(

σ∗ + 3 + µσ

3
√

3 + µ2
σ

)
σeq (4.37)

where the stress triaxiality σ∗ and the Lode parameter µσ are defined by

σ∗ = σH

σeq
, µσ = 2σ2 − σ1 − σ3

σ3 − σ1
(4.38)

Remember that σ1 ≥ σ2 ≥ σ3 are the ordered principal stresses. Eq. (4.36) can
then be expressed as

D = 1
Wc

∫ p

0

〈
σ∗ + 3 + µσ

3
√

3 + µ2
σ

〉
σeqdp (4.39)



4.3. Constitutive equations 83

Thus, damage is driven by plastic dissipation and amplified by a factor de-
pending on the stress state through the parameters σ∗ and µσ. Since material
failure occurs when D = 1.0 and p = pf , Eq. (4.39) can be written as

1 = 1
Wc

∫ pf

0

〈
σ∗ + 3 + µσ

3
√

3 + µ2
σ

〉
σeqdp (4.40)

Assuming that the stress triaxiality σ∗ and Lode parameter µσ remain constant
throughout the entire loading history (i.e., proportional loading conditions)
and using the Voce hardening rule from Eq. (4.29) to express the equivalent
stress σeq through the yield condition in Eq. (4.22), Eq. (4.40) now reads

σ∗ = Wc

Apf +
∑2

k=1(Qkpf + Qk

Ck
[exp (−Ckpf ) − 1])

− 3 + µσ

3
√

3 + µ2
σ

(4.41)

The influence of stress triaxiality σ∗ and Lode parameter µσ on the plastic
failure strain pf can then be illustrated as shown in Figure 4.5, where the
material parameters from Holmen et al. [162] are used to generate the respective
curves. Various loading scenarios are now represented by different combinations
of the stress triaxiality and the Lode parameter. Some typical examples are
(µσ, σ∗) = (+1, 1/3) which implies uniaxial tension (σ1 ≥ σ2 = σ3), (µσ, σ∗) =
(0, 0) corresponding to pure shear (2σ2 = σ1 + σ3) and (µσ, σ∗) = (−1, −1/3)
representing uniaxial compression (σ1 = σ2 ≥ σ3).
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Figure 4.5: Representation of the plastic failure strain pf in the (µσ, σ∗) space
when using the Cockcroft-Latham failure criterion and assuming proportional loading
conditions. Note that the material parameters used in Eq. (4.41) are taken from [162].

From Eq. (4.36) it is observed that, to make the material model as general
as possible, it is preferable to compute the principal stresses directly in the
subroutine. This is done by following the procedure proposed by [179] which
uses the principal deviatoric stresses σ

′

i to find the principal stresses σi. The
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principal deviatoric stresses are determined from the eigenvalue problem for
the deviatoric stress σ̂

′
in Eq. (4.20a), i.e.,

det(σ̂
′
I − σ̂

′
) = 0 (4.42)

where det( · ) is the determinant of the matrix argument ( · ). The result of this
operation is a cubic equation called the characteristic equation, given as

(σ̂
′
)3 − I

′

1(σ̂
′
)2 − J2σ̂

′
− J3 = 0 (4.43)

where the principal invariants of the stress deviator are given respectively as

I
′

1 = tr(σ̂
′
) = σ̂ii

′
= 0, J2 = −I

′

2 = 1
2tr(σ̂

′ 2) = 1
2 σ̂

′

ij σ̂
′

ij ,

J3 = I
′

3 = det(σ̂
′
)

(4.44)

and the J-symbols for the principal invariants are introduced since these are
commonly used in the literature for metal plasticity. The general solution is
then given as [179]

σ
′

1 = 2
√

J2

3 cos θ

3 , σ
′

2 = 2
√

J2

3 cos
(

θ

3 − 2π

3

)
≤ σ

′

1,

σ
′

3 = 2
√

J2

3 cos
(

θ

3 + 2π

3

)
≤ σ

′

2

(4.45)

where the angle θ is defined as

cos θ = J3

2
√

J3
2 /27

, 0 ≤ θ ≤ π (4.46)

and the Lode angle is recognized as θL = θ/3. Finally, the principal stresses σi

of the stress tensor σ̂ are determined by

σi = σ
′

i + σH = σ
′

i + 1
3tr(σ̂) (4.47)

where the major principal stress σ1 is used in the CL criterion in Eq. (4.36).

4.4 Numerical return mapping

Wilkins [189] was one of the first to introduce a return mapping algorithm,
and a variety of schemes have been proposed following this work (see e.g.
[172,178,190–192]). In general, it is possible to categorize the stress integration
methods in two different approaches, i.e., the forward Euler method and the
backward Euler method. The choice of method is illustrated in Figure 4.6
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and is mainly based on the assumption of the direction of the plastic flow
n = ∂fd/∂σ̂. The forward Euler method uses the known stress state at the
previous or trial configuration to determine the plastic flow direction n [172] (see
Figure 4.6a). This assumption is therefore only valid for very small time steps,
and is therefore suitable for the explicit time integration FE method. Since
the direction is known, there is only one unknown during the return mapping
procedure and that is the plastic multiplier λ̇. The backward Euler method
evaluates the normal n to the yield surface at the current unknown stress
state [191] (see Figure 4.6b), which gives good accuracy even for larger time
steps making it appropriate for both the explicit and implicit time integration
FE methods. However, the variation of the normal to the yield surface must
be taken into consideration during the return mapping procedure resulting
in a more complex integration due to possible second order derivatives of the
yield function. Previous studies by De Borst and Feenstra [193] have shown
that the choice of return mapping algorithm is more important for orthotropic
yield criteria (e.g. the Hill criterion) than for the isotropic von Mises plasticity
theory used in this thesis. The accuracy of the forward and backward Euler
method is therefore assumed to be similar in explicit time integration when
using von Mises plasticity. Since all variables are defined in a corotational
framework in EXP, the notation of the corotated variables is simplified in the
following by omitting the circumflexˆ(e.g. the corotated Cauchy stress σ̂ is
denoted as σ).
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Figure 4.6: Illustration of the elastic predictor-viscoplastic corrector return map
algorithms for the von Mises yield criterion and associated plasticity. Starting from
an elastic stress state at the last converged increment tn before arriving at the new
converged increment tn+1: (a) explicit stress update (cutting plane method) using the
forward Euler method and (b) fully implicit stress update (closest point projection
method) using the backward Euler method.

During both approaches an elastic predictor uses the total strain increment
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and the hypoelastic relation to obtain a trial stress state. Then, if the elastic
trial stress is outside the plastic domain, the elastically predicted stresses are
corrected to fit a suitably updated yield surface by iterations of the plastic
corrector. Thus, the integration algorithms are typically formulated as an elastic
predictor-viscoplastic corrector stress update using a return mapping scheme.
The solution is strain controlled in the sense that the total (corotational) strain
increment

∆εn+1 =
∫ tn+1

tn

Ddt = Dn+1∆tn+1 (4.48)

within the time interval ∆tn+1 = tn+1 −tn is known from the global equilibrium
and used to update the stresses and internal variables at step n + 1. Then, as
in a rate-independent case, it makes sense to first compute an elastic trial state
by assuming that the material behaviour is purely elastic within the interval.
If the trial state is within the elastic domain (fd(σ) ≤ 0), no viscoplastic flow
takes place within the considered time step and the trial state is the actual
state at the end of the step. Otherwise, the evolution of stresses and internal
variables is computed by means of a suitable return mapping method. It should
be emphasized that the consistency condition (f(σ) = 0) no longer holds in the
viscoplastic case, since the updated stress state at tn+1 generally lies outside
the static yield surface (f(σ) > 0). However, the terminology viscoplastic
return mapping is justified in the present case since the updated stresses are
obtained by returning (or moving) the trial stress towards the dynamic yield
surface. Hence, the application of the procedure is similar to that in the
rate-independent case, and Eq. (4.4) reads

∆σ = C : (∆ε − ∆εp) = ∆σe + ∆σp (4.49)

where the stress update at time tn+1 is expressed as

σn+1 = σn + ∆σn+1

= σn + C : ∆εn+1 − ∆λn+1C : nn+1 = σtrial
n+1 − ∆σp

(4.50)

in which the viscoplastic corrector ∆σp returns the stress to the yield surface.

All internal variables and functions in Eqs. (4.4), (4.22), (4.24), (4.30), (4.31),
(4.33), (4.35) and (4.36) are therefore adopted to the return mapping scheme
for integration, and replaced with the corresponding incremental values within
and at the end of the considered interval ∆tn+1. The incremental form of the
system of differential equations then reads

εn+1 = εn + ∆εn+1

εp
n+1 = εp

n + ∆εp
n+1 = εp

n + ∆λn+1nn+1 = εp
n + 3

2∆λn+1
σ

′

n+1
σeq,n+1
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λn+1 = λn + ∆λn+1 = λn + ṗ0∆tn+1

[(
σeq,n+1

σy,n+1

) 1
c

− 1
]

σn+1 = σn + ∆σn+1

= σn + C : (∆εn+1 − ∆εp
n+1) = σtrial

n+1 − ∆λn+1C : nn+1

Rn+1 = Rn + ∆Rn+1 = Rn + ∆λn+1HR,n+1

= Rn + ∆λn+1

2∑
k=1

QkCkexp(−Ckλn+1)

σy,n+1 = A + Rn+1

Tn+1 = Tn + ∆Tn+1 = Tn + χσeq,n+1∆λn+1

ρcp

Dn+1 = Dn + ∆Dn+1 = Dn +〈σ1,n+1〉 ∆λn+1

fd,n+1 = σeq,n+1 − σy,n+1

(
1 + ∆λn+1

ṗ0∆tn+1

)c (
1 −

[
Tn+1 − Tr

Tm − Tr

]m)

(4.51)

where ∆λn+1 is the incremental plastic multiplier at time tn+1.

The set of non-linear algebraic equations in Eq. (4.51) are solved by updating
the normal to the yield surface gradient nn+1 iteratively, where the viscoplastic
corrector is applied from the elastic predictor σtrial

n+1 throughout the iteration
until fd,n+1 = 0. This thesis is limited to the cutting plane method originally
proposed by Ortiz and Simo [172]. The basis for this return mapping is an
explicit elastic predictor-plastic corrector stress update using a forward Euler
scheme. The objective of the numerical integration is to use the known stress
state at the previous or trial configuration n to determine the new converged
stress state at step n + 1 (see Figure 4.6a).

Using the normal ni
n+1 at the previous stress state (see Figure 4.6a) and

assuming weak coupling of the temperature, i.e., using Tn instead of Tn+1,
there is only one unknown variable during the return mapping procedure. That
is the incremental plastic multiplier ∆λi+1

n+1 and the set of equations in Eq. (4.51)
reduces to a single equation which can be solved by a linear Taylor-expansion
around fd,n+1(σ, X) = fd,n+1(σ, σy, υp(ṗ), Γp(Tn)), i.e.,

f i+1
d,n+1 = f i

d,n+1 + ∂fd

∂σ

∣∣∣∣
i

n+1
∆σn+1 + ∂fd

∂X

∣∣∣∣
i

n+1
∆Xn+1 (4.52)

which may be written in terms of the internal variables X as

f i+1
d,n+1 = f i

d,n+1+ ∂fd

∂σn+1
δσn+1+ ∂fd

∂σy,n+1
δσy,n+1+ ∂fd

∂υp,n+1
δυp,n+1 = 0 (4.53)
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where the flow stress σy,n+1 and the following expressions are chosen as the
internal variables X in the Taylor-expansion

υp(∆λn+1) =
(

1 + ∆λn+1

ṗ0∆tn+1

)c

, Γp(Tn) =
(

1 −
[

Tn − Tr

Tm − Tr

]m)
(4.54)

Introducing the partial derivatives of the internal variables in Eq. (4.53) this
now reads

f i+1
d,n+1 = f i

d,n+1 − ∂fd

∂σn+1
C

∂fd

∂σn+1
δλi+1

n+1 − υp,n+1Γp,nHR,n+1δλi+1
n+1

− σy,n+1Γp,n
∂υp,n+1

∂λ̇n+1
δλ̇i+1

n+1 = 0
(4.55)

Moreover, using ṗ = λ̇ = ∆λ
∆t the internal variable controlling the viscoplasticity

υp(ṗ) may be expressed as υp(∆λ) and Eq. (4.55) may be written as

f i+1
d,n+1 = f i

d,n+1 − ∂fd

∂σn+1
C

∂fd

∂σn+1
δλi+1

n+1 − υp,n+1Γp,nHR,n+1δλi+1
n+1

− σy,n+1Γp,n
∂υp,n+1

∂∆λn+1
δλi+1

n+1 = 0
(4.56)

Finally, the incremental change δλ in the incremental plastic multiplier ∆λ is
expressed as

δλi+1
n+1 =

f i
d,n+1

∂fd

∂σn+1
C ∂fd

∂σn+1
+ υp,n+1Γp,nHR,n+1 + σy,n+1Γp,n

∂υp,n+1
∂∆λn+1

(4.57)

where
∂υp(∆λn+1)

∂∆λ
= c

ṗ0∆tn+1

(
1 + ∆λn+1

ṗ0∆tn+1

)c−1
(4.58)

HR,n+1 = dRn+1

dpn+1
=

2∑
k=1

QkCkexp(−Ckλn+1) (4.59)

∂fd

∂σ
C

∂fd

∂σ
= ∂fd

∂σij
Cijkl

∂fd

∂σkl

= C1111

[(
∂fd

∂σ11

)2
+

(
∂fd

∂σ22

)2
+

(
∂fd

∂σ33

)2
]

+ 2C1122

[
∂fd

∂σ11

∂fd

∂σ22
+ ∂fd

∂σ22

∂fd

∂σ33
+ ∂fd

∂σ33

∂fd

∂σ11

]

+ 4C1212

[(
∂fd

∂σ12

)2
+

(
∂fd

∂σ23

)2
+

(
∂fd

∂σ31

)2
]

(4.60)

It is referred to Aune et al. [175] for a more detailed presentation of the linear
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Taylor-expansion. It is also emphasized that since the time increment ∆tn+1 is
often very small during explicit time integration, the change in temperature
∆Tn+1 is assumed to have a negligible effect on the update of the state variables.
Therefore, the temperature is assumed to have an insignificant evolution during
the time increment ∆tn+1, and a low coupling approach for the temperature
is applied. This implies that Tn is used in the return mapping to update
the stress and internal variables at time tn+1. Then, the resulting state
variables at tn+1 are used to calculate and update Tn+1. This assumption
simplifies the calculations leading to Eq. (4.57) without any significant loss of
accuracy in the model. This is also the case for the normal to the yield surface
nn+1 = ∂fd/∂σn+1 where the use of the previous normal ni

n+1 instead of
ni+1

n+1 violates the associated flow rule in Eqs. (4.24) and (4.51) since a unique
normal for the given strain increment ∆εn+1 must be found at each stress state.
Thus, the deformation does not follow the minimum plastic work path when
the cutting plane method is used (see Figure 4.6a). However, when the time
increment ∆tn+1 is very small this is assumed to have negligible effect on the
stress state.

The numerical scheme within the time increment ∆tn+1 may then be summa-
rized as follows:

1. Set the initial values of the internal variables to the converged values of
the previous step at tn, check if the integration point under evaluation
has already failed and calculate the speed of sound.

2. Compute the elasticity tensor.
That is, IF a 3D stress state is used THEN use Eqs. (4.5) and (4.6)

C = λelI ⊗ I + 2µelI =




C1111 C1122 C1122 0 0 0
C1122 C1111 C1122 0 0 0
C1122 C1122 C1111 0 0 0

0 0 0 C1212 0 0
0 0 0 0 C1212 0
0 0 0 0 0 C1212




C1111 = (1 − ν)E
(1 + ν)(1 − 2ν) , C1122 = νC1111

1 − ν
, C1212 = 1

2
E

1 + ν

ELSEIF a 2D stress state is used

C =




C1111 C1122 0
C1122 C1111 0

0 0 C1212



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C1111 = E

1 − ν2 , C1122 = νC1111, C1212 = 1
2

E

1 + ν

ELSE a 1D stress state is used

C =




C1111 0 0
0 0 0
0 0 0


 , C1111 = E

Note that there are used symmetric strain tensors.

3. Use the total stain increment ∆εn+1 from the global equilibrium to
compute the elastic predictor

σtrial
n+1 = σn + C : ∆εn+1

4. Compute the von Mises equivalent stress in terms of the elastic trial
stress and Eq. (4.23)

σtrial
eq,n+1 =

√
3
2σ

′trial
n+1 : σ

′trial
n+1

5. Check if temperature softening is included in the material input (i.e.,
m �= 0).

6. Set the incremental plastic multiplier ∆λn+1 equal to zero.

7. Check for plastic admissibility. That is, IF f(σtrial
n+1) > 0 THEN apply

return mapping by using the cutting plane algorithm to find the incre-
mental change δλn+1 in the incremental plastic multiplier ∆λn+1. Note
that superscript i denotes the local iteration counter.

(i) Compute the normal nn+1 to the yield surface based on the initial
(i.e., trial) or previous stress configuration.

nn+1 = 3
2

σ
′

n+1
σeq

(ii) Compute the hardening modulus HR,n+1 according to Eq. (4.30)

Hi
R,n+1 = Q1C1 exp(−C1pi

n+1) + Q2C2 exp(−C2pi
n+1)
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(iii) Compute the denominator in Eq. (4.57) using Eqs. (4.58), (4.59),
(4.60) and (4.54)

(•) = ∂fd

∂σi
n+1

C
∂fd

∂σi
n+1

+ υi
p,n+1Γp,nHi

R,n+1 + σi
y,n+1Γp,n

∂υi
p,n+1

∂∆λi
n+1

(iv) Compute the incremental change in the plastic multiplier δλi+1
n+1 in

Eq. (4.57) and update the variable ∆λi+1
n+1

δλi+1
n+1 =

f i
n+1
(•)

∆λi+1
n+1 = ∆λi

n+1 + δλi+1
n+1

(v) Update internal variables dependent on ∆λi+1
n+1

pi+1
n+1 = pi

n+1 + δλi+1
n+1

Ri+1
n+1 = Rn + Hi

R,n+1∆λi+1
n+1

σi+1
y,n+1 = A + Hi+1

R,n+1∆λi+1
n+1

(vi) Update stress components using the generalized Hooke’s law accord-
ing to Eq. (4.50)

σi+1
n+1 = σtrial

n+1 − ∆λi+1
n+1C : ni+1

n+1

Note that the material routine uses a fully vectorized representation
of the stress and strain tensors, i.e.,

σ = [σ11, σ22, σ33, σ12, σ23, σ31]T

ε = [ε11, ε22, ε33, γ12, γ23, γ31]T = [ε11, ε22, ε33, 2ε12, 2ε23, 2ε31]T

Moreover, the application of objective stress rates (i.e., the Jaumann
rate in EPX) to update the stress tensor σ in plane stress states
allows for the possibility that the normal stress σ33 will not be
zero (outside the material routine). The material subroutine should
therefore initialize the normal stress σ33 to zero (σ33 = 0).

(vii) Compute the updated von Mises equivalent stress using Eq. (4.23)

σi+1
eq,n+1 =

√
3
2σ

′,i+1
n+1 : σ

′,i+1
n+1
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(viii) Update the yield function in Eq. (4.51) according to the new stress
state computed in (vi) and (vii)

f i+1
d,n+1 = σi+1

eq,n+1 − σi+1
y,n+1

(
1 +

∆λi+1
n+1

ṗ0∆tn+1

)c (
1 −

[
Tn − Tr

Tm − Tr

]m)

(viiii) Check for convergence, i.e., IF
∣∣∣∣∣
fd(∆λi+1

n+1)
σy,n+1υpΓp

∣∣∣∣∣ < TOL

THEN continue to 8.
ELSE i = i + 1 and GO TO (i)

8. Update the temperature according to the low coupling approach using
Eq. (4.35)

Tn+1 = Tn + χσeq,n+1∆λn+1

ρcp

and check for melting of the material. That is, IF T ≥ Tm THEN the
material point stiffness is deleted.

9. Compute the hydrostatic and deviatoric stress, respectively, according to
Eq. (4.20)

σH,n+1 = 1
3tr(σn+1)

σ
′

n+1 = σn+1 − σH,n+1I

10. Compute the principal stresses σi,n+1 based on the principal deviatoric
stresses σ

′

i,n+1 as shown in Eqs. (4.45) and (4.47)

σ
′

1,n+1 = 2
√

J2,n+1

3 cos θ

3

σ
′

2,n+1 = 2
√

J2,n+1

3 cos
(

θ

3 − 2π

3

)
≤ σ

′

1,n+1

σ
′

3,n+1 = 2
√

J2,n+1

3 cos
(

θ

3 + 2π

3

)
≤ σ

′

2,n+1
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where

cos θ = J3,n+1

2
√

J3
2,n+1/27

, 0 ≤ θ ≤ π

σi,n+1 = σ
′

i,n+1 + σH,n+1 = σ
′

i,n+1 + 1
3tr(σn+1)

11. The damage parameter Dn+1 is computed by using Eq. (4.36). That is,
integrating the major principal stress during the entire equivalent plastic
strain path

Wn+1 = Wn + max(σ1,n+1, 0)∆λn+1

Dn+1 = Wn+1

Wc

12. Update the state variables to be returned to EPX and check for element
erosion. That is, IF Dn+1 > 1.0 THEN the material point stiffness is
deleted.

13. IF a 2D stress state is used THEN the (actual) total strain ε33,n+1
and incremental strain ∆ε33,n+1 through the thickness are updated and
returned to EPX

∆ε33,n+1 = 1 − 2ν

E
(∆σ11,n+1 + ∆σ22,n+1) − (∆ε11,n+1 + ∆ε22,n+1)

ε33,n+1 = ε33,n + ∆ε33,n+1

EPX performs this procedure for each integration point in the FE assembly.
The stresses are updated in the material interface using a fully vectorized
version of the forward Euler integration algorithm and a two-state architecture
where the initial values at tn are stored in the old arrays and the new values
at tn+1 must be updated and stored in the new arrays returned to the global
FE analysis. The VPJC material routine is valid for 1D, 2D and 3D stress
states, i.e., for bar, shell, solid, axisymmetric, plane strain and plane stress
elements. The stresses for 3D elements are stored similar to that of symmetric
tensors as σ = [σ11, σ22, σ33, σ12, σ23, σ31]T , and plane stress, axisymmetric and
plane strain elements are stored as σ = [σ11, σ22, σ33, σ12]T . The deformation
gradient and strains are stored similarly to the stresses, however, one should
be aware of that the shear strain is stored as engineering shear strains, e.g.
γ12 = 2ε12. The material model was found to be applicable for a wide range of
elements in EPX through an extensive single element verification performed
in Aune et al. [175] and Casadei et al. [194]. The performance of the model
was verified in uniaxial tension and simple shear and the VPJC model was
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found to respond well to all the relevant test cases in terms of rate-independent,
viscoplastic and thermoviscoplastic behaviour. The dependence of the stress
triaxiality on the failure strain was also shown by including ductile failure in
the single element verification.

One final remark regarding the cutting plane method is that in the particular
case of viscoplasticity the plastic strain rate will change during the local
iterations in the forward Euler method. This is seen from Eqs. (4.54) and
(4.58) where the plastic strain rate will increase during the iterative return
mapping (due to an increase in plastic strain). This implies that the return
to the dynamic yield surface (fd = 0) occurs at strain rates that are too low.
However, the plastic strain rate at the converge increment ∆tn+1 should be
the same as in the backward Euler method.

4.5 Material parameter identification

The material model requires the user to specify 9 material parameters and
7 physical constants. This work is limited to the identification of A, Qi=1,2
and Ci=1,2 for the aluminium material, while the remaining parameters and
physical constants were taken from the literature [162, 167, 195]. Remember
that the material data and parameters provided for the steel material in [162]
also apply in this thesis (see Section 3.2.2). The parameters A, Qi=1,2 and
Ci=1,2 were obtained by inverse modelling using a finite element (FE) model
of the material tests presented in Section 3.2.2. It was decided to perform the
inverse modelling using the optimization package LS-OPT. This provides a
simulation environment where the objective is to minimize the mean-squared-
error between the experiment and simulation for a user-defined curve. LS-OPT
reads input and result files from the FE software and optimizes the parameters
of a constitutive relation through sequential analyses on the same FE model by
varying the input parameters. It was considered convenient to establish the FE
model in LS-DYNA [196] due to its tailored interface with LS-OPT and the fact
that a similar material model exists in LS-DYNA (*MAT_107). The target
curve was chosen as the force-displacement curve from a typical tensile test in
the rolling (0◦) direction, and the FE model consisted of Belytschko-Tsay shell
elements with an initial element size in the gauge area equal to the thickness of
the specimens in an attempt to capture the local necking. Material constants
for both materials are listed in Table 4.1, while physical constants taken from
Holmen et al. [162,195] are provided in Table 4.2. The strain-rate sensitivity
constant c for the 1050A-H14 aluminium alloy was taken from [167].

However, since the optimization simulations were carried out using a different
FE software it was considered necessary to verify that the material parameters
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Table 4.1: Material parameters for the modified Johnson-Cook constitutive relation.

Material A Q1 C1 Q2 C2 c m ṗ0 Wc

[MPa] [MPa] [-] [MPa] [-] [-] [-] [s−1] [MPa]
Docol 600DL [162] 370.0 236.4 39.3 408.1 4.5 0.001 1.0 5×10−4 473.0

1050A-H14 80.0 49.3 1457.1 5.2 121.5 0.014 1.0 5×10−4 65.0

Table 4.2: Physical constants for the materials taken from the literature.

Material E ν ρ cp χ Tr Tm
[GPa] [-] [kg/m3] [J/kgK] [-] [K] [K]

Docol 600DL [162] 210.0 0.33 7850 452 0.9 293 1800
1050A-H14 [195] 80.0 0.30 2700 910 0.9 293 893

were applicable also in EPX. This also served as a validation of the implemen-
tation of the VPJC material model. The uniaxial tension tests presented in
Section 3.2.2 were therefore modelled in EPX by the same shell elements to
be used in the airblast simulations, and by prescribing the same elongation
history as in the material tests. The prescribed velocity was ramped up over
the first 0.5 % - 1.0 % of the total computational time using a smooth transition
curve. It was used exactly the same mesh as in LS-DYNA, resulting in a spatial
discretization of 3116 4-node quadrilaterals. The elements were 4-node quadri-
laterals (called Q4GS) with 6 dofs per node and 20 Gauss integration points (5
through the thickness). Mass-scaling by a factor 109 and 108 was used to speed
up the computational time for the steel and aluminium specimens, respectively.
Larger scaling factors resulted in non-physical inertia effects during the necking
and a non-negligible kinetic energy in the simulations.

Comparisons between FE analyses and tensile tests are shown in Figure 4.7.
Since necking occurred at very small strains for the aluminium alloy, results
from the numerical simulations were compared to the experimental data in
terms of nominal stress-strain curves. The trend was that the numerical
models were able to describe the overall response for both materials, and that
the material parameters in Table 4.1 were valid also in EPX. Since necking
occurred already at strains of approximately 0.7 % in the aluminium tests,
it was necessary to include the strain-rate sensitivity term in Eq. (4.32) to
capture the post-necking behaviour (see Figure 4.7b). After the initiation of
necking, the strain rate increased by an order of magnitude and delayed the
evolution of the neck by increasing the load-carrying capacity of the material.
This was also observed in the experiments since barely any diffuse necking
occurred before localized necking and failure, which may be explained by the
high rate sensitivity in these types of alloys (see e.g. [164–167]).

The CL parameter Wc in Eq. (4.36) was determined based on the numerical
simulations by inspecting the element exposed to the largest plastic work. This
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Figure 4.7: Nominal stress-strain curves from uniaxial tensile tests along three
different loading directions for (a) the Docol 600 DL steel and (b) the aluminium
alloy 1050A-H14. Numerical results from EPX (FEA) with material data from Table
4.1 and Table 4.2 are included for comparison. The red dots denote the point of
failure in the calculation of Wc.

element is always located inside the neck, since localization is the first sign of
material failure. The accuracy of Wc is therefore highly dependent on a proper
representation of the localized necking. That is, when necking localizes in the
tension test, damage will evolve rapidly in the critical element. The parameter,
as obtained in this work, is therefore mesh dependent because the mesh size
influences the representation of the localized necking. Only the tension tests
in the rolling direction of the plate were used in the calibration, although the
failure strain for the aluminium alloy was somewhat lower in the 45◦ and 90◦

directions (see Figure 4.7b). This also implies a spread in Wc between each
material direction, which (at least to some extent) may affect the numerical
results. However, modelling of anisotropic failure was beyond the scope of this
thesis. The points used to extract Wc from the numerical results are indicated
by red dots in Figure 4.7 and the values are given in Table 4.1. Figure 4.7
shows that the numerical simulation of the steel captured the localized necking
very well, while the simulation of the aluminium did not manage to predict
localized necking at the same strain as in the material test. The Wc parameter
for the aluminium alloy was therefore determined at the value of the major
principal strain where failure occurred in the test.

4.6 Concluding remarks

A material model was implemented and called VPJC in EPX. This is an elastic-
thermoviscoplastic model which is formulated in a corotational framework
allowing for finite strains and finite rotations. Ductile failure is also included
by using an energy-based criterion which is uncoupled from the constitutive
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equations. The VPJC material model is applicable for a wide range of elements
and coupled with the element deletion options available in EPX.

The respective material parameters were identified for the materials considered
in Part II of this thesis and the VPJC model was used in the numerical
simulations of the tension tests in Section 3.2.2. It was found that the numerical
results were in good agreement with the experimental data, indicating that
the VPJC model is properly implemented in EPX and can be used in the
simulations of the blast-loaded plates in Chapter 5.





5
Numerical simulations
The experimental observations of the counter-intuitive behaviour (CIB) and
reversed snap buckling (RSB) at relatively small scaled distances in Chapter
3 attracted special attention as it occurred both during and after the elastic
rebound. However, since it was challenging to conclude on the effects producing
this abnormal response based on the experimental data, the influence of the
negative phase and the elastic effects on the dynamic response is investigated
numerically in this chapter. The numerical work presented in this chapter is
also presented in the third paper published in International Journal of Impact
Engineering [197].

5.1 Introduction

The experimental study presented in Chapter 3 investigated the effect of
stand-off distance on the dynamic response of thin aluminium and steel plates
subjected to airblast loading. The tests covered the entire range of structural
response from complete tearing at the supports to a more CIB where the
final configuration of the plate was in the opposite direction of the incident
blast wave due to RSB. RSB attracted special attention as it occurred at
relatively small scaled distances and both during and after the elastic rebound.
However, since it was challenging to conclude on the governing parameters
for this abnormal response based on the experimental data in Chapter 3,
the influence of the negative phase and the elastic effects on the dynamic
response is investigated numerically in the present chapter. The numerical
simulations are performed by the FE code EUROPLEXUS (EPX) [130] using
a Lagrangian formulation. Pressure-time histories are prescribed to the plates
based on the mass and position of the charge. This is often called an uncoupled
approach and makes the inherent assumption that the blast properties are
unaltered by the structural motion and the surroundings [69]. The uncoupled
approach is usually the preferred procedure in blast-resistant design [16], due
to the increased complexity and computational costs when using fully coupled
fluid-structure interaction simulations.
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A well-established reference for the properties of the positive phase from airblast
experiments is the work by Kingery and Bulmash [4]. The most commonly
used negative phase parameters seem to be those given in the traditional
diagrams in [16]. However, there still seems to be some uncertainty regarding
the representation and treatment of the negative phase of the pressure-time
history. As already mentioned in Section 1.2.1, the literature contains three
basic representations of the pressure-time history when modelling this phase,
i.e., a bilinear approximation, an extended Friedlander equation based on the
waveform of the positive phase and a cubic representation. Rigby et al. [30]
reviewed these methods and found that bilinear and cubic approximations
resulted in the best agreement with experimental data. Before simulating all
the 0.8-mm-thick plates in Table 3.1 it was therefore decided to perform a
parametric study on the effect of bilinear and cubic representations on the
dynamic response. Based on the findings in this parametric study it is carried
out numerical simulations of the blast-loaded plates. The numerical model is
first validated against the experimental data in Chapter 3, before performing a
numerical study to determine the governing parameters for the observed RSB.
Special focus is placed on the influence of elastic effects and negative phase on
the structural response. The capabilities of the Cockcroft-Latham (CL) failure
criterion and element erosion in predicting the crack patterns observed in the
experiments are also evaluated. Due to trigger problems and flaking of the
paint at the centre part of the plate in some of the tests, 3D-DIC analyses were
only possible in 13 out of the 21 experiments conducted. The displacement
histories reported in this section are therefore limited to the tests where 3D-DIC
analyses were possible. However, the tests showed good repeatability and the
reported results are considered to be a good representation of the experimental
observations. All deformation profiles presented herein were corrected for the
slight movement of the mounting frame during the tests.

5.2 Numerical simulations

This section describes the numerical model, representation of the airblast
loading and the numerical simulations of the blast-loaded plates.

5.2.1 Numerical model

All numerical simulations were performed in the FE software EPX [130], an
explicit FE code jointly developed by the French Commissariat à l’ énergie
atomique et aux énergies alternatives (CEA DMT Saclay, France) and the Joint
Research Centre (EC-JRC Ispra, Italy). The main application domain of the
code is numerical simulations of fast transient phenomena such as explosions
and impacts in complex three-dimensional fluid-structure systems.
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Figure 5.1 illustrates the assembly of the numerical model, where the symmetry
of the problem was utilized to model only one quarter of the experimental setup
using symmetric boundary conditions. A mesh sensitivity study showed that an
element size of 10 mm was adequate to predict the global deformation observed
in the experiments. However, the plate was modelled using a Lagrangian
discretization with an element size of approximately 2.5 mm (Figure 5.1b) and
4-node Reissner-Mindlin shells (Q4GS) with 6 dofs per node and 20 Gauss
integration points (5 through the thickness). The fine mesh size was chosen
in an attempt to predict the tearing along the boundary observed in some
of the tests using element erosion without too much loss of mass. Moreover,
the material behaviour of the plates was governed by the VPJC model with
material and physical constants from Table 4.1 and Table 4.2. Element erosion
was initiated when all integration points in the element reached the critical
value of the damage parameter in Eq. (4.36). The bolts and clamping frames
were represented by 8-node brick elements (CUB8 ) with 8 Gauss points and
the VPJC model with a high elastic limit to ensure elastic behaviour using the
physical constants for steel in Table 4.2.

(a) (b) (c)

Figure 5.1: Numerical model showing (a) steel mounting frame and bolts as one
component (in cyan), (b) plate specimen is added (in green) and (c) complete assembly
including the clamping frame (also in cyan) and contact area between bolt heads and
clamping frame (in magenta) used to model the effect of the pre-tensioning of the
bolts.

The bolted connections used in the experiments were designed with internal
(female) threads in the steel mounting frame and external (male) threads on
the bolts without using a traditional nut. This made it convenient to model
the steel mounting frame and the bolts as one component (Figure 5.1a). Each
bolt was pre-stressed to an initial torque (Mt = 200 Nm) in the tests (see
Section 3.2.1), resulting in a clamping pressure between the frames and the
plate. In the model, this was accounted for by applying an external pressure
at the contact area between the bolt head and the clamping frame (see Figure
5.1c) while the bolts were modelled as stress-free. The contact pressure was
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determined using the approach suggested in Ref. [157] where the pre-tensioning
force Fp = Mt/kφ in each bolt was found from the applied torque Mt, bolt
diameter φ, thread geometry and friction in the thread engagements and under
the bolt heads. The thread geometry and friction were accounted for by the
coefficient k, which is the main uncertainty in this approach. The recommended
value for k is usually 0.18. However, according to Ref. [157] it may vary between
0.10 and 0.23. The elements at the surface of the clamping frame and within
the diameter of the bolt heads were defined as the contact area Ac, which
was determined to be 175 mm2. Dividing the pre-tensioning force Fp in each
bolt by this contact area resulted in a recommended contact pressure of 527
MPa between the bolt head and the clamping frame. Still, there is a large
spread between the minimum and maximum values of 410 MPa (k = 0.23)
and 948 MPa (k = 0.10), respectively. This motivated a numerical study
on the influence of the contact pressure on the response of the plate, which
showed that the recommended value of 527 MPa gave the best agreement with
the experimental observations. A contact pressure of 527 MPa was therefore
used in this study. Contact between the plate, bolts and frames was modelled
using a node-to-surface contact algorithm (GLIS) using slave nodes and master
surfaces where contact was enforced by Lagrangian multipliers when a slave
node penetrated a master surface. The plate was modelled as the slave and
the static friction coefficient between the plate and clamping frames was set to
0.15, while the dynamic friction coefficient was taken equal to 0.10.

5.2.2 Airblast loading

The positive phase of the blast load was described using the empirical parame-
ters by Kingery and Bulmash (KB) (see Figure 2.17a) and the pressure-time
history was represented by the modified Friedlander equation in Eq. (2.1). In
this approach, the charge mass and stand-off distance are used as input to find
the corresponding KB parameters (ta, td+, pso,max, pr,max and ir+). Then, the
Friedlander equation provides the pressure-time history on each element of the
plate depending on the stand-off distance R and angle of incidence α relative
to the charge (see Figure 5.2).

The reflected overpressure prα varies as a function of α between the head-on
reflected overpressure pr,max (α = 0) and the incident (side-on) overpressure
pso,max (α = 90). This was accounted for by determining the reflected pressure
coefficient Crα = prα/pso,max and oblique impulse irα+ using the data points
provided in Refs. [16,150]. Intermediate values of the peak incident pressure
pso,max were found using linear interpolation between adjacent data points. The
decay parameter b in Eq. (2.1) was determined using the governing parameters
(i.e., prα, irα+, ta, td+) integrated over the positive phase duration td+ in
Eq. (2.3). This non-linear equation was solved iteratively to determine the
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Figure 5.2: Illustration of the computation of the applied pressure-time history at
each element on the plate depending on the stand-off distance and angle of incidence
relative to the charge.

value of the decay parameter b which produces the impulse irα+. Figure
5.3 shows the positive phase parameters (solid lines) as a function of scaled
distance Z, while Figure 2.7 presents the relevant curves used to find the Crα

as a function of α. Note that the parameters in terms of impulse and duration
in Figure 5.3 are scaled using Hopkinson-Cranz scaling [14].

The negative phase was modelled using either a bilinear or a cubic represen-
tation based on the recommendations in [16] and [27–29], respectively. This
was motivated by previous findings in Refs. [22, 31, 54], suggesting that the
structural response of flexible structures depends on the timing and magnitude
of the peak negative pressure relative to the dynamic response. Following the
recommendations in [16] and using a bilinear approximation of the negative
phase, the pressure-time history for a given stand-off distance and charge mass
can be given by the piecewise expression in Eq. (5.1), i.e.,

p(t) =




p1 t < ta

p1 + prα

(
1 −

t − ta

td+

)
exp

(
−b(t − ta)

td+

)
ta < t < t1

p1 − pr,min

(
t − (ta + td+)

0.25td,lin−

)
t1 < t < t2

p1 − pr,min

(
1 −

t − (ta + td+ + 0.25td,lin−)
0.75td,lin−

)
t2 < t < t3

p1 t > t3

(5.1)

where t1 = ta + td+, t2 = ta + td+ + 0.25td,lin− and t3 = ta + td+ + td,lin−
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Figure 5.3: Positive and negative phase parameters of the reflected blast wave from
a spherical charge of TNT detonated in free air. The positive phase parameters
in [4, 16] are plotted with solid lines, while the negative phase parameters are shown
with dashed lines.

are introduced to simplify the notation. It is noticed that the rise time to
the peak negative pressure pr,min equals 1/4 of the negative phase duration
td,lin−. Similarly, using the cubic representation of the negative phase suggested
in [27–29], the pressure-time history may be represented by the piecewise
function in Eq. (5.2), i.e.,

p(t) =




p1 t < ta

p1 + prα

(
1 −

t − ta

td+

)
exp

(
−b(t − ta)

td+

)
ta < t < t1

p1 − pr,min

(
27
4

t − (ta + td+)
td,cub−

) (
1 −

t − (ta + td+)
td,cub−

)2

t1 < t < t4

p1 t > t4

(5.2)

where t4 = ta+td++td,cub−. For a cubic representation it can be shown that the
rise time to the peak negative pressure pr,min equals 1/3 of the negative phase
duration td,cub−. Both approximations of the negative phase are illustrated in
Figure 5.4.
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td,lin-

Figure 5.4: Pressure-time history with either bilinear (solid line) or cubic (dashed
line) representation of the negative phase.

