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i

Problem formulation

The problem formulation given by Professor Anton Shiriaev were: The project is aimed at de-

veloping a motion planning algorithm that recovers an energy-efficient velocity profile of robot

tool movement along a predescribed path. In the task the priority should be given to smooth be-

haviors consistent with contraints imposed on velocities and accelerations as well as jerk of joint

variables. The result are supposed to be tested and validated in experiments. Comprehensive

comparison with performance of ABB motion planner is to be given.
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Abstract

Due to the ever increasing number of industrial robots in the world, working day and night

producing and manufacturing, a need has arisen to make sure that these robots work energy

efficient. This is both to make robots cost effective for businesses and environmentally friendly.

During the course of this thesis a method for planning an energy efficient velocity profile for

an ABB IRB 1600 robot has been developed. This method does not only look at the assignment

of velocity and acceleration along a path, but also the gain of energy efficiency that optimizing

the position and orientation of a manipulation task have.

The result of this method shows that the optimal position and orientation gives a minimiza-

tion of the movement of the second joint, and that at this optimal position the gain in energy

efficiency of the optimal orientation is 161.1% from the horizontal plane. The optimal trajec-

tory also have a 16.3% smaller energy consumption than a trajectory made by ABBs own motion

planner in the optimal plane. Thus, the work done in this thesis optimize energy in two ways.

Experiments were also performed to find the maximum and minimum torque for the first three

joints of the robot. This was supposed to be used when constraining acceleration and jerk.

These constraints were however excluded from the optimization scheme as the energy efficient

trajectories obtained were nowhere close to the torque bounds. These experimental results are

however greatly of interest when looking at time-optimal trajectories, and can be reused for this

purpose.
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Sammendrag (Norsk)

På grunn av det stadig økende tallet av industriroboter, som jobber dag og natt i produksjon

rundt om i verden, har det blitt nødvendig å sørge for at disse robotene jobber energieffek-

tivt. Dette er både for å gjøre robotene kostnadseffektive for bedrifter og for å gjøre robotene

miljøvennlige.

Gjennom arbeidet med denne masteroppgaven har en metode som planlegger en energieffek-

tiv hastighetsprofil for en ABB IRB 1600 robot blitt utviklet. Denne metoden ser ikke bare på

tildeling av hastighet og akselerasjon langs en bane, men også på hvordan en optimal posisjon

og orientering av denne banen kan videre minske energiforbruket.

Resultatet av denne metoden viser at gjennom å optimere posisjon og orientering, så minimeres

bevegelsen til det andre leddet til roboten. I den optimale posisjonen er gevinsten i energieffek-

tivitet av den optimal orienteringen 161.1% i forhold til å gjøre den samme oppgaven i det ho-

risontale planet. Den optimale hastighetsprofilen er også 16.3% mer energieffektiv enn det ABBs

egen baneplanlegger klarer i det samme planet. Dermed energieffektiverer denne løsningsme-

toden banen på to måter.

Eksperimenter for å finne maksimalt og minimalt dreiemoment for de tre første leddene til

roboten, er også gjennomført. Disse resultatene skulle bli brukt for å begrense akselerasjon

og rykk, men i og med at de optimale resultatene var langt unna de maksimale og minimale

dreiemomentene ble disse bregrensningene sett bort i fra. Resultatene av disse eksperimentene

er derimot av stor interesse for tidsoptimal baneplanlegging og kan bli gjenbrukt for denne hen-

sikten.
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Chapter 1
Introduction

1.1 Background

The industrial world is becoming more and more automated, with industrial robots taking over

manufacturing and assembly tasks in all parts of the industry. According to a summary of world

robotics in 2015, done by the International Federation of Robotics, [9], industrial robot sales in-

creased by 15% this year, and a further 61.3% increase is predicted until 2019. At the same time

increasing emission of green house gases are endangering the world as we know it.

Industrial robots working day and night assembling, cutting, milling and loading material use

a lot of electricity. When a statistic of the worlds key electricity trends, [10], shows that 67.2 %

of the worlds electricity generation comes from burning fossil fuels such as coal, oil and natural

gases, it is apparent that the more ineffective the industry is with its electricity, the higher emis-

sion becomes. It’s clear that the need for energy efficient industrial robots is big.

The subject of energy efficient robotics is of great consideration in research all over the world.

Especially the Areus Project which is a cooperation between several universities across Europe,

such as Chalmers University in Sweden and DTU in Denmark, and several companies, such as

KUKA robotics, are concentrating on making automation and robotics sustainable for manu-

facturing. During their research they have found that smooth trajectories could reduce energy

consumption by up to 40 %, [11]. At NTNU this topic has also been looked at, where a previous

1
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Master’s thesis, Breistøl [7], have performed a 7% decrease in energy consumption using numer-

ical optimization.

What hasn’t been investigated at great extent is how much of an effect changing the position

and orientation of a manipulation task around in the work space of the robot, have on the en-

ergy consumption. This could be of great interest in production and manufacturing around the

world, not only to save the environment, but also because saving energy also save electricity

which again save money. This area will be investigated in this thesis.

1.2 Objectives

1. The main objective of this thesis is as stated in the problem formulation to develop an

algorithm or a method that returns an energy efficient velocity profile, constrained in ve-

locity, acceleration and jerk.

2. The obtained velocity profile must be tested and validated in experiments, and must be

compared to some norm made by ABBs own motion planner.

1.3 Limitations

The trajectories made in this thesis only use the first three joints of the robot. The last three

joints, which controls the orientation of the robot tool are unactuated in zero position. It is

however thought that since these three joints are the ones consuming the lowest amounts of

energy, then it will not affect the end result as much as one could fear. This is therefore a small

limitation of this thesis.

The trajectories from ABBs own motion planner however must be programmed using all six

joints. It is impossible for the last three joints to be unactuated and to be in zero position. There-

fore there will be some offset between the movement of the first three joints programmed with

External Control and the first three joints programmed with ABBs own path planner. This will

be further discussed later in the thesis.
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1.4 Approach

In working with this thesis it was chosen to build on the work done by previous NTNU students,

Breistøl [7] and Strandbråten [8]. They worked with the same robot and together they identified

a lot of robot parameters and created a model for the robot, which will be used in this thesis.

Breistøl [7] also worked in the area of energy efficient trajectories. Many changes and exten-

sions has been made to further improve the results obtained in this thesis.

One of the biggest changes that was made in this thesis was to not only look at an optimal set

of velocities and accelerations, but also what contribution changing the position and orienta-

tion of a path could give when trying to make the trajectory as energy efficient as possible. In

order to make the trajectories smoother, a constraining of the acceleration of the different joints

were performed. In addition to this a different choice of the expression for the velocity pro-

file was made, as well as fixing the circle path previously modelled. Experiments obtaining an

approximation of the torque bounds for the different joints in order to constrain the jerk and

acceleration, was also conducted.

1.5 Structure of the Report

The report is structured as follows. After this introduction to the thesis, in Chapter 2, an in-

troduction to the robot at hand is given, in addition to the two different ways of programming

and controlling the robot. After that, in Chapter 3, the robot theory needed in this thesis will be

presented including Kinematics, Dynamics and Motion Planning. In Chapter 4, the path will be

described mathematically and the optimization problem will be set up. In Chapter 5 some pa-

rameters for the optimization problem will be identified and the practical optimization scheme

will be explained. This include the experiment obtaining maximum and minimum torques for

the ABB 1600 robot. Explanation of the robot programming used to validate the results are also

given here. The results will be presented in Chapter 6, and will be further discussed in Chapter

7 where a conclusion and summary will also be presented. In Appendix A abbreviations are ex-

plained, in Appendix B some additional plots excluded from the main report are shown and in

Appendix C the included files are explained.
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Chapter 2
Robot and robot motion programming

A lot of the time working on this thesis were spent in one of the robot labs in the EL building

at NTNU, more specifically antennehallen(the antenna hall). This time was used to set up the

equipment, to gain experience using the equipment as well as performing experiments to obtain

torque bounds and to validate results. The antenna hall includes several robots such as ABB IRB

IRB 140-6/0.8, ABB IRB 1600-6/1.2, ABB IRB 4600-60/2.05, a KUKA LBR4+ robot and a butterfly

robot, and different equipment such as a NIKON Metrology camera system. In this chapter a

short description of the equipment and software that was used in this thesis will be given, but

first a short introduction to industrial robotics.

2.1 Industrial robots

Industrial robots are robot systems mainly used in manufacturing and production, for appli-

cations including welding, painting and assembly. An industrial robot system can carry out the

same movements over and over 24/7 for several years, without making errors or needing to stop,

[1]. Such a robot typically consists of six rotational joints or axes, as the articulated robots shown

in Figure 2.3, where three joints control the position of the robot end effector and the other three

joints control the orientation of the end effector. Other common types of industrial robots are

SCARA (Selective Compliance Articulated Robot Arm) robots shown in Figure 2.1, typically used

for "pick and place" applications, and Cartesian robots shown in Figure 2.2 also used for this

purpose.

5
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Figure 2.1: SCARA manipu-
lator, courtesy of [1]

Figure 2.2: Cartesian manipulator,
courtesy of [1]

In the present production environments industrial robots have taken over much assembly

and manufacturing from human personnel, [12]. In an assembly line situation, like the one seen

in Figure 2.3, several robots work together to assemble and produce products, in a much more

effective manner that what could be achieved by human mechanics.
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Figure 2.3: Production environment, courtesy of [2]

The top three industrial robot producers in the world are Swedish-Swiss ABB, Japanese Yaskawa,

both with over 300000 robots installed world wide, [13], and German KUKA. All these three pro-

ducers deliver several different solutions from large scale robots to small scale robots.

