
Sharing is Power: Incentives for Information
Exchange in Multi-Operator Service Delivery

Poul E. Heegaard∗, Gergely Biczók†, and Laszlo Toka‡
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Abstract—A majority of 5G verticals have the potential to
generate large revenues, but are expected to have strict Quality
of Service (QoS) guarantees, and are projected to be delivered as
a service chain of multiple, independent operators. Such multi-
operator service delivery requires a set of interdependent Service
Level Agreements (SLAs) between operators. The amount and
aggregation-level of information shared between stakeholders
inside such SLAs will determine how efficient the coordinated
traffic engineering between the operators will be. Sharing more
details on one’s network is uncommon in today’s interactions due
to the fear of losing competitive advantage and regulations with
regard to national security. In this paper, we analyze the economic
incentives for information exchange in the context of multi-
operator service delivery. We show that the current practice of
exchanging only highly aggregated information can lead to both
significant under- and overestimation of the risk of not meeting
user-facing Quality of Service guarantees. We also show that
economic incentives for mutually sharing an optimal amount of
information do exist, and optimal information exchange between
operators is viable in the long run. Moreover, through a simple
numerical example, we demonstrate how the mutually shared
information and the resulting risk estimation affect the revenues
of the operators from the end-user market. We believe this work
opens up a new line of research connecting the economics of
multi-operator service delivery and network performability.

I. INTRODUCTION

The ICT service-provisioning infrastructure and related dig-
ital ecosystems are increasingly complex and evolving systems
where services delivered involve multiple business entities
(stakeholders) sharing the responsibility of providing robust,
dependable and predictably high performance services. A
textbook example for such a complex ecosystem is that of
anticipated 5G verticals, which hold the business potential of
being true value-added services [1]. Such verticals inherently
require strict end-to-end Quality of Service (QoS) guarantees
and the collaboration of mobile and fixed network opera-
tors, cloud infrastructure owners and Over-The-Top (OTT)
providers, comprising a multi-actor value chain. This in-
evitably calls for multi-operator business, service and resource
coordination, which is in the focus of the in-progress H2020
5G-PPP 5G Exchange project (5GEx) [2]. While emerging
concepts such as the softwarization of the network control
plane (Software Defined Networking, SDN) and the virtual-
ization of resources and network functions (Network Function
Virtualization, NFV) can serve as powerful technological
enablers, the business framework including inter-stakeholder
contracts, resource trading and coordination models require
its own (but integrated) mechanisms.

Bilateral contracts between operators and between end-user
and operator are referred to as Service Level Agreements
(SLAs). SLAs give guarantees on the non-functional properties
of the service provided including performance and depend-
ability. The chain of SLAs (along the service chain) is the
means of ensuring end-to-end QoS for the end-user, but it
is insufficient in its current form to fulfill its objective. One
problem is that the SLAs between the operators do not include
sufficient information about QoS properties for appropriate
coordinated resource management and traffic engineering,
and the information that is included is highly aggregated.
The reason behind this is two-fold. First, on the technical
side, the current de facto inter-operator information exchange
protocol, BGP (Border Gateway Protocol), is inflexible and
limited: information is only the destination IP prefix, scope
is only direct neighbors, and policies can only be expressed
indirectly. Note that SDN can provide a richer set of capa-
bilities for exchanging more detailed information better suited
to traffic engineering purposes [3]. Second, on the business
and regulation side, the fear of losing competitive advantage
(willingness) and national security regulations with regard to
protection of information on critical infrastructure (feasibility)
leave operators with exchanging only a limited set of highly
aggregated information. Thus, risk estimation along the service
chain, and particularly at the user-facing provider is bound to
be imprecise, potentially affecting revenues directly.

