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Summary 

A support structure system contributes significantly to the total capital cost in an offshore 

wind project. It is an area which attracts numerous studies in academia and industry, due to 

the potential for cost reduction. Structural optimization is not a usual practice in offshore 

wind turbine support structure design. The reason for this is that the design process involves 

a large number of iterations since the optimization problem is highly constrained and non-

convex. There is a need for an optimization methodology which is effective and efficient in 

designing the offshore wind turbine support structures. This becomes even more important 

when complex structures are considered that have many design variables, e.g. space frame 

structures. 

 

In order to reduce the computational cost here it is assumed that when changing dimensions 

of a structural member, sectional response forces and moments remain constant. This 

assumption is made for both the actual changed member and for all other members of the 

structure. Additionally, this is assumed to be valid for a simultaneous change of all members 

all over the structure. It is the so-called local optimization approach. The local optimization 

approach has been successfully applied for the sizing of a full-height lattice tower and a jacket 

support structure, but under the use of a very simplified algorithm for the local optimization 

of structural members [2]. 

 

The objective of this project is the development of a gradient based optimization algorithm 

for the global optimization of the jacket support structure of the offshore wind turbine and 

the implementation of the algorithm using the principle of local approach.  

 

The UpWind reference jacket used within the OC4-project with the generic NREL 5MW 

turbine atop was used for this study. The development of the gradient based algorithm 

necessitates the study of changes in global performance when modifying structural members 

locally and a method to receive these sensitivities in structural performance elementwise.  

 

Thereafter, the algorithms were used with the local optimization approach. The 

implementation was carried out using already existing customized Matlab scripts for the 

automated load analysis performed with the finite element solver FEDEM WindPower. 

 

Keywords: structural optimization; gradient-based algorithm; local approach; sensitivity 

analysis; offshore wind; support structures. 
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1 INTRODUCTION 

1.1 Motivation - Framework 

Foundations (support structures) are one of the critical components of offshore wind farms, 

not only because of the overall stability of the offshore wind turbine (OWT) structure but 

also because of the financial viability of the project. 

 

Offshore wind turbines are exposed to complex irregular and highly fluctuating environmental 

conditions. The analysis is therefore commonly performed in the time domain, resulting in a 

time consuming and computationally demanding optimization process. 

 

In order to reduce the computational cost, an optimization approach using the principle of 

decomposition can be utilized. Here, it is assumed that when changing dimensions of a 

structural member, sectional response forces and moments remain constant. This assumption 

is made for both the actual changed member and for all other members of the structure. 

Additionally, this is assumed to be valid for a simultaneous change of all members all over 

the structure. It is the so-called local optimization approach and allows for an individual 

(local) optimization of each member of the structure. The local optimization approach has 

been successfully applied for the sizing of a full-height lattice tower and a jacket support 

structure, but under the use of a very simplified optimization algorithm for the local 

optimization of structural members. 

 

1.2 Purpose of the project work 

The objective of this project is the development of a gradient based optimization framework 

for the local optimization (sizing) of structural members of an offshore wind turbine with 

jacket support structure and the implementation of the framework using the principle of 

decomposition. The OWT structure used in this study consists of the UpWind reference jacket 

used within the OC4-project [3] which supports the NREL 5MW turbine [4]. 
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1.3 Study approach 

The development of the gradient based algorithm for the local optimization necessitates the 

study of changes in global performance when modifying structural members locally and a 

method to evaluate these sensitivities in structural performance elementwise.  

 

Thereafter, the algorithms were used with the local optimization approach. The 

implementation was carried out using already existing customized Matlab scripts for the 

automated load analysis with the finite element solver FEDEM WindPower. 

 

1.4 Software used 

This section presents the software that has been used in this thesis. Both commercial programs 

and scripts from a previous project have been used.  

 FEDEM Windpower version R7.1.2, a commercial simulation tool for dynamic 

analysis of complete wind turbine systems, FEDEM Technology AS. FEDEM 

Windpower is a version of Fedem specialized in simulating onshore and offshore wind 

turbines, with integrated soil description and control system. 

 Matlab version R2016a, general purpose mathematical modelling program, 

MathWorks Inc. 

 Python 3.4.0, open source programming language. Python is only used as the interface 

between Matlab and FEDEM. 

 

1.5 Structure of this report 

Following this introductory first chapter, in chapter 2, fundamental theory and background 

are given on all the aspects considering the current work (optimization methods, offshore 

environment, wind turbine support structures). This chapter is the result of a literature study 

that preceded the writing of this report. In chapter 3 the problem to be solved is described. 

All the measures are expressed in mathematical terms and values and expressions are given. 

In chapter 4 the developed optimization framework is described including a sensitivity 

analysis. In chapter 5 the results of this study are presented and in chapter 6 the conclusions 

are made along with recommendations for future work.  
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2 BACKGROUND 

In this chapter the results of a thorough literature study and brief theoretical background is 

given. Structural optimization, gradient-based optimization techniques, sensitivity analysis 

and support structures for offshore wind farms are at the core of this chapter and establish a 

theoretical basis for the methods to be applied in the following chapters. 

 

2.1 Design optimization 

Design optimization refers to the process of generating improved designs. The purpose of 

many structural design problems is to find the best design among many possible candidates-

solutions. For this reason, the design engineer has to specify the best possible design as well 

as the best possible candidates. A possible candidate must exist within a feasible design region 

to satisfy problem constraints. Every design in the feasible region is an acceptable (feasible) 

design, even if it is not the best one (optimal). The best design is usually the one that 

minimizes (or maximizes) the objective function of the design problem. Thus, the goal of the 

design optimization problem is to find a design that minimizes the objective function among 

all feasible designs [5]. 

 

We must first identify some objective, a quantitative measure of the performance of the 

system under study. An objective function is characterized as linear, when it is expressed as 

a linear combination of the design variables and as non-linear otherwise. This objective could 

be profit (or cost), time, potential energy, natural frequency, mass, volume, fatigue life or any 

quantity or combination of quantities that can be represented by a single number. 

 

The objective depends on certain characteristics (or parameters) of the system which are 

subdivided into so-called preassigned parameters and design variables (or unknowns). Each 

one of the design variables has its own domain. Having in mind that mechanical structures 

have a physical substance and they are not abstract theoretical concepts, both the lower and 

the upper bounds must obtain logical values with physical meaning. The number of the design 

variables denotes the dimension of the solution space of the corresponding optimization 

problem. Our goal is to find values of the variables that optimize the objective. Any set of 

values of the design variables defines a design of the structure and may be represented as a 

point in the so-called design space. Often the variables are restricted, or constrained, in some 

way. For instance, the interest rate on a loan cannot be negative. 
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Constraint functions are the criteria that the system has to satisfy for each feasible design. 

Among all design ranges, those that satisfy the constraint functions are candidates for the 

optimum design [5]. The constraints can be either equality or inequality expressions. As for 

the objective function, a constraint is called linear, when it is expressed as a linear combination 

of the design variables, and non-linear in any other case. The constraints divide the design 

space into two domains, the feasible domain where the constraints are satisfied, and the 

infeasible domain where at least one of the constraints is violated. In most practical problems, 

the optimal design is found on the boundary between the feasible and infeasible domains. 

 

The constraint functions together with the objective function are called also performance 

measures. In the special case where the objective function and all of the constraints (both 

equality and inequality) are linear, the optimization problem is characterized as linear. In any 

other case, it is characterized as non-linear. 

 

The process of identifying objective, variables and constraints for a given problem is known 

as modeling. Construction of an appropriate model is the first step - sometimes the most 

important step - in the optimization process. If the model is too simplistic, it will not give 

useful insights into the practical problem. If it is too complex, it may be too difficult to solve. 

 

Once the model has been formulated, computer analysis (computational tools) or sometimes 

experimental tools are used to judge the quality of our designs. We use finite element analysis 

to calculate stresses, deflections, vibration frequencies, etc. of a structure. When we perform 

an analysis, we create a mathematical idealization of some physical system in order to obtain 

estimates of certain response quantities. The goal is to obtain an accurate prediction (within 

the limits of the analysis model) of the responses that can be expected from the real structure. 

 

An optimization algorithm is used afterwards to find a solution, usually with the help of a 

computer. There is no universal optimization algorithm but rather a collection of algorithms, 

each of which is tailored to a particular type of optimization problem. The responsibility of 

choosing the algorithm that is appropriate for a specific application often falls on the user. 

This choice is an important one, as it may determine whether the problem is solved rapidly 

or slowly and, indeed, whether the solution is found at all. 

 

After an optimization algorithm has been applied to the model, we must be able to recognize 

whether it has succeeded in its task of finding a solution. In many cases, there are elegant 

mathematical expressions known as optimality conditions for checking that the current set of 

variables is indeed the solution of the problem. If the optimality conditions are not satisfied, 

they may give useful information on how the current estimate of the solution can be improved. 

The model may be improved by applying techniques such as sensitivity analysis, which reveals 
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the sensitivity of the solution to changes in the model and data [6]. For an effective use of 

design optimization, a well posed problem goes along with the following basic principles: 

 The design goals are clear. An explicit definition of the objective function permits the 

design engineer to specify the structural performance from which the sensitivity 

information can be computed. 

 Constraints are meaningful and well-conditioned. Design variables must be able to 

influence the objective function. 

 Design variables are chosen carefully. 

 

2.2 Structural optimization 

The focus of this thesis is on structural optimization which is usually a nonlinear problem. 

Nonlinear problems arise in various fields of real life and there is a wide variety of approaches 

for solving the resulting nonlinear optimization models. Structural optimization began in the 

1960s and a general structural optimization framework can be described by the figure below. 

 

Figure 2.1: Structural optimization process [5] 

Structural modelling  

Physical engineering problem 

Design parameterization 

Performance definition (cost, constraints) 

 

Structural analysis (FEM, BEM, CFD, etc.) 

  

Design sensitivity analysis 

Optimization Algorithm 

(converged?) 

STOP 

Yes 

No 

Update structural 

model 
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Structural optimization problems may be categorized in three large groups with respect to 

the design variables considered: 

 Size optimization - Include those methodologies that vary the sizes (e.g. diameters or 

cross-sections) of already defined structural members in order for the objective 

function to be minimized and no constraint to be violated. This implies that before 

such an optimization can be done, the structure to be analyzed must be defined. 

 

 Topology optimization - Include those procedures which result in the formation of 

holes inside the design domain by appropriately moving inner nodes; in this way, 

redundant material is removed and the objective function is minimized while no 

constraint is violated. 

 
 Shape optimization - Include those methods according to which the border nodes are 

appropriately moved so that again the objective function is minimized and all of the 

constraints are fulfilled. 

 
In the most general case, the aforementioned optimization problems are not uncoupled. 

Methodologies that simultaneously deal with all three problems are called layout optimization 

methods. 
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2.3 Optimization problems 

An important step in the optimization process is classifying the optimization model, since 

there is no general algorithm to solve any problem but methods for solving optimization 

problems are effective in particular types of problem. The problems to be optimized can be 

classified in numerous categories according to different criteria. The table below gives a 

comprehensive overview of optimization problems. 

 

Table 2.1: Overview of optimization problems 

Classification Criterion Problem Characterization 

Mathematical form of equations involved 
Linear 

Nonlinear 

Number of objective functions 
Single 

Multi-objective 

Nature of design variables 

Deterministic 

Stochastic 

Permissible value of design variables 

Continuous 

Discrete (Integer, Mixed-integer etc.) 

Presence of constraints 

Constrained 

Unconstrained 

Convexity 

Convex 

Non-convex 

Number of involved disciplines 

Single discipline 

Multidisciplinary design optimization (MDO) 

Availability of algebraic model (availability of 
accurate problem data) 

Deterministic 

Uncertainty (Stochastic Prog., Robust Opt.) 

 

The optimization of a jacket support structure encountered in this work, is a nonlinear, single-

objective, single-discipline, deterministic, continuous and constrained problem. 

2.3.1 Constrained optimization 

Most engineering problems have constraints that must be satisfied during the design 

optimization process (constrained optimization). Constraints act as bounds in the design space 

which is the region that defines all of the possible solutions to the problem. They directly or 

indirectly impose limits on the ranges of variation of the design variables and define hyper-

surfaces that encircle the set of acceptable designs. The mathematical expression of the design 

problem is called the basic optimization problem statement and for the constraint 

optimization, it can be written as: 
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find:  VxxxX ,....,, 21 , ix  
Design variable vector 

(2.1) 

to minimize: )(Xf  Objective function 

subject to: 0)( Xg j ,        j=1,…, J Inequality constraints 

 0)( Xhl ,          q=1,…, Q Equality constraints 

 
U

ii

L

i xxx  ,     i=1,…, V Side constraints 

 

where V is the number of design variables and J, Q are the numbers of inequality and equality 

constraints respectively. The objective function is the scalar quantity to be minimized. It is a 

function of the set of design variables. Although the problem is stated as a minimization task, 

we can easily maximize a function by minimizing its negative. Equality, inequality and side 

constraints are possible and these types of constraints are handled separately. 

 

Inequality constraints are placed on the design variables to limit the region of search, for 

example, tubes whose wall thicknesses are less than one-tenth of the outer radius. The 

inequality constraints are expressed in a less than or equal to zero form by convention. We 

have satisfied a constraint if the constraint value is negative. We have violated the constraint 

if its value is positive. 

 

Equality constraints, if present, must be satisfied exactly at the optimal design. Note that if 

there are as many equality constraints as design variables, a unique solution exists (as long 

as the equalities are linearly independent). This solution can be found using standard algebraic 

methods. A finite element analysis belongs to this category of problem. When the number 

and type of constraints do not enable a direct, unique solution, the job becomes complex and 

numerical optimizers must be used.  We need a systematic method of searching for an optimal 

design. 

 

Another classification of constraints can be made with respect to their nature. We can identify 

two types: geometrical constraints and behavioral constraints. 

 

Geometrical (or side) constraints are restrictions imposed explicitly on the design variables 

due to considerations such as manufacturing limitations, physical practicability, aesthetics, 

etc. Constraints of this kind are typically inequality constraints that specify lower or upper 

bounds on the design variables, but may also be equality constraints e.g. linkage constraints 

that prescribe given proportions between a group of design variables. 

 

Behavioral constraints are generally nonlinear and implicit in terms of the design variables 

and they may be subdivided in two types. The first type consists of equality constraints such 
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as state and compatibility equations governing the structural response associated with the 

loading condition(s) under consideration. The second type of behavioral constraints comprises 

inequality constraints that specify restrictions on those quantities that characterize the 

response of the structure. These constraints may impose bounds on local (or point-wise) 

quantities like stresses and deflections, or on global (or integral) quantities such as compliance, 

natural vibration frequencies, etc. 

 

2.3.2 Convexity in optimization 

Convexity is a mathematical term, defining that something is curved outward. If a straight 

line between two points in a domain can never be drawn such that the line crosses the domain 

boundary, the mentioned domain is a convex one. Similarly, if the domain S ≥  f is a convex 

domain, f is a convex function. 

 

 

Figure 2.2: Convex and non-convex (concave) sets in 2D 

A convex function is one whose graph slopes everywhere toward its minimum value, whereas 

a nonconvex function (bottom) may have many basins or local minima. 

 

Figure 2.3: Convex (top) and non-convex (bottom) functions of two variables 
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In continuous optimization (variables are continuous sets and functions are also continuous), 

a convex problem is the special case where a convex function is optimized over a convex 

domain. An optimization problem can be characterized as convex according to the following: 

 

1. f is convex & 

2. every g is convex & 

3.  every h is linear 

or 

1. f is convex & 

2. feasible region is a convex set 

 

 

Convexity is a strong assumption. The advantage of a convex problem is that any local 

minimum will also be a global minimum. On the other hand, if either the objective function 

or the domain are non-convex, they introduce possibilities for local minima. 

 

 

Figure 2.4: Definition of global and local minima 

The methods discussed in the following sections are local optimization methods, which can be 

defined as methods that adapt the solution locally and that are guaranteed to converge to a 

local minimum only, when they have to deal with non-convex functions. However, extra 

techniques exist that can help these methods and lead them to global optimum solutions even 

for non-convex problems. 

 

2.4 Optimization methods 

For an engineering optimization problem, once the formulation is established, the problem 

can be regarded as a mathematical problem. Numerous techniques are available to solve an 

optimization problem, all of which are classified as numerical optimization methods and are 

in principle mathematical tools. Numerical methods do not take into consideration inherent 

characteristics of the problem at hand. Therefore, they deal with a structural optimization 

problem in the same way as any other optimization problem. 
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Usually, the optimization method is an iterative one for finding the minimizer of an 

optimization problem.  The basic idea is that for a given design (initial point) X0 that defines 

the structural model, structural analysis provides the values of the objective and constraint 

functions for the algorithm. Then the algorithm generates an iterative sequence Xk by means 

of some iterative rule, such that when Xk is a finite sequence, the last point is the optimal 

solution of the model problem; when Xk is infinite, it has a limit point which is the optimal 

solution of the model problem. When a given convergence rule is satisfied, the iteration will 

be terminated. Let Xk be the k-th iteration, 
kd  the k-th direction and 

ka  the k-th step 

length. Then we have:  

 

kkkk daXX 1
 with    kk XfXf 1

 (2.2) 

 

Note here that in a general case problem with many variables, a point in the design space is 

defined by a vector of coordinates and therefore Xk, dk and 
ka  in this case are vectors. 

 

 

Figure 2.5: Conceptual diagram for iterative steps of an optimization method 

 

Optimization methods may be categorized in two large groups, the stochastic methods and 

the deterministic methods (can be either derivative-free or gradient-based). The stochastic 

techniques are derivative-free, at least at their basic version, they are not stuck in local optima 

and are good in solving very complex problems. However stochastic techniques need to 

perform a thorough exploration and exploitation of the feasible region (a lot of iterations 

needed), which in turn results to a cumulated high computational cost. In addition, the 

solution they find is not the best possible but a solution very close to it, an “approximate” 

optimum. Genetic algorithms and other heuristic techniques belong to this category. As an 

example, the simplest algorithm of this type is random search. Random algorithms compare 
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the current iterate x with a randomly generated candidate. The current iterate is updated 

only if the candidate is a better point (in terms of the objective function). As can be 

understood, the number of function evaluations for this type of method becomes prohibitive. 

 

On the other hand, the deterministic optimization procedures may use either objective 

function values only (zeroth order or non-gradient methods), or gradients (first order methods) 

or even Hessian information (second order methods). The basic difference between gradient 

and non-gradient methods is the nature of the pattern search. In the former methods, the 

implementation of gradient and/or Hessian information demands the calculation of 

derivatives, which has a significant computational cost, may cause numerical instabilities and 

may result in locating local rather than global minima. 

 

Obviously, each technique has its own advantages and disadvantages. Generally, stochastic 

methods for direct search outperform in terms of time the deterministic ones, when the 

number of the design variables is small. On the contrary, as the dimension of the design space 

increases so does the relative efficiency of the deterministic procedures with respect to the 

stochastic ones [7]. 

 

2.4.1 Gradient-based techniques 

This thesis will focus on the gradient based methods. For most practical design tasks, we are 

usually dealing with a vector of design variables (multivariable optimization). The resultant 

vector of partial derivatives is called the gradient. Numerical optimization algorithms that 

rely on gradient (or sensitivity) information are termed gradient based (or derivative based). 

 

The distinction between most optimization algorithms is in how the search direction is chosen 

and how the step size determined. The different gradient-based algorithms that exist, differ 

mostly in and are usually named, after the logic used to determine the search direction. There 

are two fundamental strategies for moving from the current point Χk to a new point Xk+1. 

These are the line search strategy and the trust region strategy. 

 

Line search starts by fixing the direction and then identifying an appropriate distance. In 

trust region, first a maximum distance is chosen and then a direction and step determined 

that attain the best improvement possible subject to this distance constraint. 
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The computational method in line search strategy, in order to find a solution to the general 

problem in Eq. (2.1) is: 

1. First, for a given point in the design space, we find a direction d that it is both 

descending and feasible, i.e. it can reduce the objective function f while correcting for 

any constraint violations. The following must hold for d to be a feasible direction: 

 

0)(  dXf T
 (2.3) 

0)(  dXg T

j  (2.4) 

0)(  dXh T

q  (2.5) 

 

Equation (2.3) implies that we are descending, and Eq. (2.4) and (2.5) imply that we 

are increasing feasibility (by moving in the direction tangential to the active set for 

the inequality constraints and parallel for the equality constraints). Note that Eq. 

(2.4) must hold only for the active (that are binding at the considered point) 

inequality constraints. 

 

2. Determine the step size of movement a in the direction of d. The determination of 

the step size is done in many algorithms by running a (sub)algorithm for minimizing 

the one-dimensional function ϕ(a) = f(X + ad). This is called line minimization (or 

line search [8]), i.e., f is minimized over the line x + ad. Alternative options for the 

step size selection can be found in [5, 8, 9]. We can also choose a constant step size 

or a diminishing step size. 

 

We continue to repeat this procedure until we cannot reduce the objective function any further 

i.e. until we can make no further improvement in our objective without violating any of the 

constraints. 

 

Figure 2.6: Gradient based method in a real life problem [9] 
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This two-step process can be explained using the example of a blindfolded boy on a hill (Figure 

2.6) used by [9]. The boy has to reach the highest point on the hill (the objective function), 

while staying inside the fences (the constraints). The design variables are the x and y 

coordinates of the boy. In an analogy to gradient-based optimization, the blindfolded boy can 

reach the top of the hill by taking a single step in the x direction and another step in the y 

direction. Based on the information gained from these two steps, he can estimate a direction 

that would take him uphill. The boy can then start walking in this direction until no more 

progress is made, which may include reaching a fence. At this point the boy can again take 

two small steps to determine a new direction that will take him uphill, while staying inside 

the fences and continue the process until he reaches the top of the hill. Some methods move 

mostly along the constraint boundaries, some mostly on the inside (interior point algorithms). 

 

The gradient-based methods for constrained optimization are divided in two main categories, 

the primal and the transformation methods. The primal methods attempt to incorporate 

information about the constraints directly into the optimization problem. They start with a 

candidate in the feasible set and search only the feasible set for an optimal solution. The main 

characteristic of these algorithms is that they find new candidates that simultaneously 

decrease the objective function at each step, while remaining feasible. 

 

Transformation methods (or Penalty and Barrier methods) use methods for unconstrained 

optimization to solve the constrained problem. The basic concept here is to convert the 

original constrained optimization problem to a sequence of unconstrained problems through 

the use of penalties (penalty functions) for constraints. The constraint functions are 

transformed to a penalty function and added to the objective function. Then any of the many 

existing unconstrained optimization methods can be exploited.  

 

In Figure 2.7 on the next page, an effort has been done to present an overview of the 

optimization methods existing and found in literature [5, 6, 9, 10, 8, 11, 12, 13]. The 

performance of an optimization algorithm critically depends on the characteristics of the 

design problem and the types of objective and constraint functions. The most established 

gradient based methods for the general constrained optimization problem with nonlinear 

functions [5], are: 

 

Constrained Steepest Descent Method (CSD) - Design sensitivity of a penalized cost function 

is used in order to combine effects from original objective function (unconstrained) and the 

violated constraint functions.  The method converges to a local minimum point starting from 

an arbitrary point, feasible or infeasible. However, the starting point can affect the 

performance of the algorithm [14]. 
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Figure 2.7: Review of optimization methods for multivariable functions 

Engineering Methods 

 
Mathematical Optimization Methods (MOPs) 

 

Optimization Methods 

Heuristic/Stochastic/Evolutionary 

Gradient-free 

(Zeroth Order Methods) 

 

Unconstrained Problems 

- Steepest Descent (1st order) 

- Conjugate Gradient (e.g. Fletcher-Reeves) (1st order) 

- Quasi-Newton Methods (or Variable Metric Methods) 

  (e.g. BFGS, Davidon-Fletcher-Powell (DFP)) 

 

Constrained Problems - Transformation/Penalty Methods 

- Sequential Unconstrained Minimization Techniques 

  (SUMT) (Fiacco & McCormick 1968) 

  (e.g.  Exterior Penalty, Interior Penalty/Point, Extended 

Interior Penalty, Log-Barrier Function, Augmented 

Lagrangian Multiplier (ALM), Constrained Steepest 

Descent (CSD)) 

 

Constrained Problems - Primal /Feasible Direction Methods 

(e.g. Zoutendijk’s Feasible Directions Method (FDM), 

Generalized Reduced Gradient (GRG), 

Modified Method of Feasible Directions (MMFD), 

Rosen’s Gradient Projection (GRP)) 

 

Constrained Problems - Primal/Lagrangian Methods  

(e.g. Newton and Quasi-Newton Methods, Sequential Linear 

Prog. (SLP) (aka Kelley’s Cutting Plane Method), 

Sequential Quadratic Programming (SQP)) 

- Genetic Algorithm (GA) (1975) 

- Particle Swarm Opt. (PSO) (1995) 

- Simulated Annealing 

- Tabu Search 

- Harmony Search (2001) 

- Colony Optimization (1996) 

   (e.g. Ant Colony Optimization) 

- Genetic Programming (1992) 

- Differential Evolution (1997) 

- Evolutionary Programming (1966) 

- Neural Networks 

- Firefly Algorithms (FA) 

- Artificial Immune System 

- Leap-frog Technique 

- Grid Search 

- Random Search, etc. 

