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Abstract

A network simulator has been used to study two-phase flow in porous media. The medium
has been modeled as a bundle of tubes and the capillary forces inside these tubes have
been investigated. This has been done by applying well known theory of immiscible flow
to tubes of different shapes. How the wettabillity of the media affect the meniscus curva-
tures have been studied and how this relates to the cross-section geometry and width of a
single tube. The tube radius was modeled by a function being narrow in the middle of the
tube and wider towards the end. How the menisci was affected by this curvature due to
varying radius have been investigated. Different degrees of complexity have been used to
see if simple approximations are able to capture the relevant physics or if a higher order of
complexity is needed.

It was found that the cross-sectional shape does not have a big impact on the flow, however
thin film flow was neglected. When looking at how the radius affected the results it was
found that approximations used in previous work was sufficient for small wetting angles,
however at large wetting angles this expression became inaccurate. Finally different radius
functions were tested to see if the shape of the radius had any impact. Some differences
were observed but it is hard to conclude which case was the most physically correct due to
lack of experimental data.
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Sammendrag

En nettverkssimulator har blitt brukt til å studere tofasestrømning i porøse medier. Mediet
har blitt modellert som et sett med sammenhengende rør og kapillærkreftene i disse rørene
har blitt undersøkt. Dette har blitt gjort ved å anvende kjent teori om tofasestrømning på
rør med ulike geometrier. Hvordan mediets fuktning påvirker meniskens krumning har
blitt undersøkt og hvordan dette henger sammen med geometri på tversnitt og bredde på
rør. Radiusen på røret ble modellert som en funksjon som var smal på midten og bred på
endene. Hvordan meniskene ble påvirket av det krumme røret ble undersøkt. Ulik grad
av kompleksitet ble brukt for å se om enkle tilnærminger er gode nok til å beskrive de
relevante fysiske prosessene, eller om mer avanserte tilnærminger er nødvendig.

Resultatene viste at formen på tverrsnittet hadde lite innvirkning på strømningen, men
det er viktig å nevne at filmstrøm ble neglisjert. Ved å se på hvordan radiusen påvirket re-
sultatet viste det seg at for små fuktningsvinkler var de tilnærmninger som har blitt brukt i
tidligere arbeid gode men når fuktningsvinkelen nærmet seg 90◦ ble de mindre presise. Til
slutt ble ulike radiusfunksjoner testet for å se om dette hadde innvirkning. Det var enkelte
forskjeller, men manglende eksperimentell data gjør det vanskelig å si hvilke som er mest
korrekt.
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Chapter 1

Introduction

Flow phenomena in porous media has been an important research topic for decades and it
arises in many fields of science such as agricultural, biomedical, construction and petroleum
engineering. Ground water is a precious resource, but it can easily be contaminated. The
New York Times (2016) wrote that China’s biggest pollution problem is not the city smog,
but polluted ground water. As much as 80 % of the ground water used for farming and
household in rural areas is contaminated and unfit for drinking. A better understanding of
how chemicals are transported in groundwater reservoirs can help preventing this pollu-
tion from happening. In the petroleum industry knowledge about how oil and water flows
in the ground is important. When draining oil reservoirs, a lot of oil gets trapped within
porous rocks, and retrieving this oil in an efficient way is not an easy task.

A porous medium such as sand stone consists of microscopic spherical rocks packed close
together. In between the rocks there are small pores and narrow paths. Two phase flow
within such a medium is a complicated process. This is mainly due to the complex struc-
ture of the pores, and the interfaces between the immiscible fluids trapped inside. Various
experimental, computational and theoretical methods have been developed to investigate
the behaviour of such flow. Theoretical models can predict flow patterns in certain cases,
but are limited in many ways. Computational methods have been quite successful in de-
scribing the two phase flow, but it is a challenge to find feasible techniques who are com-
putationally inexpensive and physically correct. Experiments are very valuable. They can
be analyzed to get a deeper understanding of the physics behind the flow process, and
verify computational and theoretical results. Accurate measurements are a challenge and
performing the experiments can be time consuming, thus one can say that experiments and
simulations complement each other.

Several computational models for two-phase flow has been developed. According to the
review article by Joekar-Niasar and Hassanizadeh (2012) they can be split into two groups,
continuum-scale models and pore scale models. The continuum models are not able to ex-
plain the consequence of microscopic properties on a macroscopic scale. Because of this
they fail to explain phenomena such as viscous fingering and similar invasion processes.
In order to capture the effect of microscopic properties such as pore geometry, capillary
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forces and viscosity, pore scale models must be used. There are several subgroups of these
models, and two important ones are Lattice Boltzmann models and network models.

Lattice Boltzmann models (e.g Knutson et al. (2001), Martys and Hagedorn (2002)) solves
Navier Stokes equation for a given pore geometry and is quite accurate. However, this is
computationally expensive and an infeasible approach if doing large scale simulations.
Network models however are computationally less expensive, but relay on a simplified
model of the porous medium and thus some geometrical information is lost. A common
way to model a porous medium in a network model is by considering pore bodies and con-
necting throats (e.g Dias and Payatakes (1986)). Another way is to let a tube with varying
width model both the pore and the throat between them. This has been done by Aker et al.
(1998), Knudsen and Hansen (2002) and Valavanides et al. (1998).

The work in this thesis is based on the model developed by Aker et al. (1998). Here
hourglass-shaped tubes were used to model the pores. An approximation for the capillary
pressure difference was found based on this shape. Significant improvements have been
made to this model since it was first published, however how the geometry of each tube af-
fect the simulation results have not been investigated in detail. The purpose of this work is
to study how the tube geometry affect the local capillary pressure, which again may affect
the macroscopic properties of the system. It will also look into if some of the approxima-
tions that have been made in the past are sufficient, or if a higher order approximation is
needed to capture the relevant physics. To do so several cases with different geometries
will be studied and compared. A reimplementation of the basic simulation procedure has
been done in c++. Some modifications has been made to include the new geometric fea-
tures.

This thesis will be organized the following way: Chapter 2 will present the basic the-
ory that is applied in the network model, while chapter 3 will explain the details behind
the implementation of the system and how the simulations are carried out. Chapter 4 will
present the results for several realizations where different approximations and models have
been used and discuss them. Chapter 5 will draw the final conclusions.
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Chapter 2

Theory

This chapter will present the basic theory needed to describe two phase flow in porous
media. First a description on how a porous medium can be modeled as a bundle of capillary
tubes will be given. Then the focus will be the capillary forces and flow rates inside these
tubes. The effect of tube geometry will be studied in detail. The final part will briefly
present the theory used to describe the macroscopic behavior and displacement mechanics
that is observed in these systems.