In this paper, we analyze the economic incentives for
information exchange in the context of multi-operator service
delivery. Our main contribution is twofold. First, we develop
a simple model for estimating the risk of not meeting QoS
guarantees under different information aggregation regimes.
We show through a simple two-operator example that ex-
changing coarse grain information can lead to both significant
under- and overestimation of risk. Second, we develop a game-
theoretical model of information exchange between operators.
We show that sharing the optimal amount of information
is a sustainable equilibrium if there is a mutual, long-term
cooperation among the operators. Furthermore, we integrate
the risk and game models in a simple numerical example, and
show how the information exchange affects the revenues of the
operators from the end-user market. We conclude that given a
platform enabling mutual trust and cooperation (such as the 5G
Exchange proposed in [4]), operators benefit from exchanging
sufficiently (but not excessively) detailed information and the
resulting, more precise risk estimation.



The rest of the paper is organized as follows. Section II
introduces the structure of SLAs and the price of uncertainty
in risk estimation. Section III describes a simple risk model,
and presents, via a two-operator example where the ominous
QoS guarantee involves maximum end-to-end delay, a risk
calculation for not meeting the specific guarantee for different
levels of transparency. Section IV develops a game model
inspired by the well-known prisoner’s dilemma, and presents
its equilibrium analysis. Section V integrates the two models
and presents a brief numerical study for the above-mentioned
two-operator example concerning revenues from the end-user
market. Finally, Section VI provides concluding remarks.

II. SERVICE LEVEL AGREEMENTS FOR MULTI-OPERATOR
SERVICE DELIVERY

In this section, we first take a look at SLAs, and then make
the connection between the information shared in SLAs and
the corresponding risk estimation at the user-facing operator.

A. Service Level Agreements
When an operator sells a service to end customers (partly)

building on the infrastructure of another operator, the business
relation between the operators (and between end-user and user-
facing operator) is mutually agreed upon and is fixed in a
Service Level Agreement (SLA) (see Figure 1). The SLA
consists of: Service Level Objects (SLOs) defining technical
minimums to be provided; the agreed cost of the service; the
compensation, i.e., the fee to pay to the buyer if the SLOs are
not met; and the contract period.

SLOs translate into traditional QoS definitions that describe
performance and dependability of the overall system in which
the service for the end customer is created. The granularity
of information shared within SLOs, however, determines how
well the mapping of SLOs into QoS towards the end customers
can be performed. In general, SLOs contain numerical perfor-
mance attributes (e.g., 10 ms of delay) and their probabilistic
occurrence (e.g., met in 99% of packets). QoS guarantees
towards end customers are composed of these SLOs in order
to present a compact, high level, system-wide description, e.g.,
maximum end-to-end delay, that hides the potentially complex
cascade of multi-operator infrastructure.

Network-related SLO performance metrics typically de-
scribe throughput, delay and packet loss with their mean,
maximum, minimum or empirical distributions yielding the
probability of measured values to be above maximum or below
minimum. The dependability of the infrastructure can be given
in terms of availability, max down time, number of failures,
number of long outages, etc. For both types of attributes long-
time measurements provide the input, and details of these
measurements (methodology, duration, location, etc.) can be
part of the SLOs. The risk and information sharing models in
the paper are metric-agnostic.

The monetary sections of an SLA include the cost of service
and compensation. In general a service with better/stricter
QoS guarantees can be sold at a premium, given that there
is a willingness-to-pay among the prospective buyers. Com-
pensation is usually given as a reduction in the consequent
billing period; typical compensation functions are step-wise

NO A NO BC1 C2SLASLASLA

Cost of service 
----------------------
Service level object 
----------------------
Compensation

SLA period (month, year)
Performance
- throughput (mean, min)
- delay (mean, max)
- loss (mean, max)
Dependability
- availability
- down time
- #failures
- #long outages

Fig. 1. Bilateral QoS information exchange through SLAs

and somewhat rudimentary [5]. We assume that receiving the
service satisfies the customer more than getting even the high-
est possible compensation (e.g., the maximum compensation
in the Google Compute Engine SLA is 50% of the monthly
fee [6]).

