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Abstract—Internet traffic reports show that YouTube is one
of the major sources of data traffic world-wide. Furthermore,
the data traffic shifts from mostly fixed landlines to cellular
data connections where bandwidth is sparse and expensive.
Previous studies revealed that YouTube uses a user-friendly
HTTP Adaptive Streaming (HAS) strategy which sacrifices band-
width efficiency to increase the average playback quality for
the user. That way, it happens that the same video segment
is transmitted in two or more quality levels, but only one can
be shown to the user. We denote this as redundant traffic and
this work is dedicated to understanding the influence factors
on the amount of redundant traffic. This paper presents the
results of a large-scale study with over 12,000 video views over
a bottleneck link shaped to various bandwidths.We first evaluate
the playback characteristics and show that YouTube’s HAS
algorithm linearly increases the average playback quality with the
available bandwidth while at the same time video buffering is sub-
linearly decreased. Furthermore, we identify video-dependent
bandwidths which optimize the playback time on a quality level.
Afterward, we show that this is achieved by discarding lower
layer segments and therefore paid with redundant traffic of up
to 40 %. We evaluate the overall efficiency of the system and show
that YouTube is able to improve the average quality level by up
to 0.7 quality levels by using this adaptation strategy. However,
a penalty of 0.5 quality levels is paid for it due to the discarded
data of the lower quality segments.

I. INTRODUCTION

Video streaming services in the Internet gain more and
more importance. The offered content and services for video
on-demand (VoD) including live streaming exhibit a strong
increase in popularity. By now, Internet traffic reports account
VoD for the largest single type of consumer traffic in the
Internet for landline and cellular access [1].

HTTP over TCP has become the de-facto standard for
delivery of the VoD content. The HTTP protocol is firewall-
friendly and easy to implement. Furthermore, large content
delivery networks (CDN) are in place to distribute HTTP
content globally and provide the content close to the users.
At the beginning, VoD over HTTP was implemented by
progressive download [2]. With progressive download, a HTTP
server provides a single file with the content in a specific
quality level. The player, e.g., the browser, starts to download
the file and at the same time, or after an initial buffering

phase, begins to play the video to the user. However, in case
of insufficient network bandwidth, the video buffer depletes
and the video stalls, which significantly decreases the Quality
of Experience (QoE) of the end user [3].

Progressive download does not allow to adapt to current
network conditions or to specific devices, e.g., phone or TV
screen. By now, progressive download is being replaced by
HTTP Adaptive Streaming (HAS). See [2] for a survey on
HAS. HAS encodes the content into different quality levels,
segments it into small chunks of a few seconds and makes it
available over HTTP. A manifest file describing the content,
e.g., video codec, number of quality levels and chunk location,
is placed alongside the segments on the HTTP server. At first
the client requests the manifest file and afterward downloads
the content segments in a quality level chosen by the client.
Dynamic Adaptive Streaming of HTTP (DASH) is an ISO
standard describing the structure of the manifest file and is
in use by some of the major content providers. However, the
quality level adaptation logic, which dictates how the client
should adapt the quality, is not part of the standard and is
left to be decided by the implementation of the streaming
client. Factors to consider for the adaptation are for example
the viewing device, the available download bandwidth and
the video bit-rates of the quality levels. As every client can
implement their own adaption algorithm, the QoE of the user
differs between content providers and streaming clients. The
QoE of adaptive streaming is an active research topic [2]. QoE
studies show that stalling must be avoided [3], [2] and that the
quality switching rate should be minimized [4]. The average
quality level is a major influence factor for the QoE in adaptive
streaming [4].

In this paper we take a closer look at one of the major
sources of video streaming traffic [5] in the Internet, YouTube.
In a first pilot study [6] we have shown that YouTube’s
adaptation algorithm replaces previously downloaded lower
quality segments. However, this introduces overhead, denoted
as redundant traffic, as the lower quality segments are dis-
carded. Hence, there is a trade-off between network efficiency
and average playback quality that also affects the Quality of
Experience of the user. Due to the limited scope of the study
(four videos in total, 150 views), no reliable conclusions couldISBN 978-3-901882-83-8 c© 2016 IFIP



be drawn with respect to possible influence factors.
In this paper, we tackle two important questions. First, when

does redundant traffic occur and how much redundant traffic
is transferred over the network? Second, what is the overall
efficiency of this approach, i.e., how much of the additional
traffic can actually be used to improve the average quality
level and how much has to be paid as penalty for replacing
lower layer segments? To answer this, over 12,000 video views
were recorded in our test-bed under different emulated network
bottlenecks. We first describe the playback characteristics
as observed for the different network conditions from the
end user’s point of view. Afterward we relate the playback
characteristics to the recorded redundant traffic and show that
the amount of redundant traffic can be estimated based on the
playback characteristics. At the end, we evaluate the overall
efficiency by comparing the quality gain due to the adaptation
strategy with an estimation of the maximum achievable quality
level based on the amount of total downloaded data in the
session.

