
Analysis of Integration Architecture in
Integrated Environmental Monitoring
System
Development of Front-End Prototype for

Decision Support for Drilling in Areas with

Sensitive Fauna

Therese Torgersen

Master of Science in Engineering and ICT

Supervisor: Vidar Hepsø, IGP
Co-supervisor: Tor Nordam, SINTEF

Department of Geoscience and Petroleum

Submission date: February 2017

Norwegian University of Science and Technology

To
Vilde Mari Torgeresen,
Marianne Torgersen,

and
Torgeir Torgersen

Abstract

This master’s thesis is a continuation of the specialization project, which focused on the
underlying need for better surveillance of sensitive fauna, during drilling operation, and
an industry developed software solution designed to meet this need - ELMO. ELMO is an
integrated environmental monitoring software solution that consist of several preexisting
systems. By adopting an integration architecture ELMO is able to collect data from several
different sources and present the user with valuable information about the risk imposed on
corals during drilling operations.

This master’s thesis is divided into a theoretical part and a practical part. The objective
of the theoretical part is to develop a framework for analysing integration architectures
in systems-of-systems, and then apply the framework to analyse ELMO’s integration ar-
chitecture. The purpose of the practical part, is to acquire relevant skills and develop a
prototype for a user interface that is intended to enhance ELMO’s value as a decision
support tool during drilling operations.

i

Preface

This report is the result of the course TPG4935 Integrated Operation in the Petroleum
Industry, Master’s Thesis. The report was written in the period between September 2016
and February 2017 as a part of a master program in Engineering and ICT at the Norwegian
University of Science and Technology.

The thesis consist of a framework for analysing integration architectures in systems-
of-systems, an analysis of ELMO’s integration architecture and a chapter describing a
front-end prototype.

ii

Acknowledgments

I would like to thank my responsible supervisor Vidar Heps for introducing me to Inte-
grated Environmental Monitoring, and in particular to the ELMO-solution.

I would also like to thank my supervisor Tor Nordam from SINTEF Materials and Chem-
istry for his support, guidance and feedback during the project

Finally, thanks to Torgeir Torgersen for being a source of inspiration.

iii

iv

Table of Contents

Abstract i

Preface ii

Acknowledgments iii

Table of Contents vi

List of Tables vii

List of Figures x

1 Introduction 1
1.1 Problem description . 1
1.2 Motivation . 1
1.3 Structure of thesis . 2

2 Background 3
2.1 Drilling in sensitive areas . 3
2.2 Environmental Monitoring and Modeling, (ELMO) 4

3 Framework for Analysing Integration Architecture in a System-of-Systems 5
3.1 System Design . 6
3.2 Scope and Development Context . 6
3.3 Important Design Choices . 8

3.3.1 Sharing of Data . 8
3.3.2 Control Regime . 13

3.4 System Connections . 15
3.4.1 Data Integration . 16
3.4.2 Functional Integration . 17
3.4.3 Presentation Integration . 21

v

4 ELMO 23
4.1 Hydrodynamic model . 23
4.2 Sedimentation model . 25
4.3 Coral Risk Assessment Tool (C/XRA) 26
4.4 Frond-end . 26
4.5 Controller . 27

5 ELMO - Integration Architecture Analysis 29
5.1 System Design . 29
5.2 Development Context . 29
5.3 Sharing of Data . 30

5.3.1 Interoperability . 30
5.3.2 Data sharing . 32

5.4 Control Regime . 34
5.5 System Connections . 35
5.6 Conclusion . 36

6 Front-end Prototype 37
6.1 Target Environment . 37

6.1.1 Front-end features . 38
6.1.2 Data Sources . 38
6.1.3 Functionality . 40

6.2 Prototype Environment . 41
6.2.1 Front-end features . 42
6.2.2 Data Sources . 42
6.2.3 Functionality . 44
6.2.4 Implementation . 47

6.3 Analysis . 52
6.4 Conclusion . 54

7 Conclusion 55

Bibliography 57

vi

List of Tables

3.1 Scope and Development Context matrix, table reproduced from Kazman
et al. (2013) . 7

3.2 Data Integration Benefits and Liabilities, table reproduced from Microsoft
Corporation (2004) . 18

3.3 Functional Integration Benefits and Liabilities, table reproduced from Mi-
crosoft Corporation (2004) . 20

3.4 Presentation Integration Benefits and Liabilities, table reproduced from
(Microsoft Corporation 2004) . 21

5.1 Summary of Scope and Development context for ELMO 30
5.2 Overview of all data sources in ELMO 31

6.1 Relationship between front-end feature and data source 39
6.2 Overview of data sources in prototype solution 43

vii

viii

List of Figures

3.1 Monolithic system design vs Layered system design 7
3.2 Data warehouse . 10
3.3 Entity Aggregation (Microsoft Corporation 2004) 12
3.4 Process Integration (Microsoft Corporation 2004) 14
3.5 The three primary patterns for system connection 15
3.6 Derived system connection patterns (Microsoft Corporation 2004) 16

4.1 Sinmod and associated input data . 24
4.2 Dream and associated input data . 25
4.3 C/XRA and associated input data . 26
4.4 Required input data for the front-end application 27
4.5 Snapshot of current ELMO user interface 28
4.6 Overview of ELMO system components and data flow (Sintef 2017a) . . 28

5.1 Relationship between information models and individual systems in ELMO 32
5.2 Data flow and aggregation through ELMO (Ulfsnes et al. 2014) 33
5.3 Data flow and aggregation through Sinmod (Brönner et al. 2013) 34
5.4 System connections in ELMO . 36

6.1 Layout and design of the target solution 38
6.2 Required data sources for the target solution 39
6.3 Target user actions and response: ”Load Page” and ”Select Discharge Point” 40
6.4 Target user actions and response: ”Select Point of Interest” and ”Change

Time” . 41
6.5 Layout and design of prototype solution 42
6.6 Data sources used in prototype solution 43
6.7 Page loaded user action and response . 45
6.8 Wellbore selected user action and response 45
6.9 Coral selected user action and response 46
6.10 Forwards and backwards user action and response 46
6.11 Placeholder before and after coral is selected 48

ix

6.12 HTML implementation of the prototype 49
6.13 The THREDDS Response . 50
6.14 Link used to access NMI THREDDS server 50
6.15 Implementation of loadUrl() and loadData() 51
6.16 Implmentation of drawRectangles() . 53

x

Chapter 1
Introduction

1.1 Problem description
To cope with an increasing interest to commence drilling in sensitive areas, the industry
sees the need to introduce Integrated Environmental Monitoring. Integrated Environmental
Monitoring is careful monitoring of drilling operations and the surrounding environment
to prevent damages to sensitive fauna such as corals.

Environmental Monitoring and Modeling (ELMO) is an Integrated Environmental
Monitoring software solution developed by Sintef and Statoil. ELMO comprises of three
preexisting software systems, Sinmod, DREAM and C/XRA, in addition to a controller
application, server solution and a user interface. Integration of the individual systems into
a system-of-systems enables ELMO to use real-time data to indicate the risk profiles of
corals during drilling operations.

To be able to integrate the different systems into a system-of-systems an integration
architecture is required. An integration architecture enables efficient communication of
data from several sources, cross-systems transactions and automation of processes.

This master’s thesis theoretical task is to develop a framework for analysing integration
architectures in systems-of-systems, and use the same framework to analyse the integration
architecture used in ELMO.

The objective of the practical task is acquire knowledge and competence related to
front-end development. This will then be used to implement a front-end prototype that
displays the progress of a specified drilling operations as well as the accumulation of
drilling discharges on a point-of-interest.

1.2 Motivation
Focusing on integration architecture analysis in the theoretical part, was a natural next step
considering the analysis that were conducted in the specialization projects. It is also an
opportunity to expand my knowledge and understanding of relationships between system

1

Chapter 1. Introduction

development, system architecture and system integration.
For the practical part of the master’s thesis several solution were considered before de-

ciding on developing a front-end prototype. The front-end prototype presented an oppor-
tunity to learn something completely new that matched my level of experience. Therefore,
learning the mechanisms and contexts of front-end development is an equally important
goal as creating the desired functionality.

1.3 Structure of thesis
The first chapter in this thesis is a summary of the findings of the literature review of the
specialization project. It explains the importance of integrated environmental monitoring,
and presents a concrete example of a solution - ELMO - developed by the industry to
handle the challenges related to drilling in sensitive areas.

Chapter two contains a framework for analysing the integration architecture of systems-
of-systems. The framework has been developed based on literature from several sources
and aims to be a tool for analysing integration architectures in systems-of-systems. The
ELMO solution is presented in chapter four, and is meant to provide the reader with nec-
essary information about ELMO before ELMO’s integration architecture is analysed in
chapter 5.

Chapter six examines the practical task, by comparing the target environment (the
desired result), with the prototype environment (the actual result). Chapter seven contains
the conclusion for overall project and highlights the main points in the master’s thesis.

2

Chapter 2
Background

This chapter is meant to provide the reader with a basic introduction to certain aspects of
drilling operations, how these aspects may affect the environment surrounding the wellsite
and the software solution made by the industry to cope with these challenges. The infor-
mation presented in this chapter is a summary based on the specialization project, for a
more comprehensive introduction the reader is referred to Torgersen (2016)

2.1 Drilling in sensitive areas
In 2016 206 production and exploration wellbores were spudded on the Norwegian Con-
tinental Shelf (Norwegian Petroleum Depeartmen 2016). A by-product of these drilling
operatings are drilling discharges. Drilling discharges consists of drill cuttings (crushed
material from the wellbore), drilling mud and chemicals. Drilling mud is a specially de-
signed fluid that lubricates the drill bit, transport the drill cuttings and balances the for-
mation pressure in the wellbore (Petrowiki.org 2015a). There are three types of drilling
mud; water-based mud, oil-based and synthetic-based mud. The type of drilling mud and
depth of the section in the wellbore determines how the drilling discharges are disposed
(Brechan et al. 2016).

Usually the drill cuttings from the top hole are discharged at the sea floor in the vicinity
of the well. As long as water-based mud is used, and less than one percent is contaminated
by oil, the drill cuttings can be discharged at sea. If oil-based mud or synthetic based mud
are used, and/or the cuttings are from deeper sections, the cuttings are separated from the
drilling mud so that the drilling mud can be recycled and re-injected into the well, while
the drill cuttings are discharged (Brechan et al. 2016).

When drill cuttings are discharged to sea this can be done from the rig, both above and
below the sea surface, directly at the sea floor or by using a Cutting Transport System. A
Cutting Transport System can be applied when there are sensitive fauna in the area of the
wellbore, to protect the fauna from the drill cuttings.

On the Norwegian Continental Shelf there are several areas with sensitive fauna, such
as cold water corals and sponges. Coral reefs are habitats to a rich set of species, and are

3

Chapter 2. Background

associated with higher biodiversity than the surrounding areas. One of the main threats
towards coral reefs and corals associated with offshore petroleum activity is smothering as
a result of accumulation of drilling discharges (Larsson & Purser 2011), (Foss et al. 2002).

Drilling operations follow a drilling plan describing every aspect of the operations.
Drilling plans are developed by professionals before the operations and contains informa-
tion about the shape, orientation, depth, completion and evaluations of the drilling opera-
tion (Petrowiki.org 2015b). The drilling plan also predicts expected volumes of mud and
cuttings and the duration for each section (DNV GL 2014). Each section in a well requires
three steps; drilling, casing and cementing (Brechan et al. 2016). As a result discharges
are intermittent.

