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Problem description
This thesis considers a profit-maximising firm that holds the option to invest in

large-scale hydrogen production from electrolysis. The production is assumed to

be flexible and the cost of operation is mainly determined by the electricity price.

The company has access to power from a local wind farm and must decide how to

optimally use the available power to operate the hydrogen plant. In order to find

the optimal timing and capacity of the investment under uncertainty a real options

approach is applied.
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Abstract

Hydrogen produced from renewable energy can be used as a zero emission fuel.

While hydrogen has applications across several industries, its largest potential is

seen as a fuel for hydrogen vehicles. Widespread adoption of hydrogen technologies

therefore has the potential to facilitate significant emission reductions and con-

tribute towards reaching climate change goals. Most of the technologies are still in

the early stages of commercialisation and high costs have historically constrained

the adoption. However, cost reductions and government incentives to encourage

adoption the technology are expected to lead to substantial growth in the demand

for hydrogen.

In this thesis, we consider a price taking Norwegian power producer who considers

to become a supplier of hydrogen in the future. The company holds the option

to invest in hydrogen production from electrolysis by installing a hydrogen plant

with direct access to power from an existing wind farm. The hydrogen production

is assumed flexible and operations can be costlessly suspended. In order to find

the optimal investment timing, capacity and plant operations under uncertainty,

we apply a real options approach. We propose a sequential model consisting of

two parts. The first part optimizes the operation of the hydrogen plant over its

lifetime. The second part derives the optimal investment timing and capacity of

the plant using the least squares Monte Carlo (LSM). The optimal investment

strategy is investigated through a case study of hydrogen production using wind

power from Valsneset in Bjugn municipality in Norway. We study the investment

under uncertain electricity prices and three hydrogen price scenarios.

Based on the results from the case study and the comparative statics analysis, we

draw three main conclusions. First, the hydrogen price has to decrease significantly

from today’s level to make it optimal to delay the investment in the hydrogen

plant. Second, the hydrogen price affects both the investment timing and the

optimal capacity to invest in. Third, when the hydrogen price and variable costs

approach each other, the investment decision considered becomes more sensitive

to electricity price volatility. In this case, when the volatility is high, the investor

installs a larger capacity. By installing a larger capacity he can produce greater

amounts of hydrogen when electricity prices are low and avoid losses by suspending

operations when prices are high. In other cases, when the volatility is not high

enough for operations to be suspended, it has a smaller effect on the investment

iii



decision.
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Sammendrag
Hydrogen som produseres fra fornybar energi kan brukes som utslippsfritt drivstoff.

Hydrogen kan brukes som drivstoff innenfor mange sektorer, men anses å ha størst

potensiale som drivstoff i transportsektoren. Utbredt bruk av hydrogenteknologi

kan derfor bidra til lavere utslipp og at klimam̊al n̊aes. De fleste teknologiene er

fortsatt i en tidlig kommersialiseringsfase og høye kostnader har foreløpig hindret

at teknologien har blitt tatt i bruk. P̊a den annen side forventes det at kostnad-

sreduksjoner og statlige insentiver for å motivere til bruk av teknologien skal føre

til at etterspørselen for hydrogen øker betraktelig i fremtiden.

I denne oppgaven ser vi p̊a en norsk strømprodusent som vurderer å bli en leverandør

hydrogen i fremtiden. Selskapet har muligheten til å investere i hydrogenproduk-

sjon via elektrolyse ved å installere et hydrogenkraftverk med direkte tilgang til

strøm fra en eksisterende vindpark. Hydrogenproduksjonen antas å være flek-

sibel. For å finne optimalt investeringstidspunkt, kapasitet og optimal produk-

sjonsstrategi under usikre omstendigheter bruker vi en realopsjonstilnærming. Vi

undersøker den optimale investeringsstrategien gjennom et casestudie av hydrogen-

produksjon med vindkraft fra Valsneset i Bjugn kommune i Norge. Vi undersøker

investeringen under usikre elektrisitetspriser og tre hydrogenprisscenarioer.

Basert p̊a resultatene fra casestudiet og sensitivitetsanalysen trekker vi tre hoved-

konklusjoner. Først finner vi at hydrogenprisen m̊a synke betraktelig sammenlignet

med dagens niv̊a før det blir optimalt å utsette investeringen i hydrogenkraftver-

ket. Deretter finner vi at hydrogenprisen b̊ade p̊avirker optimal investeringstid og

kapasitet. Til slutt finner vi at investeringen i hovedsak p̊avirkes av volatiliteten

til elektrisitetsprisen n̊ar hydrogenprisen og de variable kostnadene nærmer seg

hverandre. I dette tilfelle, n̊ar volatiliteten er høy, velger investoren å investere i

en større kapasitet. Ved å installere en større kapasitet kan investoren produsere

mer hydrogen n̊ar strømprisen er lav og unng̊a tap ved å stoppe produksjonen n̊ar

pris er høy. I andre tilfeller n̊ar volatiliteten ikke er høy nok til at produksjonen

stoppes, har den mindre effekt p̊a investeringsbeslutningen.
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Chapter 1
Introduction

Hydrogen produced from renewable energy can be used as an emission free fuel.

While so-called green hydrogen has applications across several industries, its largest

potential is seen within the transportation industry. Widespread adoption of hy-

drogen technologies therefore has the potential to facilitate significant emission

reductions and contribute towards the ambitious climate change goals set by na-

tions all over the world. The EU, for example, has set itself a goal of reducing

emissions by 80-95% compared to 1990 levels by 20501. In order to achieve these

climate goals, mass application of hydrogen vehicles has been proposed by several

action plans and road maps (IEA, 2015; Roadmap 2050, 2010b; The Norwegian

Hydrogen Council, 2012).

Most of the hydrogen technologies are still in the early stages of commercialisation

and are struggling to compete with existing technologies due to higher costs (IEA,

2015). In fact, both the production costs of green hydrogen and hydrogen vehicle

costs remain high. First, compared to other production alternatives, producing

hydrogen from renewable energy is more expensive. Second, the cost of the few

commercially available hydrogen vehicles, remain high and refuelling infrastruc-

ture has not yet been rolled out on a large scale. As a result, there is considerable

uncertainty regarding the adoption of these technologies and the size of the fu-

ture market. However, several reports argue that the market will take-off from

1Low-carbon economy roadmap 2050 by the European Commission: http://ec.europa.eu/

clima/policies/strategies/2050/index en.htm.
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Chapter 1. Introduction

2020-2030 due to large cost reductions and government support (The Norwegian

Hydrogen Council, 2012; IEA, 2015; Fraile et al., 2015c).

In this thesis, we consider a price taking Norwegian power producer who considers

to become a supplier of hydrogen in the future. The company wants to evaluate the

opportunity to invest in a hydrogen plant using power from one of its existing wind

farms. The investment is considered to be completely irreversible and the investor

can choose when to invest and which capacity to invest in. The operation of the

hydrogen plant is flexible. If the plant is installed the investor can at any time

choose whether to sell the available power from the wind farm in the market or use

it to produce hydrogen. However, electricity prices are assumed to be uncertain

and give rise to uncertain profits. The investor must therefore optimally operate

the plant in order to maximises his profit.

There are two main reasons why investment in hydrogen production from wind

energy in Norway shows potential. First, the domestic and international hydrogen

market is expected to grow (Fraile et al., 2015c; Tomasgard et al., 2016). The

Norwegian Hydrogen Council (2012) argues that Norway can play a central role

as exporter of hydrogen in a 2020–2030 perspective. Second, electricity prices are

expected to remain low. In addition, they are expected to become more volatile

in the future due to a higher penetration of variable wind power (Myhre, 2016).

At times of excess supply the prices will drop and at times of insufficient supply

the prices will peak. From the perspective of a Norwegian power producer low

electricity price can potentially reduce its future profits. As a result, the power

producer is looking for ways to adapt to the changing market conditions. Producing

hydrogen when the price is low is therefore an alternative.

The investment opportunity in the hydrogen plant exhibits three interesting char-

acteristics. First, the investment is completely irreversible. The initial investment

cost is sunk and cannot be retrieved. Second, the profit streams are subject to

uncertainty in electricity price. Third, the investor has can choose the investment

timing and capacity and in addition operate the plant in a flexible manner. Un-

der these circumstances, Dixit & Pindyck (1994) have shown that a real options

approach leads to better investment decisions compared to traditional valuation

methods such as the net present value (NPV). We therefore propose to solve this

investment problem by proposing a real options model.

Our main contribution is twofold. First, we study the problem of determining op-

timal investment timing and capacity, in addition to optimising plant operations,

2



by developing an adaptable model with electricity price as the underlying risk fac-

tor. The contributions to this strand of literature are limited. Chronopoulos et al.

(2011) consider a risk-averse price taking firm that can choose optimal timing and

capacity while incorporating risk aversion and operational flexibility in the form

of suspension and resumption options. They consider one underlying risk factor,

namely revenue uncertainty. Dangl (1999), allow for operational flexibility under

demand uncertainty. In the model develop by Dangl (1999) the output is fixed

by the upper capacity of the plant but can be adjusted according to uncertain de-

mand. Hagspiel et al. (2016) elaborate on the paper by Dangl (1999) by analysing

the specific implications of volume flexibility on investment timing and size. To do

so they compare the optimal investment strategy for a flexible and inflexible firm.

All of the aforementioned authors consider one underlying risk. They generally

find that higher uncertainty makes it optimal to delay the investment longer and

invest in a higher capacity. Compared to the work above we develop a less stylised.

We propose a sequential model consisting of two parts. The first part is an opti-

misation that is formulated in order to model the operational flexibility offered by

the hydrogen plant. It manages the complex task of deriving the optimal operation

strategy over the whole lifetime of the hydrogen plant. The second part is a real

options model which derives the optimal timing and capacity for the investment.

Due to the complexity of the model we use a least squares Monte Carlo (LSM)

to find the optimal investment timing and capacity. Moreover, we contribute by

showing how the model can be applied to a real-life case study of a wind farm and

hydrogen plant under uncertainty in electricity prices.

Second, we apply real options valuation to a specific hydrogen investment case,

thereby adding to the ongoing discussion of the economic viability of hydrogen

production from wind power. In particular, we add to the literature studying

wind farms connected to the main grid and to the electrolyser. Due to the high

uncertainty related to the profitability of hydrogen production from wind power,

few investments have been undertaken. Several different framework conditions and

optimal operating strategies have been studied. The viability of wind-hydrogen in-

vestments has mostly been studied based on levelised cost, which does not capture

the inherent investment uncertainty. We contribute by proposing an optimisation

model to find the optimal operation strategy of the wind-hydrogen system. More-

over, by using a real options approach to a specific case study, we contribute to

further discussions of the economic viability of hydrogen production from wind

power.

3



Chapter 1. Introduction

The remainder of the thesis is organised as follows. In Chapter 2, we present the

framework conditions for the investment and give overview of the technologies used

to produce hydrogen from wind energy. In Chapter 3, we provide an overview of

the current and future market for hydrogen. Chapter 4 gives a summary of the

academic literature related to hydrogen production from wind energy and related

real options literature. In Chapter 5, we present our sequential model for optimal

operations of the hydrogen plant and optimal investment timing and capacity. In

Chapter 7, a case study is presented and a solution to our model is provided.

Further, the chapter continues with a comparative statics of the optimal timing

and capacity. Finally we present our conclusions and make suggestions for further

research in Chapter 8.

4



Chapter 2
Production of hydrogen from wind

energy

This chapter explains the fundamentals of producing hydrogen from wind energy.

To set the context of the different technologies that will be discussed, we first

present some basic facts about hydrogen. Second, we explain how the hydrogen

plant and the wind farm could be operated together. Third, we present the tech-

nologies for producing hydrogen. Fourth, we outline how hydrogen can be stored

and finally we discuss different methods for delivering hydrogen to the market.

Figure 2.1 shows an overview of the topics we cover in this chapter.

Figure 2.1: Flow chart of the hydrogen value chain

5



Chapter 2. Production of hydrogen from wind energy

2.1 Hydrogen - the basics

Hydrogen is the most abundant element in the universe. It has a density of 0.08988

kg/m3 at standard temperature and pressure. Hydrogen becomes liquid at its

boiling point, -253°C (Tzimas et al., 2003).

Because hydrogen is an energy carrier, we are interested in how much energy it

can store. Table 2.1 shows the mass energy density and the volumetric energy

density of hydrogen as a gas and as a liquid. The weight specific energy density

of hydrogen is about 3 times higher than traditional gasoline. On the other hand

its volumetric energy density is approximately a quarter of gasoline (Tzimas et al.,

2003). Thus, in order for hydrogen to be economically stored and transported it

needs to be compressed or liquefied.

The energy content of hydrogen is either reported in terms of higher heating (HHV)

or lower heating value (LLV). When H2O reacts with oxygen, water is formed and

energy is released. The differentiation between HHV and LHV is based upon the

state of the H2O products of the reaction. If the H2O product of the reaction is

in liquid state the energy released is called the HHV. If the H2O products of the

reaction is in vapour state the energy released is called the LHV. Both are used in

the literature.

Table 2.1: Volumetric and mass energy density of hydrogen

Volumetric energy
density (kWh/m3)

Mass energy
density (kWh/kg)

HHV LHV HHV LHV
GH2 at normal conditions 3.5 3.0 39.4 33.3
LH2 at boiling point 2,789 2,359 39.4 33.3

Source: (Tzimas et al., 2003)

2.2 Operating the wind farm and the hydrogen

plant together

There are several concepts for links between wind power and hydrogen production

(Dahl et al., 2013). In this thesis, we consider a wind farm that is connected to the

electrical grid and to the electrolyser. We will refer to this as wind-hydrogen system.

The grid is assumed to have enough capacity to export all the power produced from

the wind farm. The system configuration is shown in Figure 2.2.

6



2.2 Operating the wind farm and the hydrogen plant together

Figure 2.2: Wind-hydrogen system configuration

Source: Dahl et al. (2013)

Wind farms produce variable amounts of electricity depending on the wind condi-

tions. Its production patterns are not necessarily aligned with variations in demand,

with regard to both location and time of supply. This causes periods of supply sur-

plus and deficit, which is reflected in the market price of electricity.

The power produced from grid-connected wind power is normally traded on a

power exchange. In Norway, electricity is traded on the Nord Pool Spot Exchange.

The Nord Pool Spot Exchange consists of the day-ahead market and the intraday

market (also known as the balancing market). The day-ahead market is the main

area for electricity trading. Here, contracts are made between seller and buyer

for the delivery of power on the following day. The intraday market supplements

the day-ahead market and helps secure the necessary balance between supply and

demand. In Norway, the power from wind farms is primarily only traded in the day

ahead market and not sold in the balancing market (Nord Pool, 2016). The reason

is that Norway’s large portion of hydropower is sufficient to balance the supply

and demand. In this thesis we therefore only consider the day-ahead market for

trading power from wind farms.