2.1 Modeling a Porous Medium

The behavior of immiscible wetting and non-wetting fluids in a porous medium depends on
the geometry and topology of the medium. In general, this geometry can be very complex,
and simplifications must be made to create a model that can be used in network simula-
tions. Øren and Bakke (2002) has developed methods of reconstructing a porous sandstone
and use this reconstruction to make a realistic network model. In this work however a sim-
ple 2D network topology will be used, namely a hexagonal lattice. To illustrate why this
is chosen look at figure 2.1 a), which illustrates a typical geometry of a porous medium.
The basic idea behind the modelling is to treat each pore as an intersection between tubes,
where each tube connects one pore to another. This can be seen in figure 2.1 b). Here the
tubes have varying length and radius. To simplify further it is assumed that the length of
each tube is the same. This results in a geometry like figure 2.1 c), which is a hexagonal
lattice. This is a simple model, but the goal is not to study the effect of network structure,
and thus this simple model is chosen to avoid unnecessary complexity. Note that in this
case both the pore body and the pore throat is modeled by the same tube.

The shape of the tube’s cross section does have significance, and several cases have been
studied in the literature. The simplest one is the circular cross section used by Fatt et al.
(1956). Mason and Morrow (1991) used a triangular shape, while Fenwick et al. (1998)
used a square. A star shaped tube was used by Man and Jing (2000). By looking at figure
2.2 which illustrates the space between three spherical objects, it is seen that triangular
shaped tubes are quite accurate if choosing from basic geometrical shapes. In the rest of
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aa a) b) c)

Figure 2.1: How a porous media can be modeled as connecting tubes. a) illustrates the real porous
media, b) shows the equivalent grid of tubes with varying length and c) shows the case where all
tubes have the same length.

this chapter both cylindrical and triangular shapes will be studied.

Figure 2.2: Illustration of how a the cross section of a porous tube can be modeled as a triangle

2.2 Wetting and Capillary Forces
The interface between the immiscible fluids inside the porous medium is of great impor-
tance because capillary forces will arise due to different wettabillity of the two fluids.
Wettability describes ”the preference of a solid to be in contact with one fluid rather than
another” (Schlumberger (2007)). This means that when having a wetting and non-wetting
fluid in a container, the wetting one will be more attracted to the walls than the non-wetting
one. This will result in a curved interface between the fluids called a meniscus. An impor-
tant parameter when characterizing the properties of these interfaces is the wetting angle.
The wetting angle is the angle at which the liquid and solid interfaces intersect. A wetting
liquid will have a high wetting angle while a non-wetting liquid will have small wetting
angles. This is shown in figure 2.3.

At the intersection between immiscible fluids with different wetteabillity, a pressure dif-
ference will occur. This is known as the capillary pressure difference and is described by
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Figure 2.3: The behaviour of a liquid with different wetting angles

the Yong-Laplace law (Sahimi (2011)),

pc = ±2γ

R
= ±2γ

r
cos(θ). (2.1)

Here γ is the surface tension between the fluids and the wall, R is the radius of curvature
for the meniscus, and θ is the wetting angle. r is the radius of the circular surface were the
solid and liquid intersect and the sign is given by the way the meniscus is turning.

2.2.1 Capillary forces in straight tubes
To understand the effect of capillary forces in a porous medium at a macroscopic scale
we must start looking at the meniscus behaviour in each tube in the network. As stated
by (2.1) the capillary pressure is directly proportional to the curvature of the meniscus.
The meniscus curvature will depend on the geometry of the tube. This includes both
cross-sectional shape and tube width. For cylindrical tubes with constant cross sections
the capillary pressure is simply given by the Young-Laplace law (2.1), where r now is the
radius of the tube. Tubes with triangular cross sections will also be studied in this work.
It is not trivial to find the capillary pressures in such tubes. This has been done by Mason
and Morrow (1991), and developed further by Øren et al. (1998). What is presented in
this section is taken from these articles. The geometry factor G is a useful quantity when
describing triangular tubes, and is defined as

G =
A

P 2
, (2.2)

where A is the area of the cross section and P is the perimeter. The geometry factor can
also be described by the half angles of the triangle corners βi,

G =
1

4

(
3∑
i=1

cotβi

)−1

(2.3)

When fluids with different wettability are inside the same triangular tube the wetting fluid
will be drawn towards the corners of the triangle while the non-wetting fluid will be occu-
pying the center of the tube. This is illustrated in figure 2.4. The surface that separates the
fluids along the axis of flow is called the Main Terminal Meniscus (MTM) while surface
which separates the fluid in the corners is called the Arc Meniscus (AM). These are shown
in figure 2.4. For geometries like this the Ms-P approach, proposed by Lenormand et al.
(1983), is a commonly used technique to find the curvatures of the meniscus and thus the
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Arc Meniscus

Main Terminal

Meniscus

Figure 2.4: Illustration of the meniscus geometry in triangular tubes

capillary pressure. The basic idea is to equate the curvatures of the AM and MTM, solve
this equation to find the radius of curvature. For a general triangular tube with zero wetting
angle the Ms-P approach yields.

pc =
γ

rinc

(
1 + 2

√
πG
)

(2.4)

This can be extended to include the wetting angle, resulting in a pressure

pc =
γ

rinc

(
1 + 2

√
πG
)

cos θF (θ,G) (2.5)

where

F (θ,G) =
1
√

1− 4GE/ cos2 θ

1 + 2
√
πG

(2.6)

E =

3∑
i=1

cos θ
cos (θ + βi)

sinβi
−
(π

2
− θ − βi

)
(2.7)

Here rinc is the radius of the inscribed circle in the triangular cross section. This expression
is only valid for wetting angles

θ <
π

2
− β (2.8)

It is worth noting that F (θ = 0, G) = 1. For a fixed value of G the value of F changes
little for varying θ, thus the approximation

pc =
γ

rinc

(
1 + 2

√
πG
)

cos θ (2.9)

can be used. The real and approximated values are plotted in figure 2.5. The physical
interpretation of this approximation is that the curvature of the AM is kept constant while
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only the MTM is varying. When using this approximation, the shape of the pc curve is
the same for circular and triangular cross sections, the only difference is a scaling factor
1 + 2

√
πG,

θ

0 10 20 30 40 50 60 70 80 90

P
c
 γ

 /
 r

in
c

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Analytical

Approximate

Figure 2.5: How the capillary pressure depends on θ, for triangular tubes. The blue line is the full
analytical expression while the red line shows the approximation where F = 1

2.2.2 Capillary pressures in tubes of varying radius
So far tubes with constant cross sections have been considered, but in order to make the
model more realistic tubes of varying widths should be used. In particular tubes which
are narrow at the middle and getting wider towards the ends. This is illustrated in figure
2.6. Note that throughout this thesis the radius is only varying with respect to the capillary
pressures. When calculating flow rates the volume of a straight tube with constant cross
section will used. This kind of geometry has implications on the capillary pressure, be-
cause the wetting angle is now the angle between the slope of the tube and the meniscus.
One immediate observation is that a wetting angle of 90◦ no longer corresponds to zero
capillary pressure. In the preceding discussion the radius will be described as a function
of the coordinate x. Inside the tube we will have 0 ≤ x ≤ L. The radius function r(x)
will always be symmetrical about x = L/2. For cylindrical tubes with this type of radius
function Oh et al. (1979) has shown that the radius of curvature of the meniscus is given
by.