This paper is structured as follows. We first describe the
background and related work in Section II. Here we also
explain the behavior which leads to the redundant traffic in
detail. In Section III we introduce the measurement method-
ology and explain the measurement set-up. In Section IV we
discuss general playback characteristics observed in the study.
In Section V we first evaluate the relationship between the
observed playback characteristics and the overhead introduced
by discarding lower quality segments. Afterward we evaluate
the overall efficiency of the adaptation strategy considering the
overhead. In Section VI we conclude the work and give future
research directions.

II. BACKGROUND & RELATED WORK

In the following we first introduce HTTP adaptive streaming
in general. Afterward we discuss the results of our previous
study where we do a first characterization of the adaption
behavior of YouTube. At the end we revisit the related research
to this topic.

A. HTTP Adaptive Streaming

HAS enables client-driven adaptation of the quality level
to device capabilities such as screen size, resolution and
stereoscopic capabilities. Furthermore, by switching to dif-
ferent quality levels, the client can adapt the video bit-rate
to the available bandwidth and therefor adapt to dynamically
changing network conditions such as observed for example in
cellular environments. HAS is implemented by encoding the
content into multiple representations, e.g. different quality lev-
els, segmenting it in small chunks (for YouTube: 10 s to 20 s,
depending on the video) and making the segments available
to the client through the HTTP protocol. The ISO standard
MPEG-DASH is a widely accepted HAS standard adopted by
YouTube. DASH defines an XML-based Media Presentation
Presentation (MPD) file which describes the representations,
e.g., average bit-rate or codec used, and gives the URL to the
individual segments. At the beginning of a streaming session,

the client requests the MPD file. Afterward the implementation
on the client-side decides which chunks to request from which
representation. As every content provider can implement their
own adaption strategy, the experience for the user depends
not only on the offered representations, but also on the ability
of the adaption strategy to request in chunks in a user-
friendly way. Evaluations show that the adaptation algorithm
has a strong influence on the resulting playback behavior and
therefore also on the perceived QoE of the user [7]. It has to
be noted that YouTube also allows the end user to manually
select a fixed quality level which deactivates HAS even if it
results in frequent buffering. However, the default setting is
the automated quality adaptation.

B. YouTube’s Quality Adaptation Strategy

In our previous study [6] we describe the behavior of
YouTube where the streaming client replaces previously down-
loaded chunks with higher quality ones. Figure 1 illustrates a
request schedule for one of the experiment runs. At first, the
YouTube player requests four segments of quality level 144p
of a playback time up one minute and all four requests are
made in the first 20 seconds of the experiment. At about 21
seconds into the experiment, the player revises its decision and
replaces the segment containing the playback time 30 s to 45 s
with a quality level of 240p. Afterward the player switches
back to 144p and downloads playback time 60 s to 90 s in
quality level 144p. Later in the experiment, the player switches
up to a quality level of 480p by replacing 360p and 144p
segments. The figure illustrates that some chunks of content
are downloaded even more than twice.
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Figure 1. Example request schedule. The shaded areas indicate where lower
quality segments are replaced by higher quality segments. For the first minute
into the playback, 30 seconds of 144p are replaced with 15 seconds of 240p
and 15 seconds of 360p to increase the average playback quality.

From the request schedule it becomes obvious that the
adaption strategy tries to optimize the average playback quality
shown to the user. Furthermore, by constantly downloading
chunks, the algorithm prevents stalling of the underlying TCP
connection. In a previous study [7] we show that by constantly
utilizing the TCP connection a HAS strategy can keep the fair
share of the network bandwidth provided by TCP adaptive
behavior. Furthermore, adaptation strategies that underutilize



the TCP connection, e.g., if the playback buffer is full, have a
distinct disadvantage compared to strategies which constantly
utilize the TCP connection.