- Coordinate Descent (CD) 
- Simplex (Standard, Revised, 
                 Nelder-Mead) 
- Complex 
- Mesh Adaptive Direct Search 
- Powell 
- Hooke-Jeeves Pattern 

- Flexible Tolerance 
- Hillclimb, etc. 

Deterministic 

  

Gradient-based 
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Zoutendijk’s Feasible Directions Method (FDM) - A direction for search is determined by 

utilizing linear approximations (the gradients of objective and constraint functions) and then 

the actual function values are used to guide the search along this direction. It attempts to 

follow the constraint boundaries without being precisely tangent to them. This is achieved by 

the introduction of a push-off factor θ during the direction calculation. Two features of the 

method are attractive, the guaranteed convergence even for nonconvex problems and the 

generation of feasible points at each iteration. Disadvantage of the method is that it may be 

subject to jamming and have a slow rate of convergence as a result. The method is described 

extensively in [9], [15] and [16]. 

 

Generalized Reduced Gradient (GRG) -The GRG algorithm was first developed by Abadie 

and Carpenter (1969). A search direction is found such that any active constraints remain 

precisely active for a small move in this direction. This is achieved by adding one slack variable 

to each inequality constraint to give an addition to the total number of variables (initial + 

slack). The basic concept of GRG method is to recognize that for each equality constraint, 

we can define a dependent design variable, thereby reducing the total number of independent 

design variables. For this reason, the method can be a powerful design tool if there are only 

a few inequality constraints and several equality constraints. On the other hand, if the 

problem is highly nonlinear it may not converge [9]. 

 

Modified Method of Feasible Directions (MMFD) -This method modifies (by setting the push-

off factors equal to zero) the FDM so that the method resembles the GRG method without 

using the slack variables of it [9]. 

 

Rosen’s Gradient Projection Method (GRP) - This method is very similar to the CSD method 

and is based on a modification of the original method of the FDM. The modification provides 

a search direction that follows the active constraint bounds (rather than moving inside the 

feasible region) towards the optimum. The steepest descent direction (negative of the gradient 

of the objective function) is projected onto the working surface (the subset of the constraints 

that are currently active). However, this may not be a feasible direction since the working 

surface may be curved. To deal with curvature, one searches for a feasible descent direction 

along an embedded curve within the constraint surface. When the starting point is infeasible, 

a correction algorithm (correction steps) should follow the optimization method in order to 

obtain a feasible design during the iteration process. A disadvantage is that convergence of 

the algorithm is tedious to enforce but the GRP algorithm is extremely robust, has the 

property of quickly finding the feasible design space and is widely used in structural 

optimization [13]. 
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Sequential Linear Programming (SLP) - It simplifies the general non-linear constrained 

optimization problem to an equivalent linear problem by creating linear approximations to 

the objective and constraint functions about the current design point. In particular, it employs 

the first order Taylor series expansion to iteratively develop and solve a new LP subprogram 

to solve the Karush-Kuhn-Tucker (KKT) (see following section 2.4.2) conditions associated 

with the NP problem. The method is very sensitive to move limits and may not always find 

a feasible solution. SLP is generally not robust.  As a result, it is considered inferior to the 

MMFD and SQP algorithms. 

 

Sequential Quadratic Programming (SQP) - This algorithm finds a search direction by solving 

an approximate problem based on a quadratic approximation of the objective function and 

linear approximations of the constraint functions. SQP methods are currently considered to 

represent the state of the-art gradient based approach to the solution of nonlinear constraint 

optimization problems [11]. An SQP method will be used in the optimization process proposed 

in the current thesis. More on the method and its performance can be found in chapter 4.3. 

 

2.4.2  Optimality criteria 

A critical part of the overall optimization process is determining when to stop the optimization 

process. In the numerical search algorithm, it is necessary to have some formal definition of 

an optimum. Any trial design can then be measured against this criterion to see if it is met 

and an optimum has been found. Optimality conditions are based on differential calculus and 

they are said to be of first order if they involve only first derivatives. They are of second order 

if second derivatives are also required. Since differential calculus gives only local information 

about the problem and when we do not include convexity assumptions, only relative minima 

can be characterized. If (2.2) is satisfied, it implies that the gradient vector ∇f(Xk) tends to 

zero and the sequence Xk converges to a stationary point. Some of the termination criteria 

that can be used are [9]: 

 Maximum number of iterations 

 Absolute change in the objective function 

 Relative change in the objective function (this is the most natural stopping criterion 

for an unconstrained problem,  )( kXf  where ε is a prescribed tolerance). 

 The KKT conditions 

 

The KKT conditions state that if we compute the gradients of the objective function and all 

the active constraint functions at a point, then the vector sum of them must be equal to zero 

given an appropriate choice of multiplying factors  (called the Lagrange multipliers). This 

condition is described in Eq. (2.7c). Note that, constraints that are not active at the proposed 
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point are not included in the vector summation. Lagrange multipliers allow us to maximize 

or minimize functions with the constraint that we only consider points on a certain surface. 

Factors are ‘dummy’ variables we introduce and we don’t care about their value but help us 

define the X values at an optimum point. The KKT conditions provide the necessary 

conditions for a local optimum and can be summarized as: 

 

X is feasible (2.7a) 

Constraints are satisfied: 0*)( Xg  and 0*)( Xh  (2.7b) 
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)()()(),(   is the Lagrangian and  are the 

Lagrange multipliers; 0j  and qJ   are unrestricted in sign. The proof and complete 

theory related to KKT can be found in [17]. 

 

The KKT conditions are useful for identifying a local optimum, but cannot indicate whether 

a global optimum has been found. However, if the design space is convex (see chapter 2.3.2), 

the KKT conditions define a global optimum. For a design space to be convex, the Hessian 

matrix of the objective function and all constraints must be positive definite for all possible 

combinations of the design variables. Positive definite H, means that the scalar HXX T
 is 

positive for any non-zero column vector X of real numbers. 

 

The KKT conditions are useful even if there are no active constraints at the optimum. In this 

case, only the objective function gradient is considered and this is identically equal to zero; 

i.e., any finite move in any direction will not decrease the objective function.  

 

2.5 Structural sensitivity analysis 

Sensitivity analysis is a necessary tool in the design optimization process. By the term 

sensitivity analysis here, we are referring to gradient computations. Sensitivity analysis 

computes the gradients (sensitivities) of the performance measures (objective and constraint 

functions) with respect to the design variables. The design sensitivity information provides a 

quantitative estimate of the desirable design change. Based on the design sensitivity results, 

an engineer can decide on the direction and amount of design change (step size) needed to 
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improve the objective function [5]. Design sensitivity analysis comes in between the structural 

analysis and the optimization algorithm, i.e. it uses the output from the structural analysis 

and provides the input for the optimization algorithm. 

 

In optimization, we are interested in how a quantity (obj. or constraint function) changes as 

some other related quantities (design variables) change. The usual way to calculate or specify 

how the quantity changes (sensitivity) is with the use of derivatives. 

 

In the case of functions with two or more variables we need to consider derivatives of the 

function with respect to all variables. This requires the use of partial derivatives arranged in 

the gradient vector. The gradient represents the slope of the tangent of the graph of the 

function.  

 

Figure 2.8: Illustration of gradient plane (flat area) on a two-variable surface at a given point 

 

An easy way to envision the gradient of a two variable function f(x,y) is to imagine a X-Y 

grid on a flat surface and f(x,y) is the height of the surface of interest above the flat grid 

surface. The gradient is related to the slope of the surface at every point. The gradient is 

represented using the symbol “∇”. 

 

Apparently, sensitivity analysis presumes differentiability of the objective and constraint 

functions with respect to the design variables, at least around the current design point. If the 

function is explicitly dependent on the design variables, only algebraic handling is required to 

obtain the design sensitivity of such a function. Sensitivity analysis can be performed by: 

 

Approximation approach (also called Divided/Finite Difference Method or Numerical 

differentiation) – It is using either forward/backward finite difference or central finite 
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difference method. Advantages are that it is very easy to code and it can always be applied, 

meaning that the sensitivities are calculated the same way independently of the problem type 

considered. Disadvantages are the high computation costs (many function evaluations for 

large scale problems with many design variables) and the reduced accuracy (especially for 

highly nonlinear problems). Techniques have of course been developed to mitigate these two 

problems, but these techniques increase rapidly in programming complexity. 

 

Analytical Sensitivities (also called Algebraic/Symbolic differentiation) – It is exact but an 

explicit representation is difficult to obtain. This technique is perfectly mechanical, giving 

access to the expression that defines the function of interest. The advantage of symbolic 

differentiation is that it enables fast and accurate calculations and, if the original function is 

simple enough, it can produce a legible symbolic description of the derivative, which can be 

very valuable for further thinking and easier computer calculation. However, drawback can 

be that careless symbolic differentiation can easily produce exponentially large symbolic 

expressions which take exponentially long to evaluate. 

Automatic Differentiation (also called Algorithmic/Computational differentiation) – It is a 

set of techniques which apply the rules for differentiating sums, products, functions of 

functions and so on, to numerically evaluate the derivative of a function specified by a 

computer program. AD is distinct from – although clearly related to – software for symbolic 

differentiation which operates on mathematical formulae and produces corresponding 

formulae for derivatives with respect to chosen variables. 

Derivatives of arbitrary order can be computed automatically and accurately to working 

precision. This technique can handle any derivative or gradient, of any function you can 

program, or of any program that computes a function, with machine accuracy and ideal 

asymptotic efficiency. In the context of optimization, automatic differentiation can provide 

derivatives of the objective function without requiring a user to do any calculus. The 

derivatives are evaluated as accurately as the function itself (i.e., subject only to possible 

rounding errors). Truncation errors do not arise as they do for derivatives estimated by finite 

differences. AD comes in two basic forms. The first form is called forward mode, which 

computes directional derivatives. The reverse mode on the other hand computes directional 

gradients, is much more efficient than the forward mode, but can be expensive in its memory 

requirements.  
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2.6 Design of offshore wind support structures 

Several definitions of offshore wind support structure can be found among different literature 

references. In this thesis, the support structure will be defined as the whole part below the 

tower, excluding the structure under the soil. Offshore wind turbines can be mounted either 

on a bottom-fixed (or grounded to the sea bed) structure, or on a floating structure. Bottom-

fixed structures are the dominating solution among wind farms today. Noticeable technical 

designs among the bottom-fixed solutions are: monopile, tripod, gravity foundation and 

jackets. Usually, a tubular tower is mounted on top of the respective foundation structures, 

as illustrated in Figure 2.9 and Figure 2.10. 

 

 
Figure 2.9: Existing offshore wind energy support structures concepts [18] 

 

 

Figure 2.10: Alternative offshore wind energy support structures concepts [18] 
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Jackets were among the very first structures to be used in the offshore oil & gas industry. A 

jacket is a structure made up of three or four legs connected by slender braces. All the elements 

are tubular and they are joined by welding. Each of the joints has to be specially fabricated, 

taking a lot of time to complete the whole structure. A jacket-like structure will need some 

additional consideration. The large number of relatively slender members with joints 

connecting them can be excited locally, in additional to global vibrations of the tower, giving 

additional contributions to the fatigue loading. Usually the result is a structure with fatigue 

lifetime as the main dimensioning factor. As this thesis will focus on the optimization of a 

jacket support structure, in the table below we summarize the pros and cons of this concept.  

 

Table 2.2: Jacket structures – advantages and disadvantages 

Advantages Disadvantages 

Lightweight and stiff structure 
Complexity of fabrication. Large number 
of joints required (may lead to high cost) 

Better global load transmission compared to monopiles Logistical issues due to large size 

Economically viable on transitional/deep waters Complex connection to transition pieces 

No scour protection needed  

Structural redundancy  

Low soil dependency  

Good response to wave loads  

 

 

2.6.1 Loads in the offshore environment 

There is much experience in designing offshore support structures within the oil and gas 

sector. The loading of oil and gas installations is often dominated by the huge selfweight. The 

structures are therefore less exposed to dynamic excitation. The loading of an offshore wind 

turbine is principally different. It is characteristic for an offshore wind turbine that the support 

structure is subjected to large moments at seabed and strong cyclic loading, originating from 

wind and wave loads on the structure. 

 

One of the main aims of the support structure is to transfer all the loads from the wind turbine 

structure to the ground within the allowable deformations. The loads acting on the wind 

turbine and its support structure are ultimately transferred to the foundation and the resulting 

loading is primarily governed by a large moment at seabed level while the horizontal and 

vertical loads are comparably small. 
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Figure 2.11: Loads acting on the support structure [19] 

 

The loads can be classified into two types, static and dynamic (environmental) loads: 

 Static or dead loads because of the selfweight of the components of the offshore wind 

turbine and its substructure (tower + support structure) and because of marine 

growth. 

 
 The hydrodynamic load caused by the waves and current crashing against the 

substructure. The waves produce a dynamic load and its magnitude depends on the 

wave height and wave period, while current is considered as static load and its 

magnitude depends on the current speed (assumed to be constant). 

 
 The aerodynamic load caused by the wind acting at the hub level (top of the tower) 

from the rotating blades and on the tower. The magnitude of the dynamic component 

depends on the turbulence intensity which by turn is dependent on the height and 

the roughness of the terrain. Rougher terrain and lower altitude give higher 

turbulence intensities. Considering the wind load, there are two frequencies that are 

critical to the wind turbine design. The first one corresponds to the excitation caused 

by mass and aerodynamic imbalances in the rotor and the blades. This load has a 

frequency equal to the rotational frequency of the rotor (corresponding to a full 

revolution and referred to as 1P loading). The second one corresponds to the 

excitation caused by the rotation of the blades. Vibrations are caused on the tower 

by blade shadowing effects (referred to as 2P/3P loading in the literature). The blades 

of the wind turbine passing in front of the tower cause a shadowing effect and produce 
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a loss of wind load on the tower. This impulse-like excitation has a frequency equal 

to three times (3P) the rotational frequency of the turbine for three bladed wind 

turbines and two times (2P) the rotational frequency of the turbine for a two-bladed 

turbine. 

 

Significant vibrations of the support structure of an offshore wind turbine can lead to lower 

power production, increased fatigue damage and even collapsing. For this reason, the 

frequency of the loads exciting the offshore wind turbine should be avoided to coincide with 

the natural frequencies of the support structure (especially with its fundamental structural 

frequency, the 1st nat. freq.). Extreme waves typically occur in the range 0.07-0.14 Hz, the 

energy rich wind turbulence lies below 0.1 Hz and the rotational speed for a modern wind 

turbine is typically in the range 10-20 revolutions per minute resulting to a 1P excitation 

frequency in the range 0.17-0.33 Hz and a 3P frequency between 0.5-1 Hz. 

 

Today, offshore wind turbines are designed with the 1st natural frequency, 
1f , in the range 

between 1P and 3P; in the wind industry sector this is referred to as a soft-stiff structure. 

However, it is possible to design a soft-soft structure with the 1st natural frequency below 

1P, or a stiff-stiff structure with the 1st natural frequency above 3P. The choice of frequency 

range for 
1f  sets criteria for the stiffness of the foundation (support structure); in general, 

less steel is required for a soft structure. Also, a softer structure requires a smaller diameter 

of the body which reduces the hydrodynamic loads. However, issues of fatigue or ultimate 

capacity may become dominant. On the other hand, a structure lying in stiff-stiff region is 

generally more economically expensive as it requires more material to be used. 

 

 

 

Figure 2.12: Typical excitation ranges of offshore wind turbines 
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2.6.2 Design considerations 

Although design guidelines are available for offshore oil and gas installation foundations, their 

direct extrapolation/ interpolation to offshore wind turbine foundation design is not always 

possible. There are two reasons: (a) The foundations of these structures are moment resisting, 

that is, large overturning moments at the foundation which are disproportionally higher than 

the vertical load; (b) The structure is dynamically sensitive and therefore fatigue is a design 

driver. The design of offshore wind turbine support structures needs to consider the following 

six characteristic issues [20]: 

 

 Nonlinearities – Wind turbines exhibit non-linear effects and time-history dependence 

(wake development, dynamic wind inflow, nonlinear wave loads, structural 

nonlinearities e.g., foundation when using the general p-y method for piled 

foundations. Because of these effects, current standards prescribe that wind turbine 

analysis is performed in the time-domain (IEC, 2005; IEC, 2009; DNV, 2013). 

 
 Complex environment – Wind turbines are subject to complex, irregular and highly 

fluctuating environmental conditions. The wind is turbulent (gusts also appear) and 

the wave loads and currents, depending on the site conditions, consist of both viscous 

and inertial effects. Additional effects due to scour, marine growth and sea ice might 

further complicate the loading. The irregular nature of the environment makes it 

necessary to simulate relatively long time-intervals in order to obtain sufficiently 

accurate results. Current standards for offshore wind turbines recommend at least 60 

min of simulation time per load case, i.e., 6x10 min or 1x60 min in IEC (2009) to 

ensure sampling enough variability from the stationary loading process. In offshore 

engineering, it has been common practice for many years to consider simulations of 

at least 3 hours. 

 
 Fatigue as design driver – Wind turbine structures are exposed to quasi-periodic 

excitations due to oscillatory wind and wave actions Wind turbine structures are 

therefore prone to failure from fatigue damage. Fatigue is a failure mechanism that 

causes structures to fail after repeated loading, even though the loading itself is well 

below the ultimate strength of the structure. The failure is caused by microscopic 

cracks that form and grow for each loading cycle. For a lattice structure, the fatigue 

cracking will almost always happen in the joints first. This is due to the higher stress 

concentrations in these areas [21]. A jacket-like structure needs some additional 

consideration. Consisting of a large number of relatively slender members with joints 

connecting them, these members can be excited locally, in additional to global 

vibrations of the tower, giving additional contributions to the fatigue loading. The 

result of all these is a structure with the fatigue lifetime as the main dimensioning 

factor. 
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 Specialized analysis software – For jackets and other more complex offshore support 

structures general finite element capabilities are needed. 

 
 Tightly coupled systems – Wind turbines consist of many different parts and 

subsystems. From an optimization point of view, the most computationally efficient 

manner would be to optimize each part separately in a modular approach. This is 

simply not possible if, at the same time, high accuracy is sought. Optimizing 

individual parts separately will, in general, lead to suboptimal or even potentially 

infeasible solutions. 

 
 Many design variables and constraints – Multi-member support structure concepts 

(e.g., jacket structures) are characterized by many parameters and design variables. 

Even if the model is symmetric (such that, e.g., each bay in a jacket has the same 

type of legs or braces, with differences only between distinct bays), parameters 

typically number into the hundreds. This is normally not an issue for modern 

optimization algorithms that can deal with millions of parameters, but when the 

analysis is highly involved and time-consuming, this becomes a limiting factor. 

Moreover, since structural optimization problems are highly constrained and 

nonconvex, the objective function is usually multi-modal, i.e., exhibiting many local 

minima. It is therefore not straightforward to find an optimal solution. 

 

2.6.3 Optimization of wind support structures 

The criterion for choosing the optimum design among many possible design solutions must 

be a quantity representative and characteristic for any design. The total structural cost can 

be and it is a suitable such quantity since it includes the material, the level of difficulty to 

implement the considered design and the time needed to build the structure.  

 

However, the estimation of the total structural cost is an extremely complex process with an 

erratic result as it fluctuates according to the contemporary values of several economic 

parameters (steel price, cost of transportation, location of manufacturing, etc.). For this 

reason, in most practical engineering optimization problems, the weight (directly linked to 

mass of the structure) is used as the objective function-criterion for the design instead of the 

total cost. Despite the fact that mass (or volume) is a representative quantity of the design, 

we must be aware that the minimization of it does not always lead to a more efficient design 

with respect to the total cost. This is more obvious in structures using standardized (i.e. with 

certain discrete dimensions) structural members like steel jacket frames. 
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In real-life engineering problems, minimum weight (or mass or volume) does not necessarily 

mean minimum cost and the reason for this is that the estimation of the structural cost takes 

into account various parameters, not explicitly obvious. Maybe the most important of these 

parameters are the lack of commonality, the cost of the welding and the quantity of the 

remaining material (scrap) [7]. 

 

The term “commonality” describes how similar or different the profiles of a structure are. For 

instance, a truss consists of a number of bar elements, each one of which, theoretically 

speaking, may have a different profile. However, while this may be good from the viewpoint 

of the total structural weight, it is not good from the viewpoint of the total structural cost, 

because it is almost always cheaper to buy larger amounts of the same profile than to purchase 

smaller amounts of different profiles. Therefore, it is of interest to increase the commonality 

of a structure, so that fewer different profiles can be ordered. 

 

The cost of the welding is another parameter that may significantly affect the design of a 

structure. For instance, in order to minimize the weight of a closed cross-section, as is the 

case of a box girder, it is possible to suggest a design with longitudinal reinforcements. 

However, these reinforcements must be welded to the cross-section, thus the structural cost 

increases due to the welding, which is expensive. Instead, it would be possible to increase the 

thickness of the cross-section plates such that no longitudinal reinforcement is required. In 

the latter case, while the structural weight is higher, the structural cost may be lower, because 

there is a break-even-point where the increase of the structural cost due to purchasing plates 

is less than the increase of the structural cost due to welding. As a result, it is possible to 

adopt a whole new design trend which, although heavier than the one proposed by weight 

minimization procedures, is preferable in terms of structural cost. 

 

Another parameter that determines the structural cost is the scrap material; that is the 

material that remains after the construction is completed. Having zero scrap is the ideal case 

and for this to occur the optimization procedure to be applied must be case-oriented; in this 

way, the design characteristics and particularities of the structure under examination can be 

exploited as much as possible. According to the ideal case of ‘zero-scrap design’, the structure 

consists of an integer number of commercially available structural members, such as sheet 

plates or beams. 

 

The typical optimization problem for a wind support structure is to minimize the structural 

cost by varying parameters that define its geometry, i.e., diameters and thicknesses of 

structural elements. Alternatively, objectives for wind support structure optimization can be 

to maximize the stiffness of a structure, to maximize the structural eigenfrequencies or to 

maximize the stiffness/mass ratio. The objective function quantifies the degree by which the 
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structure succeeds in fulfilling these objectives by a single numerical value (e.g., the total 

structural cost or the total weight of the structure). This value depends in a fixed and 

predetermined way on the geometric parameters that describe the structure. Additional 

equations either describe fixed relationships between these parameters and other variables of 

the problem (equality or inequality constraints) or describe side constraints that restrict the 

range of parameters or solution variables within certain bounds. For example, diameters of 

steel members have both a minimum and maximum size due to manufacturing constraints. 

 

The rotor of a wind turbine is subject to aero-elastic effects that result in nonlinear, time-

history dependent forces acting on the supporting structure. Characteristics such us the 1p 

and 3p frequencies are critical in wind turbine support structure design. 
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3 PROBLEM FORMULATION  

3.1 Problem description 

The objective of this thesis is to find an efficient way to perform a sizing (i.e. size optimization) 

on the structural members of a jacket support structure for an offshore wind turbine. During 

the size optimization, the cross sectional properties (outer diameter and thickness) of all 

members are modified while no elements are added or removed. This implies that the topology 

of the design is kept the same as for the reference jacket, throughout the optimization process. 

 

  

Figure 3.1: Sizing optimization variables 

 

The design of an offshore wind turbine support structure is a non-linear dynamic response 

constrained structural optimization problem. Initially, an integrated model of the structure 

(wind turbine + tower + support structure) was built in FEDEM Windpower version R7.1.2 

software. Then a dynamic analysis was performed using the same software tool. The rotor is 

subject to aerodynamic loads (i.e. aerodynamic damping and excitation forces) while the 

submerged parts are subjected to hydrodynamic forces (i.e. hydrodynamic damping and 

excitation forces). The whole system is modelled as being rigidly clamped at the seabed. 

During the analysis, the finite element method is employed to solve the overall system 

response.  Subsequently, internal forces or stresses are recovered from the support structure. 

Note here, that the member forces and hence stresses, are dependent on the design of the 

structure, i.e. on the member cross sectional areas. 

 

The dynamic analysis is followed by an iterative optimization procedure that was developed 

in Matlab. Generally, the objective function f to be minimized is the cost of the support 

structure. The cost of the structure was chosen here instead of the weight in order to make a 

more accurate analysis during the optimization process and to capture possible relations 

between the variables that decrease the cost further which normally cannot be considered 

when weight of the structure is the objective (e.g. the cost of welding maybe smaller for a 

member with smaller thickness but with same cross sectional area as another one. In that 

case the cost objective function will lead the design in the choice of the first member whereas 

the optimization with weight objective function could choose the second one). The constraints 
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considered in the optimization process were based on limit states functions prescribed by the 

design standards used within the offshore and wind industries [22, 23]. They can be classified 

into: 

 Sizing constraints which define the lower and upper bounds of the design variables as 

well as the geometrical relationships among the variables, respectively. 

 

 Extreme load constraints which are based on the ultimate limit state (ULS) analysis 

performed on tubular members. 

 

 Fatigue load constraints which is based on the fatigue limit state (FLS) analysis 

performed on tubular joints to confirm that a minimum survivability of 20 years of 

service life is attained under the design load case. 

