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Abstract 

From the material science point of view, saturated frozen soil is a natural particulate composite, composed 

of solid grains, ice and unfrozen water. The mechanical behavior of such a material is strongly affected by 

the amount of ice. The amount of ice depends on the temperature and the applied mechanical stresses. The 

influence of ice content and temperature on the mechanical behavior and the coupling effects on the reverse 

direction can be mentioned as the main difference between frozen and unfrozen soils. On the other hand, 

considering the highly rate dependent behavior of ice, rate sensitive behavior of frozen soils is expected. 

This rate dependency is also affected by the amount of ice existed in the composite. In the light of these 

differences, an elastic-viscoplastic constitutive model for describing the mechanical behavior of saturated 

frozen soils is proposed. By dividing the total stress into fluid pressure and solid phase stress, in addition 

to consideration of the cryogenic suction, the model is formulated within the framework of two-stress state 

variables. The rate dependent behavior is considered by using the so called over-stress method. In unfrozen 

state, the model becomes a conventional elastic-viscoplastic critical state model. Model predictions are 

compared with the available test results and reasonable agreement is achieved. 
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1 Introduction 

The first step in developing a constitutive model for a composite material like frozen soil is to identifying 

the relevant stress state variables. Total stress based models have been widely used in the literature to 

describe the mechanical behavior of frozen soils (He et al., 2000; Arenson and Springman, 2005; Lai et al., 

2008; Lai et al., 2009; Yuanming et al., 2010; Zhu et al., 2010; Xu, 2014). This approach can successfully 

simulate the behavior due to external mechanical loads. However, they are not able to simulate the 

deformations under the variation of ice content and/or temperature during a freezing or thawing period. 

Moreover, working with total stress, description of soil behavior in the presence of unfrozen water will face 

some significant difficulties which are not clearly addressed. 

Effective stress based models by means of total stress minus pore pressure is also proposed by some 

researchers (Nixon, 1991; Li et al., 2008; Nicolsky et al., 2008; Thomas et al., 2009). In this method, ice 

phase is actually considered as another fluid phase and its shear strength does not consider in the model. 

This approach is pragmatically appropriate for simulating ice segregation phenomenon during a freezing 

period, but soil strength after ice segregation can be mentioned as the main shortcoming of the method. 

Considering the analogy between the physics of frozen-saturated and unfrozen-unsaturated soils, Nishimura 

et al. (2009) proposed a two stress variables constitutive model for simulating the behavior of saturated 

frozen soils by employing the net stress (i.e. the excess of total stress over ice pressure) and the cryogenic 

suction as the relevant stress variables. In this method, although the shear strength of ice phase is not 

explicitly considered in the formulation, but its effect is partly taken into account by increasing the size of 

the yield surface with increasing cryogenic suction (i.e. reducing temperature). However, this approach is 

not fully consistent with the actual microscopic description of the freezing process. According to Wettlaufer 

and Worster (2006), there exists two types of mechanisms that control the behavior regarding ice content 

and temperature variations: curvature-induced premelting and interfacial premelting mechanisms. The 

former is the result of surface tension and acts very similar to the capillary suction by bonding the grains 

together. Whereas the latter is the result of disjoining pressure (as a repelling force between ice and solid 



grains) and tends to widen the gap by sucking in more water. In the model proposed by Nishimura et al. 

(2009), curvature-induced premelting mechanism is effectively considered by noting the analogy between 

the capillary and cryogenic suctions, but the interfacial premelting mechanism, which is the main difference 

of the effects of capillary and cryogenic suctions, is not taken into account. By missing this effect, for 

simulating a freezing period in this model, ice pressure increases and finally results in zero or negative 

values of net mean stress, and is followed by a tensile failure and soil particles segregation. According to 

this approach, samples which have experienced a tensile failure (due to segregation phenomenon) by 

decreasing temperature under isotropic stress condition, will always show dilative behavior upon shearing. 

More recently, Zhang and Michalowski (2015) proposed another approach by introducing the effective 

stress (i.e. total stress minus water pressure) and the pore ice ratio (i.e. the ratio of the volume of ice on the 

volume of solid particles) as the independent variables for their constitutive model. This kind of effective 

stress would create an unrealistically high effective confining pressure, if the unfrozen water content 

approaches zero. The frost heave phenomenon, in this model, is simulated using a porosity growth function. 

