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Problem Description

Develop a model for simulating di↵erent dynamic pricing algorithms in vari-
ous heterogeneous market conditions. Evaluate the algorithms’ performance
and how the di↵erent consumer behaviors impact the overall market and
revenues.
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Preface

In front of you now, lies the thesis ”Simulating Dynamic Pricing Algo-
rithm Performance in Heterogeneous Markets”, which is an overview and
simulation-based evaluation of dynamic pricing by machine learning algo-
rithms. This master’s thesis was written to fulfill the graduation require-
ments of Industrial Economics and Technology Management at the Norwe-
gian University of Science and Technology (NTNU). I was engaged in writing
this thesis from mid-January 2016 to mid-June 2016. The majority of Chap-
ter 2 through 6, stems from my project thesis, ”Dynamic Pricing by Machine
Leaning: An Overview”, written during the fall of 2015.

The idea for this thesis started out after I read the book ”Automate This:
How Algorithms Came to Rule our World” by Christopher Steiner. In his
introduction, Steiner elaborates on how the price of a book on Amazon.com
came to sell for $23,698,655.93 due to an ongoing upward price war between
two established Amazon sellers’ pricing algorithms. I have previously been
aware that online stores change their prices regularly, though it had never oc-
curred to me that behind the fluctuating prices lies sophisticated algorithms
utilizing artificial intelligence (AI).

Presumably, although you might not be fully aware of it, it is my belief that
the concept of dynamic pricing is already somewhat familiar to you as well.
For instance, you might have noticed that prices for airplane fares tend to
vary and that prices for goods sold on the internet might change over time.
As will be evident later in this thesis, these are great examples of dynamic
pricing utilized by companies today.

When I first started working on this thesis, I had little knowledge of dy-
namic pricing and had no insight into the world of machine learning and AI.
Working with this thesis, I have learned more about the intriguing aspects of
pricing, programming, and how learning algorithms can be used to optimize
pricing decisions. My goal has been to gain insight into a field of research
that I found to be interesting, and this I have achieved.

I sincerely hope that by reading this thesis you too will gain an appreciation
of the fascinating underlying dynamics of modern pricing algorithms. My
personal measurement of success relies on that you will enjoy reading this
thesis as much as I have enjoyed writing it.

Trondheim, 2016-06-09

Hans Olav Østbø Hilsen
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Abstract

This thesis investigates how sellers in e-commerce can maximize revenue
by utilizing dynamic pricing decisions by machine learning algorithms in a
market consisting of multiple learning agents and a heterogeneous consumer
base. Employing a novel approach we elucidate how a population of agents
adapt and perform in the presence of other adaptive agents when faced with
a mixed composition of myopic and strategic consumers in a finite market.

By analyzing similarities and variation in current research, we find that a
variety of di↵erent machine learning approaches have been applied to dy-
namic pricing problems, but there seems to be no unifying best algorithm
for solving these complex problems. Furthermore, we find that all the pre-
sented literature evaluates the performance of machine learning algorithms
in simple simulated environments. Also, we shed light on the literature’s
failure to compare the performance of di↵erent machine learning approaches
under equal conditions. Perhaps our most important discovery is that there
seems to be no empirical evidence justifying the added value of dynamic
pricing by machine learning algorithms for real-world sellers.

Our approach studies dynamic pricing decisions by simultaneously learn-
ing, Q-learning and neural network algorithms, and find that despite the
non-stationary nature, the algorithms provide robust performance in our
moderately realistic markets. Furthermore, the agents show tendencies to
collude implicitly, keeping average prices above marginal cost without any
means of communication. Neither of the algorithms proves to be the over-
all best achiever, as their performance depends on the underlying market’s
consumer and seller composition, and the extent to which the agents are
trained. We find that Q-learning presents the most reliable approximation
of optimal future price paths, but at a cost of a long and tedious training
period. The suggested neural networks show promising results and provide
a more balanced approach to training time and performance. However, their
limited network size precludes them to comprehend the consequences of their
actions, and consequently, show less implicit cooperation than Q-learning.

We find that the agents’ ability to capitalize on fluctuations in consumer
valuations, not only improves the sellers’ profitability but may also increase
consumer surplus, compared to a fixed-price policy. However, it seems that
the dynamics between the sellers’ price policies have the greatest impact on
revenues, as the algorithms are collectively incapable of exploiting increases
in consumer valuations. Furthermore, in the presence of strategic and myopic
consumers, lower price paths may be beneficial for maximizing revenues,
depending on the discrepancy between the consumers’ willingness to pay.
Consequently, we find that competition can increase output and seller surplus
because it induces an earlier lower price path. In a monopoly, the algorithms’
more gradually learn that a lower price path can generate more revenue.
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Sammendrag

Denne oppgaven undersøker hvordan selgere i elektroniske markeder kan
bruke maskinlæringsalgoritmer til å utføre dynamiske prisbeslutninger i et
konkurranseutsatt marked, best̊aende av flere læringsalgoritmer og en het-
erogen kjøpergruppe. Vi tar en ny tilnærming til problemet, ved å belyse
hvordan en gruppe algoritmer tilpasser seg og yter i et simulert tidsbegrenset
marked, best̊aende av b̊ade myopiske og strategiske konsumenter.

Ved å studere eksisterende litteratur p̊a omr̊adet, finner vi at det eksisterer
atskillige algoritmer og markedsmodeller brukt i denne sammenhengen, men
at ingen av de foresl̊atte algoritmene viser seg å være den absolutt beste til
å løse disse komplekse problemene. Samtlige artikler vurdert, undersøker
hvor gode algoritmene er til å prise varer i simulerte markeder. En svakhet
ved litteraturen er at ingen har vurdert hvor e↵ektive maskinlæringsalgo-
ritmene er til å prise varer i forhold til andre avanserte algoritmer under like
forutsetninger . V̊art kanskje viktigste funn fra litteraturstudiet, er at litter-
aturen har vist en manglende evne til å bevise at dynamisk prising utført av
maskinlæringsalgoritmer kan skape verdi for selgere i den virkelige verden.

V̊ar tilnærming til problemet utvider eksisterende litteratur ved å studere
hvordan flere simultant lærende Q-learning og neurale nettverk kan utføre
automatiske prisbeslutninger. Vi viser at de foresl̊atte algoritmene fungerer
godt, til tross for v̊art markeds ikke-stasjonære art. Algoritmene viser ten-
denser av implisitt prissamarbeid, og holder prisene godt over marginalkost-
nad uten noen form for kommunikasjon. Ingen av algoritmene viser seg å
være den absolutt beste for alle tilfeller, da ytelsene i stor grad avhenger
av markedets konkurrent- og kjøperadferd, samt behovet for ”læring”. Q-
learning produserer de beste prisingsreglene, men krever en svært lang tren-
ingsperiode. De neurale nettverkene viser lovende resultater, og tilbyr en mer
balansert tilnærming til læringstid og ytelse. Dog er deres evne til å forst̊a
konsekvensene av sine handlinger begrenset av størrelsen p̊a nettverkene, og
s̊aledes viser de mindre implisitt prissamarbeid enn Q-learning.

Vi viser at algoritmenes evne til å kapitalisere p̊a variasjoner i kjøpernes
betalingsvillighet, ikke bare er en fordel for selgerne, men ogs̊a for kon-
sumentene, sammenlignet med en fast-pris strategi. Samtidig finner vi at
dynamikken mellom selgerne har størst betydning for lønnsomheten, da algo-
ritmene er inkapable til å utnytte økninger i konsumentenes betalingsvillighet
p̊a grunn av markedskonkurransen. Videre ser vi at n̊ar et marked best̊ar av
b̊ade myopiske og strategiske kunder, kan det være fordelaktig for selgerne
å følge en noe lavere prisutvikling for å maksimere inntektene. Dette er dog
avhengig av avstanden mellom kjøpernes betalingsvillighet. Som et resultat,
finner vi at konkurranse kan øke produksjonen og selgernes lønnsomhet fordi
det sørger for lavere priser tidligere i markedet. I et monopol vil algoritmene
mer gradvis lære at en lavere pris kan generere større inntekter.
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Chapter 1

Introduction

“We envision a world a decade or two hence in which billions of
software agents will act as economic players in their own right,
exchanging information, goods, and services, with humans and
with other agents” - Sairamesh and Kephart (1998, pp. 28)

In recent years, we have witnessed an increased adoption of task automation
and decision making using algorithms in retail and many other industries
(Steiner, 2012). Adhering to this trend, recent research has begun to ex-
plore the use of smart algorithms for pricing goods and services in electronic
markets. Determining the “right” price to charge a customer for a product
is a complex task, which not only involves evaluating the company’s oper-
ating cost, but also how much the current consumer values the product and
what future demand might be. In addition, the increased price transparency
enabled by price comparison providers has further complicated competition
and dynamics between competing retailers. As a result, to succeed at pric-
ing products “right”, companies require a wealth of information about their
customer base and competitors, and must be able to adjust their prices at
minimal cost (Elmaghraby and Keskinocak, 2003).

We are all a↵ected by bounded rationality, and our ability to extract knowl-
edge from large amounts of information is limited. As a result, singlehand-
edly relying on managers deciding what prices should be on a day to day
basis might not be the best approach. Therefore, as predicted by Sairamesh
and Kephart (1998), we are currently experiencing an ever increasing out-
sourcing of pricing decisions to smart and sophisticated algorithms. Con-
sequently, the need for developing such algorithms and understanding what
implications they might have on a market has gained traction in recent years.