If the business relation of two operators is symmetric, i.e.,
both operators sell services to each other, their respective SLOs
provide mutual insight into each other’s infrastructure, opera-
tion and management. In the expected 5G service ecosystem
this will be the rule rather than the exception: operators have
to collaborate in service delivery to satisfy end-to-end QoS,
extend their geographic footprint or simply lease idle resources
from each other. A simplistic setup is drawn in Figure 1, where
both operator NO A and NO B have their customers paying
for services that are provided with the support of the other
operator, within the boundaries of their framework contract
SLA. This is the setup we will assume throughout the paper.

B. The price of uncertainty

Operators design their services and sell them to end cus-
tomers factoring in all the elements of cost of service. Apart
from the cost of provisioning the service based on own
investments and operations, if the service is partially built
on another operator’s infrastructure, then the price of using
that is also added. Should the provider fail to meet the QoS
guarantees advertised in the published service plans, (i) it has
to pay compensation to its users, (ii) its reputation is damaged
potentially materializing in users switching to other, substitute
providers.

Every operator has to be able to estimate the probability of
not meeting a certain QoS guarantee. Owing to the interdepen-
dence of operators in a multi-operator setting, estimating this
risk can be challenging. SLAs (and the SLOs inside) are the
only vessel for sharing information. Historically, SLOs lack
details in order to avoid sharing in-house information with the
competitor, to hide an operator’s internal operations, network
design and policies. However, as multi-operator services may
become the norm in the near future, operators should find
a balance between competition and cooperation. Estimating
service-related risks based on SLOs without sufficient de-
tails, leaving potential physical and logical interdependencies
(which might even vary over time) uncovered, leads to high
uncertainty. If the operator faces high uncertainty, two sub-
optimal outcomes are possible: (i) it underestimates the risk,
and advertises stricter than realistic QoS guarantees, leading
to higher compensation payment and reputation damage or (ii)
it overestimates the risk and advertises looser than feasible
QoS guarantees resulting in a lower end user market price. In



both scenarios the operator ends up with less income than the
optimal.

C. Prior work

Relevant literature can be divided to four categories. First,
the role and impact of SLAs in federated environments are
studied with relation to early IT outsourcing [7], open feder-
ated cloud computing [8] and QoS in federated cloud-based
software defined networks [9]. Second, economics of SLAs are
studied with regard to SLA negotiation for service composition
in [10] and maximizing profits stemming from SLAs in [11].
Third, in the economics literature, specifically in the field of
supply chains (which show structural similarities to service
chains in multi-operator service delivery), contract design and
information sharing is studied when there are competing sup-
ply chains in [12]; moreover, the coordination of information
sharing is analyzed in [13]. Finally, risk-aware networking is
scrutinized in great detail in [14]. Due to space constraints
we do not attempt to present a complete literature review.
For further related work we refer the reader to the above-
mentioned papers and their references. Each of these papers
make observations or propose mechanisms related to parts of
our work; however, none of them combine SLA design, risk
estimation and incentives for information exchange in a multi-
operator environment.

III. RISK OF BREAKING QOS GUARANTEES

In this section we discuss information aggregation levels,
define our use of the term risk, specify an estimator of the
risk, and demonstrate the effect of exchanging information
with different aggregation levels on risk estimation.

A. Risk estimator

We define risk simply as the probability that the service
in not delivered according to the guaranteed specified QoS
attribute value. The definition of risk is similar to the definition
of unavailability in [15], but we emphasize the guarantee
aspect, and relate it to both performance and dependability.
In [14] risk assessment and modeling, risk response, and risk
monitoring in communication networks are discussed in more
details.

Let X be a stochastic variable that represents a QoS attribute
value, then the risk is (θ is the threshold, max or min, of
performance attribute X):

R(Xi, θ0, θ1) = 1−
∫ θ1

θ0

fi(x)dx = 1−Fi(θ1) +Fi(θ0) (1)

where fi is the probability density function of Xi and
Fi(x) = P (Xi ≤ x). For example, if the guarantee is
a maximum threshold, θmax, then the corresponding risk
R(Xi, 0, θmax) = 1−Fi(θmax). The definition in (1) also in-
cludes risk evaluation of guarantees in an interval (θmin, θmax)
with R(Xi, θmin, θmax) = 1− Fi(θmax) + Fi(θmin)