Ghoreishian Amiri et al. (2016) proposed another two stress variables model by introducing the solid phase 

stress and the cryogenic suction as the relevant stress variables. The solid phase stress is defined as the 

combined stress in the soil grains and ice. Thus the contribution of the ice phase in carrying the shear stress 

of the system is implicitly considered in the model. In this model, the curvature-induced premelting 

mechanism is taken into account in a way similar to that proposed by Nishimura et al. (2009). But the ice 

segregation phenomenon is simulated by introducing another yield criterion due to suction variation. This 

approach is consistent with the interfacial premelting mechanism. 

In this study, the above mentioned elastic-plastic model (Ghoreishian Amiri et al., 2016) is extended to an 

elastic-viscoplastic version. The model is developed based on the overstress framework which is originally 

proposed by Perzyna (1966) and followed by many researchers in the field of geotechnical engineering [e.g. 

(Grimstad et al., 2010; Yin and Tong, 2011; Yin et al., 2011)].  



Note that throughout this paper, compressive stress and strain are assumed to be positive. 

2 Model Formulation 

Following the discussion presented in Ghoreishian Amiri et al. (2016), the solid phase stress and the 

cryogenic suction are considered as the relevant stress variables: 
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where *σ  is the solid phase stress, ws  is the unfrozen water saturation (i.e. the ratio of the volume of 

unfrozen water on the volume of frozen and unfrozen water), I  denotes the unit tensor, S  is the cryogenic 

suction, wp  and ip  denote the pressure of water and ice phases, respectively, i  indicates the density of 

ice, l  is the specific latent heat of fusion, T  stands for temperature on the thermodynamic scale and 0T  is 

the freezing/thawing temperature of water/ice at a given pressure. 

Similar to the reference elastic-plastic model (Ghoreishian Amiri et al., 2016), any strain increment is 

decomposed into two major parts due to variations of solid phase stress and suction. In this model, elastic-

viscoplastic behavior is considered for the deformation due to variation of solid phase stress, while elastic-

plastic behavior is assumed for the suction induced deformation. Thus, any strain increment, dε , can be 

additively decomposed into the following parts 
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where medε  and mvpdε  are the elastic and viscoplastic parts of the strain due to the solid phase stress 

variation, sedε  and spdε  are the elastic and plastic parts of the strain due to the cryogenic suction variation, 

respectively. 



2.1 Elastic Response 

The elastic part of the strain due to the solid phase stress variation can be calculated based on the equivalent 

elastic parameters of the mixture 
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where ij  the Kronecker’s delta, G  and K  are the equivalent shear modulus and bulk modulus of the 

mixture, respectively: 
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where G  and K  are the equivalent shear modulus and bulk modulus of the mixture, respectively, 0G  and 

0  stand for the shear modulus and the elastic compressibility coefficient of the soil in an unfrozen state, 

respectively, *p  is the solid phase mean stress, fE  and f  denote the Young’s modulus and Poisson’s ratio 

of the soil in the fully frozen state, respectively, and is  is the ice saturation. Considering the temperature-

dependent behavior of ice, the following expression is employed for fE  

 
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where 
reffE  is the value of fE  at the reference temperature ( refT ) and 

incfE  denotes the rate of change in fE  

with temperature. 

The elastic part of the strain due to suction variation is calculated as 
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where s  is the compressibility coefficient due to suction variation within the elastic region, e  is the void 

ratio and atp  is the atmospheric pressure. 



2.2 Reference, Dynamic and Yield Surfaces 

As mentioned earlier, the elastic-viscoplastic model is developed based on the overstress framework 

(Perzyna, 1966) and the elastic-plastic model presented by Ghoreishian Amiri et al. (2016) . In the 

overstress method, instead of the common yield surface, reference and dynamic surfaces should be defined. 

Then, the inelastic deformation can be calculated based on the distance of the reference and dynamic 

surfaces. 

For consistency, when the value of cryogenic suction becomes zero, the model should reduce to a common 

unfrozen soil model. In accordance with the aim of simplicity, the simple elastic-viscoplastic Cam-clay 

based model is adopted for the unfrozen state. For frozen states, a suction-dependent yield surface for the 

reference strain rate is required to capture the curvature-induced premelting effects. This surface is 

recognized as the Loading Collapse (LC) reference surface: 
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and *
rσ  indicates a stress point on the LC reference surface, M  stands for the slope of the critical state line, 

*
trp  shows the apparent cohesion of the soil, *

cp  indicates the reference stress, 
0

*

ryp  is the reference 

preconsolidation stress for unfrozen condition,   denotes the compressibility coefficient of the system 



within the elastic region ( *1 e
p

K
 
 ), 0  represents the compressibility coefficient for the unfrozen state 

along virgin loading, r  is a constant related to the maximum stiffness of the soil (for infinite cryogenic 

suction) and   is a parameter controlling the rate of change in soil stiffness with suction. It should be 

noted, the selected LC reference surface has been previously adopted as a yield surface by Nishimura et al. 