The negative phase parameters were taken from Ref. [16] which is in good
agreement with the analytical work reported by Granström [27]. Thus, the peak
negative pressure pr,min and the impulse ir− were calculated using empirical
expressions based on curve fitting to the diagrams presented for a spherical
charge in [16], i.e.,

pr,min =
{

100 Z < 0.803
79.433 · Z−1.05 Z ≥ 0.803 [kPa] (5.3)

ir− =
{

480 · W 1/3 Z < 0.608
10−0.87731 · log(Z)+2.49145 · W 1/3 Z ≥ 0.608 [kPa ms] (5.4)

td− =




(0.694 · log(Z) + 8.963) · W 1/3 Z < 0.255
(2.305 · log(Z) + 9.918) · W 1/3 0.255 ≤ Z ≤ 3.116
11.056 · W 1/3 Z > 3.116

[ms] (5.5)

The negative phase parameters are shown as dashed lines in Figure 5.3, where
the expression for the negative phase duration td− in Eq. (5.5) is included for
completeness. The duration of the bilinear and cubic representations was found
by integration of the pressure during the negative phase in Eqs. (5.1) and (5.2)
so that the impulse ir− from Eq. (5.4) is conserved, i.e.,

td,lin− = 2 ir−

pr,min
(5.6a)

td,cub− = 16
9

ir−

pr,min
(5.6b)

These equations were implemented in EPX as the AIRB directive where the
user can choose the preferred negative phase representation. Note that the
effect of the angle of incidence during the negative phase was assumed similar
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to that during the positive phase. That is, the negative impulse ir− in Eq. (5.4)
was corrected for the angle of incidence using the scaling factor irα+/ir+ found
from the correction of the positive impulse. Previous studies by Rigby et al. [30]
have shown that the angle of incidence has negligible effects on the negative
pressure, and it was therefore considered sufficient to use the parameter given
in Eq. (5.3) also at oblique angles of incidence.

Finally, a validation of the positive phase predicted by the AIRB directive was
performed. This was carried out by comparing experimental measurements
with numerical predictions at the sensors located in the clamping frame (see
Figure 3.1). The validation was limited to the positive phase only, due to
difficulties related to the measurements of the negative phase in Chapter 3. The
results are summarized in Table 5.1, while typical pressure-time histories from
experiments are compared to numerical results in Figure 5.5. It should be noted
that the experimental tests are only denoted by their material and stand-off
distance (i.e., S1, S2, S3, A0, A1, A2 and A3) in the following. Moreover,
the experimental data were low-pass filtered with a cut-off frequency of 0.05
times the sampling rate (10 MHz). Figure 5.5 shows good agreement between
experimental and numerical results, and Table 5.1 shows that the peak reflected
overpressure prα and the positive impulse irα+ are in reasonable correspondence
with the experimental values. However, the predicted positive duration td+
from the AIRB directive was found to be significantly longer than that reported
in the experiments. This is due to a rather long tail of the pressure history
where the corresponding magnitudes were negligible (see Figure 5.5).

Table 5.1: Comparison of experimental and numerical results.

Test Z* Experimental results Numerical results
prα td+ irα+ dz,max prα td+ irα+ dz,max irα−

[m/kg1/3] [MPa] [ms] [kPa ms] [mm] [MPa] [ms] [kPa ms] [mm] [kPa ms]

S1 0.36 11.5- 0.07 135.7- 33.4 9.5 0.17 161.3 32.0 73.116.2 169.8

S2 0.73 6.8- 0.14- 142.2- 22.3- 6.2 0.54 186.2 23.2 97.97.7 0.17 168.7 22.6

S3 1.09 3.3- 0.21- 136.2- 15.3- 2.9 0.62 142.6 17.1 84.34.9 0.25 154.2 17.2

A0 0.73 9.8 0.11 185.7 N/A 6.2 0.54 186.2 N/A 97.9

A1 1.09 3.1- 0.18- 119.5- 41.9- 2.9 0.62 142.6 42.7 84.34.3 0.23 137.0 44.4

A2 1.46 1.5- 0.35- 99.8- 29.5- 1.4 0.57 109.3 31.0 71.11.7 0.40 111.5 32.7

A3 1.82 0.8- 0.48- 80.9- 23.8- 0.7 0.60 83.1 23.8 60.11.0 0.54 83.0 27.2

*Scaled distance Z refers to the respective plate, and not to the sensor located in
the frame.

Thus, the pressure-time histories were in close agreement with the pressure
levels contributing to the structural response. This is also confirmed by the
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Figure 5.5: Comparison between experimental and numerical pressure recordings
during the positive phase. The numerical results are taken from the clamping frame
for comparison with the experimental data from Chapter 3.

good agreement between experiments and numerical results in terms of peak
reflected pressures and impulses. It is also emphasized that when considering
only the positive phase of the blast loading these experiments were in the
impulsive loading domain due to the short duration compared to the natural
period of vibration of the plates (see Tables 3.5 and 3.6). The response to such
short pulses is essentially independent of the pulse shape and the magnitude
of the impulse is the parameter governing the structural response. Hence, the
AIRB directive was found to be able to predict the positive phase of the blast
loading.

5.2.3 Parametric study

Before simulating all the experiments for the 0.8-mm-thick plates in Table 3.1, it
was decided to perform a parametric study on the negative phase representation
since the recommendations in the literature are somewhat contradictory. The
study was performed on plates experiencing CIB due to RSB (i.e., tests S3
and A3). The timing of the peak negative pressure was studied using both
bilinear and cubic negative phase representations, because they used the same
magnitude of impulse and peak negative pressure (Figure 5.4). The influence
of the boundary conditions was also studied since some sliding at the supports
occurred in the experiments due to the reduced clamping at the pressure sensors.
The model presented in Section 5.2.1 (hereafter denoted the "contact model")
was therefore compared to a simplified model (called the "fixed model") where
all nodes located between the mounting and clamping frames were fully fixed
against translation in all directions. Figure 5.6 summarizes the results in terms
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of mid-point deflection versus time, while deformation profiles at maximum
and minimum deflection are presented in Figure 5.7. Solid and dashed lines are
related to the representation of the negative phase. That is, solid lines are the
mid-point deflection when the negative phase was represented as bilinear, while
dashed lines are from simulations with a cubic representation of the negative
phase. Cyan and blue lines represent the simulations considering only the
positive phase of the loading for the contact and fixed model, respectively.
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Figure 5.6: Results from parametric studies on tests S3 and A3: (a) and (b) represent
positive phase loading only, while (c) and (d) also include the negative phase. Both
pressure and deflection were taken from the centre of the plates. Solid lines correspond
to a bilinear representation of the negative phase, while dashed lines indicate a cubic
representation. Cyan and blue lines represent only positive phase loading for the
contact and fixed model, respectively.

In general, the parametric study showed that CIB was dependent on the timing
and magnitude of the peak negative pressure relative to the dynamic response
of the plates. In most of the cases, CIB was not predicted without including
the negative phase of the blast loading (Figure 5.6a-b). Moreover, as in the
experiments, two distinctive types of CIB were identified (Figure 5.6c-d). It is
therefore necessary to extend the Type III category in Section 1.2.2 and Figure
1.3 to also include the RSB occurring during the oscillations after the elastic
rebound (Figure 5.6d). This is therefore denoted Type III* in the following.
CIB of Type III was driven by elastic effects during the rebound after peak
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deflection in the intuitive direction (i.e., the positive direction in Figure 5.6c).
This type of CIB occurred in the S3 tests and was dependent on the axial
restraint at the boundary where the elastic rebound was enhanced by the
negative phase which occurred during the rebound itself. However, CIB was
also observed in the simulation with only positive phase loading and fixed
boundary conditions. This resulted in rather large oscillations around the final
equilibrium configuration (blue line in Figures 5.6a and 5.6c). In general, the
contact model including the negative phase of the loading resulted in the best
agreement with the experimental observations. It was also evident that for CIB
of Type III observed in the S3 tests, the effect of including the negative phase
was more significant than the chosen representation (bilinear versus cubic in
Figure 5.6c).
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(a) Maximum deformation S3
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(b) Minimum deformation S3
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(c) Maximum deformation A3
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Figure 5.7: Comparison of deformation profiles at maximum and minimum mid-point
deflection when varying the negative phase representation and boundary conditions.
Solid lines correspond to a bilinear representation of the negative phase, while dashed
lines indicate a cubic representation. Cyan and blue lines represent only positive
phase loading for the contact and fixed model, respectively.

The A3 tests experienced another type of CIB which is referred to as Type
III*. This type of CIB also occurred due to the negative phase, but during
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the oscillations following the elastic rebound (Figure 5.6d). CIB of Type III*
was highly dependent on the timing of the peak negative pressure relative to
the oscillations around the permanent equilibrium state of the plate. Since
this is an unstable configuration, sensitive to small changes in loading and
structural conditions, the timing of the negative phase may result in significant
enhancement of the elastic oscillations subsequent to the elastic rebound. It
was also observed that the cubic representation of the negative phase resulted in
somewhat earlier RSB compared to the bilinear representation. This makes it
reasonable to assume that the initial pressure gradient of the negative phase is
important in determining the timing of RSB, since the initial pressure gradient
was significantly steeper in the cubic representation (see Figures 5.4 and 5.6).

With one exception, the general trend was that RSB is not predicted without
including the negative phase of the blast loading. By investigating the defor-
mation profiles at maximum and minimum permanent deflection in Figure
5.7, it was observed that the local dent occurring at the centre of the plates
in the experiments was only captured in the numerical simulations with the
contact model. It should be emphasized that this dent made the comparison
of the mid-point deflections in Figure 5.6 somewhat misleading since the dent
was not captured when using the fixed model (Figures 5.7b and 5.7d). Thus,
modelling the contact boundary conditions and including the negative phase
resulted in the best agreement with the experimental data. As expected, the
deformation profiles at maximum deflection in Figure 5.7a and Figure 5.7c were
only dependent on the boundary conditions because the maximum deformation
occurred before the negative phase. Thus, the deformation profiles of the
bilinear and cubic representation of the negative phase coincided since the
deformation was unaltered by the negative pressure at this point in time.

5.2.4 Simulations of blast-loaded plates

Based on the parametric study it was decided to use the assembly presented
in Figure 5.1 and to follow the recommendations in Ref. [16] with a bilinear
representation of the negative phase when simulating all the tests on blast-
loaded plates in Table 3.1. The numerical results are summarized and compared
to the experimental data in terms of mid-point deflection versus time in
Figure 5.8, while the maximum mid-point deflection dz,max is compared to
the experimental data in Table 5.1. A comparison of the experimental and
numerical test configurations experiencing failure is presented in Figure 5.9.
The total positive and negative impulses transmitted to the blast-loaded plates
and the corresponding maximum deflection-thickness ratios obtained from
the numerical simulations are reported in Table 5.2. This may be valuable
information when discussing these experiments and findings in view of similar
impulsively loaded plates reported in the literature (see e.g. [61,104]).
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(b) Aluminium plates

Figure 5.8: Comparison of numerical (FEA) and experimental results in terms of
mid-point deflection histories.

It is observed that the numerical simulations were in good agreement with
the experimental observations, and the numerical model was able to predict
the entire range of structural response from RSB at the largest stand-off
distances (Figure 5.8) to tearing along the boundary (Figure 5.9). However,
the oscillations subsequent to the elastic rebound were somewhat overestimated
in the numerical simulations of the A1 tests compared with the experiments.
This was probably due to a slightly overestimated width of the crack, resulting
in reduced stiffness during the negative loading phase. Failure cannot occur in
less than one element size when using element erosion and a better prediction
of the crack propagation would require a refined mesh.

It is emphasized that Wc is mesh size dependent when determined from inverse
modelling and the same element size should be used in both simulation and
calibration. Larger elements may diffuse the failure process and suppress the
crack propagation [198]. A mesh size of 0.8 mm was necessary to capture the
localized necking in the material tests (see Section 4.5), but this mesh size was
not feasible in the evaluation of the blast-loaded plates. The computational
costs would be very high with such a fine mesh. However, a separate analysis
of the A1 configuration with the 0.8 mm mesh size was performed to evaluate
the influence of mesh size on the crack propagation. This resulted in complete
tearing along the boundary, while the global response until failure remained
the same. The Wc parameter in Table 4.1 should therefore be treated with
some caution. Still, the numerical simulations using an element size of 2.5 mm
captured the failure observed in the experiments well using a rather simple
material model. This also indicated that the modelling of reduced clamping in
the vicinity of the pressure sensors is an important aspect in predicting the
failure observed in the experiments (Figure 3.1 and Figure 5.1). Due to the
reduced clamping, failure was first observed at the bolts closest to the centre
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(a) (b)

(c) (d)

Figure 5.9: Comparison of experimental (left) and numerical (right) observations on
test configurations that experienced failure. (a) and (b) contains the A0 configuration
experiencing complete tearing at the supports, while (c) and (d) represents the partial
tearing observed in the A1 tests. Fringe colours represent the contour map of the
damage parameter in Eq. (4.36).

of the plate boundary (Figure 5.9c-5.9d). The distinct inward deflection of
the plates at the boundary was also captured in the numerical simulations
experiencing failure. This is the so-called pulling-in effect [59] and is a result
of the plate deformation which continues between the time of first tearing at
the boundary (Figure 5.9c - 5.9d) and complete tearing at the corners (Figure
5.9a-5.9b). A more detailed investigation of the failure process is beyond the
scope of this thesis.

Since the numerical model was able to predict the experimental response with
good accuracy, a numerical investigation was performed on which combinations
of stand-off distance R and plate thickness t resulted in CIB due to RSB.
All stand-off distances within the domain R ∈ [0.525, 1.000] m and R ∈
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[0.275, 0.775] m for the aluminium and steel plates, respectively, were simulated
in combination with thicknesses in the range t ∈ [0.2, 3.6] mm and t ∈ [0.2, 2.2]
mm. The results are shown in terms of response spectra of the permanent
mid-point deflection in Figure 5.10, while mid-point deflection versus time for
some typical thicknesses and stand-off distances are shown in Figure 5.11. The
grey markers in Figure 5.10 illustrate the combination of stand-off distance
and plate thickness used in the numerical simulations to generate the response
spectra. Keep in mind that the discussion in the following is limited to these
particular domains. Also recall that CIB is characterized by a permanent
deflection in the opposite direction to the incident blast wave. This implies a
negative permanent mid-point deflection which is indicated by a blue colour in
Figures 5.10 and 5.11. Similarly, a red colour indicates a permanent deflection
in the same direction as the incoming blast wave, while a green colour indicates
a final configuration with negligible mid-point deflection.

(a) Steel plates (b) Aluminium plates

Figure 5.10: Blast-structure response spectrum in terms of permanent mid-point
deflection. The grey markers illustrate the combinations of stand-off distances and
thicknesses used in the numerical simulations to generate the response spectra. The
colour scaling indicates the permanent mid-point (out-of-plane) deflection: a red
colour indicates a permanent deflection in the same direction as the incoming blast
wave, a green colour represents zero permanent mid-point deflection and a blue colour
represents CIB.

The numerical investigation observed both types of CIB (either Type III during
or Type III* subsequent to the elastic rebound) within a narrow range of
stand-off distances and plate thicknesses for both materials. Thus, the study
confirms that CIB is a response which occurs within a limited range of loading
and structural conditions, and that this behaviour is related to thin flexible
structures. In particular, the results indicated that CIB Type III is related
to the starting time of the negative phase td+ relative to the elastic rebound
after maximum deflection, while CIB Type III* may occur at small thicknesses
when the ratio between the positive and negative impulses approaches the same
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order of magnitude. The simulations also provide some other interesting results,
such as failure at the centre of the plate and complete tearing at the boundary
during RSB for the smallest thicknesses (see Figure 5.11). In the simulations
experiencing failure, the mid-point deflection at the point of complete failure
was used in the response spectra. This indicates that although the ultimate
deflection is most often used as a design criterion since this is related to the
maximum stress state, damage accumulates during RSB and thin plates may
fail during reversed motion. The different types of CIB were characterized by
a transition zone where the turning point seemed to be at a thickness t = 0.6
mm for the steel plates (Figure 5.10a) and t = 1.0 mm for the aluminium
plates (Figure 5.10b). That is, Type III* CIB occurred in the dark blue area at
thicknesses smaller than 0.6 mm for the steel plates, and in the dark blue area
at thicknesses smaller than 1.0 mm for the aluminium plates. CIB of Type III
and III* are indicated by solid and dashed blue lines, respectively, in Figure
5.11b-d. As expected, increased stand-off distance and plate thickness resulted
in oscillations approaching the initial configuration of zero mid-point deflection
(a green colour in Figure 5.10 and Figure 5.11).
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Figure 5.11: Typical mid-point deflection histories for the aluminium and steel
plates when varying the stand-off distance and plate thickness.
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The findings in this study therefore broaden the range of loading properties
resulting in RSB, because previous studies (see e.g. [45–47]) mainly consider
projectile impacts or positive pulses as the loading. In such environments
there is no negative phase loading and the CIB is driven by the ratio between
the bending and membrane energy (i.e., the maximum deflection and the
corresponding rotation in the plastic hinges at which reverse motion starts).
This is further argued by the fact that the response is membrane dominated due
to the large deflection-thickness ratios observed in these experiments (see Table
5.2). Jones [61] showed that the bending contributions are negligible compared
to the membrane forces for plated structures experiencing a deflection-thickness
ratio larger than one.

Table 5.2: Summary of the numerical results in terms of the maximum deflection-
thickness ratios (dz,max/t) and total impulses (Ir+ and Ir−) transmitted to the plate
from the blast loading. The negative deflection-thickness ratio is given in parentheses
for the configurations experiencing CIB.

Test dz,max/t Ir+ Ir− CIB
[-] [Ns] [Ns] [Y/N]

S1 40.0 32.1 12.2 N
S2 29.0 21.0 10.7 N

S3 21.4 14.0 8.0 Y
(-14.9) (Type III)

A0 N/A 21.0 10.7 N
A1 53.4 14.4 8.0 N
A2 38.8 10.5 6.5 N

A3 29.8 7.9 6.0 Y
(-25.1) (Type III*)

*Note that this table reports the total impulses transmitted to the plates, while
Table 5.1 contains the specific impulse recorded by the pressure sensors.

5.3 Concluding remarks

A numerical model in EPX has been validated against experimental data in
predicting the inelastic response of thin aluminium and steel plates exposed to
blast loading. The numerical results were generally in good agreement with
the experimental data and covered the entire range of inelastic response. This
included partial and complete tearing along the boundaries at the closest stand-
off distances and a counter-intuitive behaviour (CIB) where the permanent
deflection of the plate was in the opposite direction to the incoming blast
wave due to reversed snap buckling (RSB). The influence of elastic effects
and negative phase on RSB was studied numerically, and two types of CIB
were identified within a narrow range of loading and structural conditions.
Both types of CIB were found to depend on the timing and magnitude of
the peak negative pressure relative to the dynamic response of the structure.
In particular, CIB of Type III was driven by elastic effects enhanced by the
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negative phase during the elastic rebound, while Type III* occurred during the
subsequent oscillations after the elastic rebound and was related to the timing
of the peak negative pressure and the ratio between positive and negative
impulses. The plate thickness and material were found to be the governing
structural properties, where plate thicknesses less than about 1.6 mm and 3.2
mm may result in CIB for the steel and aluminium material, respectively. The
influence of the material was evident by comparing steel and aluminium plates
at the same stand-off distance (R = 0.375 m), which resulted in a completely
different structural response since the steel plates experienced RSB whereas
the permanent displacement of the aluminium plates was in the intuitive
direction.

It is also emphasized that the characteristic loading domain is often determined
based on the duration of the positive phase relative to the natural period
of the structure (see e.g. [32]). The loading domain will then determine the
computational method to be used in the blast-resistant design. Following this
classification, the experiments presented herein fall into the impulsive loading
domain where the blast load has vanished before the structure undergoes any
significant deformation. Consequently, the response is assumed to depend
only on the magnitude of the positive impulse and not on the evolution of the
pressure-time history. This study shows that the blast-loaded plates experienced
severe blast-structure interaction effects during the negative phase. Thus, the
loading domain of thin flexible plates should not be determined solely based
on the positive phase of the blast load. In particular, if the timing of the
negative phase is such that it will enhance elastic oscillations during (CIB
Type III) or subsequent (CIB Type III*) to the elastic rebound, thin plates
cannot be categorized into the impulsive loading domain since the negative
phase may dominate the response. Finally, previous studies have suggested
that the negative phase can be ignored at scaled distances with relatively small
magnitudes in peak negative pressure pr,min compared to the peak reflected
overpressure prα (e.g. [22]). However, the observations in this study extend the
range of applications where the negative phase should be considered, because
CIB was observed at relatively large peak reflected overpressures. This implies
that the relative pressure magnitudes are not the only important parameter
of the loading, but also the ratio between the specific positive and negative
impulses could be used as an indication for CIB. In particular, it is found that
RSB (i.e., CIB Type III*) may dominate the response of thin aluminium and
steel plates when the positive and negative impulses are of the same order of
magnitude.
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6
Shock tube
The shock tube technique is chosen as an alternative to explosive detonations
when generating blast loading in Part III of this thesis. This enable studies
on the dynamic response of flexible plates and fluid-structure interaction
(FSI) effects in blast environments without the need to consider the inherent
complexity in close-in and near-field detonations. Before moving into shock tube
design, experiments and numerical simulations, it is necessary to understand
the initiation and propagation of shock waves in a shock tube. This chapter
therefore starts with a brief review of some basic concepts in the fields of
thermodynamics and shock physics, before the shock tube operation with
respect to blast loading is presented. Finally, the Riemann problem is introduced
as a solution technique and used to obtain a basic understanding of the influence
of FSI when the blast wave interacts with a moving surface.

6.1 Introduction

As discussed in Section 1.2.4, an alternative to explosive detonations when
generating blast loading is the shock tube technique (see Refs. [113–121]). This
is a well-known experimental technique within the field of gas dynamics using
well-defined and easily controllable initial conditions providing good repeatabil-
ity of each test. The properties of a shock wave acting on a structure may be
studied by placing a structure inside or at the end of the tube. Using a movable
or deformable structure, the pressure is altered by the structural response and
this setup is well-suited to study the influence of fluid-structure interaction
(FSI) effects on blast-loaded structures. Such a setup therefore allows for the
evaluation of FSI in controlled laboratory environments without the need to
consider the inherent complexity in close-in and near-field detonations. A more
detailed discussion on the shock tube problem is presented later in this chapter
and also found in the literature (see e.g. [87,123–125]).

The use of shock tubes is not new and one of the first shock tube facilities
was established in 1899 by the French scientist Paul Vieille [199] to study
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the deflagration of explosive charges. The shock tube technique comes in
different types and has a wide variety of applications. This has attracted the
interest from many engineering disciplines, e.g. chemical kinetics, aerodynamics
(supersonic aircraft flight and shuttle atmospheric entry), thermodynamics
and blast-structure interactions. In some cases, high explosives are used to
generate the shock wave and these are often denoted explosive-driven shock
tubes (see e.g. [118]). However, the most common application is the so-called
pressure-driven shock tubes where compressed gas is used as the energy source
to generate the shock wave (see e.g. [119–121]). This is also the type of shock
tube to be considered in this thesis.

For most practical applications involving shock physics (e.g. blast events or
bursting pressure vessels) there are no closed form analytical solutions of the
governing equations due to the multi-dimensional space, complex boundaries
and non-linearity in the problem. Numerical methods are therefore frequently
used to solve these types of problems involving wave propagation and FSI.
Neglecting heat transfer in or out of the system and viscous effects in the
flow, the governing equations may be reduced to the Euler equations. In
the particular case of the Euler equations the so-called Riemann problem is
often sought for the solution to the shock tube problem [88]. Using hyperbolic
conservation equations for mass, momentum and energy with an additional
equation of state (EOS), the Riemann problem provides the basic understanding
of shock wave propagation in any kind of matter, be it gaseous, liquid or solid.
The relatively simple and analytical solvable case of a one-dimensional (1D)
system of waves in an infinitely long tube gives an intuitive understanding of the
governing physics and phenomena in the shock tube. This analytical solution
to the Riemann problem is also a valuable reference solution when evaluating
the performance of computational fluid dynamics (CFD) codes in describing
shock waves and their corresponding discontinuities. As will be showed later in
Chapter 9, the solution of the Riemann problem (analytical or approximate)
can also be used to solve the local flux between neighboring computational cells
in numerical methods (see e.g. [88, 200]). Thus, an understanding of the shock
tube problem is also beneficial when evaluating and developing approximate
Riemann solvers. Before presenting the Riemann solution, basic principles,
operation and distinctive features of a shock tube with application to blast
loading, a brief review of some basic concepts within thermodynamics and
shock physics will be given. Although the fundamental aspects of these topics
are well established in the literature, such a presentation is necessary for the
understanding and discussion of the results later in this thesis. It is also
emphasized that the thermodynamics and shock physics presented herein are
written from a structural engineering point of view and limited to the relations
necessary to understand shock wave propagation and FSI in the idealized gas
theory. Compressible fluid flow is an active field of research and detailed studies
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of the physics within this topic are beyond the scope of this thesis.

6.2 Review of thermodynamics

The kinetic energy per unit mass is given as v2/2 for a 1D flow [201,202], where
v is introduced as the notation for the velocity. This implies that high-speed
flow is synonymous to high-energy flow. In most cases high-speed flow is
also equivalent to compressible flow and the corresponding energy changes
are significant enough to interact with other properties of the flow. Energy
concepts therefore play an important role in obtaining an understanding of
compressible flow. The theory of energy (and entropy) is commonly known as
thermodynamics and is an essential ingredient in the study of compressible
flow. This section therefore briefly reviews some of the thermodynamic state
variables and relations necessary to understand the physics involved in the
solution of the shock tube problem. Please note that this section is based
mainly on the presentation given in Refs. [201,202].

6.2.1 Equation of state

An equation of state (EOS) is a constitutive equation relating state variables
which describe the state of matter under a given set of physical conditions. It is
a mathematical relationship between several state variables associated with the
matter, such as its temperature, pressure, volume, density, or internal energy.
An EOS is useful in describing the properties of gas, liquids or solids, and is
frequently used to relate densities of gases and liquids to temperatures and
pressures. It can therefore be thought of as a constitutive relation for materials
at high pressures.

A gas is a collection of particles (e.g. molecules, atoms, ions and electrons) that
are in more or less random motion. Due to the electronic structure of these
particles, a force field is introduced in the space around them. The force field
around one particle interacts with neighboring particles, and vice versa. These
fields are therefore often called intermolecular forces. The intermolecular forces
varies with the distance between the particles. For most atoms and molecules
it takes the form of a weak attractive force at large distance, changing quickly
to a strong repelling force at close distance. In general, these intermolecular
forces influence the motion of the particles and, consequently, also influence
the thermodynamic properties of the gas which can be considered as the
macroscopic framework of the particle motion.

At temperatures and pressures characteristic of many compressible flow ap-
plications, the gas particles are widely spread. The average distance between
particles is usually in the range of 10 molecular diameters, which corresponds
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to a weak attractive force. As a result, for a large number of engineering appli-
cations, the effect of intermolecular forces on the gas properties is negligible.
By definition, an ideal (or perfect) gas is one in which intermolecular forces
are neglected. Neglecting intermolecular forces, the EOS for a perfect gas can
be derived from statistical mechanics or kinetic theory. However, historically it
was found from experimental observations resulting in the following empirical
equation known as the ideal gas law

pV = MRT (6.1)

where p, V and T are the pressure, volume and temperature of the system, M

is the mass of the system, and R is the specific gas constant which is unique
for each gas. The EOS in Eq. (6.1) is found in many forms and variations in
the literature. However, all these representations are basically the same where
this thesis will use the particular forms given by

p = ρRT (6.2a)
p = ρ(γ − 1)e (6.2b)

where ρ is the density, e is the specific internal energy per unit mass, γ is the
ratio of specific heats given by the specific heat at constant pressure cp and
the specific heat at constant volume cv.

In the vast majority of gas dynamic applications, Eqs. (6.2a) and (6.2b) can be
applied with confidence. However, at very cold temperatures and high pressures,
the molecules of the gas are more closely packed together, and intermolecular
forces become more important. Under these conditions, the gas is defined as
a real gas. In such cases, it may be necessary to replace the perfect gas EOS
with more elaborate relations.

6.2.2 Internal energy and entalphy

Returning to the microscopic view of gas as a collection of particles in random
motion, the individual kinetic energy of each particle contributes to the overall
energy of the gas. The energy of a particle consists of several different forms
of motion (e.g. translational, rotational, vibrational and electronic motions).
These energies, summed over all the particles of the gas, constitute the internal
energy per unit mass (or specific internal energy) e of the gas.

From an engineering point of view, equilibrium is considered in a macroscopic
perspective where the gas is viewed as a continuum (or control volume) of a
large number of molecules. Equilibrium is then characterized by no gradients
in velocity, pressure, temperature, and chemical concentrations throughout the
system. That is, the system has uniform properties. For a system of real gases,
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and also for a chemically reacting mixture of perfect gases, the internal energy
e is a function of both temperature and volume. A related quantity is the
specific enthalpy h defined as

h = e + p� = e + p

ρ
(6.3)

where � = 1/ρ is the specific volume, and

e = e(T, �) (6.4a)
h = h(T, p) (6.4b)

for both a real gas and a chemically reacting mixture of perfect gases. The
enthalpy is therefore a measure of the energy in a thermodynamic system
and includes both the internal energy and the amount of energy necessary to
produce a change in the volume of the system.

If the gas is not chemically reacting and the intermolecular forces are neglected,
the resulting system is a thermally perfect gas. Then, the internal energy,
enthalpy and the specific heats (cv and cp) are all functions of the temperature
only. Furthermore, if the specific heats are assumed constant, the system is
defined as a calorically perfect gas where

e = cvT (6.5a)
h = cpT (6.5b)

and it is also assumed that h = e = 0 at T = 0.

In many compressible flow applications, the pressure and temperatures are
moderate enough such that the gas can be considered as calorically perfect.
Real gas effects and chemically reacting mixtures of perfect gases are considered
beyond the scope of this thesis. As discussed in Section 6.2.1, such effects can be
of importance at high magnitudes of pressure (e.g. as the blast event becomes
increasingly near-field). The interested reader is referred to the literature (see
e.g. [124,125,202]) for a more detailed presentation of these effects.

Assuming the EOS of a calorically perfect gas given in Eq. (6.2), the constants
of specific heats are related through the following relation

cp − cv = R (6.6)

where the specific heats at constant pressure and volume are defined, respec-
tively, as

cp =
(

∂h

∂T

)

p

and cv =
(

∂e

∂T

)

�

(6.7)
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where the subscripts p and � denote that the partial derivatives are taken at
constant pressure and volume, respectively. Moreover, two useful terms of
Eq. (6.6) can be obtained by first dividing it by cp

1 − cv

cp
= R

cp
(6.8)

and introducing the ratio of specific heats as γ = cp/cv. Eq. (6.8) then reads

1 − 1
γ

= R

cp
(6.9)

which can be solved for cp as

cp = γR

γ − 1 (6.10)

and by combining Eqs. (6.5b) and (6.10) the entalphy of a perfect gas reads

h = γ

γ − 1RT (6.11)

Similarly, by dividing Eq. (6.6) by cv, the specific volume can be expressed
as

cv = R

γ − 1 (6.12)

where the internal energy of the perfect gas in Eq. (6.5a) now reads

e = RT

γ − 1 (6.13)

These are useful relations when discussing compressible high-speed flow. How-
ever, it is emphasized that Eqs. (6.10) and (6.12) only holds for a calorically
perfect or a thermally perfect gas. They are not valid for either a chemically
reacting or a real gas. Note that for air at atmospheric conditions γ = 1.4.

6.2.3 First law of thermodynamics

Consider the system in Figure 6.1, which is a fixed mass of gas separated
from the surroundings by a flexible boundary. The system is assumed to be
stationary, i.e., it has no directed kinetic energy. Let ∆q be an incremental
amount of heat added to the system across the boundary. Examples of sources
for ∆q are radiation from the surroundings that is absorbed by the mass in
the system and thermal conduction due to temperature gradients across the
boundary. Also, let ∆w denote the work on the system by the surroundings
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(e.g. deformation of the boundary reducing the volume of the system). As
discussed earlier, due to the molecular motion of the gas, the system has a
specific internal energy e (which can be considered as the internal energy by
assuming a unit mass). The heat added and work done on the system cause
a change in energy, and since the system is stationary, this change in energy
reads

de = ∆q + ∆w (6.14)

Surroundings

Boundary

System ∆q

∆w

Figure 6.1: Thermodynamic system.

This is the first law of thermodynamics, which is an empirical result confirmed
by experiments and practical experience [201, 202]. Thus, the first law of
thermodynamics is the conservation of energy and requires that the sum of
mechanical and thermal energy is constant in a closed system. Any change in
the specific internal energy must be balanced by the power of forces from the
surroundings and the rate of heat flux through the boundary. In Eq. (6.14), e

is a state variable and de is differentiable where its value depends only on the
initial and final states of the system. In contrast, ∆q and ∆w depend on the
process in going from the initial to the final states.

For a given de, there are in general an infinite number of different processes by
which heat can be added and work done on the system. However, the literature
often operates with three types of processes [201,202], i.e.,

• An adiabatic process where no heat is added to or taken away from the
system.

• A reversible process where no dissipative phenomena occur, i.e., where the
effects of viscosity, thermal conductivity, and mass diffusion are absent.

• An isentropic process which is both adiabatic and reversible.

For a reversible process, the work on the system from the surroundings can be
expressed as ∆w = −pd� where d� is an incremental change in specific volume
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� due to a displacement of the boundary of the system. Thus, Eq. (6.14) now
reads

de = ∆q − pd� (6.15)

If, in addition, the process is adiabatic (i.e., isentropic) ∆q = 0 and Eq. (6.15)
leads to some useful thermodynamic relations which will be presented in the
following.

6.2.4 Entropy and the second law of thermodynamics

The first law of thermodynamics provides limited information regarding the
evolution of heat and mechanical work, other that the energy must be conserved
during the process. The observation that heat always flows from regions of
higher to regions of lower temperature and that the amount of thermal energy
needed to provide mechanical work is always larger than the gained external
work lead to the formulation of the second law of thermodynamics. To ensure
the validity of the first law, a new state variable s has to be defined

ds = ∆qrev

T
(6.16)

which is called the entropy of the system, ∆qrev is an incremental amount of
heat added reversibly to the system and T is as before the temperature. It
is emphasized that the entropy s is a state variable, and it can be used in
combination with any type of process (reversible or irreversible). The quantity
∆qrev is just an artifice. An effective value of ∆qrev can always be assigned to
relate the initial and final points of an irreversible process, where the actual
amount of added heat is ∆q. Thus, an alternative and probably more intuitive
relation is

ds = ∆q

T
+ dsirrev (6.17)

This is a general statement and may be interpreted such that the change in
entropy during any incremental process is equal to the actual heat ∆q added
divided by the temperature T plus a contribution dsirrev from the irreversible
dissipative phenomena of viscosity, thermal conductivity, and mass diffusion
occurring within the system. These dissipative phenomena always increase the
entropy, i.e.,

dsirrev ≥ 0 (6.18)

The equal sign denotes a reversible process, where, by definition, the dissipative
phenomena are absent. Hence, entropy can be thought of as a measure of
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the molecular disorder within a macroscopic system (i.e., a measure of a
system’s thermal energy per unit temperature that is unavailable for doing
useful work).

A combination of Eqs. (6.17) and (6.18) reads

ds ≥ ∆q

T
(6.19)

Moreover, if the process is adiabatic ∆q = 0 Eq. (6.19) becomes

ds ≥ 0 (6.20)

Eqs. (6.19) and (6.20) are therefore typical representations of the second law
of thermodynamics. The concept of entropy in combination with the second
law enables prediction of the direction in which a process will take place. A
process will proceed in a direction such that the entropy of the system and
the surroundings always increases or stays the same. That is, thermodynamic
processes are basically changes in state variables initiated through exchange of
the system with its environment. The process itself can be described as a path
in the space of state variables. Any natural process starting from a condition of
thermodynamic equilibrium follows subsequent conditions of non-equilibrium
until a new equilibrium condition is reached [201,202].

The starting point of the calculation of the entropy is the first law of thermo-
dynamics in Eq. (6.15). Assuming that the heat is reversible and using the
definition of entropy in Eq. (6.16) (i.e., ∆qrev = Tds), then Eq. (6.15) reads

Tds = de + pd� (6.21)

An alternative form can be obtained in terms of enthalpy. Differentiation of
Eq. (6.3) gives

dh = de + pd� + �dp (6.22)

Then, combining Eqs. (6.21) and (6.22) reads

Tds = dh − �dp (6.23)

For a thermally perfect gas, dh = cpdT may be substituted into Eq. (6.23),
i.e.,

ds = cp
dT

T
− �dp

T
(6.24)

Substituting the perfect gas EOS (i.e., p� = RT ) from Eq. (6.2a) into Eq. (6.24)
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gives

ds = cp
dT

T
− R

dp

p
(6.25)

Integrating Eq. (6.25) between states 1 and 2 now reads

s2 − s1 =
∫ T2

T1

cp
dT

T
− Rln

(
p2

p1

)
(6.26)

The result in Eq. (6.26) holds for a thermally perfect gas. It can be evaluated
if cp is known as a function of T . If one further assumes a calorically perfect
gas, where cp is constant, Eq. (6.26) gives

s2 − s1 = cpln
(

T2

T1

)
− Rln

(
p2

p1

)
(6.27)

Similarly, starting with Eq. (6.21) and de = cvdT , the change in entropy may
also be expressed as

s2 − s1 = cvln
(

T2

T1

)
+ Rln

(
�2

�1

)
(6.28)

Eqs. (6.27) and (6.28) enable the calculation of the change in entropy between
two states of a calorically perfect gas in terms of either the pressure and
temperature, or the volume and temperature. Note that the entropy is a
function of both p and T , or � and T , even for the simplest case of a calorically
perfect gas.

6.2.5 Isentropic relations

An isentropic process is already defined in Section 6.2.3 as both adiabatic and
reversible (i.e., ∆q = 0 and dsirrev = 0). The system has no heat exchange, no
viscosity and no external sources of energy. Eq. (6.17) then gives an isentropic
process as one in which ds = 0, i.e., the entropy is constant.

Useful relations for an isentropic process can then be obtained directly from
Eqs. (6.27) and (6.28) by setting s2 = s1. Thus, Eq. (6.27) may be written
as

p2

p1
=

(
T2

T1

)cp/R

(6.29)

Combining Eqs. (6.10) and (6.29) results in the following relation

p2

p1
=

(
T2

T1

)γ/(γ−1)
(6.30)
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Similarly, from Eq. (6.28)

�2

�1
=

(
T2

T1

)−cv/R

(6.31)

Using the result in Eq. (6.12) in Eq. (6.31) gives

�2

�1
=

(
T2

T1

)−1/(γ−1)
(6.32)

Recall that ρ2/ρ1 = �1/�2. Hence, from Eq. (6.32) it follows that

ρ2

ρ1
=

(
T2

T1

)1/(γ−1)
(6.33)

Finally, by using Eqs. (6.30) and (6.33) the isentropic relations read

p2

p1
=

(
ρ2

ρ1

)γ

=
(

T2

T1

)γ/(γ−1)
(6.34)

This is an important result since it relates pressure, density and temperature for
an isentropic process, and it is frequently used in the analysis of compressible
flow. Also note that Eq. (6.34) originates from the first law of thermodynamics
and the definition of entropy. Therefore, Eq. (6.34) is basically an energy
relation for an isentropic process. This is a valuable observation and it is also
seen from Eq. (6.34) that p/ργ = constant.