R(x) =
r(x)

cos(θ − α(x))
, (2.10)

where tan(α) = r′(x), thus α is the angle between the slope of the tube and the horizontal
axis. The capillary pressure now becomes,

pc =
γ

r(x)
cos(θ − α(x)). (2.11)
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This is illustrated in figure 2.6. For triangular tubes this gets more complicated because

R(x)
r(x)

 α(x)

Figure 2.6: Relevant parameters for a meniscus inside a tube of varying radius.

the curvature of the AM as well as MTM will be affected by the change of width. However
if the AMs curvature is assumed to be constant equation (2.9) can be extended in the same
manner as for cylindrical tubes,

pc =
γ

rinc(x)

(
1 + 2

√
πG
)

cos(θ − α(x)). (2.12)

Here it is assumed that the corner angles of the tube are kept constant while the width is
changing.

So far r(x) has been considered as an arbitrary function. It should be chosen so that
the tube shape resemblances the path between two pores in a porous medium. Aker et al.
(1998) used an approximation for the capillary pressure,

pc =
2γ cos θ

r

(
1− cos

(
2πx

L

))
. (2.13)

If the angle of the slope α is not taken into account this would correspond to the radius

r(x) =
r0

1− cos
(

2πx
L

) . (2.14)

To study the effect of including the slope equation 2.14 will be used in 2.12. This radius
diverges towards the ends of the tube which is not physical. A more realistic radius func-
tion that will be considered is the radius of a tube which lies between to circles. This shape
can be modeled as

r(x) =
1

2
(r0 + L)−

√
xL− x2. (2.15)

The constant term is chosen such that the narrowest part in the tube will have the same
radius as in (2.14).

When using the previously mentioned radius functions to calculate pc there are some
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θ = 0°

θ = 180°

θ = 90°

t

Figure 2.7: A meniscus of different wetting angles propagating through a node.

physical phenomena which are not being captured. Figure 2.7 shows the time evolution
for a meniscus front entering a node, with three different wetting angles. Here the porous
medium is modeled by circles and (2.15) will be used as radius function. In a porous
medium the radius of curvature of a meniscus is allowed to vary as the meniscus travels
through the tube. When the meniscus is about to exit, it will hit the wall on the other side
of the node, preventing it from growing any further. This means that in many cases the
capillary pressure will not drop to zero inside the node. This maximum radius of curvature
will depend on the wetting angle of the meniscus. This is illustrated in figure 2.7 where
it is seen that for θ = 0◦ the curvature is heavily bounded, while in the opposite case,
θ = 180◦ the curvature is allowed to drop to zero. If the tubes are wide, it is possible
that the meniscus can move beyond the point of zero curvature, and thus the pc will switch
sign, but this effect is not taken into account in the model that has been developed.
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The task becomes now to find when the meniscus will reach its maximum radius of cur-
vature within the node. In appendix A1 it is show that the position of the front of the
meniscus is given by,

xm = x+
1− sin(θ − α(x))

cos(θ − α(x))
r(x), (2.16)

where x is the position where the meniscus intersects with the wall. Note that the wetting
angle is measured with respect to the most wetting fluid. Now that the meniscus position
is established, we must find when it will hit the wall. To find an approximation to this, it
is assumed that the radius of all the tubes connected to the relevant node is the same, and
is set to an average r̄. It is show in appendix A2 that the position along the x-axis where
the menisci will hit the wall to the right is given by

xr =
√

3

(
L

2
+ r̄

)
, (2.17)

while the left position is given by

xl = L−
√

3

(
L

2
+ r̄

)
. (2.18)

These parameters are illustrated in figure 2.8

xm

xl

xm

xr

a) b)

Figure 2.8: The relevant parameters to calculate the minimum meniscus curvature. To the left a
meniscus entering a tube is illustrated, while to the right the meniscus is exiting the tube.

To find the maximum radius of curvature at both left and right side of the tube equa-
tion (2.16) can be set equal to (2.18) and (2.17) and solved with respect to x. This is not
possible to do analytically, but can be solved numerically. Denoting these values xmax and
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xmin, the capillary pressure can finally be written as

pc(x) =


f(xmin) 0 ≤ x ≤ xmin

f(x) xmin < x < xmax

f(xmax) xmax ≤ x ≤ L
(2.19)

where f(x) refers to equation (2.12) using the radius function (2.15) Here it is assumed
that once the pc has reached its threshold, it remains constant throughout of the remaining
tube.

Figure 2.9: Capillary pressures as function of meniscus positions, for different wetting angles and
menisci approximations

To compare the three different expressions for pc they have all been plotted in 2.9 for
wetting angles 0◦, 45◦, 90◦and 180◦. In the case of circular tube the capillary pressure
bound has been applied. It is seen that for small wetting angles, (2.13) is a quite good
approximation to the more realistic capillary pressure. However, as the wetting angle
changes, the approximation becomes less accurate since the slope of the tube is not taken
into account. The curves generated for the bounded capillary pressure stands out because
it has a cutoff value. It is seen that for small wetting angles the pc is only cut off at the end
of the tube, but for wetting angles close to 90◦, the curve is completely symmetric about
x = 0.5, and cut off at both ends. It is also seen that the maximum capillary pressure no
longer lies in the center of the tube. The shape is similar to the one generated using the
diverging radius function, but for this case the pc still drops to zero at the endpoints. For
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θ = 180◦ all curves are mirrored about the x and y axis compared to the curves with zero
wetting angle. This makes sense, because a wetting angle 180◦, can be interpreted as if
the wetting and non-wetting fluid has switched place.