(2009) for elastic-plastic modelling of frozen soil behavior. However, it has been originally introduced by 

Alonso et al. (1990) for unsaturated soils. 

The LC dynamic surface should always pass through the current stress sate ( * *, ,p q S ) and also keep a similar 

shape to the LC reference surface with respect to a similarity line (or the corresponding similarity center in 

the * *p q  space). In this model, the line 0S   is considered as the similarity line. This results in the 

following geometrical properties: 

1. All lines connecting an arbitrary point like ( * *, ,p q S ) on the LC dynamic surface and its conjugated 

point on the LC reference surface join at the ( 0,0, S ). 

2. All ratios of the distance of any arbitrary point like ( * *, ,p q S ) on the LC dynamic surface from the 

similarity center, ( 0,0, S ), to the distance of its conjugated point on the LC reference surface from 

the similarity center, ( 0,0, S ), are identical. This ratio is called the similarity ratio, R , and coincides 

with the ratio of the sizes of these surfaces. 

The LC dynamic surface is described as 
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where 
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*p  and *q  are the solid phase mean stress and deviatoric stress, respectively, and R  indicates the similarity 

ratio of LC dynamic and LC reference surfaces. 

On the other hand, due to the interfacial premelting mechanism, increase of cryogenic suction could lead 

to grain segregation. As mentioned earlier, this phenomenon is considered with an elastic-plastic behavior 

and the Grain Segregation (GS) yield criterion is adopted as 

0.segF S S    (17) 

where segS  is the threshold value of suction for ice segregation phenomenon. Figure 1 shows the reference, 

dynamic and yield surfaces of the model in *p S  and * *p q planes. 

2.3 Hardening Rules 

A plastic compression due to the variation of solid phase stress results in stiffer behavior of the soil and 

causes the LC reference surface to move outward. Furthermore, this plastic compression results in a 

decrease in the dimensions of voids, hence, lower segregation threshold value is expected. This behavior 

could be captured by a coupled hardening rule, which causes the GS yield surface to shift downward. Figure 

2 shows a typical evolution of LC reference and GS yield surfaces due to a plastic compression in *p S  

and * *p q  planes. 

A plastic dilation due to occurrence of ice segregation causes the GS yield surface to move upward. This 

plastic dilation results in softer behavior of the soil, hence, an inward movement of the LC reference surface 

should also be considered (figure 3). 

The above mentioned changes in the LC reference and GS yield surfaces can be represented in the model 

by the following hardening rules 
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where s  is the compressibility coefficient for an increase in suction across the virgin state. The evolution 

of the GS yield surface in equation (19) depends on the value of unfrozen water saturation. Actually, the 

amount of plastic strain due to increase of cryogenic suction (interfacial premelting mechanism) depends 

on the availability of water. The lower unfrozen water saturation of a freezing fringe, the lower permeability 

for water to be sucked in. So, the suction-induced strain becomes smaller and smaller. In other words, 

plastic resistance of the soil, which is the result of the hardening rule, increases by decreasing water 

saturation. 

In addition, as stated by Arenson et al. (2004), Yamamoto and Springman (2014) and Xie et al. (2014), the 

bonds between soil grains and ice will crack by developing shear strain. On the other hand, these bonds will 

recover and be stronger by increasing suction. Thus, the following hardening rule is suggest for *
trp  
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Figure 4, shows a typical evolution of the LC reference surface due to plastic shear strain, in * *p q  plane. 

2.4 Flow Rules 

The viscoplastic part of the strain increment due to variation of solid phase stress is calculated with the 

following flow rule based on the similarity ratio 
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where,  is the Macaulay brackets, dt  is the time increment,   stands for the fluidity of the system 

corresponding to the reference strain rate, N  is the strain rate coefficient and 1Q  is the plastic potential 

function 
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where   is a material parameter. 