 

3.2 System model 

3.2.1 Support structure 

The structural model used for the application of the local optimization is based on the OC4 

reference jacket [3] originally designed by Ramboll AS for the Upwind project [24]. The jacket 

support structure used here is located at the UpWind deep reference site in 50m water depth 

[24]. The four-legged jacket was a symmetrical design comprised of four levels (bays) of X-

braces, a bottom mud brace at each side connecting the legs and four central piles with a 

penetration depth of 45 m. Piles are grouted to the jacket legs. 

 

The connection to the tubular tower was modeled as a rigid transition piece (TP) made out 

of concrete that is penetrated by the upper parts of the four jacket legs. The total height of 

the jacket from mudline including the TP and excluding the tower is 70.15 m. 

 

Figure 3.2: Jacket with tower and piles (middle), concrete TP (right) and pile heads in detail (left) [3]. 

The model has been used and verified in earlier studies [25]. The jacket was assumed to be 

rigidly clamped on the seabed. 



3 PROBLEM FORMULATION 

31 
 

 

Figure 3.3: The OC4 jacket substructure [26] 
 

3.2.2 Wind turbine 

On top of the jacket a conical tower of the horizontal axis three-bladed, NREL 5MW baseline 

turbine defined by [4] is placed. The conical tower has a total length of 68m leading to a 

realistic hub height over the mean sea level (MSL) of 90.55 m. 

 

Table 3.1: Gross properties for the NREL 5MW Baseline Wind Turbine 

Turbine parameter Value Unit 

Rating 5 [MW] 

Rotor orientation Upwind  

Configuration 3 Blades  

Control Variable speed, Collective Pitch  

Drivetrain High Speed, Multi-Stage Gearbox  

Rotor diameter 126 [m] 

Hub diameter 3 [m] 

Hub height 90.55 [m] 

Cut-in/Rated/Cut-out wind speed 3/11.4/25 [m/s] 

Lower/Nominal/Upper rotor speed 6.9/12.1/12.1 [rpm] 

Rated tip speed 80 [m/s] 

Length/Width/Height of nacelle 19/6/7 [m] 

Rotor mass 110.000 [kg] 

Nacelle mass 240.000 [kg] 

Tower mass 347.460 [kg] 
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3.2.3 Material properties 

The material assumed to be used for the components of this case study is structural steel. 

The steel properties are as follows for the whole structural model: 

 

Table 3.2: Material parameters used in the definition of the tubular members 

Symbol Notation Value Unit 

s  Material density 7850 [kg/m3] 

sE  Young’ s modulus (Elastic modulus) 2.1*1011 [N/m2] 

s  Poisson’ s ratio 0.29 [− ] 

yield  Yield tensile strength 250*106 [N/m2] 

 

 

3.2.4 Cost factors 

The costs factors for the raw materials (steel) and for the labor used in the current study are 

given in the following table: 

 

Table 3.3: Cost factors used in the definition of the optimization criterion 

Symbol Notation Value Unit 

mk  Material cost factor 0.60 [€/kg] 

fk  Fabrication cost factor 0.57 [€/min] 

 

For the material factor, [27] provides a value of 0.536 euro/kg as of May 2015, [28] gives 0.27 

euro/kg in August 2016, [29] provides weekly updated values and for August 18th the steel 

price was 0.312 euro/kg. On the other hand, [30] indicates values between 0.5 and 1.5 euro/kg. 

Considering the above, we can say that at the moment of writing of this study the steel price 

is relatively low (lower than average) and trying to be close to current trends, here a value of 

0.6 euro/kg for the raw steel was used. 

 

Considering the fabrication cost factor, the latest available data from Eurostat were used [31]. 

According to these, the total labour costs for the Netherlands for the year 2015, were 34.1 

euro/hr = 0.57euro/min. This value was used here and covers wages and salaries as well as 

nonwage costs (employer’s social contributions plus taxes less subsidies). 
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3.2.5 Environmental loads 

Wind and hydrodynamic loads were considered in the simulations. The wind conditions were 

modeled as three-dimensional turbulent wind fields according to the Von Kaimal spectral 

model. The wave conditions were modeled as wheeler stretched irregular waves according to 

the JONSWAP wave spectrum. The load cases considered were: 

 

Table 3.4: Load cases considered during the analysis [32] 

DLC Description Type 
Vhub 

[m/s] 
TI 
[%] 

Hs 

[m] 

Tp 

[m/s] 

γ  

[] 

1.2 Power production FLS 9 15.6 1.395 5.705 1.0 

 Power production FLS 14 14.2 1.910 6.070 1.0 

 Power production FLS 19 13.5 2.615 6.850 1.0 

5.1 Emergency shut down ULS 14 14.2 1.910 6.070 1.0 

6.1 Parked under extreme conditions ULS 42 12.0 9.400 10.870 3.3 

 

where Vhub is the wind speed at the hub height, TI is the turbulence intensity of the wind 

field, Hs and Tp are the significant wave height and the peak spectral period of the waves 

respectively and γ is the peak enhancement parameter for JONSWAP spectrum. 

 

3.2.6 Analysis procedures and tools 

The structural model was analyzed in a time domain simulation with the use of the FEDEM 

Windpower software. This is a finite element method analysis tool that allows for a dynamic 

analysis in the time-domain. Structural responses (axial force and in-plane and out-of-plane 

bending moment) to wind and wave loads were calculated at each time step and for each 

member. Simulation runs with a total length of 300 s were performed. The first 90sec were 

not included in further analysis in order to exclude transients and avoid noise in the 

calculations later. Therefore, the actual simulation length was 210 s. 

 

The time series were then converted to nominal stresses using the members’ cross sectional 

areas and moment of inertias. Resulting stress time series were further processed by the 

superposition of stresses in tubular joints, including the impact of stress concentration factors 

(SCF). Then the calculated stress time series were investigated by FLS, ULS and buckling 

analysis. Subsequently, a local optimization of the structural members was performed with an 

in-house Matlab code. Each sizing step is based on time series results from the last time 

domain finite element simulation that was performed. When the design is completely 

optimized for a given load history, new simulations are initiated with the optimized design. 

This produces a new load history, which is used to optimize the design again. 
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3.3 Design variables 

In the structural analysis of truss structures the cross sectional area is required as a parameter 

of the problem. This parameter is defined by the diameter and the thickness of the considered 

structural member. Therefore, the design variables selected for this study were the outer 

diameters and the wall thicknesses of the tubular jacket members. They were distinct for 

various bays and member types, either legs or braces. In addition, the bottom-most sections 

of the legs were the pile members that protruded out from the soil. These parts were not 

included in the optimization study. Due to symmetry, the four side planes are identical and 

at each side there is also symmetry along the middle vertical line. Since beam elements of legs 

and braces can be described by the cross section at their ends i.e. at joints, the design variables 

are the outer diameters and the thicknesses of each of three cross section types. The design 

variables are independent from bay to bay. The first type is the chord at the K-joints, called 

K-leg here. Ten variables (5xD & 5xT) belong to this category and represent the legs of the 

jacket at five different levels, at the bottom (x1), between bays (x3) and at the top (x1). The 

cross sections of braces close to the legs (K-braces) belong to the second type of variables and 

are considered independent from bay to bay and from upper and lower areas within a bay. 

Therefore, there are 16 variables (8xD & 8xT) belonging to this category. At the last type 

belong the cross sections of the braces at the X-joint (X-braces) side. Since all the braces 

connected at an X-joint assumed to have the same dimensions, there are 8 variables (one D 

and one T per bay/per X-joint) of this type. Equation (3.2) shows how the design variable 

vector is constructed for our problem and at Figure 3.4 it is given how these variables are 

arranged over the jacket structure. 
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Table 3.5: Design variables 

Category Cross section type Design variables 

1 Leg    at K-joint 10 

2 Brace at K-joint 16 

3 Brace at X-joint 8 

 Total 34 
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Figure 3.4: Design variables and their locations 

 

In the configuration of the structural model in this study, the leg and brace dimensions 

(middle sections between two joints) are dependent on the variable cross sections and are 

defined by the use of a reduction factor Dred, as follows: 

 

Legs: Xleg = Dred*XK-leg,,  

where K-leg is the attached cross section from the upper bay, i.e. the leg dimensions 

at bay 2 are dependent on the dimensions of the K-leg section between bays 2 and 3. 

 

Braces: Xbrace = Dred*XX-brace,,  

where X-brace is the attached cross section at the X-joint side, i.e. the brace 

dimensions at bay 2 are dependent on the X-brace dimensions of bay 2. 
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Jacket models for two different values of the reduction factor were tested, Dred=0.6 and 

Dred=1.0 (for more details see the results chapter, 5). 

 

 

Figure 3.5: A K-joint and an X-joint 

 

3.4 Optimization criterion 

The criterion must be a scalar function whose numerical value can be obtained once a design 

is specified; that is, it must be a function of the design variable vector x. Such a criterion is 

called an objective function for the optimum design problem and when it is to be minimized 

it is usually called a cost function. A valid objective function must be influenced directly or 

indirectly by the variables of the design problem. 

 

The objective function to be minimized in this study is the cost of the support structure [€ ]. 

The cost of a structure is the sum of the material, fabrication, transportation, erection and 

maintenance costs. In this thesis, only the material and the fabrication costs are considered 

and all the other costs are ignored. The cost function can be expressed as 

 

       xKxKxKxf fm   (3.1) 

where mK  and fK  are the total material and fabrication costs respectively. 

 

 

 

Material Fabrication Jacket
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3.4.1 Material cost 

It is assumed that km is constant for different size hollow sections. Since steel has a certain 

price per kilogram, the material cost can be calculated simply by multiplying the mass of the 

structure by the current material cost factor. The support structure is modelled using simple, 

circular beam elements.  The volume of material of a single tubular member is simply the 

beam area A, multiplied by the total length of the member. The total material cost for the 

jacket structure can be expressed as 





N

n

nnmm LAkK
1

  (3.2) 

where mk  is a material cost factor [euro/kg],  is the material density [kg/m3], N is the 

number of elements in the structure, nA  is the cross sectional area [m2] and nL  the length 

[m] of the member n. 

3.4.2 Fabrication costs 

In the calculation of the fabrication cost the common approach is to divide the manufacturing 

process into several production stages and to consider the cost of each stage. The fabrication 

cost elements then are the welding, cutting, preparation, assembly, tacking, painting, etc. 

Times of the fabrication phases will be used as the basis to estimate the fabrication cost. The 

fabrication times depend on the technological level of the country and the manufacturer 

(technical level of a machine workshop, the level of labor cost and the volume of production). 

After the necessary time is computed for a fabrication work element, it is multiplied by a 

specific factor which represents the development level differences [33]. The fabrication cost 

function can be expressed as 


 


N

n i

inff tkK
1

6

1

,  (3.3) 

where fk  is a fabrication cost factor [euro/min] and it  the times needed for the different 

fabrication stages. The fabrication times considered in this work are the times for forming 

shells, hand cutting of ends, assembly, welding, deslagging, painting, respectively. The 

expressions for the fabrication times are given in Table 3.6 according to [34].  

 

 

Forming shells End cutting
Assembly 
Tacking

Welding
Deslagging 
Chipping

Painting

tFO tCG tW1 tW2 tW3 tP
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Table 3.6: Fabrication times1 

Activity Expression  

Forming plates into shell elements 
ett dfFO 1  (3.4) 

Hand cutting and machine grinding of 
strut ends (tubular structures)   cdcCG LTtt 2

2 4229.054.4   (3.5) 

Preparation, assembly, tacking ALkCtt dwW  113  (3.6) 

Real welding time 
w

n

wW LaCtt 224 
 

(3.7) 

Changing electrode, deslagging, chipping 
235 3.0 WW ttt 
 

(3.8) 

Painting   stcgcdpP Aaatt 6  (3.9) 

 

where Θi are difficulty factors for each specific task determined by the type of the structure 

subject to the task (e.g. tubular member, jacket structure etc.), μ is an expression related to 

the geometry of the shell members, T is the thickness of the cross sectional area,  L, Lc, Lw 

are the member length, the cut length of the ends of a member, the welding length, 

respectively, Ci are welding technology factors, k is the number of elements to be assembled, 

A, As are the cross sectional area and the area to be painted respectively, αw is the welding 

size (width), n is a constant related to the type of the welding connection and αgc, αtc are 

parameters related to painting technology. Note that the dimensions (diameters, thicknesses, 

lengths) in all the expressions are in [mm] and the times in [min]. Analytic expressions as well 

as values of the parameters are given in Appendix A. 

 

All fabrication times are functions of the design variables (Dn, Tn) of each tubular member n. 

Considering the above, the objective function in the Equation (3.1) can be written: 

  



N

n

nPnWnWnWnCGnFOfnnm ttttttkLAkf
1

,3,2,1,,  (3.10) 

 

More specifically, Eq. (3.10) with respect to the variables X is expanded as: 
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(3.11) 

  )()(3.1)( 21 XAaaXLaCLXAkC stcgcdpw

n

wnndw    

 

                                             
1 NOTE: Times calculated in [min] and dimensions (D, T, L) are given in [mm]. However, there is an exception 

in Equation (3.7) where the thickness is in [mm] but the cut length must be given in [m]. 
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For the present study, the fabrication parameters in Table 3.7 were used. These parameters 

depend on the type of the subject structure (e.g. jacket), on the type of the single members 

(e.g. tubular), on the welding technology used and other geometrical factors. In Appendix A, 

more details on the welding technologies and on fabrication times in general can be found. 

 

Table 3.7: Values of fabrication parameters used in the present work [30] [33] 

Symbol Value Explanation  Symbol Value Explanation 

df  3 Tubular member  
2C  0.1346*10-3 SAW technology 

dc  3 Tubular member  n  2 V butt weld 

1C  1 
Welding technology 
factor 

 dp  3 
Complicated 
structure (jacket) 

dw  3 
2 or 3 for tubular 
members 

 gca  3.0*10-6 const. 

k  2 
Number of elements 
to be assembled 

 
tca  4.15*10-6 const. 

 

 

3.5 Formulation of constraints 

3.5.1 Sizing constraints 

Sizing constraints define the lower and upper bounds of the continuous design variables as 

well as the (linear) relationships between them. For the bounds, NORSOK N-004 proposes T 

≤ 6mm. Also, due to rolling difficulties during the manufacturing process the thickness of the 

elements cannot exceed certain limits (>80mm). In addition, despite the recent records of 

cylindrical structures (e.g. monopiles) constructed with diameters larger than 8m, an 

optimized design should try to adopt members already commercially available. Such tubular 

members (CHS profiles, steel piles, etc.) have maximum diameters of the order of 2m. 

Considering the above and for benchmarking reasons with previous studies (e.g. [2]), the 

following bounds were set to the design variables Dmin=0.4m, Dmax=1.6m, Tmin=0.020m, and 

Tmax=0.060m. 

maxmin DDD   

(3.12) 

maxmin TTT   
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Standards for the strength of tubular members typically have limitations with respect to the 

D/t ratio.  ISO19902 proposes 120/ tD , NORSOK N-004 proposes 120/ tD  (ULS) 

as well and 120/20  tD  (FLS), DNV-RP-C203 proposes 64/16  tD  (FLS). Here 

we consider all the above limitations by imposing the following constraints: 

 










064

020
64/20

2

1

TDg

DTg
TD  (3.13) 

 

The intuitive geometric requirement for the outer diameter needed to be larger or equal to 

two times the thickness ( 02 DT ), is already covered by the imposed constraints in Eq. 

(3.13).  

 

Again according to DNV [22] standard for the fatigue calculations, the equations used for 

calculating the fatigue damage at tubular joints are valid only within some ranges for the 

parameters  ,  , : 

chord
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where Lchord is the length of the chord at a tubular joint, Dbrace, Dchord are the diameters of the 

brace and the chord respectively and Tbrace,Tchord are the thicknesses of the brace and the chord 

respectively. The above equations are limited and impose some additional linear constraints 

to the variables of our problem as: 
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Furthermore, as the configuration of the structure allows different cross sections at the braces 

and at the connection of the braces to the legs (i.e. stubs), there must be set another 

limitation. After a lot of testing, it was found out that the stubs should have at least equal 

dimensions or larger than the braces attached to them at any step during the optimization 

process. If stubs become smaller, then the local phenomena take place which lead to high 

bending moments (My, Mz) at these locations. As a result, during optimization the dimensions 

of both stubs and braces will have increased dimensions but is it is still possible that high 



3 PROBLEM FORMULATION 

41 
 

bending moments will be present (and therefore constraints may not be satisfied) since the 

important feature in this case is the ratio of the dimensions between the stubs and the braces 

attached to them. It was found after tests that this ratio(Xstub/Xbrace) should not become lower 

than 0.8. In this case, convergence of the optimization process may not be achieved or if it is 

achieved it will produce inefficient designs with extraordinary large dimensions. For the above 

reasons the following geometrical constraints are more than necessary in order to avoid the 

above described phenomenon. 

 

08.0/8.0 9  stubbracebracestub DDgDD  (3.18) 

 

08.0/8.0 10  stubbracebracestub TTgTT  (3.19) 

 

3.5.2 Extreme load constraints 

Ultimate limit state (ULS) analysis is performed on the offshore structure to evaluate if the 

tubular members and joints satisfy structural strength and stability requirements, i.e. yield 

check and buckling assessment. Under the complicated environmental conditions, the offshore 

tubular members are potentially subject to any combination of axial tension, axial 

compression, bending, shear and hydrostatic loads. The standards like [23] distinguish the 

members which are free from hydrostatic pressure, for instance the beams situated above the 

mean sea level (MSL) or flooded internally and submerged members which experience 

hydrostatic pressure externally. Herein we will consider only a reduced set of 

checks/constraints which corresponds to members free of hydrostatic pressure and consists of 

the following two constraints: 

 

1) Yielding. The maximum absolute stresses from combined action of axial force and 

bending moments derived after the time simulation analysis are restricted to the yield 

strength of structural steel (=250MPa). 
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Where Sd , Rd , yield  are the design stress [MPa], the stress design resistance [MPa] and 

the yield strength of steel [MPa]  respectively, A  is the cross sectional area, DIW /2  is 
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the elastic section modulus [m3], I is the area moment of inertia [m4], tN , yM , zM  are the 

design tensile force [N], in-plane design bending moment [Nm] and out of-plane design bending 

moment [Nm] respectively; RdtN , , RdM  are design resistances for axial tension [N] and 

bending moment [Nm] respectively. 

 

Figure 3.6: Local coordinate system for a tubular element of the jacket structure 

 

2) Column buckling (Euler). The loading of long and slender members in lattice structures 

might, due to insufficient stability, result in a buckling failure of the structure. Therefore, a 

buckling constraint was imposed for each structural design to avoid optimized members 

having critical dimensions in terms of buckling. The buckling safety check was performed on 

a general basis using the formula derived by Euler [35]. 
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(3.21b) 

 

where cN  is the design compressive force [N] and EN  is the Euler buckling (either member 

y- or z- axes) [N]. 

 

Since the extreme load constraints are time-dependent, they are required to be satisfied at all 

time steps. The worst case approach was implemented in this study. This method identifies 

the maximum violated limit state values in time as design constraints, while gradients are 

calculated for the constraints at those active time grid points. 
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3.5.3 Fatigue load constraint 

Fatigue is a failure mechanism that causes structures to fail after repeated loading, even 

though the loading itself is well below the ultimate strength of the structure. The failure is 

caused by microscopic cracks that form and grow for each loading cycle. For a lattice 

structure, the fatigue cracking will almost always happen in the joints first. This is due to the 

higher stress concentrations in these areas, which is the most important parameter for 

prediction on crack initiation. 

It is important to use an adequate cumulative damage theory when determining the fatigue 

damage in variable amplitude loading (like the environmental loading on an offshore wind 

support structure). The damage is defined as a fraction of the life of the structure. Typically, 

fatigue limit state (FLS) analysis is carried out to ensure a minimum survivability of 20 years 

of service life. 

 

To predict the fatigue life, the damage fractions are summed using an accumulation rule. 

Palmgren-Miner’ s linear damage rule is applied in this study. This rule does not take 

sequential effects and interaction of events into account, even though it can potentially have 

a large influence on the fatigue life of the structure. However, this is how the current 

recommended offshore practice [22] addresses fatigue. The material data for fatigue is given 

by S-N curves (or Wohler diagrams). An S-N curve represents the number of cycles to fatigue 

failure in high-cycle regime as a function of the stress range. 

 

FLS analysis is carried out on every tubular joint. Evaluating the fatigue in the cross section 

in each end of each element will thus approximate the fatigue in the welds where failure is 

expected to occur. Since the loading conditions are multiaxial, it is very difficult to predict 

where the highest accumulated damage will occur. For this reason, the damage must be 

evaluated at many local points for each stress cycle. According to the DNV [22], eight hot 

spot stresses (HSS) around the circumference of the intersection (joint) of two tubular 

members, are determined from the superposition of nominal stresses that are pre-multiplied 

by stress concentration factors (SCF). The SCFs are calculated using empirical formulae, 

based on the joint configuration. 
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where 81  are the HSS; x , my , mz  are the maximum nominal stresses due to axial load 

and in-plane and out-of-plane moment respectively; ACSCF , ASSCF , MIPSCF , MOPSCF  are 

SCFs for axial load at the crown, for axial load at the saddle, for in-plane moment and for 

out-of-plane moment respectively. 

 

   

Figure 3.7: Superposition of stresses and geometrical definitions for tubular joints [22]  

 

After which, the rainflow counting is performed to determine the effective number of stress 

cycles and the corresponding stress ranges. Rainflow counting is a technique for counting and 

analyzing cycles resulting from time domain simulations such that the results can be used for 

lifetime prediction. The technique utilizes the successive extremes of the loading sequence and 

is well suited for situations where the amplitude of the loading is varying. 

 

Taking into account the thickness effect, the total local (i.e. for each hot spot location) 

equivalent (accumulated) damage is estimated using Palmgren-Miner's rule as: 
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where 0.1lifetimeD  (when fatigue failure is expected to occur), a  = intercept of S-N curve 

with log N axis; m = negative inverse slope of the S-N curve; blockn  = total number of stress 

blocks; HSSi, = constant stress range block of HSS [MPa]; iN = predicted number of 

cycles to failure at constant stress range HSSi, ; in = number of stress cycles in stress block 
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i;  = usage factor; T , refT  and k are member thickness [m], reference thickness [m] and 

thickness exponent, respectively. 

The unity check of fatigue constraint can now be written as: 
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For practical fatigue design, welded joints are divided into several classes, each with a 

corresponding design S-N curve. All tubular joints are assumed to be class ‘T’ and the 

corresponding parameter values [22] are given in the Table 3.8. 

 

Table 3.8: S-N curve parameters for tubular joints (class ‘T’) 

Parameter Value Unit 

 alog  

(submerged member) 11.764   (for 
610N ) 15.606    (for 

610N ) [] 

(member in air) 12.164   (for 
710N ) 15.606    (for 

710N ) [] 

m  

(submerged member) 3.0        (for 
610N ) 5.0         (for 

610N ) [] 

(member in air) 3.0        (for 
710N ) 5.0         (for 

710N ) [] 

  0.500 [] 

refT
 

0.032 [m] 

k  
0.250 [] 

 

 

Consider a member at a tubular joint, with thickness 0.04m, located under water surface (e.g. 

at a jacket offshore) and after a rainflow counting for a HSS location around the connection, 

we find N1 =5*102 corresponding to the stress range (block) 1 =1*105 MPa. Then the 

fatigue damage contribution from this stress block will be: 
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The same calculation will be repeated for every stress block and then all the damages will be 

summed up to give the total fatigue damage for this HSS location. 
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Figure 3.8: Fatigue damage calculation in the time domain 
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3.5.4 Eigenfrequency 

In the current study the eigenfrequency is not considered as a constraint during the 

optimization process. The main purpose of the natural frequency constraint is to avoid high 

fatigue damage on the support structure and at the same time avoid significant movement of 

the structure that leads to lower power production. The latter one is not a highly probable 

problem for our study since jacket support structures are quite stiff. In addition, since the 

fatigue constraint is already included in the optimization and the fatigue is mostly the design 

driver for the design of offshore wind support structures [2, 20], the elimination of the natural 

frequency constraint is considered acceptable and it doesn’t affect the performance of the 

optimization framework proposed here. Despite the eigenfrequency of the structure is not 

considered as a constraint in this study, for verification of the previous explained theory, the 

eigenfrequency of all the optimized designs will be checked if it falls within the accepted 

region. For this reason, we present below the eigenfrequency limitations for the structure used 

in the current case study. 

 

The rotor frequency range (1P) for the NREL 5MW lies between 0.115 Hz and 0.202 Hz and 

the corresponding blade passing frequency (3P) lies in the range 0.345 Hz –  0.600 Hz. The 

total system’s (jacket + transition piece + tower + wind turbine) natural frequency is 

intended to be within the soft-stiff range in between the 1P and 3P frequency ranges. A safety 

margin of 10% on the maximum and minimum rotor speed is adopted (DNV code suggests 

that the first natural frequency should not be within 10% of the 1P and 3P ranges), which 

means that the allowable frequency is between 0.222 Hz and 0.311 Hz. In the figure below 

also typical frequency distributions for wind and wave loading are presented together with 

the 1P and 3P ranges. 