1



CHAPTER 1. INTRODUCTION 2

In accordance with this trend, this thesis will expand the current literature
of dynamic pricing performed by algorithms and provide its reader with an
overview of previous research. The following chapter will in greater detail
explore the background and motivation for dynamically pricing goods using
algorithms, before presenting the main contributions and limitations of this
thesis.

1.1 Background

The primary goal for any retailer is to maximize profits and shareholder
value. This is a challenging task which includes many strategic evaluations
regarding factors as the company’s business model, value chain and market-
ing e↵orts. Ultimately, it is the retailer’s ability to widen the gap between
its costs and revenues that dictates how profitable the firm will be. Thus,
one approach for maximizing profits would be to find the optimal price to
charge, and consequently, the optimal number of goods to sell to consumers
in order to maximize revenue.

In a simple world with perfect information, finding this optimal price is
straightforward. Anyone with basic knowledge of microeconomics can calcu-
late what the optimal price must be to maximize revenue given some demand
curve in uncomplicated constructed markets. Simplifying assumptions and
the introduction of homo-economicus, abstract pricing decisions into simple
algebraic equations. However, as uncertainty and more realistic assumptions
are introduced, finding the optimal price is more of a challenging task. The
real world consumers do not translate well into smooth, di↵erentiable curves
in a diagram. Uncertainty regarding demand and competitive landscapes
imposes some serious challenges.

Pricing is a strategic decision, and for any retailer, it has a profound e↵ect on
their business and profitability. Price is one of the most e�cient parameters
a company can utilize to influence or control the demand for their products.
It enables companies to manipulate their consumer’s preferences to maxi-
mize their revenue and helps regulate inventory and pressure on production.
Because pricing is such a fundamental component of operating a service or
manufacturing company, there exist an enormous amount of research trying
to find the best approach.

Before the introduction of the Internet and electronic commerce, pricing was
a rather static task. The retailer would perform simple calculations and set
its prices according to a fixed pricing tactic. These days, however, the shear
information available and our ability to process data and perform digital
tasks, has led the science of pricing to a whole new level. Sellers are now
able to take advantage of fluctuations in demand and customers’ willingness
to pay by altering the price of their products dynamically. Today retailers
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can respond to changes in the marketplace almost instantly, and the reduced
cost of posting prices in a digital world has opened up a whole new area of
research, namely that of dynamic pricing.

Dynamic pricing is commonly defined to be a pricing strategy where the
price of the same unit of a product or service can change over time (Dimicco
et al., 2003; Chan et al., 2004). As prices become more dynamic, the need
for developing systems for automating price reconsideration techniques in-
creases. Manually plotting in prices and considering changes, seems far less
e�cient than having an algorithm perform the job.

Today, nearly all online retailers of some size use algorithms to price their
products. Beneath their smart looking websites, lies sophisticated software
programs constantly monitoring competitor’s prices and market trends, and
evaluating whether prices should change or not. With a growing num-
ber of dynamic pricing optimization software providers (DPOSP), such as
Boomerang Commerce and Wiser, the e-business market is evolving into a
battlefield where whoever has the best algorithm wins.

Having an algorithm making decisions for the seller can be an incredibly
powerful tool when used correctly, however, engineering such algorithms is a
highly complex task. Because factors like competition and customer behavior
are uncertain, changing and mostly unknown, we need to find algorithms that
can deal with this complexity and uncertainty, by learning the ”parameters”
of the market as they go.

The science of artificial intelligence was born in 1956, and colloquially, the
term is applied when a computer uses cutting-edge techniques to competently
perform or mimic ”cognitive” functions that we intuitively associate with
human minds, such as ”learning” and ”problem solving” (Russell and Norvig,
2010). It is from within this highly technical and specialized field of research
that we find one possible approach for the dynamic pricing of products,
called machine learning.

Machine learning can be described as a field of study that gives computers
the ability to learn without being explicitly programmed, and it explores
the construction of algorithms that can learn from and make predictions
on data (Simon, 2013). Machine learning algorithms should be able to e�-
ciently automate pricing decisions to maximize profits, as they can perform
pricing decisions using sophisticated calculations and predictions, by putting
all available data into perspective, and change their pricing strategy to best
adapt to a dynamic environment. Consequently, a considerable amount of
research trying to solve these hard pricing problems by machine learning has
been performed, and many predict that pricing done by machine learning
algorithms is the future of pricing (Sairamesh and Kephart, 1998).

However, some issues arise when considering machine learning for dynamic
pricing. How can a seller have confidence that the algorithm is succeeding
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with its learned price policy, and what might happen when multiple sellers
start employing machine learning algorithms? These questions are not easily
answered. Therefore, a thorough understanding of the algorithms and how
they adapt, interact, and perform in a market is needed to address these
issues. Obtaining this knowledge from real-world implementations, however,
might not be the best approach. A retailer is likely to be reluctant at utilizing
an algorithm that has not previously been extensively researched. Hence, we
need another method that allows us to test, evaluate, and predict algorithm
behavior without real-world implementation.

Real-world marketplaces are often hard or even impossible to represent us-
ing a fully analytical approach, due to their complexity, dependencies and
uncertainties. To succeed with an analytical approach, overly simplifying
assumptions have to be made, which deprive us of the possibility of repli-
cating an actual market. Consequently, numerical analysis using simulated
marketplaces have revealed themselves as a very useful approach in that they
enable the modeling of more realistic diverse and complex markets. Several
researchers within the revenue management literature have made significant
contributions to the problem of dynamic pricing by producing tangible nu-
merical results (Dimicco et al., 2003), and especially in the case of machine
learning models, the use of simulations has been widely adopted. Further-
more, simulation allows us to rapidly test, improve and comprehend di↵erent
algorithms, and although we are not capable of fully replicating real-world
markets, discoveries made from simulations are vital for understanding the
implications and possibilities of algorithm-based price policies.

1.2 Main Contributions

The main goal of this thesis is to provide a numerical analysis and evaluation
of how dynamic pricing algorithms perform when faced with a heterogeneous
market using a simulation-based approach. To achieve this goal, we first need
to present an overview of dynamic pricing and an introduction to dynamic
pricing by machine learning. Focusing on existing literature, this thesis aims
to compress the fundamentals of dynamic pricing, including its history, dif-
ferent models, and conditions for succeeding with dynamic pricing. Then by
examining di↵erent machine learning approaches to dynamic pricing prob-
lems, we hope to gain insight regarding their value and applicability in real
world situations.

Studying previous research on this topic, it seems that a conclusive review
of the literature has not been performed. Researchers working with machine
learning and dynamic pricing use di↵erent models, methods, assumptions
and performance metrics, making it hard to compare di↵erent papers (den
Boer, 2015). Still, although variations are present, we believe there exist
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similarities waiting to be found. By developing a generalized framework
for analyzing literature, focusing on the market models used for simulating
machine learning algorithms, we aim to generalize, find trends and identify
weak spots in the existing literature. Traces of such a framework is present
in the literature, as many researchers build on the works of others, yet to
our knowledge, no one has attempted to define a generalized framework to
comprehend the literature better.

We aim for an original approach for simulating dynamic pricing performed
by machine learning algorithms in a market consisting of both myopic and
strategic customers. Furthermore, we strive for a realistic market represen-
tation by considering demand uncertainties and limited information. Also,
by developing a model that enables competition between multiple machine
learning agents utilizing di↵erent pricing strategies, we seek to gain a numer-
ical understanding of how these algorithms might adapt, interact and a↵ect
each other’s dynamics and performances when employed in an electronic
market. Hence, the main contributions provided by this thesis are:

• A framework for generalizing machine learning literature focusing on
marked models used for simulations

• A non-exhaustive list of research is grouped and analyzed within the
framework

• A model for simulating dynamic pricing algorithms performance in
heterogeneous finite markets with non-linear stochastic demand

• An analysis of how a market consisting of both strategic and myopic
buyers might a↵ect sellers’ prices and revenues

• A numerical analysis of how Q-learning and neural network pricing
algorithms perform when faced with the same underlying market, and
in competition with each other

• An evaluation of the real-world application of machine learning algo-
rithms for dynamic pricing from an economic perspective, by consid-
ering its added value for sellers

1.3 Limitations

This thesis will primarily focus on dynamic pricing in an electronic market-
place with demand uncertainty performed by machine learning algorithms.
However, with the introduction of electronic shelf pricing, some of the ma-
terial presented might apply to modern brick and mortar stores as well.
Furthermore, our intention is not to provide general insights into all current
approaches for solving dynamic pricing problems, consequently, many excit-
ing areas of research has been excluded. The available research regarding
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dynamic pricing is vast, and we will only focus on a small part of this lit-
erature. For an excellent in-depth review of available literature concerning
dynamic pricing, readers are referred to den Boer (2015).

Posted price mechanisms will be the overall focus of this thesis, and as such,
price-discovery methods as auctions will not be discussed. No attempt has
been made to evaluate the literature according to its applicability in specific
markets or industries, such as telecommunication or electricity pricing. Also,
our goal is not to present the full complexity of machine learning algorithms,
but rather to introduce some of the most important aspects needed to com-
prehend how the commonly used algorithms function. Readers looking for
a thorough understanding of machine learning and artificial intelligence are
referred to Russell and Norvig (2010) and other sources.