C. Related Work

In [8], Añorga et al. present a recent study about YouTube’s
HAS adaptation and review previous studies. Their findings
show that YouTube uses a large playback buffer and therefore
reacts only slowly to changing bandwidth conditions (13 s to
40 s). In [9], Yao et al. evaluate different sources of redundant
traffic in video streaming services. They show how the iOS
YouTube player requests overlapping segments to smoothen
the playback. The amount of redundant traffic is not evaluated.
In [10], Lui et al. evaluate the difference between Android
and iOS-based YouTube media streaming. They conclude that
buffering is not dependent on the playback time, but on
the amount of data buffered. Furthermore, they quantify a
redundant traffic of 15 % and account it for re-downloading
the beginning of the video. Mansy et al. [11] analyze the
streaming behavior of the three streaming providers including
YouTube in terms of their playback characteristics, redundant
traffic and bandwidth utilization. The authors observe that
YouTube aggressively discards segments of lower quality lev-
els to download higher bit-rate segments when the bandwidth
increases. In the study, one video is evaluated in a wireless
scenario with varying bandwidths (every 2 minutes a new
link bandwidth is set). For this scenario, the authors conclude
a percentage of redundant traffic of 16 %. The study also
shows that other content providers deploy similar adaptation
strategies. Nam et al. [12] show that in a mobile scenario more
than 35 % of transferred data by YouTube is redundant. The
authors account frequent termination of TCP connections and
discarded on-fly packets as the case of the redundant traffic.
Rao et al. [13] and Ito et al. [14] model the traffic patterns
produced by a YouTube streaming session. Their findings
suggest that the implementation of the adaptation strategy and
therefor the resulting behavior varies with the type of the
viewing device. Alcock et al. [15] describe the initial burst
phase deployed by YouTube. In the initial burst phase, 32 s
of playback time are sent to the client a fast as possible. We
also observe this initial burst phase and account it for a source
for redundant traffic, as a low quality initial burst phase is in
some cases later replaced by higher quality segments.

This work extends the state-of-the art and presents the first
large-scale study which statistically quantifies the amount of
redundant traffic. Further, we relate redundant traffic to QoE
influence factors and are able to quantify the QoE loss by
downloading redundant traffic instead of higher quality levels.

III. METHODOLOGY

In the following we first discuss the experimental set-
up used to collect the results. Afterward we introduce the
notation and metrics evaluated in this work. At the end we
give a description of how we selected the content and which
characteristics the selected content exhibits.
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Figure 2. Experimental set-up based on a virtual machine (VM) and virtual
network with browser-based and in-network-based monitoring.

A. Experiment Set-up

Figure 2 illustrates the experiment set-up. The set-up con-
sists of a virtual machine with Xubuntu 14.04 64-bit running
a browser (Firefox 21) with the YouTube player, an HTTPS
proxy inside the virtual machine and a virtual network which
limits the available bandwidth. The set-up is connected to the
Internet through a lightly utilized lab network and through
the university’s Internet connection. Internal traffic reports and
monitoring of experiment download speed rule out external
bottlenecks. Since the beginning of 2015, YouTube uses the
encrypted HTTPS protocol for video delivery. In order to
still being able to decrypt the traffic in the network, we
inject a custom certificate into the browser and mark it as
trustworthy for the domains used by YouTube. Furthermore,
we use a customized version of mitmproxy [16] in order to
intercept, capture and decrypt the YouTube traffic. The proxy
was customized to quickly forward all incoming traffic without
buffering and tested to rule out any performance issue as
influence factor on the adaptation behavior.

In order to capture the player state and the HTTP requests
in the network, we use browser-based and network-based
monitoring. We implemented browser-based monitoring by
embedding the YouTube video into a custom web-page and
use an extension for the browser [17] to access the API of the
player to monitor buffering events and quality switches. For
network monitoring, we use the described proxy to capture and
decrypt the HTTPS requests. In order to translate between the
byte range requests and playtime seconds, we download the
videos [18] in all evaluated quality levels and afterward decode
the downloaded mp4 containers [19].

Before every experiment run, the virtual environment is
reset to a default state. During the playback, the status of
the experiment is constantly monitored and if the video was
not played out until the end, the experiment run is discarded.
A detailed description including the whole experimental set-
up is available together with the raw and summarized traces
online [20]. We encourage others to play with the data and
do their own evaluations. At total, the traces and summarized
results for 12,075 runs are available online (35 videos × 27
bandwidth values × 15 replications).