2.3 Flow through tubes
In this thesis a steady state Newtonian, incompressible and constant viscosity fluid will
be assumed. According to Patzek and Silin (2001) the flow will then be governed by the
elliptic Poisson equation

∇2v =
1

µ
(∇p− ρf) (2.20)

Here v is the fluid velocity µ is the viscosity and ρ is the density. f is the body force
per unit mass. Solving this equation with respect to the flow rate Q for a cylindrical tube
results in (White (2011)),

Q = −kA
µL

∆p. (2.21)

Here µ the viscosity and k is the permeability which is a geometric quantity. The value of
k is depending on the geometrical shape of the cross section of the tube. For cylindrical
tubes we have

k =
r2

8
, (2.22)

and A = πr2. For triangular tubes Patzek and Silin (2001) has shown that the mobility is
approximately

k =
3

5

GA

µ
. (2.23)

These expressions are only valid for single phase flow, but they can be extended to two

Figure 2.10: Thin film flow that occurs in the corners of a triangular tube
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phases (Washburn (1921)). Treating the fluids as separate and applying equation (2.21) on
both of them results in the flowing expression

Q = − kA

µeffL
(∆p− pc) , (2.24)

where µeff is the weighted average of the two viscosities.

In the general case it is possible that both wetting and non-wetting fluids are flowing
through the same cross section simultaneously. This would be the case for triangular pipes
where it is possible that the wetting fluid will flow in the corners and the non-wetting in the
center. The majority of the flow will be due to the non-wetting fluid and the wetting flow
in this case will be referred to as thin film flow. In the proceeding analysis this flow will
be neglected, thus is it assumed that only one kind of fluid flows through a cross section at
a given time.

2.4 Macroscopic properties
So far flow in a single tube has been studied, but the focus of this thesis is what happens
when these tubes are connected to each other in a grid. To characterize the flow phenom-
ena that occur in a system like this it is useful to define several quantities. The saturation
S refers to the fraction of the total pore volume which is occupied by either the wetting or
non-wetting phase, denoted respectively Sw and Snw.

The total volume flow through the medium per time unit is denoted Q. Due to conser-
vation of flow it is arbitrary where this is measured, as long as it measured along a curve
representing a close loop. In two phase flow this flow can be split into two parts, namely
the flow of the wetting phase Qw and non-wetting phase Qnw. The fractional flow can be
defined as

Fnw =
Qnw

Qw +Qnw
(2.25)

which is the fraction the total flow which is due to the non-wetting phase.

Darcy’s law (Sahimi (2011)) relates the flow through a porous medium to its permeability
and the pressure gradient in the medium,

Q = −κΣ

µ
∆P. (2.26)

In this case gravity has been neglected. ∆P is the total pressure gradient. Note that the
permeability κ is the permeability of the whole medium and not just a single tube as in
(2.21). In the case of constant ∆P and µ the permeability is proportional to the flow.

Understanding the interaction between the viscous and capillary forces is crucial when
explaining the different flow patterns occurring in porous media. The capillary number
describes the relation between these forces. In a flow with small capillary number the
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capillary forces are dominating while large capillary numbers mean that the viscous forces
are dominating. For a single tube the capillary number is defined as

Ca =
µV

γ
, (2.27)

where µ is the fluid viscosity, V is the fluid velocity and γ is the interfacial tension. This
equation only describes the flow in one single tube and can thus not be directly extended
to two phase flow in a porous medium. Several definitions have been used. In the review
article by Joekar-Niasar and Hassanizadeh (2012) the following definition were used

Ca =
µiqi
γ
. (2.28)

Here µi refers to the viscosity of the invading phase, qi is the Darcy velocity of the invading
phase and σnw is the interfacial tension between the fluids. The Darcy velocity refers to
the total flow divided by the area of the pores in the cross-section where the flow was
measured. This definition is a popular choice when studying invasion processes, but in this
work the boundary conditions allow the fluid that exits the top of the network to reenter at
the bottom, thus this becomes a mixing process, and not an invasion. Aker et al. (1998)
used the following definition,

Ca =
Qµ

Σγ
. (2.29)

Here Q denotes the total flow rate and Σ is the total area of the cross section where the
fluid enters and µ is the maximum viscosity. γ is the same as before, the interfacial surface
tension. This is a more reasonable definition for our case because it uses the total flow rate
and not just the invading one. None of the definitions above has explicit dependence on
the wetting angle θ. Lenormand et al. (1988) used the definition

Ca =
µiQi

Σγnw cos θ.
(2.30)

Note that this expression is diverging as the wetting angle approaches 90 ◦. All these
definitions give slightly different values of the Ca. The exact value of the capillary num-
ber is not that important. What we are interested in is its order of magnitude. For the rest
of this work 2.29 will be used where Σ will be the pore volume where the flow is measured.

The viscosity ratio is defined as
M =

µ1

µ2
(2.31)

where µ1 and µ2 is the viscosity of the wetting and non-wetting fluid respectively.

2.5 Displacement mechanics
Drainage is the process where the non-wetting fluid displaces the wetting fluid in a porous
medium. This has been studied in detail in the last decades. The fluid flow can be divided
into three different regimes, viscous fingering, stable displacement and capillary fingering.
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Figure 2.11: Flow patterns for different capillary numbers and viscosity ratios. Courtesy of Sinha
and Wang (2007)

Lenormand et al. (1988) introduced a phase diagram describing these regimes in terms of
the capillary number and viscosity ratio. This diagram is shown in figure 2.11. A lot
of effort has been put into creating statistical models describing different flow regimes in
porous media. This section will present a brief overview of the different methods.

Viscous fingering occurs when the viscosity ratio is small. The flow pattern can be seen in
2.11 b) and looks almost like a branching tree. Paterson (1984) discovered that there are
great resemblances between diffusion-limited aggregation and viscous fingering. DLA is
the process where a set of particles are allowed to move randomly one at the time away
from an initial particle at a specific location. Once one of the moving particles hits a fixed
particle it sticks to it, and thus this structure grows. The formation that is created is simi-
larly to viscous fingering.

Stable displacement is the case when a fluid of high viscosity is displacing a fluid of low
viscosity, opposite of viscous fingering this is illustrated in figure 2.11 c). The injection
rate is assumed to be high, and thus the capillary forces are negligible. The characteristics
of this flow is a stable front of invading fluid, with some roughness on the edge due to vari-
ations in the pore radius. This process is similar to anti-DLA. This is the process where a
compact set of particles, which in this case represent the defending fluid, and particles un-
dergoing random walk close by. Once the random walker collides with the compact set of
particles, they are both removed. This similarity was also discovered by Paterson (1984).
It is important to emphasise that there is no one to one correspondence between both DLA
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and anti-DLA processes and flow in porous media, but the resemblances are there and thus
these models are important when trying to understand mechanisms that produces the flow
patterns.