1.4 Clarifications

Throughout this thesis the words algorithm, agent, and pricebot are com-
monly used to address the actual equations or methods applied for imple-
menting machine learning algorithms. Furthermore, we make no attempt to
di↵erentiate between buyers, customers, and consumers, and likewise, sellers,
firms, and companies, unless explicitly stated.

1.5 Structure of Thesis

To get a better understanding of the concept of dynamic pricing and how
pricing can be performed using smart algorithms, this master’s thesis in-
cludes a comprehensive literature study. Consequently, Chapter 2 through
6 aims at providing its reader with insights of current research and high-
lights some of the areas in which we find a potential for further research.
The majority of this literature study stems from my project thesis ”Dy-
namic Pricing by Machine Learning: An Overview”. Having presented an
extensive overview of current research and introduced the most important
academic terms, we then present our approach for evaluating the perfor-
mance of dynamic pricing algorithms in a simulated market. In more detail,
this thesis is structured as follows.

Chapter 2 provides a historical overview of how the theory of dynamic pric-
ing has evolved from the 19th century until today and gives an introduction
to the basics of dynamic pricing. In Chapter 3, four categories of dynamic
pricing models are presented to give a better understanding of the existing
approaches used for modeling the problem. Chapter 4 presents a framework
and introduction to understanding machine learning algorithms for dynamic
pricing and how they are evaluated. Then in Chapter 5, some promising
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articles of machine learning are presented to provide a more in-depth expla-
nation, ending with a categorization of the presented articles in the proposed
framework. Chapter 6 contains a discussion and evaluation of the available
literature and points towards future work and research.

Then, based on our findings from previous chapters, we look to expand the
current literature and introduce our novel approach for simulating dynamic
pricing algorithms in Chapter 7. Chapter 8 describes how we have chosen
to model our approach, focusing on both seller and buyer behaviors. After
that, we simulate a variety of di↵erent market scenarios in Chapter 9 to see
how the algorithms adapt and perform under various scenarios. Chapter 10
summarizes the findings from Chapter 9 and draws new insights by relating
our findings to reality and other literature, in addition to discussing the
weaknesses with our approach. Finally, the thesis concludes with Chapter
11, stating the most important discoveries made from the literature study
and market simulations.



Chapter 2

Overview of Dynamic
Pricing

“Everything is worth what its purchaser will pay for it”
– Pubilius Syrus, First Century BC

The simple, yet powerful quote by Publilius Syrus captures one of the most
important aspects of pricing, namely that the price of a product should equal
what its buyer is willing to pay. However, as will be explored in this chapter,
simply charging each and every customer their willingness to pay is an almost
impossible strategy. Hence, simplified strategies have been developed, and by
studying price discrimination and the emergence of dynamic pricing from the
19th Century, these issues and how they can be addressed will be exemplified
throughout this chapter.

2.1 A Brief History of Price Discrimination

Odlyzko (2003, pp. 356) argues that the; “. . . incentives to price discriminate
and the increasing ability to do so are among the key factors in the evolution
of our economy”. Price discrimination, sometimes referred to as personalized
pricing or price customization, is an intriguing area of pricing in which iden-
tical or largely similar goods or services are transacted at di↵erent prices by
the same provider in di↵erent markets and to di↵erent consumers. With the
increased focus to find optimal pricing policies maximizing sellers’ revenue,
it is evident that price discrimination is somewhat unavoidable. Consumers
tend, however, to be negative towards such pricing schemes and especially
towards individual price discrimination. When Amazon.com experimented

8
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with charging consumers di↵erent prices for the exact same DVD purchased
at the exact same time, they experienced an increase in customer rejection
(Baker et al., 2001). However, price discrimination might not be all bad, nor
is it illegal. Provided of course that prices are not discriminated based on
factors such as gender, race and religion. In fact, considering microeconomic
theory, perfect price discrimination can help increase firms output and thus
maximize economic welfare and result in a Pareto optimal quantity. The
following section will, based on Odlyzko’s article and other important litera-
ture, examine some of the most important evolutions in price discrimination
strategies from the 19th century and until today.

2.1.1 19th Century Railroad Pricing

Perhaps one if the greatest inventions of the 19th century, was the intro-
duction of railways. Enabler of connecting geographically separated com-
munities and the start of globalization. Like many modern industries, the
railways faced very high fixed costs and low marginal costs. This “business
model” creates strong incentives to price discriminate, as the cost of bringing
an extra passenger or good is close to zero. Any new revenue gained will
instantly help improve the company’s average profitability. Despite lack-
ing modern technologies, railways managed to price discriminate on a grand
scale. Their solution was to price di↵erentiate between di↵erent segments of
consumers by versioning their services. In the words of Jules Dupuit (1849);

“It is not because of the few thousand francs which would have
to be spent to put a roof over the third-class carriages or to
upholster the third-class seats that some company or other has
open carriages with open benches. What the company is trying
to do is to prevent the passengers who can pay the second-class
fare from travelling third class; it hits the poor, not because it
wants to hurt them, but to frighten the rich. And it is again
for the same reason that the companies, having proved almost
cruel to the third-class passengers and mean to the second-class
passengers, become slavish in dealing with first-class passengers.
Having refused the poor what is necessary, they give the rich
what is superfluous.”

This is a great example of the ine�ciency created by versioning. E�ciency
would be much greater if the railroad provided decent seats to all and in-
stead charged passengers according to their willingness to pay. Needless
to say, the railways had no way to determine their individual passengers’
willingness to pay at that time. Frequent rider programs were not feasi-
ble, and the lack of proper passenger identification made it impossible to
sell non-transferable advance purchase tickets with Saturday night stay-over
restrictions. Although economically ine�cient, versioning did, in fact, help
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increase revenue, and arguably enabled more people to travel by trains. In
addition, many tickets were sold trough brokers who varied widely in price,
which resulted in further price discrimination.

Versioning is predominantly a second-degree price discrimination technique,
and it is mainly used when sellers are unable to di↵erentiate between di↵erent
types of consumers. This creates an opportunity for the seller to provide
incentives for the consumers to di↵erentiate themselves according to their
preferences, usually done by quantity discounts or as in the case of the
railways, o↵ering di↵erent service quality.

Freight pricing on the other hand, was conducted by the use of explicit
price discrimination. Complicated freight classifications, special deals for
particular shippers and charging more for short hauls than long hauls became
the norm. This created a dynamic market, close to what we consider as
dynamic pricing today, that created no outsized profits and appeared to
work very e�ciently (Odlyzko, 2003).

However, the price discrimination of the railway companies aroused great
controversy. Customers, and especially farmers and poor people were re-
belling over high prices and terrible service. Further, the Chicago Board of
Trade argued that their city was being handicapped by rates for transport
to New York that were higher than those from Milwaukee, even though the
trains from Milwaukee went through Chicago. As stated by Odlyzko (2003,
pp. 363), “the pervasive price discrimination by railroad was undermining
the moral legitimacy of capitalism”. The United States Congress responded
with the Interstate Commerce Act of 1887, enforcing regulations on the rail-
road’s ability to price discriminate.

Regulation did not, however, help reduce average prices much. The con-
sumers got a reasonably simpler pricing scheme, with predictable and seem-
ingly fair prices, but the prices still remained high. As the anti-rail road
agitation decreased in the late 1890s, so did the pressure on the railways to
lower their prices. Therefore, it seems that it was not the actual price of
the fare that caused rebellion, but it was more a matter of how those prices
were imposed that mattered.

2.1.2 Airlines and the Introduction of Revenue Man-
agement

The development of price di↵erentiation strategies evolved rather slowly from
its introduction in the railway industry. While the economy grew and new
technologies such as airplanes entered the market, the development of oper-
ations research on optimizing revenue and seat reservations was moderate.
Nearly all quantitative research regarding ticket reservation control before
the early 1970s focused on controlled overbooking. According to McGill
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and van Ryzin (1999) these calculations depended on predicting the prob-
ability distributions of passengers ready for boarding, and provided useful
research on disaggregate forecasting of passenger cancellations, no-shows and
go-shows. This method provided a moderate level of success and gave the
researchers some degree of credibility of reservations control.

It was not until 1972 when Littlewood (1972) wrote his paper on forecasting
and control of passenger bookings, that the pricing schemes of the Airline
industry evolved significantly. His proposition, otherwise known as Little-
wood’s rule, said that discount fare tickets should be accepted as long as
their revenue value exceeded the expected revenue of future full fare tickets.
This simple, yet e↵ective two-fare seat inventory control marked the begin-
ning of yield management and evolved to the revenue management research
of today.