Table I
KEY VARIABLES AND NOTATIONS USED IN THE PAPER.

notation meaning

B downloaded and played bytes
BT total downloaded bytes
ρ Redundant Traffic Ratio (RTR)
Q number of quality levels
Q set of quality levels; Q = {q0; qQ−1}
q quality level, q ∈ Q
V number of videos
v video index
R number of replicated downloads (of each video v)
r replication index
F number of bandwidth levels
f bandwidth level
f∗ rescaled bandwidth level
nv number of segments in video v
τv (fixed) segment play time of video v
xij quality index indicator; 1 if segment i is downloaded at

quality level j, 0 otherwise
sij size of segment i for video quality level j
J average quality level
J+
i maximum quality level downloaded of segment i;

J+
i = {max j|xij > 0}

J−i minimum quality level downloaded of segment i;
J−i = {min j|xij > 0}

bi number of buffer event in segment i
ψ buffering rate for bandwidth f
tfv buffering time for video v and bandwidth f
Tfq average relative time/probability on quality level q in a

video sequence with bandwidth f
γ average bit-rate
φi 1 if quality level has switched from segment i− 1 to i, 0

otherwise;
w average number of switches
ε overall efficiency
κ buffering ratio

B. Metrics

The notation used in the paper is summarized in Table I. In
the following we define the key performance metrics as used
in our analysis. Efficiency ε is defined in Chapter V.

The average bit-rate per quality level q of video v

γqv =
1

nvτ

nv∑
i=1

{siq}v (1)

Total downloaded bytes in video sequence v:

BT =

nv∑
i=1

Q−1∑
j=0

xijsij (2)

Total played bytes in a session under the assumption that
always the maximum quality level downloaded J+ is played:

B =

nv∑
i=1

siJ+
i

(3)

Each bandwidth level f , replication r and video v has a
unique Bfrv and a corresponding average quality level Jfrv .
The average quality level with played bytes B is denoted JB
and is the average over the video sequences with Bfrv = B.

The average played quality level for bandwidth f :

Jf =
1

RV

R∑
r=1

V∑
v=1

1

nv

nv∑
i=1

{J+
i }frv (4)

The average buffering event rate for bandwidth f :

ψf =
1

τRV

R∑
r=1

V∑
v=1

1

nv

nv∑
i=1

{bi}frv (5)

The average quality switching rate for bandwidth f :

wf =
1

τRV

R∑
r=1

V∑
v=1

1

nv

nv∑
i=1

{φi}frv (6)

The estimated probability of playtime on quality level q in
a video sequence for bandwidth f :

Tfq =
1

RV

R∑
r=1

V∑
v=1

1

nv

nv∑
i=1

{xiq}frv (7)

The buffering ratio κ (8) is the ratio between the experiment
run-time and the duration of the video:

κfrv =
nvτv + tfrv

nvτv
(8)

Buffering ratio κ = 1 means that no buffering happened
during the experiment. κ for a specific bandwidth f is defined
as κf = 1

RV

∑R
r=1

∑V
v=1 κfrv .

C. Redundant Traffic Ratio (RTR)

The redundant traffic is defined as the ratio between the
downloaded bytes that are discarded (BT −B) and the bytes
that are played (B). This gives the overhead of the playback
with the data volume of only the played out segments as
reference. The Redundant Traffic Ratio (RTR) for one single
download is then

ρ =
BT −B

B
(9)

For download at a specific bandwidth factor f , the index is
added to BT in Eq. (2) and to B in Eq (3) and the redundant
traffic ratio ρ is updated accordingly.

D. Content

In order to represent the variety of videos uploaded to
YouTube, we use the YouTube API provided by Google to
automatically select suitable videos. We define 5 categories
”minecraft”, ”music”, ”funny cats”, ”gopro”, ”game” by using
the category name as search query string. Furthermore, we
filter the query results by the following criteria. The selection
of videos considers the following aspects: 1) embeddable,
i.e., use in HTML iframe allowed, 2) syndication is allowed,
3) available in high resolutions and 4) videos which were
published between 1 and 9 month ago. The query result is
sorted by popularity, i.e., view count, and from the result we
select videos with a duration of 1, 2, ... , 10 minutes with an
allowed deviation of 5 seconds. In total, 35 different videos
were accessible during the whole experiment time and are
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Figure 3. CDF of the quality levels of the selected video sequences. Means:
144p: 0.11 Mbit/s, 240p: 0.24 Mbit/s, 360p: 0.37 Mbit/s, 480p: 0.72 Mbit/s.

included in the evaluation. Average duration of selected videos
is 5.3 minutes.