In common unfrozen soils,   and N  are considered as constant parameters, while in frozen soils this 

assumption should be examined more precisely. Thus, we can consider the concept of these parameters in 

a simple 1D model. In the overstress method, the main idea is to calculate the plastic strain rate for the 

reference strain rate, r
v  , and then to scale it to the current rate (see figure 4) 
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As shown in the figure, assuming constant slopes for the lines in lnv v    plane (i.e.  ) and in ln lnv v    

plane (i.e. N ) for different strain rates is crucial in this concept. On the other hand, the parameter   actually 

carries the reference strain rate ( r
v ),   and  , where all of them are considered to be constant. However, 

in frozen states,   and   is varying with ice content, temperature and cryogenic suction. Thus, we need to 

transfer the reference curve to the current state of ice content, temperature and suction to be able to scale 

the plastic strain rate from the reference rate to the current rate (see figure 5). This can simply considered 

as 
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where 0  is the fluidity of unfrozen soil for the reference strain rate. 



On the hand, we know that rate dependency of an unfrozen sample is less than a frozen sample. So, lower 

value of strain rate coefficient, N , for higher ice content is expected. However, rate dependency of ice 

decreases with decreasing temperature. Thus, higher value of N  for higher suction should be expected. 

These dependencies of N  could be considered as 

0 1 2 iN N b S b s      (26) 

where 0N  is the strain rate coefficient of unfrozen soil, and 1b  and 2b  are two model parameters. 

The plastic part of the strain increment due to suction variation is calculated with an associated flow rule 
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where d  is the plastic multiplayer regarding to SG yield surface. It is worth reminding that the suction-

induced plastic strain (equation 27) is the result of the interfacial premelting mechanism. 

3 Determination of The Parameters 

The proposed model requires ten parameters for describing the behavior under the variation of solid phase 

stress ( 0G , 0 , 
reffE , 

incfE , f ,  , 
0

*

ryp , *
cp , 0  and M ), three parameters regarding to suction-induced 

strains ( segS , s  and s ), four parameters for coupling effects (  , r , 
1t

k  and 
2t

k ) and four parameters for 

rate effects ( 0 , 0N , 1b  and 2b ).  

Plotting the results of an isotropic drained compression test for an unfrozen state of the soil in : lnv p  plane 

can provide the data to find the elastic compressibility coefficient, 0 , the reference stress, *
cp , the initial 

value of the reference preconsolidation stress, 
0

*

ryp , and the elasto-plastic compressibility coefficient, 0 . 

Note that the parameters 
0

*

ryp  and *
cp  should be determined with respect to the reference strain rate. 

A normal drained shear strength test at an unfrozen state of the soil can be used for determining the elastic 

shear modulus of the soil in unfrozen state, 0G , and also for the slope of the critical state line ( M ). 



Conducting an unconfined triaxial compression test in an arbitrary reference temperature at a frozen state 

of the soil, can be used for determining the reference Young’s modulus of the frozen soil, 
reffE . Similar test 

in a different negative temperature can be considered to find 
incfE . Then, an isotropic compression test at a 

frozen state of the soil with a certain value of ice saturation can be used for calculating the Poisson’s ratio 

of the soil in the fully frozen state, f , using equation (6). 

Considering equation (13),   and r  can be calculated by determining   at two different frozen states of 

the soil. 

The viscous parameters for the unfrozen state of the soil, 0  and 0N , can be determined in a common way 

from oedometer tests at a constant strain rate or from a conventional oedometer test. Evaluating N  in two 

different frozen states with certain values of cryogenic suction and ice content will provide required data to 

find 1b  and 2b . Then, the parameters  , 
1t

k  and 
2t

k  can be determined using a trial-and-error procedure to 

fit the time to failure curves of the soil in two different frozen states. Finally, results of a test involving a 

freezing-thawing cycle plotted in : ln(S p )atv   plane is required to determine the values of segS , s  and s . 

4 Model Results 

In order to examine the ability of the model to simulate the behavior of frozen soils in an acceptable way, 

three different series of tests are simulated and compared with model predictions. In the first set, triaxial 

compression tests on frozen sand samples at different temperatures are simulated to show the ability of the 

model for representing the stress-strain and volumetric behavior of the soil at different temperatures with a 

single set of parameters. In the second one, uniaxial compression tests on Fairbanks silt at different strain 

rates are used to show the ability of the model for considering the rate effects. At the end, a set of creep 

tests on frozen sands at different temperatures and stress levels are simulated and compared with 

experiments. 



It should be noted that the model is also able to simulate the ice segregation phenomenon and the strength 

weakening due to pressure melting. These abilities were examined in the elastic-plastic version of the model 

(Ghoreishian Amiri et al., 2016), thus in the sake of brevity, they are not represented again in this paper. 