2.2 Environmental Monitoring and Modeling, (ELMO)
When drilling in sensitive areas, it is a requirement from the Norwegian authorities that
the operator shall monitor if and how the drilling operation affects surrounding areas (Rye
et al. 2013). While off-line annual and triennial, monitoring is the standard for environ-
mental monitoring now, the petroleum industry is entering areas with increasingly sensi-
tive environments. This will require more flexible and real-time sensor based monitoring
which can be tied closely to daily operations, also known as Integrated Environmental
Monitoring (Hepsø et al. 2012).

In 2012 SINTEF Materials and Chemistry, SINTEF Fisheries and Aquaculture, and
Statoil developed the ELMO prototype, a research project within the DEMO2000 frame
of the Norwegian Research Council. ELMO is a software solution made to support the
decision process by presenting real-time environmental data during drilling operations in
sensitive areas (Sintef 2017b).

ELMO consists of a hydrodynamic model, a sedimentation model, and a risk assess-
ment tool. To connect all these software models a controller application has been devel-
oped with an associated front-end application and THREDDS server. To ensure seamless
interaction and data flow between the data sources, models and front-end application a set
of open standards are adopted (Brönner et al. 2016).

4

Chapter 3
Framework for Analysing
Integration Architecture in a
System-of-Systems

A system-of-systems, is a system where several individual and independent systems are
integrated to achieve cooperation and interoperation (Kazman et al. 2013). The purpose
of integrating the systems is to meet new business needs that will increase the competitive
advantage and enhance the operational efficiency by giving better insight into key business
data and improve business support (Ahsan & Nurmilaakso 2015).

The most important feature in an integration process is the integration architecture.
”An integration architecture consists of principles, processes and technical solutions for
managing the distribution and heterogeneity of application landscape and the underlying
technologies” (Murer et al. 2011)

This chapter presents a comprehensive framework for analysing the integration archi-
tecture in a system-of-systems. During the literature review multiple sources covering
sections of the overall integration architecture were studied. The framework presented
combines theory from several sources, with the main contributor being Understanding
Patterns for System-of-Systems Integration (Kazman et al. 2013), and Integration Patterns
(Microsoft Corporation 2004), and aims to provide a foundation that can be used to analyse
the overall integration architecture in a system-of-systems.

The framework addresses five main topics: System design, Scope and development
context, Sharing of data, Control regime and System connection. Together these five top-
ics explain why the design of individual systems determines how they are integrated into
a system-of-system and presents several methods to analyse the underlying integration ar-
chitecture.Scope and development context identifies the initial state of a system-of-systems
and its component and the associated limitations and opportunities.

Sharing of data addresses how data is shared among systems, the need for an infor-
mation model and how to implement a solution that can effectively provide unified access

5

Chapter 3. Framework for Analysing Integration Architecture in a System-of-Systems

to data that is scattered across multiple distributed repositories. Control regime describes
the functionality needed to control operations and transactions than span multiple systems.
System connections presents the different ways systems can connect to each other.

3.1 System Design
A system’s design determines if a system can be integrated in to a system-of-systems
and how the system are to be connected to the other systems. A system may be little
receptive to integration, as in the case of monolithic systems. Monolithic systems are
tightly coupled with one system instance in charge of everything; user interfaces, accessing
and validating data, and core functionality (Stephens 2015). The only way to integrate
such systems are either by comprehensive reengineering or by accessing the user interface
through presentation integration.

Other systems presents several possible connection points, such as systems adopting
a layered system design. A layered system design separates responsibilities into layers
and strive to limit the dependencies between each layer. The number of layers vary, and
depends, among other things, on the complexity of the system. For the reaming part of this
thesis, layered system design refers to the three-layered design. Each of the three following
layers, as defined by Fowler (2002), provides a connection point for other systems

• Presentation Logic Layer: Is in charge of communicating with the user by dis-
playing information and interpret commands from the user and bring them to the
application logic. This can be achieved using everything from simple command line
interfaces to rich clients or web interfaces.

• Application Logic Layer: Contains the applications functionality and utility com-
ponents that are used by other application components. The application layer is also
in charge of system security and validating user input and data received from other
applications.

• Data Source Layer: Is in charge of communication with databases moving informa-
tion to and from the databases and handles transaction management (Sommerville
2011).

Figure 3.1 presents graphical representations of a monolithic and layered system de-
sign and the differences between them. Although layered system design is one of the most
commonly used designs, there are many systems, ELMO included, that adopts other kinds
of system design. But using the three above mentioned logical layers presents a common
way to analyse system connections regardless of system design.

3.2 Scope and Development Context
The scope and development context identifies the initial state of the different pieces of the
puzzle that becomes a completely integrated systems-of-system. Most organizations have
systems developed over longer periods of time, and as a result most systems-of-systems

6

3.2 Scope and Development Context

Figure 3.1: Monolithic system design vs Layered system design

Greenfield Brownfield Closed Sorce
System-of-
Systems

Create a new system-
of-systems without
the need to take
legacy into account.

Establish a new
system-of-system by
creating new APIs
and deprecating
existing APIs.

Wrap existing sys-
tems in a way that
creates interface
compliance with ex-
isting environment.

System Create a new sys-
tem to be integrated
into existing system-
of-systems.

Adapt an existing
system such that it
can be integrated into
a system-of-systems.

An existing system
must be integrated in
a system-of-systems,
but due to a lack of
access to its imple-
mentation it cannot
be adapted. So it
must be wrapped in
some way.

Table 3.1: Scope and Development Context matrix, table reproduced from Kazman et al. (2013)

7

Chapter 3. Framework for Analysing Integration Architecture in a System-of-Systems

will consist of individual systems developed using different technologies, different system
design techniques and different standards etc.

It is important to understand the opportunities and limitations the initial state of both
individual systems and system-of-systems presents for further development. To do this the
scope must be identified, or in other words the existing systems and systems-of-systems
must be identified. Then the systems and systems-of-systems are categorized based on the
development context (Kazman et al. 2013):

• Greenfield: There are no preexisting implementation that restricts the design space

• Brownfield: There exists something, but it is possible (in principle) to modify the
realization of it

• Closed Source: An implementation already exists, but it is impossible to change

Table 3.1 shows how scope and development context are intertwined and define differ-
ent starting points.

3.3 Important Design Choices
Regardless of whether a system-of-system is developed from scratch or a system is added
to a system-of-system important design choices such as how data is shared among the
systems and the control regime must be considered. This section presents some of the
available options.

3.3.1 Sharing of Data
Data can be common and shared or private and isolated, although somewhere in be-
tween these two extremes is most common. When data is shared it occurs either by one-
directional information exchange or bi-directional exchange (Kazman et al. 2013).

For a system-of-systems with some level of common and shared data, it is often re-
quired to effectively manage access to data that is distributed across multiple repositories.
This creates challenges with respect to coordination and the integration architecture will
have to cope with challenges like (Microsoft Corporation 2004):

• Multiple records for the same entity in different repositories.

• Semantic dissonance between the data values represented within the same entity
across repositories

• The values of information elements might vary over time across parallel instances.

• Violation of referential integrity of data across multiple repositories

• Data synchronization

• Access to logical subsets of data elements that are not available in a single repository

Efficient management of the above mentioned challenges in an integration architec-
ture will normally be handled by introducing an Information Model and implementing a
structure for data sharing.

8

3.3 Important Design Choices

Interoperability

Bass et al. (2013) defines interoperability as the degree to which two or more systems can
usefully exchange meaningful information via interfaces in a particular context. Because
a system cannot be interoperable in isolation, specifying the context is important. The
context answer questions such as with whom, with what, and under what circumstances?
(Bass et al. 2013).

Two or more system can exchange meaningful information only when structural, syn-
tactic and semantic interoperability is achieved. Kazman et al. (2013) defines structural,
syntactic and semantic interoperability as follow:

• Structural: defined as adherence to relevant standards that describe data exchange.

• Syntactic: defined as data exchange occurring with appropriate formats.

• Semantic: defined as providing the correct data as part of the data exchange.

When a system-of-systems require involvement of solutions from multiple vendors and
organizations information incompatibilities are common. Such incompatibles are costly,
and to avoid them efficient utilization of information modelling is needed, or in technical
terms interoperability between the systems is needed.

One of the most effective ways to achieve interoperability between systems is to in-
troduce an information model. ”An information model is a technique for specifying the
data requirements that are needed within the application domain. It is a representation of
concepts, relationships, constraints, rules and operations that specify data semantics for a
chosen domain of discourse” (Zhao et al. 2011).

A consistent information model for a system-of-systems that enforces interoperability
can be achieved through the following three options (Zhao et al. 2011):

• The translation approach: The system-of-systems consist of systems from several
vendors. Interoperability is achieved by building and maintaining a data translator
that translate from one proprietary format to another.

• The single vendor mandate approach: The system-of-systems is supplied by one
vendor. Interoperability is achieved as long as the mandate is fully implemented -
as long as the systems used and added only is supplied by one vendor.

• The information exchange standards mandate approach: The system-of-systems
consists of systems from several vendors. Interoperability is achieved by implement-
ing a non-proprietary standard for the information model and only using and adding
systems that exchange information in the specified standard.

Usually interoperability is achieved through some blend of these three alternatives. But
applying common standards is normally cheaper both to develop and maintain compared to
developing and maintain several proprietary formats for the same underlying information.
The information exchange standards offers freedom of product choice but depends on
conformance and certification definitions and requirements (Zhao et al. 2011).

9

Chapter 3. Framework for Analysing Integration Architecture in a System-of-Systems

One-directional Data Exchange

One-directional data exchange is normally used to track the evolution of data in a system-
of-system (Kazman et al. 2013). One of the most-used solutions for one-directional data
exchange is data warehouse. In systems-of-systems it is often required to track the evolu-
tion of data that originates from multiple repositories at the same time, and provide users
with a unified view of data from multiple data sources. Delivering a unified view implies
the need for the following operations on data from the different sources (El-Sappagh et al.
2011) (Vassiliadis & Simitsis 2009):

• Cleaning of data

• Filtering of data

• Applying simple or complex data validation

• Joining data together from multiple sources

• Transposing rows and columns

• Splitting a column into multiple columns and a row into multiple rows

Also known as Extraction, Transformation and Loading (ETL) operations. These are
important activities from an integration architecture perspective to ensure interoperability.
The purpose of one-directional data exchange is often to deliver data for analytical and/or
decision support. Integrating data across different sources becomes more and more im-
portant when the amount of data and number of data sources are growing. Complexity is
often related to the analytical part where multidimensional views of the data is requested.

Figure 3.2: Data warehouse

10

3.3 Important Design Choices

Bi-directional Data Exchange

Bi-directional information exchange refers to situations where two or more systems must
exchange information to keep each other in sync (Kazman et al. 2013). This is a fairly
complicated procedure, especially in systems-of-systems where data resides in multiple
different repositories. By introducing an Entity Aggregation layer, data from different
repositories are assembled and presented as one data source to the system. This can only
be achieved by

• defining a consistent, unified, system-wide representation of the entity and

• establishing a bi-directional connection between the representation of the entity in
the entity aggregation layer and its representative instances in the back-end reposi-
tory (Microsoft Corporation 2004)

Synchronizing the Entity Aggregation layer with its representative instances in the
back-end repository can either be done using straight-through processing or replication.
Straight-through processing fetches information from the back-end repositories in real-
time and correlates the information into a single view. This implies real-time access
to back-end repositories and is also known as online synchronization. Replication, also
known as offline synchronization, replicates data from the back-end repositories to a sepa-
rate physical repository within the Entity Aggregation layer. Replication is required when
the following conditions are true:

• Real-time connectivity between the aggregation layer and the back-end repositories
is absent.

• To maintain a consistent representation of an entity, complicated joins across multi-
ple instances of the same entity across various repositories is required.