2.2 ABB IRB 1600

The industrial robot used in this thesis is ABBs IRB 1600-6/1.2 robot. With its weight of 250 kg

and reach of 1.2 meters, it is considered a quite small articulated industrial robot, compared to

ABBs’ biggest robot weighing up to 800 kg with a reach of 4.2 m. Because of its size, and with

a position repeatability of 0.02mm and a path repeatability of 0.13mm, it is ideal for tasks such

as Arc Welding, Machine Tending, Material Handling, Gluing, Deburring and Grinding applica-

tions, [3]. The robot consists of six revolute joints, and as can be seen in the name it can handle

payloads of up to 6 kg. In Figure 2.4 the robot and the reach of it in millimeters are shown.
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Figure 2.4: IRB 1600-6/1.2, courtesy of [3]

The working range and the maximum angular velocities of the robot are shown in the Tables

2.1 and 2.2

Table 2.1: Working range of robot, courtesy of [3]
Axis 1 +180◦ , −180◦

Axis 2 +136◦ , −63◦

Axis 3 +55◦ , −235◦

Axis 4 +200◦ , −200◦ def.
+/−190◦ revolution

Axis 5 +115◦ , −115◦

Axis 6 +400◦ , −400◦ def.
+/−288◦ revolution
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Table 2.2: Maximum angular velocity, courtesy of [3]
Axis 1 150◦/s
Axis 2 160◦/s
Axis 3 170◦/s
Axis 4 320◦/s
Axis 5 400◦/s
Axis 6 480◦/s

2.2.1 RobotStudios and RAPID programming

In order to program paths for the ABB IRB 1600 robot, a program called RobotStudios can be

used. The programming language used in RobotStudios is called RAPID, and the basic RAPID

syntax used in this thesis are found in the RAPID introduction [14].

In RobotStudios every ABB robot can be chosen, and by using a 3D model of the robot it is possi-

ble to program movements defining points and paths between these points in the robots’ work

space. RobotStudios then creates RAPID code using these points and paths, through so called

Move instructions. There are several different move instructions, such as MoveL(linear move-

ment), MoveJ(non-linear quickest path), MoveC(circular movement) and MoveAbsJ(specific joint

movement).

A typical such move instruction are given below

MoveC p1, p2, v100 \T:=5, z10, tool0

In this move instruction MoveC describes the type of instruction, here circular. p1 describes

an intermediate point used in some movements, while p2 describes the end point of the move-

ment. v100 expresses a maximum linear velocity of 100 mm/s and T:=5 describes a execution

time of 5 seconds. z10 describes the so called zone data which explains that corners can be cut

when 10mm from the corner, and tool0 is the chosen tool.

An example of two paths programmed in RobotStudios can be seen in Figure 2.5. These paths

are one square and one circle. Here, the blue arrows represents the z-axis of the end-effector at a

certain point, the red arrows represents the y-axis, the green arrows represents the x-axis, while

the yellow arrows show the direction of the movement between different points.
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Figure 2.5: Example of two paths programmed in RobotStudios, from the side and top

2.3 External Control - extctr

In order to work around the ABB RAPID controller and path planner, an external control in-

terface called External Control is used. External Control opens up the opportunity to model a

controller in Simulink which is integrated in the robot control using Real-Time Workshop, [4].

Real-Time Workshop, which in recent MATLAB versions has been renamed Simulink Coder, is

a code generator functionality in MATLAB, which provides C/C++ code from a simulink model.

This c-code is compiled to an executable file that can be run through an opcom interface on a

computer which is coupled with the robots’ main and axis computer, through both an RS-232

Serial connection and an Ethernet connection.

Figure 2.6 shows a schematic of how the Simulink controller is used in External Control. The

data from the robots main computer is here redirected in to the simulink controller and ma-

nipulated there, before being sent to the axis computer. The four states needed to load the

controller are explained in Table 2.3
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Figure 2.6: Path of robot variables from main to axis computer, courtesy of [4]

Table 2.3: States for loading controller
State Explanation

unload Direct communication between ABBs main and axis computer,
and no communication with simulink controller

load Controller is set up, but no communication with either main or axis computer
submit The controller now listens to the robot data from the main computer,

but it cannot send data to the axis computer. Can be used for logging ABB programs
obtain Two way communication. The simulink controller is now receiving data

from the main computer and communicating manipulated data to the axis computer

The robot variables are made available for the simulink model, by being defined in a .lc-file,

which along with the c-code of the simulink model become part of the executable file used in

the opcom interface. These variables are accessed defining input signals and output signals,

in the simulink model, with names on the forms irb2ext.* and ext2irb.*, see Figure 2.6, where *

defines what variable that is going to be accessed. Some of the signals of interest in this thesis

are presented in Table 2.4.

Table 2.4: Signals of interest
Input Output

Variable Explanation Variable Explanation
posRawFb measured position posRef position reference

velRaw measured velocity velRef velocity reference
trqRefFlt applied torque trqFfw feed forward torque

parKp & parKv controller gains parKp & parKv controller gains
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Chapter 3
Robot theory, kinematics, dynamics, motion

planning and controller

In this chapter some robot preliminaries will be presented. These preliminaries are basic robot

math and modelling used to describe the complex robotic systems. This include a way of com-

puting the position and orientation of the end effector using the configuration values of the

robot, a way of computing the robot configuration values given the end effector position and

orientation, and a way of calculating torques using the current state of the robot. These tech-

niques are known respectively as the Forward Kinematics, the Inverse Kinematics and the Robot

Dynamics. In addition to this some basic theory regarding robot motion planning will be pre-

sented, as well as a proposed way of controlling the robot.

3.1 Forward Kinematics and The Denavit-Hartenberg Conven-

tion

The Forward Kinematics is the method of calculating the end-effector position of a robot, know-

ing the joint configurations. A joint configurations is an angle for a rotational joint and an ex-

tension for a prismatic joint. A common convention used to select frames of reference and to

calculate the forward kinematics of a robot is the Denavit-Hartenberg convention (the DH con-

vention). This convention was introduced by Jacques Denavit and Richard Hartenberg in 1955.

13
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Here each transformation matrix, Ai , between frame i −1 and i , is a series of four basic transfor-

mations, defined in Spong et al. [15] as follows

Ai = Rotz,θi ·Transz,di ·Transx,ai ·Rotx,αi (3.1)

=



cθi −sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1

 ·



1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1

 ·



1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1

 ·



1 0 0 0

0 cαi −sαi 0

0 sαi cαi 0

0 0 0 1



=



cθi −sθi cαi sθi sαi ai cθi

sθi cθi cαi −cθi sαi ai sθi

0 sαi cαi di

0 0 0 1


In Equation 3.1 Rot∗,∗ represents a rotation about either the z- or the x-axis with an angle of

either θi or αi , and Trans∗,∗ represents a translation along either the z- or the x-axis by either di

or ai . The DH variables, ai , αi , di and θi , used in the transformation matrices above, each has

a specific definition that needs to be upheld if the calculation between frames are to be done

correctly, and are in Spong et al. [15], respectively given the names link length, link twist, link

offset and joint angle. The definitions of these variables are shown in Figure 3.1, and further

explained in Table 3.1.
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Figure 3.1: The classic DH parameters shown in red, courtesy of [5]

Table 3.1: Explanation of DH parameters
Parameter Explanation

di offset along zi−1 to common normal of frames zi−1 and zi

θi angle about zi−1 from xi−1 to xi

ai distance along common normal, xi , from frame i −1 to i
αi angle about xi from zi−1 to zi

3.1.1 ABB IRB1600 DH parameters

Selecting the frames of reference for the ABB IRB1600 robot according to the DH convention,

results in the assignment in Figure 3.2.
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Figure 3.2: Denavit-Hartenberg frame assignment for ABB 1600 robot

Using this frame assignment and the robot dimension values given in the product specifi-

cation [16], provides the DH Table 3.2. Inserting these values into the transformation matrices

from Equation 3.1, gives the matrices in Equation 3.2

Table 3.2: ABB IRB 1600 robot DH parameters
Link θi di ai αi

1 θ1 = q1 d1 = 486.5mm a1 = 150mm α1 =−90◦

2 θ2 = q2 −90◦ d2 = 0mm a2 = 475mm α2 = 0◦

3 θ3 = q3 d3 = 0mm a3 = 0mm α3 =−90◦

4 θ4 = q4 d4 = 600mm a4 = 0mm α4 = 90◦

5 θ5 = q5 +180◦ d5 = 0mm a5 = 0mm α5 = 90◦

6 θ6 = q6 d6 = 65mm a6 = 0mm α6 = 0◦
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A1 =



cq1 0 −sq1 a1cq1

sq1 0 cq1 a1sq1

0 −1 0 d1

0 0 0 1

 A2 =



sq2 cq2 0 a2sq2

−cq2 sq2 0 −a2cq2

0 0 1 0

0 0 0 1

 (3.2)

A3 =



cq3 0 −sq3 0

sq3 0 cq3 0

0 −1 0 0

0 0 0 1

 A4 =



cq4 0 sq4 0

sq4 0 −cq4 0

0 1 0 d4

0 0 0 1



A5 =



−cq5 0 −sq5 0

−sq5 0 cq5 0

0 1 0 0

0 0 0 1

 A6 =



cq6 −sq6 0 0

sq6 cq6 0 0

0 0 1 d6

0 0 0 1


Simplified robot

As mentioned in the introduction, the last three joints will be unactuated and set to zero when

planning motions and when using External Control. Therefore some simplifications can be

made to the DH matrices and the last four DH-matrices can be restated as one single matrix,

where the last transformation is a rotation about z2 with q3+90◦ and a translation along x3 with

d4 +d6, resulting in

A3−6 =



−sq3 −cq3 0 −(d4 +d6)sq3

cq3 −sq3 0 (d4 +d6)cq3

0 0 1 0

0 0 0 1

 (3.3)
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3.1.2 Forward kinematics

The forward kinematics is achieved by multiplying all the transformation matrices with each

other as

T0
6 = A1A2A3A4A5A6 (3.4)

The resulting matrix has the form

T0
6(q) =

R0
6(q) o0

6(q)

0 1

 (3.5)

with

q =
[

q1 q2 q3 q4 q5 q6

]T
(3.6)

In Equation 3.5, R0
6(q) represents the orientation of the end effector, while o0

6(q) is the position

of the end effector in relation to the base frame, i.e. the forward kinematics. This position is

calculated to be

o0
6(q) =


oe x

oe y

oe z

 (3.7)

where

oe x =a1cq1 +d6(cq5(cq1cq2cq3 − cq1sq2sq3)− sq5(sq1sq4 + cq4(cq1cq2sq3 + cq1sq2cq3))) . . .

. . .+d4(cq1cq2cq3 − cq1sq2sq3)+a2cq1sq2 (3.8)

oe y =a1sq1 +d6(cq5(cq2cq3sq1 − sq1sq2sq3)+ sq5(cq1sq4 − cq4(sq1cq2sq3 + sq1sq2cq3))) . . .

. . .+d4(sq1cq2cq3 − sq1sq2sq3)+a2sq1sq2 (3.9)

oe z =d1 +a2cq2 −d4(cq2sq3 + sq2cq3)−d6(cq5(cq2sq3 + sq2cq3)+ cq4sq5(cq2cq3 − sq2sq3)) (3.10)

The forward kinematics for the simplified robot stays the same as long as the last three joint

angles are set to zero.
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3.2 Inverse Kinematics

The inverse kinematics is the method of computing the joint configurations of an n DOF robot,

given the Cartesian position and orientation of the robot end effector. It is important to notice

that this exercise is increasingly extensive with the number of joints of a robot, and that few

positions of an end effector are specific to a single set of joint configurations, as one example in

Figure 3.3 shows.