The investor we are considering already owns a wind farm. Since the wind farm

investment is assumed to already have taken place the related costs are sunk. We

therefore isolate the value of investment in the hydrogen plant from the value of

the wind farm. By investing in the hydrogen plant the firm gets the opportunity to

use available power from the wind farm to produce hydrogen instead of selling it on

7



Chapter 2. Production of hydrogen from wind energy

a power exchange. The value of the hydrogen plant therefore depends on the extra

profit generated from selling hydrogen and not electricity. However, even though

we isolate the value of the hydrogen plant, the optimal operational strategy must

still maximise the investor’s combined profit from the operating the wind farm and

the hydrogen plant. In Chapter 5 we develop a model that optimises the use of the

available power.

2.3 Technologies for hydrogen production

In this subsection we focus on hydrogen production by electrolysis, which is the

only way hydrogen can be produced from wind power. Today electrolysis only

accounts for 4% of the world’s hydrogen production.

For completion, we briefly mention the other ways to produce hydrogen from fossil

fuels. Steam methane reforming, accounts for 48% of the world production, fraction

of petroleum, accounts for 30%, and coal, accounts for 18% (IEA, 2015). In contrast

to hydrogen production via electrolysis from renewable power, these production

methods produce CO2 as a by-product.

In the following subsection, we explain both the concept of electrolysis and the

different technologies used in detail.

2.3.1 Hydrogen production from electrolysis

2.3.1.1 Electrolysis - the basics

Electrolysis is the process of splitting water into hydrogen and oxygen by applying

a direct current. This process takes place in an electrolyser which consists of an

anode, a cathode, power supply, and an electrolyte. The electrolyte generally

consists of ions and is added to enhance the conductivity. These components

together make up an electric circuit and Figure 2.3 illustrates a basic electrolysis

cell.

The process of producing hydrogen can be described as follows: The electrolyte

splits into positive and negative ions. These ions conduct electricity in a water

solution by flowing from one electrode to the other. Electrons flow from the negative

terminal of the DC source to the cathode at which the electrons are consumed by
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Figure 2.3: Water electrolysis cell

Source: Zeng & Zhang (2010).

hydrogen ions (protons) to form hydrogen. Hydroxide ions migrate through the

electrolyte solution to the anode, at which the hydroxide ions give away electrons.

When hydroxide ions give away electrons, water and oxygen is produced. The role

of the diaphragm is to separate the hydrogen and oxygen that is produced (Zeng

& Zhang, 2010).

The chemical reaction can be described by the following equation:

H2O −→ H2 +
1

2
O2 (2.3.1)

The minimum theoretical voltage required for the reaction to take place is referred

to as the reversible cell voltage and is equal to 1.23V (Zeng & Zhang, 2010) and

the minimum energy required to produce hydrogen is then about 33 kWh/kg. In

practice, the required voltage is always higher than the reversible cell voltage due

to various sources of resistance in the cell circuits. Sources of resistance include

electrical resistances in the circuit, reaction resistances at the electrode surfaces and

mass transport resistance. An implication of this is that all commercial electrolysers

have a minimum cell voltage for the reaction to take place.
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2.3.1.2 The electrolyser plant

An electrolyser plant consists of two main components: One or more cell stacks

and the balance of plant (BOP). A cell stack consists of up to more than 100 cells

connected in parallel or series. The BOP includes other systems like an inverter to

convert the input electricity from alternate to direct current, water treatment and

storage. Stacks can be mounted in parallel using the same BOP infrastructure.

Electrolysers are hence highly modular systems. While this makes the technology

very flexible with respect to hydrogen production plant size, it also limits the effects

of economies of scale, as even big electrolysers are based on identically sized cells

and stacks (Körner, 2015)

In the following, we briefly explain key performance indicators (KPI) for electrol-

ysers along the lines of Bertuccioli et al. (2014).

Capacity - Plant and stack size

The total capacity of both stacks and plant sizes varies depending on the production

capacity needed. The largest stacks have a capacity of up to 2.3 megawatts (MW)

and the largest plants have capacities up to 150 MW (IEA, 2015). While there is

limited economies of scale regarding the number of cell stacks, constructing larger

plants can bring some cost advantage with regard to BOP.

Efficiency

The efficiency of electrolysis is measured by power consumed per volume of hy-

drogen. The determinant of efficiency is the operating cell voltage. Increasing the

voltage (keeping the current constant) reduces efficiency. There are three impor-

tant factors that can influence the cell voltage: Operating temperature, operating

pressure and the type and concentration of electrolyte. A higher operating temper-

ature decreases cell voltage. A higher pressure reduces the size of the gas bubbles

and minimises the resistance leading to a lower operating voltage. The choice and

concentration of the electrolyte determine the resistance of the electrolyte.

It is important to keep in mind that the efficiency of electrolysers is not constant

across all loads. Electrolysers are usually more efficient at lower loads (down to

a certain minimum). Moreover, the efficiency of electrolysers decreases as it ages.

This concept is known as voltage degradation and means that a higher cell voltage

must be applied to maintain constant hydrogen production as the cell ages. After
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6-7 years of operation the efficiency can be roughly 10% lower than at the start of

life.

There is an important trade-off between electrolyser efficiency and hydrogen out-

put. The rate of production is measured by volume produced per unit time and

increases with current density. To understand this trade-off, recall that the elec-

trolyser cell is an electric circuit where voltage and current are related by Ohm’s

law: V = RI. Hence if the voltage is increased, the current is automatically also

increased. Therefore if the voltage increases the efficiency of the electrolyser is

reduced, but at the same time its output increases.

Investment cost and operational expenditure

The cost of producing hydrogen by electrolysis is mainly determined by the vari-

able cost of electricity and the initial investment cost associated with buying the

electrolyser. Operational costs excluding electricity have been reported to be 2-5%

of capital expenditure per year. The operational costs per MW installed decrease

with plant size up to a certain level. The reason is costs such as labour do not

increase linearly with the capacity installed.

In the future significant reductions of electrolyser costs are expected due to techno-

logical improvements and more efficient production. Today electrolysers are only

built in small volumes and for niche markets. It is expected that much of the cost

reduction potential in the future will stem from improvements in the whole sup-

ply chain and through increased production volumes for which more cost-efficient

production techniques can be used (Bertuccioli et al., 2014).

Lifetime

Lifetimes of existing electrolysers have been reported to be up to 100 000 hours

(Bertuccioli et al., 2014). Stacks rarely break down and the lifetime of electrolysers

is typically defined in terms of the maximum efficiency drop due to voltage degra-

dation that the operator allows. The acceptable efficiency drop before the stacks

needs to replaced depends the trade-off between the cost lower efficiencies and the

capital cost of replacing the stack. At the end of its life time only the electrolyser

stacks needs to be replaced. The BOP and related infrastructure have a longer

lifetime and do not need to be replaced (Bertuccioli et al., 2014). Replacing the

electrolyser stack is referred to as regeneration.
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Pressurised operation

Today pressurised electrolysers, typically delivering hydrogen at 3 MPa, are estab-

lished on the market. Products delivering higher pressures are less mature, and can

be considered as early commercial. Pressurised operation can reduce or eliminate

the cost of an external compressor.

Dynamic and flexible operation

Historically, electrolyser systems have been designed to operate continuously at a

set operating point to deliver a hydrogen stream of defined purity and pressure for

industrial applications. However using an electrolyser with variable input energy

requires it to be operated dynamically. The ability of an electrolyser system to

operate dynamically can be captured through the four following metrics: Minimum

part load operation, start-up time from cold, and ramping up and down time

between minimum part load and full load.

2.3.1.3 Types of electrolysers

There are three types of electrolysers: (1) alkaline electrolysers (2) polymer/proton

electrolyte membrane (PEM) electrolysers and (3) Solid oxide (SO) electrolysers.

The electrolysers are mainly distinguished by their electrolyte and the charge car-

rier. Both alkaline and PEM electrolysers have been commercialised while SO

electrolysers are still under research and development (R&D). Currently alkaline

electrolysers have significantly lower investment cost and higher efficiency than the

other two. However, PEM and SO electrolysers have higher potential for future

cost reductions. In the case of SO electrolysers, it also has potential for future ef-

ficiency improvements. Table 2.2 compares the three electrolysers across the KPIs

described above. In the following, we describe each type of electrolyser in more

detail.

Alkaline electrolysers

Alkaline electrolysers use liquid electrolyte. They are currently the most mature

and cost efficient way to produce hydrogen from electricity if hydrogen is produced

at large quantities and at high loads (Körner, 2015). Alkaline electrolysers are

currently used at industrial scale mainly to produce fertilisers from cheap electricity

(Körner, 2015).
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Table 2.2: KPIs of alkaline, PEM and SO electrolysers

KPIs Alkaline PEM SO
Capacity (plant size) Up to 150 MW Up to 1 MW Lab scale
Efficiency (HHV) 62-82% 68-78% 75-90%
Initial investment cost 750-1,350 ¤/kW 1,350 - 3,400 ¤/kW -
Lifetime (hours) 60,000 - 90,000 20,000 - 690,000 1,000
Maturity Mature Early market R&D
Output pressure (MPa) ∼0-3 1-3 4
Operating temp. (◦C) 70-90 60-80 700-900

Minimum load (%) 20-40 5-10 3% *

Start-up time from cold (min) 20 - several hours 5-15 12 *

Ramp-up time from part load (min) ∼0-10% 10-100 0.1 *

Source: Körner (2015)
* Forecasted operation characteristics of SO electrolyser. Source: http://vbn.aau.dk/

files/80222058/Technology data for SOEC alkali and PEM electrolysers.pdf

The main advantages of alkaline electrolysis technology are availability, maturity,

proven durability and low investment costs compared to other electrolysis tech-

nologies. Moreover the purity of the hydrogen produced is the highest compared

to SO and PEM electrolysers. The main challenges are the low current density,

low operating pressures and limited modes of dynamic operation.

PEM electrolysers

PEM electrolysers use a polymer membrane only permeable for hydrogen ions as

the electrolyte. This differs from an alkaline electrolyser where a liquid electrolyte

is used. PEM electrolysers have recently been introduced to the market, but have

a much higher potential to become more cost efficient in the future compared to

Alkaline electrolysers.

The main advantages of the PEM electrolysers are the greater production rates

and flexibility with respect to minimum load, start-up time from cold and ramp up

time from part load. The main challenges are related to the high investment cost

and short lifetime.

SO electrolysers

In solid oxide electrolysers the electrolyte is a solid ceramic membrane. Solid

oxide electrolysers are still in the laboratory stage, but are anticipated to become

commercially available by 2020 (Bertuccioli et al., 2014).

The main difference of SO electrolysers to PEM and alkaline electrolysers is the

high operating temperature of SO electrolysers. The heat can either be provided
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by internal electricity or from external sources. The main advantage with the high

temperature is a higher efficiency. Moreover the investment costs of SO electrolysers

could drop below PEM electrolysers in the future. Stack costs of SO electrolysers

are currently are high but could drop to below PEM electrolyser costs in the future,

due to the lack of precious metals and high energy density (Körner, 2015). On the

other hand, there are also some challenges related to the high temperature. First

the high operating temperature causes inflexibility in terms of start-up time from

cold mode and load variation. The high temperature also increases costs due the

need for materials that can withstand the heat, increased engineering complexity

and reduced component lifetimes (Körner, 2015). The lifetime of the cell stacks

is therefore the biggest challenge that must be overcome in order to make SO

electrolysers a competitive alternative in the future.

2.4 Hydrogen storage

To store or transport hydrogen it must either be compressed or liquefied. Com-

pressing or liquefying the hydrogen increases its volumetric energy density. We

consider two storage options that can be used for medium-scale hydrogen produc-

tion from wind power: Pressurised tanks for storing hydrogen gas and cryogenic

tanks for storing liquid hydrogen. Both of the options can be used for medium-

scale, medium-term and small-scale, short term storage. For both gaseous and

liquid storage compressors are a key technology, and will be discussed at the end

of this section.

Two other promising options for achieving high volumetric energies include metal

hydrides and carbon nanostructures. These storage technologies are not considered

here since metal hydrides are currently in the demonstration phase and carbon

nanostructures are still under R&D (IEA, 2015). It is also possible to store hydro-

gen on a large scale in for example underground salt caverns or depleted oil fields.

However, this alternative will neither be considered here because it will require a

dedicated storage site Körner (2015).

Table 2.3 summarises the key parameters of the storage, compression and liq-

uefaction technologies. The different technologies are described in further detail

below.
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Table 2.3: Hydrogen storage technologies

Application Power Efficiency (%) *
Initial

investment
cost

Lifetime
(years)

Maturity

Compressor,
18 MPa

- 88-95 ∼60 ¤/kW 20 Mature

Compressor,
70 MPa

- 90-91 150-350 ¤/kW 20 Early market

Liquefier 15-80 MW ∼70 800-1,800 ¤/kW 30 Mature

Pressurised tank 0.1-10 MWh Almost 100
5,400-

9,000 ¤/Mwh
20 Mature

Liquid storage 100-105 MWh
Boil off stream:

0.3% loss per day
700-

9,000 ¤/MWh
20 Mature

* Efficiencies are based on lower heating value. The energy required by the application per kg
of hydrogen is therefore (1 − efficiency) · LLV
Source: Körner (2015)

Pressurised tanks

Pressurised tanks are the most common and mature hydrogen storage technology.

Current storage capacities are between 100 kWh and 10 MWh. Storage pressures

lay between 20 MPa and 70 MPa. Pressurised tanks are both used for stationary

storage and in mobile applications such as in fuel cell electric vehicles (FCEVs)

that run on hydrogen and to transport hydrogen with tube trailers.

If compressed gas is injected into pressurised tanks, the tanks are almost 100%

efficient. Hence, no energy is lost or required to store the hydrogen in pressurised

tanks. The investment costs of pressurised tanks are strongly dependent on pres-

sure. At lower pressures (around 20 Mpa) investment costs lay around ¤5-9/kWh

of hydrogen. At higher pressures (around 70 MPa) the investment cost lay around

¤17/kWh of hydrogen (Körner, 2015).

Cryogenic tanks

Liquefied hydrogen can be stored in cryogenic tanks. This requires a temperature as

low as minus 253 degrees C° under atmospheric pressure. Achieving this extremely

low temperature requires several stages of compressions as well as heat exchangers

and multiple cooling cycles. This is an energy intensive liquefaction process, and

it uses energy equivalent to 25-40% of the hydrogen stored (Körner, 2015).

Cryogenic tanks have a capacity of up to 100 GWh. However, cryogenic tanks

provide limited storage time of up to a few days due to the boil-off gas losses.

Cryogenic tanks are isolated pressure tanks. The gas therefore behaves approxi-

mately according to the ideal gas law. As temperature rises the pressure increases.
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Therefore, very low temperatures can be sustained in the tank through constantly

so-called releasing boil-off gas. The efficiency of the storage tank depends time

since around 0.1% to 0.5% of the stored hydrogen needs to be released per day.

Investment costs range between ¤0.9-9/kWh (Körner, 2015).

Compressors and liquefiers

Compressors and liquefiers consume electricity to convert, compress or liquefy the

hydrogen. We do not go into detail about how the compressors and liquefiers

work, but present their current performance in Table 2.3. From Table 2.3 it can be

observed that the energy required for compressing 1 kg is about 10% of its LHV.

The energy required to liquefy 1 kg of hydrogen is about 30% of its LHV.