• The solution requires high performance.

Data Representation Usually there are several representation of the same entity in the
back-end repositories, therefore it is important to define a system-wide representation of
the entity and its attributes and key relationships to other entities. This can be done by
either developing custom made entity representations, adopt a representation that is foreign
to all the systems in the system-of-system or chose one of the representations supported by
one of the existing systems. In large systems-of-system, finding one entity representation
might be impossible, due to SOMETHING, then solutions with multiple representations
is an option. Even though one system wide entity representation is established, different
repositories may hold different schemas for the same entity. To resolve this issue, the
entity aggregation layer must take the differences of these schemas into account and apply
schema reconciliation.

Data Identification When there are several representations of the same entity, identify-
ing each individual representation, including the representation in the Entity Aggregation

11

Chapter 3. Framework for Analysing Integration Architecture in a System-of-Systems

Figure 3.3: Entity Aggregation (Microsoft Corporation 2004)

layer, is not straightforward. By using an entity reference a unique key to the entity in-
stance is created. Both back-end repositories and the aggregation layer needs entity ref-
erences for their instances of the entity to ensure they have full control over internal data
consistency (Microsoft Corporation 2004).

Data Operation During it’s lifespan an entity will be subjected to transactional opera-
tions such as Create, Read, Update and Delete (CRUD). This leads to challenges related to
maintaining the synchrony of data across repositories. To perform inquiries and updates
the Entity Aggregation layer uses the entity reference to map to all the repositories. The
Entity Aggregation layer also must handle exception in case one of the system fails to go
through with the update. In such cases compensation actions must be established. Com-
pensating actions can either be manual or automatic, examples are (Microsoft Corporation
2004)

• Request a rollback on all other updates that have already been made

• Run a compensating transaction to reverse the effects of the successful updates that
were already completed.

Data Governance Because different fragments of an entity can stored in different sys-
tem, establishing an authoritative source for attributes that are represented in more than
one system is important. Performing inquiries and updates on a fragmented entity requires
different behavior from the Entity Aggregation layer. During inquiries the authoritative
source provides the requested attributes, while updates should propagate to all the con-
stituent fragments.

12

3.3 Important Design Choices

To mange changes across several or all the repositories change management process
have to be put in place. The processes are in charge of coordinating changes and ensure that
the integrity of the system-wide representation of the entity is not compromised. Changes
occurring in the underlying repositories that significantly will affect the Entity Aggregation
layer are (Microsoft Corporation 2004):

• Changes in the repository configurations

• Changes to the data model within the repository

• Changes to reference data

• Changes to transactional data in a repository

3.3.2 Control Regime
In a system-of-systems individual transactions and activity sequence will often span mul-
tiple systems. The control regime addresses the orchestration and control or the interac-
tion between the involved systems. Activity sequences that span multiple systems can be
manged the following ways:

• Manual control: The user is in charge of doing the separate tasks in each of the
systems.

• Internal control: The system initiating the activity sequence directly calls all other
systems involved in the execution the activity sequence. This implies implementa-
tion of the sequence of transactions into the system initiating the transactions

• External process manager: Implement an external process manager that can coor-
dinate the execution of the activity sequence and interacts with the individual appli-
cations based upon a predefined process model. External process manager is also
know as Process Integration and will be discussed in further detail below.

Process Integration

Process integration involves collaboration between three components, Figure 3.4:

• Process model: Contains the overview of the individual steps which constitutes the
transaction

• Process manager: Creates and manages transaction instances of the process model,
maps to functions residing in the different applications, and keeps track of state of
the different transaction instances.

• Application: Executes specific functions in the process model.

This separates the definition of the process, the execution of the process and the imple-
mentation of the individual functions. As a result, each participating application can op-
erate individually without any knowledge of the sequence of steps defined in the process

13

Chapter 3. Framework for Analysing Integration Architecture in a System-of-Systems

Figure 3.4: Process Integration (Microsoft Corporation 2004)

model (Microsoft Corporation 2004). Another benefit of the separation between model
and manager is that the process manager can be domain independent.

Because transactions can take hours or days the process manager typically must be
able handle the following:

• Correlate Message and Process Instances: Normally several instances of the trans-
action run concurrently, and messages are sent and received from the different ex-
ternal systems in the activity sequence. These messages are indented for different
instances of the parallel transactions. The process manager must be able to identify
which messages belong to which instance of the transaction.

• Transactions: These transaction can either be Atomic transaction or long-running
transactions. Atomic transactions are the same kind of transactions as those found in
databases. While long-running transactions are more complicated transactions that
typically runs over an extended time period, with other transactions grouped within
an transaction and where processes can be stopped and restarted without loosing
state.

• Handling Error and Compensation Transactions: The most common approach
to handle exceptions is to divide the exceptions into status code error and exceptions
errors. The status code errors can be handled by conditional logic inside the process
model, while exception errors can be handled by exception attached to the scope in
which the exception occurred. When an error occur, one of the means to handle it
is compensation transactions. Examples of compensation transactions are reverting
the transaction state to the state before the error occurred, or use of back up data.

14

3.4 System Connections

3.4 System Connections

System connection patterns describes different ways to connect systems. This is not
straightforward, as existing systems are designed to allow certain types of access and to
restrict others. By using the layered system design, three interaction points can be identi-
fied, corresponding with the three logic layers: presentation, application and data source.
The three main patterns for system connection are:

• Presentation Integration

• Functional Integration

• Data Integration

Figure 3.5 shows a graphical representation of the three main patterns. The three pri-
mary patterns can be further divided into derivative patterns, see Figure 3.6. As seen by
the figures there are several options when connecting a system with the integration archi-
tecture. Sometimes there are more than one way to connect systems. In such situations the
trade-offs of each potential choice have to be evaluated.

Although it may seem like there is a one-to-one correlation between the integrating
layers and the system connection patterns, that is not the case. A specific integration layer
can be used with any system connection pattern. Furthermore, it is possible for a system
using one pattern of system connection to communicate with other systems applying other
system connection pattern.

Figure 3.5: The three primary patterns for system connection

15

Chapter 3. Framework for Analysing Integration Architecture in a System-of-Systems

Figure 3.6: Derived system connection patterns (Microsoft Corporation 2004)

3.4.1 Data Integration

Establishing a bridge between two or more applications at the logical data layer is known
as Data Integration. In this situation one application plays the role as source application
providing target applications with data. The source/target roles are not necessarily a strictly
one way relationship. A source application can also be a target application, but for different
kinds of data.

Data integration allows applications to access raw data, without going though compli-
cated application logic and validation processes, which is fine as long as there is a ”read
only” relationship between the applications. If there is a ”write” relationship between the
application some form of validation should be conducted. There are at least four patterns
derived from Data Integration; Shared Database, Maintain Data Copies (”Data Copies” in
the figure), File Transfer and Streaming. Streaming will not be discussed in any detail, but
is used when systems must communicate through continues streams of data, for example
video streams (Kazman et al. 2013).

Shared Database In Shared Database several applications share and can access a single
data store directly. A Shared Database pattern reduces latency, but will often require the
use of a common scheme. Because most databases allows for both reading and writing of
data, a transactional integrity mechanism protecting the database from corruption through
multiple concurrent updates should be implemented. This will reduce the risk of corrupting
the application’s internal state, but cannot protect the database from the insertion of bad
data.

16

3.4 System Connections

Maintain Data Copies While Shared Database uses one instance to store all the data,
the Maintain Data Copies makes sure that each application’s dedicated data store is always
up to date. Maintain Data Copies copy data from one data store to another, basically
making several similar instances of the same data stores. This is less intrusive than Shared
Databases, but can be a problem due to latency between instances.

File Transfer Files Transfer uses a file to store some piece of data, before transferring it
to another application. File Transfer is easy to implement because files are a universal unit
of storage for most systems. Latency is a problem and can lead to that the two communi-
cation applications losing synchronization with each other.

In general, when implementing Data Integration, latency and synchronization plays an
important part, other trade-offs to consider are:

• Push versus pull: Should the application pull the data from the data source, or
should the data source feed the application when change occur?

• Granularity: How much information should be sent at one time? One larger chunk
is more efficient than many small, but cohesion between data entities must be un-
derstood and accounted for.

• Master/Subordinate Relationship: How is data updated? Data can either be up-
dated by one application or by multiple applications. How to keep track of thing
if multiple applications update the same data? Can lead to serious synchronization
issues.

Deciding on the right kind of data integration pattern to implement is not necessarily
straight forward. Factors such as tolerance for stale data, performance, complexity, and
platform infrastructure and tool support should be taken into consideration before choosing
a pattern. Some of the benefits and liabilities of Data Integration, regardless of derivative
pattern, are summarized in Table 3.2.

3.4.2 Functional Integration
In Functional Integration a target application accesses functionality in the source applica-
tion. This is only possible if the API of the source application can be accessed remotely and
the desired functionality exists and are available. Because APIs usually are programming-
language specific, there is a need for a middleware interface which works as a translator
between the source application and the target applications. The middleware interface con-
verts incoming messages into method invocations of functions that resides in the source
application, and converts the return data back into messages that can be transported across
the network (Microsoft Corporation 2004). Some of the benefits and liabilities of Func-
tional Integration, regardless of derivative pattern, are summarized in Table 3.3.

Distributed Object Model, Message-Oriented Middleware and Service-Oriented Inte-
grations are the derived from Functional Integration, as seen in Figure 3.6. The patterns
can be used individually or combined to achieve the desired connection. When decid-
ing which one to choose, some of the factors that needs to be considered are (Microsoft
Corporation 2004):

17

Chapter 3. Framework for Analysing Integration Architecture in a System-of-Systems

Data Integration: Benefits
Non-intrusive Most databases support transactional multiuser access, en-

suring that one user’s transaction does not affect another
user’s transaction.

High bandwidth Direct database connections are designed to handle large vol-
umes of data

Access to raw
data

Raw data tends to be more stable than the transformed data
presented to an end user

Metadata Metadata can aid in the process of transforming from one
application’s data format to another

Good tool sup-
port

Many development and debugging tools are available to aid
in connecting to a remote database

Data Integration: Liabilities
Unpublished
schemas

Software vendors reserves the right to make changes to the
schema at will

Bypassed appli-
cation logic

By accessing raw data Data Integration bypasses application
logic and validation rules

No encapsulation The raw data most likely has to be transformed before other
applications can use it.

Semantic disso-
nance

It is difficult to resolve semantic differences between two
systems that have slightly different meanings for the same
data entity

Table 3.2: Data Integration Benefits and Liabilities, table reproduced from Microsoft Corporation
(2004)

18

3.4 System Connections

• Reliability and latency of the network between endpoints

• Interfaces exposed by your current systems

• Need for interoperability between disparate technical architectures

• Performance

• Fragility, if incompatible updates are introduced to any participant

• Expertise of technical team

• Existing infrastructure

Distributed Object Model Distributed Object Model, also known as instance based col-
laboration, builds on the object-oriented computing model where objects interact with each
other within the application. But instead of local interaction, objects in one application
interacts with objects in another remote application. Distributed Object Integration is a vi-
able option if the right infrastructure and expertise are in place. In addition, it depends on
fairly reliable and high-speed connection to avoid incompatible updates (Microsoft Cor-
poration 2004).

Message-Oriented Middleware Integration Connection between systems are achieved
by using message-oriented middleware to send asynchronous messages. The messages
contain small packets of data that are used as a means of communication connecting the
systems. In more detail, the target application sends a request to the source application to
share some type of functionality using the message queue. The source application takes the
message from the queue, interprets it, and processes it. After the source is done processing,
it creates a response and send it back to the target using the message queue.