6.3 Shock physics

Information about loads applied to a system is propagated through the medium
by waves at the local speed of sound. If the induced waves take the shape and
amplitude of so-called shock waves, then the waves move faster than the local
speed of sound and their propagation through the system needs to be resolved
in time and space [203].

The shock waves considered in this chapter are strong compression waves
caused by the sudden release of the high pressure in a shock tube. However,
it should be noted that most of this theory is general and may be used in a
large variety of applications involving other shock loading environments (e.g.
high-speed impact events). Shock physics, which is a combination of fluid- and
thermodynamics, allows for quantitative evaluations of shock waves. The topic
is too broad to be fully covered in this thesis, and it is referred to the many
papers and textbooks on the subject for a more detailed representation (see
e.g. [122,141,201–205]).
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6.3.1 Compressible flow

This section is mainly based on the presentation of compressible flow given in
Refs. [201,202]. Compressible flow is commonly defined as variable density flow.
This is in contrast to incompressible flow, where the density is assumed to be
constant. The definition of compressible flow can be studied by considering
a small element of gas (or fluid) of specific volume � (see Figure 6.2a). The
pressure exerted on the sides of the element by the neighboring gas is p. Now,
assume that the pressure is increased by an infinitesimal quantity dp. The
volume of the element will be correspondingly compressed by the amount d�

(illustrated in Figure 6.2b). The change in volume d� is a negative quantity
since the volume is reduced, and the portion of which a gas (or fluid) can be
compressed is given by its compressibility β defined as [201]

βs = −1
�

(
∂�

∂p

)

s

(6.35)

where the subscript s denotes that the partial derivative is taken at constant
entropy (i.e., assuming an isentropic process).

p

�

(a)

p+ dp

�+ d�

(b)

Figure 6.2: Definition of compressibility [202]: (a) initial volume and (b) compressed
volume.

Hence, the physically interpretation of compressibility is the relative change
in volume of a gas (or fluid) as a response to a pressure change. As a rule of
thumb, gas velocities less than about 0.3 of the speed of sound are associated
with relative low pressure changes and low-speed flow. These type of flows are
often considered as incompressible, despite the relatively high value of β since
dp is considered small enough to neglect the corresponding d�. However, flow
velocities higher than 0.3 of the speed of sound are associated with relatively
high pressure changes, accompanied by correspondingly large changes in density
and the flow should therefore be considered as compressible.
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6.3.2 Shock waves

A shock wave is characterized by a distinct wave front, traveling through a
medium at supersonic speed compared to the undisturbed media. Shock waves
in air are very thin transition layers of rapid changes of physical quantities such
as pressure, density and temperature. The thickness of a strong shock wave is
of the same order of magnitude as the mean-free pathi of the molecules, i.e.,
about 10−7 m (0.1 µm) [88]. In the idealized case, the compressed gas reaches
its equilibrium values of pressure, density and pressure in this distance.

The structure of the shock front and the processes through which the gas must
pass to obtain its new equilibrium will depend upon the strength of the shock
and the properties of the gas. Equilibrium in the state variables (T, p, ρ and v)
is established within the timescale of nanoseconds (10−9 seconds). It will be
shown in the following that an idealized shock wave forms as a result of the
steepening of the compressive part of a finite, continuous disturbance and that
through the action of the pressure and inertia forces this gradient ultimately
becomes nearly infinite. In a real gas this steepening is resisted by the diffusive
effects of viscosity and heat conduction and the final form of the shock transition
must involve a balance between these two events. It follows that in any real
gas a shock wave will have a finite thickness and a definite structure. Viscous
effects are important within the shock front since these effects cause the shock
in the first place. The flow across a shock wave is considered adiabatic (i.e., no
external heating) and the total enthalpy is constant across the wave. However,
outside this layer, viscous effects are small on scales larger than the mean
free path [201,204]. Thus, for most practical engineering purposes the shock
thickness may be ignored, but in certain types of flow, at low gas densities
for example, the shock structure becomes important. The details of the shock
structure are beyond the scope of this thesis and the shock waves will in the
following be considered as mathematical discontinuities. Thus, shock waves
are considered as extremely thin regions and involve discontinuities which has
to be carefully considered when solving the governing equations.

Shock waves are often classified based on the supersonic speed which is the
rate of propagation of an object that exceeds the speed of sound (Mach 1). In
fluid dynamics, the Mach number M is a dimensionless quantity representing
the ratio of the speed of an object moving through a fluid (gas or liquid) and
the local speed of sound, given as

M = v

c
(6.36)

iIn physics, the mean free path is the average distance traveled by a moving particle (such
as an atom, a molecule, a photon) between successive impacts (collisions), which modify
its direction or energy or other particle properties.
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where v is the velocity of the object relative to the medium and c is the speed
of sound in the medium. Thus, any speed lower than the speed of sound in a
sound-propagating medium is called subsonic (M < 1), while any speed higher
than the speed of sound in the medium is denoted supersonic (M > 1). Speeds
greater than five times the speed of sound (M > 5) are often referred to as
hypersonic. For objects traveling in dry air at a temperature of 20◦ at sea level,
M = 1 corresponds to a wave velocity of v = 343.1 m/s.

In general, the principles are equally applicable for all types of matter (i.e., solids,
liquids or gases) and it is important to distinguish between elastic and plastic
waves. A starting point for understanding shock phenomena may therefore be
obtained by considering the compression characteristics of most solid materials.
From 1D elastic stress-wave theory (see e.g. [203]), the longitudinal wave speed
(or the speed of sound) cL in a solid is given as

cL =

√
E

ρ
(6.37)

where E is the elastic modulus (or elastic stiffness) and ρ is (as before) the
density of the medium. In the more general 3D case, the speed of sound in a
solid becomes

cS =

√
K + 3/4G

ρ
(6.38)

where K and G are the bulk and shear modulus, respectively. Introducing the
possibility of non-linear material behaviour for the longitudinal wave speed
in Eq. (6.37) may be carried out by replacing the elastic modulus E with the
tangent stiffness ∂σ/∂ε of the material at a specific loading state (σ, ε). The
1D longitudinal waves speed then reads

cL =

√
1
ρ

∂σ

∂ε
(6.39)

Similarly, in a perfect fluid or gas (3D medium with G = 0) the bulk speed of
sound becomes

cB =

√
K

ρ
(6.40)

for hydrostatic pressure waves. Here, K is the bulk modulus that measures the
substance’s resistance to uniform deformation under isentropic conditions (i.e.,
reversible and adiabatic conditions so that the entropy remains constant). It
is defined as the derivative of pressure p with respect to density (or volume),
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i.e.,

K = ρ
∂p

∂ρ
(6.41)

The speed of sound may then be obtained by inserting Eq. (6.41) into Eq. (6.40)
and reads

c2 = c2
B =

(
∂p

∂ρ

)

s

(6.42)

which can be considered as a simple EOS that provides a mathematical rela-
tionship between the change in pressure and density. Again, the subscript s

denotes that the partial derivative is taken at constant entropy and it is seen
that the speed of sound in the gas is related to the isentropic compressibility
in Eq. (6.35).

Following Eqs. (6.37)-(6.42) it is observed that shock waves differ strongly
from linear elastic waves regarding their expansion and propagation. High
pressure magnitudes introduce the material to the non-linear and plastic region
of the pressure-density relation. This is illustrated in Figure 6.3a where the
gradient is the square of the speed of sound as given by Eq. (6.42). The speed
of sound in the material is constant in the elastic region, which implies that
the pressure and density are linearly related. Beyond the elastic region, the
wave velocity increases with the pressure and density and the pressure-density
relation becomes non-linear. That is, beyond the elastic region, the speed of
sound increases with increasing pressure.
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Figure 6.3: Typical relation between pressure and density, and formation (shocking-
up) of a shock wave [141]: (a) pressure versus density and (b) the steepening of the
shock wave.

This is described by Cooper [141] and may be illustrated by studying the
pressure front of the shock in Figure 6.3b. At point A the pressure is low and,



134 6. Shock tube

consequently, the speed of sound cA is low (see corresponding point in Figure
6.3a). Also the particle velocity vA, i.e., the speed to which the material locally
has been accelerated, is relatively low. Thus, the velocity of the pressure wave
cA + vA is quite low. At point B there is an increase in pressure compared
to point A which implies that the speed of sound cB increases (since we are
evaluating a strong shock beyond the elastic limit). The particle velocity vB is
also higher, resulting in a pressure wave at point B travelling faster than at
point A (cB + vB > cA + vA). Moreover, the same argument holds for point
C that has a faster wave velocity than point B. Thus, since the propagation
velocity of the wave depends on the gradient of the pressure-density relation,
the peak pressure (C in Figure 6.3b) of the shock wave propagates faster
than its leading and trailing edges (A and B in Figure 6.3b), resulting in
the formation of a steep shock front (right pressure profile in Figure 6.3b)
characterized by a virtually discontinuity in pressure and density. Thus, the
initially smooth pressure front disturbance has been "shocked-up" because the
wave speed increases with increasing pressure.

When the pressure wave takes on this vertical front, it is, as pointed out earlier,
called a shock wave. Thus, from a mathematical point of view, there is no
smooth transition from the medium in front of the wave to the medium behind
the wave. The material "jumps" from the non-shocked to the shocked state. It
is important to keep track of the different velocities, i.e., the sound, particle
and pressure wave, and to remember that the pressure wave velocity is the
sum of the sound and particle velocity. It may be challenging to visualize how
the pressure wave velocity can be faster than the particle velocity since the
particles are also moving. However, one should be aware that the shock wave
is caused by a sudden and violent disturbance of the material (e.g. a sudden
release of high pressure or an explosive detonation). The shock wave then
propagates through the undisturbed material, by accelerating, compressing
and heating the material, inducing a mass motion with the particle velocity
behind the shock wave. This will be shown mathematically using the method
of characteristics in Section 6.4.2 (see Eq. (6.61) and Figure 6.8).

The pressure-density relation in Figure 6.3a is commonly found in the literature
in terms of the pressure-specific volume relation (see Figure 6.4). This is called
the Hugoniot curve and represents the locus of all the possible equilibrium
states in which a particular material can exist [141]. It must be emphasized
that this is not an EOS or a path along which shock waves arise. It should also
be noted that the isentropic curve, i.e., p�γ = constant and the path function
that describes a continuity and not a jump, is different from the Hugoniot curve.
A rarefaction wave is an example of a continuous process and its path would
be along the unloading isentrope. Remember that the rarefaction wave brings
the pressure back down to the ambient pressure. Since the Hugoniot curve
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represents the locus of all possible states (p2, �2) behind the shock front reached
from an initial state (p1, �1) in front of the shock, the line joining the initial
and final states on the Hugoniot curve represents the jump condition [141].
This line is called the Rayleigh line and is shown in Figure 6.4. That is, the
shock is assumed to be acheived along a non-equilibrium path, assumed to be
a straight line in the p − � space. Above the value p2 in Figure 6.4, strong
shocks will occur.
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Figure 6.4: A typical representation of the pressure-specific volume (Hugoniot
curve) [141]. Shock compression along Rayleigh line followed by an isentropic release
resulting in dissipated energy. Shock waves produced at magnitudes beyond p2.

Figure 6.4 illustrates a shock compression from an ambient state (p1, �1) to
a Hugoniot pressure p2 followed by a subsequent isentropic release to the
initial pressure p1 at the end volume �3. Whereas the loading path to the
Hugoniot state is described by the Rayleigh line, i.e., a straight line of non-
equilibrium states, the isentropic release follows a curved line in the p − � plane.
Thus, the portion of dissipated energy in the irreversible process of a shock
transition is the difference between the energy stored during the shock loading,
i.e., the triangular area under the Rayleigh line, and the recovered energy
during the isentropic release [203]. The dissipated energy is represented by
the shaded area in Figure 6.4. It is emphasized that the shaded area is highly
exaggerated. Moreover, the final state �3 is larger than the initial volume �1 and
the released energy equals the difference between the two shaded areas indicated
with vertical lines and in black, respectively. The irreversible thermodynamic
process of an almost instantaneous jump from initial conditions at ambient or
other equilibrium conditions to a Hugoniot state therefore enhances the entropy
of the compressed gas. The released energy is dissipated as heat and results in
a heating of the gas. The portion of dissipated energy can be calculated from
the thermodynamics involved in the process [141].
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6.3.3 Rankine-Hugoniot relations

Shock waves occurring in an ideal gas have neither viscosity nor thermal
conductivity and are assumed to follow the EOS in Eq. (6.2). To quantify the
changes of the state variables after the passage of a shock wave, it is convenient
to evaluate the behaviour ahead and behind the shock front. For simplicity,
the problem is treated as a 1D stationary phenomenon as illustrated in Figure
6.5. Since the structure of the shock is not of interest, the shock front is
represented as a moving discontinuity. The shock front now produces entropy
in a well-defined system.

Shock wave

Shocked material Non-shocked material

p2, ρ2, v2 p1, ρ1, v1

vs vs − v1vs − v2

Figure 6.5: A non-shocked material moving through a stationary shock wave, where
the state variables are defining the conditions ahead and behind a shock wave.

The relationship between the physical properties in the two states on both
sides of the shock wave is given by the Rankine-Hugoniot relations (also known
as the jump conditions). These equations were developed in their original
form independently by Rankine [146,147] and Hugoniot [148,149] at the end
of the 19th century, and express the conservation of mass, momentum and
energy of a supersonic gas passing through a stationary shock wave into a
subsonic state. Considering Figure 6.5 and assuming an ideal gas, the state
in the shocked material is given by the hydrostatic pressure p2, density ρ2
and particle velocity v2, where v2 is supersonic (M2 = v2/c2 > 1). In the
non-shocked material, the corresponding properties are p1, ρ1 and v1, where
v1 is subsonic (M1 = v1/c1 < 1). The equations representing the conservation
of mass, momentum and energy across the discontinuity is then expressed,
respectively, as

ρ2v2 = ρ1v1 (6.43a)
p2 + ρ2v2

2 = p1 + ρ1v2
1 (6.43b)

p2

ρ2
+ e2 + 1

2v2
2 = p1

ρ1
+ e1 + 1

2v2
1 (6.43c)

where it should be noted that the cross-sectional area of any tube geometry is
the same on either side of the normal shock wave due its negligible thickness.

Now, using Eqs. (6.11), (6.13) and (6.43), the following jump relations can be
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derived

p2

p1
=

1 −
ρ1

ρ2

(
γ − 1
γ + 1

)

ρ1

ρ2
−

γ − 1
γ + 1

(6.44a)

ρ2

ρ1
=

γ − 1
γ + 1 +

p2

p1

γ − 1
γ + 1

p2

p1
+ 1

= v1

v2
(6.44b)

These relations are often expressed in terms of the Mach number Ms = vs/c1
of the shock wave (see e.g. [202]), i.e.,

p2

p1
= 2γM2

s − (γ − 1)
γ + 1 (6.45a)

ρ2

ρ1
= (γ + 1)M2

s
2 + (γ − 1)M2

s
(6.45b)

where c1 is the speed of sound in the non-shocked material given by

c1 =
√

γ
p1

ρ1
=

√
γR1T1 (6.46)

6.4 General shock tube theory

This section briefly reviews the operation and the distinctive features of a
shock tube in blast applications. The propagation of a shock wave and the
corresponding change in shape during its way through the tube and how this
influences the respective state variables will also be presented.

6.4.1 Shock tube principle and operation for blast applications

A brief presentation of the basic principles, operation and distinctive features
of an idealized shock tube with application to blast loading will be given in
the following. This is assumed to be important for the understanding and
discussion of the results later in this thesis.

The scope is limited to a compressed-gas driven shock tube with a closed-end
configuration and constant tube cross-section. It consists of a high-pressure
chamber (called driver section) which is separated from a low-pressure chamber
(denoted driven section) by a diaphragm. A sudden opening of the diaphragm
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generates a shock wave and rarefaction (or expansion) waves with corresponding
discontinuities. Figure 6.6 illustrates the events occurring in such an idealized
shock tube for blast applications with a right-running shock wave and left-
running rarefaction waves (i.e., p4 > p1). It is emphasized that the subindices
of the pressures and velocities in the following refer to the respective regions in
Figure 6.6.

(4)

(1)

t = 0

p4

p1

Initial position diaphragm

(a)

p4

p1
p3 = p2 t = t1

(1)(E) (3) (2)

Contact surface
Rarefaction waves

Shock wave

vsv2

(b)

p1
p2 t = t2

(1)(E) (2)

Contact surface
Tail of rarefaction waves

(c)

t = tb

(E)
p1

p2

(1)

Tail of rarefaction waves
Contact surface

(d)

Figure 6.6: Schematic representation of the events occurring in a shock tube for
blast applications and the corresponding pressure distributions along the longitudinal
axis of the tube at characteristic times: (a) initial configuration, (b) wave pattern
immediately after bursting diaphragm, (c) reflected rarefaction waves catch up with
contact surface and (d) reflected rarefaction waves catch up with shock wave.

At time t = 0 the diaphragm is ruptured (Figure 6.6a), generating a shock
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wave moving into the gas at low pressure p1 and rarefaction waves that expand
into the gas at higher pressure p4 (Figure 6.6b). The high pressure gas acts as
a piston expanding into the low pressure chamber and generates a shock wave
moving at a velocity vs larger than the sonic velocity c1 of the undisturbed
driven gas. The shock wave induces a mass (or particle) motion with velocity v2
and pressure p2 immediately behind the shock wave by compressing, heating and
accelerating the driven gas in region 1. This near instantaneous acceleration of
the driven gas is accompanied by a jump in pressure, temperature and density
over the shock front. As discussed in Section 6.3.2, the shock wave has a
thickness in the order of nanometers and (in the ideal case) the compressed
gas reaches its equilibrium values of pressure, density and temperature in this
distance (i.e., within the time scale of nanoseconds). From a mathematical
point of view, assuming 1D gas flow with the EOS for an ideal gas, this can
be represented as an instantaneous rise in pressure, temperature and density
by using the Rankine-Hugoniot jump relations from Eq. (6.45) to relate the
two states on both sides of the shock wave. The corresponding overpressure
reads [125]

pso,max = p2 − p1 = p1

(
2γ(M2

s − 1)
γ + 1

)
(6.47)

where we recall that the notation pso,max is used for the peak incident (side-on)
overpressure. This representation of the shock strength is convenient since the
shock velocity vs is easily measured in the experiments. In fact, the accuracy
of Eq. (6.47) is so high that this approach is often used to calibrate electronic
gauges and pressure sensors (see Ref. [206]). Using two time-of-arrival indicators
(e.g. pressure sensors with a known distance between their respective locations),
the shock velocity vs is readily obtained. The corresponding Mach number Ms

can then be inserted into Eq. (6.47) and used to determine the rise in pressure
across the shock.

The initial interface between the high pressure and low pressure chambers
(Figure 6.6a) moves from the diaphragm at a velocity v2, and is called the
contact surface (Figure 6.6b). At the same time as the shock wave propagates
downstream the diaphragm, a system of rarefaction waves develops in the
expanding high pressure gas. This series of rarefaction waves are denoted E in
Figure 6.6b, and will reflect from the rear end of the driver section and then
travel to the right and in the same direction as the shock wave (Figure 6.6c).
If the driver section is short enough, these reflected rarefaction waves catch
up with the contact surface and shock wave before reaching the test object
(Figure 6.6d). The shock then decays in strength, increases in duration and
decreases in velocity as it propagates towards the test specimen as a blast
wave. The decreasing velocity is due to the rarefaction waves which reduce
the driving pressure and hence the shock wave velocity. This is a result of the



140 6. Shock tube

non-linear relation between pressure, density and wave velocities in Eq. (6.42)
which is illustrated in Figure 6.3. The reflected rarefaction waves are moving
into the shocked air (at higher pressure and density) in regions 2 and 3, and
will therefore have a higher velocity than the shock wave. Thus, the head of
the reflected rarefaction waves will eventually catch up with the shock wave.
On the contrary, the tail of the rarefaction waves is relieved back to ambient
conditions (Figure 6.6c) and will therefore gradually lag further behind and
stretch out region E. The experimental setup shown in Figure 6.6 differs from
traditional shock tubes by using a relatively small ratio between the lengths
of the two pressure chambers, such that the reflected rarefaction waves catch
up with the shock wave resulting in pressure profiles similar to that from an
explosive detonation. As the complexity of the system increases, numerical
methods should be used to solve these types of interaction phenomena and
wave patterns. These interactions are frequently expressed in the distance-time
space where, in the absence of dissipative phenomena, the respective waves
appear as linear curves and the respective slope of these curves represent the
velocity of each wave (see Figure 6.7).

6.4.2 Properties of the one-dimensional Euler equations

Before introducing the Riemann solution to the shock tube problem it is
necessary to discuss some properties of the governing equations. Since the
shock tube is basically a 1D problem that involves compressible flow where
heat transfer and viscosity effects are neglected, the governing equations are
reduced to the Euler equations. The Euler equations can be expressed using
vector form [88] as

∂

∂t
U + ∂

∂x
F(U) = 0 (6.48)

where U and F(U) are the vectors of conserved variables and fluxes, given
respectively as

U =




U1
U2
U3


 =




ρ

ρv

E


 , F =




f1
f2
f3


 =




ρv

ρv2 + p

v(E + p)


 (6.49)

where v is the first component of the velocity vector v and E = ρ(e + 1
2 v2)

is the corresponding total energy per unit volume. Comparing Eqs. (6.43a)
to (6.43c) and Eq. (6.49) it is observed that the flux vector F contains the
same fluxes as the Rankine-Hugoniot relations. Thus, Rankine and Hugoniot
solved the Euler equations in 1D for an inviscid calorically perfect gas in terms
of the jump conditions.

Applying the chain rule to the second term in Eq. (6.48) reads
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∂

∂xF(U) = ∂F
∂U

∂U
∂x

(6.50)

and the non-linear system of equations in Eq. (6.48) may be conveniently
expressed on the form

∂

∂t
U + A(U) ∂

∂x
U = 0 , A(U) = ∂F

∂U
(6.51)

resulting in a linear system of equations with variable coefficients which are
denoted quasi-linear since the coefficient matrix A is a function of U [88]. That
is, the non-linearity of Eq. (6.51) is present in the dependence of A on the
unknown vector U. This is usually the basis for the mathematical analysis of
the Euler system of partial differential equations (PDEs), where the coefficient
matrix A(U) is the Jacobian matrix containing the partial derivatives of the
components fi of the vector F with respect to the components Ui of the vector
of conserved variables U, i.e.,

A(U) = ∂F
∂U =




∂f1

∂U1

∂f1

∂U2

∂f1

∂U3
∂f2

∂U1

∂f2

∂U2

∂f2

∂U3
∂f3

∂U1

∂f3

∂U2

∂f3

∂U3




(6.52)
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Before establishing the Jacobian matrix A(U), it is necessary to express the
components fi in terms of the conserved components Ui. It is readily seen
from Eq. (6.49) that f1 = U2 = ρv. The remaining components f2 and f3
are found by expressing the pressure p in terms of the conserved variables Ui.
Combining the expression for the total energy per unit volume (E = ρe + 1

2 ρv2)
and Eq. (6.2b) gives the following expression for the pressure

p = (γ − 1)(E − 1
2ρu2) = (γ − 1)(U3 − 1

2
U2

2
U1

) (6.53)

Introducing this result in Eq. (6.49) the flux vector is expressed in terms of
the conserved variables Ui as

F =




f1

f2

f3


 =




U2

U2
2

U1
+ (γ − 1)(U3 −

1
2

U2
2

U1
)

U2

U1
(U3 + (γ − 1)(U3 −

1
2

U2
2

U1
))


 =




U2

1
2(3 − γ)

U2
2

U1
+ (γ − 1)U3

γ
U2

U1
U3 −

1
2(γ − 1)

U3
2

U2
1

))




(6.54)
and direct evaluation of all partial derivatives in Eq. (6.52) gives the corre-
sponding Jacobian matrix, i.e.,

A(U) =




0 1 0
1
2(γ − 3)

(
U2

U1

)2

(3 − γ)
U2

U1
(γ − 1)

−γ
U2

U2
1

U3 + (γ − 1)

(
U2

U1

)3

γ
U3

U1
−

3
2(γ − 1)

(
U2

U1

)2

γ
U2

U1




(6.55)

Inserting the conserved variables from Eq. (6.49) and using the total energy per
unit volume (E = ρe + 1

2 ρv2) and the EOS in Eq. (6.2), the Jacobian matrix
can be written in terms of the speed of sound c =

√
γRT =

√
γ p

ρ and the
particle velocity v. That is [88],

A(U) =




0 1 0
1
2(γ − 3)v2 (3 − γ)v (γ − 1)

1
2(γ − 2)v3 −

c2v

γ − 1
3 − 2γ

2 v2 +
c2

γ − 1 γv




(6.56)

Using the definition of the specific enthalpy h in Eq. (6.3) and the EOS in
Eq. (6.2) gives the total enthalpy as

H = E + p

ρ
= 1

2v2 + c2

γ − 1 (6.57)
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and the Jacobian matrix in Eq. (6.56) can be expressed in terms of the total
specific enthalpy H as

A(U) =




0 1 0
1
2(γ − 3)v2 (3 − γ)v (γ − 1)

1
2(γ − 1)v3 − vH H − (γ − 1)v2 γv




(6.58)

It is interesting to note that the Jacobian matrix A(U), with the ideal gas
EOS in Eq. (6.2), satisfies the following property

F(U) = A(U)U (6.59)

This is observed by multiplying the Jacobian matrix A(U) in Eq. (6.58) by
the vector of conserved variables U in Eq. (6.49), which reproduce the vector
of fluxes F(U) in Eq. (6.49). This property of the Euler equations forms the
basis for several numerical schemes involving approximate Riemann solvers.
The reader is referred to the literature for more information regarding these
numerical methods (see e.g. [88, 200,207]).

The eigenvalues of the Jacobian matrix is now found from the characteristic
polynomial

|A − λI| = 0 (6.60)

as
λ0 = v , λ+ = v + c , λ− = v − c (6.61)

representing linear curves with associated propagation velocities, known as
characteristics Ci, in the x − t plane. The superscripts + and − indicate the
direction of propagation of the respective curves. A physical interpretation of
the right- and left-running characteristics with corresponding velocities λ+ and
λ− for the hyperbolic equations in Eq. (6.51) are shown in Figure 6.8.

Originating from an initial point (x = x0, t = t0) in a 1D formulation, two
waves run into positive and negative x-direction, respectively. In a 3D repre-
sentation of the wave amplitude U(x, t) over the propagation direction x and
t, the characteristics are lines connecting propagating wave points of constant
amplitude [203]. The result in Eq. (6.61) therefore illustrates the important
concept that the (pressure) wave speed is equal to the sum of the particle
velocity v and the speed of sound c.

The corresponding right eigenvectors ki are determined from

Ak = λk (6.62)
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Left running characteristic
x= x0 + λ−t
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Figure 6.8: Physical interpretation of the real characteristics of hyberbolic equations
as connecting lines between points of constant amplitude of propagating waves
(inspired by [203]).

by substituting λ = λi in turn and solving for each component i of the vector k.
Selecting appropriate values for the scaling factors, the eigenvectors read [88]

k0 =




1
v

1
2 v2


 , k+ =




1
v + c

H + cv


 , k− =




1
v − c

H − cv


 (6.63)

It is observed from Eqs. (6.61) and (6.63) that the eigenvalues are real and that
the eigenvectors form a set of linearly independent eigenvectors. This shows
that the Jacobian matrix A(U) is diagonalizable, i.e.,

A = KΛK−1, Λ = diag{λi} (6.64)

where the columns of the matrix K = [k0 k+ k−] are formed by the right
eigenvectors ki. This proves that the time-dependent 1D Euler equations for
ideal gases are hyperbolic (see e.g. [88, 200, 207]). The hyperbolic character
of the system of equations in Eq. (6.51) contains important information on
the propagation of waves in the flow field. Certain quantities, called Riemann
invariants, are constant and transported along the characteristics Ci in the
x − t plane. The fluid properties are continuous along these characteristics.
However, the derivatives of the fluid properties can be discontinuous [88]. The
characteristic curves may therefore be considered as signals which transmit
information (with associated propagation velocities) about infinitesimal flow
disturbances in the x− t plane. These signals contain important information on
the propagation of waves in the flow field. From a numerical point of view, this
suggests a convenient approach to calculate the solution in any point P ∗(x, t)
by using the information transported through the characteristics starting from
point P ∗ and going back to regions where the solution is already known (e.g.
the initial condition). This approach is illustrated in Figure 6.9.
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Figure 6.9: Characteristics used to calculate the Riemann solution (inspired by [208]).

Introducing the left eigenvector ai of A corresponding to the respective eigen-
value λi (i.e., aiT A = λiaiT ) and multiplying Eq. (6.51) by aiT gives

aiT
[

∂

∂t
U + λi(U) ∂

∂x
U

]
= 0 (6.65)

This reduces each of these equations to an ordinary differential equation along
the characteristic curve Ci whose slope in the x − t plane are dx/dt = λi.
Thus,

aiT
[

∂

∂t
U + λi(U) ∂

∂x
U

]
= aiT d

dt
U = 0 along Ci : dx

dt
= λi (6.66)

where the substantial (or material) derivative dU/dt is introduced. That is,
the change of variation in time of the conserved variables dU/dt along the
respective characteristic Ci, equals the variation of the conserved variables
at a location fixed in space ∂U/∂t plus the space variation of the conserved
variables ∂U/∂x multiplied by the velocity of the characteristic λi = dx/dt.
The representation of the wave system in the x − t plane is therefore also
sometimes called a Lagrange diagram in the literature. That is, each individual
variation in time of U follows the associated characteristic line in the x − t

plane.

The representation in Eq. (6.66) is known as the characteristic equations since
the invariant ri is constant (i.e., dU/dt = 0) along the respective characteristic
Ci, i.e.,

dri

dt
= ∂ri

∂t
+ ∂ri

∂x

dx

dt
= 0 , or ∂ri

∂t
+ λi ∂ri

∂x
= 0 (6.67)

The invariants can be generally expressed as differential relations (i.e., aidU),
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given as [88]

dr0 = dp−c2 dρ = 0 , dr+ = dp+ρc dv = 0 , dr− = dp−ρc dv = 0 (6.68)

where each of these relations have to be integrated along the corresponding
characteristic curve Ci. In the particular case of an isentropic flow using the
EOS in Eq. (6.2) the invariants of the 1D Euler equations read [88]

r0 = p

ργ
, r+ = v + 2c

γ − 1 , r− = v − 2c

γ − 1 (6.69)

These relations will be used in the following to derive the Riemann solution of
the shock tube problem. It should also be noted that the characteristics may
be formulated and solved using other variables than the conserved variables
U. Another possibility is to choose a vector W = [ρ v p]T of primitive (or
physical) variables, where p is as before given by the EOS. The quasi-linear
form of Eq. (6.48) is then given as [88]

∂

∂t
W + A(W) ∂

∂x
W = 0 , A(W) = ∂F

∂W (6.70)

where

W =




ρ

v

p


 , A(W) =




v ρ 0
0 v 1/ρ

0 ρc2 v


 (6.71)

6.4.3 The Riemann solution to the shock tube problem

The objective of this section is to find the Riemann solution of the shock tube
problem introduced in Section 6.4.1. The non-linear hyperbolic system of PDEs
in Eq. (6.51) with the piecewise constant initial condition

U(x, 0) =
{

UL(ρ4, ρ4v4, E4) if x ≤ x0

UR(ρ1, ρ1v1, E1) if x > x0
(6.72)

define the Riemann problem for the shock tube [87,88]. Thus, the Riemann
solution gives the resulting wave pattern for a flow field with discontinuous
initial data. The Riemann solution of the shock tube problem therefore follows
the mathematical description given in Section 6.4.2, and provides a basic
understanding of the governing equations in Eq. (6.51) because all properties
(such as shock and rarefaction waves) appear as characteristics in the solution.

In the following, the mathematical description of the shock tube problem is
simplified by considering an infinitely long tube (see Figure 6.10), neglecting
viscous effects in the flow. Hence, the following only considers the incident
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shock and expansion (i.e., rarefaction) waves and is not valid when reflections
occur at the tube ends or at obstacles inside the tube. Even though this is
an idealized case, it provides an understanding of the governing physics and
phenomena in the shock tube. To study reflected wave patterns and pressures
due to closed ends, it is often necessary with numerical simulations.
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Co
nta

ct
su
rfa

ce

Sho
ck wav

e

(4)

(E) (3) (2)

(1)

x0O Distance x

T
im

e
t

t = 0

High pressure (driver)
p4, ρ4, v4, E4

(4)

Low pressure (driven)
p1, ρ1, v1, E1
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Particle paths

Figure 6.10: Simplified shock tube problem considering an infinitely long tube.

The diaphragm is positioned at x0 and completely removed at t = 0. Under
the assumption of no dissipative phenomena, the compressible flow in the shock
tube is described by the 1D Euler equations in Section 6.4.2. The solution
involves discontinuities, such as the shock wave and contact discontinuity, and
smooth transition waves such as the rarefaction waves. This makes it convenient
to separated the tube into four uniform regions with constant parameters (see
Figure 6.10). The respective regions are separated by the waves centered and
originating at the initial position of the diaphragm (t = 0, x = x0). Regions 1
and 4 are given by the initial conditions in Eq. (6.72) and the two intermediate
regions, occurring after the removal of the diaphragm, are denoted 2 and 3.
An important part of the solution is to identify these regions in the x − t plane.
Since the shock and the contact discontinuity propagate in uniform zones
(i.e., assuming no dissipative phenomena), the slope of these curves represent
the (constant) velocity of each wave acting as lines in the x − t plane. The
expansion wave extends through the new zone E, denoted the expansion fan,
in which the flow parameters vary continuously since the gas is rarefied when
passing through E from 3 to 4. Remember that the shock wave and the contact
discontinuity propagate to the right, while the expansion wave moves to the left
(i.e., ρ4, ρ4v4, E4 > ρ1, ρ1v1, E1). As before, the subindices of the conserved
variables refers to the respective regions (e.g. v4 refers to the velocity in region
4).

The jump relations over the shock wave discontinuity in terms of the Mach
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number Ms(= vs/c1) are already introduced in Eq. (6.45) and Section 6.3.3. A
similar expression may also be found for the particle velocity v2 [125], i.e.,

v2

c1
= 2

γ + 1

(
Ms − 1

Ms

)
(6.73)

where v2 and vs are constant (see Figure 6.10). These jump relations and the
information propagated along the characteristics can then be used to find the
Riemann solution.

First, recall from the previous section (Section 6.4.2) that the Riemann in-
variants make it possible to associate the parameters in regions 3 and 4 by
considering a point P ∗ inside region 3 and going back along the characteristics
to regions where the solution is already known (i.e., the initial condition).
Figure 6.11a illustrates the characteristics passing through P ∗, where it is
noticed that C0 and C+ are the only characteristics intersecting the expansion
fan to search for information in region 4.

x

t
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L RO

C− C0

C+

C− C0
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x0

(a)

Expansion Contact Shock
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x0O

fan discontinuity wave
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Figure 6.11: Illustration of the Riemann solution to the shock tube problem: (a)
characteristics Ci and (b) x − t diagram.

The relation between these regions are therefore given by the corresponding
invariants r0 and r+ in Eq. (6.69) as

ρ3

ρ4
=

(
p3

p4

)1/γ

and v3 = 2
γ − 1(c4 − c3) (6.74)

where v4 = 0 from the initial conditions and the solution is obtained by following
the characteristics back to the curve on which initial data are prescribed to
determine r0 and r+ in Eq. (6.69). It is also noticed that the first invariant r0

is related to the isentropic relation presented in Section 6.2.5 and Eq. (6.34).

Moreover, recall that the contact surface is a jump in the density (see Section
6.4.1), while the pressure and velocity remain constant and continuous across
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this discontinuity. Thus,
v3 = v2 , p3 = p2 (6.75)

The solution in regions 2 and 3 are then found by combining Eqs. (6.73), (6.74)
and (6.75), i.e.,

Ms − 1
Ms

= γ + 1
2

v2

c1
= γ + 1

2
v3

c1
= c4

c1

γ + 1
γ − 1

(
1 − c3

c4

)
(6.76)

Using that c =
√

γp/ρ and once again Eqs. (6.74)-(6.75), the ratio c3/c4
reads

c3

c4
=

(
p3

p4

ρ4

ρ3

) 1
2

=
(

p3

p4

) γ−1
2γ

=
(

p2

p4

) γ−1
2γ

=
(

p2

p1

p1

p4

) γ−1
2γ

(6.77)

and replacing p2/p1 according to Eq. (6.45a), the solution to the shock tube
problem in Eq. (6.76) may be expressed as the following implicit equation

Ms − 1
Ms

= c4

c1

γ + 1
γ − 1

[
1 −

(
p1

p4

2γM2
s − (γ − 1)
γ + 1

) γ−1
2γ

]
(6.78)

with the only unknown Ms. This non-linear equation can be solved by an
iterative method (e.g. Newton-Raphson), and the value of Ms is then used
in Eqs. (6.45), (6.73), (6.74) and (6.75) to determine all the parameters of the
uniform regions 2 and 3. The result in Eq. (6.78) is also commonly expressed
in the literature as [125]

p4

p1
= 2γM2

s − (γ − 1)
γ + 1

[
1 − γ − 1

γ + 1
c1

c4

(
Ms − 1

Ms

)]− 2γ
γ−1

(6.79)

which, by using the jump relation in Eq. (6.45a), may be expressed in terms of
the shock strength as [202]

p4

p1
= p2

p1




1 −
(γ − 1)

c1

c4

(
p2

p1
− 1

)

√√√√2γ

(
2γ + (γ + 1)

(
p2

p1
− 1

))




− 2γ
γ−1

(6.80)

Figure 6.12 shows the respective solutions in Eqs. (6.79) and (6.80) for the
resulting Mach number Ms (Figure 6.12a) and shock strength p2/p1 (Figure
6.12b) at given initial conditions of p4 and p1.
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Figure 6.12: Riemann solution to the shock tube problem as a function of the initial
conditions p4/p1: (a) Mach number Ms in Eq. (6.79) and (b) the shock strength
p2/p1 in Eq. (6.80). Note that these solutions are only valid for t < tb in Figures 6.6
and 6.7.

It is emphasized that the solutions in Eqs. (6.79) and (6.80) are only valid until
the formation of the blast wave in Figures 6.6 and 6.7 (i.e., for t < tb).

To complete the solution, it is necessary to determine the range of each region,
i.e., to calculate the values of the abscissas x1, x2, x3 and x4 in Figure 6.11b
for a given time t. Starting with the expansion fan E (see Figure 6.11a), it
is observed that this is left-bounded by the C− characteristic starting from
the point x0 and considered to belong to region 4 (i.e., the line of slope
dx/dt = v4 − c4 = −c4). The right bound of the expansion fan is the C−

characteristic starting from the same point x0, however, now considered to
belong to region 3 (i.e., the line of slope dx/dt = v3 − c3). Thus, according to
Eq. (6.61), the values of x4 and x3 are given as

x4 = x0 − c4t , x3 = x0 + (v3 − c3)t (6.81)

Note that if v3 > c3, i.e., v3 is supersonic, the tail of the rarefaction wave
propagates to the right although the front of the wave is left-running.