 HzfHz 311.0222.0 1   (3.26) 

 

Figure 3.9: Allowable natural frequency range for the support structure [24]  
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3.6 Overview of optimization problem  

The whole optimization problem can be summarized in the table below. For the rest of this 

study, the nonlinear constraints can also be referred as ULS, FLS or BUC instead of g11, g12 

and g13 respectively.  

 

Table 3.9: Overview of the optimization problem 

 Total number Description 

Objective function 

 

1 

 

Total cost of the structure, Eq. (3.11) 

 

Design variables 34 K-brace (16),  (two sections per bay) 

 

X-brace (8),  (one section per bay) 

 

K-legs (10),  (five sections, bottom(1) + between 
bays(3) +top(1)) 

 

Equality constraints 0 No equality constraints included in this problem 

   

Linear inequality const. 84 g1  (x9),   (at K-legs(5) and X-braces(4)) 

g2  (x9),   (at K-legs(5) and X-braces(4)) 

g3  (x8),   (at brace to chord at K-joints only) 

g4  (x8),   (at brace to chord at K-joints only) 

g5  (x8),   (at brace to chord at K-joints only) 

g6  (x8),   (at brace to chord at K-joints only) 

g7  (x9),   (at K-legs(5) and X-braces(4)) 

g8  (x9),   (at K-legs(5) and X-braces(4)) 

g9  (x8),   (at each K-brace to X-brace connection) 

g10 (x8),   (at each K-brace to X-brace connection) 

 

 

Nonlinear inequality 
const. 

46 g11 (x17),   (yielding constraint at every cross 
section of tubular joints) 

 

g12 (x12),   (Euler buckling constraint at every 
brace and leg, 3 values per bay, legs are symmetric) 

g13 (x17),   (fatigue constraint at every cross section 
of tubular joints) 
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4 OPTIMIZATION PROCESS 

The most accurate analysis method for wind turbines is the time-domain simulation. The 

main disadvantage of such an approach with the current simulation times of less than real-

time, is that it is extremely time consuming. Especially for more complex support structures, 

such as jackets or lattice towers, the number of load cases that can be used is normally 

strongly limited. 

 

The principal complicating factor in structural optimization is that the response quantities of 

interest are usually implicit functions of the design variables. In any real structural 

optimization task, each of the data points in the design space can only be determined based 

on the results of a complete finite element analysis. Also, since a numerical optimizer usually 

needs a number of these function evaluations throughout the search process, the costs 

associated with this analysis can quickly become enormous. These factors combined with 

hundreds of design variables and thousands of constraints make it obvious that we do not 

have the luxury of invoking a full finite element analysis each time the optimizer proposes an 

incremental design change. Therefore, we are forced to consider methods for efficiently 

coupling the structural analysis routines with numerical optimizers.  

 

So, the challenge is how to reduce the problem enough so that only the most relevant 

information is considered during the optimization process. Some basic concepts used in 

structural optimization are: 

 

Design Variable Linking: A small set of well-chosen independent variables can be used instead 

of hundred possible options. 

 

Constraint Deletion. Only a few constraints that guiding the design are considered and all the 

rest are temporarily disregarded. This leads to a reduced set of constraints and greatly 

simplifies the optimization process. 

 

Formal Approximations. A parametric analysis (Design Sensitivity Analysis) is carried out 

(e.g. using Taylor series expansions of the objective and constraint functions) in order to 

determine how the constraints vary as the design is modified. 

 

In an effort to reduce the computational cost for detailed analyses, an efficient optimization 

approach using the principle of decomposition described by Freeman and Newell (1971) is 

used here. The method is based on the idea of a decomposition of the structure into weakly 

coupled substructures. Thereby, each member of the complete structure is optimized locally 

and simultaneously, assuming that: 
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1. The loads are not changed when changing the member’s geometry. This means that 

given a load history, the optimal geometry of all members can be determined 

analytically, without the need for further simulations. 

 

2. The loads are not changed when changing the geometry of other members in the 

structure. This means that all structural members can be sized at the same time, 

independently of each other. 

 

The above constitute the so-called local optimization approach. This approach has been 

applied for the sizing of a full-height lattice tower in an iterative process earlier [25] [36], and 

it demonstrated weak coupling between individual members in a lattice tower; each member 

could be optimized individually. The advantages of this approach are: 

 

 Each section can be optimized locally-internally without the need of running a 

time domain simulation analysis at every iteration step. 

 Few simulations are needed so less computational cost for the optimization 

process. 

 

4.1 Optimization framework 

The structural model was analyzed in a time domain simulation and time series of the 

responses (forces) were converted to nominal stresses by use of cross sectional areas and 

moment of inertias. Resulting stress time series were further processed by the superposition 

of stresses in tubular joints, including the impact of stress concentration factors (SCF). SCF 

for eight hot spots around the circumference of each member intersection were calculated. 

These, together with the stress time series were used to determine the hot spot stress (HSS) 

at the same locations. Then the HSS time series were investigated by fatigue (FLS) analysis, 

while the stress time series were used for yielding (ULS) and buckling (BUC) analysis. 

 

Subsequently, an optimization of the jacket structure was performed with an in-house code 

using Matlab scripts as will be described later in this chapter. The code was written as an 

extension of a program developed by Daniel Zwick and Sebastian Schafhirt during their PhD-

studies on the optimization of lattice support structures for offshore wind [2]. Each sizing step 

is based on time series results from the last time domain finite element simulation that was 

performed. The assumptions of the local optimization approach used here make it possible to 

perform the sizing internally without the need to run the external finite element solver for 

each newly established design. The local sizing is a faster process and requires only small 

computational resources compared to the analysis with the finite element solver. 
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When the design is completely optimized for a given load history, new simulations are initiated 

with the optimized design. This produces a new load history, which is used to optimize the 

design again. This continues until the design has converged. The design is assumed to have 

been converged if all the constraints are satisfied and at the same time the relative cost 

difference between two FEDEM simulations is less than 2%. It is therefore assumed that a 

potential of 2% reduction of the cost is left. 

 

The flowchart at the next page gives an overview of the optimization approach followed in 

this study. 
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Figure 4.1: Optimization flowchart 
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4.2 Design sensitivity analysis (DSA) 

The design sensitivities of the objective function and the constraint functions are defined by 

the gradient of the function at the considered point (value) at each iteration. Here, the DSA 

is performed analytically to ensure accurate and fast gradient evaluations. The direct 

differentiation method was used to derive the sensitivities. The functions were differentiated 

with respect to the design variables. 

 

The sensitivities here are arranged in gradient vectors which are column vectors consisting of 

the partial derivatives of the functions (objective and constraints) with respect to the design 

variables. 

 

The cost and the constraints are functions of the variables (D, T) and the area and the second 

moment of inertia (A, I) which in turn are explicit functions of the variables as well. As seen 

on Figure 4.2 the relationships for these two quantities are nonlinear. Furthermore, a change 

in either area or second moment of inertia will have a direct influence on the cost and the 

stresses, since they are an explicit function of the two. From Figure 4.2 it can be seen that 

the diameter has a larger influence than the thickness for most of the designs. In addition, we 

notice that as the diameter increases the influence from the thickness increases as well. 

 

 

Figure 4.2: Parametric study of the design variables for the area, and the second moment of inertia. 

 

Below, the sensitivities of some essential quantities used to derive the analytic sensitivities 

objective and constraint functions are provided.  
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4.2.1 Cost function sensitivity   

As the cost function defined in eq. (3.10) is an explicit expression of the given design variables, 

its sensitivity is easily determined as: 
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Below analytic expressions for each component of Eq. (4.4a) are given: 
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Combining Eq. (4.4) we derive an explicit expression for the gradient vector of the cost 

function of our optimization problem: 
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In Figure 4.3  it can be seen that the expression of the cost is nonlinear with respect to the 

variables. We can also notice that both the diameter and the thickness have similar influence.  

 

 

Figure 4.3: Parametric study of the design variables for the cost function of a single member 



4 OPTIMIZATION PROCESS 

56 
 

4.2.2 Sizing constraint sensitivities 

The sizing constraints’ sensitivities are shown below. It’s important to mention that these 

sensitivity values are applied only to the members that the constraints are applied on. For all 

the rest of the members, the sensitivities are equal to zero. 

 



































20

1

1

1

1

T

g
D

g

g ,                  



































64

1

2

2

2

T

g
D

g

g  (4.6) 








































0

11

3

3

3
or

T

g
D

g

g ,        







































0

12.0

4

4

4
or

T

g
D

g

g  (4.7) 





































11

0

5

5

5
or

T

g
D

g

g ,        



































12.0

0

6

6

6
or

T

g
D

g

g  (4.8) 



































0

20

7

7

7

T

g
D

g

g ,                

































0

2

8

8

8

T

g
D

g

g  (4.9) 








































0

18.0

9

9

9
or

T

g
D

g

g ,      



































18.0

0

10

10

10
or

T

g
D

g

g  (4.10) 

 

In Figure 4.4  the linear sizing constraints g1, g2 and the limit surface (=”0”) are plotted in 

the design space for a single tubular member. We can notice the constant slope as expected 

from the linearity and from the equations (4.6) and (4.7).  

 

Figure 4.4: Parametric study of the design variables for the sizing constraints g1 and g2  
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In Figure 4.5 the feasible area (acceptable design combinations of D, T) with respect to the 

sizing constraints only, is presented for the whole design space (all possible combinations of 

D, T). This plot corresponds to a single tubular member of the jacket structure.  

 

Figure 4.5: The feasible area (green colour) considering only the sizing constraints 
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Column buckling (Euler) constraint: 
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4.2.4 FLS sensitivities 

The differentiation of eq. (3.24) against X gives eq. (4.13). 
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Among the terms, the derivatives of the thickness are calculated: 
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Furthermore, the derivative d(Δ σ i,HSS)m/dX needs some attention. Since we follow the local 

approach, the forces at the members remain constant during the optimization but the stresses 

are changing due to the change in the cross-sectional areas. Given this, and considering that 

generally AF /  we can use the following expressions 
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Then we can calculate the derivatives as: 
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Finally, the FLS constraint sensitivity is given by the following expression: 
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At this point it is important to mention that due to the local approach, there are two other 

assumptions made here in order to calculate the fatigue damage sensitivities. The first one is 

that during the internal sizing steps, the stress concentration factors are kept constant. If this 

assumption is not made, then the change in dimensions of one member, affects the loads in 

another and the independent sizing of the members is not possible.  

 

The second assumption we make here is that the slope parameters m (= 3 or 5) used in the 

S-N curve during the rainflow counting is also assumed to be constant during the internal 

sizing step. If this was not true, then the application of a gradients based algorithm becomes 

very tedious as the first derivative of the fatigue constraint, wouldn’t be a continuous function. 

which is one of the requirements for many gradient based algorithms (especially those ones 

that are using second order information of the problem functions). Of course, the above two 

assumptions are valid only for small changes in the design variables during the local (internal) 

sizing but are essential in the local approach. 
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The following figures (Figure 4.6 & Figure 4.7) are showing qualitatively how the fatigue 

damage is varying with respect to the design variables during the internal sizing steps, under 

the aforementioned assumptions. Loads and SCFs on the members are kept constant. 

 

 

Figure 4.6: Parametric study of the design variables for the fatigue damage at a tubular joint 

 

The Figure 4.6 shows how the fatigue damage of a certain location is changing according to 

the dimensions of one of the members at a tubular joint. More specifically, the maximum 

fatigue damage out of the 8 hot spot locations at the brace side of K-joint is plotted against 

the brace dimensions of this location. The next figure is showing the feasible for the dimensions 

of the previous considered K-brace member, when keeping the SCFs constant.  

 

 

Figure 4.7: The feasible area (green colour) considering only the fatigue constraint (g13) 
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4.3 Optimization algorithm 

The internal sizing step of the jacket structure was performed by the use of a gradient-based 

technique. In order to choose a proper optimization algorithm, we need to take into 

consideration the characteristics of the optimization problem to be solved. The following table 

provides all this information. 

 

Table 4.1: Characterization of the optimization model for the jacket support structure 

Aspect Description 

Type Size optimization 

Availability of derivatives Yes (gradient-based) 

Number of objective functions One (single objective) 

Linearity of objective function Nonlinear 

Presence of constraints Yes (constrained) 

Type of constraints Inequality 

Linearity of constraint functions Nonlinear 

Type of variables Continuous real numbers 

Continuity of functions Continuous with continuous 1st order 
derivatives 

 

 

Considering the previous table, a Sequential Quadratic Programming (SQP) method was 

selected. The SQP is a very powerful gradient-based method embedded in Matlab and is 

called through the function fmincon. The method has no other limitations except that it is 

designed to work on problems where the objective and constraint functions are both 

continuous and have continuous first derivatives. Some of the characteristics of the method 

are described in this chapter. Detailed information on the method and its application is 

provided in [37], which is available online. An overview of SQP methods can be found in [38].  

 

The inputs for the SQP algorithm in order to be able to provide optimized solutions, are: 

1. Cost function – An expression for the objective function to be minimized. 

 

2. X0 – An initial point/design specified as a vector which contains values of the design 

variables. The number of elements in X is the number of variables. 

 

3. Linear constraints – The constraints are given separately depending on their type 

(inequality or equality). 

 

4. Non-linear constraints – The nonlinear constraints (equalities or inequalities are 

given separately in a function that is called by the optimizer. 
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5. Gradient information – Analytic gradients derived from a sensitivity analysis can 

be provided in order to increase the efficiency and accuracy of the method. 

 

Given an initial design Xk and the corresponding values for the cost function, the constraints 

and their gradients, the SQP method used here works in four steps at each major iteration k 

as explained below: 

 

1. Calculate the Hessian Matrix.  At each major iteration an approximation of the Hessian 

(second order derivative) of the Lagrangian function (see chapter 2.4.2), H, is calculated 

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula. A summarized algorithm 

of BFGS can be found in [9, 8], while detailed derivation of the method is given by [6] 

and by [39]. The Hessian combined with the gradients are then used at the next step. 

 

Lagrangian:        
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Hessian:  kk

xx

k XLH ,2  (4.20) 

 

2. Create a quadratic approximation (QP subproblem) subject to linearized constraints as 

it can be seen in eq. (4.18).  The solution of the QP problem provides the direction of 

improvement d (search direction). The QP problem of finding the minimum of a 

quadratic is linear, since you just have to take the gradient, a linear function, and set it 

to zero. The method used in MATLAB is an active set strategy (also known as a 

projection method) similar to that of Gill et al., described in [40], [41] and modified for 

Quadratic Programming (QP) problems. The BFGS method used in the previous step, 

guarantees that the Hessian is positive definite, meaning that the scalar Hdd T
is always 

positive and as a result the QP subproblem is convex and its solution is unique [5].  

 

find: d  

(4.21) 
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3. Create a step size calculation subproblem. This subproblem is unconstrained since a 

merit function (also called penalty function) that combines the objective function with 

the active constraints at the considered point is constructed according to [42] and [43]. 

The step length parameter α is determined in order to minimize this penalty function 

which results in objective function and constraint violations minimization, at the same 

time. 

 

Merit 

function: 
        
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4. Form the new design as: daXX kk 1
 

 

For more details on SQP formulation and how it operates can be found in [44], but two 

important features of the algorithm are described in the following two paragraphs. 

 

The SQP algorithm takes every iterative step in the region constrained by bounds. Bounds 

are not strict meaning that a step can be exactly on a boundary. Characteristic of the method 

is that the constraints are satisfied at every iteration. However, during the iterations, the SQP 

algorithm can attempt to take a step that fails. In this case, the algorithm attempts again by 

trying a smaller step. When the problem is infeasible, the method attempts to minimize the 

maximum constraint value. 

 

When constraints are not satisfied, the solution of the general quadratic subproblem defined 

in Eq. (4.21) for finding the direction vector at each iteration step follows two approaches: 

The first one is that SQP algorithm combines the objective and constraint functions into a 

merit function. The algorithm attempts to minimize the merit function subject to relaxed 

constraints. The second one is that if an attempted step causes the constraint violation to 

grow, the SQP algorithm attempts to obtain feasibility using a second-order approximation 

to the constraints. Both approaches can lead to a feasible solution but they have some defects 

in terms of efficiency of the method. The first one slows the solution of the subproblem because 

it creates more variables than the original subproblem and therefore increases the size of the 

problem. The latter one also slows the solution since it requires more evaluations of the 

nonlinear constraint functions.  

  



4 OPTIMIZATION PROCESS 

64 
 

4.3.1 Termination criteria 

The formulation of the optimization problem and the assumption of the local approach 

requires termination criteria in two levels, in an outer (global) and in an internal (local) level. 

 

The local convergence criteria limit the internal sizing process and are set within the fmincon 

function that applies the SQP method. Due to the local approach and the assumption that 

forces are not changing during the local sizing, the target tolerance for the constraint violation 

was set to -0.2. This way, the locally optimized design has a redundancy towards the 

constraint limits that will be needed for the time domain analysis with the optimized 

dimensions that follows. The local convergence criteria chosen for this study were: 

 

Termination tolerance on the constraint violation:  TolCon  ≤  5*10-2 (4.23) 

Termination tolerance on the function value: TolFun  ≤  2*10-2 (4.24) 

Termination tolerance on X: TolX     ≤  5*10-3 (4.25) 

Maximum number of iterations: MaxIt    ≤  15 (4.26) 

 

The first tolerance (TolCon) is an upper bound and operates differently from the other 

tolerances. The tolerance must be satisfied at the optimum point but if it is not satisfied the 

solver attempts to continue. The next two tolerance are lower bounds. This means that 

iterations end when changes in the values of function or step size (change in variable size, 

TolX) are less than the tolerance values. This changes can be either absolute (when the 

magnitude of the considered measure is less than one) or relative (when the magnitude of the 

measure is larger than one). The algorithm stops when: 
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The maximum number of iterations is an absolute upper bound and if exceeded the algorithm 

ends. 
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The global convergence criterion was defined as follows. The whole iterative process will be 

terminated after the “kth” iteration when all the constraints are satisfied and at the same time 

the following convergence criterion is satisfied: 
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k

kk
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For our study this criterion was set to δ=2 % and implies that the variation of the total cost 

of the jacket structure does not exceed the 2% between two consecutive global optimization 

steps (evaluated after each simulation analysis with FEDEM software is completed). 

 

4.4 Novelty and distinctive features of the method 

Three key features of the current thesis are of great importance and have a scientific interest. 

The first one is the objective function which in the current work takes into consideration both 

the material and the manufacturing costs of a jacket support structure. Realistic cost factors 

for both costs are taken into account considering up to date market and labor costs. Since the 

aim of an optimization process is to minimize the cost of structure, the result here is that a 

more accurate measure is used compared to weight that is typically used in structural 

optimization procedures. In this way, the cost is calculated directly in terms of currency and 

the savings (or loss) as a result of the optimization process is realistic and accurate. 

 

The second interesting feature of the thesis is the way the fatigue constraint (g13) sensitivity 

is calculated. The gradient of this constraint is calculated analytically, but under the 

assumption of the local approach, an analytic expression is derived much easier by scaling 

(see Eq. (4.18)) the stress ranges 
HSSi,  calculated through the rainflow counting. 

 

The last characteristic of this study is the optimization framework itself. It is a gradient-based 

iterative process, taking into account the objective function and all the design variables and 

constraints of the system to calculate the new design at each iteration (global optimization) 

but at the same time assumes that the sectional responses (forces) of the members calculated 

in the last FEM analysis, remain the same during the sizing of the members until a new FEM 

analysis is performed (local approach). It is a kind of global-local size optimization, if we are 

allowed to use this term. The result is an efficient process, meaning accurate (analytical 

sensitivities can be calculated) and fast (only one FEM analysis for each iteration step, where 

all the members are optimized). 
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5 RESULTS 

The results presented in this chapter are divided in two different design configurations for the 

jacket, one with the reduction factor (Dred) set equal to 0.6 and one with Dred=1.0. The 

reason for this is that the first approach (Dred=0.6) is presented for benchmarking reasons 

with earlier studies [2]. The second category is fabrication-wise easier to build and closer to 

the common practice of jacket construction while still allowing the final designs to distinguish 

between members of different bays. Each subsection of this chapter will include figures of 

both of this two designs approaches.  

 

In addition, the results are based on a number of selected optimization runs, whereas each 

optimization run consists of three up to seven evaluation (full time domain analysis). For the 

different optimization runs, the design variables for the initial designs were randomly chosen 

within the constraints. The analysis was focused on the optimization progress, with special 

concern on the sizing process, both in terms of accuracy and cost, as a central functionality 

of the local optimization approach. As an important characteristic in structural design, the 

resulting eigenfrequency of the structure was investigated for all the designs. For presentation 

reasons and clarity, the results presented in this chapter have been scaled as the threshold is 

set to 1 instead of 0 (as it is the formulation in chapter 3). 

 

5.1 Progress 

The major challenge in this study is to prove if the main idea of changing all members at all 

locations at the same time, combined with the local approach assumptions, leads to useful 

results. Figure 5.1 and Figure 5.2 give an overview over the progress of all central results in 

the optimization and the performance of the optimization process is presented. Results are 

given for a number of data samples, having their starting point randomly chosen. For these 

several initial designs the method proposed achieves convergence to a similar final design. 

Initial designs start with constraint values that may or may not exceed the limits (=1.0). The 

horizontal axis in this plots gives the generation step where odd number of generation means 

a full time domain evaluation and an even number represents an internal sizing step with the 

local approach. 

 

While the structural cost is converging for an increasing number of generations, maximum 

results for the non-linear constraints of all cross-section categories are forced to get under the 

threshold of 1.0. Overall the simulation sizing process shows very good progress with fast 

convergence. A final design is found after maximum 11 generations when Dred=0.6 and 

maximum 13 generations when Dred=1.0. This means that at maximum only six (seven in 
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case of Dred=1.0) full time domain analysis are needed to achieve an optimized design. In 

average, 5.1 and 5.2 full time domain evaluations are needed when Dred=0.6 and Dred=1.0 

respectively. Significant constraint reduction is achieved after the first two internal sizing 

processes (each internal process consists of several internal steps). The cost as an objective 

function may be higher or lower at the final design compared to the initial one. This is the 

idea of an optimization process as the initial design may have a low cost but not fulfilling all 

the constraints or vice versa. 

 

Figure 5.1: Optimization progress for ULS, FLS, BUC and total cost. Data are presented for ten 
different, independently started optimization runs (Dred=0.6). 

 

Figure 5.2: Optimization progress for ULS, FLS, BUC and total cost. Data are presented for ten 
different, independently started optimization runs (Dred=1.0). 
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The cost shows largest changes in the first two evaluation steps (generations steps 1 to 3 and 

3 to 5), and converge after several generations. Initial designs start out with fatigue damage 

or ultimate stress constraint above and below the threshold of 1.0 as indicated by the first 

evaluation. The buckling constraint values stay significantly below the threshold of 1.0 

especially for the configuration with Dred=1.0. A significant fatigue damage reduction is 

achieved already after the first evaluation. 

 

The optimization progress also shows that the internal sizing process can cope well with the 

challenge of a large number of design variables and constraints chosen here. While the initial 

designs significantly differ in ULS, FLS performance and cost, the resulting cost of the 

structures varies only between 1.61 and 1.69 million euro for the case of Dred=0.6 and between 

3.25 and 3.39 million euro for the case of Dred=1.0. The average structure cost obtained is 

1.65*106 and 3.31*106 euro respectively for the two configurations. It is good to remind here, 

that these values achieved with respect to the termination criterion of the optimization process 

that was set to 2% for the cost function. If this threshold is even lower, then the variation of 

the final costs will be even less.  

 

5.2 Accuracy 

The success of the strategy of the local approach is directly dependent on the accuracy which 

can be achieved during the internal sizing process. The deviation of predicted (while sizing) 

versus achieved (time-domain simulation) results is normalized to internal sizing results, e.g., 

a positive deviation indicates that the result found by simulation is higher than what was 

predicted by the internal sizing process. In other words, a negative deviation means that the 

internal sizing overestimated the ULS and FLS constraint performance. In figures Figure 5.3 

- Figure 5.8, the accuracy of the method is presented separately for each of the three cross 

sectional types (Klegs, Kbraces, Xbraces) and for the two design configurations (Dred=0.6 & 

1.0). Results for the ULS and FLS constraints are presented only, as these are found to be 

the guiding constraints of the design process. Furthermore, a quadratic approximation for 

each constraint (ULS, FLS) is plotted on each figure along with the scatter points. 

 

The overall impression confirms the expectation, that a large number of scatter points is found 

around the origin (0,0), where small deviations come along with small cross sectional changes. 

Looking at all accuracy figures, the following statements can be made: first, the results seem 

to have the same trend regardless of the jacket configuration, i.e. the accuracy of the local 

approach is independent from the Dred factor; secondly, as expected, generally the larger the 

cross-sectional area change the larger the deviation is. However, about 80% of the samples of 

each cross section type (Klegs, Kbraces, Xbraces) is located inside the ± 20% deviation region; 

thirdly, for the Klegs, ULS deviations are in general smaller compared to the FLS; fourthly, 
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for the Xbraces the FLS deviations are smaller than the ULS. FLS deviations higher than 

±20% for small (±10%) cross sectional changes can be explained by the difference in the SCF 

values during the internal sizing steps. This type of deviation is more intense between the 

first evaluation steps. This analysis provides useful information for the adjustment of the 

optimization parameters and leaded also to an ULS and a FLS target values of 0.80 (when 

the threshold is 1.0) for the internal sizing process. 