Message-Oriented Middleware Integration uses asynchronous messaging and is there-
fore a good solution when systems are not reliably connected. The messages will be
”saved” and executed as soon as possible after a system failure or network failure. Mes-
saging is also a way to decouple the sender from the receiver. The disadvantage with
Massage-Oriented Middleware Integration is the complexity it imposes.

Service-Oriented Integration A Service-Oriented Integration solution requires a Ser-
vice Interface and a Service Gateway to expose functionality and encapsulate necessary
logic, respectively. Through this set up systems are able to consume and provide XML-
based Web-services. Web Service Definition Language (WSDL) contracts are used to
describe the interfaces between systems, while SOAP messages are used to enable com-
munication and interaction between systems. By using XML and XML Schema as the
basis of message exchange and SOAP as an extensible massage framework a high level of
interoperability is reached.

19

Chapter 3. Framework for Analysing Integration Architecture in a System-of-Systems

Functional Integration: Benefits
Flexibility The abstraction, in the form of a function call, permits many

different types of interchanges, such as data replication,
shared business functions, or business process integration.

Encapsulation A functional interface provides an abstraction from an appli-
cation’s internal workings

Robust Executing a function through the application logic layer en-
sures that only well-defined functions can be executed, and
that data is validated

Familiar pro-
gramming model

Functional Integration provides a programming model that
is more aligned with widespread application programming
model.

Functional Integration: Liabilities
Tighter coupling One application that sends a command directly to another

application results in tighter coupling
Requires applica-
tion layer to be
exposed

Functional Integration is limited to scenarios where the af-
fected applications expose suitable functional interface

Limited to avail-
able functions

Limited to functions that are already implemented in the ap-
plication’s application logic

Inefficient with
large data sets

Transmitting of large data sets must be done with many indi-
vidual request, instead of one big one.

Programming-
language specific

Many functional interfaces are tied to a specific program-
ming language or technology.

Table 3.3: Functional Integration Benefits and Liabilities, table reproduced from Microsoft Corpo-
ration (2004)

20

3.4 System Connections

3.4.3 Presentation Integration
Presentation Integration is also known as Screen Scraping, a technique that involves the
target application collecting information from the user interface of the source application.
To do this, the target application simulates user input by using a terminal emulator. The
terminal emulator is programmed to translate the actions of the target application to mimic
human behavior, Figure 3.5.

Presentation Integration and Web-based interfaces is a good combination because HTML
is relatively easy to parse programmatically. On the other hand web-based interfaces are
dynamic and are often changed and rearranged. Presentation Integration depends on exact
geometric layout of the information, therefore is the Presentation Integration solution very
fragile. In Table 3.4 more of the advantages and disadvantages of Presentation Integration
are examined.

Presentation Integration: Benefits
Low risk All application logic and validation into the application logic

protect the internal integrity of the source application’s data
source.

Non-intrusive Because other applications appear to be a regular user to the
source application, no changes to the source application are
required.

Works with
monolithic appli-
cations

Works well with monolithic applications because it executes
the complete application logic regardless of where the logic
is located
Presentation Integration: Liabilities

Brittleness User interfaces tend to change more frequently than pub-
lished programming interfaces or database schemas

Limited access to
data

Can only access data that is displayed in the user interface

Unstructured in-
formation

Little or no matadata attached to the displayed data

Inefficient Presentation Integration typically goes through a number of
unnecessary steps

Slow Information can be contained in multiple user screens be-
cause of limited screen space. Going through multiple
screens to obtain information requires multiple requests to
the source application.

Table 3.4: Presentation Integration Benefits and Liabilities, table reproduced from (Microsoft Cor-
poration 2004)

21

Chapter 3. Framework for Analysing Integration Architecture in a System-of-Systems

22

Chapter 4
ELMO

ELMO comprises several preexisting software and hardware components: a current profile
measurement system with real-time data transmission, a hydrodynamic model, a sedimen-
tation model and a risk assessment tool. By combining the mentioned models, ELMO is
able to model the risk imposed on corals by drilling discharges in real-time. The results
are presented in a web-based solution allowing for multiple simultaneous users to inspect
the results. All the individual models are tied together using a controller application. The
solution is implemented in such a way that models and data sources can be exchanged and
exist independently (Brönner et al. 2013).

This chapter examines each of the individual systems in ELMO, as well as the front-
end application and ELMO-controller. The focus will be on identifying the data needed
to compute each of the models, and how the controller orchestrates the information flow
between each model and the front-end.

4.1 Hydrodynamic model
The purpose of the hydrodynamic model is to produce hydrodynamic data, that can be
passed on to the sedimentation model. There are three ways to obtain hydrodynamic data:

• Use of modelling software - Sinmod

• Use of real-time hydrodynamic measurements

• A combination of the two above mentioned methods - data assimilation.

Sinmod is a fully coupled hydrodynamic and sea ice model, based on the primitive
Navier-Stokes equation. Figure 4.1 gives an overview of the different input data used to
drive the hydrodynamic model, and produce the ocean and current data. When used as
a part of ELMO, Sinmod relies on detailed bathymetry, which usually is provided by the
field operator. The boundary conditions are set using a nesting technique, where a large
scale model with 20km grid resolution that covers parts of the North Atlantic, the Nordic

23

Chapter 4. ELMO

Seas and Arctic makes boundary conditions for a smaller grid with 4km resolution. The
nesting technique can be used to obtain a resolution of 32m, going through resolutions of
800m and 160m. (Sintef 2017c). When large scale models are not available, statistics and
tabulated tidal currents are used to produce boundary conditions.

In addition to the boundary conditions tidal components and freshwater inputs needs
to be determined, as this has significant impact on the coastal currents. The freshwater
input is calculated from seasonal average run off. The freshwater input might affect the
salinity level in the water, which together with temperature are two of main water prop-
erties. ”Wind and air pressure are taken from met.no’s data archive. The heat flux is
calculated from air temperature, humidity, cloud cover interpolated from available meteo-
rological stations within the model domain and the geological height of the sun” (Slagstad
& McClimans 2005).

The real-time hydrodynamic model is obtained by using a hardware solution consisting
of a spar buoy with satellite communication system, an Acoustic Doppler Current Profiler
(ADCP) and two single-point current meters. The collected data are used to prepare cur-
rent profiles, and can be used alone as input in the sedimentation model or in combination
with Sinmod (Brönner et al. 2013). Data assimilation is used to correct the model state
during a simulation. In other words, during a simulation in Sinmod measured real-time
data are submitted during the run to correct the model state.

In ELMO the default is to use the assimilated hydrodynamic data. In the current ver-
sion of ELMO, the Sinmod scenario is set up prior to an ELMO run and stored in ELMO
DAP. The scenario is set up only once during an ELMO run, without any subsequent up-
dates. This means that boundary conditions, and water properties are set once during an
ELMO run. Tidal input, freshwater input are also set just once, but consists of time series,
which will vary with time. The results are produced in NetCDF and stored in ELMO DAP.

Figure 4.1: Sinmod and associated input data

24

4.2 Sedimentation model

4.2 Sedimentation model

DREAM is a transport and fate model applying a three-dimensional Lagrangian parti-
cle model to track drilling discharges during drilling operations. The model accounts
for physio-chemical and transfomative processes such as advection, turbulent diffusion,
sinking, dissolution, sedimentation and bio-degradation. DREAM is used to calculate the
concentration and mass distribution in the water column and on the sea floor at specified
time intervals. (Brönner et al. 2013).

To produce accurate sedimentation data DREAM relies on hydrodynamic data, de-
tailed batytmetry and data from drilling logs and drilling plans, as seen in Figure 4.2.
Because the accuracy of DREAM’s result to a large extent depends on the quality of the
hydrodynamic data, the assimilated data is the preferred input.

The drilling log, drilling plan and batrymetry are provided by the operator. The drilling
plan provides characteristics regarding the discharges, such as the the location and depth
(below sea surface) of the discharge point. Discharges of cuttings are periodical events,
coinciding with the drilling of each section. Different sections require different discharge
technology, such as Cutting Transport System, release from platform or close range dis-
charge from top hole. All of the mentioned alternatives dispose drill cuttings at different
heights above the sea floor, which will give different results when it comes to sedimenta-
tion.

Amounts of cuttings and weighing agents, such as Barite and Bentonite, should be
estimated for each section. In addition particle size distribution and density of particle
matter present in the discharges should be provided (Rye et al. 2013).

When used as part of ELMO, DREAM’s scenario is set up with all the above men-
tioned parameters and more, before the ELMO run, and stored in locally on the server
that runs DREAM. The reason for this is that DREAM is the only system that can read
these scenario files. Because it’s hard to predict a drilling operation and the amount of dis-
charges produced, it is possible to update the scenario according to the drilling log. This is
currently done manually, but a project is initiated to make this process automatic (Nordam
2017). After a run, the sedimentation data are stored in ELMO DAP in NetCDF format.

Figure 4.2: Dream and associated input data

25

Chapter 4. ELMO

4.3 Coral Risk Assessment Tool (C/XRA)
C/XRA is used to quantify the risk imposed on corals (CRA) and other sensitive species
(XRA) by drilling discharges. By developing a risk matrix based on threshold values form
experiments and the initial state of the corals (dead, damaged, healthy) the potential risk
for each coral is calculated. Anchor analysis is not relevant for this project and will be
disregarded in further discussions (Ulfsnes et al. 2012).

When applied in ELMO, CRA receives a grid containing information about sedimen-
tation. This grid is produced by DREAM, and is based on drilling plan data and hydro-
dynamic data. As a result the sedimentation grid represents the drilling plan data, current
data and sedimentation data, as shown in Figure 4.3. The map of coral structures and their
associated state are handled by DNV GL.

Figure 4.3: C/XRA and associated input data

4.4 Frond-end
The data displayed in the front-end solution can be divided into two categories; static
and real-time data, Figure 4.4. The static data comprises bathymetry, coral structures and
offshore infrastructure while the real-time data is the current field produced by Sinmod
and the real-time measurements, sedimentation from Dream and coral risk from C/XRA.
Figure 4.5 is a snapshot of the current ELMO front-end. Since each dataset, static and real-
time, is loaded as a single map layer they can be toggeled on and off as desired. There’s
also a time slider allowing to look at data 3 hours back in time and prediction for 24 hours
into the future (Brönner et al. 2016).

The front-end accesses raw data by using a JavaScript library, JsDap, that works as
an OPeNDAP client. The data is loaded on JSON format (JavaScript Object Notation), a

26

4.5 Controller

Figure 4.4: Required input data for the front-end application

human readable data-interchange format (json.org 2017). By using GeoJSON, a dialect
based on JSON, the data can be easily transformed into map data an be used in mapping
platforms like Mapbox and Google Maps (Brönner et al. 2016).

4.5 Controller
ELMO’s brain is the control application. Figure 4.6 given an overview of how the con-
troller ties everything together. The control application is in charge of collecting hydro-
dynamic data from the server, updating the drilling scenario, triggering C/xRA to perform
the risk assessment and pushing the result to the front-end application. The controller will
begin processing data as soon as new hydrodynamic data is available. Because the systems
are independent of each other, only the ELMO controller is aware of all the parts in the
system-of-systems (Brönner et al. 2013).

In the current solution all the models and data sources are wrapped using Python ap-
plications. Python has powerful libraries for processing NetCDF data, is compatible with
ArcGis and support applications where objects can interact with each other over the net-
work, through the Python Remote Objects (Pyro4) library. By using Pyro4 the desired
separation between models and data sources is achieved, making every system exchange-
able and independent. Each python wrapper is configured for input and output, and code
to update the set-up and to run the model or data conversion (Brönner et al. 2016).