Perhaps the greatest pioneer in yield management at that time were Amer-
ican Airlines and their Super Saver fares. Introduced in April 1977, the
program allocated reservations to di↵erent classes of passengers who com-
peted for space on the same flight. It introduced an e↵ective way for airlines
to divide passengers into business, personal and pleasure travelers. Much like
the versioning done by the railroads. This allowed for e↵ective adjustment
of demand to match the supply of seats. Lower fares stimulated demand
for low demand flights while maintaining high profits on popular flights by
limiting the number of super saver fares o↵ered (Smith et al., 1992). As
stated by Smith et al. (1992, pp. 8) their overall goal was to “Sell the right
seats to the right customer at the right prices”

Yield management flourished after the work presented by Belobaba (1987)
and the success of its implementation at American Airlines. This provided
the industry with a concrete example of the benefits yield management tools
can have on the operations of a company (Smith et al., 1992). Still, however,
as seen in the literature review conducted by Weatherford and Bodily (1992)
the majority of research focused on capacity management and overbooking.
Dynamic pricing was little discussed, and their pricing models were more or
less fixed, with managers opening or closing di↵erent fare classes as demand
changed.

Although yield management was not to people’s liking, there was no united
anti-airline rebellion. The airlines succeeded in presenting their pricing
scheme in a somewhat understandable way, presumably having learned from
the mistakes of the railways. Consumers were informed that booking a flight
early was cheaper than waiting until the last minute. They might not like
it, but at least, they understood what was going on, and that seems to have
made all the di↵erence.
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2.1.3 The Revenue Management Revolution

After its success in airlines, yield management emerged into a variety of
other industries and was further developed into what has become known as
revenue management. At its core, revenue management tracks historical de-
mand for products and establish future product availability based on demand
forecasts to maximize revenue. In nearly all traditional revenue management
applications, four main elements dominate the design of a system: (1) the
inventory control mechanism, (2) optimization, (3) demand model and fore-
casting, and (4) interaction with users of the revenue management system
(Boyd and Bilegan, 2003).

The boundaries between yield management and revenue management are
often ambiguous. Netessine and Shumsky (2002) defines yield management
as a somewhat simpler form of revenue management, in that it commonly
only focuses on using price for allocating limited resources. Implying that
yield management is a variable pricing strategy, based on understanding, an-
ticipating and influencing consumer behavior to maximize revenue or profits
from a fixed perishable resource. However, yield management can also be
defined in broader terms more resembling revenue management, and as such,
we will not pursue a strict use of these terms.

Today, revenue management techniques are used by a variety of di↵erent
industries, ranging from railways, hotels, cruise lines, rental cars and even
golf courses. It has also provided the underlying framework for what has
become the principles of dynamic pricing. In a way, dynamic pricing can be
regarded as one of the tools in the revenue management tool-box.

Many tend to misunderstand the relationship between traditional revenue
management and dynamic pricing. To illustrate a practical example of this,
if today you are searching for ticket prices going from Oslo to Trondheim
by plane, you might be o↵ered a price of 599 NOK. However, tomorrow the
price might have jumped to 1199 NOK, and you could say that the fare price
has doubled. However, what seems to be a change in price, might, in fact,
be that the fare class selling for 599 NOK has closed.

Therefore, an important distinction to be made is the di↵erence between
dynamically adjusting the price of a single identical products and managing
the availability of di↵erent products using the same underlying resource.
This impacts how the problem is modeled and reveals how we will define the
di↵erence between dynamic pricing and revenue management. For instance,
an airline might first estimate the demand for each class and then supply the
price exogenously, meaning that price is not a variable (Boyd and Bilegan,
2003). After this, the airline might employ dynamic pricing on the specific
class fare, and adjusting the price according to current demand.

After the introduction of information technologies (IT) and the Internet, the
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science of revenue management greatly improved. IT enabled greater collec-
tion of valuable information such as demand, inventory levels, and competi-
tor strategies, while also being able to process all this data in real time. This
made pricing strategies using IT a huge advantage and led the way for ex-
tensive development. Managers today are able to act and react dynamically
to changes in the market, by adjusting any variable under their control and
especially prices. Also, the introduction of web-based sales systems made
the implementation of using dynamic prices much easier. In the pre-IT era,
re-labeling of prices was a costly and time-consuming process. Today, algo-
rithms and computers can change prices thousands of times each day for a
cost of practically zero. An estimation provided by L2 Think Thank found
that Amazon.com changes prices approximately 2,5 million times each day
(McLean, 2014).

2.2 Introduction to Dynamic Pricing

Den Boer (2015) defines dynamic pricing as the study of determining optimal
selling prices of products or services, in a setting where prices can easily and
frequently be adjusted. Dynamic pricing includes two main aspects: (1)
price dispersion and (2) price discrimination (Narahari et al., 2005). Price
dispersion can be spatial or temporal. Spatial price dispersion occurs when
several sellers o↵er a given good at di↵erent prices, whereas temporal price
dispersion occurs when a given store varies its price for a given good over
time. Aspects of price discrimination have been previously touched upon
and are assumed to be known.

A considerable amount of research has been done on the topic of dynamic
pricing from di↵erent scientific communities, including operations research
and management science, marketing, economics, econometrics and com-
puter science. Consequently, the methods and underlying problem defini-
tions greatly vary. For instance, dynamic altering of prices can be used
for learning demand and characteristics of consumer behavior, or as a tool
in revenue management where learning demand using prices gets combined
with capacity-based or inventory control problems. Readers looking for a
more detailed review of current dynamic pricing literature are referred to
den Boer (2013).

The methods and policies used in pricing greatly vary, however, they often
fall into two broad categories: posted-price mechanisms, and price-discovery
mechanisms. A posted-price mechanism involves selling goods at a “take it
or leave it” price determined by the seller, whereas price-discovery mecha-
nisms regard prices determined by processes such as auctions. In the past,
companies would set a fixed price for their products that would last for a
long period. This is often referred to as posted static prices. Dynamic posted
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prices are also “take it or leave it” prices, but the prices are dynamically al-
tered by the seller over time, also known as dynamic intertemporal pricing
(Elmaghraby and Keskinocak, 2003).

In their research, Gallego and van Ryzin (1994) analyses the problem man-
agers face when selling a given stock of items within a deadline in a monopo-
listic market. They find an upper bound on the expected revenue for general
demand functions by analyzing the deterministic version of the problem, and
use this bound to prove that simple, fixed price policies are asymptotically
optimal and outperform dynamic pricing as the volume of expected sales
tends to infinity. However, a significant amount research has evolved to o↵er
solutions to more realistic models since 1994, including product substitution
e↵ects, consumer inertia, competition and price uncertainty (Sen, 2013).
Most of the current literature implies that the adoption of dynamic pric-
ing policies can provide significant gains over fixed-price policies, especially
when demand is uncertain. Also, the ever increasing adaptation of dynamic
pricing policies in retail and other industries provides some evidence that
the future of pricing is dynamic.

2.2.1 When Will Dynamic Pricing Succeed?

Dynamic pricing is arguably a price discrimination strategy (often referred
to as price customization) aimed to maximize a seller’s revenue by charging
di↵erent prices to end consumers based on a discriminatory variable. How-
ever, as explored in 2.1.1, price discrimination is not always welcomed by the
consumers. In an attempt to explore when applying dynamic pricing makes
managerial sense, Reinartz (2002) propose that there are five conditions that
must hold if price customization is to work. These conditions are:

1. Customers must be heterogeneous in their willingness to pay

2. The market must be segmentable

3. The potential for arbitrage is limited

4. The cost of segmenting and policing must not exceed revenue increases
due to customization

5. Violations of perceived fairness must not be committed

Condition 1: Customers must be heterogeneous in their willing-
ness to pay

Perhaps the most basic condition is that the consumers must be willing to
pay di↵erent prices for the same goods or services. If this is not the case, the
gains of implementing complex pricing algorithms would be minimal as the
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prices are likely to be static. Di↵erences in consumers’ willingness to pay
can be explained in numerous ways, including, the opportunity cost of time,
the product risk di↵erent consumers are anticipating, the need to perform
price-search e↵orts and varying perceptions of brand names and value.

In most markets heterogeneity seems to apply (Reinartz, 2002). It is es-
pecially evident in markets where branded and generic products co-exists,
such as apparel, groceries and electronics. Further, markets incorporating
a wide range between the lowest and highest price for a particular product,
and those where price-search e↵orts are rewarded, tend to have heteroge-
neous consumers. However, in commodity markets, consumers are likely to
be more homogeneous, and their willingness to pay is unlikely to vary much.

Condition 2: The Market Must be Segmentable

E↵ective price discrimination is hard to reach without the possibility of iden-
tifying di↵erent groups of consumers. Segmentation enables a firm to reduce
complexity by specifying actions for a larger portion of consumers, and not
just individuals. This is achieved by making certain assumptions about
each group’s willingness to pay. For instance, a consumer might sort prod-
ucts according to price before choosing (price sensitive customer) or might
choose to make a decision based on non-price attributes like brand or qual-
ity (price-insensitive consumer). Commonly used segmentation techniques
involve loyalty programs and self-selection.

During the last 20 years firms’ ability to segment markets have greatly im-
proved as a result of the increasing web-based commerce. This has enabled
tracking of individual customer purchases through the Internet, and thus
building up profiles over time, allowing for marketing campaigns directed
to each consumer, or more likely, to segments having di↵erent willingness
to pay. In addition, by examining consumers search behavior, sellers can
infer consideration set marketing, which is the set of products that a con-
sumer might consider to be nearly equal before purchasing (Reinartz, 2002).
Knowing what alternatives a consumer evaluates, often reveals information
about their willingness to pay. For instance, two customers looking for a
jacket might end up buying a high-quality Arcteryx jacket. However, if one
of them bought it because it is a premium brand, and the other evaluated
several other jackets, but chose that particular one because it provided the
highest quality/price tradeo↵, then presumably, the first consumer has a
higher willingness to pay than the latter one. Consequently, tracking the
browsing path of consumers concede valuable information about their con-
sideration set.