Figure 3.3: One end effector position, two different joint configurations, courtesy of [6]

3.2.1 Kinematics decoupling for ABB IRB1600

For robots having six joints, where the last three joints intersect at a point, as for the ABB IRB

1600 robot used in this thesis, it is possible to split the inverse kinematics problem into two sim-

pler problems, [15]. Here one problem looks only at the first three joint configurations and the

other one looks at the last three joint configurations.

As can be seen in Figure 3.2 the axes z3, z4 and z5, all intersect at a point, from now called

oc = [xc , yc , zc ]T , representing the center of the robot wrist. The origins o4 and o5 will always

be at oc , and this position can therefore be calculated using only the first three robot configu-

ration angles, q1, q2 and q3. For this reason this problem has been called the inverse position

kinematics, [15]. The end effector position o is achieved by translating from oc along z5 the
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distance d6 using the formula

o = oc +d6R


0

0

1

 (3.11)

where R is the orientation of the end effector. The last three joints control the orientation of the

end effector, therefore this problem of computing these joint configurations is called the inverse

orientation kinematics.

The inverse position kinematics

The inverse position kinematics are often calculated by geometrically investigating the posi-

tion, oc . Firstly, q1 is found using the x and y position of oc , see Figure 3.4, and using the two-

argument arctangent function like:

q1 = at an2(yc , xc ) (3.12)

Figure 3.4: Angle q1 in x0 − y0-plane

The reason that atan2 is used, instead of the classic arctangent function is because atan2
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takes in two arguments, xc and yc , in stead of one fraction, yc
xc

, and uses the individual signs of

these arguments in order to find the correct quadrant of the angle.

Next it is wanted to find q2 and q3. Now the horizontal plane is no longer of interest. The vertical

plane composed of z∗ which is parallel to z0 and x∗ parallel to the horizontal plane, is used. This

coordinate system has its origin in the second joint as can be seen in Figure 3.5.

Figure 3.5: Angles q2 and q3 in x∗− z∗-plane

The first task is to calculate the distance r along x∗ from the center of joint 2 to oc , and the

distance s along z∗ also from the center of joint 2 to oc . This is done in Equations 3.13 and 3.14

r =
√

(xc −a1cos(q1))2 + (yc −a1si n(q1))2 (3.13)

s =zc −d1 (3.14)

From the law of cosines the calculation of θ3 can be performed giving the expression for q3 in

Equation 3.18
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cos(θ3) = r 2 + s2 −a2
2 −d 2

4

2a2d4

= (xc −a1cos(q1))2 + (yc −a1si n(q1))2 + (zc −d1)2 −a2
2 −d 2

4

2a2d4
:= D (3.15)

si n(θ3) =±
√

1−D2 (3.16)

θ3 = at an2
(
±

√
1−D2,D

)
(3.17)

q3 =−θ3 − π

2
(3.18)

Equation 3.18 is compensating for the zero position of the third joint, which is rotated π
2 rad from

the zero position used to calculate θ3. q3 is also defined negative relative to θ3. Because of the

±-sign in Equation 3.17 there are two different solutions of q3 corresponding to either elbow up

or elbow down.

q2 can now be calculated as in Equation 3.21, through a calculation of θ2. θ2 is the difference

between the angle between the x∗-axis and the stapled line from joint 2 to oc , and the angle β,

seen in Figure 3.5. The resulting equations becomes

θ2 = at an2(s,r )−at an2(a2 +d4cos(θ3),d4si n(θ3)) (3.19)

θ2 = at an2(zc −d1,
√

(xc −a1cos(q1))2 + (yc −a1si n(q1))2)

−at an2(a2 +d4cos(θ3),d4si n(θ3) (3.20)

q2 = π

2
−θ2 (3.21)

also using the fact that θ2 are defined as negative relative to q2, and rotated π
2 rad from the zero

position in Figure 3.5.

The inverse orientation kinematics

To find the orientation angles, the fact that

R3
6(q) = (R0

3(q))T R0
6(q) (3.22)
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is used, [15]. Since the first three joint angles are already known, as well as some fixed orientation

R = R0
6(q) of the end effector, the orientation angles can be found investigating Equation 3.22.

From the DH matrices these matrices are calculated to


sq4sq6 − cq4c5cq6 sq4cq6 + cq4cq5sq6 −cq4sq5

−cq4sq6 − sq4cq5cq6 −cq4cq6 + sq4cq5sq6 −sq4sq5

−sq5cq6 sq5sq6 cq5

=


cq1sq2cq3 + cq1cq2sq3 sq1sq2cq3 + sq1cq2sq3 cq2cq3 − sq2sq3

sq1 −cq1 0

−cq1sq2sq3 + cq1cq2cq3 −sq1sq2sq3 + sq1cq2cq3 −cq2sq3 − sq2cq3

 ·


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3.23)

When investigating these matrices, the cosine of q5 is found in the lower right corner, and is

calculated through matrix multiplication to be

cq5 = r13(−cq1sq2sq3 + cq1cq2cq3)+ r23(−sq1sq2sq3 + sq1cq2cq3)+ r33(−cq2sq3 − sq2cq3) (3.24)

The sine of q5 is gotten from the other two elements on column three, and calculated to be

±sq5 =
√

(−cq4sq5)2 + (−sq4sq5)2 (3.25)

=
√

(r13(cq1sq2cq3 + cq1cq2sq3)+ r23(sq1sq2cq3 + sq1cq2sq3)+ r33(cq2cq3 − sq2sq3))2

+(r13sq1 − r23cq1)2

The angle q5 can then be calculated using these expressions through

q5 = at an2(±sq5,cq5) (3.26)

The last two orientation angles can now be calculated, knowing q5. Looking at the third row and

column of Equation 3.23, it is seen that these angles can be calculated, depending on if sq5 is
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positive or negative respectively, through

q4 =at an2(±(−sq4sq5),±(−cq4sq5)) (3.27)

q6 =at an2(±(sq5sq6),∓(−sq5cq6)) (3.28)

inserting the elements on the right side of Equation 3.23 corresponding to the left side elements

in Equations 3.27 and 3.28. As can be seen from these expressions q5 = 0◦ results in a wrist

singularity, as both arguments of the atan2 function is zero, and it is impossible to calculate q4

and q6 accurately.

3.3 Robot Dynamics

The standard equation for robot dynamics is defined as, [15]

M(q)q̈+C(q, q̇)q̇+G(q) =τ (3.29)

This equation is used to consider the torques and forces that are producing a robot motion, [15].

In Equation 3.29, M(q) is the mass inertia matrix, C(q, q̇) is the coriolis/centrifugal matrix and

G(q) is the gravity matrix. These matrices and Equation 3.29 can be calculated using one of two

different approaches; Euler-Lagrange and Newton-Euler. Both approaches leads to the same

result of Equation 3.29, but as the Newton-Euler approach investigates each link individually

and recursively, the Euler-Lagrange approach rely on the theory of using one Lagrangean for the

system. Some of the most essential details for both approaches will be presented here, and are

more accurately described in Spong et al. [15].

3.3.1 Euler-Lagrange Equations

As mentioned, the Euler-Lagrange equations of motion are based on the use of a Lagrangean,

L. A Lagrangean is defined as the difference between the kinetic energy, K, and the potential

energy, P. When deriving these energies, the Lagrangean and the Euler-Lagrange equations of

motion for an n DOF robot, it is as stated in Spong et al. [15], easier to first look at Newton’s
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Second Law,

f = m ·a (3.30)

for a one dimensional system, where a particle can move only in the y-direction. Newton’s Sec-

ond Law for this particle of mass, m, is given by

mÿ = f −mg (3.31)

where f is the force, g is the gravitational constant and ÿ is the acceleration. The left side of this

equation can easily be rewritten as

d

d t
(mẏ) = d

d t

∂

∂ẏ

(
1

2
mẏ2

)
(3.32)

where K = 1
2 mẏ2 is the kinetic energy of the system. To obtain the potential energy of the system

the gravitational force on the left side of Equation 3.31 can be rewritten in the same manner as

mg = ∂

∂y
(mg y) (3.33)

where P = mg y . Now that the ingredients of the Lagrangean are obtained, it can be written as

L = K −P = 1

2
mẏ2 −mg y (3.34)

Since the kinetic energy only rely on the velocity of the particle and the potential energy only

rely on the position of the particle, it is obvious that differentiating the Lagrangean w.r.t. the

velocity is the same as differentiating the kinetic energy w.r.t. the velocity,

∂L

∂ẏ
= ∂K

∂ẏ
(3.35)

and that differentiating the Lagrangean w.r.t. the position is the same as differentiating the neg-

ative potential energy w.r.t. the position

∂L

∂y
=−∂P

∂y
(3.36)
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Using these facts Equation 3.31 can be rewritten as

d

d t

∂L

∂ẏ
− ∂L

∂y
= f (3.37)

which is the so called Euler-Lagrange equations of motion for the one particle system. The

Euler-Lagrange equation for a robot manipulator with n DOFs have the same form and is writ-

ten as

d

d t

∂L

∂q̇i
− ∂L

∂qi
= τi (3.38)

By choosing

K = 1

2

n∑
i , j

mi j (q)q̇i q̇ j (3.39)

and Pi = g T rci mi where rci is the distance to the c.o.m. of link i and mi is the mass of the same

link, it is shown in Spong et al. [15, p. 200-201] how using the equations above to end up with

∑
i

mi j (q)q̈ j +
∑
i , j

ci j k (q)q̇i q̇ j + gk (q) = τk (3.40)

where k = 1. . .n and

ci j k = 1

2

{∂mk j

∂qi
+ ∂mki

∂q j
− ∂mi j

∂qk

}
(3.41)

is the Christoffel Symbols. This derivation is quite extensive and require a lot of equations. It is

therefore chosen to exclude this from the report. It is however easy to see that Equation 3.40 has

the form of Equation 3.29.

3.3.2 Newton-Euler formulation

The second approach of obtaining the Dynamics Equation 3.29 is Newton-Euler. As mentioned

earlier this approach treats every link of the robot individually. As each link of the robot is cou-

pled to other links, the equations for force or torque for a certain link will contain so called

coupling forces and torques. The Newton-Euler equations can because of these coupling forces

and torques, be derived using forward and backward recursion.
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When deriving the Newton-Euler equations some special notation are used. Explanations of

this notation are found in Table 3.3, [15].