When a service is delivered over multiple domains, the
guarantee to the end users is a functional combination of the
Xis from each of the n domains i (i = 1, · · · , n). Consider the
following examples of guaranteed threshold over n domains

{SLO}C1 SLASLA C2SLA

NO A NO B

(a) Semi-/non-transparent view

C1 SLASLA C2SLA

NO A NO B

(b) (Fully) transparent view

Fig. 2. Illustration of information exchange options where (a) network
operator A has limited access to information about network domain B, and
(b) network operator B exposes all available information

(where fi of all n domains are known, and θ1 is the maximum
acceptable value of Y ):

(i) sum (e.g. end-to-end delay): Y =
∑n
i=1Xi

R(Y, 0, θ1) =

∫ θ1

θ0

f1 ⊕ · · · ⊕ fn(x)dx

(ii) max (e.g. max down time): Y = max∀iXi

R(Y, 0, θ1) = 1−
n∏
i=1

Fi(θ1)

Assume that only n1 out of n domains will share informa-
tion about their probability density function fi. Without loss
of generality, we can enumerate these domains i = 1, · · · , n1,
and enumerate the remaining domains where only the mean
values X̄i are shared by i = n1+1, · · · , n. The risk estimation
is changed (exemplified by the maximum value of a sum of
stochastic variables):

R(Y, 0, θ
′

max) =

∫ ∞
θ′max

f1 ⊕ · · · ⊕ fn1
(x)dx (2)

where θ
′

max = θmax −
∑n
i=n1+1 X̄i.

B. Information exchange

In order to assess the risk across several domains it is
important that sufficient information is exchanged between
domain operators. In Figure 2 a small example is illustrated
with two network domains A and B. The two domains are
managed by one operator each, and there exists a mutual SLA
between the operators. The two network operators provide
services that depend on resources from both network domains.
They both need to estimate the risk of not delivering the
guaranteed QoS.

Example of information exchange options can be the fol-
lowing:

(i) Non-transparent (high aggregation, Figure 2(a)) : first
and second order statistics, such as median, mean, max,
min, variance, standard deviations, quantiles, etc.

(ii) Semi-transparent (medium aggregation, Figure 2(a)):
higher order statistics, such as correlation, probability
distributions (of end-to-end QoS attributes), etc.

(iii) Transparent (low aggregation, Figure 2(b)): information
about resources (network elements capacity and load)
and structure (topology),
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Fig. 3. End-to-end delay distributions over network domains A and B with
different information available from domain B

(iv) Fully transparent (no aggregation, Figure 2(b)): as dis-
cussed above, this will be never exposed. Included only
for reference. This will include everything that is neces-
sary for a precise estimation of the performance metrics,
i.e. all statistics (also distributions) per network element,
topology, network element capacities, path routes (num-
ber of hops, or specific hops), traffic load on network
elements, network element failure rates, measurement
logs, etc.

C. Risk of delay not according to SLA

Here we consider an example with single path over two
domains where the QoS guarantees are given as a maximum
end-to-end delay. The effect of sharing information on dif-
ferent levels of details is demonstrated though a numerical
example.

Information exchange aggregation between domains.
The risk assessment of the end-to-end delay over two network
domains will change depending on how much information is
exposed, from one network domain operator to the other. Let
fX(t) be the delay distribution of network X in Figure 2,
X = A,B. We want to estimate the end-to-end delay dis-
tribution over network A and B; f(t) = fA ⊕ fB(t). In
this example the following information exchange options are
considered (options related to operator B in Figure 2):

(i) Non-transparent : mean value, XB

(ii) Non-transparent : number of hops is not known, then
assume one hop and therefore XB ∼ Exp(1/XB).