2.5 Transport and distribution

Since the investor considered in this is potentially going to produce hydrogen at

an existing wind farm site, the hydrogen must be transported and distributed to

refuelling stations. To supply nearby refuelling stations, gaseous truck transport,

liquefied truck transport represent two available alternatives. For economic ex-

port of hydrogen to other parts of the world pumping gaseous hydrogen through

pipelines or transporting liquid hydrogen on ships are two alternatives (The Nor-

wegian Hydrogen Council, 2012). Table 2.4 summarises the key parameters of the

different transportation and distribution options that are currently available. These

alternatives will be described in more detail in the following subsections.
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Table 2.4: Hydrogen transportation technologies

Application Capacity (kg) Efficiency
Initial

investment
cost

Lifetime
(years)

Maturity

Hydrogen tube
trailer (gas)

≤ 1,000
∼100%, excl.
compression

900,000 ¤ - Mature

Liquid tankers for
hydrogen delivery

≤ 4,000
Boil off stream:

0.3% loss per day
680,000 ¤ - Mature

Pipeline -
95%

incl. compression

Rural:
1.08 M ¤/km

Urban: 680,000-
1.35 M ¤/km

40 Mature

Ship ≤ 177,500* -
-
-

- R&D

* Estimated capacity of a planned demonstration H2 tanker by Kawasaki Heavy Industries.
Source: http://www.greencarcongress.com/2013/09/20130928-khi.html

Source: Körner (2015)

2.5.1 Gaseous tube trailers

Gaseous tube trailers have pressures of up to 60 MPa and are so far limited to

capacities of up to 1,000 kg. However, the capacities of average existing tube

trailers lay in the range of 300 kg to 600 kg. Körner (2015) estimates that a 600 kg

truck would be sufficient to refuel less than 120 vehicles. He shows that hydrogen

would need to be delivered several times a day, since an average petroleum station

in Europe serves 200 cars per day.

The cost of a gaseous truck is around ¤900/kg of hydrogen. Körner (2015) con-

cludes that gaseous truck transport is viable alternative for lower hydrogen demand

and short transportation distances.

2.5.2 Liquefied truck trailers

Liquefied truck trailers can achieve capacities of up to 4,000 kg of hydrogen. How-

ever, as we have already explained, the liquefaction of the hydrogen is costly and

liquefied transportation is also subject to boil-off losses. Körner (2015) concludes

that liquefied trucking is the preferable alternative for high transport distances

even if demand stays moderate.
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2.5.3 Hydrogen pipelines

Hydrogen pipelines are very efficient but the large upfront investment cost and

the risk linked to future utilisation are challenging. Either hydrogen can be mixed

into natural gas pipelines or use dedicated pipelines for hydrogen. An option for

Norway is to inject surplus hydrogen into existing gas-pipelines to Europe (Dahl

et al., 2013). However, a domestic or international gas-grid dedicated to hydrogen

transport in Norway is not currently in place, and as seen from Table 2.4 this would

require large investments.

Körner (2015) concludes that pipeline transport is most efficient at high hydrogen

flows over a broad range of distances.

2.5.4 Liquefied hydrogen on ships

To this date, liquefied hydrogen transport on ships in under R&D. Kawasaki Heavy

Industries is planning to have a demonstration ship ready in 2017.2 The available

information about the ship is shown in Table 2.4.

2Planned liquid H2 tanker by Kawasaki Industries: http://www.greencarcongress.com/2013/

09/20130928-khi.html
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In 2013 global hydrogen consumption amounted to 60 million tons (Fraile et al.,

2015c).3 Hydrogen is currently almost all used as a feedstock in the industry. Most

of the industry demand comes from the chemical and refining industries (Fraile

et al., 2015c).

In addition to the use of hydrogen in industrial processes, the use of hydrogen as an

energy carrier is emerging. As an energy carrier, hydrogen can be used in sectors

where there is demand for energy and Fraile et al. (2015c) identify two additional

segments for hydrogen. First, hydrogen can be used as an emission-free fuel in the

transportation sector. Second, hydrogen can be blended into the natural gas-grid

to enhance natural gas. The current demand in these segments is negligible, but

is foreseen to grow in the future. Note that another possible segment could be

co-generation of heat and electricity in buildings using hydrogen. This segment is

not considered here, due to limited information available about the current and

future demand.

In general, very few hydrogen market studies are publicly available. To the best of

our knowledge, we use the most recent data available for our analysis. The main

market estimations cited in this report are gathered from two reports developed

in a collaborative effort between the European union and New Energy World-JU,

named CertifHy.4 In the first report, Fraile et al. (2015c) show how the current

3Global demand was converted to metric tons using a hydrogen density of 33.3 kWh/kg.
4Unless otherwise cited, the market estimations are taken from these reports.
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market is segmented and forecasts how the hydrogen demand will evolve in the

period 2015 to 2030. The second report by Fraile et al. (2015b), focuses on the

future penetration rates of green hydrogen.

The overall aim of this chapter is to identify possible markets to which a Norwegian

investor could sell hydrogen produced from wind power. We first consider each of

the segments for the European market and discuss their outlook. In the analysis,

we distinguish between total hydrogen demand and the demand for green hydrogen.

Second, we briefly consider Japan as another possible market. Next, we consider

the demand for hydrogen in Norway. Finally, based on the analysis of the market

segments, we develop future price scenarios that serve as input to our model.

3.1 The European hydrogen market

3.1.1 The industry segment

The industry segment in Europe can further be divided into four sub-segments:

Chemical, refining, metal processing and ”other”. According to Fraile et al. (2015c)

the chemical segment is the largest with an industry share of 63%. In the chemical

industry, hydrogen is mainly used to produce ammonia and methanol. Refineries

are the second largest consumer with an industry share of 30%. In the refining

industry, hydrogen is used for hydro-treating, hydro-cracking and desulphurisation

during the refining process to produce cleaner fuels. Metal processing encompasses

the use of hydrogen to yield iron reduction and is the third largest sub-segment with

an industry share of 6%. The ”other” segment includes the use of hydrogen in the

electronics, aerospace, glass, food and heat treatment industries. These industries

account for 1% of the total industry share. The industry consumption in Western

Europe in 2010 was 7 million tons or 16% of the world consumption (Fraile et al.,

2015c). Asia and Pacific are the world’s leading consumers representing 1/3 of

global consumption.

The main three producers are merchant companies, captive producers, and by-

product hydrogen producers. Most of the hydrogen is produced by captive produc-

ers (64%), that produce hydrogen for their direct customer or their own use. The

captive producers are followed by the commercialised by-product (27%) producers

and the merchant suppliers (9%). In the industrial segment, it is widely accepted
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that Steam Methane Reforming (SMR) is the main production method and will

continue to be so for years to come (Fraile et al., 2015a).

In contrast to many other commodities, hydrogen is not traded on an exchange.

The price of hydrogen is often established through contracts and depends on the lo-

cation of delivery and the purity of the hydrogen delivered. This makes the market

less transparent and market prices are not publicly available. Nevertheless, Fraile

et al. (2015c) report that prices are known to vary between ¤10/kg and ¤60/kg

depending on the location of delivery and purity of hydrogen. The production cost

of hydrogen using SMR is expected to remain stable, and is forecast by Dillich

et al. (2012) to be around ¤2.6/kg in 2030.5

The global hydrogen market in the industrial sector is expected to grow at a rate

of 3.5% per year until 2025 (Fraile et al., 2015c). The primary driver of this growth

will be the petroleum refining industry due to increasing demand for cleaner fuels

(Freedonia, 2012). Assuming a similar trend Fraile et al. (2015c) estimate that the

European industrial market will grow to 8 million tons in 2025. Fraile et al. (2015b)

estimate that the proportion of green hydrogen in this segment could reach 30%

by 2025 and increase to 40% beyond 2030.

3.1.2 The transportation segment

The EU has set a target to reduce greenhouse gas emissions by 80-95% when

compared to 1990 levels by 20506. The transportation sector, including road, sea

and air transport, accounts for about 25% of EU’s greenhouse gas emissions7. EUs

low carbon economy roadmap suggests that emissions in the transportation sector

could be redcued by up to 60%. The decarbonisation requires mass application

of electric vehicles, hydrogen fuel cell vehicles and/or biofuels (Roadmap 2050,

2010b). The main driver for hydrogen demand will come from the use of FCEVs

that run on hydrogen. We consider FCEVs to include trains, cars, buses, lorries,

other utility vehicles and ferries and ships that run on pure hydrogen.

The future of FCEVs is dependent on investments in refuelling infrastructure and

commercialisation of vehicles. In 2014 around 550 FCEVs (passenger cars and

5The price of hydrogen per kg was converted to ¤/kg using an average exchange rate of 1,286
¤/$ in 2012.

6Low-carbon economy roadmap 2050 by the European Commision: http://ec.europa.eu/

clima/policies/strategies/2050/index en.htm.
7Current greenhouse gas emissions in the EU by sector: http://ec.europa.eu/clima/

policies/international/paris protocol/transport/index en.htm.
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buses) were running in demonstration projects across the world (IEA, 2015). As

of 2016 there are only three FCEV commercially available8. The vehicle costs

remain high and FCEV prices announced have been set around ¤66,0009 ex. VAT.

The risks associated with market uptake of FCEVs have been a significant barrier

to infrastructure investment. (IEA, 2015) estimates that investments in refuelling

infrastructure would be in the orders of tens to hundreds of billions of dollars.

Despite these initial challenges, Fraile et al. (2015c) present three EU-wide and

national studies that expect that the penetration of hydrogen vehicles will increase

in the future10. HyWays (2008) estimates that the number of FCEVs in EU could

reach 5-7 million vehicles (3-7% penetration) in 2025 and possibly 12-25 million

vehicles (9-13% penetration) in 2030, depending on the learning rate and policy

support. In terms of hydrogen demand, this translates into 0.6-0.8 million tons and

1.4-3 million tons per year for 2025 and 2030, respectively.11 A report by McKinsey

& Company (2010) estimates the total number of vehicles to reach 1 million in 2025

and 68 million12 in 2050. This would translate into a demand of 8.1 million tons.

In addition Fraile et al. (2015c) present a collection of several national hydrogen

transportation studies. By aggregating these national studies Fraile et al. (2015b)

estimate the demand for both green and normal hydrogen. Their forecast is shown

in Figure 3.1.

Fraile et al. (2015c) also present several studies that forecast the future price of

hydrogen. As already explained, the hydrogen price is directly dependent on pro-

duction and distribution costs. In the short-term the cost of dispensed hydrogen

at the refuelling station is expected to be high due to the underutilisation of retail

stations. In the long term the retail price is projected to gradually decrease from

today’s level of ¤10/kg to ¤5-7/kg by 2030 (Fraile et al., 2015c).

8Toyota Mirai, Hyundai ix35 FCEV and Honda Clarity https://en.wikipedia.org/wiki/

Hydrogen vehicle.
9Price of Toyota Mirai at launch: https://www.toyota.no/world-of-toyota/articles-news

-events/2014/mirai.json.
10Hyways, McKinsey and H2Mobility scenarios.
11Assuming that an average passenger vehicle in the EU travels about 12 000 km/year, and that

the FCEV consumes about 1 kg hydrogen/100 km.
12McKinsey & Co estimates a penetration rate of 25% and the number of passenger cars in

Europe to be 273 million in 2050.
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Figure 3.1: Estimated demand for hydrogen in the European transportation seg-
ment

Source: Fraile et al. (2015b)

3.1.3 The enhanced natural gas segment

The market for enhanced natural gas is also referred to as the power to gas segment.

As already mentioned, hydrogen producers may decide to inject hydrogen into the

natural gas grid. This can be done if there is not enough demand from other

higher value users. The hydrogen blended into the grid can be used for heating

applications or any other application of natural gas.

To this date, gas grid injection is not widely spread, and volumes of hydrogen pro-

duced and injected are negligible. Moreover, it is difficult to assess future hydrogen

gas grid injections. Fraile et al. (2015c) have estimated the total amount that could

be technically injected into the grid. For this forecast, they assume that about 80%

of the total hydrogen injected to the natural gas is produced from renewable elec-

tricity. The demand for green hydrogen in the enhanced natural gas segment is

estimated to be 0.16 million tons in 2025 and 0.34 million tons in 2030 (Fraile et al.,

2015b). It is important to highlight that these figures, rather than showing market

penetration expectations, are reflecting the technical capacity.

3.1.4 Summary of the demand from the three segments

The total demand estimated for hydrogen in Europe is given by Fraile et al. (2015b)

in Figure 3.2.

The share of green hydrogen between the market segments is shown in Figure

3.3.
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Figure 3.2: Estimated total demand for hydrogen in Europe

Source: Fraile et al. (2015c)

Figure 3.3: Share of green hydrogen in the European market segments in 2030

Source: Fraile et al. (2015b)
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3.2 The Japanese market

In addition to the European market, Japan is another possible international mar-

ket. Japan has ambition of establishing a zero-emission hydrogen supply chain by

2040, and is currently a net importer of energy (Hamanaka, 2015). The Japanese

hydrogen market is expected to grow to 1.3 million tons in 2030 and 13.5 million

tons in 2050 (DNV-GL, 2015). Japan is also planning to demonstrate hydrogen

technology under the Summer Olympics in 2020 possibly using hydrogen that is

made in Norway13.

3.3 The Norwegian market

One of the most recent report that studies the demand for hydrogen in the trans-

portation sector in Norway is Tomasgard et al. (2016). With respect to the industry

and hydrogen enhanced natural gas segment, the authors have not been able to

find detailed information. However, in 2007 83,000 tons of hydrogen were produced

in Norway, and Maisonnier et al. (2007) list Norwegian producers and their capac-

ities. Most of these producers supplied the industry segment (Maisonnier et al.,

2007).

3.3.1 The transportation segment

In Norway the target is to become climate neutral by 2030. To achieve this a

drastic reduction of emissions in the transport sector will be necessary (Tomasgard

et al., 2016).

In a recent study Tomasgard et al. (2016) estimate the future deployment of FCEVs

in the four largest cities in Norway from 2016 to 2030. The report considers three

scenarios for the adoption of FCEVs: High, medium and low. For each scenario

the report estimates the number of passenger cars, taxis, buses, lorries and fer-

ries.

Based on the adoption of FCEVs in the different scenarios the total hydrogen

demand is estimated to be equal to 9,500 tons in the low scenario, 30,000 tons in

13Norwegian hydrogen as fuel in the Summer Olympics 2020:
http://www.aftenposten.no/norge/Norsk-hydrogen-blir-en-viktig-OL-deltager-i-Tokyo-
61345b.html.
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the medium scenario and 61,000 tons in the high scenario.

3.3.1.1 Other possible uses of hydrogen in the transportation segment

The report also mentions three other potential areas of use that could increase

the demand for hydrogen in the Norwegian market further. First hydrogen can

be used to enhance the efficiency of bio gas production used for buses. Today the

municipality of Oslo produces 6,000 million Nm3 biogas annually, and is planning

to double the production by 2018 (Tomasgard et al., 2016). Injecting hydrogen

could increase the amount of biogas produced with 50%. Second, hydrogen can

be used to propel construction vehicles. The potential for construction vehicles is

estimated to be about 2/3 of the potential in the lorry segment. Third, hydrogen

can be used for trains. Møller-Holst & Thomassen (2015) study alternative fuels

for train routes that cannot be electrified. Møller-Holst & Thomassen (2015) find

that hydrogen trains could constitute one of the best alternatives already by 2021.