Figure 3 shows the cumulative distribution function
(CDF) of the bit-rates of the four quality levels, Q =
{144p, 240p, 360p, 480p} for the selected videos. Note that the
client player uses some decision logic to select a subset of the
available resolutions on YouTube’s servers based on the type
of device, e.g. based on the screen size. In our environment this
was the subset Q. The average bit-rate for each quality level is
calculated by Eq. 1, then γ144p=0.11 Mbit/s, γ240p=0.24 Mbit/s,
γ360p=0.37 Mbit/s, and γ480p=0.72 Mbit/s. Note that although
360p has a higher number of pixels than 240p, approximately
18 % of the videos in quality level 360p are encoded with a
lower average bit-rate then the average bit-rate for quality level
240p. YouTubes encoding of (cover art) music videos leads
to higher data volume for lower resolutions than for higher
resolutions. The reason for this is not clear as it depends on
the YouTube internal encoding of those videos. Please note
that we nevertheless include those videos in the first part of
the evaluation as they are part of the content mix observed on
the platform. For the evaluation of the efficiency, we exclude
those videos.

IV. VIDEO PLAYOUT AND ADAPTATION CHARACTERISTICS

This section presents key characteristics of the adaptation
observed in our measurements for different bandwidths f . This
includes the average quality level Jf , quality switching rate
wf , buffering rate ψf , and the probability of a playback Tfq
at quality q in a session. If not otherwise stated, error bars in
the figures depict the 95 % confidence interval.

Figures 4 (a) and (b) illustrate how the average quality Jf ,
the buffering rate ψf , the quality switching rate wf and the
redundant traffic ratio ρf develops for increasing bandwidth f
for video v = CbhnuRhbC, which shows scenes from a video
game with picture-in-picture commentary. The average bit-rate
for the four quality levels are γ ={0.11 Mbps, 0.25 Mbps,
0.43 Mbps, 0.84 Mbps}.

Figure 4(a) shows the average quality J and the buffering
rate ψ. The buffering rate decrease from 0.8 [min−1] at
0.8 Mbps to 0 at 2.5 Mbps. The buffering rate has two peaks
for ρ. The average quality level increases approximately linear
from 0.5 at 0.8 Mbps to the maximum of 3 at 2.5 Mbps.
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Figure 4. Average playback quality Jf , buffering rate ψf [min−1], quality
switch rate wf [min−1] and RTR ρf for video v = CbhnuRhbX5I. 95 %
confidence intervals over 15 runs are indicated.

In Figure 4(b) we observe that for bandwidth f ≤ 1.6 Mbps,
the RTR is approximately ρ = 20 %, except for two peaks of
30 % at both 0.9 Mbps and 1.5 Mbps. With f >1.6 Mbps, the
RTR decreases linearly until it reaches zero at about 2.5 Mbps.
The quality switching rate has a linear decreasing trend from
approximately 1.5 [min−1] down to 0 [min−1] at 2.5 Mbps.
The same two peaks at 0.9 Mbps and 1.5 Mbps as for the RTR
ρf are also observed for wr. Next we summarize the results
over all videos per bandwidth f .
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Figure 5 shows the buffering rate, the switching rate and the



average buffering ratio κ for the different bandwidth values
f and averaged over all videos. The buffering ratio κ (8) is
the ratio between the experiment run-time and the duration of
the video. κ = 1 means that no buffering happened during the
experiment. In our set-up, the browser start-up time is included
in the experiment time. The minimum value κ can reach is
about 1.05, depending on the video. The figures show that the
buffering rate and average buffering ratio decreases non-linear
with increasing f , while the corresponding decrease in quality
switching rate is approximately linear. At the lowest evaluated
bandwidth 0.4 Mbps, we observe an average buffering rate of
1.4 [min−1] and an average of buffering time close to two
times the duration of the video. The quality switching rate is on
average between 1.75 [min−1] and 2.0 [min−1] for 0.4 Mbps
to 0.5 Mbps. At about 2.6 Mbps, the three metrics reach their
minimum of zero for the buffering and switching events
and about 1.07 for the ratio between experiment and video
duration. From the figure we conclude that for a bandwidth
of 2.6 Mbps all videos in our result set are, on average,
played back without buffering events and quality switches.
Furthermore we see that switching events are more frequent
than buffering events and decrease slower for increasing f .
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Figure 6. Average quality level and probability of playout time on quality
level Tfq (
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q∈ΩI

Tfq = 1).