Table 3.3: Newton-Euler vectors and notation
ac,i = the acceleration at link i’s c.o.m.
ae,i = the acceleration at joint i+1, or at the end of the i-th link
ωi = the angular velocity of the i-th frame w.r.t. the base frame
αi = the angular acceleration of the i-th frame w.r.t. the base frame
gi = the gravitational acceleration in the i-th frame
fi = the force from link i-1 on link i
τi = the torque from link i-1 on link i

Ri+1
i = the rotation matrix between frame i+1 and i
mi = mass of the i-th link

Ii = inertia matrix of link i
ri ,ci = vector from joint i to the c.o.m. of link i

ri+1,ci = vector from joint i+1 to the c.o.m. of link i
ri ,i+1 = vector from joint i to i+1

Deriving forces and torques

The first equation to be presented, when deriving the dynamics equation, is the force balance

for link i ,

fi −Ri+1
i fi+1 +mi gi = mi ac,i (3.42)

Here, it is already apparent what is meant by the coupling forces, as Equation 3.42 include the

element fi+1 which is the the force for the next link. This represent the backward recursion of

the Newton-Euler approach.

Next, the moment balance is written down. Moment is defined by a force f around a point, f ×r ,

with r being the distance between the point where the force is applied and the point where the

moment is calculated. Equation 3.43 shows this

τi −Ri+1
i τi+1 + fi × ri ,ci − (Ri+1

i fi+1)× ri+1,ci =αi +ωi × (Iiωi ) (3.43)
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Here, both a coupling torque, τi+1, and a coupling force, fi+1, are present.

Now, in order to calculate the forces, fi , and the torques, τi , the unknowns of Equations 3.42

and 3.43, ωi , ac,i and αi , needs to be calculated. In these equations elements of the last link,

i −1, will be present. This represent the forward recursion of the approach.

First, the angular velocity will be calculated

ω(0)
i =ω(0)

i−1 +zi−1q̇i (3.44)

where (0) inω(0)
i refers to the base frame. Expressing Equation 3.44 in frame i gives

ωi = (Ri
i−1)Tωi−1 +bi q̇i (3.45)

where bi is joint i’s axis of rotation in the i-th frame

bi = (Ri
0)T zi−1 (3.46)

Having represented the angular velocity, the angular acceleration is given by

αi = (Ri
0)T ω̇(0)

i (3.47)

where Equation 3.44 is differentiated w.r.t. time to get

ω̇(0)
i = ω̇(0)

i−1 +zi−1q̈i +ω(0)
i ×zi−1q̇i (3.48)

giving the updated equation for the angular acceleration

αi = (Ri
i−1)Tαi−1 +bi q̈i +ωi ×bi q̇i (3.49)

Lastly, the expressions for linear velocity and acceleration in the c.o.m. of the i-th link are calcu-

lated

v(0)
c,i = v(0)

e,i−1 +ω(0)
i × r(0)

i ,ci (3.50)
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a(0)
c,i = a(0)

c,i−1 × r(0)
i ,ci +ω(0)

i × (ω(0)
i × r(0)

i ,ci ) (3.51)

Expressing Equation 3.51 in the i-th frame gives

ac,i = (Ri
i−1)T ae,i−1 + ω̇i × ri−1,ci +ωi × (ωi × ri−1,ci ) (3.52)

where

ae,i = (Ri
i−1)T ae,i−1 + ω̇i × ri−1,i +ωi × (ωi × ri−1,i ) (3.53)

Hence the Recursive Newton-Euler equations are derived. The fact that there is no link 0 or

link n + 1, is now used to derive the torques and forces for each individual link. Starting with

the initial conditions ω0, α0, ac,0 and ae,0 equal to zero, and then solving the equations for ωi ,

αi , ae,i and ac,i in that order from i = 1 increasing to i = n, followed by setting the terminal

conditions fn+1 and τn+1 equal to zero and then solving the equations for the force fi and the

torque τi in that order from i = n decreasing to i = 1, results in the Newton-Euler equations for

each link. These expressions can then be re-formulated as Equation 3.29.

3.3.3 Identification of ABB IRB1600 robot equation

In the expressions above, there are a couple of robot parameters that needs to be identified.

These variables are the masses of the links, the center of mass of the links and the inertia ma-

trices of the links. These variables were identified and validated in Breistøl [7] and Strandbråten

[8] and are given below.

Mass, center of mass and inertia matrices

Table 3.4 shows the masses and the distance to the c.o.m. defined from the links original coor-

dinate frame:

Table 3.4: Masses and center of masses for the robot
Link Mass [g] x [mm] y [mm] z[mm]

1 104393.43 51.98 -343.26 -11.92
2 20452.12 201.93 -0.15 -182.8
3 50588.7 -11.12 15.28 96.81
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The inertia matrices are

I1 =


1077815.9 1939.4 24207.0

1939.4 1010823.7 −13131.7

24207.0 −13131.7 225407.6

 (3.54)

I2 =


688775700.03 −2153419.93 −83961.29

−2153419.93 52950112.68 −48598599.09

−83961.29 −48598599.09 703024768.84

 (3.55)

I3 =


249444.6 0 0

0 305986.7 −0.1

0 −0.1 88391.5

 (3.56)

The mass inertia, coriolis/centripetal and gravity matrices are from this calculated using the

Newton-Euler approach, as described in Subsection 3.3.2. This modelling were, as mentioned,

performed in Strandbråten [8] and Breistøl [7], and their model is reused in this thesis. Some

analysis of their expressions were performed, but no questionable errors were found.

Modelled friction

Breistøl [7] and Strandbråten [8] also performed identification of the friction forces in the differ-

ent joints. As there were small possibilities of obtaining a new identification in this thesis, these

results are also reused. This identification was performed running each individual joints at dif-

ferent constant angular velocities, while logging the torque applied. Using this torque and com-

pensating for the centripetal/coriolis and gravity forces, gave the friction force models shown

in Figure B.1, Figure B.2 and Figure B.3, and an expression for τ f (q̇) used in Equation 3.57. It is

worth noting that this function is discontinuous which will be further discussed later.

Including friction forces, the robot dynamics equation becomes

M(q)q̈+C(q, q̇)q̇+G(q)+τ f (q̇) =τ (3.57)
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3.4 Robot Motion Planning

Trajectory planning for robots is complicated, as assigning positions, velocities and accelera-

tions to the robot needs to be done avoiding collisions and without breaking the robots’ physi-

cal constraints. It is also important to avoid singularities, which are positions and orientations

where the robot lose one DOF, and thus can be described with infinitely many configurations, as

described in the end of Subsection 3.2.1. Some basic theory regarding planning of robot motion

will therefore be presented in this section. First, a definition of a central concept in robotics,

before two different approaches for obtaining trajectories are described briefly.

3.4.1 The configuration space

The configuration space is the set of all possible configurations, where a configuration is a com-

plete set of every joint variable, qi , i ∈ {1,n}, for a robot. To plan a collision free trajectory every

configuration along a path must be in the configuration space, and for the robot used in this

thesis the configurations space consists of every configuration in the robots’ work space, except

the space occupied by the 50 cm high plinth at which the robot is mounted.

3.4.2 n-th order trajectory planning

A trajectory is often developed as an n-th order polynomial. Here every joint configuration along

a path, q(t ) or q(θ(t )), is described as a polynomial of a certain order. For a cubic polynomial

the position has the form, [15]

q(t ) = a +bt + ct 2 +d t 3 (3.58)

where t is the time in seconds, and a, b, c and d are motion descriptors. The velocity has the

form

q̇(t ) = d q(t )

d t
= b +2ct +3d t 2 (3.59)

while the acceleration and jerk profiles are the differentiated and double differentiated versions

of Equation 3.59. From the equations above one can plan different motions from start, t0, to

finish, t f , by changing the variables {a,b,c,d}.
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3.4.3 Trajectories based on Fourier Series Expansion

A different way of describing trajectories is based on Fourier Series. The Fourier Series Expan-

sion has the form, [17]

x(t ) = 1

2
a0 +

∞∑
k=1

[ak cos(kω0t )+bk si n(kω0t )] (3.60)

Here ω represent the fundamental frequency of the function, while ak and bk represents even

and odd fourier coefficients respectively. x(t ) can be either a joint position qi or velocity q̇i or

something else depending what is going to be planned. Fourier Series Expansion Trajectories

are often used, when trying to minimize the amplitude of the acceleration profile, to for exam-

ple obtain smooth trajectories, and to plan periodic motions.

Examples of Fourier Series trajectories are Gutman 1-3 and Freudenstein 1-3, [17], which both

only include odd fourier coefficients and sine elements for position expressions, and thus only

cosine elements for the velocity expressions.

3.5 Inverse Dynamics Controller

The controller used in this thesis is an Inverse Dynamics Controller, as the one presented in

Pchelkin et al. [18]. For such a controller the control input of the Dynamics Equation 3.29, τ,

has the form

τ= M(q)[a(θ)−Kp y−Kdω]+C(q, q̇)q̇+G(q) (3.61)

where the angular position error y, the angular velocity error ω and the angular acceleration

error a(θ) for the joints are vectors with elements

yi = qi −φi (θ) (3.62)

ωi = q̇i −φ
′
i (θ)h(θ) (3.63)

ai = [φ
′′
i (θ)h(θ)+φ′

i (θ)h
′
(θ)]h(θ) (3.64)
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where θ is the path variable, h(θ) is the rate of change of the path variable, and φi (θ) is a func-

tion mapping the path variable θ to configuration value qi . The function mapping used in this

thesis will be presented in Subsection 4.1. Kp and Kd are the proportional and derivative gain

matrices of the controller.

Equation 3.61 can be rewritten to

τ= [M(q)a(θ)+C(q, q̇)q̇+G(q)]+ [−M(q)Kp ]y+ [−M(q)Kd ]ω (3.65)

where Ky =−M(q)Kp and Kω =−M(q)Kd . Inserting 3.65 into the Dynamics Equation 3.29 gives

[q̈−a(θ)]+Kdω+Kp y = 0 (3.66)

The experimental setup of this controller will be presented later in Subsection 5.2.1.
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Chapter 4
Planning the robot movement

The overall purpose of this thesis is to plan a velocity profile, which is energy efficient and con-

strained in velocity, acceleration and jerk. In order to do this, a path had to be chosen in addition

to an expression for the velocity profile along this path, and lastly the optimization problem had

to be set up with constraints. This will all be presented in this chapter.