ELMO adapts a set of system wide data formats and metadata standards to ensure
interoperability. The Network Common Data Form (NetCDF) support storage, access and
sharing of grid-oriented scientific data and is a self-describing, machine independent data
format. The metatdata standard - Climate and Forecast Metadata Convention (CFMC) -
describes what the data represents as well as the spatial and temporal properties of the data.
A THREDDS data server is used to access and organise data from the different sources,
named ELMO DAP in Figure 4.6. The server is configured to serve NetCDF files via the
OPeNDAP protocol. (Brönner et al. 2016).

27

Chapter 4. ELMO

Figure 4.5: Snapshot of current ELMO user interface

Figure 4.6: Overview of ELMO system components and data flow (Sintef 2017a)

28

Chapter 5
ELMO - Integration Architecture
Analysis

This chapter presents the analysis of ELMO’s integration architecture. The analysis fol-
lows the framework presented in chapter 3 and is based on the information presented in
chapter 4.

5.1 System Design
Neither Sinmod, DREAM or C/XRA are designed to participate in a system-of-systems.
As a result there are no available APIs which can be accessed by the ELMO controller
application in the Data Source layer or Application logic layer. Communication between
the different systems and the controller are strictly limited to the Presentation logic layer.

To deal with this limitation, all systems have been modified to access and store data
using NetCDF, where this was not already the case. Python and shell scripts was used
to wrap Sinmod and DREAM, providing a way to modify input data and start simulation
runs.

5.2 Development Context
Although there are several stakeholders in the ELMO project, Sintef is the partner re-
sponsible for developing the ELMO software solution. This is reflected in the division
of responsibilities for the various systems. All systems, with the exception C/XRA and
the front-end application, which was outsourced, are developed by different departments
in Sintef. Table 5.1 summarizes the scope and development context of all the individual
software systems in ELMO and ELMO as a whole.

DREAM was adapted to read input and produce output in NetCDF, and an interface
for updating drilling scenario was implemented with functionality that allows restarting of

29

Chapter 5. ELMO - Integration Architecture Analysis

simulations from stored states. Sinmod underwent a process to improve data assimilation
with a variety of input sources and produce GIS compatible output data (Brönner et al.
2015). Both Sinmod and DREAM existed prior to the ELMO project, which makes both
of them Brownfield systems.

As a rule of thumb, outsourced systems are harder to adapt than in-house systems.
But to comply with the need for real-time risk assessments, the CRA module had to be
operationalised, to retrieve data and produce risk assessments regularly (Brönner et al.
2016). Which means that C/XRA is a brownfield system. The Front-end application and
the ELMO controller did not exist prior to the ELMO project, and were both customized
to fit the already existing systems. Giving both systems a greenfield status.

As mentioned, several of the systems existed prior to the ELMO project which makes
ELMO either a brownfield system-of-systems of a closed source system-of-systems. Due
to the lack of available APIs in Sinmod, DREAM and C/XRA, ELMO is forced to use
wrappers to access and control the systems, which makes ELMO a closed source system-
of-systems.

Name Scope Development Context Responsible
Sinmod System Brownfield Sintef
DREAM System Brownfield Sintef
C/XRA System Brownfield DNV GL
Front-end System Greenfield Sintef - Out-

sourced
Controller System Greenfield Sintef
ELMO System-of-systems Closed Source Sintef

Table 5.1: Summary of Scope and Development context for ELMO

5.3 Sharing of Data
Table 5.2 gives an overview of all the data sources used in ELMO. Even though all
data sources are categorised as shared, this is a truth with modifications. Some of the
data sources aren’t available from ELMO DAP, but are necessary to set up Sinmod’s or
DREAMS’s scenario and is therefore categorized as shared, because they are shared within
some instance of ELMO.

For several systems to be able to share data, interoperability is a necessary prerequisite.
This section will discuss the methods used to ensure seamless sharing of data in ELMO.

5.3.1 Interoperability
Two approaches are used to achieve interoperability in ELMO. Internally ELMO applies
an information exchange standard. The information exchange standard is the Climate and
Forecast Metadata Convention (CFMC) for NetCDF files (CF-NetCDF). CFMC creates
an internal information model used to describe all entities in ELMO, with the exception of
drilling log data.

30

5.3 Sharing of Data

Sy
st

em
D

at
a

So
ur

ce
D

at
a

pr
ov

id
er

St
at

ic
vs

D
yn

am
ic

Sh
ar

ed
vs

Pr
iv

at
e

O
ne

-d
ir

ec
tio

na
l

vs
B

i-d
ir

ec
tio

na
l

Si
nm

od

B
at

hy
m

et
ry

O
pe

ra
to

r
St

at
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l
B

ou
nd

ar
y

co
nd

iti
on

s
N

M
IO

ce
an

m
od

el
St

at
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l
Ti

da
lc

om
po

ne
nt

s
St

at
is

tic
s

-r
es

ea
rc

h
St

at
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l
Fr

es
hw

at
er

in
pu

t
St

at
is

tic
s

-r
es

ea
rc

h
St

at
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l
W

ea
th

er
N

M
I

D
yn

am
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l
W

at
er

pr
op

er
tie

s
N

O
D

C
W

or
ld

O
ce

an
A

tla
s

St
at

ic
Sh

ar
ed

O
ne

-d
ir

ec
tio

na
l

D
R

E
A

M

B
at

hy
m

et
ry

O
pe

ra
to

r
St

at
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l
H

yd
ro

dy
na

m
ic

da
ta

Si
nm

od
D

yn
am

ic
Sh

ar
ed

O
ne

-d
ir

ec
tio

na
l

D
ri

lli
ng

lo
g

O
pe

ra
to

r
D

yn
am

ic
Sh

ar
ed

O
ne

-d
ir

ec
tio

na
l

D
ri

lli
ng

pl
an

O
pe

ra
to

r
St

at
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l

C
/X

R
A

Se
di

m
en

ta
tio

n
gi

rd
D

R
E

A
M

D
yn

am
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l
C

or
al

st
ru

ct
ur

es
D

N
V

G
L

St
at

ic
Sh

ar
ed

O
ne

-d
ir

ec
tio

na
l

C
or

al
st

at
e

D
N

V
G

L
St

at
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l

E
L

M
O

W
in

d
N

M
I

D
yn

am
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l
R

T
hy

dr
od

yn
am

ic
da

ta
B

uo
y

D
yn

am
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l
D

ri
lli

ng
lo

g
O

pe
ra

to
r

D
yn

am
ic

Sh
ar

ed
O

ne
-d

ir
ec

tio
na

l
Se

di
m

en
ta

tio
n

da
ta

D
R

E
A

M
D

yn
am

ic
Sh

ar
ed

O
ne

-d
ir

ec
tio

na
l

R
is

k
as

se
ss

m
en

ts
C

/X
R

A
D

yn
am

ic
Sh

ar
ed

O
ne

-d
ir

ec
tio

na
l

Ta
bl

e
5.

2:
O

ve
rv

ie
w

of
al

ld
at

a
so

ur
ce

s
in

E
L

M
O

31

Chapter 5. ELMO - Integration Architecture Analysis

Incorporating drilling log data is an ongoing project, and it is expected that WITSML
will be used as a standard together with a wrapper which can translate to DREAM’s pro-
prietary format (Nordam 2017). Figure 5.1 gives an overview of how the different systems
and metadata standards are intertwined.

To ensure that external data comply with the internal information model, all entering
data are translated. This means that all data relevant for CFMC is translated from local
metadata into Climate and Forecast metadata, and all data formats are translated from local
format to NetCDF format. As a result, structural, syntactic and semantic interoperability
is achieved in ELMO.

Selecting standards for interoperability is a very important and strategic decision within
a system-of-systems. Changing interoperability standards in system-of-systems where
systems share many different data entities, have wide-range impact and normally implies
significant changes to the overall solution.

In ELMO the selection of the Climate and Forecast Metadata Convention seems to be
a good choice. The CFMC information model has matured over a long period, introducing
several versions, and have become the de-facto standard within the ocean science commu-
nity (Brönner et al. 2015). This gives reason to believe that CFMC can be a stable element
in ELMO, and as such costly adaptions to new standards can be avoided in the future.

Figure 5.1: Relationship between information models and individual systems in ELMO

5.3.2 Data sharing
ELMO applies one-directional data exchange. To produce an accurate result ELMO relies
on data from multiple data sources. Figure 5.2 show how data travels through the different
instances in ELMO. For each step, value is added, before the data is presented to the end
user. This requires comprehensive integration of data on all levels.

32

5.3 Sharing of Data

By having a closer look at Sinmod, this process can be more thoroughly investigated.
Figure 5.3 gives an overview of how data is transformed from relatively basic information
to more profuse information. By combining weather, boundary conditions and more Sin-
mod is able to produce detailed hydrodynamic data. In addition Sinmod is able to make
corrections to the hydrodynamic data if the input contains measured current data, ensur-
ing even more accurate hydrodynamic data. It is assumed that similar processes occur in
DREAM and C/XRA as well.

Combing all data sources, including data sources that are native to only one of the sys-
tems, ELMO makes use of a wide range of data sources as seen in Table 5.2. To be able
to preserve interoperability within ELMO and within the different systems several Extrac-
tion, Transformation and Loading (ETL) operations are necessary between the system and
data sources. If any of the systems uses proprietary data formats and metadata standards,
the ELT processes become even more crucial.

Figure 5.2: Data flow and aggregation through ELMO (Ulfsnes et al. 2014)

33

Chapter 5. ELMO - Integration Architecture Analysis

Figure 5.3: Data flow and aggregation through Sinmod (Brönner et al. 2013)

5.4 Control Regime
It is believed that ELMO applies an internal control regime, where the controller under-
takes the role as initiating system. The initial scenarios are set up and stored manually
on the server(s) running the ELMO system, which implies some level of manual control
as well. The activity sequence once an ELMO scenario is up and running consists of the
following steps:

1. Collecting and verifying hydrodynamic data from sensors

2. Run hydrodynamic model (Sinmod)

3. Update of hydrodynamic data, including archiving and logging

4. [Update DREAM scenario]

5. Run sedimentation model (DREAM)

6. Update of sedimentation data, including archiving and logging

7. Run risk assessment model (C/XRA)

8. Update of risk assessment data, including archiving and logging

9. Push updated data to front-end application

During the run, hydrodynamic data is collected and updated at regular intervals, leav-
ing the initial Sinmod scenario untouched. The hydrodynamic data is passed on to DREAM,
and used to calculate the sedimentation. Because drilling operations are unpredictable it

34

5.5 System Connections

is possible to update DREAM’s scenario during the run in case of some unexpected event.
The brackets indicate that updates doesn’t necessarily take place for every time step. The
last step before updating the user interface performs the risk assessment based on the sed-
imentation grid produced by DREAM.

The control regime used in ELMO is very basic, and is mostly concerned with data
flow, and executing the steps in the order required due to dependencies. This is a good
solution for an environment of ELMO’s current size. In the future, ELMO is meant to
monitor multiple drilling operations which will lead to a need of a more advanced control
regime. Controlling several parallel processes requires more advanced exception handling,
more check points, SOMETHING, and SOMETHING, to mention a few examples. Which
means it might be beneficial to go from an internal process regime to an external process
regime, also known as process integration.

5.5 System Connections
As mentioned previously the only way to establish a connection between Sinmod, DREAM,
C/XRA and ELMO is to apply Presentation Integration. Presentation integration requires
a terminal emulator to translate commands from the controller into what is perceived as
human actions by the individual systems. This translation is conducted by the python
wrappers associated with each system, see Figure 5.4. This enables the controller to ac-
cess Sinmod, DREAM and C/XRA and start the individual simulations in accordance with
the activity sequences presented in the Control Regime.