(iii) Semi-transparent : number of hops is k, but only the
overall load is known, assume XB ∼ Erl−k(1/XB)

(iv) Transparent : both k, the individual traffic intensities
Γi, and service rates µi per hop i are know, then
distribution over the domain is formed by convoluting the
distributions over each hop, f(x) = fi⊕· · ·⊕fk(x), and
fi ∼ Exp(µi − Γi), phase type distribution, XB ∼ PH

Numerical values. Figure 3 shows end-to-end delay dis-
tributions over network domains A and B with different
information available from domain B. Since the examples are
just for the illustration of the aggregation’s effect, for the
sake of simplicity we assume that the delay of each hop in
a path is exponentially distributed. In Table I you find the
risk estimates for maximum thresholds θmax = 208, 260, 312,
with E[XA] = 50 and E[XB ] = 80. The transparent case
will give the most precise risk estimate out of the four

TABLE I
END-TO-END DELAY RISK ESTIMATION FOR DIFFERENT INFORMATION

AGGREGATION FOR INFORMATION EXCHANGE BETWEEN TWO DOMAINS,
WITH E[XA] = 50 AND E[XB ] = 80

aggregation θ = 208 θ = 260 θ = 312

non-trans: X̄B 0.201897 0.105399 0.055023
non-trans: XB ∼
Exp

0.152858 0.080047 0.041820

semi-trans: XB ∼
Erl−k

0.078358 0.018001 0.003534

transparent: XB ∼
PH

0.106239 0.035683 0.011175

options considered since this option contains more detailed
information. The main observation from the table is that for
all three threshold values considered we get both over- and
underestimations of the risk. In the non-transparent case where
we do not know the number of hops, we overestimate the
risk. In the semi-transparent case where we know the correct
number of hops but do not know the individual routing and
traffic loads, the risk is underestimated.

In Figure 4 the risk estimates of the four different in-
formation exchange options are plotted as a function of the
threshold value θ. The plot also zooms in on the range
208 − 312 which was used in Table I. The plots show that
the relative ranking of the risk for the four options changes as
the threshold changes. This means that if the operator does not
have sufficient information, the risk can be both under- and
over-estimated (with the same information exchange option)
depending on the threshold value considered.

IV. THE INTER-OPERATOR INFORMATION SHARING GAME

One the one hand, risk estimation depends on the amount
and nature of information exchanged between operators. On
the other hand, the level of information sharing is a strategic
choice for participating actors. We model their interaction as
a two-player information sharing game; we use a simple, one-
shot matrix game for motivation, and extend it in two steps to
account for more realistic conditions. Basic game-theoretical
concepts used in this section can be found in [16].

Binary sharing game G0. Let us assume that two network
operators rely on each other to a certain extent in providing
a service to their customers (just like the simple setup of

100 200 300
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0.20 Non-transparent (mean only)
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Non-transparent

Transparent

 [ms]

R(Y, 0, ✓max)
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Fig. 4. Risk for different levels of transparency



TABLE II
PAYOFF MATRIX FOR G0

NO B
share don’t share

NO A
share (u− c, u− c) (−c, u)

don’t share (u,−c) (0, 0)

Figure 1). Let us also assume that the extent is the same:
they equally rely on their mutual SLAs. Furthermore, let
us also assume that they are equally sensitive in sharing
information about their infrastructure with other operators, i.e.,
both see the same amount of threat (cost) in disclosing any
given amount of data of aforementioned network topology,
network element performance, etc. With these assumptions we
arrive to a symmetric game model with opposing interests;
for demonstration purposes we first assume each operator
can decide between two strategies: share or do not share
information.

Before drawing the game G0 in its matrix-form, we have
to establish the payoffs for each player in each outcome, i.e.,
combination of strategies played. Let us denote the cost of
sharing information with c and the utility of getting informa-
tion from the other player as u for both players. We assume
that both not getting and not sharing information leads to 0
payoff. Then, the symmetric payoff matrix of G0 is given
in Table II. If u − c > 0, then G0 is a special case of the
much-studied prisoner’s dilemma called the “donation game”
[16], where cooperation equals to offering the other player
a benefit at one’s own cost. Such a game can be solved via
the dominant strategy concept: here, each player prefers not
sharing to sharing, irrespective of what the other player plays.
Consequently, mutually not sharing is the only strong Nash
Equilibrium (NE, a strategy profile from which neither player
wants to deviate unilaterally) of the game G0.