 

 

Figure 5.3: Accuracy of internal sizing step for the Kleg cross sectional area change in between two 
time domain evaluations (Dred=0.6). 

 

 

 

Figure 5.4: Accuracy of internal sizing step for the Kleg cross sectional area change in between two 
time domain evaluations (Dred=1.0). 
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Figure 5.5: Accuracy of internal sizing step for the Kbrace cross sectional area change in between two 
time domain evaluations (Dred=0.6). 

 

 

Figure 5.6: Accuracy of internal sizing step for the Kbrace cross sectional area change in between two 
time domain evaluations (Dred=1.0). 

 

 

Figure 5.7: Accuracy of internal sizing step for the Xbrace cross sectional area change in between two 
time domain evaluations (Dred=0.6). 
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Figure 5.8: Accuracy of internal sizing step for the Xbrace cross sectional area change in between two 
time domain evaluations (Dred=1.0). 

 

Talking about the accuracy of the method, as mentioned earlier the optimization framework 

achieves convergence around the same values of for the final dimensions of the jacket and 

therefore for the objective function (see figures 5.1, 5.2). For the case with Dred=0.6, the final 

designs have a cost between 1.61 and 1.69 million euro. In terms of structural weight, the 

final designs weigh between 270 and 281 tons. For the case with Dred=1.0, final costs vary 

between 3.25 and 3.39 million euro, while structural weight varies between 695 and 713 tons. 

Considering all the above, we can conclude that the proposed optimization framework is an 

accurate and robust process. 

 

5.3 Efficiency 

The cost change achieved during the sizing process is developed over a number of several 

sizing processes. Structural dimensions (D,T) are changed stepwise towards the design 

constraints, while step quantities depend on the values of all the constraints and the 

analytically calculated gradients at the considered point. Generally, it was noticed that FLS 

and sometime the ULS were the driving design factors (i.e. these two constraints were violated 

first before others). Designs with an initial design closer to the optimum need fewer iterations 

to converge. The largest cost savings are achieved within the first internal sizing process (up 

to 1*106 euro), which requires in average 6.64 sizing steps. 

 

For judging the efficiency of the method, we should investigate the time needed to achieve 

optimum designs. In average (considering both cases for Dred), after the first evaluation 

(initial design), the optimization process requires eight generation steps. As an internal sizing 

is always followed by an evaluation, these generations consist of four sizing processes and four 

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

L
o
c
a
l 
a
p
p
ro

a
c
h
 v

s
 S

im
u
la

te
d
 [

%
]

Member cross sectional area change over internal sizing steps [%]

Xbraces (Dred=1.0)

FLS

ULS

Poly. (FLS)

Poly. (ULS)



5 RESULTS 

72 
 

time domain evaluations. One single finite element solver process was estimated to take about 

23.6 minutes in average. This is the execution time of the external solver (FEDEM 

Windpower) for a 300-second load case (dynamic analysis of the entire offshore wind turbine 

under aerodynamic and hydrodynamic loading is performed). The external solver evaluation 

contained 5 design load cases which simulated in parallel. In contrast, the internal sizing for 

all load cases was performed in series. Each sizing process consists of 5.91 sizing steps in 

average. At the same time, a single sizing step including the evaluation of all the constraints 

(ULS, FLS, etc) was calculated to take 9.6 minutes. The duration for the sizing step is mainly 

driven by the reading speed of the hard disc, since several input files are required for the ULS, 

FLS and BUC analysis out of which the fatigue analysis and the performance of rainflow 

counting is the most time consuming of all. The comparison of a similar optimization approach 

using local assumptions proposed in [2] is listed in the following table.  

 

Table 5.1: Comparison of computation time needed for an optimization with local assumptions and 
approximate sensitivity analysis versus the analytical sensitivity analysis approach. 

Approach Evaluation time Sizing time Total time 

Approximate sensitivity analysis 4.1*23.6 = 96.8 min 8.2*5.5 = 45.1 min 141.9 min 

Analytical sensitivities 4.0*23.6 = 94.4 min 4*5.9*9.6 = 226.6 min 321.0 min 

 

The local approach with the analytical gradients is more time consuming and this happens 

for two reasons. Firstly, as expected, the time needed at each sizing step is almost double for 

the analytical case and this is due to the analytical calculation of the gradients, especially 

those of the nonlinear-constraints (ULS, FLS, BUC). The second reason is the number of the 

internal sizing steps needed in average (8.2 versus 23.6). This difference is highly affected by 

the values of the termination criteria used for the internal sizing process. Loosening these 

criteria but still ensuring that all the constraints are satisfied, the internal steps needed can 

be reduced from 23.6 to 12 (4*3) or even less as it was simulated in some tests. However, the 

exact and optimum selection of the termination criteria can be the objective of another study. 

Furthermore, it is good to keep in mind that time efficiency should always be regarded along 

with the final (optimum) designs obtained and the corresponding cost function savings. For 

the aforementioned case, the approximate analysis achieved in average a final design of 285 

tons structural weight while the analytical approach achieved an average of 275 tons (both 

configurations are for Dred=0.6). 

 

At this point we should keep in mind two important factors affecting the whole process. 

Firstly, we should consider the capabilities of the machine which performs the process. All 

the times presented above correspond to runs that were performed on a powerful university 

server. 
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Just for comparison reasons, if we use a personal laptop with the following specifications: 

 Processor: Intel(R) Core(TM) i7-4700MQ CPU @ 2,40 GHz, 

 RAM:  6.00 GB, 

 System type: 64-bit operating system, x64-based processor. 

then the 300-second load case would require 130 minutes in average to be executed instead of 

just 23 minutes with the university server. The second factor that affects the efficiency of the 

method is the termination criteria used for both the internal sizing process and the whole 

optimization framework (see section 4.3.1). If these parameters are tightened or loosened, then 

this also affects significantly the time required to achieve optimum designs. 

 

5.4 Optimum designs 

The obtained final designs, as a distribution of the dimensional properties (D, T) over the 

tower height, are presented in figures Figure 5.9 and Figure 5.10. In these figures the mean 

values are presented by the plotted curves and the data samples of all the final designs are 

plotted as well. As an overall picture from these figures, we can see that the final dimensions 

are larger for the configuration of the jacket with Dred=1.0. The main reason for this is the 

higher hydrodynamic load that the structure suffers due to the increase of the diameter at 

the middle sections of the legs and the braces. This explains also why these larger dimensions 

appear at the members below or close the mean sea level (MSL at z=0m) but the values at 

the top bay (bay 4) present minor differences between the two configurations.  The influence 

of wave loads in the splash zone is visible for the Klegs and the Kbraces (K-joint between 

bays 3 and 4 at z=4.3m) in the case of Dred=0.6. In contrast in the case of Dred=1.0, this is 

obvious only for the Kbraces. As a result, the diameter and thickness at these locations show 

an increase compared to the neighboring bays. Another interesting feature of the structure is 

that the diameter and thickness of all Klegs and Xbraces show the same behaviour over the 

tower height, with larger decreasing dimensions as we move towards the bottom or the top 

of the jacket. 

 

Looking into the figures more detailed, Klegs and Xbraces have their largest dimensions in 

bay 2. This applies for both configurations for the different Dred factors. Kbraces have their 

largest values around the intersection of bays 3 and 4 for Dred=0.6 while their largest 

dimensions appear at bay 2 when Dred=1.0. However, this latter remark, is a result of the 

Kbrace dimensions trying to fulfill the geometrical constraints (in this case they should have 

dimensions larger or equal to the braces attached to them which by turn are equal to Xbraces 

for the case of Dred=1.0) and not to satisfy the nonlinear constraints (ULS, FLS, BUC). This 

is confirmed by Figure 5.11 at the right, where we can see that in these locations the maximum 

constraint (nonlinear) values are well below the target value of 1.0. Moreover, we can notice 

small increases in diameter and thickness of Kbraces from the lower to upper part of the K-
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joints. Only the Kbraces at upper bay 2 (for Dred=1.0) and the Kbraces at the highest K-

joint (for the Dred=0.6 case) do not follow this trend. 

  

Figure 5.9: Mean dimensions of the final (optimum) designs for all the members over the tower height. 
Data samples of all optimized designs are provided as well (Dred=0.6). 

 

  

Figure 5.10: Mean dimensions of the final (optimum) designs for all the members over the tower height. 
Data samples of all optimized designs are provided as well (Dred=1.0). 
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Results for the maximum nonlinear constraint values at the final designs, as an indication of 

efficient member utilization (in terms of max nonlinear constraint values achieved), are given 

in Figure 5.11. Maximum utilization can be achieved if all the members have their nonlinear 

constraint values as close to the threshold (=1) as possible. Ideally all optimized members 

would have “max CON” values between 0.9-1.0. However, this is not possible as the 

geometrical constraints should also be satisfied at the optimum designs. This guides some 

members to have conservative dimensions with respect to the ULS, FLS and BUC constraints 

and so being away from the maximum utilization region.  

 

Especially, Xbraces show very good utilization at every location and for both jacket 

configurations. At the same time Klegs show good utilization for the lower bays but as we 

move higher, the final dimensions are very conservative with respect to the nonlinear 

constraints. Finally, Kbraces show good utilization at bay 2 and at K-joint between bays 3 

and 4 for the case of Dred=0.6, while for Dred=1.0, good utilization is achieved at the same 

K-joint and at upper bay 1. 

 

  

Figure 5.11: Mean values of the maximum nonlinear constraints of the final (optimum) designs for all 
the members over the tower height. Data samples of all optimized designs are provided as well. 
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5.5 A typical run 

In this section, the performance of a selected run with Dred=0.6, is presented. The 

optimization progress is shown in Figure 5.12. The total number of iteration steps needed to 

find the optimum design was 30 (including the iteration ‘1’ which is just the evaluation of the 

initial design) and convergence is achieved after only 5 full time domain analysis (including 

the first evaluation). The initial design is not a valid design (i.e. at least one of the constraints 

is exceeds the threshold value of 1). The full-time domain analyses are indicated by the vertical 

dotted lines within the figure. 

 

A reduction in cost of 9.88*105 euro is achieved during the first internal sizing (iteration step 

2-6). At this point it’s good to mention that during the internal sizing process, the target 

value for the nonlinear constraint was set to 0.8 instead of the threshold 1.0 (see section   

4.3.1). The purpose of this target is to guide the design towards the limit without exceeding 

it after an internal sizing step which is based on local assumptions. Applying this target gives 

redundancy to the optimized design in order to compensate for the possible deviation from 

the result of the following full time evaluation. 

 

Figure 5.12: Maximal constraint value (CONmax) and cost of structure (Cost) during optimization 
progress of selected run. The vertical dotted lines stand for an iteration step with evaluation (full time 
domain analysis) performed. 

 

The first two internal sizing processes (iteration steps 2-6 and 8-13), do not manage to predict 

very accurately the constraint performance and the control runs using the external finite 

element solver (iterations 7, 14) do not confirm the predicted values. This is the result of high 

cost function changes (implying also high dimension changes of the members) during these 

internal sizing runs. This is of course an expected behaviour due to the local approach 

assumptions, but despite this, these two first sizings manage to approach very well the final 
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optimum design. This is obvious in the subsequent iterations where costs changes are lower 

and convergence while all constraint are fulfilled, is achieved only after two more internal 

sizings. It can finely be seen that the deviation of predicted (while sizing) and calculated 

(while evaluation) maximum constraint values (CONmax), decreases for smaller changes in cost 

function. This matter was already explained in more detail in section 5.2. and the following 

table illustrates this relationship for the selected run. 

 

Table 5.2: Cost change and constraint deviation over the sizing process 

 1st sizing 2nd sizing 3rd sizing 4th sizing 

Cost change [%] 36.5 12.6 10.9 0.7 

CONmax deviation [%] 46.5 74.3 28.9 17.2 

 

In the following figures the geometry dimensions as long as structural cost, structural weight 

and constraint values at each member of the selected run are presented for the initial (iteration 

1) and the final (iteration 30) steps of the optimizations progress for the selected run. 

 

 

Figure 5.13: Initial (iteration step 1) design and maximum constraint values of the selected run. 

 

Figure 5.14: Final (iteration step 30) design and maximum constraint values of the selected run. 
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Figure 5.15: Initial (iteration step 1) constraint values, areas, cost and structural weight of the selected 
run. 

 

 

Figure 5.16: Final (iteration step 30) constraint values, areas, cost and structural weight of the selected 
run. 

In the following three figures, the performance of the third internal sizing process (iteration 

steps 14-20) is presented. The dimensions (diameter, thickness and cross sectional area) of all 

the variables are presented at each internal sizing step. The blue lines correspond to the values 

at the beginning of the sizing (step 14) and the red lines correspond to the optimized designs 

at the end of the sizing (step 20). Furthermore, the maximum constraint values (also 

corresponding to maximum violation as the threshold is the 0) over the internal sizing steps 

is also illustrated at the top right subfigure (internal iterations 1-7 correspond to iteration 

steps 14-20 of the global iteration process). At this point it is good to mention again, that all 

the constraints as formulated in chapter 3, have a threshold value of zero as it is also obvious 
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from figures Figure 5.17 and Figure 5.18. At Figure 5.12, the values for the constraint have 

been scaled up (add +1) just for presentation reasons and to match with the previously 

presented results. 

 

Figure 5.17: Dimensions of all members and maximum constraint values over the internal sizing steps 

In addition, constraint values include the target value of the internal sizing process (equal to 

-0.2, see section 4.3.1). This means that a constraint value of 0.15 in figures Figure 5.17 and 

Figure 5.18 corresponds to a real constraint value of -0.05 calculated as: 

RealValue = PlotValue - (Real threshold - target) = 0.15 - (0 - (- 0.2)) = -0.05 

 
Figure 5.18: Final design (areas) of all members and the corresponding FLS values of the selected 
run. 
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Looking at Figure 5.18, we can see that the largest differences between initial and final 

dimensions occur for the Kbraces around the K-joint between bays 3 and 4. The constraint 

violations are higher at these locations and this explains the increase in their dimensions. 

Specifically, the FLS value is high for upper Kbrace at this location and ULS value (not shown 

here) is high for the lower Kbrace. At the end of the sizing process, the areas of these two 

members have increased by 30% and 45% respectively. At the same time, high increase of the 

Kleg dimensions at the same location is observed, but this is due to the geometrical constraints 

that must be satisfied. Constraint values are not exceeding the threshold for the Kleg at this 

location but the increase of dimensions in the attached Kbraces, forces the Kleg dimensions 

to increase as well as the diameter and thickness of the Klegs should be at least equal to the 

attached Kbraces (implied by constraint g3 – g6). At the same time the Xbraces present minor 

changes in their dimensions as they present small constraint violation only at the top bay. In 

general, members where the constraint values are very close or below the threshold of zero at 

the first step of the internal sizing, indicate very good prediction of the response from the 

previous internal sizing process (iteration steps 7-13) and therefore small deviation between 

those values and the full time evaluation that followed. In general, during all the runs tested, 

it was noticed that the Xbrace members exhibited lower deviations compared to the Klegs 

and Kbraces, with the Kbraces providing the higher values. Figure 5.19 illustrates the changes 

in dimensions of all the members during the third internal sizing (iteration steps 14-20) of the 

selected run. In this figure, except the detailed values for all dimensions, it is important to 

notice that diameters and the thicknesses follow the same trend when changing (i.e. a 30% 

increase in the diameter of a member at the end of the sizing process, is followed by a similar 

increase in the thickness of the same member). 

 

Figure 5.19: Dimensions (diameter, thickness, cross sectional area) of all members over a sizing process 
of the selected run.  
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5.6 The constraints g9 and g10 

At this point it is of high importance to talk about the linear constraints g9 and g10 (see section 

3.5.1). These constraints were not initially included in the optimization formulation but their 

presence is crucial for the success of the optimization for the configuration of the jacket used 

in the current work as we will show below. As discussed in chapter 3, the selection of the 

design variables for this study, is based on the dimensions of the cross sections around the 

joints of the jacket. More specifically, the configuration with variables the Kleg, Kbrace and 

Xbrace sections, allows for three different cross sections between a K-joint (or Y-joint) and 

an X-joint; namely the Kbrace, the Xbrace and the brace between them which depends on 

the Xbrace dimensions through the Dred factor. According to this, the Kbrace and the Xbrace 

sections attached to the ends of a brace, are totally independent from each other, allowing 

the Kbraces to have smaller or larger dimensions from the brace attached to it (as the brace 

dimensions are defined from the Xbrace dimensions). 

 

However, as it was detected during several tests conducted for the analysis of the proposed 

method, when the Kbrace dimensions become less than the braces attached to them, high 

bending moments start to develop at both ends (Kbrace and Xbrace sections) of the braces 

which lead to very high stresses and high FLS and ULS values. This high values as a response 

during the full time domain analysis, is a structural behaviour that the optimization process 

not only cannot “predict” but also cannot overcome. The reason for this is that when such 

bending moments start to develop, the internal sizing increases the dimensions of the 

corresponding members (Kbraces and Xbraces) in order to deal with the high constraint 

violations. However, at the next iteration the problem remains as what actually causes the 

problematic behaviour is the ratio between the Kbrace and Xbrace dimensions and not the 

dimensions themselves. As a result, if at any moment, a design requires the brace to have 

larger dimensions of the Kbraces attached to it, then the optimization guides the design 

towards very large dimensions after many iterations which at the end may still not fulfill the 

constraints. 

 

This behaviour was detected when the reduction design factor was set to 1.0. For the 

configuration with Dred=0.6 (meaning that the brace has dimensions 40% less than the 

Xbrace attached to it), the Kbrace could have dimensions up to 40% less than the 

corresponding Xbrace. In fact, such case was never detected as Kbraces could require to have 

dimensions of up to 30% lower than the Xbraces. However, when Dred=1.0 (meaning that 

brace is equal to Xbrace), the aforementioned behaviour was encountered, as even when 

Kbrace had dimensions just 10% less than the Xbrace, the bending moments were becoming 

very important. 
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The solution to the described problem was found to be the implementation of two new linear 

constraints, the g9 and g10. These constraints do not allow the ratio of a Kbrace dimension to 

the attached brace dimension to become less than one. Figure 5.20, illustrates the performance 

of a run with Dred=1.0 and with the g9 and g10 implemented but allowing the Kbraces to 

have 20% lower dimensions than the braces attached to them. In the figure, the Fedem 

evaluations are represented by the odd number of iteration steps and are indicated with black 

dotted vertical lines while the internal sizing process are represented by the even number of 

iteration steps (each internal sizing process consists of several internal iterations not exhibited 

here for clarity reasons). 

 

In this case the optimization finally converges, but it is important to pay attention at two 

points. Firstly, the number of full time domain analyses needed to achieve the final design is 

eight (including the first evaluation at the beginning). This number is higher than the average 

number of evaluations needed for a similar design (Dred=1.0), which is 5.2 evaluations, but 

it is also higher than the maximum Fedem evaluations ever needed for an optimization with 

Dred=1, which is 7. The second interesting thing of this figure is that the maximum constraint 

value remains almost constant at the three Fedem evaluations at steps 5, 7 and 9, while the 

cost of the structure (and therefore the dimensions of the members) is constantly increasing 

during steps 6 and 8. 

 

To conclude, when allowing Kbrace to have dimensions lower than the attached braces, 

convergence is delayed or in many cases not achieved at all. Therefore, the proposed geometry 

constraints g9 and g10 are strongly recommended to be implemented when we have to optimize 

jacket designs which allow for different cross sections along a member (in this case a brace). 

 

Figure 5.20: Overview of selected run with Dred=1.0 and constraints g9 and g10 allowing for Kbrace 
dimensions 10% lower than the attached braces. 
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5.7 Natural frequency 

Despite not included as a constraint in the optimization process, the resulting eigenfrequency 

of the structure was investigated for various all the runs performed, as an important 

characteristic in structural design. As structural design is changing over iterations, the 

eigenfrequencies of the support structure are changing as well. The common intention of a 

support structure design for wind turbines requires that the 1st global eigenfrequency of the 

whole structure (support structure + wind turbine) should lie between the potential resonance 

ranges of the rotational frequency of the rotor (1P region) and the tower passage frequency 

of the blades (3P region) as mentioned in section 3.5.4. For the case of the NREL 5 MW wind 

turbine used in this study, the 1P and 3P regions are 0.115 –  0.202 Hz and 0.345 –  0.600 Hz 

respectively. The following tables provides the average values and the ranges of the 1st and 

3rd eigenfrequency values of the jacket, measured for all the tested designs. 

 

Table 5.3: Eigenfrequencies of tested designs 

 1st Eigfreq. Mean 1st Eigfreq. 3rd Eigfreq. Mean 3rd Eigfreq. 

Dred = 0.6 0.255-0.300 0.277 0.553-0.621 0.612 

Dred = 1.0 0.311-0.343 0.331 0.616-0.628 0.625 

 

As it can be seen from the results above, no eigenfrequency for any design falls into the 1P 

region, and actually they are not even close to this area. However, several designs have their 

3rd eigenfrequency inside the 3P region or very close to the higher limit of the 3P region for 

the configuration of the jacket with Dred=0.6. At the same time, when Dred=1.0, the first 

eigenfrequency may be very close to the 3P region. Despite no resonance phenomena were 

observed during the tests, these results indicate that when optimizing jacket support 

structures, we should be aware of possible resonance incidents (see also section 3.5.4).  
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6 CONCLUSION 

6.1 Discussion 

The gradient-based optimization with the local approach presented here, has its main 

objective in reducing computation time compared to an optimization approach with a full 

finite element analysis for each iteration step. Despite the local assumptions, the predicted 

results during the internal sizing process were in most cases found to not deviate more than 

25% from the full time domain analysis that follows each such process. The optimization 

process makes use of this information, by setting the threshold value with an offset to the 

target value. As constraint results are predicted and not accurately calculated in the sizing 

process, the offset increases the probability of achieving acceptable (below the threshold) 

results after the full time analysis. By this, large structural changes can be obtained with 

reasonable accuracy without the need for a costly time domain analysis at each step.  

 

The achieved accuracy of the sizing process should also be considered with respect to the 

simulation error caused by the variability of input loading and the length of the time series 

simulated. In the present study, time series with length of 210s were used for the time domain 

simulations in order to prove the functionality of the method. Use of longer time series may 

improve further the accuracy of the method. 

 

The level of optimization of a design can be evaluated by its used capacity (ability to fulfill 

the nonlinear constraints, ULS, FLS and BUC) under different load conditions. The approach 

here is aiming for a cost reduction of the structure (so smaller dimensions) and at the same 

time the fulfillment of all the nonlinear constraints just below their threshold values. However, 

full utilization is not possible for all members as the geometry constraints that should also be 

fulfilled, prevent the optimization of proceeding towards a full utilization at some locations. 

 

Despite the behavioral constraints (like ULS, FLS, BUC) are more important for evaluating 

the performance of the optimization, we should not forget the geometrical constraints. They 

should be carefully selected and as discussed in section 5.6, they can have a severe impact on 

the success or not of the optimization algorithm. 

 

Moreover, the selection of the variable values during the internal sizing process was based on 

the assumption that increased cross sectional areas reduce the nonlinear constraint values of 

the corresponding member. This same idea was also used to calculate analytically the 

sensitivities of the fatigue damage constraints. 
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The resulting final designs with varying diameter and thickness values over the tower height 

prove the adaptation of the structure to the variant load conditions from bottom to top of 

the structure. Comparing the shape of diameter and thickness curves over the tower height 

(Figure 5.9 and Figure 5.10) with results obtained by Schafhirt et al. [2], a good match can 

be seen for corresponding tower heights.  

 

6.2 Conclusion 

This work was initiated by a literature study on the topics of structural optimization, gradient 

based methods, sensitivity analysis and local optimization approach.  

 

Subsequently, the process of finding a good objective function, along with all the 

corresponding parameters, was started. An equation considering both material and fabrication 

costs for the support structure was chosen at the end as a realistic optimization measure of a 

jacket support structure.  

 

Next, an optimization framework was developed using the local optimization approach, as it 

is described in chapter 4. The principle of decomposition was used in order to implement these 

algorithms. The optimization framework was applied to a case study of the OC4 offshore 

jacket substructure model. 

 

Finally, a substantial amount of work was performed to implement the optimization algorithm 

and all relevant constraints, and incorporate this into the existing pre- and post-processing. 

This phase did of course also include quite a lot of debugging.  

 

The objective of the thesis is met. A gradient-based procedure for the optimization of a jacket 

support structure was developed. This method uses an analytical sensitivity analysis with the 

local approach in order to achieve global sizing optimization of the jacket. Optimized designs 

are produced by applying the method to several jacket configurations. In addition, the 

objective function for this study, was selected to be the structural cost. A cost function 

including material and fabrication costs was constructed in order to optimize in terms that 

are closer to the desired goals (i.e. cost savings) when designing support structures. The use 

of this function also proved to work well. 