4.1 Triaxail Tests at Different Temperatures  

Xu (2014) reported a series of triaxial compression tests conducted on frozen sand specimens at initial 

confining pressure of 1 MPa, constant strain rate of 1.67E-4 s-1 and different temperatures of -1, -2, -5 and 

-10o C. Since the values of suction were not reported, for the simulations, the Clausius-Clapeyron equation 

with 334 MJ/tonl   and 30.9 ton/mi   is used to evaluate the values of suction at the different 

temperatures. The obtained corresponding suctions, for the samples at -1, -2, -5 and -10o C, are 1.016, 2.036, 

5.118 and 10.326 MPa, respectively. The samples were frozen very quickly, so ice segregation was 

completely avoided. Considering the nature of sandy soils which cannot keep significant amount of 

unfrozen water below the freezing temperature, *σ = σ  is assumed in the simulations. The initial void ratio 

of 0.4 is considered for the tests. The material parameters that are used to predict the soil behavior are listed 

in table 1. Figure 6 shows a comparison of test data and model predictions for these tests. As shown in the 

figure, the model can successfully follow the trend of the behavior. 

4.2 Uniaxial Compression Tests at Different Strain Rates 

Zhu and Carbee (1984) conducted some uniaxial compression tests on frozen Fairbanks silt. The soil tested 

has 34.2% of plastic limit and 38.4% of liquid limit. The samples were first reached to the desired density 

by compressing them in acrylic plastic molds with the dimensions of 70 mm in diameter and 152 mm in 

length. After the specimens were saturated with a vacuum pump, they were placed into a freezing cabinet 

and frozen quickly to avoid ice lens during freezing. Four different strain rates of 1.1E-3, 1.1 E-4, 1.1E-5 

and 1.1E-6 s-1 at -3o C are considered in this section for verification of the model. The initial void ratio of 

0.3 is considered for the tests. The material parameters that are used to predict the soil behavior are listed 

in table 2. Comparative results are presented in figure 8. 



4.3 Creep Tests at Different Temperatures And Stress Levels 

We proceed to validate the model by simulating the creep tests conducted by Eckardt (1979) at different 

temperature and stress levels . The samples tested were cohesionless sand with medium grain size d50=0.4 

mm, initial void ratio of 0.5 and dry density of 1750 kg/m3. The samples had the dimensions of 100 mm in 

diameter and 200 mm in length. The tests were done in a cold room, with capability of adjusting temperature 

with high accuracy. In the tests, different temperatures (-5 and -15o C) are concerned, depending on which, 

different creep stress, from lowest 1.0 MPa to highest 8.0 MPa, are also considered. Creep stress on samples 

from frozen, water saturated medium sand was kept constant through testing at different temperatures. The 

material parameters that are used to predict the soil behavior are listed in table 3. Comparative results are 

presented in figure 9. 

5 Conclusion 

In this paper, a two stress-state elastic-viscoplastic model was proposed for simulating the behavior of 

frozen soils. The model was developed based on the overstress framework (Perzyna, 1966), and the elastic-

plastic model presented by (Ghoreishian Amiri et al., 2016). The cryogenic suction and solid phase stress 

were selected as the independent stress variables. In unfrozen state, the model becomes a conventional 

elastic-viscoplastic critical state model. Thus, the model can simulate the behavior from a frozen state to an 

unfrozen state with a single set of parameters. The model was validated against available results of triaxial, 

uniaxial and creep tests under different temperatures and pressures. 
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Table 1. Model parameters for frozen sand (triaxial tests) 

Unfrozen soil shear modulus, MPa 
0 3.5G   

Unfrozen soil elastic compressibility coefficient 
0 0.08   

Frozen Soil Young’s modulus at 273.16 KrefT  , MPa 200
reffE   

Rate of change in Young’s modulus with temperature, MPa/K 80
incfE   

Frozen Soil Poisson’s ratio 0.31f   

Plastic potential parameter 0.08   

Initial preconsolidation stress for unfrozen state, MPa 
0

*
in( ) 5.55

ryp   

Reference stress, MPa * 0.1cp   

Elastic-plastic compressibility coefficient for unfrozen state 
0 0.85   

Slope of the critical state line 1.5M   

Initial segregation threshold, MPa 
in( ) 10segS   

Elastic compressibility coefficient for suction variation 0.008s   

Elastic-plastic compressibility coefficient for suction variation 0.4s   

Rate of change in apparent cohesion with suction 
1

0.15tk   

Hardening parameter for apparent cohesion 
2

1.5tk   

Coefficient related to the maximum soil stiffness 0.66r   

Rate of change in soil stiffness with suction, MPa-1 0.11    

Fluidity parameter for unfrozen state, s-1 
0 5 6E    

Rate dependency parameter for unfrozen state 
0 25N   

Rate of change in N  with suction, MPa-1 
1 0.58b   

Rate of change in N  with ice saturation 
2 22b   

 