ELMO DAP is a THREDDS data server, and works as a shared database storing data
that is common for Sinmod, DREAM and C/XRA. A shared database solution requires a
common schema, and mechanisms to prevent semantic dissonance. This is resolved by
using the Climate and Forecast Metadata Conventions and NetCDF. As mentioned previ-
ously, applying the mentioned standards ensures structural, syntactic, and semantic inter-
operability between all systems in ELMO. Database connections are designed to handle
large volumes of data, which is necessary as the files containing the hydrodynamic data
and sedimentation data are assumed to be of considerable size.

35

Chapter 5. ELMO - Integration Architecture Analysis

Figure 5.4: System connections in ELMO

5.6 Conclusion
By combining the functionality of Sinmod, DREAM and C/XRA, ELMO is able to present
the end users with new functionality that improves the opportunity for environmental mon-
itoring. All of the above mentioned systems were developed as standalone systems based
on proprietary information models, with little or no standard integration capabilities.

Based on the analysis the following can be concluded: The key elements in ELMO’s
integration architecture are a solid information model and a shared database to store com-
mon data. Because data exchange only occurs in one direction, an internal control regime,
implemented in the ELMO controller, is sufficient to handle the data flow and the execution
of the activity sequence. Presentation integration is used between the ELMO controller
and the systems user interfaces to initiate the runs of the individual systems. ELMO’s
complexity is assumed not to be related to the the integration architecture but lies in the
mathematical models, used to produce the hydrodynamic data and sedimentation data.

36

Chapter 6
Front-end Prototype

In conversations with Statoil and Sintef it was revealed that additional front-end function-
ality in ELMO was desired. The key question was, how can we increase the value of the
data available in ELMO? Several options was discussed, but a feature that displays sed-
imentation at a point-of-interest (coral) in the vicinity of a discharge point was the most
feasible one. A rough picture of the desired output was painted, but left room for individ-
ual adaptions. Therefore, a feature informing the user about the progress of the drilling
operation was added.

Inflicting any non-reversible damage to areas surrounding drilling operations is illegal,
and the consequences are severe for both companies (large fines) and nature. The above
mentioned functionality can be used as a tool to prevent damage by increasing the knowl-
edge regarding the state of corals, and by indicating when necessary precautions must be
taken.

The main purposes of the practical project was to acquire the necessary competence
and to be able to present the relevant data in a functioning front-end solution. Appearance
and detailed design has been given little attentions as it’s not crucial to complete the task.

This chapter is divided into four sections. The first section present the target environ-
ment, the second section examines the prototype solution, before a analysis is conducted in
section 3 and a conclusion is drawn in section 4. This chapter will to some extent revolve
around references to functions, array and variables. Functions and arrays are denoted by
parentheses () and square brackets [], respectively. While variables are plainly written out
with their respective variable names, such as areaElementId.

6.1 Target Environment
The target environment describes the target front-end solution. In other words, the result-
ing front-end solution given unlimited access to data sources, documentation, program-
ming experience and the ELMO solution. First, this section gives an overview of the main
features of the target solution. Then, it examines the underlying data displayed in the fea-
tures. In the third subsection the functionality is presented through the use of user actions.

37

Chapter 6. Front-end Prototype

6.1.1 Front-end features
Figure 6.1 shows a sketch of the layout and design of the target front-end solution. The
target solution consist of eight elements assigned the letter A to H. The drop down menu
(A) is a list of active drilling operations with their associated discharge points. B is an
interactive map that enables the user to choose a point-of-interest (poi) for inspection. C
is a table containing information regarding the drilling operations. Although it only cur-
rently shows start date, duration and estimated end date other relevant information could
be added. C is meant as a supplementing feature to H.

The exact location of the point-of-interest, indicated by the white cross on the map,
can be viewed in E. F displays the accumulated sedimentation on the point-of-interest.
The color of the graph indicates the risk imposed on the coral according to the risk table
(D). H is the progress chart that presents the planned progress at a given time compared
to the real-time progress. The last feature is the time slider, which enables the user to go
back in time to the start of the operation.

Figure 6.1: Layout and design of the target solution

6.1.2 Data Sources
The data sources needed to display all the above mentioned feature can be viewed in Figure
6.2. The data sources are divided into static and real-time data. Although the drilling plan
may be updated during a drilling operation, it is still categorized as a static data source
because the rate of update is relatively slow compared to the real-time discharge data and
sedimentation data (approximately every hour). The relationship between the data sources
to the front-end features can be viewed in table 6.1.

As mentioned in Chapter 2 the drilling plan contains information about the drilling
operation. The drilling plan provides the target solution with information regarding the

38

6.1 Target Environment

Front-end feature Data Source
(A) Drop down menu Active drilling operations
(B) Map Bathymetry map, coral structures, discharge point
(C) Drilling info table Drilling information, time
(D) Location Derived from the map
(E) Risk level table Risk threshold values
(F) Progress chart Real-time discharge, planned discharge
(G) Time slider Drilling information and time
(H) Accumulation chart Sedimentation, risk threshold values

Table 6.1: Relationship between front-end feature and data source

discharge point (coordinates), the planned release and general drilling information such as
start date, estimated end date and so on. Time is mentioned as a data source in Table 6.1,
but not in Figure 6.2, the reason behind this is that time isn’t an external data source. The
time data source is the Unix Time which is a ”universal” data source, and can be accessed
from almost all computers. As a result duration can be calculated by subtracting the start
date from ”Time”.

Active drilling operations, bathymetry and the real-time discharge are provided by
the operating company, while sedimentation is provided by DREAM. Prior to a drilling
operation the locations of coral structures can be known or unknown. If the location is
unknown the area surrounding the wellsite needs to be mapped. Then the known locations
are displayed in the map feature. The risk threshold values are based on research (Ulfsnes
et al. 2012) and are calculated for each individual coral, based on the initial state of the
coral.

Figure 6.2: Required data sources for the target solution

39

Chapter 6. Front-end Prototype

6.1.3 Functionality

The front-end functionality can be divided into four user actions. In Figure 6.3 and 6.4
the user actions and their respective response and associated data sources can be viewed.
These user actions have to be conducted successively, in order to get the desired output
pictured in Figure 6.1.

The first user action is ”Page loaded”. This action loads the web page interface. Most
of the features will be empty with the exception of the drop down list containing the
discharge points and the map. The map will be fully zoomed out, displaying the coast
of Norway, the North Sea, Norwegian Sea and the Barents Sea. Although its possible to
select the point-of-interest already now, it’s not recommended.

Therefore, to make it easier to inspect the right coral, the second user action is ”Dis-
charge point selected”. This user action have three responses. First, the map is updated,
with a zoomed view of the area surrounding the discharge point including any sensitive
fauna. Second, information regarding the drilling operation is displayed, and third the
planned and real-time progress of the drilling operation displayed.

The next user action is ”Point-of-interest selected”, which means the user have selected
a coral for further inspection. The location of this coral will appear in the location table,
while a line graph indicating the accumulated sedimentation with the associated risk is
displayed. The last user action is ”Time changed”. This action makes it possible for the
user to go backwards in time, all the way back to the start of the drilling operation. Both
the sedimentation chart and progress chart will update according to the specified time.

Figure 6.3: Target user actions and response: ”Load Page” and ”Select Discharge Point”

40

6.2 Prototype Environment

Figure 6.4: Target user actions and response: ”Select Point of Interest” and ”Change Time”

6.2 Prototype Environment

This section discusses the front-end prototype, the practical task of this master’s thesis.
First this section elaborates on the framework used to implement the front-end prototype,
and the assumptions and restrictions for the prototype. Then this section presents the front-
end feature, data sources and functionality of the prototype solution, before conducting
an analysis where the prototype is compared to the target solution and the structure and
technical aspects of the results are discussed.

HTML5, CSS and JavaScript is used to develop the foundation of the front-end solu-
tion. To obtain an expedient user interface, with charts and the functionality needed D3.js
(D3), a JavaScript library is used. D3 (Data Driven Documents) allows the user to bind
arbitrary data to a Document Object Model (DOM), an then apply data-driven transforma-
tion to the documents (Bostock 2017).

D3 have been used to make the accumulation chart and progress chart, which would
have been much more troublesome without D3. Although none of the data sets used in the
prototype were of any significant size, D3 supports large data sets with minimal overhead
and is also open for dynamic behaviours for interaction and animation.

The whole prototype is developed locally with a relatively basic setup. JsDap is
used to access the Norwegian Meteorological Institute’s THREDDS server. Because most
browsers don’t allow downloading data from external domains using JavaScript, the Allow-
Control-Allow-Origin Google Chrome plug-in is used as a quick fix to solve this problem.

41

Chapter 6. Front-end Prototype

6.2.1 Front-end features
Figure 6.5 shows the complete layout and design of the prototype. The six features in the
prototype are denoted A to F. A is a drop down menu consisting of a list of active drilling
operations with their respective discharge points. Instead of using a map to display the
discharge point and the surrounding area a static image (B) is used. In the image, points-
of-interest, such as corals, are identified with labels. These labels are listed in the second
drop down menu (C), so that the user can choose which coral to investigate closer. The
accumulation chart is indicated by D, while the progress chart is denoted by E. There are
two buttons under the progress chart (F), enabling the user to go back and forth in time as
desired.

Figure 6.5: Layout and design of prototype solution

6.2.2 Data Sources
Because of limited access to real-time and real-life data, most of the data used in this
prototype are ”dummy data” - made up data used to test the functionality. Figure 6.6
gives an overview of the data sources needed to display the front-end prototype, and their
associated dummy data. The content of the dummy data is summarized in Table 6.2.

Each element in both drop down menus consist of a name-value pair. The element
names are displayed in the drop down menu and the values are used as parameters in
JavaScript functions enabling a dynamic front-end. For instance, wellboreArray[] is used
to store the element names in the wellbore drop down menu, while wellboreValueArray[]
contains the values, which are file names of the images representing each wellsite.

The name and value of the elements in the coral drop down menu are stored in coralAr-
ray[] and coralValueArray[], respectively. But instead of linking to locally stored data, the

42

6.2 Prototype Environment

values in coralValueArray[] are URLs linking to the Norwegian Meteorological Institute’s
THREDDS server. These links specifies the location, time interval and what kind of data
should be sent in return. In this case the JSON response contains information concerning
the current velocity at a specified location in the Norkyst800 data set.

There are two main reasons for using this data. First, the Norwegian Meteorological
Institute uses a THREDDS server, the same server system used in ELMO. As a result, the
function and procedures used to access and parse the data can be used in the future with
only minor adaptions. Second, the data are open to the public, therefore no special access
is needed.

datasetDepth[] is a lightweight JSON array containing two JSON objects; one object
for the planned depth (forecast) and one object for the real-time depth (realTime). The
decision to implement datasetDepth[] as a JSON array was based on the fact that it’s
a frequently used data format and some level of knowledge regarding JSON arrays and
objects is handy.

Array Contents
wellboreArray Array of active drilling operations
wellboreValueArray Array of image names
coralArray Array of coral names
coralValueArray Array of links to NMI’s THREDDS server
datasetDepth Array with two JSON objects: forecast and realTime

Table 6.2: Overview of data sources in prototype solution

Figure 6.6: Data sources used in prototype solution

43

Chapter 6. Front-end Prototype

6.2.3 Functionality
The prototype environment consist of four user actions; Page loaded, Wellbore selected,
Coral selected and Time changed (Forwards/Backwards). How these user actions are con-
nected with function calls and their respective data sources can be viewed in Figure 6.7 to
6.10.