 

The success of the applied optimization approach can be seen in three areas. Firstly, the 

assumptions made by the use of the local approach lead to reasonable results. Despite these 

assumptions, the accuracy of the method is proved in chapter 5. Similar final designs are 

found under the same conditions. Secondly, the analytical gradients calculated, managed to 

guide the internal sizing process towards the optimized designs successfully. Thirdly, the 
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efficiency of the method was also investigated. Convergence was achieved after a few full time 

evaluations and from several initial points (designs). The method needs just 5 full time domain 

analyses in average, in order to find optimum designs. This process is for sure more efficient 

than trying to optimize by running a full time domain analysis at every step. However as 

presented in Table 5.1, the process is more time consuming than a method that uses a 

simplified algorithm for the optimization instead of the analytical gradient approach followed 

here.  

 

The adjustment of several optimization parameters and constraints, such as the termination 

criteria used, can give further opportunities for the development of this approach and increase 

its efficiency. Finally, it is worth mentioning that the proposed optimization framework is not 

restricted to jacket support structures only, but it can be applied to other offshore wind 

turbine support structures (e.g. monopiles and tripods) which present a lower level of 

complexity and accuracy of the method may be increased. 

 

6.3 Future work 

Although this study has illustrated and proved some important aspects of the use of the 

gradient based optimization in conjunction with the local approach in structural design of 

offshore jacket support structures, there are still unanswered questions waiting for additional 

research. Here are some suggestions for future work: 

 

1. Including more parameters as design variables in the optimization process. Number 

of legs, number of sections, variable section height, bottom leg distance and top leg 

distance are all variables with major impact on structural performance. It would be 

interesting to see if these variables can be included in the same optimization process, 

how that affects the performance of the optimization and if further minimization of 

the objective function is possible. 

 

2. Account for more constraints during the optimization process. Natural frequency, 

combined stress actions and other constraints recommended in design standards for 

offshore structures, could enable a more accurate analysis. 

 

3. Calculate and include the SCF sensitivities (gradients) in the optimization process. 

This will make the internal sizing process faster and more accurate. Deviations 

between internal sizing and solver evaluations will decrease. 

 

4. Define the design driving constraints and use this information to make the 

optimization process more efficient. 
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5. Include extra costs in the cost function except the manufacturing and material costs. 

Transportation and installation costs account for a big portion of the total cost for 

an offshore support structure and therefore they should be considered especially when 

topology of the structure is subject to optimization.  

 

6. Realistic optimization should also account for discrete variables, and possibilities for 

using the same dimensions for several members. A concern with doing optimization 

at a level of detail this high is the increased complexity in production. Unless 

adjustments are done after the optimization, there will be a large number of members 

where almost all have different dimensions. This will complicate the logistics related 

to production. Some economy of scale is of course possible for large wind farms, given 

that many of the turbines are optimized for the same site conditions. But with more 

efficient optimization techniques it is possible to optimize each individual structure, 

at least if there are differences in water depth, etc. This could again result in every 

single structure being unique, with its own dimensions on every member. 

 

7. During this study, all optimization has been done based on a few load cases. Real 

world development does, however, require testing with hundreds of load cases, if 

design standard recommendations are to be followed. Further work can therefore 

investigate how the optimization procedure can coexist and interact with this large 

number of load cases, resulting in a design that is in guaranteed to comply with all 

requirements. 
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APPENDIX A  Fabrication times 

Fabrication times for manufacturing of a truss steel structure considered in the present work 

[30]: 

 

 

 

 

1. Forming plates into shell segments 

etFO 
 

[min]
 

 

   

Where:   

3  
][
 

 

0.5-0.5 0.0095D 4.53T - 6.86    mmD 3000  [min]
 

 

 

 

2. Hand cutting and machine grinding of strut end for tubular structures 

  cdcCG LTt 24229.054.4   ][min/ mm
 

 

CAUTION: Lc  is in meters while T is in mm !!! 
 

Where:  

3 dc  
][
 

  is the angle between the two members connected [deg]
 

DLc




sin

2
  is the cut length  ][m

 

 

  

Forming Shells End cutting
Preparation, 

Assembly 
Tacking

Welding
Deslagging 
Chipping

Painting

tFO tCG tW1 tW2 tW3 tP
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3. Preparation, assembly, tacking 

ALkCt dwW  11  [min]
 

 

 

Where: 
  

11 C
 

  

3,2dw  (for tubes [33]) ][
 

 

1k  (number of elements to be assembled) ][
 

 

 

 

4. Real welding time 

w

n

wW LaCt 22   
[min]

 
 

   

Where:   

2C  is a constant depending on the welding technology ][min/ 2mm   

wa  is weld size ][mm
 

 

DLw




sin

2
  is weld length ][mm

 
 

 

 

5. Changing electrode, deslagging and chipping 

23 3.0 WW tt 
 

[min]
 

 

 

 

6. Painting 

  StcgcdpP Aaat 
 

[min]
 

 

   

Where:   

3,2,1dp  (=3 for complicated structures like truss) ][
 

 

610*3 gca
  

][min/ 2mm   

610*15.4 gca
 

][min/ 2mm   

LDAS   (surface to be painted) ][ 2mm   
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Table A.1: Welding times tw2 (min/mm) in the function of weld size aw (mm) for longitudinal fillet 
welds, downhand position. 

Welding technology 
wa  [mm] 

2

2

3

2

3 1010 wW aCt   

SMAW 0-15 0.7889 2

wa  

SMAW HR 0-15 0.5390 2

wa  

GMAW-C 0-15 0.3394 2

wa  

GMAW-M 0-15 0.3258 2

wa  

FCAW 0-15 0.2302 2

wa  

FCAW-MC 0-15 0.4520 2

wa  

SSFCAW (ISW) 0-15 0.2090 2

wa  

SAW 0-15 0.2349 2

wa  

 

 

Table A.2: Welding times tw2 (min/mm) in the function of weld size aw (mm) for longitudinal 1/2 V 
and V butt welds downhand position. 

 ½ V butt welds V butt welds 

Welding technology 
wa  [mm] 

2

2

3

2

3 1010 wW aCt   
2

2

3

2

3 1010 wW aCt   

SMAW 4-6 6-15 3.13
wa  0.5214 2

wa  2.7 
wa  0.45 2

wa  

SMAW HR 4-6 6-15 2.14
wa  0.3567 2

wa  1.8462
wa  0.3077 2

wa  

GMAW-C 4-15  0.2245 2

wa   0.1939 2

wa   

GMAW-M 4-15 0.2157 2

wa  0.1861 2

wa  

FCAW 4-15 0.1520 2

wa  0.1311 2

wa  

FCAW-MC 4-15 0.2993 2

wa  0.2582 2

wa  

SSFCAW (ISW) 4-15 0.1384 2

wa  0.1194 2

wa  

SAW 4-15 0.1559 2

wa  0.1346 2

wa  
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Table A.3: Welding times tw2 (min/mm) in the function of weld size aw (mm) for longitudinal K and 
X butt welds downhand position.  

 K butt welds X butt welds 

Welding technology 
wa  [mm] 

n

wW aCt 2

3

2

3 1010   
n

wW aCt 2

3

2

3 1010   

SMAW 10-40 0.3539 93.1

wa  0.3451 9.1

wa  

SMAW HR 10-40 0.2419 93.1

wa  0.2363 9.1

wa  

GMAW-C 10-40 0.1520 94.1

wa  0.1496 9.1

wa  

GMAW-M 10-40 0.1462 94.1

wa  0.1433 9.1

wa  

FCAW 10-40 0.1032 94.1

wa  0.1013 9.1

wa  

FCAW-MC 10-40 0.2030 94.1

wa  0.1987 9.1

wa  

SSFCAW (ISW) 10-40 0.0937 94.1

wa  0.0924 9.1

wa  

SAW 10-40 0.1053 94.1

wa  0.1033 9.1

wa  

 

Welding Technologies: 

SMAW = Shielded Metal Arc Welding 

SMAW HR = Shielded Metal Arc Welding High Recovery 

GMAW-C = Gas Metal Arc Welding with CO2 

GMAW-M = Gas Metal Arc Welding with Mixed Gas 

FCAW = Flux Cored Arc Welding 

FCAW-MC = Metal Cored Arc Welding 

SSFCAW (ISW) = Self Shielded Flux Cored Arc Welding 

SAW = Submerged Arc Welding 

GTAW = Gas Tungsten Arc Welding. 
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APPENDIX B  Parameter formulation 

Parameters of a tubular member (D=diameter, T=thickness, L=length, E=Young’s 

modulus). 

W

MM

A

N SdzSdySd

Sd

2

,

2

, 
  Design cross sectional stress. [N/m2] (B.1.1) 

    

yieldRd    Design resistance for yield strength  [N/m2] (B.1.2) 

    

 2TDTA    Cross sectional area of hollow cylinder. [m2] (B.1.3) 

    

  44 2
64

TDDI 


 Area moment of inertia. [m4] (B.1.4) 

    

I
D

W
2

  
Elastic section modulus (a measure of 
the flexural strength of the beam). 

[m3] (B.1.5) 

    

yieldRd AN   Design resistance for axial tension [N] (B.1.6) 

    

yieldRd WM   Design resistance for bending [Nm] (B.1.7) 

    

2

2

L

IEn
N E





 

Euler buckling design resistance (n=4 
was used here since fixed-fixed 
conditions assumed for all members). 

[N] (B.1.8) 
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APPENDIX C  Matlab scripts 

In this appendix, the main scripts used for the optimization process are presented. 

 

C1 – Internal sizing function 

Below is presented the internal sizing step function that makes use of the embedded “fmincon” 

function from the Optimization Toolbox of Matlab. This function is the main script for 

internal sizing step. It sets all the parameters, lower bounds, upper bounds, tolerances, 

objective and constraint functions and at the end calls the optimization algorithm for 

optimization. 

 

function  DIM = 

INTERNAL_SIZING_main(FP,gen,JAC,DIM,COST,ULS,FLS,BUC,THE,LEN,SCF,tim

) 
 

%***************************************************************** 
%  
%  JACKET DESIGN FOR MINIMUM COST USING 'fmincon' FROM OPTIMIZATION  
%  TOOLBOX (analytic expressions for gradients provided)  
%  
%***************************************************************** 
% written by Nikolaos Xyloudis, 09/2016 

  

 
% SOLVE THE PROBLEM 
%   Minimize:  cost_FUNCTION 
% subject to:  calcLINEAR_CONSTRAINTS 
%              calcNONLINEAR_CONSTRAINTS 
%              Lower (Lb) & Upper (Ub) bounds on variables 

  
%---INPUT---------------------------------------------------- 
%   FP        - FEDEM and FATIGUE parameter 
%   gen       - number of generation 
%   fed       - counter of Fedem runs 
%   JAC       - general jacket parameters 
%   DIM       - bay specific jacket parameters 
%   COST      - cost function value 
%   ULS       - ultimate load constraint value 
%   FLS       - fatigue damage cosntraint value 
%   BUC       - buckling constraint value 
%   THE       - structural angle theta for SCF calculation 
%   LEN       - length of legs and braces 
%   tim       - identification of time series file to be used 

  
%---OUTPUT---------------------------------------------------- 
%   DIM       - updated DIM matrix after the internal sizing process 

  
% copy DIM and THE matrix to new generation 
    DIM{gen,1} = DIM{gen-1,1}; 
    THE{gen,1} = THE{gen-1,1}; 
    LEN{gen,1} = LEN{gen-1,1}; 
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%% (1) DEFINE INITIAL DESIGN XO (it can be scalar, vector or matrix) 
%  
%Even if you pass an initial point X0 as a matrix, solvers pass the 
%current point X0 as a column vector to linear constraints. 
%XO here will be a [M x N] = [1 x 34] where X0 = [D1 T1 D2 T2 D3...] 
%  
%      17   = number of locations we check in the structure 
%      (5 K-stubs + 8 brace stubs(4 upper + 4 lower) + 4 X-stubs) 
%      17x2(D,T) = 34 is the total number of design variables 
%      X(1,1:16)   - Kbraces 
%      X(1,17:24)  - Xbraces 
%      X(1,25:34)  - Klegs 

  
       X0      = DIMtoX(gen,DIM); % initial design [1 x 34] 
       n_var   = numel(X0);       % total number of variables 
       MaxViol = 7e-2; 

        

        
%% (2) SET BOUNDS FOR VARIABLES  
%      for X0 = [M x N] = MxN = Z variables, Lb and Ub must be 

vectors 
%      like Lb,Ub = [Z x 1].     

  
       upper = [1.600; 0.060]; % D <= 1.6,  T <= 0.06 [m] 
       lower = [0.400; 0.020]; % D >= 0.4,  T >= 0.02 [m]     
%        Ub = repmat(upper, size(X0,2)/2, 1); % [34 x 1] 
%        Lb = repmat(lower, size(X0,2)/2, 1); % [34 x 1]  

           

  
%-----SET LIMITATION TO VARIABLE CHANGE (step size)----------------- 
  factor_D = 60;     % allowable D change per internal sizing [%] 
  factor_T = 60;     % allowable T change per internal sizing [%] 

  
        for j=1:2:33 
            Ub(j)   = min(upper(1),(1+factor_D/100)*X0(j)); 
            Ub(j+1) = min(upper(2),(1+factor_T/100)*X0(j+1)); 
            Lb(j)   = max(lower(1),(1-factor_D/100)*X0(j)); 
            Lb(j+1) = max(lower(2),(1-factor_T/100)*X0(j+1)); 
        end 

  

         
%% (3) DEFINE CONSTRAINTS & OBJECTIVE FUNCTION 
 [A, b]        = calcLINEAR_CONSTRAINTS(n_var, MaxViol); 
 nlconstraints = 

@(X)calcNONLINEAR_CONSTRAINTS(FP,gen,JAC,THE,XtoDIM(gen,X,DIM),ULS,F

LS,BUC,LEN,tim,SCF,upper,n_var); 
 objective     = 

@(X)calcCOST_JACKET(gen,JAC,XtoDIM(gen,X,DIM),COST); 

         

     
%% (4) SET OPTIONS OF 'fmincon' 
% 'outputSQP_FUNC'      is a user-defined function called at each 

iteration and gives plots.  
% 'ConstraintTolerance' is an upper bound and operates differently 

from other tolerances. If it is not satisfied the solver attempts 
to continue. 
% 'StepTolerance'       is a lower bound. Iterations end when: |  xi  

–   xi+1 | < StepTolerance 
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% 'FunctionTolerance'   is a lower bound. Iterations end when: 

|f(xi) – f(xi+1)| < FunctionTolerance 
% 'OptimalityTolerance' is a lower bound.                      

  
options = optimoptions ('fmincon', 'Algorithm'              ,'sqp',  
'MaxIterations'      , 9       , 'SpecifyConstraintGradient', true,  
'OptimalityTolerance', 1e-2    , 'SpecifyObjectiveGradient' , true,  
'ConstraintTolerance', MaxViol , 'CheckGradients'           , false, 
'FunctionTolerance'  , 3e-2    , 'Diagnostics'              ,'off' , 
'StepTolerance'      , 9e-3    , 'Display'                 ,'iter', 
'OutputFcn'          , @outputSQP_FUNC ,... 
'PlotFcn'            , {'optimplotfval','optimplotstepsize'});          

  

  
%% (5) INVOKE 'fmincon' ('[]' indicate no linear equalities in the 

problem)      
    [X, ~, exitflag, output] = fmincon(objective,X0,A,b,[ ],[ 

],Lb,Ub,nlconstraints,options);  

   
    disp(exitflag); 
    disp(output);  

  
%% (6) UPDATE 'DIM' MATRIX 
    DIM = XtoDIM(gen,X,DIM); 

  

  
%% (7) SAVE FIGURES & EXIT 
    h = get(0,'children'); 
    for i=1:length(h) 
        

savefig(h(i),sprintf('%sOutput_PLOTS/InternalSizingFigs_gen%d_fig%d.

fig',FP{2},gen,i)); 
    end 
    close all 
    clear h 

  

  
end % of function  
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C2 – Total cost of jacket 

The function below calculates the total cost of the jacket structure as well as the gradients of 

it with respect to the design variables. 

 

function [total_cost, costgrad] = calcCOST_JACKET(gen,JAC,DIM,COST) 

  
******************************************************************* 
%                                                                     
%   Calculate cost of all designs                                      
%   this is the objective function/criterion for the optimization                                                                        
% 

******************************************************************** 
% written  by Daniel Zwick,      05/2014 
% modified by Nikolaos Xyloudis, 05/2016 

  

  
% CONTENT 
% ------------------------------------------------------------------ 
% 1) Calculate cost (manufacturing + material) 

  
% INPUT parameters 
% ------------------------------------------------------------------ 
% gen       - number of generation 
% JAC       - general jacket parameters 
% DIM       - bay specific jacket parameters 
% COST      - cost of the structure in [euros] 
% THE       - angle between members. These angles are used for 
%             calculating the welded length between members in order 

  to find the fabric. cost. Here instead of calculating  

  
% OUTPUT parameters 
% ------------------------------------------------------------------

--- 
%    COST      - cost of jacket structure [euros] 
%    costgrad  - gradient of the cost function 
%    MAT_COST  - material cost 
%    FAB_COST  - fabrication cost 

  

  
%% Adding functions directory to Matlab search path 
    addpath('JACKETscripts') 

     

     
%% 1) Calculate cost of structure (material + fabrication) 

 
    % calculate cost for all designs 
        % definitions 
            COST{gen,1}     = 0; 
%             MAT_COST{gen,1} = 0; 
%             FAB_COST{gen,1} = 0; 
            i=0; 
            j=0; 
            k=0; 
            l=0; 
            m=0; 
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% calculate jacket parameters (nodes and beams) 
     clear Jnod Jbea 
     [Jnod, Jbea, ~, ~] = jacketMATLAB_v0(JAC{gen,1},DIM{gen,1}); 

         
% calculate cost of each beam and add them at the end 
for n=1:length(Jbea(:,1))  %length(Jbea(:,1) = total number of beams 
                if (all(Jbea(n,:)==0) == 0) 

                     
                    % extract length of beam 
                        P1 = Jnod(Jbea(n,1),:); 
                        P2 = Jnod(Jbea(n,2),:); 
                        L  = pdist([P1; P2]); 

                     
% extract diameter and thickness 
     if (Jbea(n,3) < 100) % K-stubs on legs (64 elements) 
                            category = 1; 
                            i=i+1; 
                            el=i; 
                            id = Jbea(n,3); 
                            jd = 1; 
                            D  = DIM{gen,1}{2,2}(id,jd); 
                            T  = DIM{gen,1}{2,2}(id,jd+1); 
theta=90; %stubs are parallel to legs (welded length is equal to D)  

                         
      elseif ((Jbea(n,3) > 100) && (Jbea(n,3) < 200))  

% K-stubs on braces (64 elements) 
                            category = 2; 
                            j=j+1; 
                            el=j; 
                            id = ceil((Jbea(n,3)-100)/2); 
                            jd = 3 - 2 * mod((Jbea(n,3)-100),2); 
                            D  = DIM{gen,1}{1,4}(id,jd); 
                            T  = DIM{gen,1}{1,4}(id,jd+1); 
theta=34.37; %mean value among all bays for angles between leg-brace 

at K-joints   

                         
elseif ((Jbea(n,3) > 200) && (Jbea(n,3) < 300)) 

% X-stubs (64 elements) 
                            category = 3; 
                            k=k+1; 
                            el=k; 
                            id = ceil((Jbea(n,3)-200)/3);  

% "ceil" rounds each element to the nearest integer greater than or 

equal to that element 
                            md = mod((Jbea(n,3)-200),3);   

% "mod" returns the remainder after division 
                            jd = 3*md^2 - 7*md + 5; 
                            D  = DIM{gen,1}{1,5}(id,jd); 
                            T  = DIM{gen,1}{1,5}(id,jd+1); 
theta  = 63; % approximate value for angle between brace-brace at X-

joints   
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       elseif ((Jbea(n,3) > 300) && (Jbea(n,3) < 400))  

% legs between stubs (16 elements) 
                            category = 4; 
                            l=l+1; 
                            el=l; 
                            id = Jbea(n,3)-300; 
                            jd = 1; 
                            D  = DIM{gen,1}{1,2}(id,jd); 
                            T  = DIM{gen,1}{1,2}(id,jd+1); 
theta=90; % legs are parallel to stubs (welded length is equal to D)  

                         
       elseif ((Jbea(n,3) > 400) && (Jbea(n,3) < 500))  

% braces between stubs (64 elements) 
                            category = 5; 
                            m=m+1; 
                            el=m; 
                            id = ceil((Jbea(n,3)-400)/2); 
                            jd = 3 - 2 * mod((Jbea(n,3)-400),2); 
                            D  = DIM{gen,1}{1,3}(id,jd); 
                            T  = DIM{gen,1}{1,3}(id,jd+1); 
theta=90;%braces are parallel to stubs (welded length is equal to D) 
       end                     
% cost + gradient of current beam member 

[cost, cost_grad_DT,~,~] = calcCOST_MEMBER(D,T,L,theta); 

                     
% calculate cost by adding the cost of last beam member to the 

previous calculated ones  
COST{gen,1}     = COST{gen,1}      +  cost; 

                     
% calculate grads for each member and arrange them in a cell matrix 
 cost_grad{category,id,jd  }(el) = cost_grad_DT(1); 
 cost_grad{category,id,jd+1}(el) = cost_grad_DT(2); 
     end 
 end           
total_cost = COST{gen,1}; 

 

             
%%  Calculate gradient of cost function 
   if nargout > 1 % gradient required, must be a [numVar x 1] matrix 

  
   % K-braces 
    for i=1:4 
    costgrad(i)    = sum(cost_grad{2,1,i}(:)); 
    costgrad(i+4)  = sum(cost_grad{2,2,i}(:)); 
    costgrad(i+8)  = sum(cost_grad{2,3,i}(:)); 
    costgrad(i+12) = sum(cost_grad{2,4,i}(:));   
    end 

     
% X-braces 
% bay1 
costgrad(17) = sum(cost_grad{3,1,1}(:)) + sum(cost_grad{3,1,3}(:)) + 

sum(cost_grad{3,1,5}(:)); 

costgrad(17) = costgrad(17) + sum(cost_grad{5,1,1}(:)) + 

sum(cost_grad{5,1,3}(:)); 

 
costgrad(18) = sum(cost_grad{3,1,2}(:)) + sum(cost_grad{3,1,4}(:)) + 

sum(cost_grad{3,1,6}(:)); 
costgrad(18) = costgrad(18) + sum(cost_grad{5,1,2}(:)) + 

sum(cost_grad{5,1,4}(:)); 
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% bay2 
costgrad(19) = sum(cost_grad{3,2,1}(:)) + sum(cost_grad{3,2,3}(:)) + 

sum(cost_grad{3,2,5}(:)); 
costgrad(19) = costgrad(19) + sum(cost_grad{5,2,1}(:)) + 

sum(cost_grad{5,2,3}(:)); 

 
costgrad(20) = sum(cost_grad{3,2,2}(:)) + sum(cost_grad{3,2,4}(:)) + 

sum(cost_grad{3,2,6}(:)); 
costgrad(20) = costgrad(20) + sum(cost_grad{5,2,2}(:)) + 

sum(cost_grad{5,2,4}(:)); 

  
% bay3 
costgrad(21) = sum(cost_grad{3,3,1}(:)) + sum(cost_grad{3,3,3}(:)) + 

sum(cost_grad{3,3,5}(:)); 
costgrad(21) = costgrad(21) + sum(cost_grad{5,3,1}(:)) + 

sum(cost_grad{5,3,3}(:)); 

 
costgrad(22) = sum(cost_grad{3,3,2}(:)) + sum(cost_grad{3,3,4}(:)) + 

sum(cost_grad{3,3,6}(:)); 
costgrad(22) = costgrad(22) + sum(cost_grad{5,3,2}(:)) + 

sum(cost_grad{5,3,4}(:)); 

     
% bay4 
costgrad(23) = sum(cost_grad{3,4,1}(:)) + sum(cost_grad{3,4,3}(:)) + 

sum(cost_grad{3,4,5}(:)); 
costgrad(23) = costgrad(23) + sum(cost_grad{5,4,1}(:)) + 

sum(cost_grad{5,4,3}(:)); 

 
costgrad(24) = sum(cost_grad{3,4,2}(:)) + sum(cost_grad{3,4,4}(:)) + 

sum(cost_grad{3,4,6}(:)); 
costgrad(24) = costgrad(24) + sum(cost_grad{5,4,2}(:)) + 

sum(cost_grad{5,4,4}(:)); 

     

  
% K-legs 

  
% bay1 
costgrad(25) = sum(cost_grad{1,1,1}(:)); 
costgrad(26) = sum(cost_grad{1,1,2}(:)); 

     
% bay2 
costgrad(27) = sum(cost_grad{1,2,1}(:)) + sum(cost_grad{4,1,1}(:)); 
costgrad(28) = sum(cost_grad{1,2,2}(:)) + sum(cost_grad{4,1,2}(:)); 

     
% bay3 
costgrad(29) = sum(cost_grad{1,3,1}(:)) + sum(cost_grad{4,2,1}(:)); 
costgrad(30) = sum(cost_grad{1,3,2}(:)) + sum(cost_grad{4,2,2}(:)); 

     
% bay4 
costgrad(31) = sum(cost_grad{1,4,1}(:)) + sum(cost_grad{4,3,1}(:)); 
costgrad(32) = sum(cost_grad{1,4,2}(:)) + sum(cost_grad{4,3,2}(:)); 

  
% bay5 
costgrad(33) = sum(cost_grad{1,5,1}(:)) + sum(cost_grad{4,4,1}(:)); 
costgrad(34) = sum(cost_grad{1,5,2}(:)) + sum(cost_grad{4,4,2}(:)); 
   end         
end   % of function  
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C3 – Cost function 

The function below calculates the material and manufacturing costs of each member. 