Now, considering a point (x, t) inside the region E (x4 ≤ x ≤ x3), the properties
of the expansion fan can be established. Since this point belongs to the C−

characteristic starting from x0, Eq. (6.61) states that

dx

dt
= x − x0

t
= v − c (6.82)

Using the C+ characteristic from point L and the corresponding invariant r+
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(i.e., v4 + 2c4/(γ − 1) = v + 2c/(γ − 1)), it further observed that

c4 = c + γ − 1
2 v (6.83)

Combining the last two equations and remembering the relations from Eq. (6.74)
and Eq. (6.77), the solution inside the expansion fan is given by

v = 2
γ + 1

(
c4 + x − x0

t

)
, c = c4 − (γ − 1)v

2 ,

p = p4

(
c

c4

) 2γ
γ−1

, ρ = ρ4

(
p

p4

) 1
γ

(6.84)

Since the contact discontinuity is transported at constant velocity v3 = v2, its
location is given by

x2 = x0 + v2t = x0 + v3t (6.85)

where v2 is found from Eq. (6.73) since Ms is known from Eq. (6.78). Finally,
the shock wave propagating at constant velocity vs is located at

x1 = x0 + vst (6.86)

From this it is shown that the solution U(x, t) of the shock tube problem is
only dependent on the ratio x/t, and is therefore commonly expressed in the
x − t plane in the literature.

6.4.4 Reflected shock waves from a rigid wall

Upon reaching a closed end of the tube, the incoming shock wave reflects
and travels back toward the left (Figure 6.13a). The gas particles behind
the reflected wave have zero velocity, resulting in a build-up of pressure p5
immediately behind the reflected wave which is significantly greater than that
of the incoming wave. The reflected shock wave can therefore be interpreted as
an extending column which advances from the right end of the tube containing
a static gas at high pressure, density and temperature. The speed of the
reflected shock vr is reduced on its way through the subsequent flow behind the
incident shock wave. This is due to resistance from the induced flow behind
the shock wave, i.e., flow in region E in Figure 6.13a. The flow in region E

gives up its kinetic energy on passing through the front vr and into the region
of the reflected shock (i.e., region 5 in Figure 6.13a where v5 = 0). The result
is a further compression and heating of the gas in region 5.

The reflected pressure can be expressed in terms of the shock strength of the
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Figure 6.13: Schematic representation of the reflected pressure and the corresponding
distributions along the longitudinal axis of the tube: (a) reflection of incoming shock
wave from rigid boundary and (b) reflection of incoming shock wave at moving
boundary.

incoming shock wave [125], i.e.,

p5 = p2




γ + 1
γ − 1 + 2 −

p1

p2

1 +
γ + 1
γ − 1 ·

p1

p2


 (6.87)

and the corresponding overpressure reads

pr,max = p5 − p1 = pso,max




(
2 ·

(γ − 1)
γ + 1 + 1

)
+

p1

p2

γ − 1
γ + 1 +

p1

p2




(6.88)

where we recall that the notation pr,max is used for the peak reflected (head-on)
overpressure. The shape of the reflected pressure-time history depends on the
shape of the incoming wave and the relative strength between the left-running
reflected shock wave and the remaining right-running flow behind the incoming
shock wave (i.e., region E in Figure 6.13).

The jump in temperature may be found by using the speed of sound and
expressing ρ5/ρ2 in terms of the jump conditions similar to that in Eq. (6.44b),
i.e.,
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ρ5

ρ2
=

γ − 1
γ + 1 +

p5

p2

γ − 1
γ + 1

p5

p2
+ 1

(6.89)

From the ideal gas law c =
√

γ p
ρ =

√
γRT and the temperature ratio T5/T2

may be expressed as

T5

T2
= c2

5
c2

2
= γp5

ρ5

ρ2

γp2
= p5

p2

ρ2

ρ5
= p5

p2

γ − 1
γ + 1

p5

p2
+ 1

γ − 1
γ + 1 +

p5

p2

(6.90)

These last three equations enable the state of the gas behind the reflected
shock to be determined from the pressure ratio p2/p1 across the incident shock,
which may be obtained through Eq. (6.45) and the Mach number Ms. The
relations of the pressure, density and temperature behind the reflected shock
in terms of the incident Mach number, are then given respectively as [125]

p5

p1
=

[
2γM2

s − (γ − 1)
γ + 1

] [
(3γ − 1)M2

s − 2(γ − 1)
(γ − 1)M2

s + 2

]
(6.91)

ρ5

ρ1
=

[
(γ + 1)M2

s

] [
2γM2

s − (γ − 1)
]

[2(γ − 1)M2
s − (γ − 3)] [(γ − 1)M2

s + 2] (6.92)

T5

T1
=

[
2(γ − 1)M2

s + (3 − γ)
] [

(3γ − 1)M2
s − 2(γ − 1)

]
(γ + 1)2M2

s

(6.93)

It is interesting to note that all the parameters behind the reflected shock are
limited to finite values. In the particular case of weak shocks, i.e., p2/p1 ≈ 1,
Eq. (6.88) gives pr,max/pso,max = 2. This represents the lower limit of the
reflected overpressure, and is the same result as the reflected pressure in elastic
waves. However, as discussed in Section 6.3.2, the elastic wave theory is
not valid for strong shocks. Eq. (6.88) shows that the reflected overpressure
to incident overpressure ratio increases steadily with shock strength tending
asymptotically to the value 2 + (γ + 1)/(γ − 1) for very strong shocks. This
upper limit is 8 for air (γ = 1.4), whereas for monatomic gases such as helium
(γ = 5/3) the upper limit is 6. The results for strong shocks therefore illustrate
the different behaviour of shock waves compared to that of elastic waves.

It should be emphasized that the relations in Eqs. (6.91) to (6.93) are only
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valid for the state immediately behind the reflected wave. This state will
persist until the left-running front vr meets the remaining right-running flow in
region E (Figure 6.13a). Then, the interaction of these waves are depending on
their relative strength. The wave fronts and interaction of waves will continue
back and forth in the tube until a static overpressure pstatic is reached when
the gas comes to rest. The relevant timescale of the experiments depends on
the application and therefore limits the time-window of interest. The static
overpressure pstatic may be found by considering the energy balance before and
after the experiment [15], i.e.,

E4 + E1 = Estatic , E = pV

γ − 1 (6.94)

where E is the total energy in the volume V .

6.4.5 Reflected shock waves from a moving wall

Introducing a moving wall as the blind flange of the tube (see Figure 6.13b)
enables studies of the interaction between the reflected shock wave and the
dynamic response of the boundary. Such a moving wall could be visualized as
a free-standing plate. A basic understanding of the FSI effects when the shock
wave interacts with a movable surface is given in the works of Courant and
Friedrichs [87], Toro [88] and Subramaniam et al. [72]. The solution depends
on the ratio of the velocity of the moving wall vb and the velocity behind the
reflected wave v5 [88]. This is illustrated in Figure 6.14, where v5 < vb results
in two rarefaction waves (Figure 6.14a) and v5 > vb implies two shock waves
(Figure 6.14b). The scope of this chapter is limited to the case resulting in two
rarefaction waves, since v5 = 0 in the experimental setups considered.
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Figure 6.14: Riemann solution to a shock tube with a moving wall. Contact interface
coincides with the moving wall: (a) solution consists of two rarefactions (v5 < vb)
and (b) the solution consists of two shock waves (v5 > vb). This figure was inspired
by [88].
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The velocity of the contact interface (or path of the moving wall) in Figure 6.14a
coincides with the velocity of the moving wall vb. Remember that rarefaction
waves are related to the C− characteristic and corresponding invariant r− in
Eq. (6.69). The two rarefaction waves are therefore related through

vb − 2cb

γ − 1 = v5 − 2c5

γ − 1 (6.95)

where it is assumed that γ5 = γb = γ. After some mathematical operations
Eq. (6.95) can be written as

γ − 1
γ + 1

(vb − v5)
c5

= 2
γ + 1

(
cb

c5
− 1

)
(6.96)

Using c =
√

γ p
ρ and the isentropic relation in Eq. (6.34) give

cb

c5
=

(
ρb

ρ5

) γ−1
2

(6.97)

Now, inserting the result in Eq. (6.97) into Eq. (6.96), and using Eq. (6.34),
this reads

γ − 1
γ + 1

(vb − v5)
c5

= 2
γ + 1

[(
ρb

ρ5

) γ−1
2

− 1
]

=

= 2
γ + 1

[(
pb

p5

) 1
γ

γ−1
2

− 1
] (6.98)

Finally, solving Eq. (6.98) for the pressure p5 at the surface of the boundary, it
is observed that the velocity vb and pressure pb at the moving wall are related
through the following relation

pb = p5

(
1 + γ − 1

2 ·
vb

c5

) 2γ
γ−1

(6.99)

where we recall that v5 = 0. Thus, if the structure starts to move, the motion
alters the pressure at its surface. In particular, when the motion of the boundary
is in the opposite direction to the reflected shock front in Figure 6.13b, there
will be a decrease in pressure and a mitigation of the shock wave due to FSI
effects (i.e., pb < p5). Eq. (6.99) therefore gives a basic understanding of the
underlying physics of FSI in a shock tube when a moving or deformable object
is used as a blind flange. It is emphasized that, as the complexity of the system
increases, numerical methods should be used to solve these types of interaction
phenomena and wave patterns.
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6.4.6 Real shock tube behaviour and performance

The results in this chapter are derived from ideal gas conditions (i.e., par-
ticle interactions do not play a significant role), assuming an instantaneous
diaphragm rupture and no dissipative phenomena (e.g. viscocity and heat). In
the absence of dissipative phenomena, chemical reactions and particle interac-
tions, the shock wave preserves a constant velocity. However, the existence of
these phenomena will change the equilibrium in the thermodynamic relations
presented herein.

As already pointed out earlier, real gas effects and chemically reacting mixtures
of perfect gases are considered as beyond the scope of this thesis. Such
effects can be of importance in blast events and close-in detonations, and the
reader is referred to the literature (see e.g. [124,125,202]) for a more detailed
presentation of these effects. However, as a rule of thumb one may state that
shock temperatures larger than 1000 K and pressures stronger than 1 MPa
introduces additional degrees of freedom in the air molecules (i.e., air ionizes
and dissociates), and the ratio of specific heats is no longer constant and must
be modified to allow for these effects. Typically, experiments have shown that
for shocks with velocities larger than about 3.5 of the speed of sound (i.e.,
hydrostatic pressures of about 1.4 MPa), the assumption of a calorically perfect
gas leads to an error of more than 1 %. For shocks with velocities greater than
about 5.5 of the speed of sound (i.e., hydrostatic pressures of approximately
3.5 MPa), the error is more than 5 % [145].

The state of a shocked gas in a shock tube is therefore not completely described
by the idealized theory presented herein. Moreover, even if the real gas proper-
ties are known, other phenomena such as diaphragm rupture and boundary
(or friction) effects cause deviations from the idealized theory and must be
considered when evaluating the shock tube experiments and performance. Ex-
periments show that failure of the diaphragm often initiates at the centre and
propagates to the edges during tearing and folding of the petals [123]. The
gas flow therefore starts as a jet and increases in diameter as the diaphragm
opens until the cross-section of the tube is completely filled. The shock wave
is formed due to the coalesce and overtaking of compression waves during
this opening process. The imperfect burst of a shock tube diaphragm results
in multi-dimensional disturbances that can significantly modify the flow field
predicted by the idealized 1D theory and a complete opening is seldom observed
in experiments. Despite this disturbance in the flow field, experimental work
shows that most of the disturbances related to the diaphragm opening process
vanish in the distant flow field (i.e., at distances larger than 10×diameter) [123].
Due to the higher temperature and flow velocity in the compressed gas, post-
shock waves move faster than the leading shock and eventually coalesce into
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the single shock front in Figure 6.6b (see also Figure 6.3).

Therefore, the assumption of an instantaneous diaphragm burst in analytical
and numerical studies does not introduce any relevant error in the prediction
of a normal shock wave in the distant flow field. However, the distant flow
field is characterized by the occurrence of a normal shock front of constant
strength whose intensity is lower than that expected from the 1D theory
(i.e., a complete and instantaneous opening of the diaphragm). Thus, when
considering shock tube performance at distances larger than 10 × diameter
downstream the diaphragm, the effect of diaphragm opening may be limited to
the reduced strength of the leading shock compared to the expected strength
from the 1D theory. Recent numerical and experimental work [119] on shock
tube performance using steel diaphragms suggests that the deviation from the
idealized theory in terms of loss in intensity of the reflected pressure could be
in the range of 50-60 %.

Even though the diaphragm dynamics play a negligible role in the distant flow
field, experimental evidence often reveals a shock attenuation (i.e., decreasing
velocities) at distances larger than 10 × diameter downstream the diaphragm.
Experiments indicate that the shock does not travel at constant velocity in
the distant flow field but tends to decelerate. At the same time the contact
discontinuity may be accelerated. These effects are due to dissipative phenom-
ena introduced by viscous forces resulting from the relative motion between
the gas and the interior walls of the tube. A boundary layer is formed with
a thickness which varies from zero at the shock front to a maximum at the
contact discontinuity. In well-designed shock tubes with limited friction at the
side walls, the effects of viscous attenuation is small [124]. The most severe
contribution to shock attenuation is usually due to the reflected rarefaction
waves catching up with the shock wave due to small driver to driven length
ratios (illustrated in Figure 6.6d).

A further description of these real effects are beyond the scope of this thesis.
However, it should be noted that even though the relations in this chapter are
derived for ideal gas conditions, the theory and principles presented herein give a
fundamental understanding of the underlying physics of the shock tube problem.
Moreover, the shock attenuation observed in experiments are most evident
when predicting the shock parameters based on the initial conditions using
Eqs. (6.79) and (6.80). The shock attenuation effects are not that important
when measuring the velocity in the vicinity of the plate, and it is possible to
calculate the shock parameters with high accuracy by using the Mach number
Ms and Eqs. (6.45), (6.73) and Eqs. (6.91) to (6.93). This is useful since this
velocity can easily be measured in the experiment.





7
The SIMLab Shock Tube Fa-
cility
Chapter 6 introduced the shock tube as an alternative to explosive detonations
when studying the dynamic response of flexible structures and fluid-structure
interaction effects in blast environments. Shock tubes produce shock waves
under controlled laboratory conditions, where the shock strength is determined
by the initial conditions. It was therefore decided to establish such a test
facility at SIMLab, NTNU. This chapter presents the premises and design of
the SIMLab Shock Tube Facility (SSTF). The shock tube presented herein is
developed for blast applications where the properties of a planar shock wave
acting on a structure may be studied by placing a test object inside or at the
end of the tube. Finally, two different camera models to be used in the 3D-DIC
analyses are evaluated to ensure an accurate calibration of the mathematical
relation between the target and image coordinates. The shock tube design
presented in this chapter is also presented in the second paper published in
International Journal of Protective Structures [209].

7.1 Introduction

Shock tube designs are typically specialized according to the application, and
the literature reveals a rather widespread use of the shock tube as a research
tool (see e.g. [123]). Tube length and internal cross-section shape and area are
therefore determined by the particular application and, of course, the funds
available. The test time, driving method and temporal distribution of the
pressure are dependent on the driver and driven section lengths (see Section
6.4.1). Choice of tube internal cross-section geometry is typically influenced by
the desired flow conditions, dimensions of the test specimens, and the type of
instrumentation to be used for flow measurement.

Use of optical techniques (such as high-speed cameras and schlieren photog-
raphy) is simplified with rectangular or square tube cross-sections which can
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accommodate plane parallel windows. However, rectangular and square cross-
sections are inferior to the circular cross-section when considering structural
strength and general ease of construction and sealing [123]. The circular
cross-section is preferable from a structural viewpoint, particularly for the
driver section of the tube. This may be combined with a square driven section
using a transition from a circular to a square shape at or downstream the
diaphragm(s). For high-pressure applications, the structural limitations of the
square cross-section may then be overcome by encasing it in a pipe with a
practically incompressible material.

The European [210] or ASME standards for Unfired Pressure Vessels and
traditional design methods for material strength ensure sufficient static strength
of the tube sections. However, the most severe stress conditions arise from
transient loadings during the operation of the tube. High-pressure loading
of the low-pressure section(s) typically results from reflection of the incident
shock wave (see Sections 6.4.1 and 6.4.4). Eq. (6.88) shows that the (initial)
reflected overpressure to incident overpressure ratio increases steadily with
shock strength tending asymptotically to the value 2 + (γ + 1)/(γ − 1) for very
strong shocks. For air (γ = 1.4) the upper limit is 8, whereas for monatomic
gases such as helium (γ = 5/3) the upper limit is 6. However, depending
on the properties of the remaining right-running flow (illustrated in Figure
6.13a) additional compression and heating of the reflected shock wave may
result in a further pressure increase of the order of 20 (see e.g. [123–125]). The
transient stressing of the material usually reduces to an estimation of what
is considered an adequate safety factor over the expected maximum static
loadings. The influence of the recoil induced in the gas during diaphragm
burst and momentum changes in the gas (when the gas comes to rest during
reflections at the closed ends) depend on the tube diameter. Impulsive loads
in the tube and supports which restrain axial movement may be neglected for
small diameters, while limited recoil and axial movement may be desirable
to avoid excessively transient stressing for larger diameters and high driver
pressures. More detailed information on shock tube design may be found in
Ref. [123].

Based on the general design and construction aspects discussed hitherto, the fol-
lowing premises were established for the SIMLab Shock Tube Facility (SSTF):

• The overall design was limited by the dimensions of the location where
the shock tube was installed. The height, width and length of the room
are 3.0 m, 4.0 m and 23.5 m, respectively.

• The shock tube diameter depends on the dimension of the test specimens.
The design should enable mounting of test specimens either inside or at the
end of the tube. A literature review [44,65,103,113,114,116,117,211,212]
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indicated that the dimensions of blast-loaded plates are typically in the
range of 0.1 to 0.6 m. Moreover, internal reflections may interfere with
the flow field around test specimens located inside the tube. A rule
of thumb for minimizing this effect is that the area of test specimens
located inside the tube should be less than approximately 10 % of the
cross-sectional area (see e.g. [213]). It was therefore decided to use a
constant cross-section area throughout the tube and a square geometry
of 0.3 m × 0.3 m downstream the diaphragm.

• Since the shock tube was installed at the University campus it was
decided to used compressed air rather than high-explosives to generate
the shock wave. Experimentation with high-explosives involves legal
restrictions which often make such experiments less available for research
and educational purposes.

• An important part of the design is the possibility to rearrange the facility
without to much machinery. Each part of the modular design must be
movable, i.e., both with respect to weight and location.

• The design should facilitate several driver lengths and a wide range of
firing pressures such that the temporal pressure distribution may be
varied. This implies both uniform and exponential decaying pressure
profiles.

• Pressure magnitudes should be sufficient to damage a wide range of plated
structures of different materials (e.g. glass, concrete and metals).

• A certain number of ports and threaded holes must be provided along
the tube to monitor the filling of the driver, venting of the driver and
measurement of the pressure throughout the driven section during testing.
Windows should be installed for optical measurements.

• The design should be performed according to the requirements in the
European standard EN 13445 [210]. Tolerances on the tube geometry
and alignment follow the requirements in ISO 2768-1 [214].

7.2 Shock tube design

The SSTF consists of several parts joined together using bolted connections of
24 M24 socket-head screws at the end flanges of each part (see Figures 7.1 and
7.2). Rubber O-rings are recessed into the flange surfaces to ensure sealing at
the joints. Each part is equipped with steel wheels and is carried by a two-rail
support of L-shaped angle brackets for convenient assembly and disassembly of
the tube. This provides flexibility in varying the length of the driven section.
If necessary, it is also possible to fully restrain the tube from axial movement
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by clamping the rear end of the driver section to the floor. The overall length
of the tube is 18.355 m and it is made from stainless steel of grade P355NH
which is intended for pressure purposes according to the European standard
EN 13445 [210].

DRIVEN

Firing section TANK

DRIVER

Window section

2.02m 16.20m

Figure 7.1: Sketch of the SIMLab Shock Tube Facility (seen from the side).

The driver section (Figure 7.1 and 7.2a) is manufactured with a total length
of 2.02 m and has an inner diameter of 0.331 m where the internal wall is
dull polished to obtain a smooth surface. Aluminium inserts may be used
to vary the length of the driver section in 0.25 m increments. The driver is
followed by a 0.14-m-long firing section which consists of several intermediate
pressure chambers separated by diaphragms (Figure 7.2b). This enables the
total pressure difference between the driver and driven sections to be achieved
stepwise. Several ports have been machined on the driver flange and circumfer-
ence of the firing section to provide connections to pressure sensors, venting,
and evacuation lines. The experiment starts by filling the driver and firing
sections with compressed air, where the pressures in the intermediate chambers
are operated below the diaphragm rupture strength such that the desired
pressure p4 is obtained in the driver. A LabVIEW program has been developed
and solenoid valves (ASCO Series 223) are installed on the gas-filling lines to
control the filling process, making this operation fully automated based on
signals given by the pressure sensors (BAUMER PBMN-24B31) monitoring
the driver and intermediate pressure chambers. Rupture of the diaphragms is
initiated by controlled and rapid venting of the intermediate pressure closest to
the driver section (see Figure 7.3), using two solenoid valves (ASCO Series 223).
This ensures a controlled rupture of the diaphragms and reproducible bursting
pressures. The bursting pressure may be varied by changing the thickness of
the diaphragms. Melinex sheets are used as diaphragms due to its strength
and repeatability. It is also possible to use metallic diaphragms if required.

The inner cross-section in the driven section starts with a 0.6-m-long transition
region from circular to a square cross-section, where an epoxy material is used
to obtain a smooth surface and a square cross-section of 0.3 m × 0.3 m inside
the surrounding tube (Figure 7.2c). The epoxy material works as a practically
incompressible material while the surrounding tube ensures the structural
strength. The square cross-section downstream the firing section was chosen to
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(a) (b)

(c) (d)

Figure 7.2: Pictures of the SIMLab Shock Tube Facility: (a) overview (seen from
the driver), (b) firing section (seen from the driven section), (c) internal cross-section
driven section (seen from the tank) and (d) window section.

enable the installation of test objects in threaded holes in the tube floor, and
to accommodate plane parallel windows (see window section in Figure 7.2d)
which simplifies the use of optical techniques (such as high-speed cameras).

High pressure Low pressure

Venting

Intermediate
pressures

Figure 7.3: Cross-sectional view of the firing section immediately before firing.

The driven section ends in a tank of 5.1 m3 with an internal diameter of 1.6 m
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(see Figures 7.1, 7.2a and 7.4). This enables mounting of larger test specimens
(exposed to localized blast loading) at the end of the tube, and an increase
in volume and overall decrease in pressure after the experiment in open-end
configurations.

Figure 7.4: Picture of the tank located at the end of the tube. High-speed cameras
may be placed next to the tank for optical measurements.

Piezoelectric pressure sensors (Kistler 603B), corresponding charge amplifiers
(Kistler 5064) and data acquisition system from National Instruments (NI
USB-6356) are used to measure the pressure downstream the firing section.
The mounting of pressure sensors are possible at 20 locations along the driven
section by using threaded adapters (Kistler 6501) flush mounted with the
internal wall of the tube. A thin layer of insulating silicone (Kistler 1051) is
used to shield the pressure sensors against heat transfer from the shock wave
since the sensors are only designed for temperatures up to 200 ◦C.

The maximum working pressure of the driver section is limited to 17 MPa
while the driven section, window section and tank are limited to 10, 5 and
1.4 MPa, respectively. All respective parts of the SSTF have been tested at
a static pressure 45 % higher than the working pressure for a few minutes to
ensure sufficient strength for routine use.

The project timeline started with preliminary studies and planning in October
2012, before the work with the detailed design and construction drawings
started in January 2013. This was carried out in collaboration with Siving Olav
H. Fismen AS. The final design and drawings were approved by Teknologisk
Institutt AS in February 2014. Heimdal Industriservice AS and Risør Plast
AS carried out the construction between April and September 2014, before
the shock tube facility was installed at NTNU in September 2014. The first
experiment was performed in October 2014.
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7.3 3D-DIC technique

A three-dimensional digital image correlation (3D-DIC) technique may be used
to capture displacement and strain fields of flexible test specimens as well as the
axial movement of the entire facility during testing. This is the same technique
as that used in Part II and Section 3.2.3 of this thesis. An important premise
for a successful 3D-DIC analysis is an accurate calibration of the camera
models, i.e., the mathematical relation between 3D target coordinates and
image coordinates. It was therefore performed a more detailed evaluation of
the available camera models prior to the shock tube testing of the deformable
plates. This was accomplished by positioning two Phantom v1610 high-speed
cameras with 100 mm Nikon lenses in the same stereovision setup to be used
in the experiments with deformable plates (see Section 8.2.1).

The camera models were calibrated by recording a set of image pairs of cal-
ibration targets with known geometries. These images were used to extract
a set of corresponding image and target coordinates which served as the in-
put for the camera-model optimization. The calibration targets were located
at the end of the tube (Figure 7.5), where two different calibration targets
were applied to find the most suitable calibration procedure for this particular
setup, i.e., a cylinder with 80-mm diameter and a 10-mm-thick glass plate. 16
image pairs of the glass-plate target and 8 image pairs of the cylinder target
were recorded. The calibration targets were translated and rotated between
each recording. Checkerboard patterns with squares of 6.527 mm and 4.669
mm were printed on the surface of the cylinder and glass plate, respectively.
The corners of the checkerboard pattern were found for each image using a
corner detection algorithm [215], and 14 camera model parameters (including
radial and decentring distortions) were optimized for each camera following a
calibration procedure based on the work by Heikkilä [216]. The optimization
procedure incorporates a non-linear least-squares algorithm to minimize the
difference between extracted image corner coordinates and the corresponding
image coordinates calculated from known 3D target coordinates.

From the 16 glass-plate images, approximately 14,000 calibration points were
extracted and used in the least-squares optimization for both cameras. The
calibration points covered a volume of approximately 350 mm × 350 mm × 80
mm. The standard deviation of the camera model residuals in the XY-plane was
0.050 pixels (0.025 mm) for Camera 1 and 0.055 pixels (0.03 mm) for Camera
2. To evaluate the stereovision model, i.e., the coupling of the two camera
models, a 3D model of the glass plate was calculated for each image pair using
the extracted corners and the optimized camera models. The deviations of this
3D model compared to an exact plane were then calculated for each extracted
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(a) (b)

Figure 7.5: Pictures of the calibration targets. Both images show meshes were the
nodes represent extracted corners (with known target coordinates) that are used for
camera calibration: (a) cylindrical calibration target and (b) glass-plate calibration
target.

corner. For all 16 image pairs, the standard deviation of the calculated errors
was less than 0.05 mm. These minor residual errors seem to be a combination
of systematic errors and random noise. It is not clear whether the systematic
part of these resultant errors arise from inaccuracies in the calibration target
or lens distortions. However, for the particular tests considered in this thesis,
these levels of errors are regarded as acceptable.

From the 8 cylinder images, approximately 6000 calibration points were ex-
tracted for each camera and used for optimization. Here, the covered volume
was approximately 250 mm × 250 mm × 60 mm. The standard deviation of
the camera model residuals in the XY-plane was 0.11 pixels (0.06 mm) for both
cameras. Similarly, as for the glass plate, the resulting stereovision model from
the cylinder target was checked against an exact plane. The standard deviation
of the errors in the calculated 3D model (compared to an exact plane) was
found to be 0.07 mm.

This implies that the glass-plate target provided slightly better calibration
residuals compared to the cylinder target. This is probably because it is
somewhat more challenging to create a cylinder with a checkerboard pattern
with the same accuracy as a planar target. Moreover, the checkerboard pattern
extraction from a curved surface may not be ideal. However, the cylinder
target provides some additional features compared to a plane target. The
non-coplanar calibration points from a cylinder allow a full camera model to
be optimized from a single image, whereas the coplanar calibration points from
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a single glass-plate image causes singularities in the solution that needs special
attention [217]. A single-image camera model may still be beneficial from a
practical point of view, and serves as a robust starting point for the multiple-
image least-square optimization of the camera models. Further, for cylindrical
targets, the relation between cylinder diameter and checkerboard square size
may be utilized. Assuming that the cylinder diameter is known, the square
size of the checkerboard pattern (as well as misalignment) may be optimized
from recorded images. This can provide better estimates of the checkerboard
square size than those obtained with manual methods. Despite the practical
advantages of using a cylinder target, the camera models optimized from the
glass-plate target were used in Part III of this thesis since these resulted in
slightly lower residuals.

7.4 Concluding remarks

The shock tube presented in this chapter is developed for blast applications
where the properties of a shock wave acting on a structure may be studied by
placing a test object inside or at the end of the tube. An important quality
of the test facility is the synchronization of high-speed images and pressure
measurements. Post-processing the high-speed images using 3D-DIC enables a
thorough investigation of the entire experiment and evaluation of blast-structure
interaction without the need to consider the inherent complexity in close-in
and near-field detonations.





8
Shock tube experiments
This chapter starts by evaluating the performance of the SIMLab Shock Tube
Facility (SSTF) in producing blast loading in controlled laboratory environ-
ments. Then, the dynamic response of blast-loaded steel and aluminium plates
is studied experimentally. Both massive and flexible plates were mounted at
the tube end during testing, where the massive plate tests serve as a basis for
comparison with respect to fluid-structure interaction effects. Special focus
is placed on the influence of pre-formed holes on the dynamic response and
failure characteristics of the flexible plates.

8.1 Introduction

Due to the complexity in both the loading and the resulting response, numerical
methods are often required for sufficient insight. Before using such computa-
tional methods their performance should be validated in terms of reliability,
robustness and effectiveness in predicting both the loading and the response.
Experimental validation is ideal since it represents the actual physics of the
problem, and controlled small-scale experiments could therefore be used to
evaluate current computational methods and improve the understanding of the
structural response during blast events. An alternative to explosive detonations
is the shock tube technique presented in Chapters 6 and 7. This is a well-known
experimental technique within the field of gas dynamics using well-defined and
easily controllable initial conditions providing good repeatability of each test.
The shock tube presented in Chapter 7 is developed for blast applications where
the properties of a planar shock wave acting on a structure may be studied by
placing a test object inside or at the end of the tube. This shock tube therefore
allows for the evaluation of blast-structure interaction without the need to
consider the inherent complexity in close-in and near-field detonations.

The objective of this chapter is to investigate the performance of the SSTF in
generating a loading similar to that from actual free-field explosive detonations.
The performance of the shock tube in producing blast loading is evaluated with
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respect to requirements given in International [100] and European [138,139]
standards. This is carried out by comparing the pressure histories on a massive
steel plate to relevant blast load models found in the literature [4, 16]. The
dynamic response of flexible plates and corresponding FSI effects are also
studied experimentally using synchronized pressure measurements and two
high-speed cameras in a stereovision setup, in which the deformation field was
found using three-dimensional digital image correlation (3D-DIC). Special focus
is placed on the influence of pre-formed holes on the dynamic response and
failure characteristics of square plates. The investigated plates have similar
geometry as those studied by Rakvåg et al. [65]. However, the SSTF facilitates
a blast environment with larger pressure magnitudes compared to that used
in [65], resulting in failure of the plates. Material tests were also performed to
determine the materials’ behaviour at large plastic strains.

8.2 Experimental study

This section starts with a presentation of the experimental setup and programme
before presenting the 3D-DIC procedure and the material tests.

8.2.1 Experimental setup and programme

The tests were performed in the SSTF presented in Chapter 7. An illustration
of the experimental setups and pictures of the test specimens are shown in
Figure 8.1. Aluminium inserts of diameter 0.33 m were used to obtain driver
lengths of 0.27 m and 0.77 m, where the latter configuration is illustrated in
Figures 8.1a and 8.1b. The driven section was operated with a length of 16.20
m. The loading was varied by changing the initial pressure p4 in the driver
section, while the initial pressure in the driven section was operated at ambient
conditions (p1 and T1). Table 8.1 gives the complete test matrix, where each
test is numbered MX-Y-Z in which M denotes rigid plate (R), aluminium plate
(A), steel plate without (D) or with pre-formed (P) holes, X gives the driver
length (in cm), Y indicates the firing overpressure (in bars) in the driver and Z
is the test number. The massive steel plate was used to obtain a rigid blind
flange (Figure 8.1c), while thin flexible plates (both with and without holes)
were used to introduce moving boundary conditions (Figures 8.1d and 8.1e).
Pressure measurements from the massive plate tests could then be used as a
basis to investigate potential FSI effects in the tests with flexible (aluminium
and steel) plates. These measurements also serve as a quantitative measure
for evaluation of purely Eulerian numerical simulations in an uncoupled FSI
approach (see Chapter 9) and to evaluate the performance of the SSTF. Both
the massive steel plate with thickness 0.05 m and the flexible plate specimens
with dimensions of 0.625 m × 0.625 m × 0.0008 m were clamped to the end
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flange of the tube (Figures 8.1c - 8.1e) in an attempt to achieve fixed boundary
conditions. As in Part II and Section 3.2.1, each of the 12 bolts was tightened
using a wrench with a torque Mt of 200 Nm. This is equivalent to a pre-
tensioning force Fp of 46.6 kN [157] for the M24 bolts used in the SSTF. The
geometry of the flexible plates and clamping are illustrated in Figure 8.2, where
the exposed area was 0.3 m × 0.3 m (equal to the internal cross-section of the
tube in Figure 7.2c). Two repetitive tests were performed for the steel plates
with pre-formed holes to investigate variations in deformation histories and
possible failure patterns. It is also worth noting the good repeatability of the
bursting characteristics of the diaphragms by comparing the firing pressure p4
between tests with the same initial conditions in Table 8.1.
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Figure 8.1: Experimental setup: sketches of the setup for (a) evaluation of the
3D-DIC technique (seen from above), (b) flexible blast-loaded plates (seen from
above), pictures of (c) massive steel plate, (d) clamping and DIC speckle pattern
for the flexible plates, and (e) clamping and plate with pre-formed holes. Both the
massive steel plate in (c) and the flexible plates in (d) and (e) are seen from the
cameras.
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Table 8.1: Experimental programme.

Test
Initial conditions

Pressure driver (p4) Pressure driven (p1) Ambient temperature (T = T1 = T4)
[kPa] [kPa] [◦C]

R27-05-01 661.8 100.3 20.5
R27-7.5-01 866.4 99.8 22.6
R27-10-01 1200.8 100.3 20.8
R27-15-01 1608.5 100.3 20.9
R27-20-01 2127.0 100.6 21.1
R27-25-01 2458.8 100.3 21.4
R27-35-01 3330.0 100.5 21.6
R27-40-01 3990.1 100.5 21.8
R27-60-01 6024.7 99.8 22.8
R27-75-01 7104.8 99.9 22.9
R77-05-01 618.5 99.7 22.0
R77-10-01 1099.1 99.6 21.5
R77-15-01 1594.0 99.8 24.0
R77-20-01 2074.3 99.8 23.8
R77-25-01 2821.6 99.7 23.9
R77-35-01 3811.8 99.8 23.6
R77-60-01 6073.2 99.8 23.9
R77-75-01 7765.5 99.6 23.2
A27-05-01 660.9 100.9 22.3
A27-7.5-01 882.2 100.9 22.3
A27-10-01 1190.7 100.9 22.1
D77-05-01 616.9 100.5 21.9
D77-15-01 1683.8 100.8 22.4
D77-25-01 2715.9 100.8 22.5
D77-35-01 3793.1 100.7 22.2
P77-05-01 622.7 100.5 22.1
P77-05-02 618.4 100.5 22.4
P77-15-01 1638.8 100.4 21.4
P77-15-02 1660.0 100.8 21.9
P77-25-01 2738.1 100.7 22.0
P77-25-02 2697.5 100.7 23.1
P77-35-01 3801.0 100.3 22.0
P77-35-02 3778.8 100.7 23.5

A closed-end configuration of the SSTF is favorable to avoid leakage of pressure
in the circumferential direction of the test specimens at the blast-structure
interface and will therefore maintain a uniform and plane shock wave also
around the perimeter of the tube. Placing the test specimen even the smallest
distance from the end of the tube would lead to a non-uniform spatial and
temporal distribution around the periphery of the tube, due to partial venting
of the gas into the expanding tank volume (see [118,120]). Moreover, such a
venting results in rarefaction waves travelling back upstream the tube causing
increased complexity of the subsequent wave patterns.

Piezoelectric pressure sensors (Kistler 603B), corresponding charge amplifiers
(Kistler 5064) and data acquisition system from National Instruments (NI
USB-6356) were used to measure the pressure during the tests. In all tests,
two sensors flush mounted in the tube wall measured the pressure behind the
incident and reflected shock wave 24.5 cm (Sensor 2) and 34.5 cm (Sensor 1)
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Figure 8.2: Geometry of the flexible plates: (a) plate with pre-formed holes and (b)
clamping assembly. All measurements are in mm.

upstream the test specimens (see Figures 8.1a and 8.1b). The delay in arrival
time at the pressure sensors was used to determine the shock velocity vs and
the corresponding Mach number Ms. This is valuable information in validating
the pressure measurements during the experiments against the idealized shock
tube theory in Section 6.4. The number of sensors was limited by the available
channels in the data acquisition system, which was 12 at the time of these tests.
In the particular case of the massive plate tests, the remaining 10 channels
were used to measure the pressure distribution on a rigid boundary in sensors
positioned along the horizontal, vertical and diagonal and numbered Sensors
3-12 (Figure 8.1c). In the flexible plate tests, 4 of the channels were needed
for synchronization of pressure measurements and high-speed images while the
remaining 6 channels were used for sensors positioned downstream the firing
section. Sensors 3-8 were therefore renamed Sensors 13-18 to avoid confusions
with previous numbering of pressure sensors and located 0.97, 1.07, 3.70, 3.80,
10.51 and 10.61 m downstream the firing section (see Figure 8.1b). The pressure
sensors were automatically triggered when the shock wave arrived at the first
sensor downstream the firing section and operated with a sampling frequency of
500 kHz. A thin layer of insulating silicone (Kistler 1051) was used to shield the
pressure sensors against heat transfer from the shock wave during the tests.

Due to large momentum changes induced in the gas during firing, considerable
forces exist along the axis of the tube during the tests. This axial recoil was
accounted for by allowing the entire facility to move as a rigid body along the
two-rail support. This movement was used to evaluate the accuracy of the
3D-DIC technique by comparing it to the laser measurements at the rear end
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of the driver section (see Figures 8.1a and 8.3).

Figure 8.3: Picture of clamping, DIC speckle pattern and positioning of a laser for
evaluation of the 3D-DIC technique (seen from the cameras).

8.2.2 3D-DIC measurements

The 3D-DIC technique presented in Part II and Section 3.2.3 was used
to capture the displacement fields of the flexible plates in the shock tube
experiments. The same technique was also used to measure the axial movement
of the entire facility during testing. Two Phantom v1610 high-speed cameras
were located approximately 1.70 m from the plates in a symmetric stereovision
setup, and the angle between the optical axes of the cameras was approximately
73◦ (Figures 8.1a and 8.1b). The recording rate was chosen to 24 kHz in all
tests with an exposure time of 30 µs and an image size of 768 × 800 pixels
at 12-bit grey level digitization. These high-speed images were synchronized
with the pressure measurements which enabled a thorough investigation of
each test. To avoid damaging the high-speed cameras and loss of calibration in
the stereovision setup, the tank was closed during the tests where failure was
expected (see Figure 8.1b). Failure was not expected in the experiments of the
thin steel plates without holes and the tank was therefore kept open during
these experiments (see Figure 8.1a).