Continuous sharing game G1. In a more practical sce-
nario, operators may define different levels of aggregation for
the information to be shared, such as the ones presented in
Section III. In order to allow for multiple aggregation levels,
we define a two-player game G1. For the sake of brevity,
we assume that the strategy space is continuous. Therefore,
si = I , while I ∈ [0, 1], where I = 0 means not sharing at all,
and I = 1 means sharing all available information, relating to
the fully transparent view in Section III. We define the payoff
function of an operator (similarly to G0) as the utility u of
getting information on the other provider’s network minus the
cost c of giving information to the other provider on its own
network, i.e., π = u(I)− c(I).

Here, we make two assumptions; first, we assume that u(I)
is monotone increasing and concave, i.e., marginal utility is
decreasing as the amount of information received from the
other operator is increasing. This corresponds to an adapted
form of the law of diminishing returns: there are other factors
influencing the income (such as customer population, geo-
graphic limitations, willingness-to-pay, etc.), so improving on
a single factor (information on the other operator’s network)
has diminishing benefits [17]. Second, we assume that the
cost function c(I) is monotone increasing and convex. Note

Fig. 5. Utility, cost and social optimum in G1

that c(I) only corresponds to the cost directly related to
sharing information. Even in a co-opetitive environment such
as the foreseen 5G ecosystem, operators are likely to keep
certain internal information to themselves either for maintain-
ing competitiveness (e.g., exact make and model of network
devices, flow-level traffic statistics, resources reserved for joint
services with other operators) or adhering to national security
requirements (e.g., policies for traffic prioritization and deep
packet inspection, device-level topology). In order to account
for the increasing sensitivity of the nature of information
shared, the marginal cost of sharing is increasing in I .

Keep in mind that operators only care for a positive payoff
in this context, i.e., u(I) > c(I) Moreover, a minimum amount
of information Imin > 0 is required for establishing a contract
(equivalent to the mean or maximum value of a QoS metric as
seen in the non-transparent case). Thus, the operating region
is characterized by Imin ≤ I < Imax) as seen in Figure 5.
The existence of a social optimum can also be noticed: the
aggregate payoff of the two operators is maximal when both
of them choose to share I∗ taking advantage of the largest
distance between utility and cost curves. However, it is easy
to see that the only NE of G1 is (Imin, Imin). None of the
operators wants to unilaterally share more information as it
would result in an increased cost c but the same utility u.
Also, neither of them wants to share less information as it
would result in no contract being established.

Infinitely repeated continuous sharing game Gr. In the
ICT service industry, reputable companies do business on a
longer timescale. SLAs usually have a fixed contract period
(e.g., a month or a year), which is much shorter than the busi-
ness lifetime of operators. Moreover, emerging 5G services
and the demand for flexibility in network operations could
even result in on-demand SLAs with much shorter contract
periods. Thus, the act of information exchange happens re-
peatedly over time calling for a repeated game model. Luckily,
a famous result in game theory hints that mutual cooperation
could still prevail in the iterated prisoner’s dilemma game,
under certain conditions [16].

Let us define Gr as the infinitely repeated extension of G1.
In each round r of Gr, the two operators play G1, but keeping
the history of h|r−1 in their consideration. In such a game, the
social optimum (highest total payoff, at I∗) can be enforced via
the so-called grim trigger strategy sg (g = 1, 2). This means
that NO A plays the optimal s∗1 = I∗ until NO B deviates



from the social optimum by playing s2 6= I∗ in round r; then
it punishes by playing s1 = Imin from round r + 1 forever
on (and vice versa), which is decreasing the payoff of NO B.
This essentially means that the NE strategy s1 of the stage
game G1 serves as a threat to enforce cooperation in Gr (also
known as Nash reversion [16]).