 

function [cost,cost_grad,material_cost,fabrication_cost] = 

calcCOST_MEMBER(D,T,L,theta) 
%******************************************************************* 
%                                                                      
%   COST FUNCTION (OBJECTIVE FUNCTION) + 1st ORDER GRADIENTS           
%                                                                     
% 

******************************************************************** 
% written by Nikolaos Xyloudis, 06/2016 

  

  
% INPUT parameters  
% ----------------------------------------------------------------- 
%        D              [m]     Diameter of member 
%        T              [m]     Thickness of member 
%        L              [m]     Member length 
%    theta              [deg]   Angle between welded members  

(0<theta<=90)  
k_material    = 0.60; % [€/kg]  material cost for steel 

(0.5<k_material<1.5) 
k_fabrication = 0.57; % [€/min] labour cost (0< k_fabrication<1) 

  

  
% OUTPUT parameters 
% ------------------------------------------------------------------ 
%   cost    - cost of structure calculated member by member and then 
%             summed up (includes material+fabrication costs) 
%  
%  cost_grad  - gradient of the cost function with respct to the 

    design variables 

  

  
% BASIC parameters (every dim is in mm except the D at "t_CG") 
% ------------------------------------------------------------------ 
rho_steel = 7850*10^(-9);  % [kg/mm^3] material density of 

structural steel 
D = D*1000;                % [mm] 
T = T*1000;                % [mm]  
L = L*1000;                % [mm]   
angle = deg2rad(theta);    % [rad]  Convert angle to rad from deg 
A_steel   = pi*(D*T-T^2);  % [mm^2] Cross sectional area of member 
V_steel   = A_steel*L ;    % [mm^3] Volume of member 

  

  
%% MATERIAL cost 
material_cost = k_material*rho_steel*V_steel ;  % [€] Cost of 

material 
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%% FABRICATION cost 

   
% (1) Forming plates into shell elements 
theta_FO = 3; % (Farkas, 2008) 
mu       = 6.8582513-(4.527217*T^(-0.5))+(0.009541996*D^0.5); 
t_FO     = theta_FO*exp(mu); % [min] 

         
t_FO_grad_D = theta_FO* 0.00475*(D^(-0.5))* exp(mu); 
t_FO_grad_T = theta_FO* 2.265*  (T^(-1.5))* exp(mu); 

 

         
% (2) Hand cutting and machine grinding  % !!! D is in [m] and T is 

in [mm] only for this equation !!! 
theta_DC = 3;                           % (Farkas, 2008) 
L_cut    = (2*pi/sin(angle))*(D/1000);   
t_CG     = theta_DC*(4.54+0.4229*T^2)*L_cut; % [min] 

         
t_CG_grad_D = (2*pi/sin(angle))* theta_DC* (4.54+0.4229*T^2) /1000;  
t_CG_grad_T = (2*pi/sin(angle))* theta_DC* 0.8458*D*T        /1000;  

 
     

 
% (3) Welding times 

 

       
% Time of preparation, assembly and tacking 
C_1       = 1; 
theta_DW  = 3; % can take values of 2 or 3 for tubular members 

(Farkas, 1997) 
k_members = 2; % number of elements to be welded 
tw1 = C_1*theta_DW*(k_members*rho_steel*V_steel)^0.5;  % [min] 

         
tw1_grad_D = C_1*theta_DW*((k_members*rho_steel*pi*L*T)/ 

(2*(k_members*rho_steel*V_steel)^0.5)); 

 
tw1_grad_T = C_1*theta_DW*((k_members*rho_steel*pi*L*(D-

2*T))/(2*(k_members*rho_steel*V_steel)^0.5)); 

 

         
% Real welding time 
C_2  = 0.1346*10^(-3);          % constant depending on the welding 

technology (0.1346 for "SAW") 
a_w  = 10;                      % welding size (width) [mm] 
nu   = 2;                       % depending on the welding tecnology 

and the type of weld (K, X, V), (2 here for V-butt weld and "SAW" 

technology) 
L_weld = (2*pi/sin(angle))*D;   % weld length 
tw2  = C_2*(a_w^nu)*L_weld;     % [min] 

         
tw2_grad_D = C_2*(a_w^nu)*(2*pi/sin(angle)); 
tw2_grad_T = 0; 
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% Changing electrode, deslagging, chipping 
tw3  = 0.3*tw2; % [min]      
tw3_grad_D = 0.3*tw2_grad_D; 
tw3_grad_T = 0.3*tw2_grad_T; 

 

       
% Sum up welding costs 
t_weld = tw1 + tw2 + tw3; 
t_weld_grad_D = tw1_grad_D + tw2_grad_D + tw3_grad_D; 
t_weld_grad_T = tw1_grad_T + tw2_grad_T + tw3_grad_T; 

         

       
% (4) Painting 
theta_DP = 3; % Can take values of 1,2,3. 3 is used for complicated 

structures 
alpha_gc = 3*10^(-6);     % [min/mm^2] 
alpha_tc = 4.15*10^(-6);  % [min/mm^2] 
A_paint  = pi*L*D;        % [mm^2] area to be painted  
t_P      = theta_DP*(alpha_gc+alpha_tc)*A_paint; % [min]       
t_P_grad_D = theta_DP*(alpha_gc+alpha_tc)*pi*L; 
t_P_grad_T = 0; 

        

       
fabrication_cost = k_fabrication*(t_FO + t_CG + t_weld + t_P) ; 

 

   
%% TOTAL cost of the considered tubular member                    
cost = material_cost + fabrication_cost ; % [€] 

  

 
%% COMPUTE GRADIENTS OF COST FUNCTION (explicit expressions provided 

below) 

 
% ATTENTION: need to multiply with '1000' since variables in   

'fmincon' are in [m] and the cost is calculated in terms of [mm]. 
'fmincon' tries steps in 'm' but the sensitivity information 
provided from the functions must be also in 'm'. Therefore the cost 
sensitivity in terms of [m] needs to be calculated this way. 
sens_factor = 1000; 

  
material_cost_grad_D = sens_factor*k_material*rho_steel*L*pi*T; 

 
material_cost_grad_T = sens_factor*k_material*rho_steel*L*pi*(D-

2*T); 

    
fabrication_cost_grad_D = sens_factor*k_fabrication*(t_FO_grad_D + 

t_CG_grad_D + t_weld_grad_D + t_P_grad_D); 

 
fabrication_cost_grad_T = sens_factor*k_fabrication*(t_FO_grad_T + 

t_CG_grad_T + t_weld_grad_T + t_P_grad_T); 

  
cost_grad_D = material_cost_grad_D + fabrication_cost_grad_D; 
cost_grad_T = material_cost_grad_T + fabrication_cost_grad_T; 

       
% Gradient vector with respect to D, T (analytic expressions) 
cost_grad = [cost_grad_D, cost_grad_T]; 

         
end   % of function   
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C4 –Linear constraints  

This function calculates the linear constraints of the optimization problem. These constraints 

are due to the limitations for the validity of the SCF equations used to calculate the fatigue 

at tubular joints (‘Euthymiou’ equations for SCF formulas). 

 

function  [A, b] = calcLINEAR_CONSTRAINTS(n_var,contol) 
%  
%  Linear constraints, take x in vector form, x(:). i.e. a linear 
%  constraint of the form A*x <= b or Aeq*x = beq takes x as a  
%  vector, not a matrix. Ensure that matrix A or Aeq has the same 
%  number of columns as x0 has elements. 
%  When there are K constraints on variables X with Z components,  
%  you supply the [KxZ] matrix A and the [Kx1] vector b. 
%  
%  for X0=[M x N] and  4 constraints --> A=[4 x (MxN)] & b=[4x1] 

  

 
%  FOR OC4 GEOMETRY: 

  
% gamma = D/2*T     (8 < gamma < 32) 
    %  9 * g1:   - D + 16*T  <=  0 ---> A1=[9 x 34] & b1=[9 x 1] 
    %  9 * g2:     D - 64*T  <=  0 ---> A2=[9 x 34] & b2=[9 x 1] 

  
% beta = d/D        (0.2 < beta < 1.0) 
    %  8 * g3:   - D +    d  <=  0 ---> A3=[8 x 34] & b3=[8 x 1] 
    %  8 * g4: 0.2*D -    d  <=  0 ---> A4=[8 x 34] & b4=[8 x 1] 

     
% tau = t/T         (0.2 < tau < 1.0) 
    %  8 * g5:   - T +    t  <=  0 ---> A5=[8 x 34] & b5=[8 x 1] 
    %  8 * g6: 0.2*T -    t  <=  0 ---> A6=[8 x 34] & b6=[8 x 1] 

  
% alpha = 2*L/D     (4 < alpha < 40) 
    %  9 * g7:     -20*D     <= -L ---> A7=[9 x 34] & b7=[9 x 1] 
    %  9 * g8:       2*D     <=  L ---> A8=[9 x 34] & b8=[9 x 1] 

  
% ratio between Tbraces & Xbraces 
   %8* g9 :  DXbrace - DKbrace  <= 0 ---> A9 =[8 x 34] & b9 =[8 x 1] 
   %8* g10:  TXbrace - TKbrace  <= 0 ---> A10=[8 x 34] & b10=[8 x 1] 

  
% ---------------------------------------------------------------- 

       
% Constraints g1 (x9), geometry (parameter 'gamma', FLS, NORSOK N-

004) 
     n_g1 = 17;                          % number of g1 constraints 
     A1 = zeros(n_g1, n_var);       
     A1(1     :2*n_g1+1:end) = -1;       % D multipliers 
     A1(n_g1+1:2*n_g1+1:end) = 16.1;       % T multipliers 
     b1 = zeros(n_g1,1);                 % b1 = [9 x  1] 
       

  



APPENDIX C  Matlab scripts 

108 
 

% Constraints g2 (x9), geometry (parameter 'gamma', FLS, DNV-RP-

C203) 
     n_g2 = 17;                          % number of g2 constraints 
     A2 = zeros(n_g2, n_var);       
     A2(1     :2*n_g2+1:end) = 1;        % D multipliers 
     A2(n_g2+1:2*n_g2+1:end) = -18;      % T multipliers 
     b2 = zeros(n_g2,1);               

      
%------------------------------------------------------------------  
% Constraints g3 (x8), geometry (parameter 'beta', FLS, DNV-RP-C203) 
     n_g3=8;      Dterm3=-0.9+contol;    dterm3=1;    
     A3 = zeros(n_g3, n_var);     
     A3(1,25)=Dterm3; A3(8,33)=Dterm3;% D_chord multipliers for 5 K-

chords 
     for i=2:2:6                   
         A3(i:i+1, 25+i) = Dterm3;       
     end 
     for i=1:8                        % d_brace multipliers for 4 

bays                   
         A3(i, 2*i-1) = dterm3;       
     end  
     b3 = zeros(n_g3,1);       

      

      
% Constraints g4 (x8), geometry (parameter 'beta', FLS, DNV-RP-C203) 
     n_g4=8;     Dterm4=0.2+contol;    dterm4=-1; 

      
     A4 = zeros(n_g4, n_var);     
     A4(1,25)=Dterm4; A4(8,33)=Dterm4;% D_chord multipliers for 5 K-

chords 
     for i=2:2:6                   
         A4(i:i+1, 25+i) = Dterm4;       
     end 
     for i=1:8                        % d_brace multipliers for 4 

bays                   
         A4(i, 2*i-1) = dterm4;       
     end  
     b4 = zeros(n_g4,1);       

      
%-------------------------------------------------------------------     
% Constraints g5 (x8), geometry (parameter 'tau', FLS, DNV-RP-C203) 
     n_g5=8;      Tterm5=-0.9+contol;    tterm5=1; 

      
     A5 = zeros(n_g5, n_var);     
     A5(1,26)=Tterm5; A5(8,34)=Tterm5;% T_chord multipliers for 5 K-

chords 
     for i=2:2:6                   
         A5(i:i+1, 26+i) = Tterm5;       
     end 
     for i=1:8                        % t_brace multipliers for 4 

bays                   
         A5(i, 2*i) = tterm5;       
     end  
     b5 = zeros(n_g5,1);              
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% Constraints g6 (x8), geometry (parameter 'tau', FLS, DNV-RP-C203) 

     n_g6=8;      Tterm6=0.2+contol;     tterm6=-1;  

      
     A6 = zeros(n_g6, n_var);     
     A6(1,26)=Tterm6; A6(8,34)=Tterm6;% T_chord multipliers for 5 K-

chords 
     for i=2:2:6                   
         A6(i:i+1, 26+i) = Tterm6;       
     end 
     for i=1:8                        % t_brace multipliers for 4 

bays                   
         A6(i, 2*i) = tterm6;       
     end  
     b6 = zeros(n_g6,1);              

      
%------------------------------------------------------------------      
% Constraints g7 (x9), geometry (parameter 'alpha', FLS, NORSOK N-

004) 
     L    = 5;               % length of joints [m] 

('stressfactors.m') 
     n_g7 = 9;               % number of g7 constraints 

      
     A7 = zeros(n_g7, n_var);       
     A7(16*n_g7+1:2*n_g7+1:22*n_g7+4) = -20;  % D multipliers 

Xbraces 
     A7(24*n_g7+5:2*n_g7+1:end      ) = -20;  % D multipliers Klegs 
     b7 = -L * ones(n_g7,1);         % b7 = [9 x  1] 

      
     % Constraints g8 (x9), geometry (parameter 'alpha', FLS, DNV-

RP-C203) 
     n_g8 = 9;               % number of g8 constraints 

      
     A8 = zeros(n_g8, n_var);       
     A8(16*n_g8+1:2*n_g8+1:end) = 2;        % D multipliers 
     b8 = L * ones(n_g8,1);               

      
%------------------------------------------------------------------  

  
 % Constraints g9 (x8), (D_Xbrace - D_Kbrace <= 0)  
     n_g9=8;        DXbrace=1;      DKbrace=-1; 

      
     A9 = zeros(n_g9, n_var); 
     A9(1,17) = DXbrace;  A9(1,1 ) = DKbrace; 
     A9(2,17) = DXbrace;  A9(2,3 ) = DKbrace;   
     A9(3,19) = DXbrace;  A9(3,5 ) = DKbrace;   
     A9(4,19) = DXbrace;  A9(4,7 ) = DKbrace;   
     A9(5,21) = DXbrace;  A9(5,9 ) = DKbrace;    
     A9(6,21) = DXbrace;  A9(6,11) = DKbrace;   
     A9(7,23) = DXbrace;  A9(7,13) = DKbrace;   
     A9(8,23) = DXbrace;  A9(8,15) = DKbrace;   

      
     b9 = zeros(n_g9,1);             
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% Constraints g10 (x8),  (T_Xbrace - T_Kbrace <= 0)  
     n_g10=8;         TXbrace=1;    T_Kbrace=-1;       

      
     A10 = zeros(n_g9, n_var); 
     A10(1,18) = TXbrace;  A10(1,2 ) = T_Kbrace; 
     A10(2,18) = TXbrace;  A10(2,4 ) = T_Kbrace;   
     A10(3,20) = TXbrace;  A10(3,6 ) = T_Kbrace;   
     A10(4,20) = TXbrace;  A10(4,8 ) = T_Kbrace;   
     A10(5,22) = TXbrace;  A10(5,10) = T_Kbrace;   
     A10(6,22) = TXbrace;  A10(6,12) = T_Kbrace;  
     A10(7,24) = TXbrace;  A10(7,14) = T_Kbrace;  
     A10(8,24) = TXbrace;  A10(8,16) = T_Kbrace;  

      
     b10 = zeros(n_g10,1);         

  
%%----------------------------------------------------------------    

  
   % create input matrices of linear ineq cosntraints for 'fmincon' 
     A = [A1;A2;A3;A4;A5;A6;A7;A8;A9;A10];   % A = [84 x 34] 
     b = [b1;b2;b3;b4;b5;b6;b7;b8;b9;b10];   % b = [84 x  1]    

      

  
end % of function 
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C5 – Nonlinear constraints  

The function below calculates all the nonlinear constraint values (g9, g10, g11) of the problem 

as well as their 1st order gradients by calling the three corresponding constraint functions for 

each type of constraint (yielding, buckling, fatigue). 

 

function  [g, h, gg, gh] = 

calcNONLINEAR_CONSTRAINTS(FP,gen,JAC,THE,DIM,ULS,FLS,BUC,LEN,tim,SCF

,upperLim,n_var) 

  
% ----------------------------------------------------------------* 
%  This function calculates the nonlinear constraints g11, g12, g13 
%  (FLS, ULS, BUC) 
% ----------------------------------------------------------------* 
% written  by Nikolaos Xyloudis, 06/2016 

  

  
% INPUT parameters 
% ------------------------------------------------------------------ 
%  FP    - FEDEM and FATIGUE parameter 
%  gen   - number of generation 
%  fed   - counter of Fedem runs 
%  JAC   - general jacket parameters 
%  DIM   - bay specific jacket parameters 
%  ULS   - normalized ultimate loads 
%  FLS   - normalized fatigue damage 
%  BUC   - buckling safety factor 
%  THE   - structural angle theta for SCF calculation 
%  LEN   - length of legs and braces 
%  tim   - identification of time series file to be used 

  

  
% OUTPUT parameters 
% ------------------------------------------------------------------ 
%  g   - returns inequality constraints, (here it is a [1 x 46] 

matrix) 
%  h   - returns equality constraints,   (here it is a [] matrix) 
%  gg  - returns gradients of inequalities; each column contains a 

gradient 
%  gh  - returns gradients of equalities; each column contains a 

gradient 

  

     
%% SET TARGET FOR OPTIMIZATION (+0.1 means that g<=-0.1 instead of 

<=0) 
%  Beacause of the LOCAL APPROACH !!! 
%  
%  Intention of the targets is to guide the design towards the limit 

(<=0) 
%  without exceeding it after an internal sizing step which is based 

on 
%  local assumptions. Apply this target in order to give redundancy 

to the 
%  optimized design for the FEDEM analysis to follow. 
    TARGET         = 0.20; 
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%% ORGANIZE SIMULATION RUNS & CALCULATE STRESS SERIES 

  
    Dam             = cell(length(FP{6}),1);  % Create 3 cells for 

production load cases (FLS), length(FP{6}) = number of production 

load cases (here is equal to 3) 
    Dam_grad_D      = cell(length(FP{6}),1); 
    Dam_grad_T      = cell(length(FP{6}),1); 

  
    U          = cell(FP{4}-length(FP{6}),1); % Create 2 cells for 

extreme load cases (ULS), FP{4} = total number of load cases (here 

is equal to 5 = 3 (FLS) + 2 (ULS)) 
    U_grad_D   = cell(FP{4}-length(FP{6}),1); 
    U_grad_T   = cell(FP{4}-length(FP{6}),1); 

  
    B          = cell(FP{4},1);               % Create 5 cells for 

all load cases (BUC) 
    B_grad_D   = cell(FP{4},1); 
    B_grad_T   = cell(FP{4},1); 

     
 % calculate SCFs 
   SCF = 

stressfactors(DIM{gen,1},THE{gen,1},length(DIM{gen,1}{1,1}),1); 

    

  
   for lc=1:FP{4}   % check all load cases, (FP{4}=5=number of load 

cases) 

  
    % stress calculation + gradients 
     clear matfileTIM SIG  SIG_grad_D  SIG_grad_T... 
                      HSS  HSS_grad_D  HSS_grad_T 
     matfileTIM = 

sprintf('%smatfiles/TIM_%03.0f_%02.0f.mat',FP{2},tim,lc); 

  
     [SIG, SIG_grad_D, SIG_grad_T] = 

stressseries(DIM{gen,1},FP,gen,lc,length(DIM{gen,1}{1,1}),JAC{gen,1}

(1,1),matfileTIM); 
     [HSS, HSS_grad_D, HSS_grad_T] = sig2hss(SIG,SIG_grad_D, 

SIG_grad_T,SCF,length(DIM{gen,1}{1,1}),JAC{gen,1}(1,1)); 

  

                     
%% CALCULATE COSNTRAINTS OVER ALL LOAD CASES                     
    % Fatigue (Dam), Ultimate (U) and Buckling (B) calculation 

  
    if (lc <= length(FP{6}))   
     % length(FP{6})= number of power production load cases (here 

=3) 
     % Dam{b,t,l,e} - 192 values in total per FLS load case 
     %                (max damage value in each of 192 joints) 
     [Dam{lc,1},Dam_grad_D{lc,1},Dam_grad_T{lc,1}] =  

hss2damage(HSS,FP,length(DIM{gen,1}{1,1}),JAC{gen,1}(1,1),lc,DIM{gen

,1}); 

    
    else 
% U{b,t,l,e} = {1:4, 1:3, 1:4, 1:4} = 192 total values per ULS load 

case 
% 12 values per bay per side/plane of the 3D jacket 
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[U{lc-length(FP{6}),1}, U_grad_D{lc-length(FP{6}),1}, U_grad_T{lc-

length(FP{6}),1}] =  hss2ultimate(HSS,HSS_grad_D, 

HSS_grad_T,length(DIM{gen,1}{1,1}),JAC{gen,1}(1,1)); 
    end 

  
[B{lc,1},B_grad_D{lc,1}, B_grad_T{lc,1}] = 

bucklingcheck(DIM{gen,1},LEN{gen,1},FP,gen,lc,length(DIM{gen,1}{1,1}

),JAC{gen,1}(1,1),matfileTIM); 

    
end % of 'for' loop for load cases 

  

             
%% CALCULATE MAX VALUES OF CONSTRAINTS ('WORST CASE APPROACH') 

  
% g11 - calculate maximum ultimate loading over all extreme load 

cases 
%   ULS{gen,1} = [25 x 1] matrix (ULS>=1) 
    [ULS{gen,1},ULS_grad_D{gen,1},ULS_grad_T{gen,1}] = 

maxultimate(U,U_grad_D,U_grad_T,length(DIM{gen,1}{1,1}),JAC{gen,1}(1

,1)); 

        
   % Calculate cosntraint (g_ULS<=0) 
    g_ULS        = ULS{gen,1} + TARGET;  % [25 x 1] matrix 
    g_ULS_grad_D = ULS_grad_D{gen,1};    % [25 x 1] matrix 
    g_ULS_grad_T = ULS_grad_T{gen,1};    % [25 x 1] matrix 

     

  
%------------------------------------------------------------------- 
% g12 - calculate max buckling value over al load cases 
%   BUC{gen,1} = [4 x 3] matrix 
    [BUC{gen,1},BUC_grad_D{gen,1},BUC_grad_T{gen,1}] = 

totalbuckling(B,B_grad_D,B_grad_T,length(DIM{gen,1}{1,1}),FP); 

        
%   Transform [4x3] matrix to [1x12] vector matrix 
%   Each column represents a constraint: 
%       columns 1-4  = legs (1 bay1, 2 bay2...) 
%       columns 5-8  = lower braces (5 bay1, 6 bay2...) 
%       columns 9-12 = upper braces (9 bay1, 12 bay2...) 
    g_BUC         = reshape(BUC{gen,1},1,[]) + TARGET;   % [1 x 12]  
    g_BUC_grad_D  = reshape(BUC_grad_D{gen,1},1,[]);     % [1 x 12]  
    g_BUC_grad_T  = reshape(BUC_grad_T{gen,1},1,[]);     % [1 x 12]  

     

            
%------------------------------------------------------------------- 
 % g13 - calculate total fatigue damage over all power production 

load cases 
   % FLS{gen,1} = [25 x 1] matrix 
    [FLS{gen,1},FLS_grad_D{gen,1},FLS_grad_T{gen,1}] = 

totaldamage(Dam,Dam_grad_D,Dam_grad_T     

,length(DIM{gen,1}{1,1}),JAC{gen,1}(1,1)); 
   %[     ~    ,      ~          ,FLS_grad_Tchord{gen,1}] = 

totaldamage(Dam,Dam_grad_D,Dam_grad_Tchord,length(DIM{gen,1}{1,1}),J

AC{gen,1}(1,1)); 

        
   % Calculate cosntraint (g_FLS<=0) 
    g_FLS         = FLS{gen,1} + TARGET;     % [25 x 1] matrix 
    g_FLS_grad_D  = FLS_grad_D{gen,1};       % [25 x 1] matrix 
    g_FLS_grad_T  = FLS_grad_T{gen,1};       % [25 x 1] matrix 
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%% NONLINEAR INEQUALITY CONSTRAINTS (g <=0) 
%  g is a vector with each (column) element being a constraint 
%  e.g. for 15 ineq. constraints --> g = [1 x 15] 