Page loaded The immediate response, when the page is loaded, is the population of
the wellbore drop down menu. The wellbore drop down menu uses wellboreArray[] and
wellboreValueArray[] to populate each element in the drop down menu with name-value
pairs.

Wellbore selected When the user selects a wellbore, loadImage() and populateCoral()
are triggered by the change in wellbore drop down menu. loadImage() and populateCoral()
uses the areaElementId to load the image and coral elements corresponding to the selected
wellbore, while coralElementId specifies where these coral elements are to be added in the
front-end.

Coral selected Selecting a coral in the coral drop down list for further inspections trig-
gers a series of function. First loadUrl() is called, which in turn calls loadData(), both of
which will be thoroughly discussed later in this chapter. loadData() then in turn calls cre-
ateLineGraph() and createBarChart(). createLineGraph() renders the accumulation chart
based on the input using D3 functionality. When the progress chart is rendered for the first
time, the input parameter in createLineGraph() is zero (0), indicating that the last available
data should be displayed. createLineGraph() calculates the id number of the last element
and passes it to drawRectangles(), which will be discussed later together with loadUrl()
and loadData().

Forwards or Backwards When the forwards or backwards buttons are pressed, the
progress chart is updated. The procedure is the same as described above, but instead
of zero (0) being the input parameter in createBarchart(), minus one (-1) is used for back-
wards and one (1) is used for forwards. If the forward button is pressed, when the front-end
is in ”real-time mode”, an error message alerts the user that it is not possible to go to the
next time frame. The same applies if the user tries to go further back in time than possible.

44

6.2 Prototype Environment

Figure 6.7: Page loaded user action and response

Figure 6.8: Wellbore selected user action and response

45

Chapter 6. Front-end Prototype

Figure 6.9: Coral selected user action and response

Figure 6.10: Forwards and backwards user action and response

46

6.2 Prototype Environment

6.2.4 Implementation
The complete implementation can be found at: https://www.dropbox.com/sh/
5r3m2nij5qxgqsn/AACE8m8rjTsjS7eflEujeULoa?dl=0. To run the proto-
type all files must be downloaded into the same folder, and the Allow-Control-Allow-
Origin Chrome extension must be downloaded and activated. The prototype depends on
data from Norwegian Meteorological Institute’s THREDDS server, so try to access the fol-
lowing link prior to running the prototype: http://thredds.met.no/thredds/
catalog.html. A skeleton of loadData() was provided by Tor Nordam while jsdap.js,
parser.js, vbscript.js and xdr.js. are taken from https://github.com/omarbenhamid/
jsdap.

The codebase consists of three types of files; an HTML file describing the structure
of the elements in the front-end prototype, a CSS file in charge of formatting the differ-
ent elements in the HTML file and several JavaScript files containing functions that add
dynamic functionality to the HTML elements. In this subsection the main structure of
the front-end will be examined, before the implementation of loadUrl(), loadData() and
drawRectangles() are discussed.

Main Structure

The screen is divided into three main areas; the top container, left body and right body.
Figure 6.12 shows the HTML implementation of the prototype. As seen, both the left body
and the right body are further divided into elements described by the ”class” attribute and
identified by the ”id” attribute. The class attribute defines the styles (CSS) applying to that
element, while the id attribute makes it possible for Javascript to access and manipulate
the elements.

The left body contains the wellbore drop down menu, a place holder for the image
representing the wellsite, and the drop down menu containing the coral elements. The
right body contains two placeholders, the fist for the accumulation chart and the second
for the progress chart, in addition to the ”backwards” and ”forward” buttons.

As the user completes different user actions the placeholders are filled in with the ap-
propriate elements and information. Figure 6.11 show an example of how the placeholder
for the accumulation chart looks before and after the user has selected a coral. When a
coral is selected all the elements comprising the accumulation chart is added dynamically
to the HTML document. The placeholders used for the accumulation chart and progress
chart is Scalable Vector Graphic (SVG) elements. The main reason to use SVGs as place-
holders, as opposed ”divs”, is that they scale their content without loosing the integrity and
visual consistency of the elements that comprise the SVG.

47

https://www.dropbox.com/sh/5r3m2nij5qxgqsn/AACE8m8rjTsjS7eflEujeULoa?dl=0
https://www.dropbox.com/sh/5r3m2nij5qxgqsn/AACE8m8rjTsjS7eflEujeULoa?dl=0
http://thredds.met.no/thredds/catalog.html
http://thredds.met.no/thredds/catalog.html
https://github.com/omarbenhamid/jsdap
https://github.com/omarbenhamid/jsdap

Chapter 6. Front-end Prototype

Figure 6.11: Placeholder before and after coral is selected

loadUrl() and loadData()

Simply put, loadUrl() and loadData() are in charge of obtaining data from the Norwegian
Meteorological Institute’s THREDDS server, parse the response, and pass it on to create-
LineGraph. The implementation of loadUrl() and loadData() can be viewed in Figure 6.15,
and a stepwise explanation follows below.

One, the correct URL is collected from coralValueArray[], given the index of the se-
lected coral in the coral drop down menu. Figure 6.14 show an example of a URL. The
URL uses the following format: [start:step:stop] to define the time interval between each
data point (green), and which grid cells to collect information from (blue). The URL
shown in Figure 6.14 specifies that the returning JSON file should contain one data point
from the period between 00.00 to 23.00 at depths between 0 and 0 (top layer), at grid cell
id x=800 and y=10. The section underlined with red indicates the collection date for the
data. Because data sets are only stored at the THREDDS server for a certain amount of
time (approximately 10 day), the dates must be manually updated in coralValueArray[]
when they expire.

Two, the URL is used as an input parameter in loadData(), together with inputData.
loadData() connects to the THREDDS server and finds the specified data and stores it
in inputData, which is a callback parameter. An example of a JSON response stored in
inputData can be viewed in Figure 6.13, where the velocities are underlined with blue and
the time is underlined with red.

Three, extract the necessary data from the JSON response. Because each velocity data
point is enclosed by four brackets two steps of extraction was required to get each velocity
data as a separate value in the velocity[] array. The time data could be transferred straight
from the JSON response to the time[] array.

Four, format data. Because the procedures implemented in createLingegraph() aren’t
compatible with strings, the values of time[] and velocity[] are parsed into integers. Then
each associated time-velocity pair are pushed into dataset[], before the values representing
time are transformed from Unix Time to normal time and dates. None of the last two steps
are necessary, but simplifies some of the procedures in crateLinegraph() and makes the
data easier to relate to for the user.

48

6.2 Prototype Environment

Figure 6.12: HTML implementation of the prototype

49

Chapter 6. Front-end Prototype

Figure 6.13: The THREDDS Response

Figure 6.14: Link used to access NMI THREDDS server

drawRectangles()

drawRectangles() renders the progress chart by using functionality provided by D3. The
complete implementation of drawRectangles() can be viewed in figure 6.16. A proper
result is achieved by going through a series of steps which are basically equal for rendering
any kind of chart.

One, determining height, width and margins. The height and width are used to set
the height and width of the SVG element. The margins indicates how far from the edges
the different components comprising the bar chart should be drawn. Two, create an empty
SVG element based on the height and width determined in the previous step. To make sure
the SVG element appears at the desired location this is specified by selecting the location
to append the SVG element.

Three, create the scale functions in X and Y direction. Because data sets are unlikely
to correspond exactly to pixel measurements in the visualisation, scale functions are used
to map from an input domain to an output range (Murray 2015). To be able to do the
mapping the input domain and output range must be specified. The input domain in X
direction is specified setting the minimum value to zero and the maximum value equal to
the maximum value in datasetDepth[].

The input domain in Y direction is specified to be the name (datatype) of the different
JSON objects in datasetDepth[]. By using the scaleBand(), rather than scaleLinear(), in
the Y-diection the input domain is transformed into discrete uniform bands in the output
range. The padding parameter indicates the distance between each band. The range in
both X and Y direction are specified using the height, width and margins.

Four, define axes. Axes are defined as either left, right, top or bottom based on where
the text is displayed relative to the line representing the axes. In this solution a left and
bottom axes are used. The axes are then scaled by their respective scale functions. Five,
render axes. The axes are added to the SVG element by appending an element ”g” contain-
ing the axes. A class is added to the g element enabling styling using CSS. The transform
function is used to arrange the axes in the correct position, as default position is origin.

50

6.2 Prototype Environment

Figure 6.15: Implementation of loadUrl() and loadData()

51

Chapter 6. Front-end Prototype

Six, draw the rectangles representing the bars in the progress chart. The first four
lines specifies that rectangles should be drawn for each entry in datsasetDepth[]. Because
datasetDepth[] consists of the two JOSN objects, two rectangles will be rendered. The
four attributes indicates the location (start point) of the rectangles and their height and
width. Because the bars in the progress chart are horizontal, width is used to determine
the ”height” of the bars and vice versa. The timeTeller parameter indicates the entry value
in the JSON object’s arrays used to calculate the width of the bar.

6.3 Analysis
There are several deviations between the target solution and the prototype solution. The
most noticeable are the lack of the information tables and risk threshold values in the
accumulation chart. Other features in the target solution are substituted by simpler features
in the prototype solution, containing the same functionality. For instance the interactive
map feature in the target solution is replaced with an image and a drop down menu in the
prototype.

Although some of the features, such as the tables, are easily added to the prototype
as HTML elements, the functionality would require increased the level of dummy data.
Dummy data already play a significant role in the prototype solution, and as the features in
question are not considered to be crucial for the main functionality, adding more dummy
data was not desired. Sometimes developing features from scratch are more favourable
than adapting features that needs comprehensive modifications, which is believed to be
the case in this situation.

During the development phase it was not possible to get access to ELMO and proper
data, as a result development and testing of the prototype solution is based on dummy data.
Because there is a deviation between the structure of the dummy data and the structure of
the associated data in ELMO, significant modification of the prototype must be done to
make it comply with formats and structures used in ELMO.

The prototype solution use basic arrays to store most of the dummy data, with the
exception of datasetDepth[] which is a JSON array. To make the prototype resemble the
target solution several improvements are required. As explained in chapter 4, the front-end
solution receives the model results as JSON responses, therefore transforming the current
basic arrays into JSON arrays and objects is the first step towards the target solution.

The second step is to study the Climate and Forecast Metadata Convention and CF-
NetCDF. This will give insight into how data is stored in ELMO and how to access the
correct fields and attributes. Studying the WITSML is also necessary to get insight into
the standard used for drilling data, which is displayed in the progress chart. The JSON
responses received from ELMO are assumed to correspond with the above mentioned
standards, and should be reflected in the local JSON structures in the prototype.

To comply with these changes, the functions collecting data from the arrays needs to
be modified to deal with JSON arrays and objects, and to produce the right input for the
functions rendering the charts. It is assumed that some of the procedures and knowledge
used in loadData() can be adopted and applied to modify the functions in question.

52

6.3 Analysis

Figure 6.16: Implmentation of drawRectangles()

53

Chapter 6. Front-end Prototype

6.4 Conclusion
The functionality presented in the target solution will be a useful decision support tool
during drilling operations. The combination of the accumulation chart and progress chart
gives a comprehensive picture of the state of the chosen corals, as well as the damage
further drilling may cause. It is believed that is is necessary to present these charts together
to achieve the desired level of decision support, and that displaying only the accumulation
chart would not be adequate.

The deviation between the target solution and the prototype solution ended up being
bigger than originally planned. The main reason is lack of access to ELMO and related
data during the development and testing phase. It proved to be more difficult than antic-
ipated to get a good understanding of all the required data sources and the relations be-
tween the data. The prototype is a starting point for developing a solution with requested
functionality, but significant tailoring is required before deploying it into a production en-
vironment.