In order to prove this and show the necessary conditions,
we apply the one-step deviation principle [16]. The principle
states that a strategy profile is a sub-game perfect equilibrium
(SPE, a strategy profile that represents a Nash equilibrium
of every sub-game of the original game) if and only if there
exists no profitable one-step deviation. Since we have to
look into future payoffs, we use the common method of
discounting: payoffs are discounted at step r with a discount
factor Θ < 1. This discount factor quantifies the expression of
the traditional time preference (balancing the ongoing interest
rate), patience (how strategic an operator is with regard to
long-term income) and the uncertainty about the length of the
game (an operator could go bankrupt). Since the discounted
payoff at any step is bounded by u(Imax)−c(Imin), the game is
continuous at infinity; hence, we can use the one-step deviation
principle. NO B does not deviate from the optimum (and thus
cooperation) if

∞∑
i=r

Θiπcoop
2 > Θrπdev

2 +

∞∑
i=r+1

Θiπeq
2 (3)

where πsj is the payoff of player j
(j = 1, 2) employing the strategy s (s =
{cooperation, deviation,Nash equilibrium of G1}) for the
given round i. After solving (3) for Θ we get

Θ >
πdev
2 − πcoop

2

πdev
2 − πeq

2

. (4)

The most beneficial one-step deviation at step k is realized
by playing s2 = Imin resulting in a payoff of πdev

2 = u(I∗)−
c(Imin) for NOB. Putting this back to (4) along with πcoop

2 =
u(I∗)− c(I∗) and πeq

2 = u(Imin − c(Imin), we get:

1 > Θ >
c(I∗)− c(Imin)

u(I∗)− u(Imin)
. (5)

If (5) holds, mutually playing grim trigger is SPE for Gr.
Note, that the same discount factor Θ is applicable for NOA
due to the symmetric nature of the game.

It is easy to see that c(I∗)−c(Imin)
u(I∗)−u(Imin)

< 1 always, as
I∗ = arg maxI(u(I) − c(I)) is realized where the deriva-
tives of the concave u(I) and the convex c(I) are equal:
u′(I)|I=I∗ = c′(I)|I=I∗ , and Imin < I∗. Therefore, it is
the relative steepness of the utility versus the cost curve (in
the range [Imin, I

∗]) that determines the exact value of the
discount factor. The larger the relative steepness, the lower the
bound on the discount factor, meaning that even fairly short-
sighted operators (those who strongly discount future payoffs)
can sustain an optimal level of information sharing in the long
run. For a broad set of utility and cost functions, this operation
point is characterized by non-excessive, mutual generosity.

V. A NUMERICAL EXAMPLE

Let us take a closer look at the two-operator example
presented in Section III-C with the setup presented in Figure
2, where the SLOin contains a maximum end-to-end delay
guarantee θ. We map the example to the repeated continuous
information sharing game Gr from Section IV. Recall that
u(I) is monotone increasing in I . Since the increase in utility
comes from the more precise risk estimation for NO A enabled
by more/finer-grained information shared by NO B we can
write

u(I) = u(R̂(I)). (6)

where R̂ denotes the estimated risk. Let R∗ denote the exact
value of risk, then we define the error in risk estimation as

∆R(I) = R̂(I)−R∗. (7)

It is intuitive to assume that ∆R(I) is also monotone increas-
ing in I (we can do at least as well with more information
than with less). As a consequence, both ∆R(I∗) < ∆R(Imin)
and u(∆R(I∗)) > u(R(Imin) hold.

The impact of information sharing (through proper risk
estimation) materializes at the end-user market. Turning to
the end-user C1 of NO A, their SLA contains an SLO (delay
smaller than θ in our case), the monthly cost of the service
(end-user price p, p = p(θ)), the compensation to be paid
by NO A in case of breaking the SLO (assume this is a
constant fraction of p to be credited to C1 in the following
month [6]), and the contract duration (which we ignore for
now). It is of key importance for the operator to set an
optimal θ, which maximizes the income by setting p properly
and avoiding having to compensate more than a few end-
users. Observe that with a fully transparent operation mode
(all relevant information is shared), the exact risk evaluation
R∗ of the corresponding correct threshold θ∗ and price p∗

can be calculated, assuming similar demand across end-users;
however, full transparency is not realistic (this is captured in
the cost function c(I)).