4.1 The path

The path to be optimized were chosen to be a circle oriented in space. Every point on this circle

can be expressed by

P = P0 + r ·Ry (−α) ·


cos(θ)

si n(θ)

0

 (4.1)

where

P0 =


x0

y0

z0

 (4.2)

is the center of the circle.

35
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Figure 4.1: View of the x-y-
plane with the circle, here α
is zero

Figure 4.2: View of the x-z-plane where the circle is flipped
around local y-axis by −α

Ry (−α) =


cos(−α) 0 si n(−α)

0 1 0

−si n(−α) 0 cos(−α)

 (4.3)

is a rotation matrix rotating the circle plane around the y-axis with the angle −α, see Figure 4.2.

A negative α is used as the rotation of the circle plane is defined negative using the right hand

rule for the original y-axis. The constant r is the radius of the circle while θ = 0. . .2π is the angle,

ie. the path variable, along the circle, see Figure 4.1. The resulting expression for the position of

each point along the circle then becomes

P =


x0 + r · cos(θ) · cos(−α)

y0 + r · si n(θ)

z0 − r · cos(θ) · si n(−α)

 (4.4)

This position is used when calculating the joint configurations through inverse kinematics. The

first joint angle is calculated using the x- and y-position as in Section 3.2

q1 = at an2(yc + r · si n(θ), xc + r · cos(θ) · cos(−α)) (4.5)
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where yc and xc is the center of the circle for the wrist center calculated from Equation 3.11 us-

ing P0 as the position o.

The values of q2 and q3 can be found evaluating Figure 4.2. From Pythagoras Theorem for the

triangle composed of l (θ), n(θ) and d(θ), we have that

l (θ) =
√

(d1 − zc + r · cos(θ) · si n(−α))2 +
(√

(xc + r · cos(θ) · cos(−α))2 + (yc + r · si n(θ))2 −a1

)2

(4.6)

In previous thesises, Breistøl [7], Strandbråten [8] and Røv [19], yc + r · si n(θ) was omitted from

this expression. This made the horisontal circles look more like eggs, and gave the circle a bend

when rotating it.

The next variable to be calculated is the angle θm between the second and third link of the robot.

Here the law of cosine is used and this gives

θm = ar ccos

(
a2

2 +d 2
4 − l (θ)2

2a2d4

)
(4.7)

θb is the angle between the vector along n(θ), and the second link. To calculate this variable, the

law of sine is used.

θb = ar csi n

(
d4si n(θm)

l (θ)

)
−θ f (4.8)

where

θ f = at an2

(
(d1 − zc + r · cos(θ) · si n(−α)),

(√
(xc + r · cos(θ) · cos(−α))2 + (yc + r · si n(θ))2 −a1

))
(4.9)

q2 and q3 can now be expressed with θb and θm

q2 = π

2
−θb (4.10)

q3 = π

2
−θm (4.11)
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Orientation

The orientation configuration angles, q4, q5 and q6, can be calculated using Equations 3.26 to

3.28, inserting a fixed orientation. As this thesis only looks at the first three DOFs this will not

be done. This also means that in the equations above every d4 can be replaced with the sum

(d4 +d6), and oc can be replaced by P0.

Derivatives of the circle motion

Having expressed the joint configurations as functions of the path variable θ,

qi =φi (θ) (4.12)

it is important, in order to plan movements for every joint, to also represent the angular veloci-

ties and accelerations as functions of θ. Using the chain rule and the product rule of differenti-

ation, these expressions become

q̇i = dφi (θ)

d t
= dφi (θ)

dθ

dθ

d t

=φ′
i (θ)θ̇ (4.13)

and

q̈i =φ′′
i (θ)θ̇2 +φ′

i (θ)θ̈ (4.14)

In addition to these expressions, an expression for the jerk of each joint is needed in order to see

that the jerk constraints are not violated. The jerk of a joint is the third derivative of the position,

and the rate of change of the acceleration. Thus, differentiating Equation 4.14, gives Equation

4.15

...
qi =φ′′′

i (θ)θ̇3 +2φ′′
i (θ)θ̇θ̈+φ′′

i (θ)θ̇θ̈+φ′
i (θ)

...
θ

=φ′′′
i (θ)θ̇3 +3φ′′

i (θ)θ̇θ̈+φ′
i (θ)

...
θ (4.15)
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4.1.1 Velocity Profile

The trajectory planning techniques described in Section 3.4 were both dependent on time. This

will not be the case here. Since the robot must follow the circle, it is so called path constrained.

To plan a motion for such paths and because the controller described in Section 3.5 is depen-

dent on a path variable not time, the trajectory should be dependent on this path variable θ. As

seen in the last subsection expressions for θ̇, θ̈ and
...
θ are needed.

The choice of the expression for the velocity profile, θ̇, is based on Fourier Series Expansion

and looks like

θ̇ = h(θ) = 1

2
a0 +

n−1∑
i=1

ai cos(iωθ) (4.16)

where i ∈ 0. . .n −1 is the index of the optimizing fourier coefficients ai , and where n is the order

of the velocity profile.

As Equation 4.16 only include cosine elements, and no sine elements as in Equation 3.60, the

rate of change of θ along the circle is mirrored in the two half circles (from 0 to π and from π

to 2π), which is a wanted behavior for a circle motion. This also reduces the number of opti-

mization variables for the trajectory, which makes the optimization task smaller for the solver.

Breistøl [7] also used a velocity profile based on Fourier Series, but this one included sine ele-

ments which made the trajectories quite uneven. It was also observed that removing the sines

improved the energy efficiency.

Differentiating Equation 4.16 w.r.t. time, results in

θ̈ = d

d t
θ̇ = d

d t
h(θ) = h

′
(θ)θ̇ = h′(θ)h(θ)

=
(

n−1∑
i=1

(−iωai si n(iωθ))

)(
1

2
a0 +

n−1∑
i=1

ai cos(iωθ))

)
(4.17)

These values for θ̇ and θ̈ are then used when calculating q̇i and q̈i . The triple derivative of θ,

which is needed for jerk calculation, is obtained by differentiating Equation 4.17
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...
θ = d

d t
θ̈ = d

d t
h′(θ)h(θ)

= h′′(θ)θ̇h(θ)+h′(θ)h′(θ)θ̇ = h′′(θ)h(θ)2 +h′(θ)2h(θ)

=
(

n−1∑
i=1

(−i 2ω2ai cos(iωθ))

)(
1

2
a0 +

n−1∑
i=1

(ai cos(iωθ))

)2

+
(

n−1∑
i=1

(−iωai si n(iωθ))

)2 (
1

2
a0 +

n−1∑
i=1

(ai cos(iωθ))

)
(4.18)
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4.2 Optimization problem

In order to find a best possible trajectory, some optimization is needed. In Nocedal and Wright

[20], the general optimization problem is defined as

min
x∈Rn

f (x)

subject to ci (x) = 0, i ∈ ε
ci (x) ≤ 0, i ∈ I

(4.19)

where f (x) is the function to be minimized, ci (x) are nonlinear equality constraints when i ∈ ε
and inequality constraints when i ∈ I , and x is the variable used to minimize f . The following

subsections will present the optimization problem used in this thesis, on this form.

4.2.1 Objective function

In order to obtain energy efficient trajectories, the energy consumed along a circle motion has

to be minimized. Energy is the integrated version of power over time. Power is defined for a ro-

tational systems as Pr ot = |τ ·ω|, whereω is the angular velocity. For a robot this angular velocity

are the joint rates q̇i .

As seen in the previous sections q̇ are functions of θ̇, which again are functions of the trajec-

tory optimizers ai . Thus, as seen below, also the energy is a function of these optimizers

E =
∫ ∣∣τq̇

∣∣
=

∫ ∣∣τφ′(θ)θ̇
∣∣

=
∫ ∣∣∣∣∣τφ′(θ)

(
1

2
a0 +

n−1∑
i=1

ai cos(iωθ)

)∣∣∣∣∣ (4.20)

The torque, τ, is, as can be seen from the section about Newton Euler and Euler Lagrange, highly

dependent on the positional joint angles q, the joint velocities q̇ and the joint accelerations q̈.

Thus changing the trajectory optimizers ai as well as the positional optimizers, presented in the
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next subsection, will not only change the joint rates, but also the torques.

4.2.2 Optimization variables for position and orientation

As mentioned in the beginning, it is wanted to see how the change of position and orientation

of the circle can be used to further improve the energy efficiency of the robot. A typical job for

the ABB 1600 robot could be to paint, cut or mill a circle in a conveyor belt situation. Something

that can be very useful is to know exactly where and how the material with the circle should be

placed, in order to consume as low amounts of energy as possible. Three variables are used to

describe this placement, and are described in Table 4.1.

Table 4.1: Explanation of optimization variables for position and orientation
Variable Explanation

α Describes the orientation of the circle in space, shown in Figure 4.2
xc The horizontal position of the center of the circle, with yc = 0m
zc The vertical position of the center of the circle

It is chosen not to optimize the position yc , as changing only xc will be enough to find an opti-

mal horizontal position. In addition to the angle α, an additional angle γ which describes the

rotation of the circle about the x-axis could be optimized. This is however not done in this the-

sis as it is thought that the rotation with α better represents a realistic conveyor belt situation,

where a rotation about the x-axis would mean that the circle plane could be in collision with the

belt direction.

In stead of optimizing all three of these variables, it is of course also possible to only optimize

one or two of them, depending on the specifications of a production environment. If the posi-

tion has to be fixed, one could only optimize the angle α, and if the orientation has to be fixed,

one could only optimize the position. This way this method could be used to find the best solu-

tion for a given production environment.



4.2. OPTIMIZATION PROBLEM 43

4.2.3 Constraints

In order to find a feasible trajectory of the robot, it has to be constrained in its configuration

space, as well as w.r.t. its limits on angular velocity, angular acceleration and jerk. The joint

position constraints look like this

qi ,mi n ≤ qi ≤ qi ,max (4.21)

and are found in Table 2.1. The joint rate constraints have a similar look

q̇i ,mi n ≤ q̇i ≤ q̇i ,max (4.22)

and are found in Table 2.2, however as the friction experiments performed in Strandbråten [8]

and Breistøl [7], were only done for angular velocities |qi | ≤ 1rad/s, the angular velocities are

constrained below this threshold.