However, by 2027 and 2050 they should become even more competitive compared

to other alternatives. The study considers four routes: Nordlandsbanen from Bodø

to Trondheim, Rørosbanen from Strøen to Hamar, Solørbanen from Elverum to

Kongsvinger and Raumabanen from Åndalsnes to Domb̊as. We have summarised

the potential hydrogen demand that could arise if these trains would use hydrogen

as fuel in Table 3.1. For Rørosbanen and Nordlandsbanen it will be sufficient to

have one refuelling station at Trondheim central station.

Table 3.1: Potential hydrogen consumption from railway in Norway

Energy
consumption

per roundtrip (MWh)

Number of
roundtrips

per day

Hydrogen
consumption

per day (tons)

Hydrogen
consumption

per year (tons)
Nordlandsbanen 30 5 1.9 563
Rørosbanen 18 10 1.1 338
Solørbanen 20 2 1.3 375
Raumabanen 3.3 3 0.2 62

Source: Møller-Holst & Thomassen (2015)
To calculate the potential hydrogen demand, we have assumed a fuel cell efficiency of 50%
and energy density of 32 kWh/kg.
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3.4 Price scenarios

In this subsection we demonstrate the potential demand for hydrogen produced by

an investor and then create different scenarios for the price of hydrogen that serve

as input to our model.

Based on the market analysis above it would be feasible for an investor to supply

both the European, the Japanese and the Norwegian market. Table 3.2 shows the

estimated market size for green hydrogen in these markets in 2030. In all of the

markets the transportation segment is foreseen to have the largest growth. To

illustrate what these market sizes could mean in terms of demand for hydrogen

produced by an investor, we arbitrary assume that the firm can capture a market

share of 1%. This demand could be used as a general idea about how much hydrogen

the firm could produce.

Table 3.2: Market size for Europe, Japan and Norway and possible market shares
in each country

Europe 2030 Japan 2030 Norway 2030

Market size (tons) 786,000* 195,000* 30,000†

Demand (tons) for 1% market share 7,860 1,950 300
* We have assumed that green hydrogen has a 15% share of the total market.
† We have assumed that all of the demand consist of green hydrogen

When the firm is going to decide which markets to supply it must consider future

production and distribution costs. For small-scale production it would most likely

be most beneficial to supply the Norwegian market. However, for large-scale pro-

duction it might be a possibility to export hydrogen to Europe and Japan. In fact,

recently SINTEF energy and several partners14 were awarded 14 million NOK to

conduct a feasibility study of the potential for large scale hydrogen production in

Norway for export to the European and Japanese markets.15

The future retail price of hydrogen is uncertain. The uncertainty is related to both

the average price level and other characteristics such as price volatility. Trying to

forecast the dynamics of the price is therefore difficult. For modeling purposes, we

will assume that the hydrogen price will be constant in the future. Based on the

14NEL, Statoil, Linde Kryotechnik, Mitsubishi Corporation, Kawasaki Heavy Industries, NTNU
and The Institute of Applied Energy, among others.

15Summary of the Strategic Road Map for Hydrogen and Fuel Cells by the Japanese Agency for
Natural Resources and Energy: http://www.meti.go.jp/english/press/2014/pdf/0624 04a

.pdf.
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estimates of the future hydrogen price prices presented in Section 3.1.2 we create

three possible future scenarios:

• Scenario 1: We assume that the retail price remains at today’s level: ¤10/kg.

• Scenario 2: We assume that the retail price falls to its highest estimated

value: ¤7/kg.

• Scenario 3: We assume that the retail price falls to its lowest estimated value:

¤5/kg.

We emphasise that these are estimates of the future prices and that they are subject

to uncertainty. Recall that the prices quoted above are estimates of retail prices.

We therefore expect that a company supplying the hydrogen refuelling stations

will receive a lower price. To estimate the price a hydrogen producer will get,

we assume that a hydrogen refuelling station requires a similar margin to today’s

gasoline stations. Today the margin for gasoline stations in Norway is about 13%16.

Hence, the estimated prices that will be used in our model are:

• Scenario 1: We assume a hydrogen price of ¤8.8/kg.

• Scenario 2: We assume a hydrogen price of ¤6.1/kg.

• Scenario 3: We assume a hydrogen price of ¤4.4/kg.

16Gas station margins in Norway: http://www.side3.no/motor/joda-bensinstasjonene-tar

-seg-bedre-betalt-for-bensinen-na-enn-fr/3422816285.html.
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Our work contributes to two strands of literature. First, we extend the literature

studying hydrogen production from wind power. Second, we add to the existing

real options literature. In this section, we review the two strands.

4.1 Hydrogen production from wind power

Several studies about producing hydrogen from wind energy have been published.

Here, we divide the literature into two main categories. The first category focuses

on grid connected hydrogen plants. The second category focuses on hydrogen plants

connected to wind farms. We refer to these as wind-hydrogen systems. Different

wind-hydrogen systems are mainly distinguished by whether the wind farm is grid-

connected or stand-alone.

Since this is a relatively new field of literature, our aim is to give an overview of

the different studies available.

4.1.1 Studies of grid-connected hydrogen plants

Concerning the first strand of literature several authors have studied the potential

of grid-connected electrolysers. The studies focus on utilising price fluctuations

caused by variable wind power in order to produce low cost hydrogen. Floch et al.
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(2007) study the opportunity to produce hydrogen during off-peak periods using

power from the day-ahead markets in France, Scandinavia, USA and the balancing

market in Canada. The off-peak period is defined as the time during which the

electricity price falls below a certain threshold. The study uses historical electricity

prices. The trigger level is found by minimising the levelised cost of production.17

By optimising production periods, they find that savings from producing during

off-peak periods vary enormously across markets. Some highly fluctuating markets

offer very low prices during off-peak periods and allow for viable hydrogen produc-

tion, even if average electricity prices first appear to be high. For other, more stable

markets, producing hydrogen during off-peak periods does not lead to significant

cost reductions. For stable markets the installation is stopped during the high-price

peaks rather than taking advantage of off-peak prices. Jørgensen & Ropenus (2008)

study the opportunity to produce hydrogen from grid-connected electrolysers in the

Danish power market. By parameterising the existing spot price structure and es-

timating the annual capital costs they derive the number of hours per year the

electrolyser should be operated in order to minimise the levelised production cost.

They conclude that savings on the power price by operating electrolysers part time

are not likely to decrease the hydrogen production price significantly. Moreover if

the electrolyser is operated for fewer hours, investment costs per produced unit of

hydrogen will increase. Gutiérrez-Mart́ın et al. (2009) study viability of large-scale

grid-connected hydrogen plants using surplus energy in the French power market.

They simulate the operation of a 100 MW plant that only produce hydrogen when

the electricity price approaches zero. Similar to Jørgensen & Ropenus (2008) they

also apply a levelised cost of production approach. They find that by adjusting

output according to electricity cost the hydrogen production costs are minimised.

They conclude that intermittent operation of electrolyser shows great potential to

achieve low hydrogen production costs. Based on these three studies we can con-

clude that the potential cost reductions achieved by operating the electrolyser part

time, depend on the price characteristics in the specific market studied.

4.1.2 Studies of wind-hydrogen systems

With regard to the second strand of literature the papers can be distinguished

based on the operational strategy of the wind-hydrogen system and whether the

wind farm is grid-connected or not.

17The net present value of the unit-cost of production.
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Several authors study the production of hydrogen from grid-connected wind-energy

farms when facing limited transmission capacity to the main grid. Løland (2015)

and Gutiérrez-Mart́ın et al. (2010) consider the simple operation strategy to pro-

duce hydrogen when the power output from the wind farm exceeds the capacity of

the grid. Løland (2015) studies an investment in the expansion of an existing wind-

farm and a hydrogen plant. She finds levelised cost of production to lay between

¤4.23 – 4.34/kg. Similar to this thesis, Gutiérrez-Mart́ın et al. (2010) studies the in-

vestment in a hydrogen plant located inside and existing wind farm. They consider

the potential profit from storing hydrogen that can be converted back into electric-

ity during peak hours. Using an NPV approach to evaluate the investment they

conclude that the hydrogen should be installed. Similar to Gutiérrez-Mart́ın et al.

(2010), Korp̊as (2004) allows for storage of hydrogen that can be converted back

into electricity when the wind power production is low. However, Korp̊as (2004)

considers several other operational strategies including for example maximising hy-

drogen production and balancing the grid. He also considers a hypothetical case

and calculates its levelised cost of production depending on the operational strategy

chosen.

In contrast to the previously mentioned studies, Bernal-Agust́ın & Dufo-López

(2008) consider generation and storage when there are no grid restrictions. The

operating strategy is to store hydrogen during low demand hours, while during high

demand hours the stored hydrogen can be used to generate electricity. They value

the wind-hydrogen system using an NPV approach and find that the electricity

price of the electricity produced from stored hydrogen must be relatively high in

order for the system to have the same NPV as a wind-only system. A related study

by González et al. (2004) considers production of on-site hydrogen from wind farms

in Ireland. In contrast to Bernal-Agust́ın & Dufo-López (2008) they do not consider

converting hydrogen back to electricity. Instead, the hydrogen produced can be sold

to end users. By comparing the trade-off between levelised cost of production to

the revenues generated for different hydrogen prices they find the optimal size of

the hydrogen plant.

Greiner et al. (2007) consider a Norwegian case study on the production of hydro-

gen from wind power. They compare hydrogen production from a grid-connected

system to a system that is not grid-connected. The operational strategy in both

cases is to produce hydrogen at a constant rate and use back up from the grid

or a diesel generator when the wind production is too low. The cost of hydrogen

produced is calculated using the levelised cost of production.
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Examples of studies that consider stand-alone systems are Dutton et al. (2000) and

Pedrazzi et al. (2012). Dutton et al. (2000) study the performance of an electrolyser

connected to a single windmill. Their work is based on a demonstration site in Italy.

Since there is no external demand, the operation strategy is to use all the wind

power to produce hydrogen. Using the levelised cost of production they conclude

that production costs of the system cannot compete with hydrogen production from

fossil fuels. Pedrazzi et al. (2012) also study a stand-alone system. They focus on a

wind-hydrogen system aimed at supplying electrical and thermal residential loads.

Pedrazzi et al. (2012) do not consider the economics of the system, but focus on

simulating the system to find its efficiency.

In summary, the second category focusing on hydrogen plants connected to wind

farms consider different framework conditions. The operational strategy depends

on the specific investment case studied. However, most of the literature uses a

levelised cost of production to evaluate the investments.

Our main contribution to this area of literature is that we apply real options val-

uation to a specific hydrogen investment case that accounts for uncertainty in the

electricity price. We thereby add to the ongoing discussion of the economic vi-

ability of hydrogen production from wind power. In addition, along the lines of

González et al. (2004), we also propose an optimal operating strategy that is based

on maximising profits rather than minimising production costs.

4.2 Valuing flexible investment opportunities un-

der uncertainty using a real options approach

In this thesis, we study the combined problem of determining optimal investment

timing and capacity choice, in addition to deriving an optimal operating strategy

for the hydrogen plant. The investment decision is also subject to electricity price

uncertainty.

In this subsection, we first give an overview of the real options literature that

studies optimal operations. Second, we review the literature that studies both

optimal timing and capacity choice. Third, we present work that consider optimal

timing and capacity choice under operational flexibility. Last, since our model can

possibly account for multiple-underlying risk factors we present studies that have

demonstrated its applicability.
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4.2.1 Operational flexibility

For projects that can be operated in a flexible manner, authors are concerned with

developing an optimal operating policy in order to maximise the project value.

The real options problem is typically formulated as an optimal control problem

with multiple risk factors. Different solution methods and applications have been

studied. In Dixit & Pindyck (1994) the option to temporarily suspend operations, if

the project is making a loss, is considered. They derive an analytical solution for the

optimal operating policy as well as the time to invest by solving a partial differential

equation (PDE). Several other authors find analytical solutions for stylised cases.

Thompson et al. (2009) use a real options approach to value and find the optimal

operation of a natural gas storage facility. Thompson (2013) studies the optimal

operation of a gas-fired power plant. Fleten & Näsäkkälä (2010) study investment

timing and operating flexibility of gas-fired power plants.

Another solution approach applied by Nadarajah et al. (2015) is linear program-

ming. Nadarajah et al. (2015) uses linear programming to find the operating policy

to manage storage of commodities that can be potentially sold in the future at a

higher price. A related approach is stochastic programming. This technique is

applied by both Fleten et al. (2002) and Sen et al. (2006) to derive the optimal

strategy to schedule production.

Further, a solution approach which will also be applied in this paper, is least squares

Monte Carlo. The approach is for example applied by Aas & Andresen (2015),

who uses it to solve a stochastic dynamic program to find both the value and the

optimal operation of an aluminum smelter. Bakke et al. (2016) also use Monte Carlo

simulations, but do so in combination with a linear program to value the option to

delay investment in battery storage. The role of the linear program is to optimise

the operation of the battery storage over a period of one day. The daily profit

is then summarised over the first year of operation. The first year profit is then

used to derive the project value. The maximised project value then serve as input

to the real options investment model. By optimising the operation of the battery

plant over a period of one day the computational complexity of the problem is

reduced. In contrast, if the operations were to be optimised over the lifetime of the

battery storage, the problem would potentially consist of thousands of time steps.

Moreover, instead of assuming that the investment decision can be undertaken

every hour, Bakke et al. (2016) discretise the investment decision problem so that

the investor can only exercise the option to invest once a year.
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In this thesis, we also use Monte Carlo simulations in combination with a linear

program that optimises the operation of the hydrogen plant. However, in contrast

to Bakke et al. (2016) we optimise the operations over the whole lifetime of the

project (20 years). Note that solving for the optimal operation over the lifetime

of the project using a linear program is equivalent to mathematically formulating

a dynamic programming problem as was done in Aas & Andresen (2015). Similar

to Bakke et al. (2016) we assume that an investor can only undertake the decision

to invest once every year. Thus, while operations are optimised on an hourly basis

the investment decision can only be undertaken once every year.

4.2.2 Flexible timing and capacity choice

Most real options papers focus on the optimal timing of an investment. McDonald

& Siegel (1986) and Dixit & Pindyck (1994) are considered to be pioneers in the

field and study the option to delay irreversible investments under uncertainty. Dixit

& Pindyck (1994) employ dynamic programming to model investment decisions,

and find develop analytical solutions to find the optimal investment timing. Dixit

& Pindyck (1994)’s optimal timing model has been extended in different ways

to take into account investor’s option to choose the optimal size/capacity of the

investment.

Recently, contributions that in addition to timing determine the optimal size of

the investment have also appeared. Huberts et al. (2015) provide an overview of

these contributions . The survey consists of two parts. First, single firm models

are presented, and second, the authors give an overview of oligopoly models. As

a general result, it is obtained that more uncertainty results in larger investment

taking place at a later point in time. Since we assume our firm is a price taker we

focus on the single firm models.

The real options literature distinguishes between discrete and continuous capacity

choices. Dangl (1999) studies continuous capacity choice under uncertain demand.