  
% g11(ULS), 17 yielding constraints 
    g11(1:8)    = g_ULS(6:13);    % K-stubs on braces (2 values per 

bay) 
    g11(9)      = g_ULS(14)  ;    % X-stubs on braces bay 1 
    g11(10)     = g_ULS(17)  ;    % X-stubs on braces bay 2 
    g11(11)     = g_ULS(20)  ;    % X-stubs on braces bay 3 
    g11(12)     = g_ULS(23)  ;    % X-stubs on braces bay 4 
    g11(13:17)  = g_ULS(1:5) ;    % K-stubs on legs 

  
% g12(BUC), 12 buckling constraints 
    g12(1:12)  = g_BUC;  % for 12 column (Euler) buckling const.,   

BUC 

  
% g13(FLS), 17 fatigue constraints 
    g13(1:8)   = g_FLS(6:13);                          % K-stubs on 

braces (2 values per bay) 
    g13(9)     = g_FLS(14);   % X-stubs on braces bay 2 
    g13(10)    = g_FLS(17);   % X-stubs on braces bay 2 
    g13(11)    = g_FLS(20);   % X-stubs on braces bay 3 
    g13(12)    = g_FLS(23);   % X-stubs on braces bay 4 
    g13(13:17) = g_FLS(1:5);  % K-stubs on legs  
%   g13(18:20) = g_FLS(26:28) ;  % K-stubs on legs (chord side upper 

braces at bays 1,2,3) 

  
%% ALL NONLINEAR CONSTRAINTS 
    g = [g11, g12, g13]; % nonlinear inequality consrtaints 
    h = [ ];            % nonlinear equality consrtaints (h=0) 

     

 
%% 1st ORDER GRADIENTS OF INEQUALITY COSNTRAINTS 
   if nargout > 2 % if gradients required 

                
%  Each column of the gradient matrix 'gg' is associated with one 

const.  
%  This is the transpose of the form of Jacobians. 
%                   gg = [K x L] where: 
%                         K = number of variables, 
%                         L = number of nonlinear inequality const. 
%  In our problem:  gg = [34 x 46]  
%                         34 - Variables 
%                         46 - Cosntraints (17 ULS + 12 BUC + 17 

FLS) 

  

  
%% ULS constraints (x17), gg11 = [34x17] --> gg(:,1:17) 
    gg11 = zeros(n_var, length(g11)); 

     
   % constraints on K-stubs on braces (x8) 
     for i=1:2:15 
     gg11(i:i+1,int8(i/2)) = [g_ULS_grad_D(int8(i/2)+5); 

g_ULS_grad_T(int8(i/2)+5)]; 
    %gg11(1:16 ,1:8      )    g_ULS_grad_D(   6:13     )  

g_ULS_grad_T( 6:13      ) 
     end 



APPENDIX C  Matlab scripts 

115 
 

      
   % constraints on X-stubs on braces (x4) 
     gg11(17:18,9)  = 

[extremum_AtoB_FUNC(g_ULS(14),g_ULS_grad_D(14)); 

extremum_AtoB_FUNC(g_ULS(14),g_ULS_grad_T(14))]; 
     gg11(19:20,10) = 

[extremum_AtoB_FUNC(g_ULS(17),g_ULS_grad_D(17)); 

extremum_AtoB_FUNC(g_ULS(17),g_ULS_grad_T(17))]; 
     gg11(21:22,11) = 

[extremum_AtoB_FUNC(g_ULS(20),g_ULS_grad_D(20)); 

extremum_AtoB_FUNC(g_ULS(20),g_ULS_grad_T(20))]; 
     gg11(23:24,12) = 

[extremum_AtoB_FUNC(g_ULS(23),g_ULS_grad_D(23)); 

extremum_AtoB_FUNC(g_ULS(23),g_ULS_grad_T(23))]; 
    %gg11(17:24,9:12) 

  
   % constraints on K-stubs on legs (x5) 
     for i=1:2:9 
     gg11(24+i:24+i+1,int8(i/2)+12) = [g_ULS_grad_D(int8(i/2)); 

g_ULS_grad_T(int8(i/2))]; 
    %gg11(25:34     ,13:17        )    g_ULS_grad_D(   1:5   )  

g_ULS_grad_T( 1:5     ) 
     end 

     

   
%% BUC constraints (x12), gg12 = [34x12] --> gg(:,18:29) 
    gg12 = zeros(n_var,length(g12)); % [34x12] matrix 

     
  % constraints on K-stubs on braces (x0), gg12(1:16,1:12)=0 
    % no buckling constraints related to K-stubs on braces 

    
  % constraints on X-stubs on braces (x8), gg12(17:24,5:12) 
     % a) constraints related to lower braces (x4), gg12(17:24,5:8) 
     gg12(17:18,5)  = [g_BUC_grad_D(5); g_BUC_grad_T(5)];  % lower 

brace bay1 
     gg12(19:20,6)  = [g_BUC_grad_D(6); g_BUC_grad_T(6)];  % lower 

brace bay2 
     gg12(21:22,7)  = [g_BUC_grad_D(7); g_BUC_grad_T(7)];  % lower 

brace bay3 
     gg12(23:24,8)  = [g_BUC_grad_D(8); g_BUC_grad_T(8)];  % lower 

brace bay4 

    
     % b) constraints related to upper braces (x4), gg12(17:24,9:12) 
     gg12(17:18,9)  = [g_BUC_grad_D(9);  g_BUC_grad_T(9)];  % upper 

brace bay1 
     gg12(19:20,10) = [g_BUC_grad_D(10); g_BUC_grad_T(10)]; % upper 

brace bay2 
     gg12(21:22,11) = [g_BUC_grad_D(11); g_BUC_grad_T(11)]; % upper 

brace bay3 
     gg12(23:24,12) = [g_BUC_grad_D(12); g_BUC_grad_T(12)]; % upper 

brace bay4 

    
  % constraints on K-stubs on legs (x4), gg12(25:34,1:4) 
   % gg12(25:26,:)  = 0; ('0' because legs are related to K-stubs 

above) 
     gg12(27:28,1)  = [g_BUC_grad_D(1); g_BUC_grad_T(1)];  % legs 

bay1 
     gg12(29:30,2)  = [g_BUC_grad_D(2); g_BUC_grad_T(2)];  % legs 

bay2 
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     gg12(31:32,3)  = [g_BUC_grad_D(3); g_BUC_grad_T(3)];  % legs 

bay3 
     gg12(33:34,4)  = [g_BUC_grad_D(4); g_BUC_grad_T(4)];  % legs 

bay4 

    

   
%% FLS constraints (x17), gg13 = [34x17] --> gg(:,30:46) 
    gg13 = zeros(n_var,length(g13)); 

  
  % constraints on K-stubs on braces (x8)     
     gg13(1 :2 ,1) = [g_FLS_grad_D(6 ); g_FLS_grad_T(6)]; 
     gg13(3 :4 ,2) = [g_FLS_grad_D(7 ); g_FLS_grad_T(7)]; 
     gg13(5 :6 ,3) = [g_FLS_grad_D(8 ); g_FLS_grad_T(8)]; 
     gg13(7 :8 ,4) = [g_FLS_grad_D(9 ); g_FLS_grad_T(9)]; 
     gg13(9 :10,5) = [g_FLS_grad_D(10); g_FLS_grad_T(10)]; 
     gg13(11:12,6) = [g_FLS_grad_D(11); g_FLS_grad_T(11)]; 
     gg13(13:14,7) = [g_FLS_grad_D(12); g_FLS_grad_T(12)]; 
     gg13(15:16,8) = [g_FLS_grad_D(13); g_FLS_grad_T(13)]; 

      
  % constraints on X-stubs on braces (x4)   
     gg13(17:18,9)  = 

[extremum_AtoB_FUNC(g_FLS(14),g_FLS_grad_D(14)); 

extremum_AtoB_FUNC(g_FLS(14),g_FLS_grad_T(14))]; 
     gg13(19:20,10) = 

[extremum_AtoB_FUNC(g_FLS(17),g_FLS_grad_D(17)); 

extremum_AtoB_FUNC(g_FLS(17),g_FLS_grad_T(17))]; 
     gg13(21:22,11) = 

[extremum_AtoB_FUNC(g_FLS(20),g_FLS_grad_D(20)); 

extremum_AtoB_FUNC(g_FLS(20),g_FLS_grad_T(20))]; 
     gg13(23:24,12) = 

[extremum_AtoB_FUNC(g_FLS(23),g_FLS_grad_D(23)); 

extremum_AtoB_FUNC(g_FLS(23),g_FLS_grad_T(23))]; 
    %gg13(17:24,9:12)   

     
 % constraints on K-stubs on legs (x5)       
     gg13(25:26,13) = [g_FLS_grad_D(1); g_FLS_grad_T(1)]; 
     gg13(27:28,14) = [g_FLS_grad_D(2); g_FLS_grad_T(2)]; 
     gg13(29:30,15) = [g_FLS_grad_D(3); g_FLS_grad_T(3)]; 
     gg13(31:32,16) = [g_FLS_grad_D(4); g_FLS_grad_T(4)]; 
     gg13(33:34,17) = [g_FLS_grad_D(5); g_FLS_grad_T(5)]; 
    %gg13(25:34,13:17) 

  

  
%% ALL GRADIENTS of NONLINEAR CONSTRAINTS 
    gg = [gg11, gg12, gg13]; % [34 x 46] matrix, nonlinear ineq. 

consrtaints 
    gh = [ ];                %  empty    matrix, equality 

consrtaints 

  

    
%% PLOT FLS CONSTRAINTS 
    plot_calcNONLINEAR_CONSTRAINTS(g13, gg13, gen, DIM, upperLim) 

    

  
  end  % of 'if' statement 

  
 end  % of function 
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C7 – Buckling constraint (g10) 
The function below calculates the Euler buckling constraint (g10) and its 1st order gradient. 

function [BUC, BUC_grad_D,BUC_grad_T]= 

bucklingcheck(DIMr,LENr,FP,gen,lc,bays,legs,matfileTIM) 

  
%================================================================== 
% FUNCTION - buckling check + sensitivities (1st order gradients)              
%=================================================================== 
% written by Daniel Zwick, 05/2014 
% modified by Nikolaos Xyloudis, 06/2016 

  

  
% CONTENT 
% ------------------------------------------------------------------ 
% 1) Calculate maximum or critical force for Euler buckling of 

specific beam element 
% 2) Compare critical force with actual force 

  

  
% INPUT parameters 
% ------------------------------------------------------------------ 
%    DIMr      - reduced dimension matrix [m] 

(eg.DIMr{1,2}=DIM{1,1}{1,2}) 
%    LENr      - reduce beam length matrix [m] 
%    FP        - FEDEM and FATIGUE parameters 
%    gen       - number of generation 
%    lc        - event identification 
%    bays      - number of bays = 4 
%    legs      - number of legs 

  

  
% OUTPUT parameters 
% ------------------------------------------------------------------ 
%  BUC      - buckling check (<=0) for each member (legs, Ubraces, 

Lbraces) 
%  BUC_grad_D  - 1st order gradient of BUC with respect to D 
%  BUC_grad_D  - 1st order gradient of BUC with respect to T 

  

  
%% 1) Calculate maximum or critical force for Euler buckling of 

specific beam element 

  
    % Euler parameter, 4 chosen for fixed-fixed support conditions  
        n_euler = 4; % [-]  

     
    % Young's modulus  
        Emod = 2.1*10^11; % [N/m^2] 

  
    % for all bays, legs, lower braces and upper braces 
        I      = zeros(bays,3); 
        buc_dD = zeros(bays,3); 
        buc_dT = zeros(bays,3); 
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 for b=1:bays 
            for t=1:3    
                % extract diameter and thickness 
                    clear D T 

                     
                    if (t == 1) % legs between stubs: 

D = DIMr{1,2}(b,1); % D of legs between stubs [4x1] 
T = DIMr{1,2}(b,2); % T of legs between stubs [4x1] 

                     
                    else % braces between stubs: 
                        D = DIMr{1,3}(b,2*t-3); 
                        T = DIMr{1,3}(b,2*t-2); 
                    end 

                     
% calculate moment of inertia 
I(b,t)  = pi * (D^4 - (D-2*T)^4) / 64; 

                     
% calculate quantities for gradient calculation - NIKOS' update 
buc_dD(b,t) = (-4*D^3 + 4*(D - 2*T)^3)/(D^4 - (D - 2*T)^4)^2; 
buc_dT(b,t) = (-8*(D - 2*T)^3)/(D^4 - (D - 2*T)^4)^2;                     
            end 
        end 

         
% critical force for Euler buckling 
        Feul      = zeros(bays,3); 
        Feul_grad = zeros(bays,3); 
        for b=1:bays 
            for t=1:3 
Feul(b,t) = (n_euler*pi^2 * Emod * I(b,t)) / (LENr(b,t))^2; 

 

                  
% calculate quantities for gradient calculation - NIKOS' update 
Feul_grad(b,t) = (64*LENr(b,t)^2)/(n_euler*pi^3*Emod);      
            end 
        end 

                
%% 2) Compare critical force with actual force 

  
% load time series data 
load(matfileTIM);  % Loads 'TIM' from 

C:/Users/Nikolaos/Desktop/Project_Scripts NEW 09-

08/simdata/run128/matfiles/TIM_001_01.mat 

         
    % calculate actual force of all members 
        for b=1:bays 
            % definitions 
                legind = 0; 
                br1ind = 0; 
                br2ind = 0; 
            % calculation 
                for t=1:3 
                    for e=1:4 
                        % legs, lower and upper part 
                            if ((t <= 2) && (e == 2)) 
                                for l=1:legs 
                                    legind = legind + 1; 
TIMmax_tmp{1,1}(b,legind) = max(abs(TIM{b,t,l,e,1}));    

% 1-axial force 
                                end 
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     % braces, lower part 
       elseif (((t == 1) && (e >= 3)) || ((t == 3) && (e <= 2))) 
         for l=1:legs 
         br1ind = br1ind + 1; 
         TIMmax_tmp{2,1}(b,br1ind) = max(abs(TIM{b,t,l,e,1})); 
         end 
     % braces, upper part 
         elseif (((t == 2) && (e >= 3)) || ((t == 3) && (e >= 3))) 
                                for l=1:legs 
                                    br2ind = br2ind + 1; 
        TIMmax_tmp{3,1}(b,br2ind) = max(abs(TIM{b,t,l,e,1})); 
                                end 
                            end 
                    end 
                end 
        end 

  
    % identify maximum force for each element in each bay 
        Fmax = zeros(bays,3); 
        for b=1:bays 
         for t=1:3 % '1' for legs, '2' lower brace, '3' upper brace 
           Fmax(b,t) = max(TIMmax_tmp{t,1}(b,:)); % Fmax = [4x3] 
            end 
        end 

         
    % compare forces 
        for b=1:bays 
            for t=1:3 
                % warning message 
                    if (Feul(b,t) <= Fmax(b,t)) 
%                         fprintf('WARNING! - Critical force of 

Euler buckling exceeded in bay %d, element %d  

(bucklingcheck.m)\n',b,t); 
                    end 
            end 
        end 

  

         
%------------------------------------------------------------------        
% Calculate BUC constraints and their gradients BUC_grad. 

  
%  (12 at total = 3 categories for each of 4 bays), (BUC<=1) 
    BUC = Fmax./Feul; % [4x3] = [4(bays) x 3(legs,Lbraces,Ubraces)] 

     
    BUC_grad_D = Fmax.*Feul_grad.*buc_dD;  % dBUC/dD, [4x3] matrix 
    BUC_grad_T = Fmax.*Feul_grad.*buc_dT;  % dBUC/dT, [4x3] matrix 

      
end   % of function 
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C8 – Fatigue damage calculation with rainflow counting 

function [Damage, Damage_grad_D, Damage_grad_T] = 

              damage(TIMsignal,SIGsignal,FP,submerged,lc,D,T) 
==================================================================== 
% FUNCTION - Damage calculation 
%            + sensitivities (gradients) 

==================================================================== 
% written by Daniel Zwick,       01/2014 
% modified by Nikolaos Xyloudis, 09/2016 

  

 
% INPUT 
% TIMsignal - time series of original forces/moments, converted to 

unscaled HSS 
% SIGsignal - time series of SIGMA stress, converted to scaled HSS 
% FP        - simulation timedata 
% submerged - 1 or 2 for seawater or air 
% lc        - load case identification 
% T         - thickness of the pipe 
  DFF = 1;      % (from 'OS-C101 Section 6' Fatigue Limit States)    
  eta = 1/DFF;  % 'DFF' = 1,2,3 ---> 'eta' = 1/1,1/2,1/3   

  
% OUTPUT 
%    Damage         - fatigue damage 
%    Damage_grad_D  - damage gadient with respect to D 
%    Damage_grad_T  - damage gadient with respect to T 

  

  
% 1) rainflow counting algorithm 
% ------------------------------------------------------------------ 
    rf     = inrain_main(SIGsignal); 

        
% 2) calculating damage by Palmgren-Miner 
% ------------------------------------------------------------------ 
% Fatigue calculation based on DNV-RP-C203, "Fatigue Design of 

  Offshore Steel Structures", October 2012 
%    - Table 2-2, S-N curve in seawater with cathodic protection, T 
%    - Table 2-1, S-N curve in air, T 
    switch submerged 
        case 1                                % Table 2-2 
            FL = 10^6; 
            m1=3.0;         log_a1=11.764;    % N < 10^6 cycles 
            m2=5.0;         log_a2=15.606;    % N > 10^6 cycles      
        otherwise                             % Table 2-1 
            FL = 10^7; 
            m1=3.0;         log_a1=12.164;    % N < 10^7 cycles 
            m2=5.0;         log_a2=15.606;    % N > 10^7 cycles 
    end 

  
% counting number of cycles and stress ranges 
        [N, C] = hist(rf(1,:),FP{5}(1,5));  

   
% scale number of cylces to lifetime 
        Ns = N * FP{5}(1,6) * FP{7}(1,lc); 

 
% convert stress range to [MPa] 
        C  = C * 10^-6; 
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% thickness effect (DNV-RP-C203, eq. 2.4.3, page 17) 

       k    = 0.25; 
       tref = 0.032; 

 
        if   (T <= tref) 
           F  = 1; 
           Tr = tref;  T1 only in thick. effect for gradient calc 
             

        else 
           F  = (T/tref)^k; 
           Tr = T;     T1 only in thick. effect for gradient calc 
        End 

     C_t = C * F; 

                            
% calculation of total damage by given time series 
        Dbin        = zeros(FP{5}(1,5),1); 
        Dbin_grad_D = zeros(FP{5}(1,5),1); 
        Dbin_grad_T = zeros(FP{5}(1,5),1); 

         
 

for j=1:FP{5}(1,5) 

%       FP{5}(1,5)=100=number of bins for Palmgren-Miner 
        

clear  log_Na    Ni_grad_D    Ni_grad_T 

        
 

% calculating the maximum allowable number of cycles to failure 

  (Na), at constant stress range for each stress range 
                if (Ns(j) <= FL) 
                    log_Na    = log_a1 - m1 * log10(C_t(j)); 

                     
% Calculate fatigue gradients analytically (local assumption) 
Ni_grad_D =  0  + (-1/(D-T))*(m1/(10^log_a1))*C_t(j)^m1; 

 
Ni_grad_T = ((m1*k*Tr^(m1*k-1))/(tref^(m1*k)) + ((2*T-D)/(D*T- 

T^2))*(Tr/tref)^(m1*k))*(m1/(10^log_a1))*C(j)^m1; 

                       
               else 
                    log_Na    = log_a2 - m2 * log10(C_t(j)); 

                     
% Calculate fatigue gradients analytically (local assumption)        
Ni_grad_D = 0 + (-1/(D-T)) * (m2/(10^log_a2)) * C_t(j)^m2; 

                     
Ni_grad_T = ((m2*k*Tr^(m2*k-1))/(tref^(m2*k)) + ((2*T-D)/(D*T-T^2)) 

* (Tr/tref)^(m2*k)) * (m2/(10^log_a2)) * C(j)^m2;              
                end              

                 
% calculating fraction of actual/allowable number of cycles 
                Dbin(j,1) = Ns(j) / (10^log_Na); 
                Dbin_grad_D(j,1) = Ns(j) * Ni_grad_D; 
                Dbin_grad_T(j,1) = Ns(j) * Ni_grad_T; 
        end 

 
% summing up damage 
Damage        = sum(Dbin(:,1)) / eta; 
Damage_grad_D = sum(Dbin_grad_D(:,1)) / eta; 
Damage_grad_T = sum(Dbin_grad_T(:,1)) / eta; 

 
end   % of function 
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C9 – Function that updates DIM matrix with variables 

function [DIM] = XtoDIM(gen,X,DIM) 
%   This function updates the DIM matrix with the optimized X values 

  
%   1. Reads existing 'DIM' matrix 
%   2. Creates 'DIMnew' by replacing the X values in 'DIM 

  
Dred = 0.6;    % proportion of member's dimensions between 
               % stubs/cans (=1 means no difference) 
 

% bay height definition [m] - NOT CHANGED 
%    DIM{gen,1}{1,1} = DIM{gen,1}{1,1};           % [4 x 1] matrix 

                      
    % K-stubs on braces: D-lower, T-lower, D-upper, T-upper [m]  
    % X(1,1:16) 
      DIM{gen,1}{1,4}(1,:) = X(1,1:4); 
      DIM{gen,1}{1,4}(2,:) = X(1,5:8); 
      DIM{gen,1}{1,4}(3,:) = X(1,9:12); 
      DIM{gen,1}{1,4}(4,:) = X(1,13:16);           % [4 x 4] matrix 

       
 

% Replace with X values for D-long, T-long        % [6 x 4] matrix 
      DIM{gen,1}{1,5}(1,1:2) = X(1,17:18); 
      DIM{gen,1}{1,5}(2,1:2) = X(1,19:20); 
      DIM{gen,1}{1,5}(3,1:2) = X(1,21:22); 
      DIM{gen,1}{1,5}(4,1:2) = X(1,23:24); 

       
    % copy values to lower and upper X-brace 
      DIM{gen,1}{1,5}(:,3) = DIM{gen,1}{1,5}(:,1); 
      DIM{gen,1}{1,5}(:,5) = DIM{gen,1}{1,5}(:,1); 
      DIM{gen,1}{1,5}(:,4) = DIM{gen,1}{1,5}(:,2); 
      DIM{gen,1}{1,5}(:,6) = DIM{gen,1}{1,5}(:,2); 

       
 

% horizontal offset of K-joints along main leg line [m] - NOT 

CHANGED 
%       DIM{gen,1}{2,1} = DIM{gen,1}{2,1};    % [5 x 1] matrix 

                                
 

% K-stubs on legs: D, T on all bay division lines [m] 
  DIM{gen,1}{2,2} = [X(25:2:33)', X(26:2:34)']; % [5 x 2] matrix 

       

       
%% COPY TO LEGS & BRACES FROM NEW VARIABLES 

  
% legs between stubs: D, T [m] equal to K-stub element above 
  DIM{gen,1}{1,2} = Dred*DIM{gen,1}{2,2}(2:5,:);  % [4 x 2] matrix 

                              
% braces between stubs: D-lower, T-lower, D-upper, T-upper [m] 
% braces equal to X-stub of brace part  
 DIM{gen,1}{1,3} = Dred*DIM{gen,1}{1,5}(:,3:6);  % [4 x 4] matrix 

       
end % of function 
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C10 – Create variable matrix from DIM matrix 

function [ X ] = DIMtoX(gen,DIM) 

  
%  From the DIM matrix, creates the X matrix of the variables of the 
%  optimization process 
 

 
%% OUTPUT 
% D,T of 17 members arranged in X = [1x34] = [D T D T D....] where: 
% X(1,1:16)= K-stubs on braces (8 elements, lower and upper per bay) 
% X(1,17:24)= X-stubs on braces (4 elements, one per bay) 
% X(1,25:34)= K-stubs on legs (5 elements, one per bay + one on top) 

  

  
%% CREATE VARIABLE MATRIX 
% (1) K-stubs on braces: D-lower, T-lower, D-upper, T-upper [m] 
         Kstub_brace = (DIM{gen,1}{1,4})'; 
         X(1,1:16) = Kstub_brace(:)';                       

  
% (2) X-stubs on braces: D-long, T-long [m] 
        Xstub_brace = DIM{gen,1}{1,5}(:,1:2)'; 
        X(1,17:24)  = Xstub_brace(:)';  

                              
% (3) K-stubs on legs: D, T on all bay division lines [m]                
        Kstub_legs = DIM{gen,1}{2,2}'; 
        X(1,25:34) = Kstub_legs(:)';                                                                        

  
End % of function 

  

 

 

C11 – Corresponding value of max A to B 
 

function [ extreme ] = extremum_AtoB_FUNC(A,B) 

  
% ----------------------------------------------------------------* 
%  This function finds the max value of matrix A, and returns the  
%  value at the corresponding location at matrix B. 
%  
%  1. A and B must have the same dimensions!!! 
%  
%  2. If A is the absolute value of a matrix, then the max(A) is 
%  the 'extremest' value in A. 
% ----------------------------------------------------------------* 
% written  by Nikolaos Xyloudis, 06/2016 

 

  
[~,l] = max(A(:)); 
[r,c] = ind2sub(size(A),l); 

  
extreme = B(r,c); 

  
end  % of function 

 
 