To ensure smooth behaviors the acceleration are set to be below some maximum and above

some minimum as

q̈i ,mi n ≤ q̈i ≤ q̈i ,max (4.23)

where q̈i ,mi n/max are the minimum and maximum allowed acceleration, which will be derived

later in Section 5.1.1. The jerk of the robot joints must also be between some thresholds

...
q i ,mi n ≤ ...

qi ≤
...
q i ,max (4.24)

where
...
q i ,mi n/max are the minimum and maximum allowed jerk, which will also be derived later

in Section 5.1.1.

The first four constraints controls the physical constraints of the robot. In addition to this, it

is important to avoid really slow trajectories to also constrain the time used by the robot. This

constraint can be set by one of the trajectory coefficients, namely a0 which controls the average

velocity along the circle. This can be seen when summarizing every value of θ̇ along the circle.
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The result, using Equation 4.16, is
∑N

i=1 θ̇ = N · 1
2 ·a0 where N is the number of steps when θ goes

from 0 to 2π. Thus the average velocity is 1
2 a0. The time constraint is therefore dependent on

this variable and become

tmi n ≤ t (a0) ≤ tmax (4.25)

where tmi n = 9s and tmax = 10s represents a chosen time interval that cannot be broken. As

the step size of the simulink model, used in this thesis to simulate the circle, is not constant this

time constraint is not 100% accurate, but with addition of another constraint it does the job. The

problem with the step size of the simulink model, is that it might take long steps at zero velocity

to avoid using any energy. Therefore to further help the solver a constraint is also set on θ̇. It is

set to be above a certain threshold in order to make sure that the robot never stands still, or for

some reason tries to go in a negative direction. The need for this constraint was discovered in

[7]. This minimum threshold were chosen to be θ̇mi n = 0.1r ad/s giving the constraint

θ̇ ≥ θ̇mi n (4.26)

The optimization variables on position and orientation must also be constrained. The angle, α,

should be in the range between αmi n = 0◦ and αmax = 90◦. It is thought that any angle α90◦+

above α = 90◦ will give the same energy contribution as the angle α = 180◦−α90◦+. This con-

straint therefore becomes

αmi n ≤α≤αmax (4.27)

The position of the circle is constrained using the distance, D =
√

(xt −a1)2 + (zt −d1)2, from

the center of joint 2 to the end effector. Two points on the circle are of interest. The point where

the tool is closest to joint 2 at θ = π[r ad ], and the point where the tool is furthest away from

joint 2 at θ = 0[r ad ]. The distances to these points are given by the equations below
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Dmax =
√

(xc + r · cos(−α)−a1)2 + (zc − r · si n(−α)−d1)2 (4.28)

Dmi n =
√

(xc − r · cos(−α)−a1)2 + (zc + r · si n(−α)−d1)2 (4.29)

and are constrained to

D− ≤ Dmax ≤ D+ (4.30)

D− ≤ Dmi n ≤ D+ (4.31)

where, according to Figure 2.4, D− = 495mm − a1 is as close a point on a circle can be and

D+ = 1225mm− a1 is as far away a point on the circle can be. The DH variable a1 = 150mm

from Table 3.2 is subtracted from the distances in Figure 2.4 because the D∗’s are defined from

joint 2, not joint 1. It is also worth noting that these constraints assume that the working range

of the robot is perfectly spherical. This is not the case, but as the error is only a few millimeters

it is thought to be close enough.

One last constraint is needed to make sure that the optimal path is not planned in collision

with the plinth. This constraint is only active when the robot tools’ z-position is below zero.

When this is the case then the robot tools’ x-position must be larger than 300mm, which is ap-

proximately the distance from the robot base to the end of the plinth. This gives us a constraint

xr obot ,mi n ≥ xmax,pl i nth (4.32)

whenever

zr obot ,mi n ≤ 0mm (4.33)

This constraint and the fact that the trajectory will be planned in front of the robot, makes sure
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that the discontinuous part of the spherical work range in Figure 2.4 is not in consideration.

4.2.4 Resulting problem

The resulting problem with the objective function and the constraints is given here:

min
ai ,α,xc ,zc∈Rn

E(ai ,α, xc , zc )

subject to qi ,mi n ≤ qi ≤ qi ,max , i ∈ {1 . . .3}

q̇i ,mi n ≤ q̇i ≤ q̇i ,max , i ∈ {1 . . .3}

q̈i ,mi n ≤ q̈i ≤ q̈i ,max , i ∈ {1 . . .3}

...
q i ,mi n ≤ ...

qi ≤
...
q i ,max , i ∈ {1 . . .3}

tmi n ≤ t (a0) ≤ tmax

θ̇ ≥ θ̇mi n

αmi n ≤α≤αmax

D− ≤ D j (xc , zc ,α) ≤ D+, j ∈ {max,mi n}

xr obot ,mi n ≥ xmax,pl i nth , if zr obot ,mi n ≤ 0mm

(4.34)



Chapter 5
Optimization and experimental setup

In this chapter the practical details of the optimization problem will be presented, including the

chosen solver and the experiments obtaining the bounds for the acceleration and jerk. In addi-

tion to this the programming of the external control circle and the ABB circles will be presented.

5.1 Optimization setup

5.1.1 Finding bounds for acceleration and jerk

Torque experiment

As acceleration and jerk bounds aren’t provided by ABB, they must be calculated from the bounds

put on torque. The torque bounds are not supplied by ABB either, but approximations can be

obtained doing some experiments.

These experiments were performed by running each of the first three joints individually at as

high velocities as possible. The movements were done in the most outstretched configurations

possible to make the load as large as possible for the joint moving. The velocity setting, v7000,

which represent a maximum linear velocity of 7000 mm/s, were used in MoveAbsJ instructions

programming the robot to go back and forth between two joint configurations. The applied

torque was logged using External Control in Submit mode, and plotted using MATLAB. The

torques in addition to the measured velocity in the torque experiments are shown in Figures

47
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5.1, 5.2, 5.3, 5.4, 5.5 and 5.6. From these figures the values for the torque bounds were set to

τmax =


τ1,max

τ2,max

τ3,max

=


533.2552

1128.6251

287.2087

 [N m] (5.1)

τmi n =


τ1,mi n

τ2,mi n

τ3,mi n

=


−526.0914

−1112.8514

−297.8804

 [N m] (5.2)

Figure 5.1: Torque experiment joint 1
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Figure 5.2: Velocity of joint 1 during torque experiment

Figure 5.3: Torque experiment joint 2
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Figure 5.4: Velocity of joint 2 during torque experiment

Figure 5.5: Torque experiment joint 3
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Figure 5.6: Velocity of joint 3 during torque experiment
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To see if these values actually represent the torque bounds some analysis is performed.

Looking at the figures showing the joint rates during the experiments one can see that the ob-

tained velocities are actually above the maximum and minimum angular velocities for the dif-

ferent joints. For joint 1 the angular velocities of

q̇1,max = 2.6414r ad/s

q̇1,mi n =−2.6428r ad/s

were obtained, which is above the maximum of 150◦/s = 2.618r ad/s given in Table 2.2. These

angular velocities are in the most outstretched configuration equal to linear velocities for the

robot end effector of

v1,max = (a1 +a2 +d4 +d6) ·2.6414r ad/s = 1290mm ·2.6414r ad/s = 3407.4mm/s

v1,mi n =−3409.2mm/s

Since these values are not even half the programmed maximum, in addition to the joint rate be-

ing at a maximum this can be interpreted as the maximum and minimum linear velocities the

robot is able to perform here. Thus the maximum and minimum torques along this movement

can be interpreted as the torque bounds of joint 1.

The same exercise can be done for the second and the third joint. The minimum and maximum

angular velocities here were calculated to be

q̇2,max = 2.8258r ad/s

q̇2,mi n =−2.8316r ad/s

q̇3,max = 3.0479r ad/s

q̇3,mi n =−3.0625r ad/s

which again are slightly above the maximum of respectively 160◦/s = 2.79r ad/s and 170◦/s =
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2.967r ad/s given for joint 2 and 3 in Table 2.2. This gives linear velocities of

v2,max = (a2 +d4 +d6) ·2.8258r ad/s = 3221.4mm/s

v2,mi n =−3228.0mm/s

v3,max = (d4 +d6) ·3.0479r ad/s = 2026.9mm/s

v3,mi n =−2036.6mm/s

None of these values are close to the programmed maximum of 7000 mm/s either, so one can

say that these values represent a highest possible linear velocities, and the torque applied are

interpreted as bounds.

Deriving expressions for acceleration and jerk bounds

From the Dynamics Equation 3.57, and the experimental results above, the acceleration bounds

are

q̈max =M−1(q)(τmax −τ f (q̇)−C(q, q̇)q̇−G(q)) (5.3)

q̈mi n =M−1(q)(τmi n −τ f (q̇)−C(q, q̇)q̇−G(q)) (5.4)

The jerk can be bounded by the derivative of q̈ and inserting the torque bounds, giving us

...
q max = d

d t
M−1(q)q̇(τmax −τ f (q̇)−C(q, q̇)q̇−G(q))

+M−1(q)

(
− d

d t
τ f (q̇)q̈− d

d t
C(q, q̇)q̇+C(q, q̇)q̈− d

d t
G(q)q̇

)
(5.5)

...
q mi n = d

d t
M−1(q)q̇(τmi n −τ f (q̇)−C(q, q̇)q̇−G(q))

+M−1(q)

(
− d

d t
τ f (q̇)q̈− d

d t
C(q, q̇)q̇+C(q, q̇)q̈− d

d t
G(q)q̇

)
(5.6)
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The expressions for these bounds are calculated using a maple script, see Appendix C. As the

equations for the maximum and minimum jerk include a differential of the discontinuous ex-

pressions for the friction forces, it was chosen to exclude these constraints. Discontinuous func-

tion does not have derivatives at all points, and the discontinuous point of the friction forces are

at q̇ = 0r ad/s, which is a point that will be crossed many times. Since the energy efficient trajec-

tories obtained in this thesis were not to rapid, and the load on the end effector was very small

it should not matter. When obtaining time optimal trajectories the values for acceleration and

jerk bounds are more of interest.

Some bound were however set on the acceleration to obtain smooth trajectories, given below

q̈1,mi n =−0.25r ad/s2 ≤q̈1 ≤ 0.25r ad/s2 = q̈1,max (5.7)

q̈2,mi n =−0.1r ad/s2 ≤q̈2 ≤ 0.1r ad/s2 = q̈2,max (5.8)

q̈3,mi n =−0.25r ad/s2 ≤q̈3 ≤ 0.25r ad/s2 = q̈3,max (5.9)

These values were chosen by some trial and error, and gave good and smooth trajectories which

avoid rapid accelerations.