Overestimating the risk. If NOA’s error in risk estimation
∆R(I) > 0, i.e., it overestimates the risk. As a consequence,
it establishes a loose θ̂ > θ∗ and thus a low p < p∗, resulting
in lower than optimal revenues. Alternatively it may contract
less users resulting in sizable unused capacity and similar
low revenues. In order to give a numerical evaluation, we
refer back to Table I. Let us assume that an acceptable level
of risk for NO A is R = 0.1. If NO B shares only the
most basic information on its network (Imin, corresponding
to being non-transparent), NO A will establish an SLO with
the maximum delay being θ = 260 ms. However, if mutuality
results in a sharing more detailed information (closer to Imin,
corresponding to, e.g., being semi-transparent) and a smaller
∆R(I) , NO A can establish an SLO with θ = 208 ms. This
difference can amount to a price (and thus income) decrease
between 5% (assuming p(θ) is increasing logarithmically [17])
and 25% (p(θ) increasing linearly), given the same user
demand.

Underestimating the risk. If NO A’s error in risk estimation
∆R(I) < 0, i.e., it underestimates the risk. As a consequence,



it establishes a too strict θ̂ < θ∗ it cannot keep, resulting
in having to pay compensation to many users leading to a
decreased revenue and a loss of reputation (alternatively, given
a high demand for NO A’s services, it may contract too many
users with a lower θ yielding a similarly result). In order to
give a numerical evaluation, we refer back to Table I. Let us
assume that an acceptable level of risk for NO A is R = 0.1. If
NO B chooses to be semi-transparent, NO A will settle for θ =
208 ms. However, if NO B chooses to share more information
amounting to being transparent, NO A obtains a more accurate
risk estimation R̂|θ=208 = 0.11; therefore, it settles for θ =
260. For NO A, this different SLO will result in an expected
saving of 1 − 0.03/0.11 = 73% in compensation payments
the next month, given similar demand across potential end
customers.

It is important to emphasize that the calculations above
are meant to numerically illustrate the impact of information
sharing on operator revenues. However, as we have made
several assumptions and simplifications (costs, revenues, sup-
ply/demand, acceptable risk, etc.), the nature of the numerical
results are much more important than their absolute values.
Furthermore, the precise mapping of semi-transparent and
transparent information exchange alternatives to the scale of
I (or vice versa) depends on the service context (each of the
two could map to I∗ for different service deployments) and
the exact shape of u(I) and c(I).

VI. CONCLUDING REMARKS

In this paper we have studied the impact of information
exchange through SLAs in multi-operator collaborative service
delivery. We have developed a simple risk model with regard
to violating the end-to-end QoS guarantees towards the end-
user of the service. We have demonstrated how different levels
of aggregation for information received from other operators,
taking part in the same service chain, can result in both over-
and underestimation of the risk. Motivated by this result, we
have shown with the help of game-theoretical modeling that
incentives for mutually sharing more information do exist, if
operators think strategically in the long run. By integrating the
risk and the game model, we have demonstrated numerically
that the reciprocal exchange of finer grain information is
mutually beneficial for all involved operators. Specifically,
through a two-operator service chain example with end-to-
end delay as the key QoS attribute, we have shown how the
lower aggregation level of shared information results in more
precise risk estimation, more optimal definition of the user-
facing SLA, and thus higher revenues for both operators. A
key enabler needed is a platform enabling the desired trust
and long-term cooperation among operators as proposed in
the 5GEx project [4].

Future work. We believe this work has the potential to
open up a new line of research connecting the economics of
5G service delivery, SLA design and network performability.
Potential future work may include: the design of architectural
enablers for multi-operator service orchestration, information
sharing and SLA monitoring; quantifying the impact of differ-
ent coordination models (federation, alliance) on information

sharing; a more realistic game-theoretical (multiple players,
Stackelberg game) and risk model (dependability aspects,
adding cloud operators); and a proper business impact assess-
ment incorporating market dynamics and monetary values.
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