Prior to each test, the flexible plates were spray-painted white before a template
was used to apply a black speckle pattern with a size distribution in the range
of 2-4 mm equivalent to 3.4-6.7 pixels (Figures 8.1d and 8.1e). The choice of
speckle size was based on minimizing the effect of aliasing in the DIC [128],
and the pixel-to-millimetre ratio is estimated to be approximately 1.7 in the
XY-plane for both cameras. This resulted in an effective sensor size of 21.5
mm × 22.4 mm since the cameras operate with a pixel size of 28 µm × 28 µm
(and image size of 768 × 800 pixels). Image sequences from the two cameras
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were then post-processed using an in-house 3D-DIC code (eCorr) [168] based
on the finite element (FE) formulation of DIC presented by Besnard et al. [129].
Element-wise grey value normalization was applied in the DIC analyses to
account for highlights observed on the surface of the test specimens [128]. These
highlights were mainly caused by direct reflections of the halogen studio lights
that were used during the tests. In cases where large jumps in displacements
between two subsequent images were observed, a coarse-search multi-scale
approach [218] was applied prior to the FE-DIC optimization of the particular
image.

Figure 8.4: Results from 3D-DIC in test P77-25-02. The resulting DIC mesh is
plotted on top of the recorded images from Camera 1 (top left) and Camera 2 (top
right), while the corresponding 3D model is presented in the lower image. The colour
scaling on the 3D model indicates out-of-plane displacement (in mm).

The axial movement of the entire facility was measured using a set of 2 ×
2 checkerboard stickers glued to the clamping frame at the end flange (see
Figures 8.1d, 8.1e and 8.3). These checkerboard stickers were observed by the
two cameras during the test. The centre corner of the checkerboard patterns
were tracked using the corner finder algorithm [215] and subsequently coupled
with the camera models discussed in Section 7.3 to provide the movement in 3D
space. All deformation profiles presented herein were corrected for this slight
movement. Figure 8.4 illustrates a set of recorded images in test P77-25-02
from the two synchronized high-speed cameras with the resulting DIC meshes
plotted on top. The corresponding 3D model calculated from the DIC results
is also illustrated in the figure.
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8.2.3 Materials

As in Part II, the 0.8-mm-thick plates were manufactured from the low-
strength aluminium alloy EN AW 1050A-H14 and the medium-strength steel
Docol 600 DL. However, these plates were from different batches than those
presented in Part II and Section 3.2.2. The aluminium plates were mainly
included to study the influence of FSI effects at smaller magnitudes of pressure,
while the steel plates were used to study FSI effects at larger magnitudes of
pressure and the influence of pre-formed holes on the dynamic response. The
steel plates were produced by Swedish Steel Ltd. (SSAB), while the aluminium
plates were manufactured by Hindalco Industries Ltd. Tables 8.2 and 8.3
provide the nominal chemical composition of the materials, while the nominal
yield stress and ultimate tensile strengths were given, respectively, by the
manufacturers to be 299 MPa and 677 MPa for the steel sheets and 110 MPa
and 116 MPa for the aluminium sheets.

Table 8.2: Chemical composition of shock-tube batch of Docol 600DL (in wt.%).
C Si Mn P S Al

0.10 0.40 1.50 0.010 0.002 0.040

Table 8.3: Chemical composition of shock-tube batch of EN AW 1050A-H14 (in
wt.%).

Si Fe Cu Mn Mg Zn Ti Cr Al
0.100 0.280 0.003 0.010 0.002 0.002 0.009 0.002 Rest

Uniaxial tensile tests were carried out on dog-bone specimens cut from the
sheets using the same geometry as in Figure 3.3 and tested according to
the procedure described in Section 3.2.2. Thus, the tests were performed in
a Zwick/Roell Z030 testing machine at a constant deformation rate of 2.1
mm/min. This corresponds to an initial strain rate of ε̇ = 5 × 10−4 s−1 for a
gauge length of 70 mm. Three parallel tests were performed in three different
directions (0◦, 45◦ and 90◦) with respect to the rolling direction of the plate.
Two-dimensional digital image correlation (2D-DIC) [168, 169] was used to
measure the displacement field and synchronized with the force F measured
by the hydraulic test machine at a sampling rate of 4 Hz for all tests. A
virtual extensometer of 50 mm initial gauge length L0 was used to obtain
the elongation history u(t) from the 2D-DIC. In an attempt to validate the
DIC measurements, the first test in each direction was instrumented with an
extensometer to measure the elongation over the same initial gauge length
(50 mm). The DIC measurements and the extensometer showed excellent
agreement, and only the DIC recordings are therefore used in the following.

Force-elongation curves from the tensile tests are shown in Figures 8.5a and 8.5c.
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Figure 8.5: Experimental data from uniaxial tensile tests at three different loading
directions: (a) force-elongation curves and (b) equivalent stress-plastic strain curves
until necking for the steel material, and (c) force-elongation curves and (d) equivalent
stress-plastic strain curves until necking for the aluminium material.

As in Section 3.2.2, it is observed that both materials are slightly anisotropic
both in flow stress and in elongation to failure. This is most evident in the
45◦ and 90◦ directions and particularly for the aluminium material. Gruben et
al. [219] showed that the plastic anisotropy is negligible for this type of steel
material. This was also confirmed by a review of previous quasi-static and
dynamic material tests in Section 3.2.2, which showed that the steel material
can be considered as isotropic with a small variation in failure strain while
both materials are moderately strain-rate sensitive [164–166,219]. Figures 8.5b
and 8.5d show the equivalent stress-plastic strain curves until necking. The
true stress σ, true strain ε and true plastic strain εp before necking is found
using the relations

σ = σe(1 + εe) , ε = ln(1 + εe) , εp = ε − σ

E
(8.1)
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where σ equals the equivalent stress σeq before necking, εp corresponds to the
equivalent plastic strain p in a uniaxial tension test, E is the Young’s modulus,
and the nominal stress σe and strain εe are given by

σe = F

A0
, εe = u

L0
(8.2)

in which A0 is the initial cross-sectional area in the gauge region.

8.3 Experimental results

Successful operation of the shock tube requires information about the bursting
pressures and characteristics of the diaphragms. Therefore, this section starts
by presenting an experimental investigation of the bursting properties of the
Melinex diaphragms used in this thesis. Then, the performance of the SSTF
with respect to blast loading and the accuracy of the 3D-DIC technique in
predicting the dynamic response are evaluated. Finally, the influence of FSI
effects on the loading and dynamic response of flexible plates are studied before
briefly discussing the shock wave propagation in the flexible plate tests.

8.3.1 Membrane capacity

The shock strength may be varied by changing the thickness of the diaphragms.
Melinex sheets are used as diaphragms due to its strength and reproducing
bursting pressures. Melinex comes in various thicknesses and several adjacent
thicknesses may be used to increase the bursting pressure of the diaphragms.
Such multilayer sheets then acts as a single diaphragm holding the total
pressure difference between each intermediate chamber in the firing section.
Since there is relatively limited information on the bursting characteristics of
Melinex diaphragms in the literature, it was necessary with an experimental
investigation of the bursting properties at selected thicknesses. Single- and
double-layered diaphragms were tested by increasing the pressure in the driver
until rupture. A summary of the bursting pressures for the available thicknesses
are given in the Table 8.4 and Figure 8.6. The bursting pressure for the
respective thicknesses of the single-layered diaphragms are plotted as filled
markers, while double-layered combinations are plotted as empty markers in
Figure 8.6.

In general, the test campaign on these diaphragms showed that the Melinex
sheets have good bursting characteristics by folding and petalling, allowing
for relatively large bursting areas through which the driver gas can propagate
into the driven section. Table 8.4 and the error bars in Figure 8.6 also indicate
that each combination of diaphragms produced consistent bursting pressures,
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Table 8.4: Experimental results from testing of Melinex capacities.
Thickness Bursting overpressure [kPa] Combination Recommended overpressure

[mm] 1 2 3 4 5 [kPa]
0.125 156.2 158.3 160.5 158.7 160.5 Singel 150
0.190 213.6 210.0 209.4 207.2 207.8 Singel 200
0.250 301.0 293.6 296.9 290.5 292.1 Singel 290
0.250 314.3 303.0 315.0 303.7 311.6 0.125+0.125 300
0.315 364.0 363.8 362.3 362.9 364.1 0.125+0.190 360
0.380 411.6 413.2 411.7 411.0 411.7 0.190+0.190 410
0.440 492.0 499.9 504.6 498.4 495.6 0.190+0.250 490
0.500 439.7 431.5 434.3 428.2 434.3 Singel 430
0.500 606.7 589.9 591.4 585.0 593.3 0.250+0.250 590
0.690 648.5 654.6 652.5 638.1 669.6 0.190+0.500 640
0.750 719.3 705.6 720.5 720.8 717.8 0.250+0.500 710
1.000 888.0 865.2 866.7 861.5 863.7 0.500+0.500 860
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Figure 8.6: Capacity of single- and double-layered Melinex diaphragms.

where the bursting pressure is (more or less) proportional to both its thickness
and to the total thickness for double-layered diaphragms. A slight deviation
from this trend was observed for the 0.5-mm single-layered diaphragms, which
experienced a significant reduction in the bursting pressure compared to the
double-layered diaphragms with the same total thickness. This indicates a small
change in the bursting properties as the single-layered diaphragms approaches a
thickness of 0.5 mm (i.e., less ductile behaviour, probably due to the increased
stiffness, and reduced folding and petalling). The observations in Table 8.4
and Figure 8.6 are valuable information to obtain successful operation of the
shock tube.

8.3.2 Shock tube performance

The purpose of the SSTF is to produce a loading similar to that from blast
events within controlled laboratory environments. Shock tubes are widely used
to study structures exposed to blast loading (see e.g. [72,114,116,119]), however,
such studies often report the pressure histories without fully addressing the
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requirements to blast performance. According to relevant European [138,139]
and International [100] standards, a shock tube used in blast applications
should ensure the consistent reproduction of a plane shock wave normal to
the surface of the test object. Moreover, the positive phase of the pressure
history should be of a form which can be related to that from a spherical
unconfined high explosive charge of a known weight of TNT detonating at
a known distance from the target. The blast performance may be assessed
by using a massive plate equipped with pressure sensors distributed over the
cross-sectional area of the tube. This enables an investigation of the planarity
of the shock wave, and the pressure histories may be related to approximate
free-field airblast conditions resulting in similar blast loads as experiments with
spherical and hemispherical explosive detonations found in the literature [4,16].
This approach was used by Lloyd et al. [115] and Riedel et al. [220] and will
also be used in the following to evaluate the blast performance of the SSTF
with the closed-end configuration presented in Section 8.2.1.

The spatial and temporal pressure distribution were therefore evaluated by
comparing the time of arrival ta and pressure magnitudes at the sensors along
the vertical, horizontal and diagonal of the massive plate (Figure 8.1c). Figure
8.7 contains the results from two representative tests, where Sensor 3 was
located at the centre, Sensors 4-6 along the vertical, Sensors 7-9 along the
horizontal and Sensors 10-12 along the diagonal. The number of sensors was
limited by the available channels in the data acquisition system, and all sensors
were flush mounted with the internal surface of the massive plate. Also note
that Sensors 6 and 9 were positioned 15 mm from the inner walls, while Sensor
12 was positioned in the very corner of the cross-section (Figure 8.1c). It was
found that the SSTF produced a near planar shock wave with a maximum
variation of 0.002 ms arrival time. This was similar to the sampling rate
(500 kHz) and the shock wave can therefore be considered as planar. The
only exception was the measurements from Sensor 12 (see Figure 8.7), which
was located in the corner of the cross-section and therefore experienced some
minor corner effects. The rise time in Sensor 12 was found to be 5-20 times
larger than in the other sensors. This is expected when operating with square
cross-sections, because the velocity is approaching zero near the walls due to
friction effects. However, it was seen negligible influence of these friction effects
in the sensors closest to the walls (Sensors 6 and 9). Based on this, only the
pressure measurement at the centre of the plate (i.e., Sensor 3) is used in the
following to represent the pressure at the massive plate.

Figure 8.7 also shows that the loading is characterized by the same distinctive
features as the positive phase of a blast wave from a high explosive detonation.
That is, an almost instantaneous rise from ambient pressure p1 to a peak
reflected (head-on) overpressure pr,max, followed by an exponential decay in
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(a) (b)

Figure 8.7: Pressure measurements at the centre (Sensor 3), along the vertical
(Sensors 4-6), horizontal (Sensors 7-9) and diagonal (Sensors 10-12) of the massive
steel plate for two representative tests: (a) R27-05 and (b) R27-40.

pressure back to the ambient pressure during the positive phase duration td+.
It is emphasized that the wave fronts and interaction of waves will continue back
and forth in the tube until a static overpressure is reached when the gas comes
to rest (see Section 6.4.1). This is observed as multiple peaks (secondary and
tertiary reflections) of decreasing magnitude on the pressure measurements, and
leads to multiple loading events on the plate such that the final configuration
may not be representative for the primary loading event. However, the relevant
timescale of the experiments depends on the application and therefore limits the
time-window of interest. The time-window of interest in these experiments is
limited to the first positive part of the overpressure history. Note that tertiary
reflections are the internal reflections within the tube as the reflected wave
interacts with the end of the driver section and returns to the massive plate.
The timing of these reflections depends on the driver pressure p4 and the ratio
between the lengths of the driver and driven sections. Using a sufficiently long
driven section, these reflections occur after the end of the first positive phase.

Figure 8.8 and Table 8.5 present the measured blast properties on the massive
plate (reflected overpressure, duration, impulse and Mach number) of the
positive phase for all the driver pressures and driver lengths in Table 8.1. Note
that the massive plate tests are only denoted by their material (R), driver
length and (intended) firing overpressure in the following because the respective
tests consisted of only one repetition (see Table 8.1). It is evident that the blast
properties are a function of both the driver length and driver pressure, where
(as expected) larger driver pressures result in increasing magnitudes of the blast
properties. It is also observed that the driver length has a significant influence
on the blast properties, where the reflected overpressure pr,max for the largest
length (0.77 m) was almost twice that produced from the smallest length (0.27
m) for approximately the same bursting pressures (see Figure 8.8a and Table
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Figure 8.8: Blast parameters measured on the massive plate as a function of driver
length and driver pressure (see Table 8.1). The time window of interest is limited to
the positive phase measured by Sensor 3: (a) peak reflected overpressure pr,max, (b)
Mach number Ms, (c) positive phase duration td+ and (d) reflected impulse ir+.

8.5). Following the argumentation in Section 6.4.1, this is explained by the
fact that larger driver pressures p4 result in larger Mach numbers Ms (Figure
8.8b) and increasing driver lengths delays the reflected rarefaction waves in
catching up with and slowing down the shock wave. The shock wave velocity
was determined based on the pressure measurements at Sensors 1 and 2 (Figure
8.1a), and by dividing the distance between their respective locations (0.1 m)
by the delay in time of arrival. It should be noted that Sensor 6 (see Figure
8.1c) and Sensor 2 could provide an even better estimate of the shock velocity;
however, it was chosen to focus on the performance of Sensors 1 and 2 because
these will be used in future investigations involving flexible plates. In general,
the shock wave was characterized by supersonic velocities (Ms > 1) since the
rate of propagation exceeds the speed of sound c1 in the driven section (Figure
8.8b). Moreover, increasing driver pressures and driver lengths produce blast
waves with a longer positive phase duration td+ (Figure 8.8c). A noticeable
effect of the driver length on the positive phase duration is observed due to
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the increased volume of compressed air released at the respective bursting
pressures. The combination of increasing peak reflected overpressures (Figure
8.8a) and positive phase durations (Figure 8.8c) results in an increase in the
corresponding impulse ir+ (Figure 8.8d), where the impulse ir+ was found by
numerical integration of the reflected overpressure during the positive phase
duration. Note that before determining the properties of the blast loading in
Figure 8.8 and Table 8.5, the experimental data were low-pass filtered with
a cutoff frequency of 0.15 times the sampling rate (500 kHz). This enabled
consistent determination of the blast parameters and reduced the effect of
high-frequency oscillations in the pressure measurements without altering the
characteristic shape of the curves. Such high-frequency oscillations (see Figure
8.7) are due to the relatively high eigen frequency of the pressure sensors and
the high sampling rate used to capture the near instantaneous rise in pressure
over the shock front. In general, the effect of the low-pass filtering was a
reduction in peak reflected pressure of approximately 2 %.

Table 8.5: Measured blast parameters at Sensors 1-3 and Friedlander parameters
curve-fitted to data from Sensor 3.

Test

Parameters
(Sensors 1 and 2)

Friedlander parameters
(Sensor 3)

Shock tube theory Deviation experiment
versus theory

Ms pso,max pr,max td+ b ir+ pso,max pr,max ∆pso,max ∆pr,max
[ - ] [kPa] [kPa] [ms] [ - ] [kPa ms] [kPa] [kPa] [%] [%]

R27-05 1.27 71.7 166.3 20.9 0.900 1316.8 71.7 183.3 0.0 -10.2
R27-7.5 1.31 82.3 196.3 23.6 1.011 1675.6 83.4 220.1 -1.3 -12.1
R27-10 1.39 111.4 276.7 27.3 1.237 2587.2 109.1 306.1 2.1 -10.6
R27-15 1.44 133.2 341.6 34.5 1.692 3576.8 125.6 365.7 5.7 -7.0
R27-20 1.51 164.3 427.6 35.1 1.390 4906.1 150.2 459.0 8.6 -7.3
R27-25 1.58 189.2 508.7 39.0 1.664 5883.9 175.1 559.9 7.5 -10.1
R27-35 1.65 223.1 622.7 41.0 2.072 6544.3 202.0 674.2 9.5 -8.3
R27-40 1.71 253.9 732.8 51.0 1.847 8081.1 225.6 779.9 11.1 -6.4
R27-60 1.86 326.1 973.1 71.6 2.721 12,608.4 286.4 1072.3 12.2 -10.2
R27-75 1.91 352.6 1083.2 75.9 2.417 14,907.6 308.6 1184.3 12.5 -9.3
R77-05 1.37 108.0 267.5 28.7 1.306 2557.9 102.0 282.0 5.6 -5.4
R77-10 1.50 161.7 446.2 35.4 1.571 4904.5 145.3 440.8 10.2 1.2
R77-15 1.63 219.1 606.6 44.1 2.025 7510.0 192.9 636.3 11.9 -4.9
R77-20 1.71 260.8 756.8 50.9 2.666 9147.0 224.0 774.4 14.1 -2.3
R77-25 1.75 274.7 795.2 68.7 2.044 12,383.3 239.9 848.0 12.7 -6.6
R77-35 1.88 365.9 1105.2 73.9 1.904 16,613.4 295.1 1116.0 19.4 -1.0
R77-60 2.04 429.4 1446.1 75.3 1.768 21,151.7 368.1 1498.4 14.3 -3.6
R77-75 2.07 460.2 1623.2 79.1 1.088 30,149.0 381.7 1573.7 17.1 3.1

Peak incident and reflected overpressures compared to the idealized shock tube
theory using Eqs. (6.47) and (6.88).

As already discussed in Section 2.1, the modified Friedlander equation in
Eq. (2.1) is typically used to represent the pressure history when the parameters
governing the positive phase are known. Moreover, the corresponding positive
impulse has an analytical solution given by Eq. (2.3). The blast parameters in
Table 8.5 (i.e., pr,max, td+ and ir+) were used to iteratively find the exponential
decay coefficient b in Eq. (2.3), which enables the corresponding Friedlander
curve to be expressed by Eq. (2.1). A selection of representative Friedlander
curves is compared to the corresponding experiments in Figure 8.9, while the
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Friedlander parameters for all tests are given in Table 8.5.
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Figure 8.9: Representative pressure histories from experiments (Sensors 1-3). Fried-
lander curves fitted to Sensor 3 are also included: (a) R27-05, (b) R77-05, (c) R27-20,
(d) R77-20, (e) R27-75 and (f) R77-75.

Note that the experimental data from Sensors 1 and 2 are also included in
Figure 8.9, and that time zero (t = 0) is taken as the arrival of the shock wave
at Sensor 1 located upstream the test specimen (Figure 8.1a). Figure 8.9 shows
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excellent agreement between the Friedlander curves and experimental data
until secondary reflections occur during the positive phase duration (Figure
8.9e-f). These secondary reflections occurred at larger driver pressures and
driver lengths, that is, in test R27-60, R27-75, and R77-25 to R77-75. In the
particular cases of secondary reflections, the exponential decay parameter b

was determined by using the peak reflected overpressure pr,max, positive phase
duration td+ and curve-fitting of Eq. (2.1) to the experimental curves until the
secondary reflections occurred. Thus, Eq. (2.3) was not used in the case of
secondary reflections.

A well-established reference for the properties of the positive phase from airblast
experiments is the research by Kingery and Bulmash [4]. They used spherical
and hemispherical charges of TNT detonating at a given stand-off distance R

from an infinite reflecting surface and curve-fitted a large set of experimental
data to high-order polynomials. These empirical relations are widely used in the
literature (see e.g. [16]). The peak reflected overpressure pr,max, corresponding
impulse ir+, and the empirical relations by Kingery and Bulmash were therefore
used to relate the pressure histories in the shock tube to approximate free-field
conditions (i.e., a particular weight W of TNT detonating at a given distance R

from the target). The approximate free-field conditions are given in Table 8.6 for
selected tests, while Figure 8.10 compares the corresponding pressure histories
to tests R27-05 and R27-20. It is observed that the blast waves generated
in the SSTF closely resemble that from high explosive far-field detonations
(Table 8.6), and that the Friedlander curves from the experiments are in
good agreement with the pressure histories from the corresponding free-field
conditions. Moreover, a retrospective of events [221] and practical implications
of size and weight of explosives that can be transported by personnel and various
vehicles [99] shows that the SSTF is capable of generating a loading similar to
that of representative free-field detonations at typical stand-off distances used
in protective design [100,101].

Table 8.6: Experimental results on the massive plate and corresponding charges of
TNT at given stand-off distances.

Test
Friedlander parameters Spherical charge Hemispherical charge
pr,max ir+ W R Z W R Z
[kPa] [kPa ms] [kg] [m] [m/kg1/3] [kg] [m] [m/kg1/3]

R27-05 166.3 1316.8 1006.1 33.4 3.34 513.6 31.7 3.96
R27-7.5 196.3 1675.6 1680.6 37.0 3.11 850.5 34.9 3.69
R27-10 276.7 2587.2 3893.2 42.8 2.72 1945.9 40.1 3.21
R27-15 341.6 3576.8 7809.0 49.9 2.51 3886.5 46.6 2.96
R27-20 427.6 4906.1 15,117.4 57.2 2.31 7506.7 53.4 2.73
R27-25 508.7 5883.9 20,943.8 60.0 2.17 10,395.5 56.0 2.57
R77-05 267.5 2557.9 3932.9 43.5 2.76 1967.5 40.8 3.25
R77-10 446.2 4904.5 14,308.1 55.3 2.28 7103.5 51.7 2.69

Scaled distances (Z = R/W 1/3) are found using Hopkinson-Cranz scaling [14].
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Figure 8.10: Experimental pressure-time histories (Friedlander fit) compared with
that from approximate free-field spherical and hemispherical detonations found by
using the empirical equations by Kingery and Bulmash [4]: (a) R27-05 and (b) R27-20.

Knowing the shock velocity vs and Mach number Ms = vs/c1 from the experi-
ment (see Table 8.5), Eqs. (6.47) and (6.88) from the idealized shock theory (in
Section 6.4) may be used to calculate the peak incident (side-on) overpressure
pso,max and the peak reflected (head-on) overpressure pr,max, respectively. This
representation of the shock strength is convenient since the shock velocity vs

is easily measured in the experiments. Using the measured shock velocity vs,
the corresponding Mach number Ms, and assuming a constant ratio of specific
heats (γ = 1.4), the rise in pressure across the shock can be determined by
Eq. (6.47). The pressures found from this idealized theory is included and
compared to the experimental measurements in Table 8.5, where negative values
of ∆pso,max and ∆pr,max implies that the theoretical values are larger than the
corresponding experimental measurements. The increasing deviation of the
peak incident overpressures ∆pso,max at larger pressures may be related to the
filtering of high-frequency noise of the pressure measurements, because the
experimental values reported in Table 8.5 still contain some noise. Moreover,
the peak reflected overpressures pr,max calculated from the idealized shock
theory are conservative since the Mach number Ms is calculated based on
the measurements in Sensors 1 and 2 located upstream Sensor 3. The shock
velocity will continue to decrease travelling from Sensor 2 to Sensor 3 and the
actual Mach number Ms immediately before impact is slightly less than that
used to calculate the reflected pressures. Nevertheless, it is observed that the
experimental measurements and the idealized theory are in acceptable agree-
ment indicating that the pressure measurements reported herein are reliable.
It should also be noted that an alternative approach to validate the pressure
measurements against the idealized theory is to produce a temporally uniform
pressure pulse as a basis for comparison. However, this is considered beyond
the scope of this thesis and suggested as future work.
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A final observation regarding the design premises given in Section 7.1 is that,
in addition to producing a blast loading in controlled laboratory environments,
the SSTF is capable of generating pressure magnitudes sufficient to damage
a wide range of plated structures of different materials (e.g. glass [222] and
concrete [223,224]).

8.3.3 Evaluation of the 3D-DIC technique

Even though the evaluation of the 3D-DIC technique in Part II and Sections
3.3.2 to 3.3.3 showed encouraging results, it was decided to perform a more
thorough evaluation of the 3D-DIC technique before studying the flexible plate
tests in Table 8.1. This was to ensure that the generated displacement fields
are reliable and could be used to quantify the dynamic response. A single test
was therefore carried out with the same experimental setup (Figure 8.1a) and
sampling rate of data as in the flexible plate tests. A laser displacement sensor
(optoNCDT 2310-50) mounted at the end of the tube was used to measure
the mid-point deflection of the flexible plate (relative to the tube) during
the experiment (Figure 8.3). This was then used as basis for comparison to
ensure that the corresponding displacement predicted by 3D-DIC is reasonable.
Since the high-speed cameras were located on the floor and not in contact
with the SSTF (Figures 7.4 and 8.1a), it is necessary to correct the 3D-DIC
measurements for the rigid body movement of the tube during each experiment.
The 3D-DIC technique is therefore evaluated in two steps. First, the rigid body
movement of the entire facility is measured by a laser positioned on the floor at
the rear end of the driver (Figure 8.1a) and compared to the movement of the
opposite end of the tube measured by 3D-DIC using the checkerboard stickers
on the clamping frame (Figure 8.3). Then, the mid-point deflection of the plate
measured by 3D-DIC was corrected for the rigid body motion of the tube and
compared to the corresponding deflection measured by the laser device (Figure
8.3). The plate material was Docol 600DL and the loading conditions were
similar to those in test D77-35-01 in Table 8.1. However, note that it was used
a different material batch than that presented in Section 8.2.3 due to a limited
number of plates.

The results are shown in Figure 8.11, where Figure 8.11a compares the rigid
body movement of the entire facility and Figure 8.11b shows the measured
mid-point deflection of the plate. Both the rigid body movement and the
mid-point deflection measured by the laser and the 3D-DIC were in excellent
agreement, and the 3D-DIC technique is therefore considered to provide reliable
displacements. Note that the minor deviations in Figure 8.11a are related
to the eigen oscillations in the longitudinal axis of the tube interacting with
the wave pattern inside the tube, while the high-frequency noise in the laser
measurements in Figure 8.11b are due to the eigen oscillations of the laser
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mounting frame (Figure 8.3) induced by the recoil when the diaphragms burst.
These latter oscillations are not observed in the 3D-DIC measurements since
the high-speed cameras were not in contact with the tube.
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Figure 8.11: Evaluation of the 3D-DIC technique in predicting (a) the rigid body
movement and (b) the mid-point deflection.

As in Sections 3.3.2 and 3.3.3, the 3D-DIC measurements are desirable since
these enable the determination of 3D surface deformation and strain fields.
Figure 8.12 shows selected 3D topography maps, contours of the transverse
displacement field and deformation profiles at characteristic times during the
test, while displacement, strain and strain rate histories from selected elements
in the 3D-DIC analysis are shown in Figure 8.13. Figure 8.12 also contains
synchronized loading and response in terms of the pressure measured at Sensor
2 and the mid-point deflection. Remember that Sensor 2 is located upstream
the test specimen (Figure 8.1a) since it is challenging to mount pressure sensors
in the thin plate without altering its structural characteristics. In an attempt to
estimate the actual loading on the plate, the Friedlander equation in Eq. (2.1)
was curve-fitted to the measurements at Sensor 2 and extrapolated back to
the time of impact. This approach assumes a rigid plate and can be used to
discuss FSI effects. The Friedlander fit is plotted as a dashed line in the second
column of Figure 8.12.

The deformation is in accordance with the theory presented by Jones [61] where
plastic hinges start at the boundary corners (Figure 8.12a) and propagate along
the diagonals towards the centre (Figure 8.12b) before they meet in the centre
(Figure 8.12c), forming a square pyramidal with plastic hinges at the boundaries
and along the diagonals of the plate. Based on these deformation fields, it is
possible to obtain deformation histories (Figure 8.13b), strain histories (Figure
8.13c) and an indication of the corresponding strain rate histories (Figure
8.13d) in selected elements during the experiment. The selection of elements is
shown in Figure 8.13a. It is observed that the plate experiences a non-uniform
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Figure 8.12: 3D topography maps and contours of the transverse displacement field
(left), its corresponding pressure and mid-point deflection (middle) and deformation
profile at the centre along the x-axis (right): (a) t = 1.084 ms, (b) t = 1.208 ms and
(c) t = 1.334 ms. Pressure recordings from Sensor 2 are used in the synchronization.
Red diamonds show the corresponding time of recordings.

spatial and temporal strain rate distribution during the response from zero
to maximum deformation (Figure 8.13d). This is important information for
validation of computational methods in predicting the structural response
during blast events.

Note that the noise in the strain at the centre of the plate (Element 1 in
Figure 8.13c) is due to the eigen oscillations of the laser mounting frame
(Figure 8.3) which caused the laser point to move and altered the greyscale
value in this element. Still, this disturbance of the 3D-DIC occurs after the
maximum deformation (t = 1.334 ms) and is not expected to affect the strain-
rate measurements during the time of interest (Figure 8.13d). This noise would
not occur if the laser is removed.
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Figure 8.13: Results from selected elements in the 3D-DIC analysis: (a) selected
elements, (b) displacement, (c) major principal strain and (d) strain rate.

8.3.4 Flexible plates

A basic understanding of the role of FSI when the shock wave interacts with a
moving boundary was given in Section 6.4.5. That is, if the boundary (i.e., the
flexible plate) starts to move, the motion alters the pressure at its surface. FSI
effects could also be investigated by comparing pressure histories at Sensor 2
in the massive and flexible plate tests with the same driver length and similar
firing pressures (e.g. R27-05 and A27-05, and R77-05, D77-05 and P77-05 in
Table 8.1). This is presented in Figures 8.14 and 8.15 for the thin aluminium
and steel plates, respectively, while the shock velocity vs, peak incident pso,max
and peak reflected pr,max overpressures measured at Sensor 2 are reported in
Table 8.7. Positive values of ∆pso,max and ∆pr,max imply a reduced pressure in
the flexible plate tests (AX-Y, DX-Y or PX-Y) compared to the corresponding
massive plate test (RX-Y). Note that the flexible plate tests are only denoted
by their material (A, D or P), driver length (X) and firing overpressure (Y) in
the following because the plates with pre-formed holes (PX-Y) showed very
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good repeatability and the remaining tests (AX-Y and DX-Y) consisted of only
one repetition (see Table 8.1). As before, the data were low-pass filtered with
a cutoff frequency of 0.15 times the sampling rate (500 kHz) when determining
the blast properties in Table 8.7. Also note that the time of interest is limited
to the positive phase of the blast load, and that the curves are shifted in time
such that time equal zero when the shock wave arrives at Sensor 1.
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Figure 8.14: Comparison of pressure measurements at Sensor 2 for selected tests
with massive steel and flexible aluminium plates subjected to similar blast intensities:
(a) R27-05 and A27-05, (b) R27-7.5 and A27-7.5, and (c) R27-10 and A27-10.

Sensor 2 first record the incident overpressure pso right before impact and then
the reflected overpressure pr after impact when the blast wave travels back
towards the driver (see Figures 8.14 and 8.15). It is observed that the incident
(side-on) pressures are in excellent agreement in the tests with similar firing
conditions, while there is a reduction in the reflected pressure for the flexible
plates (see Table 8.7). The flexible plates without holes (A and D) induce a
small reduction in the peak reflected overpressure pr,max, while the subsequent
flow seems to be barely altered when allowing for finite deformations of the
plate. The only exception seems to be test D77-25 where it is a negligible
reduction in the peak reflected pressure (see Table 8.7) and test D77-15 in
Figure 8.15b which experience a reduced pressure throughout the positive
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Table 8.7: Experimental results from Sensor 2 and 3D-DIC.

Test
Shock velocity Overpressure

(Sensor 2)
Mid-point deflection

vs pso,max ∆pso,max pr,max ∆pr,max dz,max dz,p ∆dz
[m/s] [kPa] [%] [kPa] [%] [mm] [mm] [%]

R27-05-01 431.0 71.7 - 155.9 - N/A N/A N/A
A27-05-01 400.0 71.0 1.0 144.2 7.5 24.3 22.7 6.6
R27-7.5-01 446.4 82.3 - 188.7 - N/A N/A N/A
A27-7.5-01 438.6 80.5 2.2 163.6 13.3 27.5 26.1 5.1
R27-10-01 471.7 111.4 - 264.9 - N/A N/A N/A
A27-10-01 467.3 112.3 -0.8 231.2 12.7 N/A* N/A* N/A*
R77-05-01 467.3 109.3 - 253.7 - N/A N/A N/A
D77-05-01 463.0 109.2 0.1 242.6 4.4 15.7 11.4 27.4
P77-05-01 467.3 112.8 -3.2 226.8 10.6 18.3 14.4 21.3
P77-05-02 467.3 110.2 -0.8 225.9 11.0 18.3 14.2 22.4
R77-15-01 555.6 221.5 - 599.2 - N/A N/A N/A
D77-15-01 555.6 223.5 -0.9 555.6 7.3 25.0 22.1 11.6
P77-15-01 555.6 221.4 0.0 490.1 18.2 29.2 26.2 10.3
P77-15-02 555.6 220.3 0.5 484.6 19.1 29.5 26.6 9.8
R77-25-01 595.2 279.6 - 796.4 - N/A N/A N/A
D77-25-01 602.4 292.0 -4.4 767.6 3.6 30.8 28.4 7.8
P77-25-01 609.8 303.3 -8.5 706.6 11.3 36.2 33.8 6.6
P77-25-02 609.8 300.1 -7.3 716.8 10.0 37.2 34.9 6.2
R77-35-01 641.0 367.4 - 1112.4 - N/A N/A N/A
D77-35-01 641.0 347.5 5.4 992.7 10.8 36.2 34.6 4.4
P77-35-01 649.4 362.6 1.3 879.6 20.9 N/A* N/A* N/A*
P77-35-02 641.0 354.9 3.4 849.9 23.6 N/A* N/A* N/A*
R77-60-01 694.4 437.4 - 1487.6 - N/A N/A N/A
D77-60-01 704.2 452.6 -3.5 1312.7 11.8 45.8 44.5 2.8

*Test resulted in complete failure of the plate.
The delay in arrival time at Sensors 1 and 2 was used to determine vs.

phase. A plausible explanation for the former observation is that the incident
pressure is slightly lower in test R77-25 compared to the remaining tests (D and
P) at this driver length and firing pressure (see pso,max in Table 8.7), while the
reason for the latter observation in test D77-15 is not known. It is important
to emphasize that Sensor 2 is located 24.5 cm upstream the test specimen flush
mounted with the inner wall (see Figure 8.1b), and that the peak reflected
overpressure immediately after reflection is often assumed to be independent of
the stiffness of the test object (see e.g. [72]). The influence of the pre-formed
holes is a reduction of the pressure upstream the test specimen (Figure 8.15).
This decrease in pressure implies that there may be reduced pressure in the
vicinity of the holes. However, Figure 8.15 indicates that most of the pressure
remains in front of the plate. The noticeable decrease in pressure in tests
A27-10 (Figure 8.14c) and P77-35 (Figure 8.15d) is due to complete failure
of the plate. As soon as the plate is completely removed from the tube end,
the pressure is allowed to enter freely into the expanding volume in the tank.
This results in a left-running rarefaction wave and is recorded as a sudden
drop in pressure at Sensor 2. The observations of reduced reflected pressures
in the flexible plate tests are interesting in view of FSI and blast mitigation.
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It is however challenging to further identify which factor is more important
for the observed decrease in pressure based on these experimental results.
This therefore requires numerical investigations which will be performed in
Chapter 9. Also note the good repeatability between tests with the same initial
conditions by comparing the shock velocity vs for corresponding tests in Tables
8.1 and 8.7.
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Figure 8.15: Comparison of pressure measurements at Sensor 2 for selected tests
with massive steel and flexible steel plates subjected to similar blast intensities: (a)
R77-05, D77-05 and P77-05, (b) R77-15, D77-15 and P77-15, (c) R77-25, D77-25 and
P77-25, (d) R77-35, D77-35 and P77-35, and (e) R77-60 and D77-60.
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Figures 8.16 and 8.17 contain the mid-point deflection histories measured with
3D-DIC for the aluminium (Figure 8.16) and steel plates without (Figure
8.17a) and with (Figure 8.17b) holes. The corresponding maximum dz,max and
permanent dz,p mid-point deflections and ∆dz = dz,max − dz,p are summarized
in Table 8.7. All curves are corrected for the rigid body movement of the
facility, and also shifted in time such that time equal zero when the shock
wave arrives at Sensor 1. As for the pressure measurements, the repetitive
tests for the plates with holes (P) showed excellent agreement also for the
deformation histories. Therefore, only one of these tests is reported in the
following. No deformation histories were recorded in test A27-10 due to an
synchronization error with the high-speed cameras. However, this experiment
resulted in complete tearing along the boundary and the images therefore serve
as a qualitative basis of comparison (see Figure 8.18).
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Figure 8.16: Mid-point deflection based on 3D-DIC measurements for the A27-05
and A27-7.5 tests. All curves are corrected for the rigid body movement of the shock
tube. Also note that the curves are shifted in time such that time equal zero when
the shock wave arrives at Sensor 1.