54

Chapter 7
Conclusion

Developing a framework for analysing integration architectures in systems-of-systems was
more challenging than expected, due to the vast amounts of available literature. The main
challenged evolved around correlating information from several sources, using different
terminology, having different target areas and covering partly the same areas.

Creating a comprehensive framework ensured that it would cover ELMO’s integration
architecture, and that the framework could provide references and a wider perspective
when evaluating ELMO. The framework gives good insight into challenges, options and
complexity drivers that have to be evaluated when establishing an integration architecture
for a system-of-systems.

The framework focus on System design, Scope and development context, Manage-
ment of common and shared data, Control regimes for cross-system activities and System
connections. Other important areas such as security and infrastructure technology has not
been possible to cover in this thesis, but are just as important areas.

When the framework was completed, analysing ELMO was a straightforward process,
indicating that the framework fulfilled its purpose. The initial impression was that ELMO
had a rather advanced integration architecture, but the analysis proved that ELMO adopts
a relatively basic integration architecture.

The integration architecture enables ELMO access functionality available in the indi-
vidual systems and deliver new business functions. By applying what is believed to be a
stable information model, through the use of Climate and Forecast Metadata Convention
and NetCDF, ELMO is well prepared for potential expansions, such as multiple parallel
operations.

The practical part of the thesis produced a functional front-end prototype. Although
there is a gap between the target environment and the prototype solution, the main purpose
of the task is considered to be achieved. The practical project has given good insight into
how basic tools, such as HTML, CSS and JavaScript can be used to develop dynamic
front-end solutions and the importance of having access to specific libraries for handling
specific tasks, such as D3.

The main limitation for the completion of the front-end prototype is considered to be

55

Chapter 7. Conclusion

the lack of access to important documentation, test environment and proper data. On the
other hand, it is believed that the functionality presented in the target environment will be
useful during drilling processes as decision support.

56

Bibliography

Ahsan, K. & Nurmilaakso, J.-M. (2015), ‘A novel three-layer architecture for in-
formation system integration’. Accessed January 13th 2017.[Online]. Avail-
able: https://www.researchgate.net/profile/Juha_Miikka_
Nurmilaakso/publication/280035431_A_novel_three-layer_
architecture_for_information_system_integration/links/
55e40b3b08ae2fac4721416d.pdf.

Bass, L., Clements, P. & Kazman, R. (2013), Software Architecture in Practice, third
edition edn, Addison Wesley.

Bostock, M. (2017), ‘Data-driven documents’. Accessed January 7th 2017.[Online]. Avail-
able: https://d3js.org/.

Brechan, B., Hovda, S. & Skalle, P. (2016), ‘Compendium. introduction to drilling engi-
neering’, Trondheim. Department of Petroleum and Applied Geophysics, NTNU.

Brönner, U., Nepstad, R., Eidnes, G., Rønningen, P. & Rye, H. (2013), ‘A real-time dis-
charge modelling and environmental system for drilling operations’. SPE European
HSE Conference and Exhibition.

Brönner, U., Nordam, T., Alver, M. O., Eidnes, G., & Aarnes, Ø. (2015), Real-time mon-
itoring and modelling of drilling operations in sensitive areas. elmo project - results.
Internal technical report.

Brönner, U., Nordam, T., Alver, M. O., Michelsen, F. A., Møskeland, T. & Aarnes,
Ø. (2016), Real-time decision support by combination of monitoring and modelling
through open standards. Submitted to Elsevier.

DNV GL (2014), ‘Drilling in sensitive areas’. Accessed December 22st
2016.[Online]. Available: https://issuu.com/dnvgl/docs/drilling_
in_sensitive_areas_dnvgl.

El-Sappagh, S. H. A., Hendawi, A. M. A. & Bastawissy, A. H. E. (2011), ‘A proposed
model for data warehouse elt processes’, Journal of King Saud University - Computer
and Information Science 23(2), 91–104.

57

https://www.researchgate.net/profile/Juha_Miikka_Nurmilaakso/publication/280035431_A_novel_three-layer_architecture_for_information_system_integration/links/55e40b3b08ae2fac4721416d.pdf
https://www.researchgate.net/profile/Juha_Miikka_Nurmilaakso/publication/280035431_A_novel_three-layer_architecture_for_information_system_integration/links/55e40b3b08ae2fac4721416d.pdf
https://www.researchgate.net/profile/Juha_Miikka_Nurmilaakso/publication/280035431_A_novel_three-layer_architecture_for_information_system_integration/links/55e40b3b08ae2fac4721416d.pdf
https://www.researchgate.net/profile/Juha_Miikka_Nurmilaakso/publication/280035431_A_novel_three-layer_architecture_for_information_system_integration/links/55e40b3b08ae2fac4721416d.pdf
https://d3js.org/
https://issuu.com/dnvgl/docs/drilling_in_sensitive_areas_dnvgl
https://issuu.com/dnvgl/docs/drilling_in_sensitive_areas_dnvgl

Foss, J. H., Mortensen, P. B. & Furevik, D. M. (2002), ‘The deep-water coral lophelia per-
tusa in norwegian waters: distribution and fishery impacts’, Hydrobiologia 471(1), 1–
12.

Fowler, M. (2002), Patterns of Enterprise Application Architecture, Addison-Wesley Pro-
fessional.

Hepsø, V., Låte, M., Gramvik, G., Johnsen, S., Nilssen, I., Wesenberg, H. & Statoil ASA
(2012), ‘Integrated environmental monitoring in daily operations’. SPE Intelligent En-
ergy International.

json.org (2017), ‘Introducing json’. Accessed January 7th 2017.[Online]. Available:
http://www.json.org/.

Kazman, R., Nielsen, C. & Schmid, K. (2013), Understanding patterns for system-of-
systems integration, Technical report, Software Engineering Institute, Carnegie Mellon
University.

Larsson, A. I. & Purser, A. (2011), ‘Sedimentation on the cold-water coral lophelia per-
tusa: Cleaning efficiency from natural sediments and drill cuttings’, Marine Pollution
Bulletin 62(6), 1159–1168.

Microsoft Corporation (2004), Integration Patterns, Microsoft Press.

Murer, S., Bonati, B. & Furrer, F. J. (2011), Managed Evolution - A Strategy for Very Large
Information Systems, Springer-Verlag Berlin.

Murray, S. (2015), ‘Scales’. Accessed January 27th 2017.[Online]. Available: http:
//alignedleft.com/tutorials/d3/scales.

Nordam, T. (2017), ‘Personal notes’. Information provided during supervisor sessions and
by mail.

Norwegian Petroleum Depeartmen (2016), ‘Factpages, exploration and development well-
bores - ordered by the year drilling was entered’. Accessed December 21st 2016.[On-
line]. Available: http://factpages.npd.no/factpages/Default.aspx?
culture=nb-no&nav1=wellbore&nav2=Statistics%7cEntryYear.

Petrowiki.org (2015a), ‘Drilling fluids’. Accessed December 22st 2016.[Online]. Avail-
able: http://petrowiki.org/Drilling_fluids.

Petrowiki.org (2015b), ‘Drilling fluids’. Accessed December 22st 2016.[Online].
Available: http://www.glossary.oilfield.slb.com/Terms/w/well_
plan.aspx.

Rye, H., Ditlevsen, M. K., Moe, J. A. & Løkken, M. (2013), ‘A real-time discharge mod-
elling and environmental system for drilling operations’. SPE European HSE Confer-
ence and Exhibition.

Sintef (2017a), ‘Elmo project’. Accessed January 10th 2017.[Online]. Available: https:
//www.sintef.no/projectweb/elmo/elmo-application/.

58

http://www.json.org/
http://alignedleft.com/tutorials/d3/scales
http://alignedleft.com/tutorials/d3/scales
http://factpages.npd.no/factpages/Default.aspx?culture=nb-no&nav1=wellbore&nav2=Statistics%7cEntryYear
http://factpages.npd.no/factpages/Default.aspx?culture=nb-no&nav1=wellbore&nav2=Statistics%7cEntryYear
http://petrowiki.org/Drilling_fluids
http://www.glossary.oilfield.slb.com/Terms/w/well_plan.aspx
http://www.glossary.oilfield.slb.com/Terms/w/well_plan.aspx
https://www.sintef.no/projectweb/elmo/elmo-application/
https://www.sintef.no/projectweb/elmo/elmo-application/

Sintef (2017b), ‘Elmo project’. Accessed January 10th 2017.[Online]. Available: https:
//www.sintef.no/projectweb/elmo/.

Sintef (2017c), ‘Sinmod’. Accessed January 18th 2017.[Online]. Available: https:
//www.sinmod.no.

Slagstad, D. & McClimans, T. A. (2005), ‘Modeling the ecosystem dynamics of the bar-
ents sea including the marginal ice zone: I. physical and chemical oceanography’, Jour-
nal of Marine Systems 58.

Sommerville, I. (2011), Software engineering, ninth edition edn, Pearson.

Stephens, R. (2015), Beginning Software Engineering, John Wiley and Sons.

Torgersen, T. (2016), Real-time environmental monitoring and modelling in the petroleum
industry - elmo solution overview ans analysis. https://www.dropbox.com/
sh/5r3m2nij5qxgqsn/AACE8m8rjTsjS7eflEujeULoa?dl=0.

Ulfsnes, A., Møskeland, T. & Aarnes, Ø. (2012), ‘Coral risk assessment - tool develop-
ment’. SPE APPEA Internatinal Conference on Health, Safety and Environment in Oil
and Gas Exploration and production.

Ulfsnes, A., Møskeland, T., Frost, Tone Karin, Hepsø, V., Gramvik, G., Ute, B. & Ryland-
sholm, P. (2014), ‘Towards integrated environmental monitoring’. SPE International
Conference on Health, Safety, and Environment held in Long Beach, California, UAS.

Vassiliadis, P. & Simitsis, A. (2009), Extraction, Transformation, and Loading, Springer
US, pp. 1095–1101.

Zhao, Y., Brown, R., Kramer, T. R. & Xu, X. (2011), Information Modeling for Interoper-
able Dimensional Metrology, Springer-Verlag London.

59

https://www.sintef.no/projectweb/elmo/
https://www.sintef.no/projectweb/elmo/
https://www.sinmod.no
https://www.sinmod.no
https://www.dropbox.com/sh/5r3m2nij5qxgqsn/AACE8m8rjTsjS7eflEujeULoa?dl=0
https://www.dropbox.com/sh/5r3m2nij5qxgqsn/AACE8m8rjTsjS7eflEujeULoa?dl=0

60

	Abstract
	Preface
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem description
	Motivation
	Structure of thesis

	Background
	Drilling in sensitive areas
	Environmental Monitoring and Modeling, (ELMO)

	Framework for Analysing Integration Architecture in a System-of-Systems
	System Design
	Scope and Development Context
	Important Design Choices
	Sharing of Data
	Control Regime

	System Connections
	Data Integration
	Functional Integration
	Presentation Integration

	ELMO
	Hydrodynamic model
	Sedimentation model
	Coral Risk Assessment Tool (C/XRA)
	Frond-end
	Controller

	ELMO - Integration Architecture Analysis
	System Design
	Development Context
	Sharing of Data
	Interoperability
	Data sharing

	Control Regime
	System Connections
	Conclusion

	Front-end Prototype
	Target Environment
	Front-end features
	Data Sources
	Functionality

	Prototype Environment
	Front-end features
	Data Sources
	Functionality
	Implementation

	Analysis
	Conclusion

	Conclusion
	Bibliography