In Figure 6, the average quality level is depicted on the
axis to the right. The axis on the bottom gives the bottleneck
bandwidth in the range of f = (0.4, 2.2)Mbps. The shaded
areas indicate the average fraction of time spent on each of
the quality levels for a specific bandwidth, i.e., the relative
playback time (scale on the left axis). Two key observations
can be made from the figure. First, for each quality level
there is a distinct bandwidth range where one of the four
different quality levels dominates. This is illustrated by Tfq
for q = 0, 1, 2, 3 which have their maximum at different
bandwidths f . Second, even at a low data rate as f = 0.5, the
T0.5,4 = 0.2, which means that in 20 % of the time the highest
quality level is viewed to the user. This can be explained by
the fact that some of the videos, especially music videos with
static cover, have a low average bit-rate for the higher quality
levels and therefor can be selected in the highest quality level
even if the available download-rate is low. The figures also

illustrate for which range of f the different qualities dominate
and when we switch from one level to the next higher or
lower quality level. Based on Figure 6 we cannot identify a
clear relationship between the bandwidth and the probability
of selecting a specific quality level as the regions are heavily
overlapping. This is due to the high variance in video bit-rates
as shown in Figure 3.

To align the probabilities of the four quality levels, Tvq ,
we scale the bandwidth f with a quality and video dependent
bandwidth factor f∗vq = f/γvq . In Figure 7 we plot the relative
playback time Tvq for each experiment run and for all four
quality levels q using the rescaled bandwidth f∗vq . The error
bars indicate the confidence interval of 95 % for each of the
bins. From this we observe that q1 = 240p, q2 = 360p and
q3 = 480p reach their maximum Tfvq at approximately f∗q =
3. This is indicated by the vertical (red) line. For 240p and
360p the maximums are close to 60 %, while for 480p the
maximum is 100 %. For 144p, the maximum of about 55 %
is reached at f∗1 = 3.8. There are no samples for f∗1 < 3.8
available, which corresponds approximately to a bandwidth of
0.4 Mbps. Hence, the maximum is reached for all quality levels
at f∗ = 3, independent of the quality level q. It can be read as;
when three times the average bit-rate of a certain video v of a
certain quality level q is available, this quality level dominates.
If we have more, we switch to a higher level, if it exists. Note
that we compare here the link bandwidth with the raw video
bit-rate, without any overheads (e.g. IP, HTTP, TCP or video
container overhead) and without the audio stream. Therefor,
the absolute value where Tvq reaches its maximum may vary
depending on the scenario. But, the results show that there
is a (narrow) range of bandwidths for each video where each
quality level reaches a maximum probability of being played
out to the user. This suggests, that the adaptation algorithm
of YouTube uses the average bit-rate of a quality level of a
video and compares it with the available network bandwidth to
determine which quality level to select next. The results also
reveal that although the network bandwidth remains constant
quality switches occur and the video is watched in different
quality levels. In the next chapter we discuss how playback
characteristics affect on the redundant traffic.

V. EVALUATION OF ADAPTATION EFFICIENCY

In the previous section we characterized the playback
behavior from the perspective of the user (average quality
level, buffering and switching events) and discussed how the
available bandwidth influences the playback behavior. Next,
we put the evaluated playback characteristics in perspective
to the amount of redundant traffic downloaded in the back-
ground, unnoticed by the viewer, and subsequently discuss
the effectiveness of this adaptation approach. We do this by
introducing a metric which summarizes the quality gain due
to the adaptation on the one side and the penalty introduced
by the redundant traffic on the other side.
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Figure 7. The probability of each playback quality level Tf∗
vq

as a function
of the rescaled bandwidth f∗vq . The vertical line at f∗vq = 3 indicates where
we find the peak for all quality levels.

A. Relationship of Playback Characteristics to Redundancy

In Figure 8 we take a closer look at the peak of relative
playback time as shown in Figure 7 from the perspective of
the RTR based on the rescaled bandwidth f∗vq . The average bit-
rate of each of the quality levels q is given as a reference and
can be used to get an estimate of the bandwidth f based on f∗q
(f = γq × f∗q ). However, this neglects the standard deviation
of the bit-rates of the videos. The figure shows that for 240p
and 360p, high Tq translates to about 30 % of RTR. For 144p,
a RTR of 20 % for 3.6 of rescaled bandwidth is observed.
The highest quality level 480p exhibits a RTR of 10 % at the
point where it reaches close to 100 % of the playback time.
We conclude from the figure that the peak of the estimated
probability of playtime on a quality level q, Tfq , does not
translate to a stable, i.e., sequential, quality selection behavior.
On the contrary, the RTR for 240p and 360p show that the
player downloaded up to 40 % of data more than it showed to
the user.