Examples of a papers that applies his approach are Fleten et al. (2007), Boomsma

et al. (2012) and Bøckman et al. (2008). Fleten et al. (2007) study optimal capacity

and timing of investment in decentralised renewable power generation. Boomsma

et al. (2012) analyse investment timing and capacity choice for renewable energy

projects under different support schemes. Bøckman et al. (2008) examine invest-

ment timing and capacity choice for small hydropower plants under uncertain elec-
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tricity prices. Dias et al. (2004) and Décamps et al. (2006) consider the choice

between several discrete capacities. They show that when an investor can choose

between several different capacities he tends to wait longer to see which of the

capacity choices will turn out to be optimal. An implication of discrete capacity

choices is that the investment decision rule cannot be expressed in terms of a unique

trigger level. Instead, there will be different capacities for different intervals of the

uncertain state variable.

In this thesis, we consider a discrete capacity problem since the investor can only

invest in an integer number of electrolysers. We seek to derive both the optimal

timing and capacity choice along the lines of Dias et al. (2004) and Décamps et al.

(2006). As a result, we derive the optimal capacity in which to invest for different

intervals of the uncertain state variable. In contrast to these authors, we also seek

to find the optimal operations of the plant and derive a solution using the LSM

method.

Note also that works that deal with incremental investments have also been studied

in the literature (e.g. Pindyck (1988)). However, this type of flexibility will not be

considered here.

4.2.3 Flexible timing and capacity under operational flexi-

bility

In general, there are few contributions studying both flexible timing and capacity

under operational flexibility. Chronopoulos et al. (2013) extend the traditional

real options approach by allowing for discretion over capacity while incorporating

risk aversion and operational flexibility in the form of suspension and resumption

options. They consider one underlying risk factor, namely revenue uncertainty. The

model developed by Dangl (1999), also allow for operational flexibility. While the

capacity is fixed as an upper boundary to the output, the output can be adjusted

according to an uncertain demand. He finds that a higher uncertainty in future

demand leads to an increase in optimal installed capacity. However, it causes the

investment to be delayed longer. Hagspiel et al. (2016) elaborate on the paper

by Dangl (1999) by analysing the specific implications of volume flexibility on

investment timing and size. To do so they compare the optimal investment strategy

for a flexible and inflexible firm. The flexible firm can costlessly adjust production

over time with the capacity as the upper bound. The inflexible firm fixes production
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at capacity level from the moment of investment onwards. They find that the

flexible firm is more valuable and invests in a larger capacity than the inflexible

firm. Moreover, similar to Dangl (1999), Hagspiel et al. (2016) find that the firm

tends to invest later in a larger capacity when the uncertainty in future demand is

large.

4.2.4 Multi-factor modelling

While we do not consider multiple risk factors in this thesis, we have developed a

flexible model that can possibly account for up to three risk factors. Having mul-

tiple risk factors makes it hard to derive a closed-form expression for the valuation

PDEs. When there are multiple risk factors the Monte Carlo method is the most

popular approach due to its simplicity compared to other alternatives Longstaff &

Schwartz (2001). Its applicability to general real options problems has been anal-

ysed by Alesii (Forthcoming), Cortazar et al. (2008) and Schwartz (1997). They

compare the LSM to other methods and conclude that that the LSM approach may

be successfully applied for general real options problems.

Our contribution to the existing real options literature is twofold: (1) We study the

combined problem of determining optimal timing, operations and capacity using the

LSM that can account for up to three risk factors and (2) We examine the potential

of real options valuation in hydrogen production from wind energy.

Our contribution to the existing real options literature is twofold: (1) We study the

combined problem of determining optimal timing, operations and capacity using

the LSM and a three-factor model and (2) We examine the potential of real options

valuation in hydrogen production from wind energy.

36



Chapter 5
Model description

In this section we develop the model for finding the optimal plant operations and

the optimal timing and capacity of the investment.

We consider the following investment opportunity: At any time τ , the firm can

pay an investment cost, I(Q), to install a hydrogen plant with maximum capacity

of Q electrolysers with direct access to power from a local wind farm. We assume

that the time from the investment decision is undertaken until the plant starts to

operate is negligible. After the project is installed, the capacity presents an upper

boundary for the output of the plant. The firm determines optimal investment

timing and capacity at the same time under conditions of irreversible investment

expenditures and an uncertain project value, V (τ). We assume that the lifetime

of the hydrogen plant is L years and that the option to invest is available for M

years.

Once the investment is undertaken, the firm is concerned with operating the hydro-

gen plant such that its value is maximised. We assume that the firm is a price taker

and that revenues are generated from selling hydrogen. The output is constrained

by the maximum capacity and the available power from the wind farm. The plant

can be operated in a flexible manner and at any point in time, the owner can ei-

ther choose to produce hydrogen or suspend the operations of the plant. When

the plant is operating, the owner receives the net cash flow from producing and

selling hydrogen. In a suspended state, no cash flows are received. We assume that

there no costs of switching between the two states and that the plant operations
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can be instantly started or suspended. Given this flexibility, we develop a model

to determine how to operate the plant in order to maximise its value.

The main risk factors motivating a real options approach are uncertain electricity

prices, uncertain hydrogen prices and uncertain amounts of available power. All

of these risk factors give rise to an uncertain project value. The electricity price

accounts almost for all the variable cost of production from electrolysis 18 and the

hydrogen price and available power accounts for the revenue generated by the plant.

However, in the case study in Chapter 7, we will assume that electricity price is

the only underlying risk factor. Due to limited information available, we assume

that the hydrogen price is deterministic and for simplicity we assume that the

available power follows the average historical production. The model we develop

in this section will therefore be formulated assuming that electricity price is the

only risk factor. To model the electricity price, we simulate 10,000 future price

paths that serve as input to the model. However, we emphasise that the model

can easily be adjusted to account for multiple risk factors by simulating the other

two risk factors in a similar way. The general model therefore does not make any

assumptions about these underlying risk factors. They can follow any processes

and be correlated with each other. This flexibility is one of the advantages of using

a LSM.

As illustrated in Figure 5.1, the model we develop consists of two parts: (1) an

optimisation model to find the optimal operation strategy that maximises the value

of the plant and (2) a real options valuation to find the optimal timing and capacity

of the investment. Several operational and cost parameters in addition to 10,000

simulated electricity price paths, hydrogen price and available power serve as input

to the optimisation model in the first part. For each simulation i of the electricity

price and year y, y ∈ [0, 1, ...,M ], the optimisation model finds the maximum value

of the project, which we denote by V (Q)iy. The process is repeated 10,000 times

for each path i and year y. The result is then 10,000 Monte Carlo simulations of the

project value for each year over the lifetime of the option, y = 0 to y = M . Output

from the optimisation model for different capacities in addition to the investment

cost serve as input to the real options valuation in the third part. The output

of the real options model is the value and the optimal capacity and timing of the

investment.

18Körner (2015) uses electricity price together with investment cost to calculate the levelised
cost of production. Similar to Körner (2015) we therefore assume that electricity price is the
only variable cost of production.
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Figure 5.1: Model parts

5.1 Optimal operation of the hydrogen plant

The optimisation model we develop here optimises operation of the hydrogen plant

in order to maximise the value of the firm.

In the problem studied in this thesis, the firm receives a cash flow every hour

from the corresponding operating mode of the hydrogen plant. Each hour, h, the

firm can choose between one of two modes: operating or suspended. Since the

firm is a price taker and has a fixed production capacity, the optimal production

strategy constitutes to produce hydrogen when revenues are larger than variable

costs. From the investor’s perspective, the opportunity cost of producing hydrogen

is the money lost from not selling the electricity in the market. This means that the

firm has to include the electricity price as a variable cost of hydrogen production.

Hence, every hour, the optimal strategy constitutes comparing the variable cost of

production to the price from selling hydrogen. If the hydrogen price is higher than

variable costs, the optimal decision is to produce hydrogen. The optimal decision

is independent of the amount of wind power available.

We formulate the following linear programming problem that maximises the annual

cash flows from the hydrogen plant:
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maximise

T∑
t=1

PHηExt −
T∑
t=1

PEt xt−
T∑
t=1

xtηEC −
T∑
t=1

PEt lt (5.1.1)

subject to xt ≤ QK, ∀t ∈ T (5.1.2)

xtηEηL ≤ lt, ∀t ∈ T (5.1.3)

xt + lt ≤ At, ∀t ∈ T (5.1.4)

Variables and parameters in the model are summarised in Table 5.1. The variable

inputs to the optimisation model are electricity price, PEt , and available power, At

for the year y which we want to find the annual cash flow. The fixed inputs are

hydrogen price, PH , efficiency of the electrolyser, ηE , number of electrolysers, Q,

transportation cost, C, efficiency of liquefaction, ηL, and maximum production, K.

The decision variables of the model are power consumed by the electrolyser, xt,

and power consumed by the liquefier lt.

The objective function, equation (5.1.1), consists of four terms. The first term

denote the total annual revenue from production. The second term denotes the

variable cost due to the electrolyser. The third term is the variable cost of lique-

fying the hydrogen. The last term denotes the variable cost of transporting the

hydrogen.

The objective function is subject to several constraints. The first constraint, equa-

tion (5.1.2), states that the maximum production must be less than the capacity

of the plant. The second constraint, equation (5.1.4), states that the sum of the

power used by the electrolyser and liquefier must be less than the available power.

The third constraint, equation 5.1.3, states that all of the hydrogen produced must

be liquefied.

The output of the linear program is the annual cash flow for year y which we denote

Cy. However to value the hydrogen plant for the M year period, we need to know

how the cash flows from all the possible years of operation, i.e. from y = 0 to

y = L + M . For each electricity price path, the linear program is therefore run

L+M times for y = 0 to y = L+M . Recall that since we assume that Q cannot

be changed once the hydrogen plant has been built we keep Q constant for all the
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5.1 Optimal operation of the hydrogen plant

Table 5.1: Parameters and variables used in the optimisation model

Symbols Explanation Unit

PH Hydrogen price ¤/kg
PE
t Electricity price at time t ¤/MWh
xt Power consumed at time t, ≥ 0 MWh
ηE Efficiency of conversion from power to hydrogen kg/MWh
C Transport and compression cost ¤/kg
Q Number of electrolysers -
K Maximum production MWh
At Available power at time t MWh
lt Power drawn to liquefaction MWh
ηL Efficiency of liquefaction MWh/kg

years. For a given Q the output is then a 1× [L+M ] vector with all the potential

cash flows the project can generate.

Given the 10,000 Monte Carlo simulations of the electricity price, we repeat the

process described above for all the paths. The output is a 10, 000× [L+M ] matrix

with cash flows for all possible years of operation. We denote the cash flows Ciy,

where y refers to the year of operation and i refers to the input electricity price

path.

With the yearly cash flows over the lifetime of the project we can calculate the

present value of investing in the hydrogen plant in year y given a discount rate

r:

V (Q)y =

L∑
l=y

Cl
(1 + r)l−y

(5.1.5)

where V (Q)y, is the value of the project with capacity Q in year y. Note here that

V (τ) has been discretised to annual project value, V (Q)y, in order to calculate

the value of the project using the output from the linear program. By changing

the input parameter Q, the maximum project value can be found for different

capacities.

Given the 10,000 Monte Carlo simulations we denote value of the hydrogen plant

in year y for path i, V (Q)yi.
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Chapter 5. Model description

5.2 Real options valuation

We are considering the following investment opportunity: At any time τ , the firm

can pay an investment cost, I(Q) to buy a hydrogen plant with capacity Q. After

the project is installed with a maximum capacity Q, this capacity represents an

upper boundary to the output quantity. The firm has to determine optimal in-

vestment timing and optimal capacity choice at the same time under conditions of

irreversible investment expenditures and an uncertain future project value, V (τ).

By postponing the investment, the firm can obtain more information about the

uncertain cash flows to inform the capacity decision. In continuous time, this can

be formulated as an optimal stopping problem:

F (τ) = max
0<τ<T,Q

E[(V (τ,Q)− I(Q))e−ρτ ] (5.2.1)

where F (τ) is the value of the option, τ is the optimal stopping time, T is the

lifetime of the option, Q is the capacity, V (τ,Q) is the value of the project and

I(Q) is the investment cost.

In order to reduce the complexity of this problem we will assume that the option

holder can only invest once a year during the lifetime of the option and not at

any time τ . By discretising the problem this way, we can value the investment

opportunity as a Bermudan option. A Bermudan option allows the owner to ex-

ercise the option between a number of given discrete times during the lifetime of

the option. Valuing the investment opportunity like this also resembles real life

business processes, where investment decisions are typically made yearly and not

in continuous time.

5.2.1 Value of the option to invest

We approximate the value of the Bermudan option by simulation using the LSM

described by Longstaff & Schwartz (2001). In short terms, it enables the use of

Monte Carlo simulations for unbiased value approximations by avoiding perfect

foresight. This algorithm utilises concepts behind options pricing and we briefly

explain how LSM works here. For a more detailed explanation, please see Appendix

A.

The decision to exercise the Bermuda option is based on comparing the value of
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5.2 Real options valuation

exercising now with the value of keeping the option alive for one more period when a

similar choice can be made. Here, exercising corresponds to making the investment

and continuation corresponds to waiting. Letting V (Q)y−I(Q) denote the exercise

payoff, the optimal choice can be described by the Bellman equation:

Fy = max(V (Q)y − I(Q),
1

1 + ρ
Ey[Fy+1] (5.2.2)

Hence, it is optimal to exercise an option when the payoff from immediate exercise

is higher than the expected payoff from continuation. The value of exercising is

known to the option holder, but the continuation value Ey[Fy+1], is random from

the perspective of period y and is conditioned on the knowledge we have in the

current period. When the problem has a fixed finite time horizon T , we know the

continuation value at time T and we can solve the problem by working backwards.

The main idea of the LSM method is to approximate these continuation values

by regressing the next period continuation values on the current values of the

explanatory variables.

The inputs for the LSM valuation is one exogenous variable: the payoff from ex-

ercising, V (Q)iy. This value exists for each of the 10,000 unique paths i and each

possible year y the investment can be undertaken. Using the valuation frame-

work described above, the optimal exercised strategy for each time step and all the

simulated paths is given by:

Fiy = max(V (Q∗)iy − I(Q∗),
1

1 + ρ
Ey[Fiy] (5.2.3)

At each time y, the value of exercising V (Q)iy − I(Q∗) is known to the investor,

because V (Q)iy can be calculated from equation 5.1.5. The optimal investment

capacity, Q∗ is found by maximising the NPV of immediate exercise, V (Q)iy −
I(Q), with respect to Q. This occurs when the marginal value of an extra unit of

production capacity equals its marginal cost. However, in our model the capacities

are discrete. In the implementation of hour model, we therefore systematically

increase Q to find the value that maximises V (Q)iy − I(Q).

Knowing the value of immediate exercise, the key to determine the maximum

value of Equation 5.2.3 is therefore to identify the conditional expected value of

continuation, Ey[Fy+1]. According to Longstaff & Schwartz (2001) the conditional

expectation function can be estimated from the cross-sectional information in the
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simulated paths using least squares. At each time y, the LSM algorithm regresses

the next period, y + 1, simulated continuation values on functions of the current

values of the explanatory state variable V (Q)y. The fitted value from this regression

provides a direct estimate of the conditional expectation function at time y.