All tests experienced inelastic deformations with a permanent deflection in the
same direction as the incident shock wave, and the elastic rebound ∆dz became
smaller as the load-intensity increased (Table 8.7). It was observed an increased
mid-point deflection for the perforated plates (Figure 8.17b) when compared
to the plates without holes (Figure 8.17a) under similar loading conditions.
The perforated plates also involved larger oscillations after the elastic rebound,
while the difference ∆dz between the maximum mid-point deflection dz,max and
permanent mid-point deflection dz,p was found to be approximately the same
for the steel plates (DX-Y and PX-Y) exposed to similar loading conditions
(see Table 8.7). There were no visible signs of tearing at the boundaries for the
steel plates without holes. However, failure was observed in all tests involving
perforated plates, except for tests P77-05. Cracks initiated at the corners of the
pre-formed holes and propagated along the diagonals of the plates where the
extent of the crack growth was dependent on the intensity of the loading. This
is illustrated in Figure 8.19, where high-speed images of representative tests at
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Figure 8.17: Mid-point deflection based on 3D-DIC measurements in the tests with
thin steel plates: (a) without holes and (b) with pre-formed holes. All curves are
corrected for the rigid body movement of the shock tube. Also note that the curves
are shifted in time such that time equal zero when the shock wave arrives at Sensor
1. The black marker illustrates the point of complete failure in P77-35.

the time of maximum deflection are shown. It is observed that the tests cover
the entire range from no visible signs of failure in tests P77-05 (Figure 8.19a),
crack initiation in the extremities of the holes in P77-15 (barely seen in Figure
8.19b), to noticeable crack growth along the diagonals of the plates in P77-25
(Figure 8.19c) and, finally, complete tearing along the diagonals in P77-35
(Figure 8.19d). Figure 8.20 shows more details of the failure process in test
P77-35, where it is observed that the crack propagation is nearly symmetric
(Figure 8.20a-b) until the cracks meet in the centre of the plate (Figure 8.20c-d).
After the cracks meet in the centre (Figure 8.20c), they propagate towards the
outer corners of the plate boundary resulting in complete failure (Figure 8.20d).
A plausible explanation for the crack propagation along the diagonals of the
plates may be a reduced pressure in the vicinity of the holes. This will result
in a larger pressure at the plate centre and may force the crack to propagate
along the diagonals. Since it is challenging to conclude on the influence of the
pre-formed holes on the observed crack propagation in the tests with perforated
plates, this will be investigated numerically in Chapter 9.
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(a) (b)

(c) (d)

Figure 8.18: High-speed images of the failure process in test A27-10: (a) initiation
of tearing along the right vertical (t = 0.92 ms), (b) before propagating along the
upper and lower horizontals (t = 1.75 ms). (c) Eventually the tearing arrive at the
left vertical (t = 3.00 ms), and (d) the entire plate rotates about the left vertical
(t = 4.46 ms). Note that time zero is taken as the arrival of the shock wave at Sensor
1.
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(a) (b)

(c) (d)

Figure 8.19: High-speed images at maximum mid-point deflection for representative
plates with pre-formed holes: (a) P77-05, (b) P77-15, (c) P77-25 and (d) P77-35.
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(a) (b)

(c) (d)

Figure 8.20: High-speed images of the failure process in test P77-35: (a) Crack
initiation along the diagonal in the outer corners of the holes (t = 1.13 ms), (b) before
it propagates towards the centre (t = 1.42 ms). (c) Eventually the cracks meet in
the centre (t = 1.75 ms), and (d) propagates towards the outer corners of the plate
resulting in complete failure (t = 2.63 ms). Note that the respective times correspond
to the shifted time in Figure 8.17b.
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8.3.5 Shock wave propagation

This section provides pressure histories downstream the firing section for selected
tests. Since the number of sensors were limited by the 12 channels in the data
acquisition system, such measurements were not possible in the massive plate
tests. However, due to the good repeatability in the firing pressure p4 between
tests under similar initial conditions in Table 8.1, the flexible plate tests are
considered to be representative when discussing the shock wave propagation
until the time of impact. Tests D77-05, D77-15, D77-25 and D77-35 were
therefore chosen for this purpose. These tests will also be used as a basis of
comparison for the subsequent Eulerian simulations in Chapter 9.

Figure 8.21 contains the pressure histories at the respective sensors. The
sensors were flush mounted with the roof of the internal cross-section and
positioned 0.97 (Sensor 13), 1.07 (Sensor 14), 3.70 (Sensor 15), 3.80 (Sensor
16), 10.51 (Sensor 17), 10.61 (Sensor 18), 15.85 (Sensor 1) and 15.95 m (Sensor
2) downstream the firing section (see Figure 8.1b). The pressure sensors were
automatically triggered when the shock wave arrived at Sensor 13 and operated
with a sampling frequency of 500 kHz. It is clear that increasing bursting
pressures result in a significantly less decay in pressure at Sensors 13 and
14, while the characteristic shape of a blast wave is observed at Sensors 15
and 16 in all tests. This may indicate that there are some loss of directional
energy due to an initial 3D flow in the vicinity of the firing section during
the diaphragm opening process. The diaphragm burst starts by tearing at
the centre, followed by diagonal tearing and folding back of the petals formed
during the opening process. This results in a high velocity jet and 3D flow of
the driver gas originating from the expanding hole. The finite opening time
causes the shock wave to travel several tube diameters before the blast wave
is fully formed (at Sensors 15 and 16), and this effect is more evident as the
diaphragms become thicker. Thus, increased driver pressures involve more
diaphragms of larger thickness resulting in a slower diaphragm opening process
preventing satisfactory folding back and increased 3D flow during the opening
process.
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Figure 8.21: Shock wave propagation at increasing driver pressure: (a) D77-05, (b)
D77-15, (c) D77-25 and (d) D77-35. The number of sensors were limited by the
available channels in the data acquisition system and the respective sensors were
positioned 0.97 (Sensor 13), 1.07 (Sensor 14), 3.70 (Sensor 15), 3.80 (Sensor 16), 10.51
(Sensor 17), 10.61 (Sensor 18), 15.85 (Sensor 1) and 15.95 m (Sensor 2) downstream
the firing section.

8.4 Concluding remarks

The SIMLab Shock Tube Facililty is found to produce a positive phase loading
similar to that of an unconfined far-field airblast, and the recorded incident Mach
numbers showed that the pressure measurements are in good agreement with
the idealized shock tube theory. Several pressure transducers were positioned
upstream and on a massive steel plate located at the tube end to measure the
incident and reflected overpressures. The spatial and temporal distribution
were found to be planar over the cross-section, and the positive phase of the
blast loading was obtained by using a relatively long driven section. Moreover,
the blast parameters were found to be a function of driver length and driver
pressure.

An in-house three-dimensional digital image correlation (3D-DIC) technique
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was evaluated by clamping a thin steel plate at the tube end. The mid-
point deflection during the test was measured using both a laser displacement
sensor and the 3D-DIC technique. The mid-point deflections were in excellent
agreement, and the 3D-DIC technique was considered to provide reliable results.
The 3D-DIC technique was therefore used to quantify the dynamic response of
thin aluminium and steel plates during shock tube testing. Special focus was
placed on the influence of pre-formed holes on the dynamic response of the steel
plates. Synchronization of the 3D-DIC and pressure measurements enabled a
thorough investigation of the experiments and identification of fluid-structure
interaction (FSI) effects. The tests covered a wide range of response from large
inelastic deformations to complete failure along the supports in the aluminium
plates and along the diagonals of the plates with pre-formed holes. FSI effects
were investigated by comparing the loading on massive and flexible plates under
similar initial conditions. A trend of reduced reflected pressures was found
when introducing pre-formed holes and allowing for large deformations in the
plates.

The set of experimental data presented in this chapter will now be used to
evaluate numerical models in the FE code EUROPLEXUS in predicting the
experimental observations (see Chapter 9). Special focus will be placed on the
influence of FSI effects during large deformations and failure of the plates.





9
Numerical simulations
The experimental observations in Chapter 8 of a reduced pressure after impact
in the vicinity of the flexible plates were interesting in view of FSI and blast
mitigation. This will be further studied numerically in this chapter in an
attempt to obtain more insight into the FSI effects during the dynamic response.
Special focus will be placed on the capabilities of the numerical simulations
in predicting the failure patterns observed in the tests involving plates with
pre-formed holes. All of the numerical simulations are performed in the finite
element code EUROPLEXUS [130].

9.1 Introduction

As already discussed in Section 1.2.3, the uncoupled approach is often the pre-
ferred procedure in today’s blast-resistant design. The underlying assumption
in this approach is that FSI effects are neglected. The loading is then obtained
using either empirical relations based on experimental data (see Chapter 5)
or numerical simulations of the blast wave propagation in an Eulerian (fixed)
reference frame. It is assumed no deformation of the structure when computing
the spatial and temporal pressure distribution at the structural surface. Then
the obtained pressure history is imposed on the structure to determine the
corresponding dynamic response. The uncoupled approach therefore makes the
inherent assumption that the blast properties are unaltered by the structural
motion and vice versa. Since the response of blast-loaded plates is highly
non-linear (both in geometry and in material behaviour), this may not be an
adequate approach for flexible structures and could result in a non-physical
response or exaggerated conservative designs. Both the pressure distribution
and dynamic response may be significantly influenced due to FSI effects. This
was illustrated by Casadei et al. [69] and Børvik et al. [71] by comparing un-
coupled and fully coupled FSI simulations for typically industrial applications.
Børvik et al. [71] observed considerable variations in the predicted results from
uncoupled and coupled methods and emphasized the importance of an accurate
quantification of the loading.
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Recent advancements in the finite element (FE) code EUROPLEXUS (EPX) [93,
94] enable studies on the FSI effects in blast events involving complex geometries,
large deformations, failure and fragmentation. In particular, adaptive mesh
refinement (AMR) [95,98,225] in both the fluid and structural sub-domains
allows for a sufficiently fine mesh size to represent the near instantaneous rise
in pressure over the blast wave and to predict structural failure without too
much loss of mass when using element erosion. These techniques will be used
in the following to investigate the effect of FSI on the dynamic response of the
blast-loaded plates presented in Chapter 8, both with and without holes.

This chapter starts with an identification of the material parameters for the
tests presented in Section 8.2.3. Then, a review of the recent advancements in
the field of FSI and fast transient dynamics is presented. Finally, numerical
simulations are performed using available techniques for fluid discretization and
FSI in EPX [130]. This enables studies of the wave patterns and FSI during
the experiments presented in Chapter 8, where an uncoupled FSI approach
is compared to the couple approach in an attempt to investigate potential
interaction effects. The numerical results are also compared to experimental
data in Chapter 8 in an attempt to evaluate their reliability.

9.2 Material parameter identification

Before moving on to the numerical simulations, it was considered necessary
to identify the material parameters for the batches used in the shock tube
experiments. The material tests presented in Figure 8.5 deviate slightly with
the results from the batches of the same materials used in Section 4.5. It was
therefore considered necessary to determine the quasi-static parameters (A,
Qi and Ci) for the material batches used in the shock tube experiments. The
calibration was performed using exactly the same procedure as in Section 4.5,
where the parameters of the extended Voce hardening rule (A, Qi and Ci)
were obtained by inverse modelling using a FE model of the material tests and
the optimization package LS-OPT [196]. Material parameters from LS-OPT
are listed in Table 9.1, while physical constants and the remaining material
parameters were taken from Table 4.2. Note that the strain-rate sensitivity
constant c for the steel material was set equal to 0.01 in Table 9.1 based on the
recent findings in Ref. [219]. As before, the initial yield stress A was defined as
the stress at 0.2 % plastic strain in the representative tests.

Table 9.1: Material parameters for the shock tube batch.

Material A Q1 C1 Q2 C2 c m ṗ0 Wc

[MPa] [MPa] [-] [MPa] [-] [-] [-] [s−1] [MPa]
Docol 600DL 325.7 234.8 56.2 445.7 4.7 0.01 1.0 5×10−4 555.0
1050A-H14 80.0 31.2 1090.0 12.2 20.4 0.014 1.0 5×10−4 60.0
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As in Section 4.5, a separate analysis with the same shell elements to be used
in the simulations of the flexible plates was performed in EPX to evaluate
the material parameters. Figures 9.1a and 9.1b compare the force-elongation
curves from the material tests and the simulation in EPX with the optimized
material parameters, while Figures 9.1c and 9.1d compare the equivalent stress
- plastic strain until necking from the representative tests to the first term of
the analytical expression in Eq. (4.32) using the optimized Voce parameters.
It is observed that the identified material parameters are able to describe the
overall response and material behaviour very well for both materials.
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Figure 9.1: Comparison of numerical and experimental results: (a) and (b) give
force-elongation curves from uniaxial tensile tests for steel and aluminium, respectively,
and the simulation from EPX (FEA) with the material data from Table 4.2 and
Table 9.1 are included for comparison. The red dot illustrates the point of failure
in the identification of Wc. (c) and (d) show equivalent stress-plastic strain curves
until necking for the representative tests in the rolling direction, and extended Voce
hardening rule based on the material parameters from the inverse modelling in Table
9.1.

The CL parameter Wc in Eq. (4.36) was determined based on the FE simulation
by inspecting the element exposed to the largest plastic work W . It is empha-
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sized that the Wc parameter found from this approach is mesh size dependent.
This is due to the fact that the element of interest is always located inside
the neck and the mesh size will influence the representation of the localized
necking. Only the tension tests in the rolling direction of the plate were used in
the calibration, although the flow stress and the failure strain were somewhat
lower in the 45◦ and 90◦ directions (see Figure 8.5). This also implies a spread
in Wc between material directions, which (at least to some extent) may affect
the numerical results. However, modelling of anisotropy is beyond the scope
of this thesis. The points used to extract Wc from the numerical results are
indicated by a red dot in Figures 9.1a and 9.1b, and the values are given in
Table 9.1. Figure 9.1a shows that the numerical simulation of the steel captured
the localized necking very well, while the simulation of the aluminium alloy
almost predicted localized necking at the same level as in the representative
test (Figure 9.1b). The CL parameter Wc was therefore determined at the
same force level as failure occurred in the test.

9.3 Fluid-structure interaction

The FSI algorithms considered herein use the available methods in EPX to
couple the fluid and structural sub-domains. While a finite element (FE) dis-
cretization is typical for structural applications, the most suitable discretization
within computational fluid dynamics is based on finite volume (FV) formula-
tions [88]. FVs are another way of expressing the conservation laws in which
the governing equations for the computational cells are formulated and solved
in integral form. This method is conservative since the formulation ensures that
the flux entering a given volume is identical to that leaving the adjacent volume.
Thus, the FV method requires less smoothness of the solution compared to
the FE method which is favourable in discontinuous solutions such as shock
waves [88, 226]. This thesis is therefore limited to a FE discretization of the
structure and FVs in the fluid. It should be noted that EPX also has the
possibility of using FEs for the fluid sub-domain (see [130] for more details).

For the FV discretization of the fluid sub-domain, the FSI may be nodally
conforming or non-conforming (with one corresponding fluid node for each
structural node), or the structure may be embedded in the fluid mesh. Based
on the chosen discretization of the FVs (node-centred or cell-centred volumes),
there are also two different types of coupling between the fluid and structure
(i.e., strong and weak coupling). This section therefore gives a brief presentation
of the governing equations and FSI algorithms used in this thesis. The reader
is referred to Refs. [93, 94] for further details.
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9.3.1 Overview of fully coupled FSI techniques

FSI is an active field of research and there are a wide variety of numerical
techniques that have been developed for simulating these types of problems (see
e.g. [69,71,93,94,98,227–229]). These techniques include Eulerian, Lagrangian,
Arbitrary Lagrangian-Eulerian (ALE) and so-called fixed (or embedded) mesh
methods. FSI simulations can be challenging for a number of reasons and
are therefore often dependent on the application. One of these challenging
applications is the simulation of blast-loaded flexible structures undergoing
large deformations, possibly up to complete failure and fragmentation, which
requires robust and specific FSI algorithms.

Some current efforts in the field of FSI are the advancement from special purpose
problems to more general approaches, i.e., approaches that have the potential
to turn over from being a challenging research topic to a design tool with actual
predictive capabilities that could be used in industrial applications [69,93,94,
228,229]. The earliest research and commercial codes available for simulations
of the interaction of flows and structures undergoing large deformations are
based on the ALE method (Figure 9.2a). The ALE approach stems from the
early works in Refs. [230–235] and allows the analysis to proceed in a framework
which is neither Eulerian nor Lagrangian. That is, the ALE formulation tries
to utilize the advantages of both formulations by performing the computations
on a fluid mesh following the motion of the structure. The mesh may be moved
with the material by using the Lagrangian formulation, it may be kept fixed
using an Eulerian framework, or the mesh can be moved arbitrarily using
mesh rezoning (i.e., repositioning) algorithms to reduce the distortion. The
process of mesh generation, i.e., re-meshing where the whole or parts of the
fluid sub-domain is spatially re-discretized multiple times during a computation,
can be a troublesome and time consuming task and the mapping (i.e., transfer)
of solutions from the distorted mesh to the new mesh may introduce artificial
diffusion and loss of accuracy. Furthermore, for large translations and rotations
of the structure (or non-uniform movements of the mesh points) fluid elements
tend to become ill-shaped which also reflects on the accuracy of the solution.

Recent advances have led to more flexible techniques that overcome these
difficulties and limitations related to large deformations and ALE (see e.g. [94,
98, 228,229,236–243]). These techniques include so-called fixed mesh methods,
and is often denoted immersed [236–238], embedded [94, 98,239–241], fictitious
domain [242] or overlapping mesh methods [243]. In contrast to the ALE
technique, where the fluid-structure (F-S) interface is accurately captured (see
Figure 9.2a), these types of methods do not require any changes of the fluid
mesh. This is due to the basically different approach to represent the FSI
by discretizing the structural sub-domain S and the fluid sub-domain F in a
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Figure 9.2: Illustration of fully coupled FSI techniques: (a) the structural fitted
(conforming) ALE approach where the fluid sub-domain F ends at the structural
surface ΓF SI = F ∩ S and the boundary fluid nodes move with the structure S.
The fluid mesh deforms with the structure at the interface ΓFSI and then the mesh
deformation is extended into the fluid sub-domain by rezoning algorithms and/or
using mesh smoothing. (b) the embedded approach where the structural sub-domain
S and the fluid sub-domain F are discretized in a completely independent manner.
Thus, the structural mesh is embedded in the fluid mesh, i.e., the two meshes are
simply superposed Ω = F ∪ S.

completely independent manner (Figure 9.2b). Then, the structural mesh is
embedded (or immersed) within the fluid mesh, i.e., the two meshes are simply
superposed, allowing the moving and independent Lagrangian structure to
slide through the fluid sub-domain [94,98]. With this technique, it is no longer
necessary to use an unstructured (conforming or non-conforming) fluid mesh
(Figure 9.2a). The fluid mesh can be structured, and even regular (Figure 9.2b).
Furthermore, it is no longer necessary to use an ALE formulation in the fluid
sub-domain. This sub-domain can be simplified to a fixed Eulerian background
mesh, which completely avoids the problem of mesh distortions. However, as a
counterpart, the embedded methods may be somewhat less accurate than the
ALE methods for the same mesh size of the fluid [94].

9.3.2 Governing equations

Structures are characterized by definite shapes, which makes a material frame-
work suitable to express their motion since each individual node of the compu-
tational mesh follows the associated material particle. The computations in the
structural sub-domain are therefore performed using a Lagrangian formulation,
where the governing equation is the conservation of momentum also known as
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the dynamic equilibrium arising from the principal of virtual power [171]
∫

V

δvT
S ρ

∂vS

∂t
dV +

∫

V

tr((∇δvS)T · σ)dV −
∫

V

δvT
S ρfbdV −

∫

S

δvT
S tdS = 0 (9.1)

where ρ is the mass density of the current volume V with boundary surface
S, vS and δvS are the vectors of velocities and virtual velocities at any point
(x, y, z) within V , σ is the Cauchy (true) stress, ∇δvS is the spatial gradient
of the virtual velocity vector, fb are the volumetric forces per unit mass and t
are boundary surface tractions. Spatial discretization of the structure (using
FEs) in Eq. (9.1) then reads

MaS = F ext − F int (9.2)

where M is the lumped (diagonal) mass matrix, aS is the vector of nodal
accelerations, F ext are the external forces and F int are the internal forces. F ext

and F int are found by spatial integration over the elements as

F ext =
Nels∑
n=1

∫

Sn

NTtdS +
Nels∑
n=1

∫

Vn

NTρfbdV , F int =
Nels∑
n=1

∫

Vn

BTσdV (9.3)

where Vn is the volume of element n, N is the matrix of shape functions, B

is the matrix of shape functions derivatives, and the summation sign Σ is the
assembly operator over all elements from 1 to Nels. Eq. (9.2) is solved explicitly
using the lumped mass matrix and directly integrated in time using finite
differences. The Cauchy stress σ is updated in each integration point using
the numerical return mapping algorithm in Section 4.4. It is emphasized that
the vector of structural velocities vS should not be confused with the shock
wave velocity vs.

As already discussed in Chapter 6, shock or blast wave propagation is essentially
a problem dealing with inviscid compressible flow (i.e., the density is not
constant), where the viscosity is assumed to be zero and the fluid is incapable
of developing shear stresses. It is therefore preferable to express the conservation
laws in a spatial framework. This is also known as the Eulerian formulation
and considers the computational mesh as fixed while the fluid (particles) moves
relative to these grid points. Thus, the governing equations for the fluid sub-
domain express the conservation of mass, momentum and energy, respectively,
on conservative form as
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∂ρ

∂t
+ ∇ · (ρvF ) = 0

∂ρvF

∂t
+ ∇ · (ρvF ⊗ vF ) + ∇p = 0 (9.4)

∂E

∂t
+ ∇ · (vF (E + p)) = 0

where ρ is the fluid density, vF = vF,iei = [vF,1 vF,2 vF,3]T is the fluid (particle)
velocity vector with components vF,1, vF,2 and vF,3 along each of the basis
vectors in a Cartesian coordinate system ei, E = ρ(e + 1

2 vT
F vF ) is the total

energy per unit volume, e is the specific internal energy per unit mass (given
by an EOS), 1

2 vT
F vF is the kinetic energy per unit mass, p is the pressure, ∇ is

the spatial gradient, and ⊗ gives the tensor product. Eq. (9.4) is known as the
Euler equations in differential form. An alternative and rather concise form
to represent these equations may be obtained using the vector form already
presented in Eq. (6.48), i.e.,

∂U
∂t

+ ∇ · F(U) = 0 with
{

U = [ ρ ρvF E ]T

F = [ ρvF ρvF vF + pI (E + p)vF ]T
(9.5)

where U is the vector of conserved variables and F is the associated flux matrix.
It is noted that Eq. (9.5) contains five conservation equations, i.e., conservation
of mass, conservation of momentum (in the three spatial dimensions) and
conservation of energy, with six unknowns. Hence, to find an unique solution
of Eq. (9.5) it is necessary to use a suitable EOS to relate the pressure to the
conserved variables. This work is limited to the EOS given by the ideal gas
law in Eq. (6.2).

Integrating the local conservative form of the Euler Equations in Eq. (9.5) over
a control volume fixed in space reads

∂

∂t

∫

Vf

UdV +
∫

Sf

F(U) · ndS = 0 (9.6)

where n is the outward unit normal to the boundary surface Sf of the fixed
control volume Vf , and the Gauss (divergence) theorem is used to find the flux
through the boundary surface of the control volume. The physical interpretation
of Eq. (9.6) is that the time variation of U included in the fixed volume
Vf is balanced by the flow of U through its boundary surface Sf . Using
an appropriate discretization in space for the fluid and choosing a suitable
discretization of the flux through the boundary surface, the non-linear set of
differential equations in Eq. (9.5) may be solved for the discretized unknowns
Ui located at the cell centroid (typically represented by an average value).
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However, Eq. (9.6) is no longer valid when the fluid boundary moves to follow
the motion of a neighboring and deformable structure. Then, the integration
over the control volume is no longer constant in time and its location varies.
Thus, the time derivative cannot be moved outside of the volume integral
since the time-derivative operator ∂/∂t corresponds to a fixed position in
space, whereas the volume moves in space and deforms. When considering
traditional ALE F-S coupling, the fluid mesh has to move and deform to follow
the structural motion. Then, Eq. (9.5) is integrated over a moving volume Vm

as
∫

Vm

∂U
∂t

dV +
∫

Sm

F(U) · ndS = 0 (9.7)

where the motion of the moving volume is given by a suitable mesh rezoning
(i.e., re-meshing) algorithm. Using the Gauss theorem twice and known rela-
tions [244], the first term in Eq. (9.7) may be expressed on a moving volume
as

∫

Vm

∂U
∂t

dV = ∂

∂t

∫

Vm

UdV −
∫

Sm

U(wF · n)dS (9.8)

where wF is the velocity of the fluid mesh. This can be interpreted such
that the integral over the time variation of U on a moving volume equals
the time variation of the integral over the volume minus the flux of U across
the boundaries due to the edge motion. Combining Eqs. (9.7) and (9.8), the
integral on local conservative form over a moving volume reads

∂

∂t

∫

Vm

UdV +
∫

Sm

[F(U) · n − U(wF · n)] dS = 0 (9.9)

where it is observed that the moving mesh introduces an additional flux term
corresponding to the flux of U through the boundary of the volume due to
the mesh motion. Since this formulation uses an observation frame which is
not fixed in space (Eulerian) nor moves with the material (Lagrangian), but
has an arbitrary motion to follow specific boundary condition, this approach is
known as the arbitrary Lagrangian-Eulerian (ALE) formulation (also known
as the dynamic mesh formulation within the field of fluid mechanics). In the
particular case of a FV discretization, the numerical fluxes in Eqs. (9.6) and
(9.9) are typically computed using Riemann solvers [88].

9.3.3 FSI algorithms in EUROPLEXUS

Despite the fact that node-centred finite volumes (NCFVs) may be applied for
both the strong and weak approach, this thesis focuses only on cell-centred
finite volumes (CCFVs) because recent research (see e.g. [94]) considers this as
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the most promising formulation (especially if structural failure is of interest).
In the particular case of representing the fluid sub-domain with CCFVs, the FV
mesh looks similar to a FE mesh. However, all state variables are discretized at
the volume centres [130]. From a practical point of view, CCFV discretization
is convenient since the same computational grid can be used as in the FE for-
mulation. However, the nodes contain no relevant information other than their
Cartesian coordinates used to compute the individual computational volumes
since all computations are performed at the centre of each computational cell
(thereby the name cell-centred finite volume).

Using the traditional ALE formulation in the fluid sub-domain, the simplest case
is obtained by using a nodally conforming mesh. This is illustrated in Figure
9.3a for a shell type of structure S and a fluid F in 2D. Then, each structural
node corresponds to a fluid node and the respective nodes are superposed,
i.e., having the same coordinates and the nodes may be either merged or
distinct. The FSI is then enforced by using the weak approach through a
direct application of the fluid pressure forces to the structure without using any
constraints. These pressure forces are assembled with other potential external
forces F ext and subsequently used to calculate the dynamic equilibrium in
Eq. (9.2). The motion of the ALE nodes at the F-S interface are restricted to
follow the motion of the structure and the mesh velocities are governed by the
following compatibility condition

wF = wS = vS (9.10)

ensuring that the structure and fluid meshes move and deform together at the
F-S interface (see Figure 9.3a). Thus, the fluid transmits a pressure force to the
structure while the interaction only occurs during the motion of the structure,
which again is influencing the numerical flux in the fluid at the F-S interface.
This is the reason for the name weak coupling.

The weak approach is also applicable in the case of nodally non-conforming
F-S meshes [245]. This particular application may be important in practical
applications, since a finer fluid mesh is often needed (compared to the structural
mesh) to obtain an accurate pressure field. This is often the case when the
structure is modeled using shell elements [94]. Figure 9.3b illustrates the so-
called hierarchic approach which is considered convenient, since each structural
node at the F-S interface corresponds to a fluid node. The opposite is not
advisable since the stability step in the fluid elements is usually larger than in
the structural elements, and non-matching nodes and a coarser fluid mesh may
produce gaps and overlaps at the F-S interface. Eq. (9.10) is still valid for the
matching (or conforming) nodes. However, at a non-matching fluid node it is
necessary to use the corresponding structural point S∗ (see Figure 9.3b) and
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(a) (b)

Figure 9.3: Compatibility of fluid and structure mesh velocities: (a) conforming
and (b) non-conforming mesh [94]. Note that the fluid (F) and structural (S) nodes
are actually superposed, but are shown separately to ease the visualization.

the mesh velocity is given by

wF = wS∗ = vS∗ = N1wS1 + N2wS2 (9.11)

where the velocity vS∗ of the structural point is expressed in terms of nodal
structural degrees of freedom (dofs) and suitable shape functions Ni.

The weak approach may also be used in scenarios where structural failure
and fragmentation are of interest. Since the velocities are discretized at the
volume centres (not at nodes) and represent the average value of the entire
volume for CCFVs, the neighboring fluid meshes on either side of the structure
can be generated as a continuous mesh (see Figures 9.4b and 9.5a). That is,
assuming that fluid nodes are located at the same positions on either side of the
structure, these nodes can be merged together independently of whether the
fluid mesh are conforming or non-conforming and merged with the structure.
Each CCFV then transmits the pressure force to the structure until an element
is eroded from from the computation. Then, the fluid flow is allowed to pass
freely through the failed structural element.

In the particular case of conforming F-S nodes, the simplest strategy is to merge
each structure and fluid node along the boundary (Figure 9.4a). Then, the
pressure forces computed in the CCFV act directly upon the structure using
the force assembly procedure in Eq. (9.2). The pressure force contribution
from the respective CCFV is computed using a pressure × length (area in 3D)
computation (see Figure 9.4a). That is, for each volume with a pressure p the
force fp is given by

fp = pLnS (9.12)
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operating along a length L with a unit normal nS . This force is equally
distributed to the structural nodes on L, and is therefore contributing to the
motion of the structure.

(a) (b)

Figure 9.4: Weak approach for a nodally conforming F-S mesh using CCFVs in the
fluid sub-domain: (a) fluid sub-domain on one side and (b) fluid sub-domain on both
sides [94].

As discussed earlier for the non-conforming case, only some fluid nodes on
the F-S interface are matching the structural nodes (Figure 9.5). Since the
residual fluid nodes cannot be merged with the structure, the FSI algorithm
is then independent of one chooses to merge the matching F-S nodes or not.
Figure 9.5a illustrates an example where the matching F-S nodes are kept
distinct. Except from this, the only difference from the conforming case is the
distribution of fluid pressure forces to the structural nodes. The difference may
be explained using Figure 9.5b, where the fluid pressure in the ith CCFV is
working over a length Li (area in 3D) resulting in a pressure force fp acting on
point Ci (located at the centre of the FV) along the structural element’s unit
normal nS , i.e.,

fp,i = piLinS (9.13)

where the structural unit normal nS coincide with the normal to the fluid
face Li. There is, however, no structural node at point Ci which introduces
the need to choose an appropriate method to distribute the pressure to the
neighboring structural nodes. This is done by using the fraction of the lengths
on each side of Ci, i.e.,

fp,Ai = (LBi/LS)fp,i , fp,Bi = (LAi/LS)fp,i (9.14)

As discussed in Section 9.3.1, the FSI algorithms using an ALE formulation
of the fluid sub-domain suffer during large deformations and rotations of the
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(a) (b)

Figure 9.5: Weak approach for a nodally non-conforming F-S mesh using CCFVs
in the fluid sub-domain: (a) hierarchic approach with two (continuous) fluid meshes
and (b) distribution of pressure forces [94].

structure. The mesh rezoning algorithms are then unable to maintain a regular
fluid mesh, resulting in loss of accuracy and the simulation may be aborted.
In an attempt to overcome such limitations a somewhat different approach
to FSI is introduced, i.e., the embedded mesh method. This method uses a
Lagrangian formulation for the structure and an Eulerian formulation of the
fluid, where the two sub-domains are discretized independently of each other.
The structural mesh is then embedded (or immersed) in a regular Eulerian
fluid mesh (see Figure 9.6) and all difficulties related to the mesh rezoning and
entangled fluid meshes are therefore avoided since the fluid mesh is fixed. Since
the CCFV formulation evaluates the numerical fluxes at the face centres, it is
more convenient to search for coupled faces located inside the influence domain
(illustrated as small squares in Figures 9.6 and 9.7) rather than searching for
coupled fluid nodes. To establish the FSI conditions it is therefore necessary to
determine which of the fluid faces that are located at the F-S interface. This
is carried out by placing spheres with a given radius (large enough to include
the fluid faces at the F-S interface) at each structural node. The spheres are
then connected by quadrangles in 2D (or cones, prisms and hexahedra in 3D)
creating an area (volume in 3D) around the structure. This is defined as the
influence domain and contains the coupled F-S faces (see Figure 9.6a). As
the computation proceeds the structure moves and deforms, resulting in the
need to continuously updated the faces in the influence domain. Fast search
algorithms for the identification of the current F-S faces are therefore essential
to keep the computational cost reasonable. It should be noted that too small
radius of the spheres allows for spurious flux across the structure, while too
large radius link too much of the fluid to the motion of the structure. Thus, the
choice of the radius influences the accuracy and CPU cost of the solution.

The basic idea for the weak approach is the same in the embedded method as
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(a) (b)

Figure 9.6: Weak coupling using CCFVs in the embedded FSI approach: (a) faces
in the influence domain and (b) calculation of the pressure drop force f∆p [94].

in the traditional ALE methods, i.e., pressure forces in the fluid are computed
and then transmitted to the structure rather than imposing certain conditions
on the particle velocities. Then, with reference to Figure 9.6b, the coupled face
f separates the two volumes V1 and V2 with pressures p1 and p2, respectively.
The pressure drop force f∆p is then evaluated as

f∆p = (p1 − p2)Lnf (9.15)

where L is the length (area in 3D) of the face and nf its unit normal. The force
is then distributed from point S∗ of the structure closest to the face centre
(Figure 9.7a) and to the nodes like in Eq. (9.14), i.e.,

f∆p,A = (LB/LS)f∆p , f∆p,B = (LA/LS)f∆p (9.16)

where LS = LA + LB . Finally, to avoid spurious leakage of the fluid through
the structure, it is necessary to set the numerical fluxes of mass and energy to
zero across faces in the influence domain (indicated as a thick shaded line in
Figure 9.7b). A classification of the discussed FSI algorithms is presented in
Table 9.2.

Table 9.2: A classification of FSI algorithms [130].

FSI
algorithm

FSI
detection

Basic Limited structural failure, moderate rotations

Embedded Structure can fail, arbitrary rotations

FSI
enforcement

Strong Constraints on fluid and structure velocities
are imposed, e.g. by Lagrange multipliers

Weak Pressure forces are transmitted from the fluid
(slave) to the structure (master) and structure
motion provides weak feedback on the fluid
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(a) (b)

Figure 9.7: Forces and blockages in embedded FSI with weak coupling with CCFV:
(a) F-S coupling force and (b) blocking of fluxes [94].

9.4 Uncoupled FSI approach

First, numerical simulations using the uncoupled FSI approach are performed to
evaluate the performance of the computational models in each sub-domain and
to establish a basis of comparison to the subsequent fully coupled simulations.
Purely Eulerian simulations are carried out to evaluate the fluid sub-domain in
predicting the pressure histories measured during the massive plate tests in
Section 8.3.2. Then, the loading from the massive plate tests in Section 8.3.2
will be used in purely Lagrangian simulations to evaluate the structural sub-
domain in predicting the observed dynamic response during the flexible plate
tests in Section 8.3.4. Thus, these simulations make the inherent assumption
that the pressure is unaltered by the structural motion, and vice versa.

9.4.1 Eulerian simulations

Since the SIMLab Shock Tube Facility (SSTF) was found to produce uniform
shock waves over the cross-section in Section 8.3.2, these experiments are
basically a 1D problem. The air in the fluid sub-domain was therefore discretized
as a 1D model using cell-centred finite volumes (TUVF) with a cell size of 10
mm. The diaphragm burst was assumed to be instantaneous and the firing
section was not explicitly included in the numerical model. This implied that
the initial discontinuity between the driver and driven sections was located at
the beginning of the driven section at time t = 0. The cell size was determined
based on a sensitivity study which showed that this mesh size is sufficient
to capture the near instantaneous rise in pressure and distinct peak reflected
pressure (see Figure 9.8). Due to the discrete nature (i.e., spatial discretization)
of the data sampling in the numerical solution, discontinuities are represented
by a finite slope since the pressure values are only defined at the centre of each
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computational cell. Variations can therefore not occur in less than one cell
size.
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Figure 9.8: Influence of cell size on the near instantaneous rise time and peak
reflected pressure in test R27-40.

Stability in the convection phase of the explicit solution in time was ensured by
using a Courant-Friedrichs-Lewy (CCFL) coefficient of 0.75. This was to ensure
that the exchange of flux only occurred between neighbouring cells, i.e., the
fluid material could not be transported through more than one computational
cell during one time step ∆t < CCFL∆L/cmax where ∆L is the length of the
cell and cmax is the maximum wave speed at the current time step. The air was
modelled using the EOS for the ideal gas material (GAZP) in Eq. (6.2), and the
initial conditions for each simulation were taken from the massive plate tests in
Table 8.1. The solution was obtained by using an Eulerian framework assuming
a regular and fixed mesh with rigid boundary conditions at the fluid envelope
(i.e., no deformation of the plate) and using the approximate Harten-Lax-van
Leer-Contact (HLLC) Riemann solver proposed by Toro [88] to calculate the
numerical fluxes. It is noted that TUVF in EPX operates with a second order
accuracy in time and first order accuracy in space for the HLLC solver [130].
In this approach, the computational domain is basically considered as many
neighboring shock tubes to estimate the fastest signal velocity emerging from
the initial discontinuity at the interface between adjacent cells. The numerical
solution assumed an inviscid flow by using the Euler equations in Eq. (9.5) and
will therefore serve as an idealized solution with zero energy loss.

Figure 9.9 compares the blast properties in the experiments and numerical
simulations, while Figure 9.10 shows a comparison of the pressure histories for
the representative tests discussed earlier in Section 8.3.2. The blast properties
from the simulations in Figure 9.9 were extracted and calculated following the
same procedure as in the experiments. In most of the cases, there is a good
agreement between the numerical and experimental results. However, there
seems to be a trend of increasing deviation at peak reflected overpressures
pr,max larger than 800 kPa (i.e., in test R27-60, R27-75, and R77-25 to R77-75).
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Figure 9.10 also confirms this trend. That is, the pressure histories are in
good agreement in terms of the timing and magnitude of the incident pressures
(Figure 9.10a-f), while the peak reflected pressures start to deviate from the
numerical simulations at approximately 800 kPa (Figure 9.9a and Figure 9.10d-
f). Although the curves are shifted in time such that the time is equal to zero
when the shock wave arrives at Sensor 1, the timing of the direct jump from
ambient pressure to peak reflected pressure at Sensor 3 and the recordings of
the incident and reflected waves at Sensors 1 and 2 corresponds well with the
experimental measurements. This indicates that the simplified Eulerian model
captures most of the events occurring in the experiments. However, there
are also some physical phenomena that may not be predicted by this model.
Possible explanations for these deviations may be a minor leakage of pressure
in the vicinity of the massive steel plate during the tests, the assumption of an
instantaneous release of the high pressures in the simulations, friction against
the interior walls of the tube, or a combination of all these events.
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Figure 9.9: Comparison of numerical and experimental results in terms of the blast
parameters as a function of driver length and driver pressure. The time window of
interest is limited to the positive phase measured by Sensor 3: (a) peak reflected
overpressure pr,max, (b) Mach number Ms, (c) positive phase duration td+ and (d)
reflected impulse ir+. The position of the pressure sensors is shown in Figure 8.1a-c.
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Figure 9.10: Representative pressure histories from experiments (Sensors 1-3) and
corresponding numerical simulations in EPX: (a) R27-05, (b) R77-05, (c) R27-20, (d)
R77-20, (e) R27-75 and (f) R77-75.

A comparison of experimental and numerical results in terms of the pressure
propagation downstream the diaphragm would be useful in an attempt to
identify the governing parameter for the observed deviations. Unfortunately,
the number of sensors were limited by the available channels in the data
acquisition system which at the time of these experiments consisted of 12
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channels. The experimental setup was therefore only capable of measuring
the pressure in Sensors 1-12 during the massive plate tests (see Figures 8.1a
and 8.1c). However, the remaining tests with flexible plates enabled the
measurement of the pressure at 8 different locations downstream the tube (see
Figure 8.1b). A comparison of the numerical and experimental results at these
locations are therefore shown in Figure 9.11 for test D77-05 (Figure 9.11a),
D77-15 (Figure 9.11b), D77-25 (Figure 9.11c) and D77-35 (Figure 9.11d). Note
that the curves were shifted in time such that the time is equal to zero when
the shock wave arrives at Sensor 13.
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Figure 9.11: Comparison of experimental and numerical results in terms of the
recorded overpressure at Sensors 13, 15, 17 and 1: (a) D77-05, (b) D77-15, (c) D77-25
and (d) D77-35. Recall that the respective sensors were positioned 0.97 (Sensor 13),
3.70 (Sensor 15), 10.51 (Sensor 17) and 15.85 m (Sensor 1) downstream the firing
section (see Figure 8.1b).