CHAPTER 2. OVERVIEW OF DYNAMIC PRICING 16

Condition 3: The Potential for Arbitrage is Limited

A firm’s ability to charge di↵erent prices to its customers is dependent on
limited arbitrage. Opportunistic consumers should not be able to buy a
product at a lower price and then resell it to a consumer having a higher
willingness to pay. If arbitrage is present, the firm would have no incentive
to price discriminate customers as it would be more e↵ective just to charge
one static price to all its customers. Airlines solved this issue by imposing
restrictions on cheap fairs, in that the ticket is made out for one specific
customer, and the cost of changing the tickets exceeds the gains. Arbitrage
is often regarded as limited because the cost of resale does seldom cover the
benefits of doing so.

Previously, brick and mortar retailers were able to charge di↵erent prices
according to geographical regions. A product might not cost the same in
Oslo as in Trondheim, but customers typically do not know or search for
prices in all regions, hence, arbitrage is not considered an issue. However, the
Internet and shopbots (price comparison websites) takes price transparency
to a whole new level, and thus online environments can help destroy existing
price customization schemes (Reinartz, 2002).

Condition 4: The Cost Cannot exceed Revenue Gained

If there are to be any gains from price customization, the cost of doing so
must not exceed the extra revenue gained from it. In the past, many price
customization models had to be foregone for this reason. They were simply
too expensive to implement (Reinartz, 2002). The airline industry took a
great leap of faith when they started investing millions of dollars in their
yield management systems, but they have as previously noted been highly
successful.

Condition 5: Violations of Perceived Fairness Must not be Com-
mitted

The final condition concerns the fairness a consumer perceives when dealing
with a seller. Perceived fairness is often thought of as the consumers’ per-
ception that both parties in a transaction have gained something from it.
It is important for firms and managers to understand the risks of perceived
unfairness, as this could greatly harm business as happened to Amazon.com
when they experimented with price customization. A pricing program is
doomed if the consumers do not feel they are being treated fairly regarding
price (Reinartz, 2002). Ultimately, it is the consumers that have the power
and any seller attempting dynamic pricing needs to be aware of the profound
e↵ects negative word of mouth amongst consumers has on its reputation.
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How a consumer defines his or hers perceived fairness is to a large degree
dependent on whether the supply of a good or service is limited or not.
When buying airline tickets, customers are aware that a particular seat on a
flight is in short supply, and acknowledge that the prices of individual seats
are sold under varying conditions. On the other hand, a customer buying a
computer or groceries would be less forgiving regarding price di↵erentiations
as these goods are theoretically available on an unlimited basis. This could
invoke a feeling of being exploited by the sellers and that the sellers are
profiting at the consumers expense.

Still, there are ways of avoiding the downsides related to perceived fairness
even when supply is unrestricted. The most common approach keeps the
transaction between the consumers and the firm a private matter. Other
approaches include placing a time limit on the products availability or ad-
vertising it as a ”perishable”.

2.2.2 Forms of Dynamic Pricing

The applicability and variety in dynamic pricing are wide, and there exist
several kinds of models and practices used today. Based on the five condi-
tions of price customization Reinartz (2002) categorizes two main forms of
dynamic pricing from a price discrimination perspective: the weak and the
strong form.

Weak Form of Dynamic Pricing
The weak form of dynamic pricing involves changing prices over time, but not
between customers. This makes the market for a product behave sort of like
a stock market, where prices fluctuate according to supply and demand. In
markets with a weak form dynamic pricing, the fact that prices fluctuate over
time is explicitly and publicly stated, implying that the consumers are aware
of what’s going on. As a result, consumer bitterness is avoided by the fact
that all customers pay the same, provided that they purchase the product
at the same time. Reinartz (2002) argues that products in limited supply,
perishable or versioned are best suited for this kind of dynamic pricing.

Strong Form of Dynamic Pricing
The strong form of dynamic pricing, on the other hand, involves price
changes over time and between di↵erent customers. As a result, this extra
dimension makes the situation for customers more complex and seemingly
random. In this setting, firms tend to withhold their price changes from the
consumer (Reinartz, 2002). The underlying reason is that bitterness and lack
of fairness are expected if the customers are made aware that prices change
not only over time but also across customers. Consequently, if a company
is to succeed with a strong form of dynamic pricing it has to be extremely
well executed.



CHAPTER 2. OVERVIEW OF DYNAMIC PRICING 18

2.3 Examples of Dynamic Pricing

We conclude this Chapter by presenting some examples of how dynamic
pricing has been implemented in various industries, in addition to presenting
some of the dynamic pricing optimization software providers operating today.

Uber is a company that connects drivers and riders through a software ap-
plication and their goal is to open up more possibilities for riders and more
business for drivers (Uber, 2015). Since its introduction in 2010 Uber has
used a dynamic pricing policy that they call ”surge pricing”. Put simply,
this strategy lets Uber raise its prices, often sharply, during times of high
demand, and lowering prices when supply is high. The implementation of
surge pricing has been highly successful, predominantly, because it exploits
demand while also helping to increase supply. It provides the drivers with
additional monetary motivation for driving at inconvenient times when de-
mand are high, like New Years Eve and at 2 a.m. on a Saturday night,
thus increasing the service level for riders. However, many riders have com-
plained, accusing the company of profiteering and exploiting its customers,
and one customer even called Uber ”price-gouging assholes”. Still, their im-
plementation of dynamic pricing is regarded as highly successful (Surowiecki,
2014).

In addition to using classic yield management techniques segmenting dif-
ferent types of customers, easyJet, like many airlines today, use dynamic
pricing to price their seats. EasyJet has even published an explanation of
their pricing strategy on their website, arguably to improve transparency
between themselves and their travelers to avoid rebelling customers. The
seats on a particular flight are priced di↵erently according to the level of
demand for seats still to be sold. Simply put, their strategy is; the higher
the demand for seats, the higher the price (easyJet, 2015).

Jet.com is an online retailer selling all kinds of products from detergents to
computers, and their goal is to “reinvent” e-commerce. They address the
issue that, in general, the only way to pay less for an item is to buy in volume
or choose the slowest possible shipping alternative available. Thanks to an
innovative, dynamic pricing strategy, Jet.com allows shoppers to track how
the prices of items in their online shopping basket change in real time. The
prices the customer sees are based on their selection of goods and how the
composition of items a↵ect the actual cost of that particular transaction,
such as product warehouse location, items in a shipment, payment method,
returns and more (O’Meara, 2015)

There exist quite a few DPOSPs today, and the most known providers are
companies such as Wiser, Boomerang Commerce, Upstream Commerce and
360pi. Here we will take a closer look at how Wiser presents their pricing
software WiseDynamic. WiseDynamic has three main goals:
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1. Estimate demand using regression models leveraging historic sales data
to create a demand estimation engine

2. Maximize profits by a dynamic algorithm aggregating several pricing
variables to set an optimal price for the product

3. Continuously recalculate variables to adjust to a dynamic marketplace
using a machine learning algorithm

Wiser claim that retailers using WiseDynamic see a 22% increase in sales
revenue, 18% increase in conversion rate and 32% increase in bottom-line
profit (WiseCommerce, 2015).



Chapter 3

Dynamic Pricing Models

In a world of perfect information, pricing of goods would be more or less
trivial. However, in reality, perfect information is a bold assumption and
managers are bound to optimize their prices based on limited information.
Firms do not know how consumers respond to di↵erent selling prices, and
thus, the optimal price is hard to find. The problem of dynamic pricing
is as such not merely about optimization; it also includes learning about
the relationship between price and market response. Usually, this relation
is modeled by a demand model or function depending on some number of
unknown parameters, whose value can be learned by applying statistical
estimation techniques on historical sales data (den Boer, 2013).

There exist a variety of approaches and mathematical models used for com-
puting optimal dynamic pricing policies in a world of uncertainty. The ma-
jority of these models are formulated as optimization problems aiming to
find the optimal prices to maximize profit. The following chapter will pro-
vide insight regarding the most commonly used dynamic pricing models in
e-commerce.

In their research, Narahari et al. (2005) categorizes the existing dynamic
pricing models into five di↵erent categories. These categories are in no
way indisputable, and several models are often combined in a given pric-
ing scheme, still they provide a simple and e↵ective overview of current
approaches relevant for this thesis. The categories are:

• Inventory-based models : Pricing decisions are primarily based on in-
ventory and customer service levels

• Data-driven models : Collected data regarding customer preferences
and buying patterns are used in a statistical manner to compute opti-
mal dynamic prices
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• Game theoretic models: Focuses on the interplay between and strate-
gies used by actors in a multi-seller scenario, where the firms compete
for the same customers and thus induce a dynamic pricing game among
the sellers

• Machine learning models : By introducing algorithms that dynamically
alters the price of a seller’s products in an e-business market, seller’s
potentially can learn buyer preferences and buying patterns

• Simulation models: May use any of the four models above or a pro-
totype system to mimic the dynamics of a more complex system, to
provide useful insights about the underlying approximated market

The following sections will explore the top four of these dynamic pricing
models in greater detail. We could have chosen to include simulation models
as well in this overview, however, it has been excluded due to the follow-
ing. Simulation models are simply a way of simulating market dynamics
in a computer environment, and as such the simulation approach has few
other common attributes. It is a commonly used method for evaluating and
exploring the other dynamic pricing models, because it allows for numerical
evaluation of problems that are far to advanced to be analyzed analytically.
Consequently, we will explore the benefits of simulations models through the
other dynamic pricing models.