Figure 9 depicts the switching and buffering rate for
increasing values of RTR. K-means clustering is used to
generate bins of RTR in the figure. The error bars indicate
the 95 % confidence interval for a cluster. The shaded area
in the background shows the probability density function,
g(ρ) for the observed values of RTR. The g(ρ) shows that
approximately 25 % of the experiment runs in the result set
do not exhibit any or a minor percentage of redundant traffic
and the second highest density of samples can be observed
between a RTR of 15 % and 50 %. The figure illustrates that
there is a close relationship between the switching/buffering
rate and the amount of redundant traffic. While the buffering
rate increases only slowly for increasing RTR, the switching
rate increase is steeper. For 20 % of RTR the buffering rate
is approximately one buffering event per two minutes, while
switching rate is up to 1.2 switches per one minute. By
implication, this shows that buffering events quickly translate
to a high amount of redundant traffic. Buffering events are
a sign of sudden drop in bandwidth (or equivalent: a sudden
increase in the video bit-rate) or an effect of poor decision
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(a) q0 =144p (γ0 =0.11 Mbps)
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(b) q1 =240p (γ1 =0.24 Mbps)
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(c) q2 =360p (γ2 =0.37 Mbps)
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(d) q3 =480p (γ3 =0.72 Mbps)

Figure 8. RTR for the rescaled bandwidth f∗ relative to the four quality
levels. Note that the shown range of f∗ is wider for 144p compared to the
other quality levels.
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Figure 9. Switching and buffering events for increasing RTR. The shaded area
illustrates the probability density function of the RTR values in the collected
result set.

by the adaptation logic. Hence, it can be concluded that
higher values of redundant traffic can be observed when
the playout buffer is often depleted. Furthermore, from the
(approximately) strict monotonic increase follows that it is
possible to estimate the RTR of a viewing session based on
the playback characteristics.

B. Efficiency of Adaptation Strategy

Next, we discuss the efficiency of the observed adaptation
strategy. In particular we want to answer the following ques-
tions: How much of the additionally downloaded data was
actually used to improve the average playback quality? And
how much average quality was lost, compared to an optimum
where the segments are downloaded without overlaps. For
calculation of the efficiency we exclude videos where higher
quality levels have a lower bit-rate than lower quality levels.
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Figure 10. Approximated function θ for two of the videos.
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Figure 11. The worst case average quality J−f , the played average quality
J+
f and the estimated optimum quality θf (BT ) for increasing bandwidth f .

The translation between average playback quality of a cer-
tain downloaded volume of bytes z is estimated by a function
θ(z), which is determined by regression of the observation
of the quality levels as a function of the bandwidth f . We
apply isotonic regression [21] to fit the played bytes B to
the average quality level. Isotonic regression approximates
monotonic functions and does not assume a specific shape of
the underlying function. The translation between the bytes B
of the viewed quality level J+ and the quality level J+ itself is
(mostly) monotonic, therefor isotonic regression is applicable
to the problem at hand.

Figure 10 illustrates the isotonic regression result for two of
the videos v1 and v2 used in the result set. The red dots depict
the samples collected for the video, (B, J+). The connected
green dots show the approximated function θ(y), y ∈ (0, B+)
(B+ is the maximum observed B). Two observations can
be made from the figure. First, θv2 is more flat than θv1 .
Second, v2 shows a larger deviation for the bytes required
for a specific average quality level. The difference in slope is
a result of the different bit-rates for quality level q3 = 480p
for the two videos. q3 = 480p of video v1 has an average
bit-rate of βv1 = 0.49 Mbps, while for v2 the average bit-rate
is βv2 = 0.78 Mbps. The deviation for the same quality level
indicates that the standard deviation for the video bit-rate for
video v1 is higher than for v2. Next, we use θ to estimate the
optimum average quality level for a given BT and compare
it to the observed average playback quality and to the worst
case quality level J− where no lower quality segments were
replaced by segments with a higher quality.
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Figure 12. Efficiency εf , difference between played and worst case quality
level J+

f − J
−
f and difference between estimated optimum and worst case

quality θf (BT )− J−f over bandwidth f .

Figure 11 depicts the worst case quality level J−
f , the

played quality level J+
f and the estimated optimum quality

level based on the total downloaded amount of data θ(BT )
for a bandwidth factor up to f = 2.6 Mbps. It can be seen
in the figure, that for low bandwidths, the absolute difference
between three quality levels is larger than for higher bandwidth
values. For example for 0.5 Mbps, the quality level increases
due to the adaption strategy by 0.7 quality levels. However,
based on the amount of downloaded data, the redundant
traffic introduced a penalty of 0.5 quality levels. For higher
bandwidth values, the absolute difference between the three
quality levels J−

f , J+
f and θ(BT ) becomes less, but the ratio

between them stays roughly the same. For a bandwidth of
2.6 Mbps, no difference can be observed.