So far the capillary forces has been neglected, but in the case of capillary fingering this
is the dominating force and the viscous forces are neglected. This is can be achieved by
injecting a fluid at low rates into a defending fluid. The observed patterns have many
resemblances with viscous fingering but some more clusters are formed, as illustrated in
figure 2.11 a). Invasion percolation is a statistical theory aiming to describe this process
(Wilkinson and Willemsen (1983)). The basic idea behind this is to let the invading fluid
enter one tube at each time step. This tube will usually be the one with the biggest radius,
and thus the invading fluid will choose the path of least resistance.
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Chapter 3

Method

A lot of the contribution from this thesis lies in the numerical simulations that has been
done, and the details of the implementations is therefore important. This section will
present roughly how the theory from chapter 3 has been implemented to create realistic
simulation of the flow phenomena.

3.1 Hexagonal Lattice of Tubes
A hexagonal network of tubes will be used as a simple model of the porous medium.
Each intersection of three tubes is called a node and the number of nodes in the horizontal
direction is denoted N while the number of nodes in the vertical direction is denoted M .
In the case of figure 3.1 N = 8 and M = 4. The total number of nodes is given by

Nnodes = NM, (3.1)

while the number of tubes is
Ntubes =

3

2
NM. (3.2)

For simplicity the lengths of the tubes will all be the same in the networks used in the
simulations, while randomness in the system will be incorporated by letting the radius
vary. These will be uniformly random generated values between rmin and rmax.

3.2 Boundary and Initial Conditions
The model will have periodic boundary conditions and a global pressure gradient in the
vertical direction, responsible for pushing the fluids through the network. This means that
the nodes to the left side will be connected to those on the right side, and the lower nodes
connected to the upper nodes. A pressure gradient ∆P in the vertical direction will repre-
sents the driving force in the system. This pressure gradient will push the fluids upwards
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ΔP

Figure 3.1: A typical hexagonal lattice that is used in the simulations. This illustrates an initial
condition where the system is partially filled with non-wetting fluid. There is a pressure gradient in
the vertical direction representing the driving force.

in the network. When the fluid reaches the top it will reenter at the bottom. These kind of
boundary conditions was first used by Knudsen et al. (2002).

The system will be simulated for different saturation of non-wetting fluid. The satura-
tion will be set by the initial condition. The tubes will be filled with non-wetting fluid
from the bottom up, until the desired saturation is reached. This means that the beginning
of each simulation the wetting and non-wetting fluid will be separated in two parts. The
methodology that is described in this section is based on Aker et al. (1998). The pressure
in an arbitrary node ni can be found when imposing that the total flow through a node must
be conserved. The flow through a tube connecting two nodes ni and nj can be expressed
as

qij = gij(pj − pi − pc + δij∆P ), (3.3)

Here qij is the flow and gij is the mobility of the tube connecting node i and j. The δ is zero
unless the tube is crossing the vertical boundary, then it is 1. The term δij∆P represent
the pressure gradient driving the system. The conservation of flow can be expressed as∑

j

qij = 0 (3.4)

This is simply Kirchhoff’s equation, where j runs over all the neighboring nodes of the
i-th node. The index i runs over all nodes in the network. Substituting (3.4) into (3.3) and
rearranging yields, ∑

j

gij(pj − pi − pc + δij∆P ) = 0. (3.5)
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By moving the pc and δij∆P terms to the right side the system can be written as a linear
matrix equation on the form Ap = b and solved with respect to p to find the pressure in
every node. The elements of A will be the conductance while b will be a vector containing
the capillary pressures as well as the external pressure due to the boundary conditions. The
flow in each pipe can now be determined by (3.3). To solve the linear system of equations
several algorithms can be used. In the general case A will vary for every time step. The
conjugate gradient method will then be a good approach. In this work, the viscosities of
the two phases are identical. This means that the matrix A will be constant, and thus it
only needs to be inverted once. In this case the linear algebra library Armadillo (2016)
was used to perform the inversion and the required matrix multiplications. A possible
improvement could be to implement a Cholesky decomposition and use this to solve the
equation. Both the Cholesky decomposition and the conjugate gradient method can be
found in Press et al. (1996)

3.3 Updating the meniscus positions

In order to update the meniscus positions a time step ∆t must be chosen. This is done
by allowing the meniscus positions to move no longer than a given length ∆xmax. De-
noting the flow velocity vij = qij/A, where A is the cross sectional area, the time step is
calculated by,

∆t = min
ij

[
∆xmax

vij

]
. (3.6)

This means that the time step is dependent on the local velocities in the tubes.

Once the time step and the flow in each tube is established it is easy to propagate the
meniscus positions inside the tube. This can be done with a simple Euler algorithm,

xt+1 = xt + vij∆t. (3.7)

The value ∆xmax = 0.1L will be used is the simulations. It has been verified that this is a
sufficiently small time step (Knutson et al. (2001), Ramstad et al. (2009)).

3.3.1 Meniscus behaviour at nodes

A challenge in network simulators is to handle what happens when a meniscus reaches a
node. It will take time for the meniscus to fill the pore volume, and during this filling pro-
cess the other fluid can pass through the node. The following section will explain how this
is handled in the simulations. The code uses a set of rules to mimic the actual behaviour
of fluids, and has been developed by Morten Vassvik. What is presented here is a brief
review of his work which not yet has been published.

In order to explain these rules, consider three tubes that are connected to the same node
where different types of fluids are entering and exiting. This is the case for all figures a-h
in 3.2. The first thing that happens is that the meniscus positions are propagated into the
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Figure 3.2: How the algorithm handles the case when different fluids flow into the same node. a-d
illustrates what happens if the tube where the flow is leaving is filled with non-wetting fluid, while
e-n shows the case where the same tube is filled with a wetting fluid.

node, and a fraction Fn which tells the amount of wetting and non-wetting fluid inside the
node is calculated,

Fn =
Vnw

V
. (3.8)

Here Vnw and V is respectively the volume of non-wetting fluid and total fluid volume.
If only non-wetting fluid flow in to the node its value is 1, and if there is only wetting
fluid flowing into the node, Fn is equal to 0. The next task is to distribute this fluid into
the tubes where the flow is leaving the node. The way the simulation handles this will
depend on the conditions in the tubes of outgoing flow. In particular, whether this tube
throat is occupied by a small bubble or not. By small bubble means a bubble whose length
is shorter or equal to the tube radius. Start by considering the case where there are no
small bubbles in the tube of outgoing flow. This is shown in both 3.2a and b. If the tube is
occupied by a wetting fluid, the wetting part of the Fn will be placed next to the wetting
fluid that already exist in the tube and a non-wetting bubble will be created at the end of
the tube (figure 3.2 b). If the tube of outgoing flow is occupied by a non-wetting fluid, the
exactly opposite will happen and a wetting bubble will be created (figure 3.2 f).