3.1 Inventory-Based Models

Due to its applicability and increasing adoption across multiple industries
and markets, inventory-based dynamic pricing models have been researched
extensively. Chan et al. (2004) and Elmaghraby and Keskinocak (2003)
present a thorough review of inventory-based pricing models for traditional
retail markets in their research. A brief overview of some of their most
important findings is presented here.

Elmaghraby and Keskinocak (2003) suggest that there are three main market
characteristic that influence the type of dynamic pricing problem a retailer
faces in the presence of inventory considerations, namely replenishment or no
replenishment of inventory, dependent or independent demand, and myopic
or strategic customers. We shall now examine these characteristics in further
detail.

Replenishment vs. No Replenishment of Inventory (R/NR)

A seller’s ability to replenish its inventory during the price planning horizon
has a profound e↵ect on its prices. If replenishment is not possible, as is
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the case for some short life cycle products such as Christmas decorations
or seasonal fashion apparel, inventory decisions have to be made up front
before the selling season starts, implying that the retailer must make pricing
decisions given a fixed amount of inventory. On the other hand, when replen-
ishment is available, additional units are accessible to supply the observed
demand and thus a more flexible pricing strategy can be utilized.

Dependent vs. Independent Demand Over Time (D/I)

The consumers demand for a product may change over time, and is often
categorized as being either dependent or independent. When considering
multiple selling periods, demand is dependent if the product is a durable
good or if the customers’ knowledge about the product influences their buy-
ing decision. By definition, a durable good is a product whose lifetime is
longer than the time horizon over which a seller can make price changes. The
total demand for a durable good, although it maybe unknown, can be mod-
eled as being fixed with no or limited repeat purchases throughout the selling
horizon, implying that ”...a sale today, is one less possible sale tomorrow”
(Elmaghraby and Keskinocak, 2003, pp. 1289). The customers’ knowledge
about the product may also a↵ect their buying decision and willingness to
pay making demand dependent. For instance, when a new product is re-
leased, customers are less informed about the product and its value. Thus
customers might be more cautious buying products they have no knowledge
about or they might not even know the product exists. As a result, retailers
can try to influence future demand at the start of a product’s life cycle, us-
ing advertising and word of mouth from previous sales to inform customers
about its products value. Under independent demand, on the other hand,
current sales do not have a negative impact on future sales. This is the case
for most non-durable goods, such as necessity items like groceries, where
consumers frequently repeat purchases.

Myopic vs. Strategic Customers (M/S)

Consumer buying behavior is commonly classified as being either myopic or
strategic. Myopic customers make a purchase immediately if the price of
the product is below their valuation (reservation price), and do not consider
future fluctuations in prices. Strategic customers account for the future price
path before making a purchase and thus induce complexity for the seller’s
pricing decisions. A seller facing myopic customers does not have to account
for undesirable e↵ects of future price cuts on current customer purchases.
Whereas, when dealing with strategic customers, the seller needs to consider
the e↵ects of future and current prices on its customers’ buying decisions.
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Moving on, Elmaghraby and Keskinocak (2003) found that the bulk of ex-
isting inventory-based pricing models can be partitioned into two categories:

• NR-I-(M/S): No Replenishment, Independent Demand, Myopic (Strate-
gic) customers

• R-I-M: Replenishment, Independent Demand, Myopic customers

When a seller faces a short selling horizon, for instance due to short-life-cycle
products, the market is classified as an NR-I market. In this setting, the
retailer has a fixed inventory and must decide on the best pricing policy for
its selling horizon. Further, NR-I markets are divided into two subcategories,
according to whether customers are modeled as strategic or myopic. While
in R-I-M markets, replenishment of inventory is available, goods are non-
durable, and the customers immediately buy products when the price is lower
than their reservation price. The paper by Elmaghraby and Keskinocak
(2003) provides an in-depth review of all three categories, and most of their
findings are applicable to single seller monopolistic markets.

3.2 Data Driven Models

The social media revolution and our ever-decreasing privacy online has lead
to enormous opportunities for revenue enhancing measures. Sites as Face-
book, Google, Amazon, and the online retail environment, accumulate enor-
mous amounts of data about its customers that they can leverage to improve
their revenues and profits. More and more sophisticated data-mining algo-
rithms are being developed for retailers, enabling them to make use of what
has come to be known as ”big data”. In his survey, Raghavan (2005) presents
how web mining applies to improving the services provided by e-commerce
based enterprises. The literature regarding data-driven models often focuses
on building processes that contribute to delivering value to the end cus-
tomers, by altering what information is available, predicting click streams
and customizing marketing e↵orts. Also by learning customer buying be-
haviour from past web-logs, sellers are able to segment their customers more
e�ciently. As claimed by Adnan et al. (2011, pp.174) ”...analysis of the
user’s behavior would allow e-commerce website developers to increase the
user experience and, in return over time, an increase in revenue and overall
customer satisfaction.

In regards to data-driven approaches to dynamic pricing, several e↵orts have
been made to transform user data into valuable pricing algorithms. Revenue
or yield management in the airline industry are traditionally driven by cus-
tomer data. Boyd and Bilegan (2003) review successful e-commerce models
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of dynamic, automated sales enabled by central reservation and revenue
management systems. They find that collected data could be used to in-
fer customer purchasing habits and provide a way to better control product
sales once these habits were understood. Rusmevichientong et al. (2006) de-
veloped a non-parametric, data-driven model to determine optimal dynamic
prices for General Motor vehicles, by leveraging data gathered from the Auto
Choice Advisor website.

Firms as Facebook and Google are continuously gathering data from its
users, trying to monetize on their enormous databases. As for now, their
focus has been to provide advertising services to its clients. However, it is
likely that it is only a matter of time before these two giants find ways of
analyzing and using this data for determining better ways of pricing for its
clients.

3.3 Game Theoretic Models

When determining its selling prices, a company often has to consider the
selling prices of its competitors. Therefore, it seems only natural to study
pricing and learning policies in a competitive market, as neglecting the com-
petitive aspects of the market could have negative consequences (den Boer,
2013). A market consisting of multiple competing rational and selfish agents
can be modeled in a game theoretic framework. In regards to dynamic pric-
ing, both non-cooperative game theory and cooperative game theory are
relevant for modeling the e-business markets (Narahari et al., 2005). Espe-
cially interesting is the area of repeated games with incomplete information,
since it should provide a natural framework for studying dynamic pricing in
a competitive environment. However, long-term dynamics of repeated games
can be very complicated, even without incomplete information. This fact is
presumably one of the reasons why the literature on pricing and learning
with competition in a game theoretic framework is rather scarce (den Boer,
2013).

3.4 Machine Learning Models

In most markets, demand and supply fluctuate, creating a constantly chang-
ing market environment. Predicting all possible future states of such markets
is impossible, and available information is limited. As a result, a consider-
able stream of literature on dynamic pricing has emerged from the computer
science and artificial intelligence community. These models enable firms to
put available data into perspective and change their pricing strategy to best
adapt to the market environment (Narahari et al., 2005). In general, these
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papers do not attempt to provide a mathematical analysis of the performance
of pricing policies. Instead, they are aimed at designing realistic models for
electronic markets and subsequently apply machine learning techniques (den
Boer, 2015).

The advantages of using machine learning include the possibility to model
many of the factors that influence a market, such as competition, fluctuating
demand and strategic buyer behavior. However, the main disadvantage of
this approach is that the models are often too complex to analyze analyti-
cally, and as such, insights on the behavior of di↵erent pricing strategies can
only be obtained by numerical experiments (den Boer, 2013).

Machine learning models are also often combined with data-driven approaches
to determine optimal dynamic pricing. The literature on machine learning
pricing is commonly classified into models using a single or multiple learn-
ing agents, and it o↵ers a new and exiting approach for automatic pricing
decisions. Solving dynamic pricing problems using smart machine learning
techniques will be our main focus for the remaining chapters.



Chapter 4

Understanding Machine
Learning Models

The following chapter will continue the discussion regarding machine learn-
ing models, and go into greater detail by presenting common attributes and
methods in the literature. We start by presenting an introduction to the
concept of machine learning and the most used algorithms, focusing on ap-
proaches used for dynamic pricing. We then conclude with some of the
commonly used attributes for replicating a marketplace in this literature.
The presented material will later be used in Chapter 5 for classifying and
generalizing the studied literature, in addition to providing the foundation
for the development of our own machine learning model.

4.1 Overview of Machine Learning

The topic of machine learning originated from the computer science commu-
nity, and has evolved from the study of pattern recognition and computa-
tional learning theory in artificial intelligence. In a way, machine learning is
the science of getting computers to act without being explicitly programmed
(Coursera, 2015). Since the 1990’s substantial amounts of resources and re-
search have been devoted to developing sophisticated learning algorithms,
and they have been applied to various fields including spam-filtering, search
engines, chess and computer vision.