The main advantage of using LSM is that it can be readily applied when the

value of the option depend on multiple underlying uncertainties. When the option

depends on multiple underlying factors analytical and tree solutions often become

intractable. As we have explained before, this means that uncertain hydrogen price

and available power can be taken into account by the model. Moreover another

major advantages is that it can be used to options whose underlying state variables

values can be driven by a variety of stochastic processes (Longstaff & Schwartz,

2001).
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Chapter 6
Model parametrisation

In this chapter we determine the values of the parameters used for the case study of

an investment in hydrogen generation from wind power. The case study considered

is a real wind farm, Valsneset, in Bjugn municipality in Norway. We assume that

the lifetime of the hydrogen plant is 20 years, L = 20, and that the option to invest

lasts for 10 years, M = 10.

We determine the parameters related to available power, investment cost, electricity

price, transportation costs, efficiency of the electrolyser, efficiency of the liquefier,

the discount rate, maximum production and hydrogen price. The results of the

case study are presented in the next chapter together with a comparative statics

analysis.

6.1 Available power, At

In the case study, Valsneset wind farm is the designated wind farm where hydrogen

will be produced. The wind farm has five wind turbines with an effect of 2.3 MW

each, giving a maximum effect of 11.5 MW. 19

The power production from the wind farm is varying depending on weather con-

ditions. We determine At based on a data set provided by our industry partner.

19The wind farm specifications can be found at: https://tronderenergi.no/produksjon/

kraftverk/valsneset.
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The data set comprises of hourly production data for the last six years. Since we

have hourly data, we make a simplifying assumption that the power (MW) is con-

stant during the whole hour of production. Moreover, we assume that the future

production is deterministic and can be estimated from historical data, using the

following equation:

At =
1

Y ears

Y ears∑
y=1

syt ∀t ∈ T, (6.1.1)

where At is the available power parameter used in the case study and syt is the

hourly historical production. Note, since we assume a deterministic process we

assume that available power is not correlated to the electricity price. For a stand-

alone system, this assumption is considered to be correct (Aronsen, 2016).

6.2 Investment costs, I(Q)

The total investment cost of the hydrogen plant is given by,

I (Q) = (1 + ξ) · [IE(Q) + IS (Q) + IL (Q) + IB(Q)] (6.2.1)

where ξ is the installations cost as a percentage of the whole investment cost, IE(Q)

is the investment cost of Q electrolysers, IS(Q) is the investment cost of storage

tanks as a function of Q, IL(Q) is the investment cost of the liquefier as a function

of Q and IB(Q) is the cost of the building as a function of Q. In the following

we describe the components of the investment costs in more detail. Figure 6.1

shows each component’s share of the total investment cost for different capacities

Q.

Investment cost of electrolyser, IE(Q)

From the discussion about different available technologies in Section 2.3, alkaline

electrolysers were described as the most mature technology. Here, we assume that

the investor is considering to install commercial alkaline NEL-485 electrolysers,

each with a capacity of 2.3 MW. The investment cost of an electrolyser is set equal

to IE(1) = ¤ 1, 340, 000.20 Its specifications are shown in Table 6.1.

20The investment cost of a NEL-485 electrolyser was found in Løland (2015).
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6.2 Investment costs, I(Q)

Figure 6.1: Investment cost of hydrogen plant for different capacities Q

The cell stacks must be replaced every 7 years (Løland, 2015). In the case study we

assume that the lifetime of the hydrogen plant is 20 years and as a result the elec-

trolyser needs to be renewed 2 times during the time period considered. We assume

that one regeneration costs 20 % of the initial investment cost. Two regenerations

therefore costs 40% of the initial investment cost. The total investment cost for Q

electrolysers, including regeneration, is therefore IE(Q) = 1.4 · IE(Q).

Table 6.1: NEL-485 specifications

Technical specification Value(s)
Dynamic capacity range (Nm3 H2/hr) 97 - 485
Power consumption (kWh/Nm3 H2) 4.4
H2 purity (%) 99.9 ± 0.1

Investment cost of storage, IS(Q)

Due to the relatively large production capacity of one electrolyser we assume that

liquid storage is required. One NEL-485 electrolyser can produce a maximum

of F = 891kg of hydrogen each day. Hence, if we were to use gas storage it
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needs to be transported more than once a day since a gaseous truck transport has

capacities between 300 kg and 600 kg. Based on the location of the hydrogen plant

at Valsneset, it will not be economically sensible to transport hydrogen many times

a day. Thus, in our case our calculations will be based on using liquid as the storage

medium.

According to Yang & Ogden (2007), the size of liquid storage needs to be 200% of

the daily hydrogen flow. According to Løland (2015) the investment cost is given

by:

IS(Q) = I0S

(
2 · Q · F

300, 000

)0.7

, (6.2.2)

where I0S = ¤8.36 million and F is the maximum production of one NEL-485

electrolyser in kg per day. From equation 6.2.2 we observe that there are great

economies of scale.

Investment cost of liquefaction, IL(Q)

Since the hydrogen is stored as a liquid, it needs to be liquefied. According to Yang

& Ogden (2007) the investment cost of the liquefier is given by:

IL(Q) = I0L

(
Q · F

30, 000

)0.57

(6.2.3)

where I0L = ¤29, 220, 000 and F is the maximum production of one NEL-485

electrolyser in kg per day. We see that the investment cost of the liquefier is also

subject to economies of scale21.

Building costs, IB(Q)

Based on estimates by our industry partner we have assumed that the building

cost of the plant will depend on the number of electrolysers we invest in. Further,

there is a base cost of housing the liquefier, as well as economies of scale on the

number of electrolysers installed. The cost is estimated to be:

IB(Q) = ¤52, 950 ·Q+¤105, 900 (6.2.4)

21Average exchange rate for 2007 from https://www.oanda.com/currency/average.
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Installation costs, ξ

Installation costs are not included in the previous stated costs. We estimate that the

costs of installing the electrolyser, liquefier, storage and building are a percentage

of their capital costs. Further, we assume that the installation costs will amount

to 10%, so ξ = 10%.

Decline in investment cost per year, ζ

We assume that the investment costs described above decline every year due to

efficiency improvements and technological developments. For example, Bertuccioli

et al. (2014) estimate the investment cost of alkaline electrolyser to decrease by

about 3% annually. We assume ζ = 0.95, thus a decrease of 5% per year. We

assume a higher decline in investment cost due to for example larger expected cost

reductions for liquefiers (Møller-Holst, 2016).

6.3 Electricity price, PE
t

In this subsection, we develop a forecast for electricity prices. As already explained

we consider the day-ahead spot market.

Historical spot prices for the Nord Pool power market are available for the period

2013-2016. A subsample of the historical system prices are illustrated in Figure 6.2

for week 3, 2016. Electricity spot price exhibits mean-reversion, high and clustered

volatility, price spikes and seasonal patterns (Weron, 2014). While mean-reversion

is a common feature of commodity prices, the other features arise from two distinct

characteristics of electricity. First, the high volatility and price spikes arise because

electricity cannot be stored on a large scale and hence the supply and demand needs

to be balanced at every point in time. The price spikes are usually explained by a

sudden increase in demand and/or supply for example due to unpredicted changes

of weather conditions. Positive spikes occur when the demand reaches the limit

of available supply. Negative spikes may occur in periods of low demand and/or

excess supply. Second, the seasonality can mainly be explained by the varying

demand curve for electricity. It varies during the year due to changing weather

conditions and throughout the week and day due to the business cycle. In the

future, the supply is also expected to show stronger seasonal effects due to the

growing proportion of weather dependent renewable energy sources (RES) in the

energy mix.
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Figure 6.2: Spot price Nord Pool, week 3, 2016

Source: Nord Pool (2016)

A variety of methods and ideas have been tried for electricity price forecasting over

the last 15 years, with varying degrees of success (Weron, 2014). Weron (2014)

describes five main categories: Multi-agent, fundamental, reduced-form, statistical

and computational intelligence. The models described mainly differ in terms of

the forecasting approach applied and the forecasting horizons considered. In this

thesis, we are interested in models with long forecasting horizons since we model

the operations of the plant for 30 years. An implication of the relatively long fore-

casting period is that the equilibrium level to which the spot price reverts to is not

constant. Schwartz & Smith (2000) describes this concept for commodities and

introduces a distinction between mean-reversion in the short-term and the equilib-

rium level to which prices revert in the long-term. Schwartz & Smith (2000) argue

that the long-term equilibrium price evolves over time reflecting expectations of the

exhaustion of existing supply, improving technology for the production, inflation

as well as political and regulatory effects. The long-term equilibrium is modelled

as a Brownian motion process. They argue that short-term deviations may re-

flect, for example, the short-term changes in demand resulting from variations in

the weather or intermittent supply disruptions described above. The short-term

deviations in the spot price can therefore be defined as the difference between

spot and equilibrium process and are expected to revert towards zero following

an Ornstein-Uhlenbeck process. In addition to the short-term mean-reversion and

the long-term equilibrium level prices, seasonality can be incorporated by includ-

ing time-dependent constants (Schwartz & Smith, 2000). Based on this, the spot
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price can be decomposed into three main components: (1) a long-term equilibrium

level to which the prices revert, (2) a short-term mean-reverting stochastic compo-

nent and (3) a seasonal component. For electricity prices the seasonal component

can be further decomposed into a short term seasonal component (STSC) and a

long-term seasonal component (LTSC) (Weron, 2014). These short-term and long-

term dynamics must therefore be taken into account in the choice of forecasting

model.

In the real options literature reduced-form models are often used to forecast long-

term prices. These models are based on the one- or two factor mean-reverting pro-

cesses for commodity prices developed by Schwartz & Smith (2000). One advantage

of these models is that they take into account the long-term equilibrium level and

the long-term and short-term seasonality described above. Furthermore, to reflect

the specific short-term stochastic component of the electricity price, jump-diffusion

and Markov regime-switching models have been proposed (Weron, 2014). These

models better capture spikes and clustered volatility compared to the Ornstein-

Uhlenbeck process used in the model developed by Schwartz & Smith (2000). These

reduced form models lie at the heart of derivative pricing and often allow for ana-

lytic derivative pricing formulas (Weron, 2014). A drawback of using these models

is that we have to assume that the electricity price follow a well-defined stochas-

tic processes. However, it is not clear what the correct stochastic processes is.

Moreover, once a process is chosen, the parameters of these models either must

be arbitrarily set or calibrated on for example historical data. In some way or

another few parameters needs to capture potentially complex and various expecta-

tions about the future.

In collaboration with our industry partner we have chosen to use the EFI’s Multi-

area Power-market Simulator (EMPS) to forecast long term prices. EMPS is a

tool for forecasting and planning in electricity markets and is used by most large

actors in the Nordic market to forecast long-term prices (SINTEF, 2016). Note that

for short-term forecasting companies usually develop their own models that they

keep as a company secret (Aronsen, 2016). The model is designed for electricity

markets with a considerable share of hydropower and is developed by SINTEF, a

Scandinavia based non-profit independent research organisation expertise in many

research areas. To forecast electricity prices, the model takes four main elements

into account:

• Generation capacity of hydro, thermal, wind and solar power.
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• Transmission constraints and grid expansions such as connections to new

areas.

• Demand for electricity, which is affected by temperature and prices.

• Historical climate data for hydrology, temperature and wind.

The EMPS model consists of a strategy part and a simulation part. In the strategy

part, a residual demand is specified for the hydropower, and this is the demand

that needs to be matched by hydropower generation. Then stochastic dynamic pro-

gramming is used to calculate the optimal supply (Smelvær, 2015). In terms of the

categories described by Weron (2014) it can be considered as a hybrid multi-agent

model, since it models several heterogeneous agents and simulates their interac-

tion.

The output of the model is forecasted weekly electricity prices. The weekly price is

defined as the average spot price during a week and can therefore also be understood

as the equilibrium level to which the prices revert. The main advantage with the

EMPS is that it takes into account future expectations about the power market

such as generation capacity expansion, expansion of the grid and future demand.

This is an important capability of the model since many changes are expected to

affect the Nordic power market (Myhre, 2016). For example are Swedish stable

nuclear power expected to be closed down and replaced by unreliable wind power.

Moreover, sources such as coal are being phased out. A major advantage with the

EMPS models is that it takes these anticipated changes into account. By using this

model, we can therefore overcome the challenges of calibrating the parameters of

the reduced-form models. A drawback of this model however is that the EMPS only

captures the long-term dynamics and as a result, it does not capture short-term

price dynamics.

As a result, we need an additional model capture the short-term dynamics of the

price. To do this we use a reduced-form mean-reverting jump-diffusion model with

equilibrium level equal to the weekly price found using the EMPS.

Long-term dynamics of the spot price

We use the EMPS to forecast weekly prices from 2015 to 2069. The model therefore

takes into account our industry partner’s expectations about the future power

market. To forecast prices over this period the model uses historical weather data

from 1958 to 2013. The assumption made by the EMPS is that this weather

52



6.3 Electricity price, PEt

data is exactly replicated over the forecasting period from 2015 to 2069. In other

words, it assumes that the weather in 2015 is exactly the same as in 1958 and so

forth. This will almost certainly not be the case, but it is how the industry usually

forecast prices (Aronsen, 2016). Figure 6.3 shows the forecasted price series from

the EMPS.

Figure 6.3: Forecasted weekly prices from the EMPS

We would like to forecast electricity prices without assuming that the historical

climate repeats itself over the forecasting period. We therefore introduce uncer-

tainty to the development of future prices by fitting a stochastic process to the

time series in Figure 6.3. To find an appropriate stochastic process we first take

the natural logarithm of the data set and then test the time-series for a unit root

using the Augmented Dickey-Fuller (ADF) test. The ADF test concludes that

the data is stationary and therefore is characterised by mean-reversion. Another

important characteristic that can be observed from Figure 6.3 is the seasonal pat-

terns throughout the year. To capture these two characteristics we let the natural

logarithm of the weekly price, ln(PWw ) be a sum of a deterministic yearly seasonal

component and a stochastic component: ln(PWw ) = lw +Xw.

The deterministic yearly seasonal component, lt, is referred to as LTCS of the

electricity price (Weron, 2014). To capture the LTSC we fit a Fourier function to

the data-set of weekly prices. To capture the stochastic component, Xw, we first

deseasonalise the original time series by subtracting the fitted Fourier function from

the weekly prices. We then fit the following first order auto regression, AR(1), to

the deseasonalised data:
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Xt = α+ βXw−1 + ew , ew i.i.d.(0, σ2) (6.3.1)

where i.i.d means that the random variables are independent and identically dis-

tributed. The independence assumption implies that there is no auto correlation

in the process and the identical distribution implies that the random variables all

have the same distribution parameters. In particular, the variance is the same at

all points in time. The AR(1) model is in fact the discrete time version of the

mean-reverting Ornstein-Uhlenbeck (Alexander, 2008).