Now a small bubble has been created in the tube of the outgoing flow. In the next iter-
ation the non-wetting part of Fn will be added to the non-wetting bubble, but the bubble
will still remain at the end of the tube. The wetting part in the node, will pass the non-
wetting bubble and be added to the wetting part. (figure 3.2 c). The same holds in the
case where the wetting and non-wetting fluids are switched (figure 3.2 g). This means that
no new bubbles are created, and that the small bubbles are retained at the nodes until they
have the same length as the tube radius. The only exception to this rule is if there is only
one small bubble in the tube where the flow is leaving and the Fn is equal to zero or one.
Then this bubble will be pushed through the tube.
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Figure 3.3: How the algorithm acts when two small bubbles of different wetting is located next to
the same node

There is one additional rule in the algorithm. This rule was also originated from studying
the filling process of a pore. When small bubbles of different types are located at the end
of the tubes connected to the same node, these bubbles will switch place. This way, fluids
of same types will stick together. Figure 3.3 illustrates this. In every step of this algorithm
the volume of both phases will be conserved.

3.4 Case Studies

To investigate the effect of changing the tube geometry several cases will be studied. The
first case will serve as a base case and its purpose will be to verify that the simulation is
working as expected, and use it for comparison with other cases. The capillary pressure
will be approximated by (2.13), and the tubes will be cylindrical. This is the same geom-
etry as used by Aker (1996). The radii will be uniformly distributed between 0.1L and
0.4L. The results will be studied by looking at the macroscopic properties of the flow. The
actual distribution of the fluid throughout the network will also be visualized at different
points in time.

Once it has been verified that that the simulation procedure is working as expected a sec-
ond and third case will be done. Here different cross sections will be studied. In the second
case an equilateral triangle will be used, and in the third case a narrow triangle where the
two larger corner angles are twice as big as the small one. The geometry factors will be
respectively 0.048 and 0.039. The radius if the inscribed circle in the tubes will be selected
such that the single phase flow will be the same as for case 1. This is done so that it will
be easy to compare the results for the different cases. The purpose of comparing these
different cases is to verify that changing the cross section does not have a major impact on
the results.

The second part will investigate how the radius shape of the tube affect the final result.
This will be done by studying two cases, case 4 and case 5, where different radius func-
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Case Cross section Capillary pressure
1 Circular (2.13)
2 Equilateral triangle (2.9)
3 Narrow triangle (2.9)
4 Circular (2.12) using radius function (2.14)
5 Circular (2.12) using radius function (2.15)
6 Circular (2.19)

Table 3.1: Summary of the different cases that will be studied in order to investigate the effects of
tube geometry

tions are used. (2.12) will then determine the capillary pressure. These cases will be
compared to each other as well as the base case. The purpose of doing this is to verify
that (2.13) is a good approximation at small wetting angles, and investigate what happens
as the wetting angle approaches 90◦. Finally a sixth case will be studied. This is the case
where the meniscus curvature is bounded due to the pore geometry. In previous work this
effect has been neglected, and the purpose of doing this is to verify if that is a good ap-
proximation or not. Table 3.1 sums up all the different cases. In all these cases the values
µ1 = µ2 = 0.1Pas and γ = 30mN/m will be used. The pressure gradient over the system
will be constant and is chosen so that the pressure drop over each tube will be the same
regardless of grid size. It is given by ∆P/M = 16.8kN/m2, where M is the number of
nodes in the vertical direction.

3.5 Scaling of the network
The number of nodes used in the simulation may have impact on the final result, and
to investigate how many nodes needed to avoid unwanted scaling effects a preliminary
simulations with 10x10 (150 tubes), 30x30 (1350 tubes) and 60x60 nodes (5400 tubes)
were done for comparison. The results for zero wetting angle is shown in 3.4. In order to
make comparison simple all the flow-rates are normalized so that they all are equal to 1
at at minimum and maximum saturation. In the 10x10 case it is seen that the flow curve
behaves quite different from what was seen for 30x30 nodes. It does drop to zero around
S = 0.4 and is not very smooth. The reason why the flow drops to zero is that the capillary
pressure is able to completely cancel out the external pressure gradient. The reason why
this only happens at 10x10 nodes is that there are a fewer tubes, and the likelihood that the
non-wetting fluid is able to ”block” every tube in a cross section is a lot bigger than when
the node count is higher. When comparing the curves from 30x30 and 60x60 nodes, it is
seen that they behave almost identical. By taking a closer look the 60x60 curve we see
that it is slightly smoother that the one generated by 30x30 nodes. This is also reasonable
because 5400 tubes is a much larger sample than 1350, and thus each radius will have
smaller impact on the final results. both the large and medium lattices are free of the
effects seen in the small grid and thus it is concluded that 30x30 nodes is sufficient.
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Figure 3.4: Comparison of flow rates for 10x10, 30x30 and 60x60 nodes.
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Chapter 4

Results

This chapter will present the results of the simulations and a discussion. Several simula-
tions have been performed to investigate what effect the cross section and tube radius have
on the final result. This will be done by looking at the total and fractional flow as well as
the capillary number, which has been defined in section 2.4.

The first part of this chapter will focus on verifying that the code is working as expected
and point out important features of the resulting flow. This will correspond to case 1. The
second part will study the impact of the tube geometry and compare the results with each
other and case 1.

4.1 Time evolution of fluid front

Figure 4.1 visualizes the time evolution of case 1 where the non-wetting saturation is 0.4.
There are 40 x 80 nodes, and the number of tubes is 4800. It is seen that the front of the
non-wetting fluid is propagating in to the wetting, and thus this is similar to a drainage
process. Due to the periodic boundary wetting fluid flows in to the bottom of the system
and it replaces the non-wetting fluid. This is an imbibition process. We start looking at the
propagating front. It is seen that the front is slowly moving upwards, while it is getting
rougher. Some fingers of non-wetting fluid are observed moving ahead of the front while
some of the wetting fluid gets trapped within the front.