This thesis will only provide a brief introduction to the science of machine
learning, enabling us understand the basic underlying principles. There ex-
ists a variety of di↵erent models and approaches within this topic, but it
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is common to categorize machine learning algorithms into three broad cat-
egories, based on the nature of the learning signal or feedback available to
the algorithm Russell and Norvig (2010).

• Supervised learning: Example inputs and their desired outputs are
given to the computer by a ”supervisor” and the computer’s goal is
then to learn a general rule that maps inputs to outputs. Commonly
though of as function approximation, where x and y observations are
supplied and the algorithm has to find a function that approximates
y = f(x)

• Unsupervised learning: No examples are given to the computer
and, thus, it is left on its own to find structure in the input data. As
opposed to supervised learning, the algorithm is only supplied with
x observations, and its job is to find an appropriate function f(x)
representing the data, sometimes referred to as clustering.

• Reinforcement learning: The computer interacts with a dynamic
environment and its task is to reach a certain goal without a supervisor
telling it explicitly if it is close to its goal or not. The algorithm is
supplied with observations x and z, and will use those to find y and
f(x), when y = f(x)

The core of machine learning algorithms is that they can generalize from their
experience. Consequently, they are often able to perform accurately on new
and unseen tasks after experiencing a learning data set. In general, learning
data sets are given from historic data or an unknown probability distribution
that aims to represent the space of occurrences. The algorithm then has to
build a general model of the given space to produce adequately accurate
predictions in new cases (Russell and Norvig, 2010). When learning sets are
finite, and the future is uncertain, the performance of algorithms can not
be guaranteed, thus, their performance is commonly given by probabilistic
bounds and expected values.

Furthermore, there are two main approaches for training an algorithm, namely
online and o✏ine learning. O✏ine learning implies that the algorithms only
learn from data sets consisting of i.e. historical data, and consequently, do
not change their approximation of the target function when the initial train-
ing phase has been performed. Whereas online learning implies that the
algorithms sequentially update their prediction of the target function when
new data becomes available. The two approaches are commonly combined,
resulting in algorithms that can be trained, or initialized, according to his-
torical data or data-estimations, before being ”released” in an application
and subsequently update their initial prediction of the target function as
they go.

When considering dynamic pricing problems using machine learning, some
important considerations can be made. First, we should represent the market
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in which the algorithms are supposed to operate using some probability dis-
tribution, or model, that aims to capture realistic market dynamics. Then,
provided that the designer has understood the environment, di↵erent ma-
chine learning algorithms can be developed, tested and trained based on this
understanding. Typically, the performance of the algorithms is evaluated by
numerical simulation of a market aiming to represent reality, here referred
to as a market model.

Based on previous research in this field, the following section will provide a
general introduction to machine learning algorithms used for the dynamic
pricing problem. Then a general framework for analyzing the di↵erent mar-
ket models and assumptions used in the majority of literature is presented.
This chapter will thus provide us with the necessary understanding for find-
ing similarities and variations of the literature in Chapter 5.

4.2 Machine Learning Framework

In order to understand the basics of machine learning, this chapter will
present some of the overall approaches and assumptions used for the di↵erent
types of machine learning. Our goal is to provide su�cient information
enabling us to explore relevant features of machine learning for dynamic
pricing in the literature, without going into to much detail. We will pay
most attention to reinforcement learning, as it is a frequently used approach,
but we will also present some more details of other common approaches.

4.2.1 Reinforcement Learning

A supervised learning agent needs to be told the correct move for each state it
encounters, but such feedback is seldom available (Russell and Norvig, 2010).
Reinforcement learning (RL), however, is a method used by machine learning
agents to learn what to do in the absence of labeled examples of what to do.
Consequently, RL-agents are more sophisticated and closer to what some
consider to be artificial intelligence. The majority of literature regarding
machine learning for dynamic pricing uses some form of RL-algorithm, and
as such, we will present some insights on what they are and how they work.

Decision Processes

In order to employ a reinforcement learning algorithm, one has to represent
the world by some model in which calculations can occur. This section will
present the three most common representations of “reality” used in machine
learning.
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Markov Decision Process
AMarkov Decision Process (MDP) is a sequential decision problem for a fully
observable, stochastic environment with a Markovian transition model and
additive rewards. Simply put, it is a way of simplifying reality by assuming
that only the present matter. It consist of a set of states s and an initial state
s0, a set of actions A(s) in each state, a transition model P (s0|s, a), and a
reward function R(s, a, s0). The transition model is Markovian on the basis
that the probability of reaching state s0 from s depends only on s and not
on the history of earlier states. P (s0|s, a) is the probability of reaching state
s0 if action a is performed in state s (Russell and Norvig, 2010). Relating
to our introduction to RL in section 4.1, one can think of the parameters
x, y, z and f(x) as s, a, r and ⇡⇤ respectively.

The solution to an MDP must specify what the agent should do for any state
that the agent might reach, and is commonly referred to as a policy. Policies
are usually denoted by ⇡ and ⇡(s) is the action recommended by the policy
⇡ for state s. If regardless of the outcome of any action, the agent always
knows what to do next, the agent is said to have a complete policy.

A given policy is always started from an initial state and each time a given
policy is executed, the stochastic nature of the agents environment may lead
to a di↵erent environment history. Consequently, the quality of a policy
is measured by the expected utility of the possible environment histories
generated by that policy. In this setting, an optimal policy, denoted ⇡⇤, is
the policy that yields the highest expected utility or optimize the long-term
expected rewards. Utility in this setting is the immediate reward in s plus
the future expected rewards when following policy ⇡(s).

MDPs are assumed stationary with an infinite horizon, in that the transition
model, or the rules, does not change with time. Hence the optimal policy
⇡(s) will always return the same action a, regardless of what point in time
state s is evaluated. Because the time horizon is infinite, the value of the
sequences will also be infinite. To cope with this issue, when designing an
algorithm for an MDP, a discount factor 0 < � < 1 is introduced enabling
us to find a finite value to an infinite sequence. MDPs can be solved to
optimality by linear or dynamic programming in polynomial time.

Partially Observable Markov Decision Process
The MDP assumes that the environment is fully observable, that is the agent
always knows which state it is in, whereas in the Partially Observable Markov
Decision Process (POMDP) the agent does not necessarily know which state
it is in. As a result, it can not execute the action ⇡(s) recommended for that
state. Moreover, the utility of state s and the optimal action in s depend
not just on s, but also how much the agent knows when it is in s. Hence,
the POMDP is usually viewed as considerably more di�cult to handle than
MPDs, but they are again much more similar to our real world (Russell and
Norvig, 2010).
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The POMPD shares many of the same elements as an MDP, the transition
model P (s0|s, a), actions A(s), and reward function R(s, a, s0), but in addi-
tion it has a sensor model P (e|s). The sensor model specifies the probability
of perceiving evidence e in state s, which is used for estimating which state
it is in.

A key concept for solving partially observable problems is the belief state,
which represents the agent’s current belief about the possible physical states
it might be in, given the sequence of actions and percepts up to that point.
Considering the POMDP, the belief state b becomes a probability distribu-
tion over all possible states, and b(s) gives the probability assigned to the
actual state s by belief state b. Hence, the agent can then calculate its cur-
rent belief state as the conditional probability distribution over the actual
states given the sequence of percepts and actions so far.

The fundamental insight required to understand POMDPs is that the opti-
mal action depends only on the agents’ current belief state. Or put di↵er-
ently, the optimal policy can be described by a mapping ⇡⇤(b) from belief
states to actions, thus it does not depend on the actual state the agent is
in. However, actually finding the optimal policy for a POMDP is virtually
intractable (Braziunas, 2003)

Markov Games
Markov games, or stochastic games, represent a generalization of both Markov
decision processes and repeated games. As with MDPs, we model our world
by states, actions, transitions and rewards. However, because we now are
introducing multiple players, we have to adjust some of our previous as-
sumptions. Each player i = 1, 2, .., choose their own actions A

i

(s) and may
or may not have the same set of actions available. The transition function
depends not only on their actions, but also the actions of others, that is,
T (s, a(1,2,..), s

0). So does their rewards, now given by R
i

(s, a(1,2,..), s
0). This

strategic game between agents adds another dimension of complexity and
greatly increase the di�culty of finding an optimal policy.