5.1.2 Penalizing low velocities

In the optimization problem it is chosen to penalize angular velocities below 0.1r ad/s as at

these velocities unmodelled phenomenas such as dry friction, or stiction, occur and it is wanted

to find trajectories which avoids these velocities as much as possible. This problem was identi-

fied in Breistøl [7] and updated friction models used to avoid this can be seen in the appendix

in Figures B.4, B.5 and B.6.

5.1.3 Solver

The fmincon function of Matlab, [21], was used to solve the optimization problem. Using its

Inerior Point Algorithm it searches for a minimum by changing the optimization variables. It

will not necessarily find the global minimum, because of the non-convexity of the problem at
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hand, but it is able to find local minimas.

fmincon takes in a problem, and what it should minimize for. It also needs some start con-

dition, x0, for the trajectory optimizers ai , and the position and orientation optimizers xc , zc

and α. These have to be chosen with care as it might affect the output, with what local mini-

mum it finds.

A Simulink model is made that, for each suggestion of the coefficients made by fmincon, simul-

tates the entire circle calculating joint angles, joint velocities, joint accelerations, torques and

power in order to calculate the energy. This model uses the updated friction model introduced

in the last subsection. Thus, this calculated energy is not the true energy. Therefore whenever

the fmincon algorithm gives a solution, a second model, using the original friction model, is

simulated to calculate the true energy consumption. An additional search is done from these

optimal coefficients to see if the algorithm finds a better solution in the vicinity of the obtained

solution, which for some start points where the case. The non-linear constraints in the problem

4.34 are also made as a function.

Choice of start point

a0 must be chosen so that tmi n ≤ t (a0) = 2π
1
2 a0

≤ tmax . The rest of the trajectory coefficients are

chosen to be zero. The angle α is chosen at random in its feasible area, while the two variables

representing position are chosen to be in a position in front of the robot, thus xc is positive, and

in a height zc ≤ 0.6m. If zc is chosen too big, the algorithm might converge to a position straight

above the robot, which is not wanted or ideal.
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5.2 Experimental setup

5.2.1 Controller setup

The external control controller used to test the circle is an inverse dynamics controller devel-

oped by Stepan Pchelkin and Breistøl [7] for his tests. The external control simulink model is

further developed in this thesis to be able to handle oriented circles, and to run the new velocity

profile. The controller gains worked for the purpose and were not tuned.

Figures 5.7 and 5.8 show the simulink interface of the controller. As mentioned in the begin-

ning C code is generated from this and run through the external control opcom interface.

The functionality of the control block in Figure 5.8 is as follows. It uses the measured joint an-

gles to calculate the position of the end effector using forward kinematics. The angle θ along the

circle is then using this position calculated. For the oriented circle this is done by the formula

θ = at an2
(
y · cos(−αopt ), x −xc,opt

)
(5.10)

When this is done the value of θ is integrated using the expression for the velocity profile θ̇

along the circle. This is done three samples ahead, as there is a delay between input to output of

3 ·0.004032s = 0.012096s. This value of θ along with the measured joint angles and joint veloc-

ities are used to calculate new references for position and velocity of the different joints. These

references are chosen from a long list of values for θ, qi and q̇i for the optimal trajectory, in the

block "DesiredTrajectory".

These references are then sent to the axis computer along with a feed forward torque using

the Dynamics Equation 3.57, and the controller gains as described in Section 3.5. The blocks

Arm2Motor and Motor2Arm are used to change between motor angles and joint angles, using

the gear ratios.
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Figure 5.7: Inverse Dynamics Controller in Simulink, used to test the circle in External Control
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Figure 5.8: Control Block in Simulink, used to test the circle in External Control
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5.2.2 ABB RAPID circles

To get a measure of the gain in energy efficiency from the optimized external control trajectory,

it was compared to some norm created by the ABB motion planner. Two such norm trajectories

were created, and they can be seen in Figure 5.9. The first norm were a circle motion in the same

position and plane as the circle obtained in the optimization problem. The second norm were a

circle motion with the same center point, but in the horizontal plane. This way it was possible to

see both how the optimized trajectory coefficients ai ’s improved the energy consumption, and

also how the changing of the plane of the circle changed the energy consumption.

The RAPID circles were programmed using two MoveC instructions, each requiring two points;

one end-point of the movement, and one intermediate point that the circle motion will be

planned through. These points were calculated at θ = 90◦ and θ = 180◦ for the first half circle,

and at θ = 270◦ and θ = 0◦ for the second half circle, shown in Figure 5.9. The path was pro-

grammed to use 10 seconds around the circle, thus each half circle use 5 seconds. A maximum

TCP velocity of 100mm/s and zone data z10 were chosen.

Figure 5.9: The two ABB circles
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Chapter 6
Results

When optimizing three different types of circles were tried. Two of these circles optimized posi-

tion and orientation, where one had a radius of 10cm and the second had a radius of 15cm. The

third circle had a radius 15 cm, but here the orientation α= 0 were kept fixed. This was to make

sure that the optimization algorithm didn’t just end up at the same point.

For all the circles the optimization algorithm converged to different small areas of the vari-

ables α, xc and zc , depending on the allowed time of execution. For the circle with radius

10 cm, with execution time between 5 and 6 seconds, it was αopt ≈ 34◦, xc,opt ≈ 0.86m and

zc,opt ≈ 0.25m. For the circle with radius 15 cm, with execution time between 9 and 10 seconds,

it wasαopt ≈ 40◦, xc,opt ≈ 0.76m and zc,opt ≈ 0.4m. And for the fixed orientation circle, with exe-

cution time between 9 and 10 seconds it was at the position xc ≈ 0.68m and zc ≈−0.15m. These

values were obtained as long as the start point were chosen as described earlier. It can therefore

be said with some confidence that these areas are optimal for the different circle movements.

The optimal trajectory coefficients differed a bit, but the resulting energy was not very different

from time to time.

For all these approaches the velocity of the second joint was minimized. As can be seen in

the next section the velocities for joint 2 proposed by the optimization algorithm are below the

velocities to be penalized by the updated friction models. The only movement in joint 2 is the

minimum requirement to correct the circle motion. These low velocities makes sense as can be
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seen from the friction models, the inertia matrices and the maximum torque experiments. The

torque needed to move the second joint is much bigger than for the other two joints. Therefore

the energy consumption of this joint is also much bigger.

As the inertia of the second joint is so much larger than of the other two joints, it should be easier

to control for small movements. It is therefore chosen to go on with this behavior.

6.1 Optimization results

The oriented circle of radius 15 cm were tested in an experiment, therefore these optimization

results are shown below in Figures 6.1, 6.2, 6.3 and 6.4. An optimal path for the 10cm circle is

shown in Appendix B in Figures B.7 and B.8, and the optimal horizontal path is shown in Figures

B.9 and B.10 in the same appendix.

The torques for this circle, are as can be seen in Figure 6.3, calculated to be much lower than

the maximum and much higher than the minimum obtained in the torque experiments. There-

fore the bounds for acceleration and jerk are not broken.

The calculated energy were E = 70.3751J . This was obtained using a fifth order trajectory, with

coefficients aopt = [1.4048,0.0779,−0.2354,0.0319,0.0081], xc,opt = 0.7631m, zc,opt = 0.4154m

and αopt = 40.3345◦. It was also tried to find an optimum using a seventh order trajectory, but

this gave no improvement.
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Figure 6.1: The circle path at optimal position α= 40.3345◦, xc = 0.7631m and zc = 0.4154m
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Figure 6.2: Angular position, velocity, acceleration and jerk at optimal position
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Figure 6.3: Torque calculation for joint 1, 2 and 3

Figure 6.4: Power comsumption along trajectory
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6.2 Experimental results

The circle motion obtained by the optimization problem was tested using external control, and

the controller seen in Figures 5.7 and 5.8, and were compared to two circles made by ABBs own

motion planner. The positions, velocities and torques were logged using an external control log-

ging program, and the values of irb2ext.robot[0].joint[i].posRawFb, irb2ext.robot[0].joint[i].velRaw

and irb2ext.robot[0].joint[i].trqRefFlt were read by a MATLAB script. The power along the cir-

cle path were calculated by the absolute value of the product between the velocities of the joints

and the torques applied.

6.2.1 Optimized path

In Figures 6.5, 6.6 and 6.7 the experimental trajectory, torque and power consumption for the

optimal path are shown.
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Figure 6.5: Angular position and velocity during experiment
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Figure 6.6: Torque calculation for joint 1, 2 and 3 during experiment

Figure 6.7: Power comsumption during experiment
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Comparing these experimental results with the theoretical results, it is easy to see that tra-

jectory is followed. The torque and power are a bit off, and the calculated energy of the optimal

circle is E = 62.6668J which is approximately 12.3% less than the theoretical value.

Reasons for this offset might be some error in the model parameters, unmodelled phenome-

nas and the fact that the control torque does a job that couldn’t be calculated theoretically. The

DH parameters, masses, c.o.m.s and inertia matrices were all obtained using ABBs general infor-

mation for the ABB 1600 robot. These data sheets and CAD models does not take into account

small differences between each produced robot. Therefore some offset must be expected be-

tween theory and experiment.

6.2.2 ABB oriented circle

In Figures 6.8, 6.9 and 6.10 the trajectory, torque and power consumption of the oriented ABB

circle are shown. Here it is worth noting that there is some offset between this path and the ex-

ternal control path, as it is not possible to program paths in RAPID without movement in joints

4, 5 and 6. It is also not possible for joint 5 to have angle q5 = 0◦, as this will result in a wrist

singularity, see Section 3.2. Therefore when programming this circle, joints 1, 2 and 3 will not

have the optimal positions to compare with the circle programmed with External Control. It was

however tried to make this difference small.

The calculated energy of the oriented ABB path is E = 72.8885J which is approximately 16.3%

more than the path programmed with External Control.
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Figure 6.8: Angular position and velocity from ABBs motion planner in oriented circle plane
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Figure 6.9: Torque calculation for joint 1, 2 and 3 for ABBs oriented circle

Figure 6.10: Power comsumption for ABBs oriented circle
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6.2.3 ABB horisontal circle

In Figures 6.11, 6.12 and 6.13 the measured values of the horisontal ABB circle are shown. This

is where the results become interesting. As can be seen from the power consumption and the

resulting energy calculation, E = 163.6110J , this trajectory consume about 161.1% more energy

than the optimal trajectory and about 124.5% more than the oriented ABB circle, which means

that by simply rotating the plane of a manipulation task it is possible to more than half the

energy consumed by the robot.