Figure 6.4: Weekly simulated prices

The parameters in equation 6.3.1 can be found using regression, which gives α ≈ 0

and β = 0.922. To find the probability distribution of ew, we use the probability

distribution fitting application in Matlab. Of all the available distribution in the

application, the residuals fit a t location-scale distribution best. This distribution

is useful for modeling data distributions with heavier tails (more prone to out-

liers) than the normal distribution. The fitted distribution has mean and variance

of ¤22.8/MWh and ¤10.3/MWh, respectively. We simulate 10,000 paths, and

show 100 of them in Figure 6.4. As already explained, these prices represent the

equilibrium the price revert to during a week.

Short-term dynamics of the spot price

Knowing the long-term price dynamics, next we need to model the short-term price

dynamics. The short-term dynamics have already been shown in Figure 6.2, and

the prices exhibit mean-reversion, high and clustered volatility, price spikes and
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seasonal patterns. Our industry partner believes that the short-term dynamics

are going to change in the future. Their view is supported among others such as

Myhre (2016), who is power trading manager in LOS Energy. Due to the increased

proportion of RES in the energy mix, Myhre (2016) expects the future short-term

dynamics to be different. For example, he expects price spikes to become more

frequent and hence that the volatility will increase. He argues that there is often

little wind on cold days and this might create a shortage in supply leading to

price spikes. However, these price spikes are highly randomised events and hard to

predict.

To model this short-term behaviour, we let the short-term natural logarithm of

the hourly price ln(PHh ) be a sum of a deterministic weekly and daily seasonal

component and a stochastic component: ln(PHh ) = sh + Yh. With respect to

seasonality recall that we have already estimated the long-term seasonal component

into account. Hence, we only need to consider the short-term seasonal component

here.

We assume that sh can be modelled using a Fourier function, and that the short-

term deviations,Yh, revert toward zero following an Ornstein-Uhlenbeck process

with jumps. In continuous time this process is formulated as:

dYt = −κYtdt+ σdZt + J(µJ , σJ)Poisson(λ) (6.3.2)

The parameter κ denotes the speed of mean-reversion parameters. The parameter

σ is the volatility and Zt is the standard increment of a Brownian motion. The

jump size is J(µJ , σJ), with normally distributed mean µJ and standard deviation

σJ . The Poisson process Poisson(λ) has jump intensity λ.

For the case study, we calibrate this process to model the short-term dynamics of

the historical market price on Nord Pool Spot from Jan 2013 to May 2016. Table

6.2 shows the parameters that we have used for the short-term component of the

price.

Table 6.2: Mean reversion parameters

Parameter Values
σ 0.0615
σJ 0.1011
µJ 0.0336
κ 0.5
λ 0.0609
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Forecasted electricity prices

With the two models for short and long-term price dynamics we forecast the hourly

electricity price for 30 years or 52 · 30 = 1, 560 weeks. To do this wee first need to

define the relation between w and h, so that the weekly equilibrium level Xw and

long-term seasonal component lw can used to forecast hourly spot prices. We let the

hourly equilibrium level be denoted by Xh and the hourly long-term seasonal com-

ponent by lh and define the following relation between w and h: w = d h
168e

To forecast the spot price Ph we use the formula:

Ph = lh + sh +Xh + Yh (6.3.3)

which means that the hourly price is the sum of a long term seasonal component,

a short term seasonal component, a long-term stochastic equilibrium level and a

short term stochastic component. While in discrete time, this model is similar to

the one developed by Schwartz & Smith (2000), where the long-term equilibrium

and short-term dynamics are modelled as a sum of two processes. It will be mean-

reverting towards the long-term equilibrium level with smaller deviations and price

spikes in the short-term.

We set the initial price to be the average price for May 2016, PE0 = ¤23.17/MWh.

The forecasted price process of week 8, 2017 is shown in Figure 6.5. The daily

mean and volatility of the prices for the whole 30 year forecasting period are 22.68

and 4.82 (¤/MWh), respectively.
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Figure 6.5: Price path for medium volatility

Volatility σ = ¤3.7/MWh and simulated week 8 in 2017.

6.4 Transportation costs, CT

We consulted an industry expert in transportation of gases to find an estimate for

the cost of transporting liquid hydrogen per kg. Out of confidentiality reasons, we

cannot print the exact number that we use in the model. Nevertheless, a rough

estimate is a cost of ¤0.5-3/kg hydrogen for a distance of 250 km. Recall from

Section 2.4 that the capacity of a liquid truck is up to 4,000 kg.

6.5 Efficiency of electrolyser, ηE

From calculations based on NEL Hydrogen (2015) we estimate the amount of kilo-

gram produced per MWh (kg/MWh) from the NEL-485. The efficiency is given

by
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η =
485 · 0.08988

2.3
= 18.95 kg/MWh, (6.5.1)

where 485 Nm3 is the maximum production of a NEL-485 for one hour, 0.08988

kg/Nm3 is the conversion rate for hydrogen22 and 2.3 MW is the power drawn from

the electrolyser.

6.6 Efficiency of liquefier, ηL

According to Stolzenburg & Mubbala (2013) the energy consumption of the liquefier

is ηL = 10 kWh/kg.

6.7 Discount rate, r

The discount rate should reflect the risk embedded in the project, and is usually

set by the company. This is considered to be company sensitive information. Out

of confidentiality reasons we therefore do not print the discount rate used by the

investor.

6.8 Maximum production, K

The maximum production of the NEL-485 electrolyser when operating is 43.6

kg/hour (100% load) at 2.3 MW.

6.9 Hydrogen price, PH

In Section 3.4 we developed three price scenarios for the hydrogen price:

• Scenario 1: PH =¤8.8/kg

• Scenario 2: PH =¤6.1/kg

• Scenario 3: PH =¤4.4/kg

22The conversion rate of hydrogen was found at: http://www.uigi.com/h2 conv.html.
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Chapter 7
Results

In the following chapter we first present the results of the case study of the invest-

ment in hydrogen production from wind power using the model from Chapter 5 and

the parameters in Chapter 6. Second, we conduct a comparative statics analysis

of the optimal timing and capacity.

The model presented in Chapter 5 was implemented in Matlab. In order to

solve the linear program of the optimisation model, Matlab was set up in order

to communicate with Xpress optimisation suite. Due to the complexity of the

model and the number of simulated paths, the code was designed in order to take

advantage of parallel computing. The running time of the model was approximately

1.5 hours using a 32 kernel processor.

7.1 Case study

In this subsection, we present both the result from the optimisation model and the

output from the investment model. The models have been run for each of the three

hydrogen price scenarios, PH =¤8.8/kg, PH =¤6.1/kg and PH =¤4.4/kg.
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7.1.1 Scenario 1: PH =¤8.8/kg

The result of the investment model for scenario 1 is shown in Table 7.1. The

optimal capacity found by the investment model was Q = 2 electrolysers, and an

option value of ¤15.1 million. Moreover it is optimal to invest immediately. The

output of the optimisation model is illustrated in Figure 7.1. The figure shows

the distribution of the maximised project values, Vy, for each possible year of

investment. It can be observed that the mean and variance of the distributions are

approximately the same. As result the project value is not expected to grow or

decrease significantly over the lifetime of the option. This explains why it is optimal

to invest immediately. By waiting the investor faces a trade-off between foregoing

current profit with the benefit of paying a lower investment cost in the future.

However, since the value of the project is not expected to grow significantly there

is limited value to waiting for potential higher profits. Moreover, future cash flows

are discounted more if investment happens later. In this scenario it is therefore

optimal to invest sooner and receive the project value rather than waiting for lower

investment costs.

Table 7.1: Model results for the three hydrogen price scenarios

Scenarios
Option
value

Capacity
Investment

time
Usage

Utilisation
rate

H2 produced
per year (tons)

PH = ¤8.8/kg ¤15.1M 2 Year 0 99.99% 62.6% 477
PH = ¤6.1/kg ¤3.16M 2 Year 10 99.92% 62.6% 476
PH = ¤4.4/kg ¤0 - - - - -

The details of the optimal operations found by the optimisation model is illustrated

in Figure 7.2. The figure shows operations of the hydrogen plant in week 7 in year 13

after investment is undertaken for an example price path. The green line illustrates

the profit from selling hydrogen per MWh and the orange line shows the variable

costs per MWh during the week23. The total length of the bars shows the amount

of available power from the wind farm. The two decision variables, power used to

produce hydrogen and power used for liquefaction, is shown by the white and black

part of the bar, respectively. The grey part of the bar indicates surplus power from

the wind farm.

In Figure 7.2, the variable costs never exceed the hydrogen price. As a result, the

operations of the plant are never suspended and the available power is therefore

23The variable costs are the sum of electricity costs, due to the power consumption from the
electrolyser and liquefier, and the transportation costs.
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Figure 7.1: Distribution of present values of the hydrogen plant for each year during
the lifetime of the option

The figure shows the distribution of the projects values for each year over the lifetime of the
option. The distributions have similar mean and variance. This indicates that the project value
is not expected to increase or decrease during the lifetime of the option.

61



Chapter 7. Results

Figure 7.2: Optimal operation of the hydrogen plant for scenario 1, PH =¤8.8/kg

Optimal operation of the plant for an example week is shown for scenario 1, PH =¤8.8/kg. The
operations are never suspended during the week. The optimal capacity found by the investment
model was 2 electrolysers, and the grey part of the bars indicates the capacity restricts the amount
of available power used to produce hydrogen.

used to produce and liquefy hydrogen. However, a surplus of available power is

indicated by the grey part of the bar. The surplus arises because more power is

available from the wind farm than the electrolysers can use for production. With

a capacity of two electrolysers we obtain a maximum power of 4.6 MW. If more

power is available at a given hour it cannot be used to produce hydrogen.

Table 7.1 also shows the usage of the hydrogen plant as well as its utilisation rate24

and the number of tons of hydrogen produced per year. We define the usage of the

hydrogen plant as the average number of hours the plant is turned on during one

year of operation. The usage is close to 100%, and hence its operations are rarely

suspended. The flexible operations of the hydrogen plant therefore seem to have

little value. The utilisation rate is 62.6%, which indicates that the available power

24Utilisation rate= Actual production
Possible production(Q)

.
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from the wind farm is not enough to operate the hydrogen plant at full capacity

during the whole year. This means that the varying power supplied by the wind

farm is the bottleneck for the utilisation rate.

7.1.2 Scenario 2: PH =¤6.1/kg

The result of the investment model for scenario 2 is shown in Table 7.1. The

optimal capacity found by the investment model was Q = 2 electrolysers, and an

option value of ¤3.16 million. Moreover it is optimal to delay investment until the

option expires in year 10. This indicates, that for the case with a hydrogen price

of PH = ¤6.1/kg the profits foregone by waiting are smaller than the savings from

waiting for a lower investment cost. Hence, it is optimal to wait.

Figure 7.3 illustrates the same week of operation, but for hydrogen price PH =

¤6.1/kg. The figure shows that while the hydrogen price and variable costs of

production are closer to each other, the production is never suspended during the

example week.

Table 7.1 also shows the usage of the hydrogen plant as well as its utilisation rate

and the number of tons of hydrogen produced per year. Similar to scenario 1,

the usage is close to 100% and its operations are rarely suspended. The flexible

operations of the hydrogen plant therefore seem to have little value in this scenario

as well. Similarly, the utilisation rate is 62.6%, which indicates that the available

power from the wind farm is not enough to operate the wind farm at full capacity

during the whole year.
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Figure 7.3: Optimal operation of the hydrogen plant for Scenario 2, PH =¤6.1/kg

Optimal operation of the plant for an example week is shown for scenario 2, PH =¤6.1/kg. The
operations are never suspended during the week. The optimal capacity found by the investment
model was 2 electrolysers, and the grey part of the bars indicates the capacity restricts the amount
of available power used to produce hydrogen.

7.1.3 Scenario 3: PH =¤4.4/kg

For scenario 3 the option value is zero and it is never optimal to invest. The reason

why this is the case is that the project value is not expected to increase in the

future. Hence, the value of the hydrogen plant will never become high enough to

cover the investment cost during the lifetime of the option.

7.2 Comparative statics

In this section, comparative statics is used to analyse how the optimal investment

timing and capacity are affected by changes in the hydrogen price and the electricity

price volatility. Note that the lack of analytical solution and running time of the
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code makes comparative statics analysis very complex. We have therefore focused

on what the investor we consider thinks are the two most important uncertain

factors.

7.2.1 Hydrogen price

Figure 7.4 shows both the option value and the NPV plotted against the hydrogen

price. There are three price intervals of interest. First, when the hydrogen price is

below PH =¤4.5/kg the option becomes worthless. As we have already explained,

this happens because the value of the hydrogen plant never becomes high enough

to cover the investment cost. Second, when the price is between PH =¤4.5/kg

and PH =¤6.7/kg it is optimal to wait. By waiting the investor can benefit from

a lower investment cost. For a price higher than PH =¤6.8/kg the investor is

indifferent between waiting and investing. As a result the hydrogen price that

triggers immediate investment is PH =¤6.8/kg.

Moreover the optimal capacity to invest in is different for different hydrogen prices.

From the figure we observe that the investor never invests in a capacity of Q = 1.

In contrast he invests in capacity of Q = 2 at the trigger level. While not shown

in the figure, we find that the investor decides to invests in a capacity of Q = 3

electrolysers when the hydrogen price is larger than PH =¤15.2/kg. A higher

hydrogen price gives higher cash flows and hence it becomes optimal to exploit all

of the available power from the wind farm.
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Figure 7.4: Real option value and NPV plotted against the hydrogen price

The figure shows the option value and NPV plotted against hydrogen price. For a hydrogen
price below PH =¤4.5/kg it is never optimal to invest. For a price between PH =¤4.5/kg
and PH =¤6.7/kg it is optimal to wait. For prices greater than PH =¤6.8/kg the investor is
indifferent between waiting an investing. The optimal capacity at the trigger price is Q = 2, but
increases to Q = 3 when the hydrogen price reaches ¤15.2/kg

7.2.2 Electricity price volatility

To illustrate the impact of electricity price volatility, we run the model with different

price volatilities for the three hydrogen price scenarios. We develop three volatility

scenarios: High, medium and low. The high volatility price process is calibrated to

the most volatile week in the price data set from Nord Pool described in Chapter

6. The medium volatility price process is taken to be the same as the process

used in the case study in the previous subsection. The low volatility price process

is calibrated to the least volatile week in the price data set. We illustrate a one

week sample path for the price processes with different volatilities in Figure 7.5.

The absolute volatilities of the high, medium and low volatility scenarios are σ =

¤4.7/MWh, σ = ¤12.5/MWh and σ = ¤3.3/MWh, respectively.
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Figure 7.5: Sample price paths for different volatilities

The graph shows a one week sample path prices with low, medium and high volatility scenario.
From the graph it can be observed that the price with high volatility has a higher maximum and
lower minimum than the other two prices with medium and low volatility.

Table 7.2: Model results for low and high electricity price volatility with a hydrogen
price of ¤8.8/kg

Option
value

Capacity
Investment

time
Usage

Utilisation
rate

H2 produced
per year (tons)

Low volatility ¤15.2M 2 Year 0 100% 62.6% 477
Medium volatility ¤15.1M 2 Year 0 99.99% 62.6% 477
High volatility ¤15.1M 2 Year 0 99.51% 62.3% 474

Figure 7.6 shows the impact of the price volatility on the option value for the three

hydrogen price scenarios. The graph shows that the value of the option is relatively

stable across the different volatilities. Table 7.2 further compares the capacity

choice, investment timing, usage, utilisation rate and hydrogen produced per year

for the different volatilities for PH =¤8.8/kg. Table 7.2 shows that the option

values, capacity choice and investment timing is similar across the three volatilities.