Next, we define a metric for the efficiency of the adaptation
strategy in respect to the amount of downloaded and played
data. In the best case, an adaption strategy allows the player to
utilize all the bytes downloaded. However, this is only possible
if θ(BT ) = J+

f = J−
f , as each difference between J+

f and
J−
f introduces redundant traffic and therefor increases also

the difference between estimated optimum θ(BT ) and J+
f .

We define the efficiency ε of the algorithm as the ratio be-
tween the measured quality gain (J+−J−) and the estimated
maximal quality gain θ(BT )− J− (see Eq (10)).

ε =
J+ − J−

θ(BT )− J− (10)

If ε = 1, the algorithm was able to utilize all the additionally
downloaded data to improve the average quality level. If ε = 0,
the algorithm requested additional segments, but was not able
to improve the average quality level by doing so.

Figure 12 depicts the efficiency εf , the difference between
played and worst case quality level J+

f −J−
f and difference be-

tween estimated optimum and worst case quality θf (BT )−J−
f

over bandwidth f . The figure shows that for low bandwidths
(f < 0.8Mbps), the adaptation strategy is able to utilize 60 %
of the additionally downloaded data to increase the average
quality level J . For bandwidth from 0.8 Mbps to 1.5 Mbps, the
efficiency drops to 55 %. For bandwidths from 1.5 Mbps up to



2 Mbps, the efficiency increases up to 65 %. For bandwidths
larger than 2 Mbps, the width of the confidence interval do not
allow a reliable conclusion. For overcapacity bandwidth f , the
εf looks ”noisy” because there are no adaptation, and hence
not redundancy, and therefor the θf (B

T ), J−
f , and J+

f are
(almost) equal. To summarize the figure, the algorithm is on
average able to utilize 60 % of the additionally downloaded
data to improve the average quality level compared to J−,
where no replacement of lower quality segments takes place.
The left over 40 % are the penalty the algorithm has to pay
for discarding previously downloaded segments.

VI. CONCLUSION & OUTLOOK

The traffic share of video streaming in the Internet continues
to increase. Major content providers such as YouTube provide
a global infrastructure to serve commercial and user-generated
contents to every end-user’s device. YouTube alone accounts
for about 15 % of the total downstream Internet traffic in
the US. Furthermore, reports show that the video traffic also
increases for cellular access where available data-rate is scarce.
Therefor it is important to understand how YouTube adapts
to the available bandwidth and how efficiently it uses the
available network resources. Previous studies reveal that the
adaption strategy used by the YouTube client tries to optimize
the average playback quality by replacing previously down-
loaded lower quality segments with higher quality segments.
This increases the average quality shown to user. However,
it decreases the efficiency in respect to the used network
resources. In this paper we present the results of a large-
scale study with more than 12,000 video views of different
contents while the downstream traffic was shaped to emulate
a bottleneck link with a certain bandwidth. First we show how
YouTube adapts to the available bandwidth from the perspec-
tive of the user in terms of quality switching, buffering events
and playback quality. Higher available bandwidth increases
almost linearly the average playback quality, while buffering
ratio and buffering event rate are decreasing sub-linearly. The
switching frequency is decreasing almost linearly. The results
show that for every video and quality level there is a specific
network bandwidth which maximizes the time spent on the
specific quality level. Thus, this network bandwidth is related
to the video bit-rate of that quality level. However, that specific
bandwidth does not force the player to select a specific quality
level with a probability larger than 0.6 for any quality level
below the maximum, except for the trivial case of bandwidth
overprovisioning of more than 300 % of the video bit-rate. In
any other case, quality switching always occurs.

In the second part of the study we discuss the efficiency
of the adaption strategy from a networking view point. The
results show that by replacing lower quality segments, the
YouTube player is able to increase significantly the average
playback quality by up to 0.7 quality levels. However, 30 %
redundant data has to be downloaded for this. Based on
the amount of redundant traffic, we estimate the optimal,
i.e. highest, average quality level which could be achieved
by downloading the same total amount of data but avoiding

redundant traffic. The results show that without redundancy the
amount of downloaded data could have been used to increase
the average quality level by up to 1.3 quality levels. Therefor,
about a half quality level is unnecessarily downloaded and
discarded due to the redundancy.

In the future, we plan to include highly varying bandwidth
conditions, e.g. as found in cellular access. Furthermore,
the maximum achievable playback quality for a certain data
volume can be formulated as an optimization problem instead
of regression based on historic data. This can give insight
into an upper bound for potential improvements to YouTube’s
adaptation algorithm.
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