It is evident that the numerical model is unable to predict the experimental
measurements closest to the firing section (i.e., Sensor 13). This indicates that
some directional energy seems to be lost in the beginning of the tests due to
diaphragm opening effects, while the reduced shock velocity point towards
friction effects against the interior tube walls. The reduced shock velocity is
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observed as a delay in time-of-arrival at the respective sensors compared to the
numerical simulations and this trend increases with distance downstream the
diaphragms. In reality there are some energy lost due to an initial 3D flow in
the vicinity of the firing section during the diaphragm opening process. The
diaphragm burst starts by tearing at the centre followed by diagonal tearing and
folding back of the petals formed during the opening process. This results in a
high-velocity jet and 3D flow of the driver gas originating from the expanding
hole. The finite opening time causes the shock wave to travel several tube
diameters before the blast wave is fully formed (see Section 6.4.6), and this
effect is more evident at increasing firing pressures. Increasing driver pressures
involve more diaphragms of larger thicknesses resulting in a slower diaphragm
opening process preventing satisfactory folding back and increased obstructed
flow during the opening process. This is also indicted in Figure 9.11 where
it seems that the blast wave is formed somewhere between Sensors 13 and 15
in the experiments. The issue related to loss of directional energy during 3D
flow in the diaphragm opening process can be overcome by using a 3D model
including the diaphragm [119], or by reducing the shock strength and delaying
the reflected rarefaction wave by increasing the driver length and reducing the
firing pressure to obtain the experimental pressure profile in the vicinity of the
test specimen [120]. Still, it must be emphasized that increasing the driver
length and reducing the firing pressure will alter the physics of the wave pattern
upstream the test specimen. A more detailed investigation of the diaphragm
opening process and friction against the interior walls are considered beyond
the scope of this thesis. Modelling and simulation of the diaphragm opening
process would also require a characterization of the Melinex material. The
numerical model is therefore considered sufficient for qualitative studies on the
influence of FSI effects on the dynamic response of blast-loaded plates.

Finally, it is also observed that the numerical simulations predict the secondary
and tertiary reflections observed in the experiments (Figure 9.10e-f). However,
the tertiary reflections occur earlier in the simulations. Plausible explanations
for this observation may again be friction along the interior walls or that the
solenoid valves in the firing section remain open during testing. Both of these
explanations allow for loss of directional energy (and velocity) when the waves
reflect at the rear end of the driver section. Note that the tertiary reflection in
tests R77-60 and R77-75 was observed before the reflected pressure returned
to ambient conditions in the simulations (Figure 9.10f). This implies that the
corresponding values in Figure 9.9c are somewhat underestimated, since the
end of the positive phase duration in these simulations was taken as the point of
the tertiary reflection. Figure 9.12 contains pressure and density profiles along
the longitudinal axis of the tube at characteristic times for representative tests.
R77-20 (Figure 9.12a) follows to a large extent the schematic representation
given in Section 6.4.1, while R77-75 (Figure 9.12b) shows that the relative
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strength between the left-running reflected shock wave and the remaining
right-running flow (contact surface and rarefaction waves illustrated as region
E in Figure 6.13a) produces a secondary reflection at the right end of the
tube after 35 ms to obtain pressure equilibrium. This is the same secondary
reflection as that observed in Figure 9.10f, where it should be noted that the
time is corrected for the time of arrival (ta ≈ 21 ms) at Sensor 1 in Figure
9.10f. The secondary reflections occur before the reflected shock wave interacts
with the end of the driver section (at x = 0 in Figure 9.12).
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Figure 9.12: Pressure and density distribution along the longitudinal axis of the
tube illustrating the wave pattern for representative tests: (a) pressure in R77-20, (b)
pressure in R77-75, (c) density in R77-20 and (d) density in R77-75.

This may be explained by studying the density profiles along the tube, because
the contact surface represents the mass motion of the gas compressed by
the shock wave and therefore also a jump in density. Figures 9.12c-d show
that the secondary reflection depends on the momentum and timing of the
impact between the contact surface and the reflected shock wave. Although the
remaining tail of the right-running wave has smaller magnitudes in pressure
compared to the reflected left-running shock front (Figures 9.12a-b), the velocity
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of the reflected shock wave is decreasing as it travels through the remaining
tail of the right-running wave. Moreover, depending on the relative strength
in density at the interface between the right-running contact surface and the
left-running reflected shock wave, there may be an increase of density behind
the reflected shock wave to restore pressure equilibrium (Figure 9.12d). This
is observed as a second peak on the pressure measurements at the massive
plate in Figure 9.10e-f during the exponential decay to ambient conditions, and
illustrates the importance of choosing a suitable combination of driver length
and driver pressure to produce pressure profiles similar to that in idealized
blast environments.

9.4.2 Lagrangian simulations

The numerical modelling of the flexible plates follows to a large extent the same
approach as in Section 5.2.1. That is, the clamping frames, bolts and plate were
represented using a Lagrangian discretization of the entire clamping assembly
(see Figure 9.13). The plate was modelled with a mesh size of approximately
10 mm (Figures 9.13b and 9.13d) and 4-node Reissner-Mindlin shells (Q4GS)
with 6 dofs per node and 20 Gauss integration points (5 through the thickness).
The mesh size was determined based on a sensitivity study which showed that
the global deformation converged at an element size of 10 mm. Moreover, the
material behaviour of the plates was governed by the VPJC model with material
and physical constants from Table 9.1 and Table 4.2. Failure was modelled
using element erosion and was activated when all the integration points in the
respective element reached the critical value of unity for the damage parameter
in Eq. (4.36). The bolts and clamping frames were represented by 8-node brick
elements (CUB8 ) with 8 Gauss points and the VPJC model with a high elastic
limit to ensure elastic behaviour using the physical constants for steel in Table
4.2.

As in Section 5.2.1, the steel mounting frame and the bolts were modelled as
one component (Figure 9.13a). The bolts were modelled as stress-free while an
external pressure was applied in the contact area between the bolt head and the
clamping frame to simulate the pre-tensioning of each bolt (see Figures 9.13c
and 9.13d). The contact pressure was determined using the approach suggested
in Ref. [157] where the pre-tensioning force Fp = Mt/kφ in each bolt was found
from the applied torque (Mt = 200 Nm), bolt diameter φ, thread geometry
and friction in the thread engagements and under the bolt heads. Based on the
studies in Section 5.2.1, the thread geometry and friction were accounted for
by setting the friction coefficient k to 0.18. The contact area was set to 1107
mm2 which corresponded to the area in magenta at the surface of the clamping
frame in Figures 9.13c and 9.13d. Dividing the pre-tensioning force (Fp = 46.6
kN) in each bolt by this contact area resulted in a contact pressure of 42.1
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(a) (b) (c)

(d) (e) (f)

Figure 9.13: Numerical model showing (a) steel mounting frame and bolts as one
component (in cyan), (b) plate specimen is added (in green), (c) complete assembly
including the clamping frame (also in cyan) and contact area between bolt heads
and clamping frame (in magenta) used to model the effect of the pre-tensioning
of the bolts, (d) complete assembly with pre-formed holes in the plate specimen,
simplified model using only the exposed area of the plate (e) without holes and (f)
with pre-formed holes. The black markers in (e) and (f) illustrate the nodes fixed
against translation in all directions.

MPa between the bolt head and the clamping frame. Contact between the
plate, bolts and frames was modelled using a node-to-surface contact algorithm
(GLIS) using slave nodes and master surfaces where contact was enforced by
Lagrangian multipliers when a slave node penetrated a master surface. The
contact then occurs along sliding surfaces, where the nodes of the plate served
as the slave while the master surfaces were defined as the mounting frame and
the clamping frame. An additional contact condition was also needed to avoid
artificial penetration of the plate into the mounting frame. That is, a third
contact condition was included where the master surface consisted of the shell
elements along the perimeter of the exposed area while the slave nodes were
the nodes of the mounting frame in the same area. The thickness of the plate
was accounted for by applying a gap of 0.4 mm (i.e., half the plate thickness)
between the plate and clamping frames to avoid initial penetrations in the
contact surfaces. Friction was activated between the plate and the frames by
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using the same coefficients as in Section 5.2.1, i.e., a static and dynamic friction
coefficient of 0.15 and 0.10, respectively.
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Figure 9.14: Idealized pressure histories imposed on the thin steel plates based
on the massive plate tests in Section 8.3.2: (a) R77-05, (b) R77-15, (c) R77-25, (d)
R77-35 and (e) R77-60. The idealized curves are found using curve-fitting of the
Friedlander curve to the experimental data from Sensor 3 (see also Table 8.5).
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Figure 9.15: Idealized pressure histories imposed on the thin aluminium plates
based on the massive plate tests in Section 8.3.2: (a) R27-05, (b) R27-7.5 and (c)
R27-10. The idealized curves are found using curve-fitting of the Friedlander curve
to the experimental data from Sensor 3 (see also Table 8.5).

The loading was applied using the pressure histories from the massive plate
tests in Section 8.3.2 with similar blast intensities as the flexible plate tests.
This was imposed as a uniformly distributed pressure on the exposed area
of the plate and idealized as shown in Figures 9.14 and 9.15. Thus, these
simulations make the inherent assumption that the pressure is unaltered by
the plate deformation. Finally, as in Section 5.2.3, the influence of boundary
conditions was also investigated by comparing the dynamic response in the
clamped assembly to that in a simplified model. The simplified model contained
only the exposed area of the plate where all nodes located along the perimeter
were fully fixed against translation in all directions (see Figures 9.13e and 9.13f).
Note that the investigations and discussions on the influence of mesh size and
boundary conditions are limited to the thin steel plates in this section, since
the aluminium plates contribute with limited additional information compared
to the additional amount of text in describing more or less the same qualitative
trends. The relevant simulations of the aluminium plates using the uncoupled
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approach will therefore be presented during the investigations of FSI effects in
Section 9.5.1.
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Figure 9.16: Mid-point deflection in the simulations using the uncoupled approach:
(a) comparison of experimental data (dashed curves) and the clamped assembly for
plates without holes, (b) clamped assembly versus simplified model, (c) comparison
of experimental data and the clamped assembly for plates with pre-formed holes and
(d) clamped assembly versus simplified model in simulations with pre-formed holes.
The numerical results are obtained using the models presented in Figure 9.13.

The numerical results of the thin steel plates are compared to the experimental
data in terms of mid-point deflection versus time in Figure 9.16, while the
corresponding maximum dz,max and permanent dz,p mid-point deflections are
summarized in Table 9.3. A negative value of ∆dz,max in Table 9.3 implies that
dz,max was larger in the simulation compared to the corresponding experiment.
In general, the mid-point deflections are overestimated in both the clamped
assembly and simplified model for the plates without holes (Figures 9.16a-
b), while the plates with pre-formed holes are in better agreement with the
experimental data (Figure 9.16c-d). There also seems to be a slight trend
of increased deviations between the experimental and numerical results with
increasing blast intensities for the simulations of plates without holes (Table
9.3). As expected, the deflections in the simplified model were slightly less
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than those in the clamped assembly (Figures 9.16b and 9.16d). The simplified
model also resulted in larger oscillations around the permanent equilibrium
configuration after the elastic rebound (Figures 9.16b and 9.16d). It is important
to emphasize that, although the simplified model is closer to the experimental
data in Table 9.3, this model does not necessarily provide better predictions
than the clamped assembly. This is due to the fact that the loading neglects
FSI effects (Figure 9.14) and is therefore conservative. Thus, the loading may
be overestimated in these simulations.

Table 9.3: Comparison of experimental and numerical results in terms of mid-point
deflections.

Test

Experimental results Numerical results
Clamped assembly Simplified model

dz,max dz,p dz,max dz,p ∆dz,max dz,max dz,p ∆dz,max
[mm] [mm] [mm] [mm] [%] [mm] [mm] [%]

D77-05 15.7 11.4 17.1 14.3 -8.9 15.4 12.9 1.9
D77-15 25.0 22.1 28.0 25.9 -12.0 26.0 24.3 -4.0
D77-25 30.8 28.4 33.7 31.8 -9.4 31.6 29.9 -2.6
D77-35 36.2 34.6 43.0 41.2 -18.8 40.6 39.1 -12.2
D77-60 45.8 44.5 52.1 50.5 -13.8 49.5 48.3 -8.1
P77-05 18.3 14.2 18.4 15.4 -0.5 17.7 14.5 3.3
P77-15 29.5 26.6 31.1 28.5 -5.4 30.3 27.3 -2.7
P77-25 37.2 34.9 37.5 35.2 -0.8 36.7 34.1 1.3
P77-35 N/A* N/A* 49.4 46.6 N/A* 48.7 46.0 N/A*

*Experiment resulted in complete failure along the diagonals.

The good agreement with the experimental observations for both the clamped
assembly and the simplified model in the simulations of the plates with pre-
formed holes, may indicate a limited effect of the boundary conditions in these
tests. This observation is also supported by a visual inspection of the in-plane
sliding at the support in tests D77-35 and P77-35 (see Figure 9.17), where
the maximum horizontal and vertical sliding at the support are approximately
1 mm (Figures 9.17a and 9.17b) and 0.5 mm (Figures 9.17c and 9.17d) for
the D77-35 and P77-35 tests, respectively. Thus, the pulling-in effect in test
D77-35 is approximately twice that in test P77-35. Similar trends were also
observed for the equivalent stress σeq in the clamped assembly and simplified
model in test P77-35 (see Figure 9.18b), while there seems to be a more distinct
difference in the distribution between the two numerical models in test D77-35
(see Figure 9.18a).

Even though the numerical results were encouraging, neither the clamped
assembly or the simplified model were able to predict the failure observed
in test P77-35 (Figures 9.16c and 9.16d). This is illustrated in Figure 9.19
indicating that a mesh size of 10 mm was too large to predict the same extent of
localization in the extremities of the pre-formed holes as in the tests. However,
it is worth noting that the simplified model (for both P77-35 and D77-35) in
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Figure 9.19 predicts more or less the same damage evolution as in the exposed
area of the clamped assembly. This indicates that the simplified model could be
used in a qualitative study on the influence of mesh size on the failure pattern
of the plates with pre-formed holes.

(a)

(b)

Figure 9.17: In-plane sliding in the horizontal (left) and vertical (right) directions of
the clamped assembly using 1/4 of the geometry: (a) D77-35 and (b) P77-35. Fringe
colors represent the in-plane displacement (in mm) at maximum deflection.

(a) (b)

Figure 9.18: Equivalent stress σeq in the clamped assembly (left) and simplified
model (right) using 1/4 of the geometry: (a) D77-35 and (b) P77-35. Fringe colors
represent σeq (in MPa) at maximum deflection.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9.19: Inspection of the damage evolution using 1/4 of the model: clamped
assembly in test D77-35 (a) without and (b) with transparent clamping frame,
simplified model of test D77-35 in (c) perspective and (d) front view, clamped assembly
in test P77-35 (e) without and (f) with transparent clamping frame, simplified model
of test P77-35 in (g) perspective and (h) front view. Fringe colors represent the
damage parameter in Eq. (4.36) after the permanent deflection is reached.

The influence of the mesh size on the damage evolution was therefore studied
by uniformly refining the simplified model of test P77-35. Figure 9.20 shows
the chosen mesh sizes of 5.0 (Figure 9.20a), 2.5 (Figure 9.20b), 1.25 (Figure
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9.20c) and 0.8 mm (Figure 9.20d). A simulation with 0.8-mm mesh was also
carried out for test P77-25 since this was at the limit between initiation and
growth of the cracks (see Figure 8.19c). Note that the plate itself is barely
visible in Figure 9.20c and 9.20d due to the dense mesh.

(a) (b)

(c) (d)

Figure 9.20: Uniform refinement of simplified model with pre-formed holes showing
a mesh size of (a) 5 mm, (b) 2.5 mm, (c) 1.25 mm and (d) 0.8 mm. The black markers
illustrate the nodes fixed against translation in all directions.

Figure 9.21 compares the damage evolution at 4.0 ms in test P77-35 with
5.0-mm, 2.5-mm and 1.25-mm mesh size, while Figures 9.22 and 9.23 give
a more detailed presentation of the 0.8-mm mesh for tests P77-35 and P77-
25, respectively. It is evident that larger elements diffuse the failure process
and are not capable of predicting the localized damage in the extremities of
the pre-formed holes. This is expected due to the discrete nature of the FE
method. Although failure is observed at a mesh size of 1.25 mm (Figure 9.21c),
a mesh size of 0.8 mm is necessary to recreate the failure patterns observed
in the experiments (see Figure 9.22). In fact, compared to the experimental
observations in Figures 8.19 and 8.20, the 0.8-mm mesh predicted almost
exactly the same failure pattern in test P77-35 while the crack initiation in
test P77-25 was slightly underestimated. It is worth noting that a 0.8-mm
mesh size is at the very limit of what is recommended for shell elements when
activating thinning of the element and that further refinements should be
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carried out with solid elements. It should also be emphasized that the choice
of the failure parameter in Section 9.2 is considered to be non-conservative,
because the value of Wc was determined at the force level where failure was
observed in the tension test. This is the force level where complete tearing
(through-surface-crack) occurs, while failure is actually assumed to initiate
inside the specimen at an earlier point in time.

Table 9.4 is included to illustrate the increased CPU time when (uniformly)
refining the mesh, where the CPU costs, number of time steps and critical time
step ∆tcr are compared after 4.0 ms. Even though the 0.8-mm mesh predicted
almost exactly the same crack growth as in the experiments, the corresponding
increase in CPU cost is significant and should be considered when performing
fully coupled FSI simulations. The computer used to perform these simulations
was a stationary PC with an Intel(R) Core(TM) i7-6700 processor and 32 GB
of RAM running on the Windows 7 (64-bits) operating system. All simulations
were limited to in-core single-processor calculations.

Table 9.4: Illustration of increased CPU cost (at t = 4.0 ms) during uniform mesh
refinement of the simplified model in test P77-35.

Mesh size [mm] CPU cost Time steps ∆tcr [µs]
10.0 40.8 s 2919 1.34
5.0 3.4 min 5861 0.67
2.5 27.2 min 11,920 0.33
1.25 3.8 h 24,188 0.16
0.8 18.8 h 36,293 0.08
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(a)

(b)

(c)

Figure 9.21: Damage evolution at t = 4.0 ms in the simplified model for test P77-35
with different mesh size: (a) 5.0-mm, (b) 2.5-mm and (c) 1.25-mm mesh. Note that
the element outlines are hidden (left) to improve the visibility of the damage contours.
Fringe colors represent the damage parameter in Eq. (4.36).
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(a)

(b)

(c) (d)

Figure 9.22: Crack growth in the simplified model for test P77-35 and 0.8-mm mesh
size: (a) t = 0.98 ms, (b) t = 1.18 ms, (c) t = 1.52 ms and (d) t = 2.18 ms. Note that
the element outlines are hidden (except in (a) and (b) right) to improve the visibility
of the damage contours. Fringe colors represent the damage parameter in Eq. (4.36).
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(a)

(b)

(c)

Figure 9.23: Crack growth in the simplified model for test P77-25 and 0.8-mm mesh
size: (a) t = 1.18 ms, (b) t = 1.52 ms and (c) t = 4.0 ms. Note that the element
outlines are hidden (left) to improve the visibility of the damage contours. Fringe
colors represent the damage parameter in Eq. (4.36).
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It is clear that a fine mesh size is necessary to predict the localization and crack
growth observed during the tests (see Figures 9.21, 9.22 and 9.23). However,
since the increase in CPU cost was significant when uniformly refining the mesh
(see Table 9.4), it is desirable to evaluate the capabilities and potential reduction
in CPU time when using adaptive mesh refinement (AMR) in the plate. Recent
advancements in EPX [95–97] allow for AMR based on a user-defined threshold
criterion, where the AMR will be driven by the damage evolution in Eq. (4.36)
in the following. That is, the mesh refinement occurs at user-defined levels
of the damage parameter and at successive levels of refinement within the
threshold range of Dmin ≤ D ≤ Dmax. It is important to note that for this
approach to be useful the mesh should be refined relatively long before the
element is eroded. However, since it is unclear what is considered to be a
suitable damage threshold, it was decided to perform a parametric study on
the influence of the initial mesh size and the lower Dmin and upper Dmax
threshold values in an attempt to find appropriate parameters to be used in
the subsequent simulations.

A basis model was therefore defined with an initial mesh size of 10 mm,
Dmin = 0.005, Dmax = 0.1 and 4 successive mesh refinements. The influence
of the initial mesh size, Dmin and Dmax on the failure pattern in test P77-35
was then investigated by varying these parameters between 3 to 10 mm, 0.005
to 0.02, and 0.05 to 0.2, respectively. The number of successive refinements
was chosen such that the refined element size was approximately equal to
the plate thickness (see Table 9.5), and the elements were eroded when the
damage parameter D reached unity in all integration points. The resulting
failure patterns at 3.0 ms are illustrated in Figures 9.24, 9.25 and 9.26, while
the corresponding CPU costs are summarized in Table 9.5. The CPU costs
are compared to that in the uniformly refined 0.8-mm mesh at 3.0 ms. It
should be noted that these investigations were limited to the tests experiencing
complete failure, because the global response was more or less predicted by the
uniform 10-mm mesh. Moreover, as for the influence of mesh size and boundary
conditions presented earlier in this section, the following is limited to the thin
steel plate in test P77-35 because the same findings were also obtained for the
aluminium plate in test A27-10. The relevant simulations of the aluminium
plates will therefore be presented during the investigations of FSI effects in
Section 9.5.

Figures 9.24, 9.25 and 9.26 illustrate that the AMR technique is capable of
predicting crack initiation and growth in the plate. In almost all combinations
in Table 9.5, the damage localizes at the extremities of the pre-formed holes.
It is also observed a significatnt reduction in the CPU cost when using AMR
compared to the 0.8-mm mesh in Figure 9.20d (see Table 9.5). However,
depending on the mesh size, number of refinements and damage threshold, the
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Table 9.5: CPU cost in test P77-35 (at t = 3.0 ms) using the simplified model with
AMR at the selected combinations of initial mesh size, Dmin and Dmax.

Initial mesh [mm] Dmin Dmax Refinements Refined mesh [mm] CPU cost ∆CPU [%]
0.8* N/A N/A N/A 0.800 14.1 h -
10** 0.005 0.10 4 0.625 3.1 h -78
10 0.005 0.05 4 0.625 6.3 h -55
10 0.005 0.20 4 0.625 0.7 h -95
10 0.010 0.10 4 0.625 2.6 h -81
10 0.020 0.10 4 0.625 2.1 h -85
3 0.005 0.10 2 0.750 3.3 h -77
6 0.005 0.10 3 0.750 2.7 h -81

3*** 0.010 0.05 2 0.750 5.0 h -65
*Uniform 0.8-mm mesh from Figure 9.20d included for comparison of CPU cost.
** Basis model for parametric study.
*** Optimized model after parametric study.

crack grows either along the diagonals (Figure 9.25b) or along the horizontals
and verticals of the centre cross (Figure 9.26). Thus, it is evident that the
damage threshold and initial mesh size have a significant influence on the
failure pattern and to some extent the CPU cost. The value of Dmin should
be sufficiently small to predict the crack growth (Figures 9.24a and 9.24b),
while a large value of Dmax predicts only the initial crack growth in the outer
corners along the diagonals (Figure 9.25c). A failure pattern similar to that
in the experiment (Figure 8.20) and the simulation with a uniform 0.8-mm
mesh size (Figure 9.22) was only observed for Dmax = 0.05 (Figure 9.25b). The
initial mesh size was also found to have a significant influence on the damage
evolution, which indicates that a fine initial mesh and a reduction in successive
refinements are favourable both in terms of crack growth and CPU cost (Table
9.5 and Figure 9.26).

Finally, based on the results in the parametric study, simulations of tests
P77-25 and P77-35 were carried out using the optimized parameters of 3 mm
initial mesh size, Dmin = 0.01, Dmax = 0.05 and 2 successive mesh refinements.
Although a Dmin of 0.005 showed a wider crack in Figure 9.24a, this was only
slightly wider than that with Dmin equal 0.01 (Figure 9.24b). It was therefore
chosen to use the largest value in an attempt to save CPU time. The results
are presented in Figures 9.27 and 9.28 for tests P77-35 and P77-25, respectively.
It is observed that the optimized model predicts the same crack growth as the
uniformly refined mesh in Figure 9.22 for test P77-35, where the CPU cost is
reduced by 65 % when using AMR (Table 9.5). The crack initiation is also
captured in test P77-25 (Figure 9.28), but the initial crack growth from the
experiments (see Figure 8.19c) is not predicted. Again, it is emphasized that
the loading in this uncoupled approach may be overestimated but the results
using AMR based on the damage parameter in Eq. (4.36) are encouraging both
in terms of predicting the observed failure patterns and the reduced CPU cost.
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This indicates that the simplified model with AMR could be used in further
investigations on the influence of FSI effects and pre-formed holes on the failure
pattern of blast-loaded plates.

(a)

(b)

(c)

Figure 9.24: Influence of the lower threshold Dmin on the crack growth when using
AMR in the simplified model for test P77-35 with an initial mesh size of 10 mm and
Dmax = 0.1: (a) basis model with Dmin = 0.005, (b) Dmin = 0.01 and (c) Dmin = 0.02.
The deformed configurations are compared at t = 3.0 ms with (left) and without
(right) mesh lines. Fringe colors represent the damage parameter in Eq. (4.36).
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(a)

(b)

(c)

Figure 9.25: Influence of the upper threshold Dmax on the crack growth when using
AMR in the simplified model for test P77-35 with an initial mesh size of 10 mm and
Dmin = 0.005: (a) basis model with Dmax = 0.1, (b) Dmax = 0.05 and (c) Dmax = 0.2.
The simulations are compared at t = 3.0 ms where the deformed configurations are
shown with (left) and without (right) mesh lines. Fringe colors represent the damage
parameter in Eq. (4.36).
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(a)

(b)

(c)

Figure 9.26: Influence of the initial mesh size on the crack growth when using AMR
in the simplified model for test P77-35 with Dmin = 0.005 and Dmax = 0.1: (a) basis
model with initial mesh size of 10 mm, initial mesh size of (b) 6 mm and (c) 3 mm.
The simulations are compared at t = 3.0 ms where the deformed configurations are
shown with (left) and without (right) mesh lines. Fringe colors represent the damage
parameter in Eq. (4.36).
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(a)

(b)

(c)

Figure 9.27: Crack growth in the simplified model for test P77-35 using AMR
with an initial mesh size of 3 mm, Dmin = 0.01, Dmax = 0.05 and two successive
refinements: (a) t = 1.18 ms, (b) t = 1.52 ms and (c) t = 2.18 ms. The deformed
configurations are shown with (left) and without (middle) mesh lines, and compared
to the experiment (right). Fringe colors represent the damage parameter in Eq. (4.36).
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(a)

(b)

(c)

Figure 9.28: Crack growth in the simplified model for test P77-25 using AMR
with an initial mesh size of 3 mm, Dmin = 0.01, Dmax = 0.05 and two successive
refinements: (a) t = 1.18 ms, (b) t = 1.52 ms and (c) t = 4.0 ms. The deformed
configurations are shown with (left) and without (middle) mesh lines, and compared
to the experiment (right). Fringe colors represent the contour map of the damage
parameter in Eq. (4.36).
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9.5 Coupled FSI approach

Finally, fully coupled FSI simulations are performed to investigate FSI effects
during the dynamic response of the flexible plates and the capabilities of recent
advancements in EPX [96–98] in predicting the observed failure patterns in tests
A27-10, P77-25 and P77-35. First, the shock tube experiments of the flexible
plates without holes presented in Section 8.3.4 are used to study both the ALE
and embedded methods presented in Section 9.3.3. Then, the experience from
these simulations are used to simulate the plates with pre-formed holes. Finally,
the capabilities of fully coupled simulations using adaptive mesh refinement
(AMR) in predicting the observed failure patterns in the respective tests are
investigated.

The coupled simulations presented herein attempt to study the influence of FSI
qualitatively, since the loading was overestimated in the Eulerian simulations
in Section 9.4.1. The results from the fully coupled simulations are therefore
compared to the corresponding results obtained with the uncoupled approach
using the loading from the Eulerian simulations in Section 9.4. The experimental
results from Section 8.3.4 will also be used for comparison to the fully coupled
simulations to ensure that the comparisons are reasonable.

9.5.1 Coupled simulations of flexible plates

As in the purely Eulerian simulations in Section 9.4.1, the air was modelled
using the EOS of an ideal gas. The initial conditions for the fluid sub-domain
were those used in Section 9.4.1, since the basis of comparison is primarily the
uncoupled approach using the loading from the Eulerian simulations. That is,
the initial conditions were taken from tests R27-05, R27-7.5 and R27-10 for
the aluminium plates, while the initial conditions from tests R77-05, R77-15,
R77-25, R77-35 and R77-60 were used for the steel plates (see Table 8.1). Rigid
boundary conditions were assumed at the interior walls and rear end of the
driver section. The blind flange of the tube in Section 9.4.1 was replaced by the
flexible plates from Section 8.3.4 to introduce a moving boundary. The tube
was also extended 0.5 m behind the test specimen to simulate the expanding
volume in the tank. This is illustrated in Figure 9.29 where the green areas
illustrate the absorbing (or non-reflecting) surfaces downstream the plate. Due
to the square geometry of the test specimens, it was necessary to discretize
the air in 3D. It was chosen to distribute the high pressure (red area in Figure
9.29) over 2 × 2 × 6 CCFVs and the mesh was refined in the vicinity of the
test specimen to obtain a conforming mesh of 32 x 32 elements at the F-S
interface. This resembles the converged element and cell size from the mesh
sensitivity studies in Sections 9.4.1 and 9.4.2 which indicated that a mesh of
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approximately 10 mm was sufficient to capture both the steep pressure gradient
over the shock front and also the global displacement in the blast-loaded plates.
The resulting fluid mesh consisted of 116,464 8-node CCFVs (CUVF) where
all the state variables were discretized at the centre of each computational
cell. Both the ALE and the embedded method were used for the coupling at
the F-S interface. The conforming fluid and plate nodes at the F-S interface
were merged when using the ALE method and distinct in the simulations using
the embedded method. Moreover, Giuliani’s [246] mesh rezoning algorithm
was used in the vicinity of the plate when the fluid sub-domain was governed
by the ALE method, while the fluid sub-domain followed a purely Eulerian
formulation in the embedded simulations. As in Section 9.4.1, the numerical
fluxes between adjacent cells were calculated using the second order HLLC
solver of the Euler equations in Eq. (9.5). The fluid and plate were coupled in
all spatial directions according to Eqs. (9.10) and (9.15) (i.e., FSCP = 1), and
the radius defining the influence domain was chosen to be barely larger than
the longest diagonal of the CCFVs. Even though the simplified model seemed
to slightly overestimate the axial restraint at the supports (see Figure 9.16b),
the purely Lagrangian simulations in Section 9.4.2 indicated that this model
captured the same trends as the clamped assembly model. It was therefore
considered sufficient to use the simplified model of the plate (see Figure 9.13e)
in the following for qualitative studies on the influence of FSI effects on the
dynamic response of the blast-loaded plates.

0.77 m

16.20 m

y

z

x

0.50 m

Test specimen

Figure 9.29: Computational mesh for the fully coupled FSI simulations of flexible
plates. Absorbing (green) surfaces downstream the plate simulates the expanding
volume in the tank.

Figure 9.30 compares the mid-point deflections from the ALE and embedded
approaches to those in the uncoupled approaches, while Figure 9.31 contains the
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corresponding pressure histories at Sensor 2. Mid-point dz,max and permanent
dz,p deflections are summarized and compared to the uncoupled approach in
Table 9.6, while the peak reflected overpressures pr,max measured at Sensor
2 are presented in Table 9.7. Positive values of ∆dz,max and ∆pr,max imply
that the values are larger in the uncoupled approach. Experimental data are
also included in Tables 9.6 and 9.7 for completeness. The same results for the
aluminium plates are shown in Figures 9.34 and 9.35. Note that the reflected
pressures reported from the coupled simulations in Table 9.7 correspond to the
first visible deviation from the nearly instantaneous rise in pressure in Figures
9.31 and 9.35. Thus, this is not the maximum pressure measured at Sensor 2.
Also note that the respective tests are only denoted by their material (A, D
or P) and firing overpressure in the following, because all the aluminium tests
operated with a 27-cm driver while the remaining tests used a 77-cm driver.

It is observed that the ALE method predicts larger deformations than the
embedded method (see Figure 9.30 and Table 9.6). Moreover, as expected, a
purely numerical uncoupled approach predicts larger deformations than the
corresponding fully coupled FSI simulations (Figure 9.30a and Table 9.6). This
is most evident for the embedded method. The comparison against the uncou-
pled approach used in Section 9.4.2 (see Figure 9.30b) is somewhat misleading
because the loading is overestimated in the fluid sub-domain compared to the
experiments at pressures larger than approximately 800 kPa (see Section 9.4.1
and Figure 9.9). Thus, due to the significant differences in the loading, caution
should be exercised when comparing the mid-point deflections in Figure 9.30b.
This illustrates that a qualitative and purely numerical investigation of FSI
effects is most reasonable in the following. The comparison between fully
coupled simulations and experimental data in Figure 9.30c should therefore
be treated with some caution and an improvement of the fluid sub-domain is
necessary before quantifying FSI effects in the experiments. However, despite
an almost negligible difference in the predicted loading at Sensor 2 (Figure
9.31a and Table 9.7), it is noted that the mid-point deflections obtained with
the embedded method are closer to the experimental data than those in the
ALE simulations (see Figure 9.30c).

As already discussed in Section 8.3.4, the influence of FSI effects can also be
investigated by comparing the pressure in the vicinity of the plate. Figure
9.31a shows a reduction in the initial peak reflected overpressure in the coupled
simulations, where it is observed a slight trend of an increased reduction
at increasing pressure magnitudes in the steel plate tests (Table 9.7). It is
important to emphasize that Sensor 2 is located upstream the test specimen (see
Figure 8.1b), and that the peak pressure immediately after reflection is often
assumed to be independent of the stiffness of the structure (see e.g. [72]).
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Figure 9.30: Investigation of FSI effects in terms of mid-point deflections in the
fully coupled simulations of steel plates without holes. Both the ALE (left) and the
embedded (right) method are compared to (a) the uncoupled approach using the
loading from Eulerian simulations in Section 9.4.1, (b) the uncoupled approach from
Section 9.4.2 using the loading from the experimental tests and (c) the experimental
data. Note that the curves are shifted in time for improved readability.

Figure 9.31a also shows that the incident (side-on) pressures were in excellent
agreement, indicating that the reduced reflected overpressure may be due to
the deformation of the plates. This is also observed in previous studies which
indicated that the blast mitigation could be related to the induced velocity
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Table 9.6: Comparison of the mid-point deflections in the uncoupled and coupled
simulations obtained from purely numerical studies. Experimental data is included
for completeness.

Test

Experimental results Numerical results
Uncoupled Coupled ALE Coupled embedded

dz,max dz,p dz,max dz,p dz,max dz,p ∆dz,max dz,max dz,p ∆dz,max
[mm] [mm] [mm] [mm] [mm] [mm] [%] [mm] [mm] [%]

D05 15.7 11.4 16.0 13.7 15.3 13.1 4.4 14.2 12.1 11.3
D15 25.0 22.1 27.9 26.1 26.8 25.5 3.9 25.4 23.7 9.0
D25 30.8 28.4 38.4 36.8 37.3 35.7 2.9 34.7 33.5 9.6
D35 36.2 34.6 45.1 43.7 43.5 42.1 3.5 40.4 39.2 10.4
D60 45.8 44.5 57.0 55.9 54.2 53.1 4.9 49.6 48.7 13.0
A05 24.3 22.7 23.6 22.3 19.3 18.0 18.2 18.0 16.6 23.7
A7.5 27.5 26.1 28.8 27.7 24.3 23.5 15.6 23.0 21.9 20.1
A10 N/A* N/A* 37.1 36.3 31.9 31.5 N/A* 30.3 29.6 N/A*

*Experiment resulted in complete tearing along the tearing.
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Figure 9.31: Investigation of FSI effects in terms of pressure at Sensor 2 in the
fully coupled simulations of steel plates without holes. Both the ALE (left) and
the embedded (right) method are compared to (a) the loading obtained from the
Eulerian simulations in Section 9.4.1 and (b) the loading measured during the flexible
plate tests in Section 8.3.4. Note that the curves are shifted in time for improved
readability.
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Table 9.7: Comparison of the reflected pressure at Sensor 2 in the uncoupled and
coupled simulations obtained from purely numerical studies. Experimental data is
included for completeness.

Test

Experimental results Numerical results
Uncoupled Coupled ALE Coupled embedded

pr,max pr,max pr,max ∆pr,max pr,max ∆pr,max
[kPa] [kPa] [kPa] [%] [kPa] [%]

D05 242.6 267.2 256.7 3.9 257.6 3.6
D15 555.6 646.9 624.5 3.5 626.2 3.2
D25 767.6 1038.7 996.3 4.1 943.0 9.2
D35 992.7 1304.6 1239.5 5.0 1212.5 7.1
D60 1312.7 1796.7 1679.9 6.5 1610.0 10.4
A05 144.2 136.2 117.4 13.8 119.0 12.6
A7.5 163.6 175.0 153.8 12.1 156.0 10.9
A10 231.2 236.4 209.3 11.5 212.2 10.2

in the plate (see e.g. [72, 87, 88] and Eq. (6.99)), while Hanssen et al. [89]
suggested that the reduced pressure was due to the deformed shape which
resembles a global dome. Hanssen et al. [89] argued that the deformed shape
will introduce a non-uniform spatial and temporal distribution of the pressure
in the vicinity of the plate. The reduction in reflected pressure seems to occur
before the permanent deformation is reached at approximately 1-2 ms after
the initial impact. Then, a small increase in maximum pressure is observed
before limited FSI effects are observed throughout the remaining part of the
positive phase (Figure 9.31). This makes it natural to relate the reduction in
reflected pressure to the induced velocity in the plate. A comparison of the
pressure histories in the coupled approach and experiments confirms that the
loading is significantly overestimated in the simulations (Figure 9.31b).

The increase in pressure after the initial reduction in the coupled simulations
(see Figure 9.31) is also observed when inspecting the pressure in the vicinity
of the plate. This is illustrated in Figures 9.32 and 9.33 for the coupled and
uncoupled approach, respectively, for test D35. It is observed a slightly larger
pressure in the uncoupled approach immediately after impact (Figures 9.32a-b
and 9.33a), while the opposite occurs at the time of maximum deflection of
the plate (Figures 9.32c-d and 9.33b). This indicates that the observed FSI
effects may be a combination of both the induced velocity and deformed shape
of the plate. That is, the initial reduction in reflected pressure is related to the
induced velocity of the plate, while the subsequent increase in peak reflected
pressure may be due to the deformed shape of the plate which introduces a
non-uniform pressure distribution in front of the plate.

Figure 9.32 also illustrates the different treatment of FSI in the ALE and
embedded methods. Both methods experience a pressure drop across the F-S
interface due to the weak coupling approach when using CCFVs (see Section
9.3.3), but the ALE mesh moves with the plate (Figure 9.32c) while the plate
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mesh slides through a fixed and regular fluid mesh in the embedded method
(Figure 9.32d).

(a)

(b)

(c)

(d)

Figure 9.32: Comparison of the ALE and embedded approach in terms of pressure
in the vicinity of the plate in test D35: (a) the ALE method and (b) the embedded
method immediately after impact, and (c) the ALE method and (d) the embedded
method at maximum deflection of the plate. Only 1/2 of the fluid mesh is shown to
enable a clear view of the plate from the back (left) and front (right). Fringe colors
represent the contour map of the overpressure (in kPa).