Figure 6.11: Angular position and velocity from ABBs motion planner in horisontal circle plane
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Figure 6.12: Torque calculation for joint 1, 2 and 3 for ABBs horisontal circle

Figure 6.13: Power comsumption for ABBs horisontal circle
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Chapter 7
Summary, Discussion and Further Work

7.1 Summary and Conclusion

During the course of this thesis a method for planning of an energy efficient velocity profile for

an ABB IRB 1600 robot has been developed. Unlike previous approaches the method used in

this thesis does not only look at the velocity and acceleration assignment, but also finds the op-

timal position and orientation of a manipulation task. This is an approach that can be used for

businesses when setting up production.

To plan these motions an optimization scheme was developed where a path is simulated for

different choices of optimization variables, returning the consumed energy. This energy is min-

imized by an optimization algorithm. The optimization scheme needed to be constrained so

that a path couldn’t be planned outside the feasible area of the robot, or in collision with the

plinth of the robot. In addition to this, constraints were put on the acceleration of the robot in

order to obtain smooth trajectories and time to avoid really slow trajectories.

Experiments were performed to find the maximum and minimum torque possible of the first

three joints of the robot. This was supposed to be used when constraining acceleration and jerk.

These constraints were however excluded from the optimization scheme as the energy efficient

trajectories obtained were nowhere close to the torque bounds. These experimental results are

however greatly of interest when looking at time-optimal trajectories, and can be reused for this
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purpose.

The main results of this thesis shows that an optimization of position and orientation of a ma-

nipulation task can improve the energy consumption by at least 161.1%, and that by using the

velocity profile obtained by Section 4.2.4s optimization scheme energy consumption can be re-

duced by approximately 16.3%. Analysing the results of the optimization algorithm compared

to those trajectories made by ABBs motion planner, it is seen that minimizing the movement of

joint 2 is the biggest contributor to the minimization of energy, as the movements of joint 1 and

3 do not differ much in the three approaches.

In conclusion I would say that even though my contribution to the problem of energy effec-

tive trajectory planning might seem small, the effect of doing this type of optimization of the

position and orientation of the robot movement is big. This type of analysis can be used for

businesses the world over to find a plane for a manipulator task that use the second joint as

little as possible, and in this way use as little energy as possible.

7.2 Discussion

The results presented in the previous chapter are quite strong. Even though the optimization

scheme presented in Chapter 4 does not provide the same solution for every start point, it does

provide paths in the same area, with close to similar energy consumptions, as long as the start

point is chosen with some analysis.

The results show the huge impact just rotating the plane of the manipulation task have on the

energy consumption, no matter how sub-optimal the solution is. Therefore, such an analysis

could be useful for production environments. Of course such a moving and rotation of material

could mean big changes in existing production environments, but for new businesses setting up

production it is useful to both save money and to protect the environment.
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The sub-optimality

The fact that the solution differs for every new start point can be explained by the non-convexity

of the problem. A non-convex problem have many local minimas, and with so many optimiza-

tion variables changing just one of these variable by a small increment, could force the opti-

mization algorithm to search in another area. This again can result in a small difference in local

minimum. Also, it makes perfect sense that a change in position and orientation would result

in a new "optimal" velocity profile, and vice versa.

Improvement from previous thesis

In addition to showing how much can be gained by rotating and moving a manipulation task, an

improvement of the 16.3% has been performed relative to the ABB motion planner. In Breistøl

[7] a 6.98% improvement was achieved.

Reasons for this can be split into three parts. First of all the modelling of the circle in the pre-

vious thesis was wrong and the robot drew an egg shape instead of a circle. The movements

along this egg shape differed a lot. In the pointy top of the egg shape accelerations and veloci-

ties were generally much higher, and thus more energy inefficient, than in the flat bottom of the

egg shape. A second improvement is the expressions for the velocity profile. In the previous ap-

proach a fourier series velocity profile using both cosine and sine parts were used. This lead to

less smooth behaviour than obtained using only the cosine parts. Lastly, the acceleration bound

put in the optimization problem in this thesis removed the risk of costly behavior.

What can be gained by this approach?

To calculate how much money that can be saved from this approach, Bryan et al. [22] say that

an industrial robot in USA on average consume approximately 300 kWh every day. In Norway,

the average price for electricity in December 2016 were around, 30.5 øre/kWh, [23]. The price

of running a robot for a day is therefore 91.5 kroner. For a year running everyday, the price be-
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comes 33397.5kroner/robot. Let’s say that this is a norm for the horizontal movement. Table

7.1 shows a comparison of running a robot using the three approaches seen in this thesis. Note

that this comparison, assume that every movement done by the robot have the same energy ef-

ficiency, and that all electricity are used on movements, which is not the case. This comparison

is regardless of this, good in order to see the potential of energy efficient robotics.

Table 7.1: Cost comparison
Circle Electricity cost per year [23]

ABB horisontal 33397.50 kroner/robot/year
ABB oriented 14876.39 kroner/robot/year

External Control 12791.08 kroner/robot/year

To get a look of the environmental gains of this approach, US Environmental Protection

Agency [24], calculates the amount of emission due to green house gases per kwh consumed in

the US. It claims that a robot using 300 kwh per day is responsible for an emission of 77 metric

tons of CO2 every year. This amount of electricity generation also corresponds to the emission

of green house gases, obtained by driving 16.3 passenger vehicles for a year. The reduction of

energy consumption can therefore be of great interest in this aspect also, and therefore a reduc-

tion 161.1% is a big improvement.

7.3 Future Work

There are several approaches that can be used in order to further improve the subject of energy

efficient trajectory planning.

A first short-term approach is to add a rotation matrix about the x-axis, to see how this will

affect the energy consumption. It is believed that, as the rotation about y lead to a minimiza-

tion of the movement in the second joint, a rotation about x will lead to a minimization of the

movement of the first joint. The matrix for a rotation with, γ, about x is
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Rx(γ) =


1 0 0

0 cos(γ) −si n(γ)

0 si n(γ) cos(γ)

 (7.1)

and this could be multiplied with the rotation about y in Equation 4.1 in order to model the new

circle. Constraints on γwould also need to be added. As the second joint is the joint consuming

the most energy, the improvement of this approach should not be as big, but could be of interest

nevertheless.

It could also be interesting to see the effect this approach have on paths with corners, such

as a square. Here the constraints on acceleration will be more effective as the robot would have

to stop at each corner unlike the circle movement used in this thesis.

To further improve the accuracy and validity of the method and optimization scheme, some

calibration of the robot parameters can be performed. Kolyubin et al. [25] presents a technique

for improving a model without relying on inaccurate CAD data etc. This could also be done on

the ABB 1600 robot.

A long-term approach would be to extend the work done here to 6DOFs. This require a lot of

work especially as friction experiments will have to be performed for the last three joints. This

isn’t as straight forward as the experiments performed for the first three joints, as the last three

joints are controlled by the same motor. It is therefore difficult to know exactly how much torque

is required to control one specific joint when several joints are moving together. A second dif-

ficulty here is that when adding three more joints then the recursive equations for the robot

dynamics would become much larger. Lastly, since the last three joints have much smaller in-

ertias, controlling these would lead to some difficulties and tuning the gains for the controller

could be quite extensive.
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Appendix A
Abbreviations

DH = Denavit-Hartenberg

DoF = Degree of Freedom

TCP = Tool Center Point

C.O.M. = Center Of Mass

c∗i = cos(∗i )

c∗i = si n(∗i )
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Appendix B
Additional plots

Friction model

Figure B.1: Friction model for joint 1 obtained in [7] and [8]
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Figure B.2: Friction model for joint 2 obtained in [7] and [8]

Figure B.3: Friction model for joint 3 obtained in [7] and [8]

Updated friction model
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Figure B.4: Friction model used to penalize low velocities for joint 1 obtained in [7]

Figure B.5: Friction model used to penalize low velocities for joint 2 obtained in [7]

Figure B.6: Friction model used to penalize low velocities for joint 3 obtained in [7]
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Optimal path 10cm circle

Figure B.7: The circle path at optimal position α= 33.8452◦, xc = 0.8684m and zc = 0.2502m for
circle with radius 10cm
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Figure B.8: Angular position, velocity, acceleration and jerk at optimal position for circle with
radius 10cm

Optimal horizontal path
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Figure B.9: The circle path at optimal positionα= 0◦, xc = 0.68m and zc =−0.15m for circle with
radius 15cm
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Figure B.10: Angular position, velocity, acceleration and jerk at optimal position for horizontal
circle with radius 15cm
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Appendix C
Files

startOptimization.m

This file sets up the optimization problem with an initial guess of the different optimization

variables, and runs the fmincon optimization

returnEnergy.m

Function that returns the energy of a simulated model for a certain guess of optimization vari-

ables.

model.slx

Simulink model that simulates the circle motion and calculates the energy using the updated

friction model. This simulink block diagram is quite similar to one made by [7], but code in the

blocks is different with a new circle motion, additional optimization variables and a new velocity

profile

model2.slx

Simulink model that simulates the circle motion and calculates the actual energy using the orig-

inal friction model. Also used to make the vectors for θ, q and q̇ to be copied in to the external

control simulink controller.
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makeConstraints.m

A function that checks the nonlinear constraints for the circle motion, for the fmincon opti-

mization. Similar to a function made by [7], but with the new and improved circle motion and

additional constraints on angles, acceleration, position and orientation.

accelerationConstraints.m

Function that returns the acceleration constraints.

frictionModel.m

Function that returns the torque needed to overcome friction, obtained in [7] and [8].

forwardKinematics.m

Calculates the position using the current joint configuration

printPath.m

Plots the position, velocity, acceleration, jerk, torque and power for the optimized path.

plotExperiment.m

Plots the measured experimental values obtained using External Control and ABB Rapid pro-

gramming.

matrixMultiplication.m

File computing the Forward Kinematics symbolically

trqTestPlot.m

Plots the torque experiment
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InvDynControl_OrientedCircleLars.slx

Inverse Dynamics Controller used in the experiments with the optimal oriented circle. Similar

to the one used in [7], but with small changes to use the new velocity profile and to handle

oriented circles.

derivativesCircleMotion.mw

This file calculates the derivatives ofφi (θ) used for the calculation of the velocities, accelerations

and jerks of the different joints, inspired by a function made by [8] and [7].

FindAccJerkConstraints.mw

Calculates the expressions for the acceleration and jerk constraints, built upon a function made

by [8] and [7] which calculates the dynamics equations.

Log files

A folder including the logged files from all the experiments
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