Table 2. Model parameters for frozen Fairbanks silt 

Unfrozen soil shear modulus, MPa 
0 5G   

Unfrozen soil elastic compressibility coefficient 
0 0.03   

Frozen Soil Young’s modulus at 273.16 KrefT  , MPa 140
reffE   

Rate of change in Young’s modulus with temperature, MPa/K 10
incfE   

Frozen Soil Poisson’s ratio 0.48f   

Plastic potential parameter 0.01   

Initial preconsolidation stress for unfrozen state, MPa 
0

*
in( ) 0.9

ryp   

Reference stress, MPa * 0.07cp   

Elastic-plastic compressibility coefficient for unfrozen state 
0 0.7   

Slope of the critical state line 1.05M   

Initial segregation threshold, MPa 
in( ) 10segS   

Elastic compressibility coefficient for suction variation 0.008s   

Elastic-plastic compressibility coefficient for suction variation 0.4s   

Rate of change in apparent cohesion with suction 
1

0.3tk   

Hardening parameter for apparent cohesion 
2

1.5tk   

Coefficient related to the maximum soil stiffness 0.49r   

Rate of change in soil stiffness with suction, MPa-1 0.15    

Fluidity parameter for unfrozen state, s-1 
0 2 6E    

Rate dependency parameter for unfrozen state 
0 25N   

Rate of change in N  with suction, MPa-1 
1 0.58b   

Rate of change in N  with ice saturation 
2 22b   

 

 



Table 3. Model parameters for frozen sand (creep tests) 

Unfrozen soil shear modulus, MPa 
0 5G   

Unfrozen soil elastic compressibility coefficient 
0 0.01   

Frozen Soil Young’s modulus at 273.16 KrefT  , MPa 140
reffE   

Rate of change in Young’s modulus with temperature, MPa/K 10
incfE   

Frozen Soil Poisson’s ratio 0.48f   

Plastic potential parameter 0.01   

Initial preconsolidation stress for unfrozen state, MPa 
0

*
in( ) 0.28

ryp   

Reference stress, MPa * 0.05cp   

Elastic-plastic compressibility coefficient for unfrozen state 
0 0.02   

Slope of the critical state line 0.85M   

Initial segregation threshold, MPa 
in( ) 10segS   

Elastic compressibility coefficient for suction variation 0.008s   

Elastic-plastic compressibility coefficient for suction variation 0.4s   

Rate of change in apparent cohesion with suction 
1

0.45tk   

Hardening parameter for apparent cohesion 
2

2.5tk   

Coefficient related to the maximum soil stiffness 0.49r   

Rate of change in soil stiffness with suction, MPa-1 0.15    

Fluidity parameter for unfrozen state, hr-1 
0 8 6E    

Rate dependency parameter for unfrozen state 
0 25N   

Rate of change in N  with suction, MPa-1 
1 0.33b   

Rate of change in N  with ice saturation 
2 21.1b   
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Figure 1. Representation of reference, dynamic and yield surfaces in *p S  and * *p q planes 
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Figure 2. Evolution of LC reference and GS yield surfaces due to plastic compression 
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Figure 3. Evolution of LC reference and GS yield surfaces due to ice segregation phenomenon 
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Figure 4. Evolution of LC reference surface in * *p q plane due to plastic shear strain 
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Fig 5. Schematic 1D representation of overstress framework for unfrozen soils 
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Fig 6. Schematic 1D representation of the overstress framework for frozen soils 

 



 

 

Fig 7. Comparison between the measured and predicted results for triaxial tests under different 

temperatures: (a) stress-strain relation and (b) volumetric strain 

a) 

b) 



 

Fig 8. Comparison between the measured and predicted stress-strain curves for frozen Fairbanks 

silt (-3o C) 

 



 

 

Fig 9. Comparison between the measured and predicted results for uniaxial creep tests at different 

stress level : (a) at -5o C and (b) at -15o C 

 

a) 
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