In the withdrawing part of the non-wetting fluid, some of the same dynamics is seen, but
there are certainly less fingers. Some amount of non-wetting fluid is left behind, forming
small clusters. As the front reaches the boundary it reenters the system at the bottom, mix-
ing the fluids. When this mixing has been going on for a while a steady state is reached,
where the fluid distributions only fluctuates on a microscopic level while remains constant
on the macroscopic scale. This is illustrated at t = 45.

Figure 4.2 shows the total flow, what fraction of the total flow that is due to the non-
wetting fluid and the capillary number as function of time for the same system as shown
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Figure 4.1: Time evolution of two phase flow. N is the number of iterations, and the top right
system is the initial condition. The network consist of 40 X 80 nodes and has a saturation of 0.4.
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Figure 4.2: Time evolution of the total and fractional flow for a 40x80 grid.

in figure 4.1. It is seen that they both changes very rapidly in the beginning, while leveling
out around an equilibrium with some fluctuations. This is in accordance with what was
observed in figure 4.1.

The capillary number starts out at 1.3 × 10−2 and drops to 2.5 × 10−3 after a while.
In terms of Lenormands phase diagram this means that the flow pattern should be some-
where in between capillary fingering and stable displacement. This agrees with the results,
showing some fingers ahead of the fluid front. This also means that neither percolation the-
ory or anti-DLA can be used to describe the invasion process seen in the beginning of the
simulation. As seen in this section the system reaches a steady state value when the mixing
process has been going on for long enough. For the rest of this chapter steady state values
will be presented and discussed.

4.2 Macroscopic results

In the following section, the effects of tube cross section and radius will be studied. Re-
sults from cases 1-6 in table 3.1 will be presented as curves generated by changing the
saturation and wetting angle. Ten different saturations and wetting angles have been used.
All the simulations have been done on a 30x30 grid of nodes. The radius distribution is
the same in all cases. Each simulation has been done for 50 000 iterations, and all the data
points is found by taking the average value of the steady state.
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The results from the base case is presented in figure 4.3. Looking at the total flow Q,
it is seen that it has a strong dependence on S when the wetting angle is small, but it grad-
ually moves toward a constant value as θ goes to 90◦. The values for S = 0 and S = 1 is
the same, regardless of θ This makes sense because in these cases there are only one fluid
occupying the media, and thus there are no capillary forces. Looking at the expression for
the capillary pressure (2.13), it is seen that it only depends on cos θ, and thus it vanishes
as the wetting angle approaches 90◦. This means that there are no capillary forces and the
flow gets independent of the saturation. This is clearly unphysical because in a real porous
media the tube walls are not straight, and thus the meniscus will have curvature even at 90◦

wetting angle. It is observed that the minimum point for all the curves are moved to the left.

The curves of wetting and non-wetting flow rates roughly increases and decreases at the
saturation changes. It can be seen however that for small wetting angles, as the value de-
creases, it flattens out at a value unequal to zero, before it drops to zero at the endpoints.
For wetting angles close to 90◦ the curves are almost linear. This is reasonable since there
are no capillary forces, and the viscosity of the fluid are equal, meaning there is nothing
that distinguish the fluids from each other. Several papers (e.g Wyckoff and Botset (1936),
Øren et al. (1998)) have been investigating the relative permeabilities of porous media,
and the permeability curves have many resemblances with the flow curves presented here.
This is as expected because by looking at Darcys’s law, the flow is directly proportional to
the permeability when the pressure gradient and viscosity remains constant.

The fractional flow is for small wetting angles S-shaped, and crosses the straight line be-
tween 0 and 1 at approximately 0.4. This is what it observed in simulations done by others
as well (e.g Knudsen et al. (2002)). And again, as the wetting angle approaches 90 ◦, the
fluids have equal properties and, the fraction between them is almost directly proportional
to the saturation.

4.3 Varying the cross section
Two set of simulations have been done with tubes of triangular cross section correspond-
ing to case 2 and 3. In case 2 an equilateral triangle were used, while in the case 3 a
narrow triangle where two corner was set to 75◦ and the last one to 30◦. The geometry
factors were respectively 0.048 and 0.039. In figure 4.4 the total and fractional flow for
both cases is plotted next to case 1 for a wetting angle of 54◦. It is seen that the shape of
the curves are almost identical, but they are scaled differently. This is as expected since in
the expressions for the capillary pressure for circular (2.11) and triangular (2.12) tubes, the
only difference is a geometry-dependent scaling factor. When looking at the flow fraction
this is confirmed, as they are almost identical for all the three cases.

One may be surprised that the cross-sectional shape of the tube does not have more impact
on the result. The reason for this may be the fact that thin film flow has been neglected.
For tubes with sharp corners thin film flow will be significant, and thus in a more realistic
system, the differences would probably be larger.

28



S
nw

0 0.2 0.4 0.6 0.8 1

Q
 [

m
m

3
/s

]

2

4

6

8

10

12

14

16
Total Flow

S
nw

0 0.2 0.4 0.6 0.8 1

Q
 [

m
m

3
/s

]

0

2

4

6

8

10

12

14

16

18
W and NW Flow

Q
nw

Q
w

S
nw

0 0.2 0.4 0.6 0.8 1

F
n
w

0

0.2

0.4

0.6

0.8

1
Fractional Flow

Wetting Angle

0 10 20 30 40 50 60 70 80 90

Figure 4.3: Results from case 1, varying saturation and wetting angles. The total and fractional flow
is plotted.

29



S

0 0.2 0.4 0.6 0.8 1

Q
 [

m
m

3
/s

]

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Circle

Equilateral Triangle

Narrow Triangle

S

0 0.2 0.4 0.6 0.8 1

F

0

0.2

0.4

0.6

0.8

1

Circle

Equilateral Triangle

Narrow Triangle

Figure 4.4: Total and fractional flow plotted at 54◦ wetting angle, for case 1, 2 and 3.

4.4 Varying the radius

So far the capillary pressure with respect to the position of the meniscus has been assumed
to follow the approximation (2.13). As illustrated in the theory section this is not a re-
alistic approximation when the wetting angle gets large. These effects will be studied in
this section, and simulations where the capillary pressure obeys (2.12) and (2.19). This
corresponds to case 4 and 5.

Figure 4.5 shows the results from case 4. The most remarkable difference is that for
wetting angles close to 90◦ the flow does not become constant, but is still dependent on
the saturation. This is as expected since the pc now never drops to zero throughout the
tube. The lines are packed more closely together, showing that the dependence of θ is not
as significant as for case 1. It is interesting to see that for θ = 90◦ the total flow curve
becomes symmetric about the line Snw = 0.5. This is reasonable because the wetting
angles of the fluids are the same, and thus they should behave identical. Apart from this,
the features of this result is approximately the same as in case 1.