As discussed in Section 9.3.3, the accuracy of the embedded method is highly
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dependent on the definition of the influence domain and may result in some
leakage of the pressure through the plate if not treated properly. However,
from Figure 9.32d it is evident that there is limited leakage of pressure through
the plate since there are no significant build-up of overpressure or large fluid
velocities in the volume behind the plate. It is noted that the choice of method
affects the pressure distribution in front of the plate (Figures 9.32c-d).

(a) (b)

Figure 9.33: Pressure in front of the blind flange in test R35: (a) immediately after
impact and (b) the time of maximum deflection of the plate in the coupled simulations
in Figures 9.32c-d. Only 1/2 of the fluid mesh is shown as in Figure 9.32. Fringe
colors represent the contour map of the overpressure (in kPa).

The simulations of the aluminium plates showed in general similar trends as
the steel plate tests, but with some distinct differences. As for the steel plates
without holes, the ALE method predicts larger deformations compared to the
embedded method but the difference is less evident (see Figure 9.34 and Table
9.6). It is also observed more noticeable FSI effects in the aluminium plate
tests, both in terms of mid-point deflections (Figure 9.34a and Table 9.6) and
the reflected pressure measured at Sensor 2 (Figure 9.35a and Table 9.7). That
is, the mid-point deflections are significantly overestimated in the uncoupled
approach and the reduction in the reflected pressure is also more evident. In
fact, the loading is in much better agreement between the coupled simulations
and the experiments in the aluminium plate tests due to the relatively small
magnitudes of the reflected overpressure (see Figure 9.35b). However, since the
blast properties are somewhat underestimated in the fluid sub-domain at the
driver lengths and firing pressures used in the aluminium plate tests (see Section
9.4.1 and Figure 9.9), the mid-point deflections predicted by the uncoupled
approach used in Section 9.4.2 are somewhat larger (Figure 9.34b) than those
obtained with the uncoupled approach using the loading from Section 9.4.1
(Figure 9.34a).

Even though the loading in the coupled simulations is in very good agreement
with the experimental measurements at Sensor 2 (Figure 9.35b), the mid-
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point deflections are considerably underestimated in the coupled simulations
(Figure 9.34c). This may indicate that the simplified model of the plate is too
constrained at the boundary.
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Figure 9.34: Investigation of FSI effects in terms of mid-point deflection in the fully
coupled simulations of aluminium plates. Both the ALE (left) and the embedded
(right) method are compared to (a) uncoupled approach using the loading from
Eulerian simulations in Section 9.4.1, (b) uncoupled approach from Section 9.4.2
using the loading from the experimental tests and (c) the experimental data. Note
that the curves are shifted in time for improved readability.
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Based on the findings during the investigation on the influence of the boundary
conditions in Section 9.4.2, it is expected that the clamped assembly in Figure
9.13c will predict mid-point deflections closer to the experimental observations
(see Figure 9.16b). This illustrates that a qualitative and purely numerical
investigation of FSI effects is most reasonable also for the aluminium plate
tests, and that a more elaborate model of the boundary conditions is necessary
before quantifying FSI effects in the experiments.

Recall that the sudden drop in pressure observed during test A10 in Figure
9.35b is due to the complete failure of the plate in this experiment. The
pressure is then free to enter the expanding volume in the tank which results in
a left-running rarefaction wave. This is observed as a sudden drop in pressure
at Sensor 2. The element size used in these simulations were too large to predict
the failure. Failure in test A10 will therefore be investigated in Section 9.5.3
by using AMR in the plate.
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Figure 9.35: Investigation of FSI effects in terms of pressure at Sensor 2 in the fully
coupled simulations of aluminium plates. Both the ALE (left) and the embedded
(right) method are compared to (a) the uncoupled approach using the loading from
Eulerian simulations in Section 9.4.1 and (b) the loading measured during the flexible
plate tests in Section 8.3.4. Note that the curves are shifted in time for improved
readability.
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A plausible explanation of the increased FSI effects in the tests with aluminium
plates may be found by considering the change of linear momentum during the
FSI. This follows the argumentation in the early works of Taylor [74] suggesting
that lightweight structures undertake less momentum compared to heavier
structures when exposed to the same blast intensity. At the time of impact,
the plate is exposed to a uniformly distributed pressure pulse and experiences
an instantaneous development of a uniform transverse velocity field. Since
the aluminium plates are approximately 1/3 of the mass of the steel plates,
this will result in a relatively larger induced velocity in the aluminium plate.
Eq. (6.99) then implies that the effect of reduced pressure is expected to be
larger for the aluminium plates. Moreover, due to the small thickness (0.8
mm), the dynamic response of the plates is sensitive to small changes in the
pressure profile. This illustrates the importance of an appropriate description
of both the fluid and the structural sub-domain when studying lightweight and
flexible plates subjected to blast loading.

9.5.2 Simulations of flexible plates with pre-formed holes

Special focus is now placed on the influence of pre-formed holes on the dynamic
response and pressure distribution in the vicinity of the plates. The test
specimen in Figure 9.29 is therefore replaced by the plate with pre-formed holes
(see Figure 9.36). As in Section 9.5.1, the basis of comparison is primarily the
uncoupled approach using the loading from the Eulerian simulations in Section
9.4.1. The initial conditions were therefore taken from tests R77-05, R77-15,
R77-25 and R77-35 for the simulations of the steel plates with pre-formed holes
(see Table 8.1). Due to the simplified boundary conditions and overestimated
loading in the simulations in Section 9.5.1, it was challenging to conclude on
which FSI technique (ALE or embedded) provided the best predictions. Even
though the ALE method allows for failure of the plates when using CCFVs and
merging the nodes at the F-S interface, the embedded method has significant
advantages when it comes to larger displacements, finite rotations, failure and
fragmentation of the plates. The embedded method is also considered to be
the most promising and appealing technique from an engineering point of view,
since the fluid and plate are meshed independently where the two meshes are
simply superposed in the computational model. The simulations are therefore
limited to the embedded technique in the following.

Figure 9.37 compares the mid-point deflections from the coupled approach
to the uncoupled approaches, while Figure 9.38 contains the corresponding
pressure histories at Sensor 2. Mid-point dz,max and permanent dz,p deflections
are summarized and compared to the uncoupled approach in Table 9.8, while
peak reflected overpressures pr,max measured at Sensor 2 are presented in Table
9.9. As before, positive values of ∆dz,max and ∆pr,max imply that the values
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x
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Test specimen

Figure 9.36: Computational mesh for the fully coupled FSI simulations of flexible
plates with pre-formed holes. Absorbing (green) surfaces downstream the plate
simulates the expanding volume in the tank.

are larger in the uncoupled approach. Experimental data are also included in
Tables 9.8 and 9.9 for completeness.

It is observed that the simulations of the steel plates with pre-formed holes
follow the same trends as the plates without holes in Section 9.5.1. That is,
the mid-point deflections are overestimated in the uncoupled approach where
it is observed a slight trend of increased FSI effects at larger load intensities
(Figure 9.37a and Table 9.8). As in Section 9.5.1, the comparison against
the uncoupled approach in Section 9.4.2 is misleading since the loading is
overestimated in the fluid sub-domain. The very good agreement between the
coupled simulations and the uncoupled approach in Figure 9.37b is therefore
considered to be a coincidence. Recall that the pressure measurements in the
massive plate tests were larger than those in the tests with pre-formed holes
(see Figure 8.15). It seems that the loading is correspondingly overestimated in
the coupled simulations (Figure 9.38b), resulting in the coincidental effect that
these observations equalize each other in Figure 9.37b. This is not the case in
test P25 where all the pressure measurements were similar in all experiments
(see Figure 8.15c), which explains the deviation in mid-point deflection for
this test (Figure 9.37b). The overestimated loading in the simulations (Figure
9.38b) also implies that, although the influence of boundary conditions on the
dynamic response was found to be almost negligible in Section 9.4.2 and Figure
9.16d, the comparison to the experimental observations in Figure 9.37c should
be treated with some caution. It is expected that an improvement of the fluid
sub-domain will result in better agreement with the experimental data.
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Figure 9.37: Investigation of FSI effects in terms of mid-point deflections in the
fully coupled simulations of steel plates with pre-formed holes. Comparison of the
coupled simulations and (a) the uncoupled approach using the loading from Eulerian
simulations in Section 9.4.1, (b) the uncoupled approach from Section 9.4.2 using the
loading from the experimental tests and (c) the experimental data. Note that the
curves are shifted in time for improved readability.

Table 9.8: Comparison of the mid-point deflections in the uncoupled and coupled
simulations obtained from numerical studies on the steel plates with pre-formed holes.
Experimental data is included for completeness.

Test

Experimental results Numerical results
Uncoupled Coupled embedded

dz,max dz,p dz,max dz,p dz,max dz,p ∆dz,max
[mm] [mm] [mm] [mm] [mm] [mm] [%]

P05 18.3 14.2 18.5 15.3 17.2 14.6 7.0
P15 29.5 26.6 32.4 29.6 30.5 28.2 5.9
P25 37.2 34.9 45.7 43.1 41.2 39.0 9.8
P35 N/A* N/A* 54.9 52.6 48.3 46.0 N/A*

*Experiment resulted in complete failure along the diagonals.

FSI effects are also evident in the pressure measurements at Sensor 2, which
show a distinct reduction in the reflected pressure (Figure 9.38a and Table
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9.9). This is expected since the loading in the uncoupled approach is obtained
using a massive plate without holes. The main reduction in pressure last for
approximately 1-2 ms before a minor reduction is observed throughout the
entire positive phase duration (see Figure 9.38a). This was also observed in the
experiments in Section 8.3.4 (Figure 8.15) and indicates a reduced pressure in
the vicinity of the holes. Note that the simulations of tests P25 and P35 were
aborted after approximately 30 ms due to instabilities in the fluid sub-domain
(see Figure 9.38). The reason for this is not known, but since these numerical
challenges occurred after the permanent deflection was reached it is considered
of minor importance in this work.
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Figure 9.38: Investigation of FSI effects in terms of pressure at Sensor 2 in the
fully coupled simulations of steel plates with pre-formed holes. Comparison of (a)
the embedded method and uncoupled approach using the loading from Eulerian
simulations in Section 9.4.1 and (b) the embedded method and loading measured
during the flexible plate tests. Note that the curves are shifted in time for improved
readability.

Table 9.9: Comparison of the reflected pressure at Sensor 2 in the uncoupled and
coupled simulations obtained from numerical studies on the steel plates with pre-
formed holes. Experimental data is included for completeness.

Test

Experimental results Numerical results
Uncoupled Coupled embedded

pr,max pr,max pr,max ∆pr,max
[kPa] [kPa] [kPa] [%]

P05 225.9 267.2 238.4 10.8
P15 484.6 646.9 577.5 10.7
P25 716.8 1038.7 891.8 14.1
P35 849.9 1304.6 1100.9 15.6

Figure 9.39 shows the pressure distribution in the vicinity of the plate imme-
diately after impact and at the maximum deflection of the plate in test P35.
Cross-sectional views along the centre of the fluid (Figures 9.39a and 9.39c)
and the pre-formed holes (Figures 9.39b and 9.39d) enable a clear view of both
the pressure and the plate. The fringe colors are kept the same as in Figure
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9.32 to simplify a comparison to the plates without holes.

(a)

(b)

(c)

(d)

Figure 9.39: Pressure in the vicinity of the plate in test P35. Cross-sectional views
along (a) the centre of the fluid and (b) the centre of the holes immediately after
impact, and (c) the centre of the fluid and (d) the centre of the holes at maximum
deflection of the plate. The cross-sectional views of the fluid mesh are shown to
enable a clear view of the plate from the back (left) and front (right). Fringe colors
represent the contour map of the overpressure (in kPa).

It is observed a slight venting of the pressure through the holes, resulting
in a reduced pressure close to the holes (Figure 9.39a) and a stagnation of



9.5. Coupled FSI approach 259

the pressure in front of the holes (Figure 9.39b) immediately after impact.
The stagnation in pressure in front of the holes is not that evident at the
time of maximum deflection of the plate (Figure 9.39d), where the distribution
resembles that in the plates without holes but with lower magnitudes of pressure
(Figure 9.39c). Finally, as in the uncoupled approach in Section 9.4.2, an element
size of 10 mm in the plates is too large to predict the failure observed during
the P25 and P35 tests.

9.5.3 Combined fluid and structure mesh adaptivity

The Lagrangian simulations in Section 9.4.2 indicated that a mesh size equal
to the plate thickness was necessary to predict the crack growth observed in
the experiments, and that AMR could be used to save CPU time. This also
implies that the fluid mesh needs to be refined, because the accuracy of the
F-S coupling requires a sufficiently fine fluid mesh compared to that in the
plate. However, the fluid sub-domain only needs to be refined in the vicinity
of the plate and the remaining part can be modelled with a coarser mesh as
long as it predicts the governing wave patterns. This section will therefore use
recent advancements in EPX [95,98,225,247], allowing for AMR both in the
fluid and structural sub-domain simultaneously in the same analysis, to study
the FSI effects during the failure in tests A10, P25 and P35. These features
are particularly useful in combination with the embedded FSI method since
the fluid and plate are discretized independently at the topological level. EPX
then enables automatically refinement of the fluid mesh in the vicinity of the
plate which can move and undergo large deformations (including failure and
fragmentation), while the plate mesh is refined locally based on the damage
evolution. This will be referred to as FSI-based and damage-based AMR,
respectively, in the following.

Based on the findings in Section 9.4.2, the test specimen in Figure 9.36 is
replaced by the optimized model from Table 9.5 (see Figure 9.40). That is, the
plate is modelled with an initial mesh size of 0.003 m and the mesh is refined
within the damage threshold 0.01 ≤ D ≤ 0.05 using 2 successive refinements.
The fluid sub-domain still consists of an initial element size of 0.01 m but is
now also refined using one level of refinement in a region centred around the
plate. This refined region was limited to a length which equals 6 times the
initial cell size (i.e., 0.06 m). The refined mesh results in very small time steps
in both the fluid and structural sub-domains. This will significantly increase
the CPU cost and only 1/4 of the experimental geometry is modelled utilizing
symmetry (see Figure 9.40). The small time steps will also slow down the
initial phase of the simulation, i.e., the time from the diaphragm bursts to the
shock wave impacts the plate. The approach suggested by Casadei et al. [225]
is therefore used to further reduce the CPU time needed to propagate the
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shock wave to the plate. This is achieved by introducing a user-defined trigger
which monitors the variations in fluid pressure in a cell located 0.3 m upstream
the plate (Figure 9.40). Then, the fluid is not refined until the shock wave
arrives at the trigger. The critical time step of the plate is also neglected until
this point in time by completely blocking the displacement of the plate (i.e.,
prescribing zero displacement) to avoid artificial motions due to numerical
instabilities related to the large time step in the initial phase. It should also
be noted that it was necessary to reduce the CCFL coefficient to 0.5 to avoid
numerical instabilities in the fluid sub-domain.

0.77 m

16.20 m

y

z

x

0.50 m

Test specimen

Trigger

Figure 9.40: Initial computational mesh for the fully coupled FSI simulations using
adaptive mesh refinement both in the plate and fluid.

As discussed in Section 9.3.3, caution should be exercised when defining the
influence domain in coupled simulations. This is particularly important in
simulations involving combined fluid and structural AMR. The radius R of the
spheres attached to the plate nodes should always refer to the initial fluid cell
size [130]. EPX will then adjust the radius automatically during the refinement
of the fluid mesh. Using a regular 3D fluid mesh of cell size LF , the radius
should be slightly larger than half of the longest diagonal in each cell (i.e.,
R = 1.01 ·

√
3LF /2 = 0.87LF ). This will avoid spurious leakage of the fluid

flow across the plate. The geometrical representation of the diagonals of a
regular cell in 3D is illustrated in Figure 9.41. The fast search algorithm will
then identify which F-S faces that are located within the influence domain
of the plate (see Figure 9.6a). This is carried out using a user-defined fast
search grid within the fluid sub-domain, where the fluid faces located inside
the influence domain are included in the FSI. For increased CPU efficiency, the
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grid should have the minimum size which ensures that all interacting faces are
detected. In the particular case of combined fluid and structure AMR, this
user-defined grid size should be taken as the maximum value of the refined
fluid cell size and the initial plate mesh [130]. This is due to the fact that
FSI-based AMR ensures that all the fluid cells in the vicinity of the plate are
refined up to the user-defined level, while the refinement of the plate depends
on the damage evolution. This also implies that a fine initial mesh size in the
plate may be favourable in view of the CPU cost in the fast search algorithm.
The refined cell size in the fluid is 0.005 m and the initial element size in the
plate is 0.003 m. The radius R of the influence domain was therefore taken as
0.0087 m (based in the initial fluid cell size), while the fast search algorithm
operated within a grid size (HGRI ) of 0.0052 m which is slightly larger than
the refined cell size in the fluid.

LFLF

LF √
2LF

√
3LF

Figure 9.41: Geometrical representation of the shorter (green) and longer (blue)
diagonals in a cube, where the longer diagonal is used to define the influence domain
in the embedded FSI technique.

Figure 9.42 compares the mid-point deflections (Figures 9.42a and 9.42c) and
overpressure at Sensor 2 (Figures 9.42b and 9.42d) in the coupled simulations
with and without AMR. Experimental data are also included for completeness.
It is observed that the simulations using combined fluid and structural adap-
tivity predicts larger mid-point deflections than the corresponding simulations
without AMR (see Figures 9.42a and 9.42c). Complete failure is predicted in
tests A10 and P35, where the sudden drop in pressure at Sensor 2 is evident in
the simulations (Figures 9.42b and 9.42d). The increased mid-point deflections
in the simulations using AMR are probably due to an improved representation
of the nearly instantaneous rise in pressure over the shock wave (due to a fine
cell size). This indicates that the thin aluminium and steel plates are very sen-
sitive to small variations in the loading. In particular, the predicted mid-point
deflections and pressures are in very good agreement with the experimental
data for the aluminium plate tests (Figures 9.42a and 9.42b). Note that the
simulations using AMR were intentionally stopped during the last part of the
positive phase. This was because the dynamic response of interest was already
reached at this point in time, and that the remaining part of the simulation
would require a significant CPU cost due to the decrease in the critical time
step during the AMR in the plate.
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Figure 9.42: Influence of adaptive mesh refinement on the predicted mid-point
deflection and pressure at Sensor 2: (a) mid-point deflection and (b) overpressures in
tests A7.5 and A10, (c) mid-point deflection and (d) overpressures in tests P25 and
P35. Note that the curves are shifted in time for improved readability.

Figures 9.43, 9.45, 9.47 and 9.49 contain the pressure distribution in the vicinity
of the plate at characteristic times in tests A7.5, A10, P25 and P35, respectively.
The corresponding damage evolution in the plates are shown in Figures 9.44,
9.46, 9.48 and 9.50. Note that the 1/4-model of the plate is mirrored along the
symmetry lines to visualize the entire plate.

The results from the simulation of test A7.5 (Figures 9.43 and 9.44) are included
because the uncoupled approach and AMR resulted in complete tearing along
the supports for both A7.5 and A10, while the coupled approach using AMR
resulted in complete tearing only in test A10 (see Figures 9.45 and 9.46). This
confirms that the loading and deformations are exaggerated in the uncoupled
approach (see Figures 9.34 and 9.35). Although the underlying assumption of
a rigid reflection is conservative and is in general considered as safe in blast-
resistant design, it may result in a significant overestimation of displacements
and, consequently, the internal forces and stresses in flexible structures. As in
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Section 9.5.1, it is interesting to note that the maximum pressure occurs at the
plate centre during the FSI subsequent to the initial reflection (Figures 9.43c
and 9.45c).

As in Section 9.5.2 and Figure 9.39, it is observed a stagnation in pressure in
front of the holes and reduced pressure in the vicinity of the holes for the steel
plates (Figures 9.47 and 9.49). This is most evident immediately after impact
(Figures 9.47a and 9.49a). As in Section 9.4.2, the experimental observations
of crack initiation and growth were predicted in tests P25 and P35 (Figures
9.48 and 9.50). Moreover, comparing Figures 9.28 and 9.48, it may seem that
the coupled simulation using AMR predicts the initial crack growth from the
P25 experiment. However, it is emphasized that the loading is significantly
overestimated (Figure 9.42d) and the simplified boundary conditions are too
restrained (Figure 9.16b).

Finally, it is noted that, although the fluid mesh is coarser than that in the
plates, a qualitative evaluation indicates that the coupled simulations using
AMR in both fluid and structure predict (at least to a large extent) the
experimental observations. A coarser fluid mesh compared the structural mesh
violates the rule of thumb presented in Section 9.3.3. That is, in simulations
without AMR it is typically used larger elements in the plate than the fluid
cell size. However, the good agreement with the experimental observations
when using AMR are interesting from an engineering point of view since it may
significantly speed up the fast search algorithm and, consequently, the CPU
time.
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(a)

(b)

(c)

(d)

Figure 9.43: Pressure in the vicinity of the plate in test A7.5 using combined fluid
and structural AMR. 1/4 of the model is used to illustrate the pressure along the
centre of the fluid (left) and cross-sectional views further inside the fluid (right): (a)
t = 32.9 ms, (b) t = 33.0 ms, (c) t = 33.8 ms and (d) t = 36.0 ms. Fringe colors
represent the contour map of the overpressure (in kPa).
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(a)

(b)

(c)

(d)

Figure 9.44: Damage evolution in the plate during the fully coupled simulations
of test A7.5 using AMR: (a) t = 32.9 ms, (b) t = 33.0 ms, (c) t = 33.8 ms and (d)
t = 36.0 ms. Note that the plate is shown with (left) and without (right) element
outlines. Fringe colors represent the damage parameter in Eq. (4.36).
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(a)

(b)

(c)

(d)

Figure 9.45: Pressure in the vicinity of the plate in test A10 using combined fluid
and structural AMR. 1/4 of the model is used to illustrate the pressure along the
centre of the fluid (left) and cross-sectional views further inside the fluid (right): (a)
t = 31.1 ms, (b) t = 31.2 ms, (c) t = 31.9 ms and (d) t = 32.8 ms. Fringe colors
represent the contour map of the overpressure (in kPa).
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(a)

(b)

(c)

(d)

Figure 9.46: Damage evolution in the plate during the fully coupled simulations
of test A10 using AMR: (a) t = 31.1 ms, (b) t = 31.2 ms, (c) t = 31.9 ms and (d)
t = 32.8 ms. Note that the plate is shown with (left) and without (right) element
outlines. Fringe colors represent the damage parameter in Eq. (4.36).
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(a)

(b)

(c)

(d)

Figure 9.47: Pressure in the vicinity of the plate in test P25 using combined fluid
and structural AMR. 1/4 of the model is used to illustrate the pressure along the
centre of the fluid (left) and cross-sectional views along the centre of the holes (right):
(a) t = 24.3 ms, (b) t = 24.7 ms, (c) t = 24.9 ms and (d) t = 26.8 ms. Fringe colors
represent the contour map of the overpressure (in kPa).
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(a)

(b)

(c)

(d)

Figure 9.48: Crack growth in the plate during the fully coupled simulations of test
P25 using AMR: (a) t = 24.3 ms, (b) t = 24.7 ms, (c) t = 24.9 ms and (d) t = 26.8
ms. Note that the plate is shown with (left) and without (right) element outlines.
Fringe colors represent the damage parameter in Eq. (4.36).
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(a)

(b)

(c)

(d)

Figure 9.49: Pressure in the vicinity of the plate in test P35 using combined fluid
and structural AMR. 1/4 of the model is used to illustrate the pressure along the
centre of the fluid (left) and cross-sectional views along the centre of the holes (right):
(a) t = 23.1 ms, (b) t = 23.9 ms, (c) t = 24.2 ms and (d) t = 24.7 ms. Fringe colors
represent the contour map of the overpressure (in kPa).
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(a)

(b)

(c)

(d)

Figure 9.50: Crack growth in the plate during the fully coupled simulations of test
P35 using AMR: (a) t = 23.1 ms, (b) t = 23.9 ms, (c) t = 24.2 ms and (d) t = 24.7
ms. Note that the plate is shown with (left) and without (right) element outlines.
Fringe colors represent the damage parameter in Eq. (4.36).
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9.6 Concluding remarks

The material parameters for the materials used in the shock tube experiments
were identified, before presenting a brief overview of the governing equations in
the coupled FSI simulations in EPX. Then, purely Eulerian and Lagrangian
simulations were carried out to evaluate the fluid and structural sub-domains
separately. The wave patterns in the Eulerian simulations were compared to
the massive plate tests in Section 8.3.2. It was found that the blast properties
were overestimated in the simulations for reflected pressures larger than approx-
imately 800 kPa. Further comparisons of the wave propagation downstream
the diaphragms indicated that the assumption of an instantaneous diaphragm
burst overestimated the initial flow immediately downstream the diaphragm.
The numerical model in the fluid sub-domain was also found to overestimate
the shock velocity, and the deviation was increasing with the distance down-
stream the diaphragms. This may indicate that the deviation at larger reflected
pressures was due to the fact that both the diaphragm opening and friction
against the interior tube walls were neglected in the numerical model. However,
a more detailed modelling of these effects are considered beyond the scope of
this thesis.

The purely Lagrangian simulations investigated the influence of boundary
conditions and mesh size on the dynamic response and failure of the plates.
The loading measured during the massive plate tests in Section 8.3.2 was
imposed on the exposed area of the plates in an uncoupled approach. As
expected, allowing for sliding at the supports resulted in larger mid-point
deflections. This was most evident for the flexible plates without holes. Failure
in the plates was only predicted when using a mesh size equal to the plate
thickness (i.e., 0.8 mm). However, such a uniformly refined mesh resulted
in a significant increase in the CPU cost. The capabilities of damage-based
adaptive mesh refinement (AMR) in the plates were therefore investigated in
an attempt to reduce the CPU cost. It was found that the predicted failure
patterns were highly dependent on the initial mesh size and damage threshold.
Using an initial mesh size of 3 mm and two successive levels of refinement when
0.01 ≤ D ≤ 0.05, the AMR model captured the same failure patterns as in
the experiments with a significant reduction in CPU cost. The performance of
the fluid and structural sub-domains were therefore considered sufficient for
qualitative studies on the influence of FSI effects on the dynamic response of
the flexible plates.

Fully coupled simulations were therefore performed based on the experience from
the purely Eulerian and Lagrangian simulations. This was mainly a numerical
study where the uncoupled approach served as the basis of comparison. Even
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though the investigations of FSI effects were numerical, the experimental
data was also included in the comparisons for completeness. As expected,
the uncoupled approach predicted larger deformations due to the inherent
assumption that the pressure is unaltered by the plate deformation. The
coupled simulations of the steel plate tests without pre-formed holes showed a
reduction in the reflected pressure (at Sensor 2) during the plate deformation,
while a small increase in pressure was observed at the plate centre at the
point of maximum deflection. The observed FSI effects may therefore be a
combination of both the induced velocity and deformed shape of the plate,
where the deformed shape introduced a non-uniform pressure distribution
in front of the plate. The simulations of the aluminium plates showed in
general similar trends as the steel plates, but with some distinct differences.
It was observed more noticeable FSI effects in the aluminium plates, where
the mid-point deflections were significantly overestimated in the uncoupled
approach and the reduction in the reflected pressure was more evident in
the coupled simulations. Moreover, due to the relatively small overpressures
in the aluminium plate tests, the loading in the coupled simulations was in
good agreement with the experimental data. However, despite this agreement,
the mid-point deflections were considerably underestimated in the coupled
simulations compared to the experimental observations.

The introduction of pre-formed holes in the steel plates showed a slight venting
of the pressure through the holes, resulting in a reduced pressure close to the
holes and a stagnation of pressure in front of the holes. As in the uncoupled
approach, an element size of 10 mm was too large to predict the failure observed
in the experiments. Combined fluid and structure AMR was therefore used to
predict the observed failure patterns with a reasonable CPU cost. It was also
observed larger mid-point deflections than in the corresponding simulations
without AMR. In particular, the predicted mid-point deflections and pressures
were in very good agreement with the experimental data for the aluminium
plate tests. A plausible explanation for the increased mid-point deflections
is an improved representation of the near instantaneous rise in pressure over
the shock wave due to the fine cell size close to the plate. This indicated that
thin flexible plates are very sensitive to small variations in the loading, because
a minor increase in the reflected pressure resulted in a significant increase in
the mid-point deflections. The observations of increasing FSI effects in blast
events involving lightweight structures are also supported by the works in
Refs. [70, 72, 82–85,90,91], where it was observed a noticeable reduction in the
pressure due to the induced motion of lightweight structures.

The simulations presented in this section illustrate the complexity in coupled
simulations of flexible plates exposed to blast loading, where the predicted
results were found to depend on the chosen FSI technique (ALE or embedded)
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and the mesh size in both the fluid and structural sub-domains. Although the
results were encouraging in the coupled simulations using AMR, especially in
the simulations of the aluminium plate tests, there are still several unsolved
issues. In particular, the loading was overestimated in the simulations of the
steel plates at increasing magnitudes of pressure and the sliding at the supports
was not considered in the coupled simulations. An important step in the
investigation of FSI effects during the dynamic response of thin flexible plates
is a better description of the blast loading. It is therefore a need to improve
the performance of the fluid sub-domain and also include more elaborate
boundary conditions before quantifying the FSI effects in the experiments.
These improvements are left for future work.



Part IV
Conclusions and Outlook





10
Conclusions and outlook
This thesis contributes with an improved understanding of the behaviour and
modelling of flexible structures subjected to blast loading. Experimental and
numerical research tools are established to study the dynamic response of
flexible structures in controlled and repeatable blast environments. A better
insight and new aspects of the response of blast-loaded thin aluminium and steel
plates have been achieved through material and component tests in combination
with numerical simulations. Special focus has been placed on material behaviour
and fluid-structure interaction effects. This chapter completes the work with
some final discussions, some conclusions and suggestions for further work within
this topic.

10.1 Conclusions

The most important contribution from this work is presumably the establish-
ment of experimental and computational frameworks to study the dynamic
response of blast-loaded flexible structures in controlled environments. These
frameworks have then been used to perform both experimental and numerical
studies on the response of thin aluminium and steel plates subjected to blast
loading, where the experimental data have served as a basis for evaluation of
the numerical simulations. The experiments and simulations provide valuable
insight to the behaviour and modelling of flexible structures in blast environ-
ments, and parameters influencing the dynamic response have been investigated
and identified. The numerical simulations were mainly performed in the finite
element (FE) code EUROPLEXUS. Material tests are also performed to deter-
mine the materials’ behaviour at large plastic strains and for calibration of an
energy-based failure criterion. In general, the response of thin aluminium and
steel plates are found to be sensitive to small variations in the loading. Thus, an
accurate description of the loading is necessary for quantitative investigations
of the dynamic response and failure mechanisms in the plates. Depending
on the blast intensity and structural properties, the response of the flexible
plates may become significantly different. From a computational point of view,
the simulation of blast-loaded flexible structures may be challenging since it
implies the use of an appropriate constitutive relation, failure criterion and an
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accurate description of the blast load. It is therefore believed that the detailed
experimental data reported in this study can be used in the development and
evaluation of advanced computational methods often required in blast-resistant
design of flexible structures.

The experimental and numerical studies covered two distinct loading domains.
First, the influence of stand-off distance on the dynamic response of thin steel
and aluminium plates subjected to near-field blast loading was investigated
in Part II. The loading was generated by detonating spherical charges of
C-4 at various stand-off distances relative to the centre point of the plates,
while the structural response was measured using two high-speed cameras in
a stereovision setup combined with 3D-DIC analyses. The trend in all tests
was that the maximum mid-point deflection was driven by the positive impulse
from the airblast, since it occurred after the positive phase of the blast loading.
The numerical results were generally in good agreement with the experimental
data and covered the entire range of inelastic response. This included partial
and complete tearing along the boundaries at the closest stand-off distances
and a counter-intuitive behaviour (CIB) where the permanent deflection of the
plate was in the opposite direction to the incoming blast wave due to reversed
snap buckling (RSB). The influence of elastic effects and negative phase on
RSB was studied numerically, and two types of CIB were identified within a
narrow range of loading and structural conditions. Both types of CIB were
found to depend on the timing and magnitude of the peak negative pressure
relative to the dynamic response of the structure. In particular, CIB of Type
III was driven by elastic effects enhanced by the negative phase during the
elastic rebound, while Type III* occurred during the subsequent oscillations
after the elastic rebound and was related to the timing of the peak negative
pressure and the ratio between positive and negative impulses. CIB of Type III
is also observed in previous studies considering projectile impacts and positive
phase loading. However, to the author’s best knowledge there are no previous
experimental studies on metallic plates observing CIB of Type III* due to the
negative phase. Thus, the blast-loaded plates experienced severe blast-structure
interaction effects during the negative phase and the loading domain of thin
flexible plates should not be determined solely based on the positive phase of
the blast load.

Part III of this work presented the development and design of the SIMLab
Shock Tube Facility (SSTF). The SSTF was found to produce controlled and
repeatable blast loading in laboratory environments, where the positive phase
loading was similar to that of an unconfined far-field airblast. The SSTF
therefore allows for the evaluation of blast-structure interaction without the
need to consider the inherent complexity in close-in and near-field detonations,
and was used to study the dynamic response of blast-loaded steel and aluminium
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plates. Both massive and flexible plates were mounted at the tube end during
testing, where the massive plate tests serve as a basis for comparison with
respect to fluid-structure interaction (FSI) effects. 3D-DIC was used to quantify
the dynamic response of the flexible plates during testing, and synchronization
of the 3D-DIC and pressure measurements enabled a thorough investigation
of the experiments. Numerical studies, using both uncoupled and coupled
approaches, were also performed in an attempt to obtain more insight into
the FSI effects during the dynamic response. Special focus was placed on
the influence of FSI effects during large deformations, pre-formed holes on
the dynamic response and failure characteristics of the flexible plates. It
was shown that the induced motion of the plate altered the pressure at its
surface, where the reduced pressures were most evident in the plates with
pre-formed holes. The findings in this thesis therefore supports previous
observations in the literature, where FSI effects are found to mitigate the
blast load acting on lightweight and flexible structures. Based on the shock
tube experiments and corresponding numerical studies, the blast mitigation
was related to both the induced velocity and to the deformed shape of the
structure. However, the most dominating parameter in view of blast mitigation
seems to be the overlapping of the dynamic response and the positive phase
duration. This is interesting in view of lightweight and flexible structures.
Lightweight structures will experience a higher induced velocity after impact
and a reduction in the transmitted impulse, while flexible structures may
experience large deformations. This implies that large deformations and energy
absorption in structural members are favourable, since the blast wave is partially
absorbed through various deformation mechanisms in the structure. Provided
that the structural member can sustain the deformation that arise without
experiencing failure, this indicates that ductile materials may be utilized in
the design of flexible structures by allowing for finite deformations. The FSI
may then reduce the transmitted impulse and serve as alternative load paths.
However, this requires a thorough understanding of the governing physics in
the problem.

The simulations of the shock tube experiments illustrate the complexity in cou-
pled simulations of flexible plates exposed to blast loading, where the predicted
results were found to depend on the chosen FSI technique and the mesh size in
both the fluid and structural sub-domains. Although the results were encourag-
ing in the coupled simulations using adaptive mesh refinement (AMR) in both
sub-domains, especially in the simulations of the aluminium plate tests, there
are still several unsolved issues. In particular, the loading was overestimated
in the simulations of the steel plates at increasing magnitudes of pressure and
the sliding at the supports was not considered in the coupled simulations. An
important step in the investigation of FSI effects during the dynamic response
of thin flexible plates is a better description of the blast loading. It is therefore



280 10. Conclusions and outlook

a need to improve the performance of the fluid sub-domain and also include
more elaborate boundary conditions before quantifying the FSI effects in the
experiments. The numerical simulations indicate that failure could be predicted
by element erosion and a relatively simple energy-based criterion if one is able
to predict the deformations, i.e., using an appropriate constitutive relation at
large deformations, and an accurate description of the blast loading. Moreover,
the use of damage-based AMR was promising in terms of predicting ductile
failure in blast-loaded plates without too much loss of mass and at a reasonable
CPU cost. This may be interesting in blast-resistant design of plated structures
since these are typically made with geometries that closely resemble shell
structures, i.e., one of the dimensions (typically the thickness) is significantly
smaller than the others. Such structures often require a fine mesh size to
represent localization of damage and crack growth. However, the predicted
failure patterns with AMR were highly dependent on the initial mesh size and
an appropriate damage threshold. Further investigations are therefore needed
to better understand and ensure an appropriate use of damage-based AMR in
engineering applications. These improvements are left for future work.

10.2 Further work

Based on the work and findings presented in this thesis, the following is
suggested as further work:

• An important step in the investigation of FSI effects during the shock
tube experiments is an accurate description of the blast loading. It is
therefore a need to improve the performance of the fluid-subdomain in
the fully coupled simulations to obtain a quantitatively agreement with
the experimental data. The shock wave arrived earlier at the respective
sensors in the simulations which implies that the velocity was slightly
overestimated in the numerical model. A plausible explanation may be
friction effects against the interior tube walls, or that the equation of
state used in this work was not suitable for the largest pressures. More
realistic boundary conditions for the plates should also be included in
the numerical model before using the simulations to obtain a better
insight into the FSI effects in the experiments. The experimental and
numerical frameworks presented in this thesis could then be used to
further contribute in the discussion of FSI effects during the response of
flexible structures.

• The experience from the fully coupled simulations of the shock tube
experiments could also be used in similar simulations of the airblast
tests in Part II. Even though the uncoupled approach in Chapter 5
to a large extent predicted the experimental observations, it would be
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interesting to study the performance of fully coupled simulations in such
blast environments. These simulations would include the modelling of
the explosive detonation, the 3D propagation of the blast wave through
the surrounding air and the coupling at the fluid-structure interface.

• The shock tube study on the influence of pre-formed holes on the dynamic
response of blast-loaded plates and reflected pressure in Chapter 8 may
be extended to include slits, other geometries of the holes, various hole
sizes and other plate thicknesses.

• Shock tube experiments could be used in combination with 3D-DIC
measurements to determine the dynamic material properties at interme-
diate strain rates (101 s−1 < ε̇ < 103 s−1) for blast-loaded plates and
under biaxial response. That is, dynamic material properties can be
obtained by using the FE method and inverse modelling targeted against
the experimental data. The use of the SSTF in such an approach is
interesting because the flexible plates experience a non-uniform spatial
and temporal strain rate distribution during the response from zero to
maximum deformation. A single experiment could therefore (at least in
theory) be used to identify the dynamic material properties in the actual
range of strain rates.

• Although it was observed that the experimental pressure measurements
and the idealized shock tube theory were in acceptable agreement, indi-
cating that the pressure measurements reported herein are reliable, the
deviations were in the order of 20 % at the largest blast intensities (see
Table 8.5). An alternative approach to validate the pressure measure-
ments against the idealized theory should therefore be considered, e.g. by
producing a temporally uniform pressure pulse as a basis for evaluating
the performance of the SSTF and pressure sensors.

• Since plated structures are frequently used in blast-resistant design, this
motivates further studies on the performance of damage-based AMR
to predict failure of coarsely meshed shell structures exposed to blast
loading. This is important in practical applications and FSI simulations,
because a finer mesh is often needed in the fluid compared to that in the
structure to obtain an accurate pressure field.

• Other constitutive relations and failure criteria should be considered,
e.g. the capabilities of stress-based instability and necking criteria in
predicting failure in coarsely meshed shell structures.

• Further development of experimental measurement techniques to be used
in the SSTF is also needed, e.g. the measurement of the forces transmitted
to the supports during testing.
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• Finally, the SSTF can be used in a wide range of applications to study
blast-loaded structures within the facility’s limitations in structural ge-
ometries and blast intensities. For instance, the SSTF may be used
to investigate the effect of localized blast loading on larger structural
components located inside the tank. The SSTF may also be used to
study the flow field in the vicinity of test specimens located inside the
window section.
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