Moreover, the plant is seldom suspended across the different volatilities and the
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hydrogen plant also has similar utilisation rate and production. While not shown

here, similar results can be obtained for scenario 2, PH =¤6.7/kg. The reason

why the results do not differ significantly across volatility can be explained by the

high usage, i.e. the plant is seldom suspended. If the plant is seldom suspended,

the mean of the electricity price will be the main determinant of the variable cost.

To illustrate why this is the case consider what happens if the volatility is high.

The money lost when the price is high is earned when the price is low, given that

the hydrogen price is constant. Therefore on average the mean electricity price is

paid to produce hydrogen. We therefore conclude that as long as the operation is

not suspended the value of flexible operations is low and volatility has little effect

on the investment decision.

Figure 7.6: Sensitivity of option value with respect to electricity price volatility

The option value is shown for the three different hydrogen price scenarios PH = ¤8.8/kg, PH =
¤6.1/kg and PH = ¤4.4/kg for high, medium and low volatility. The high medium and low
volatility is σ = 12.5/MWh, σ = 4.7/MWh and σ = 3.3/MWh, respectively. The graph shows
the the option value is not affected significantly by the different volatilities.

To investigate the effect of volatility when the operation of the plant is more often

suspended, we set the revenue from selling the hydrogen price closer to the mean of
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the variable costs. Figures 7.7 and 7.8 illustrate the operation of the plant during

an example week with a hydrogen price of ¤5.05/kg under high and low price

volatility.

Figure 7.7: Optimal operation of the hydrogen plant for a hydrogen price of
¤5.05/kg and high electricity price volatility

Optimal operation of the plant for an example week is shown for, PH =¤5.05/kg with high
electricity price volatility, σ =¤12.5/MWh. The operations are suspended several times during
the week. The optimal capacity found by the investment model was 2 electrolysers, and the grey
part of the bars indicates there is surplus power during the week.

Table 7.3: Model results for low and high electricity price volatility with a hydrogen
price of ¤5.05/kg

Option
value

Capacity
Investment

time
Usage

Utilisation
rate

H2 produced
per year (tons)

Low volatility ¤640,000 1 Year 10 99.92% 83.76% 319
High volatility ¤680,000 2 Year 10 96.27% 60.05% 457

Figure 7.7 shows that the when the variable costs are higher than the hydrogen

price, the operations of the hydrogen plant is suspended from time to time. In

the low volatility case, shown in Figure 7.8 the operations are never suspended.
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Figure 7.8: Optimal operation of the hydrogen plant for a hydrogen price of
¤5.05/kg and low volatility electricity price volatility, σ =¤3.3/MWh

Optimal operation of the plant for an example week is shown for, PH =¤5.05/kg with low
electricity price volatility, σ =¤3.3/MWh. The operations are never suspended during the week.
The optimal capacity found by the investment model was 1 electrolyser, and the grey part of the
bars indicates there is surplus power during the week.

In Figure 7.7 the prices also drop and have a lower minimum price compared to

Figure 7.8. Table 7.3 compares how the two scenarios influences the investment

decision. First, Table 7.3 shows that in the high volatility scenario the option value

is higher and the investor installs a higher capacity. This results demonstrate the

value created by flexibility. By installing a larger capacity he can benefit from the

dips in the price and thereby produce larger amounts of hydrogen when the price is

low and at the same time avoid losses by suspending operations when the electricity

price is high. The table also shows that the total amount produced is higher in the

high volatility scenario. However, compared to the low volatility scenario the usage

is lower since operations are suspended more often. Moreover, the utilisation rate

is also lower since two electrolysers are installed instead of one. In both cases, it is

optimal to delay investment in order to benefit from lower investment costs.
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Based on these results we draw three main conclusions that an investor should be

aware of. First, the hydrogen price would have to decrease significantly from today’s

level for making it optimal to delay investment. Second, the hydrogen price affects

both the investment timing and the optimal capacity to invest in. Third, when the

hydrogen price and variable costs approach each other, that the investment decision

becomes more sensitive to volatility. In this case the investor benefits from a higher

price volatility by investing in a larger capacity and producing when the prices are

low and suspend production when prices are high.
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Conclusion

Emission-free hydrogen can be produced from electrolysis using power from re-

newable energy sources. Hydrogen can be used as an energy carrier across several

industries, but is seen to have largest potential as a fuel in the transportation sec-

tor. Widespread adoption of hydrogen technologies can therefore support climate

change goals in several sectors of the energy system. Most hydrogen technologies

are still in the early stages of commercialisation, but the market in several countries

is emerging and is expected to grow in the future.

In this thesis, we study a Norwegian power producer considering to become a hydro-

gen supplier. A real options approach is applied in order to value the opportunity

to invest in a hydrogen plant using power from one of its existing wind farms. By

investing in a hydrogen plant, the investor can at any point in time choose whether

to sell the power produced by the wind farm in the market or use it to produce

hydrogen. The optimal decision depends on which alternative yields the highest

profit for the investor. The investor need to determine the optimal timing and

capacity of the hydrogen plant under flexible operations and uncertainty.

Our model builds on existing literature within real options theory and applies it

to the area of wind-hydrogen investments. The model consists of two parts. The

first part derives the optimal operation strategy of the hydrogen. The second part

derives the optimal timing and capacity for the investment using a LSM approach.

While we only consider electricity price uncertainty, the model is very flexible can

potentially account for uncertain hydrogen prices and available power from the
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wind farm.

We investigate the optimal investment strategy through a case study of hydrogen

production using wind power from Valsneset in Bjugn municipality in Norway. We

assume electricity prices to be uncertain and follow a mean-reverting process with

spikes that is calibrated in cooperation with our industry partner. The hydrogen

price is assumed deterministic and the model is run for a low, medium and high

hydrogen price scenario. The available power is also assumed deterministic and to

follow average historical production.

Our results show that it optimal to invest immediately in the high price scenario,

delay investment in the medium price scenario and never invest in the low price

scenario. The timing of the investment depends on the trade-off between foregoing

current profits and waiting for a lower investment cost in the future. With respect

to optimal capacity choice, we find that it is optimal to invest in a higher capacity

when the hydrogen price increases. This result is similar to Décamps et al. (2006)

and Dangl (1999). Moreover, for the three scenarios, the investment decision was

not sensitive to the volatility in the electricity price because operations were rarely

suspended. In contrast, the investment decision was shown to be sensitive to elec-

tricity when the hydrogen price was close to variable costs and the volatility was

high. In fact, the option value and optimal capacity to invest in was increased

with a higher volatility. By investing in a higher capacity, the flexible operations

allow the firm to produce larger amounts of hydrogen when the price is low and

suspend operations when the price is high. We therefore get a similar result as

Floch et al. (2007): When the volatility is high and operations are suspended the

value of flexibility is higher.

Based on the results we draw three main conclusions. First, the hydrogen price

would have to decrease significantly from today’s level to make it optimal to delay

investment. Second, the hydrogen price affects both the investment timing and the

optimal capacity to invest in. Third, if the hydrogen price and variable costs ap-

proach each other, the investment decision becomes more sensitive to volatility. In

this case, the investor benefits from higher volatility by installing a larger capacity.

By installing a larger capacity he can produce greater amounts of hydrogen when

electricity prices are low and avoid loss by suspending operations when prices are

high.

Our main contribution has been twofold. First, we have contributed to the real

options literature by studying the combined problem of determining optimal timing
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and capacity choice as well as optimising plant operations under uncertainty. To

solve the problem we have used LSM and demonstrated its practical applicability.

Second, we have applied a real options valuation to a specific hydrogen investment

case that has the potential to capture the upside potential of uncertainty. For

different scenarios of the price of hydrogen we have found different investment

strategies and thereby add to the ongoing discussion of the economic viability of

hydrogen production from wind power.

However, regardless of the compelling results, the model is based on several as-

sumptions that limit the applicability of the absolute values presented. We there-

fore emphasise that our models mainly contributes towards giving intuition on how

uncertainty in electricity price affects investment problem.

Extensions of our research is possible in several directions:

• Modeling flexible operations of the hydrogen plant: In the thesis we

have made several simplifications regarding the operation of the hydrogen

plant. First, we have assumed that that the efficiency of the electrolyser is

constant across all power loads and that voltage degradation does not occur.

This is not the case in reality. Formulating an optimisation model with vary-

ing efficiency across loads is possible. By accounting for varying electricity,

the authors developed a nonlinear optimisation model. This would require

further manipulations in order to be solved with a reasonable running time,

because a nonlinear program is more complex to solve than a linear program

(Hochbaum, 2007). Second, we assume that the electrolyser can operate be-

tween a load of 0% and 100%. However, in reality it has an operating range

between 20% and 100%. We ignore this restriction because it had to be

modelled using a Mixed-Integer Linear Programming which was very time

consuming to solve over the whole lifetime of the plant. Further research is

required in order to find more efficient solutions to this problem. Third, we

assume that there is no start-up and shutdown time for the electrolyser. In

reality, this can take several minutes. However modeling this also required

a Mixed-Integer Linear Programming approach for which we need solutions

that are more efficient.

• Modeling risk factors: The only risk factor modelled in this thesis is the

electricity price. We developed an electricity price model in collaboration with

our industry partner and assumed that the price followed a mean-reverting

process with jumps. However, a disadvantage with the model is that it does
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not capture the clustering effect of spikes. This could have been captured

by using a Markov regime-switching model similar to Bakke et al. (2016).

However, we also propose that the Markov regime-switching model should

take into account the long-term equilibrium level given by a Schwartz-Smith

model which has been described in this thesis. Moreover, treating both the

hydrogen price and the available power as uncertain is another possible ex-

tension. When more information is available, the hydrogen price can be

assumed to follow any stochastic uncertain process. Regarding the available

power, using the models for output uncertainty proposed by Adkins & Paxson

(2016), Munoz et al. (2009) or Abadie & Chamorro (2014) could be a possible

extension. However, other possible uncertainties could also be interesting to

model. As we have touched upon there is significant technological uncertainty

regarding technological developments. Therefore modeling technological un-

certainty along the lines of Murto (2007) where a technological development is

modelled by assuming that the investment cost follows a geometric Brownian

motion (GBM) with Poisson jumps.

• Use framework conditions: We model a wind-hydrogen production where

we assume that the power available is the power the wind farm produces.

Thus, we assume that the electrolyser can not draw power from the grid. Only

using power from the wind farm restricts the amount of hydrogen produced.

A possible extension is to model a grid-connected wind farm. This model

would not be restricted by available power, and therefore developing a more

stylistic model along the lines of costless suspension and resumption in Dixit

& Pindyck (1994) could be possible. This model could have been extended

to include capacity choice.

• Incremental capacity: In this thesis, we have assumed that the capacity

is fixed once the investment is undertaken. However, the investment in the

hydrogen plant is modular. Incorporating the flexibility to increase capacity

along the lines of Pindyck (1988) could also be a possible extension.

• Reducing computing time: Since we find the optimal operation of the

hydrogen over the whole lifetime of the project the running time of our model

is very high. More efficient methods in order to find the optimal operation

of the plant and the maximised project would require further research.

• Time from investment decision to the project starts to operate:

From the time an investor decide to invest the hydrogen plant until it is
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operating can approximately one year. This time is not included in our

model. This lagging period caused by construction reduces the value of the

investment because it does not generate any profits and could affect the timing

of the investment. To extend our valuation it would be favourable to include

a lagging period along the lines of Linnerud et al. (2014) which includes the

construction lag as a parameter in the electricity price

• Compare investment strategy for inflexible production: Another pos-

sible extensions could be to model flexible and inflexible production along the

lines of Hagspiel et al. (2016). Since different electrolysers offer different lev-

els of flexibility, this could offer a way of comparing the value of different

electrolysers to each other.
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Appendix A
Least Square Monte Carlo

LSM is a recursive algorithm that at each step, y, compares the payoff from exercise

with the continuation value. At each time step, LSM approximates the continuation

function Wy = 1
1+ρE[Fy+1|V (Q)y] using basis functions in set Φi = {φy,b, b =

1, ..., By} where By is the number of basis functions at stage y. Each φy,b is a

function of V (Q)y.

The continuation function approximation at V (Q)y is defined as:

Φy, βy =

B∑
b=1

φy,b(V (Q)y)βy,b (A.0.1)

where βy,b is the coefficient in front of basis function b at time stage y and exogenous

state V (Q)y.

The steps of the LSM procedure are as follows. First we use the Monte Carlo

simulations of the exogenous information. We let V (Q)iy represent the stage y ex-

ogenous factor on sample path i. The terminal values FiM are calculated as:

FiM = max(0, V (Q)iM ) (A.0.2)

Then moving backwards from stage M−1 to stage 0, at each stage y ∈M − 1, ..., 0

we (1) compute the value estimates along each sample path i using the stage y+ 1

continuation function approximation:
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wy =
1

1 + ρ
(Φy+1, βy+1)(V (Q)y+1) (A.0.3)

and (2) compute the coefficients βy,b,∀b by performing least squares regression on

the estimates wy,∀i. Values of the state variables at the current time step are

used as explanatory variables in the regression, and the continuation values of the

different operating states are regressed on these.

Possible choices for a regression basis mentioned by Longstaff & Schwartz (2001)

are Laguerre, Hermite and Jacobi polynomials as well as only simple powers of the

state variables. In the model used in this thesis, we choose to use the first three

degrees of simple polynomials:

Φy,0(V (Q)y) = 1 (A.0.4)

Φy,1(V (Q)y) = V (Q)y (A.0.5)

Φy,2(V (Q)y) = V (Q)2y (A.0.6)

The approximate continuation values therefore follow the distribution:

(Φy, βi)(V (Q)y) = β0 + β1V (Q)y + β2V (Q)2y. (A.0.7)

where β0, β1 and β2 are the constants that are being estimated at each time step.

Having a functional form of conditional expectation function, we can now compare

the value of immediate exercise versus continuation at each date y along the path

i.

The value of the option is determined by summing all the payoff paths at time zero

and average the payoff over the number of paths, B:

Option value =
1

N

N∑
i=1

V (Q)i0 (A.0.8)
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Appendix B
Matlab and Mosel code

The digital appendix contains the necessary code to run the model. The following

files are added:

• AR1 ElPriceModel.m - The long-term price process is modeled from the

EMPS in this script.

• CashFlowXpress.m - Interacts with Xpress and retrieves the cash flows

from Xpress.

• InvestmentCost.m - Function that outputs the investment cost given year

invested and capacity Q chosen.

• LeastSquareMonteCarlo.m - The Least-Square Monte Carlo process that

outputs the year of exercise and option value.

• Main.m - The script that couples the other functions together.

• MoselModel.mos - The optimisation model run in Xpress.

• OrnsteinUhlenbeck.m - The short-term price process is modeled in this

function. Outputs 1 week of prices.

• WeekToHour - Couples the long-term prices with the short-term prices.
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