The result of simulations from case 5 had many resemblances with case 4. Flow curves for
case 5 have been plotted in figure 4.6 a). The flow at zero wetting angle is slightly larger
than in case 4, and the minimum point is pushed further to the right. At 90◦ wetting angle
the flow is almost identical in both case 4 and 5. This indicates that the actual shape of the
radius function is not so important.

Case 6, where the radius of the meniscus was bound by an upper limit had quite simi-
lar results as case 5. However there were some differences, as seen in figure 4.6. We
see that the flow is larger than in case 5 at zero wetting angle. This may be because the
capillary pressure is not allowed to drop to zero in the nodes, and thus the difference be-
tween the maximum and minimum capillary pressure a bubble experiences when traveling
through the media is smaller. Figure 4.7 compares the fractional flow for case 5 and 6 at
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Figure 4.5: Results from case 4. The total and fractional flow is plotted, as well as the wetting and
non-wetting flow.
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Figure 4.6: Total flow for case 5 and 6

θ = 36◦. It is seen that the curve from case 5 remains constant at zero and one longer than
in case 6. This happens when either the saturation is small or large. This may indicate that
bubbles easier get stuck in the nodes when the capillary pressure drop to zero than in the
case where the capillary pressure has a lower bound.

Figure 4.8 compares the total and fractional flow curves for case 1, 4, 5 and 6 at zero
wetting angle. It is seen that the flow curves all are quite similar, but their shapes varies
slightly. This indicates that the approximation in case 1 is good at small wetting angles.
This is also true when looking at the fractional flow which is very similar in all three
cases. The major difference happens as the wetting angle grows towards 90 ◦. Then the
approximation done in case 1 becomes less accurate and differs a lot from case 4, 5 and
6 where the slope of the tube is taken into account when calculating the capillary pressure.

When comparing case 4, 5 and 6 some differences are seen but it is hard to verify which
one is most physically correct. In order to determine this, experiments with similar con-
ditions should be done. This is however challenging and time demanding. Changing the
wetting angle in the simulation takes a second while doing the same for an experiment
would probably mean creating a new system with different material. A more viable ap-
proach would be to do a both lattice Boltzmann and network simulations on a small set of
nodes, and compare these to each other. This would help validating the different assump-
tions made in the network model.
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Chapter 5

Conclusion

In this work a simple network model has been used to study two phase flow in porous
media. The purpose of this work was to study what impact the tube geometry have on
the capillary pressure in the tubes that models the media. A simulation procedure based
on Aker et al. (1998) was implemented for a two dimensional hexagonal lattice. In total
six different cases was studied. The first case was a simulation with parameters used in
previous papers. The purpose of this case was to verify that the simulation procedure was
working as it should, and be used for comparison with other cases. This case was com-
pared with two other cases where triangular cross sections of different shape was used. It
was seen that the flow dependence on the saturation Snw and wetting angle θ was almost
the same in all cases, but they were scaled slightly differently. This was as expected since
changing the cross-section corresponds to changing the permeability of each tube. Be-
cause of this it can be concluded that the cross section has little impact on the final result.
It is important to mention that in this model thin film flow was neglected.

The behaviour of the meniscus inside a tube with a varying radius was then studied. In
previous papers an approximate capillary pressure was used. To investigate if this ap-
proximation is a good one, a fourth case was done where a more realistic expression was
derived by taking the slope of the tube into account. The radius expression that were used
was diverging towards the end of the tube. Simulation results showed that for small wet-
ting angles the approximation in case 1 and the capillary pressure in case 4 acted the same.
When the wetting angle was moving towards 90◦ the results was differing a lot. Based on
this it is concluded that the approximation is good for small wetting angles, but bad when
the wetting angle increases. To see if the actual radius shape had significant impact a fifth
case was done. This time the radius was modeled as the distance between two semicircles.
It was observed some differences between case 4 and 5, but lacking experiments and other
means of verification made it hard to conclude which one is the most physically correct.

Geometrical considerations showed that the capillary pressure difference in many cases
is bounded by the narrow space inside the pores. A new expression trying to take this
into account was derived, and a sixth case was done to investigate if this had any effect.
The results had many resemblances with the ones from earlier cases, but some differences
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were observed. The most notable one was that bubbles easier got stuck at low and high
saturations in case 5 than 6.

A big challenge when validating the results of this work is to find experiments to com-
pare with. Lots of studies have been done on drainage and imbibition processes, but there
has been done little experimental work on the mixing processes studied in this thesis. It
would also be very valuable to have Lattice Boltzmann simulations to compare with. This
could help verify the behaviour of the network model. Thin film flow has been neglected
throughout this work. It would be valuable to have more research on how this impacts the
results, especially when the tubes in the network have sharp corners.
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Appendix A
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Figure 1: Parameters used to find the position of the center of the meniscus in a tube.

Consider the parameters in figure 1. The goal is to find the distance from the start of
the tube to the center of the meniscus, xm. This is to be expressed by the x-coordinate
which is where the meniscus intersects with the tube and the wetting angle. The tube
radius is given by an arbitrary function r(x). Assume no gravity and that the meniscus
circular. The center of the meniscus is denoted P1 while the intersection point between the
meniscus and the tube is denoted P2. The line l is parallel with the x-axis and intersects the
tube at the point P1. In order to find this distance we must first find the angle φ between
the x-axis and the line segment P1P2. This is equal to the angle between P1P2 and l. This
can be found by summing up all the angles along the horizontal line intersecting with the
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tube at point P and equate them to pi.

θ − α+
π

2
+ φ = π. (1)

Rearranging yields
φ = α− θ +

π

2
(2)

The distance between x and xm can now be found.

xm − x = R(1− cosφ). (3)

Rearranging and substituting equation (2.10) for R and (2) for φ, yields

xm = x+
1− sin(θ − α(x))

cos(θ − α(x))
r(x) (4)

A2

Figure 2: Parameters used to find the width of a pore space between three circular objects.

The maximum value xm is allowed to have is given by the distance xd. This distance
can be found by using Pythagoras theorem, as illustrated in figure 2. The distance from
the center of the tube to the maximum point is given by.

(L+ 2r̄)2 = (L/2 + r̄)2 + (L/2 + xd)
2. (5)

The solution with respect to xd is then given by

xd =
√

3(L/2 + r̄)− L/2. (6)
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Since the origin of the coordinate system in the tube is at the left endpoint, the distance to
the left is

xl = xd − L/2 (7)

and to the right
xr = xd + L/2. (8)
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