Further, for repeated games, it is common to include some discount factor
to represent the probability of meeting opponents again, and this can eas-
ily related to the expected number of rounds, which, is arguably the same
mechanism used in the MDP to find a finite value to an infinite series. In
a way, an MDP is a narrowing of a stochastic game, where the players are
fully una↵ected by the action and transitions of others. The concept of fully
and partially observable processes, translate to the game-theoretic terms of
perfect information and imperfect information. Markov games are generally
very hard to solve.
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Algorithm

Before presenting the literature regarding reinforced learning, a quick intro
to the general algorithm principle is provided. Readers looking for a more
thorough review and explanation of the procedure in reinforcement learning
algorithms are referred to Schwind (2007) and Russell and Norvig (2010).
There exists many approaches to reinforcement learning and arguably all
RL-approaches have the ability to solve an MDP by learning. The notion
of solving an MDP relates to finding the optimal policy, often when the
transition function and reward function is unknown. Hence, an RL-algorithm
are able to estimate the reward and transition functions of an MDP by
using observed states and rewards. Schwind (2007) provides the following
explanation:

• The reinforcement learning agent is connected to its environment via
sensors

• In every step of interaction the agent receives a feedback about the
state of the environment s

t+1 and reward r
t+1 for its latest action a

t

• The agent chooses an action a
t+1 representing the output function,

which changes the state s
t+1 of the environment and thus leads to

state s
t+2

• The agent receives new feedback from reinforcement signal r
t+2

• The objective of the agent is to optimize the sum of the reinforcement
signals in the long run

Figure 4.1: An illustration of a how a reinforcement learning agent interact
with its environment



CHAPTER 4. UNDERSTANDING MACHINE LEARNING MODELS 32

The overall procedure of the reinforcement learning can be abstracted to
a learning process where the algorithms are rewarded for favorable moves
and punished for unfavorable moves. By keeping track of what moves give
rewards by a action-utility function, the algorithm navigates in its solution
space trying to maximize its reward. The most used RL-algorithms in dy-
namic pricing, are the family of Q-learning algorithms, which have been
proven to converge to the optimal policy for an MDPs if the state-action
pairs are visited infinitely often (Littman and Charles, 2015).

Exploration vs. Exploitation

An issue of machine learning that often reveals itself is the trade-o↵ between
exploration and exploitation. During the training period, the algorithms
are supplied with information and builds rules to approximate this data.
However, after learning from a training set of data, the algorithm now has
a trade-o↵ to make, should it exploit what it has learned so far, or should
it perhaps explore more of the solution space and avoid being trapped in a
local maximum.

This problem of exploration and exploitation is often exemplified by the
multi-armed bandit problem (Xia and Dube, 2007). Imagine a gambler fac-
ing multiple slot machines, and he has to decide what machines to play, how
many times to play each machine, and in which order to play them. Each
machine has its own distribution of random rewards, and the objective of
the gambler is to maximize his sum of rewards earned from his choice of
lever pulls. Choosing what machines to play for optimizing the gambler’s
expected payo↵ is not straightforward.

In regards to dynamic pricing, the issue of exploitation and exploration is
important when considering profits and learning. Should the algorithm max-
imize it profits given what it know now so far, or should one look to delay
rewards and go for choices that are not immediately optimal, but are as-
sumed to improve long-term expected profits. These questions are not easily
answered, but they are a fundamental part of designing a reinforcement
learning algorithm.

4.2.2 Supervised Learning

The approach of supervised learning is much wider than that of reinforce-
ment learning, in that it is a general method of function approximation.
Hence, there exists a large variety of di↵erent supervised learning algo-
rithms, many of whom might easily be converted for use in unsupervised
learning. However, the approach of neural networks is an interesting one
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that is purely supervised learning, and that has considerable potential for
the dynamic pricing problem.

Neural Networks

Figure 4.2: The structure of a simple neural network

The modeling approach of Artificial Neural Networks (NN) is inspired by
the way biological nervous systems like our brain process information. NNs
consist of a collection of units connected together, whose properties are deter-
mined by their topology and their ”neurons”. Neural networks are predom-
inantly used to estimate or approximate functions that depend on a large
number of inputs and that are generally unknown. They are commonly
presented as systems of interconnected ”neurons” exchanging information
between each other. Numerical weights are applied to each connection of
nodes and tuned based on the algorithms experience, thus making neural
networks adaptive to inputs and capable of learning. The networks always
consist of an input and output layer, and may incorporate a single or multiple
hidden layers, depending on the data and complexity to be approximated.
An illustration of a neural network with one hidden layer is presented above
in Figure 4.2.

4.2.3 Other Algorithms

The following algorithms have all been used for solving dynamic pricing
problems, but to a lesser extent than the previous mentioned ones. These
can be classified as unsupervised or supervised learning, depending on the
training set or input provided.
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Evolutionary Algorithms

The methods of evolutionary algorithms are inspired by biological evolution,
in that they use mechanisms of reproduction, mutation, recombination and
selection to generate new and better solutions. Typically, an evolutionary
algorithm starts by randomly generating a population of solutions. Then
each solution is evaluated, and a subset of the better solutions are used
to generate a new population, commonly referred to as a child population.
The child population can be generated by di↵erent techniques, depending
on what type of evolutionary algorithm one chooses to use (Shakya et al.,
2012). Perhaps the most common algorithm is the Genetic Algorithm (GA),
which uses a crossover and mutation approach. This involves combining two
random parent states hoping to create an even better solution, and then
with a small probability performing some random incremental mutation on
the new solution. This process is continued until a satisfactory solution is
found, or some termination criteria is met (Russell and Norvig, 2010).

Derivative Following & Goal Directed

The Goal Directed and Derivative Following algorithms represents a simple
form of unsupervised machine learning, and have been especially developed
for the dynamic pricing problem. They both make incremental exploratory
price adjustments in an attempt to learn the demand in a market. These
adaptive algorithms make no assumptions regarding the buyers behavior or
the type of buyers in the marketplace.

The Goal Directed strategy adjust prices in order to reach a goal provided
by the seller. In the presence of constrained product availability, this goal
is commonly defined as selling the entire inventory by the last day of the
time period, and not before. It does this by decreasing prices when sales are
low, and increasing prices when sales are high, with the goal of selling to the
highest paying buyers on each individual time step (Dimicco et al., 2001).

The Derivative Following strategy adjusts its price by simply evaluating
the revenue gained from the previous time step as a result of the previous
time step’s price change. If the price change in the previous time step gave
more revenue per good, then the algorithm makes a similar change in price.
However, if the opposite is true, then the algorithm makes an opposing price
change. Consequently, the seller goal is to sell at the highest price each time
step that still generates sales (Greenwald and Kephart, 2000)
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4.3 A Generalized Market Framework

When applied to a dynamic pricing problem, it is hard and often impossible
to prove analytically that the above mentioned algorithms result in an opti-
mal policy. Therefore, the standard method of evaluating their performance
is to simulate a market environment and perform numerical experiments.
Only then can we evaluate how the algorithms perform. If we are to grasp
the algorithms better, we need understand these market models. Hence, the
following section will provide an overview of the assumptions and properties
used when simulating markets in the machine learning literature.

It should be noted that some important market properties like those of profit
models, costs and demand experienced by each seller in competition will not
be presented, as it has been proven di�cult to find common ground in the
studied literature regarding these factors.

4.3.1 Number of Players

The number of players determines the overall structure of the market. In
general, we have two categories of players in these market models, namely
sellers and buyers. One usually considers an economy in which a good is
o↵ered for sale by S sellers and is of interest to B buyers. In nearly all
models, the number of buyers greatly outnumbers that of the sellers, that is
B � S. The number of buyers may be given explicitly or presumed infinite.

By altering the number of sellers, various levels of competition are intro-
duced. In accordance with economic terminology, S = 1 implies a monopoly
market, S = 2 represents a duopoly market, and S > 2 is known as a
oligopolistic market. At some point the number of sellers may transition
a market from oligopolistic to perfect competition. However, no research
regarding perfect competition and dynamic pricing has been found, hence
we will regard all markets with S > 2 as oligopolistic markets.

In addition, one needs to consider the number of learning agents, or price
algorithms, in the market denoted by L. Thus, a market in which a single
seller employs a price algorithm is a single learning agent market, whereas
markets with L � 2 implies that there are multiple learning agents present.
It worth noticing that the number of sellers and learning agents does not
need to be equal, and that one can compare the performance of other more
rudimentary pricing strategies to those of machine learning.
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4.3.2 Time & Arrival

By definition, dynamic pricing involves changing prices over time, thus, one
needs to model a somewhat realistic dynamic market in which the actions
of the players occur at some point in time.

The set of players each has their own processes relating their action to the
time frame. In the case of buyers, we are often interested in modeling the
arrival rate of buyers. By which we mean, at what rate ⇢

b

is the buyers
arriving at our ”shop” with a goal of buying a good. The process that has
been widely adopted throughout the literature is a Poisson process. This
is a commonly known process which has the property that each point is
stochastically independent of all the other points in the process. The rate of
arrival in a Poisson process is generally denoted �, and the expected number
of arrivals N in a given time interval t is given by E(N(t)) = �t. Poisson
processes may be homogeneous or in-homogeneous, depending on whether
� is fixed or dynamic. Other used approaches for modeling arrival include
having all customers arrive in each time step or drawing the number of
arrivals from a uniform probability distribution.

On the other hand, the sellers are always staying in the process and thus have
no property of arrival. However, when modeling sellers one has to take into
account at what rate ⇢

s

the sellers are able to reconsider (and potentially
reset) the prices of the goods they are o↵ering. Moreover, in markets with
multiple sellers, one needs to represent the interplay between sellers. Should
all sellers have the possibility to update their prices simultaneously, or do
they update sequentially or randomly distributed throughout the interval?
If sellers update their prices sequentially, the common assumption is that
sellers are able to infer information regarding its competitors current prices
before posting their own.

4.3.3 Demand & Utility

Perhaps the hardest factor to present realistically in a model is the behavior
of the buyers and their buying patterns. In section 3.1, the properties of de-
pendent and independent demand were discussed, however in markets where
multiple goods are o↵ered one might also consider the interdependency of
demand. Interdependent products can be defined as those whose demand
are a↵ected by the prices of other products and services (Rana and Oliveira,
2015). For instance, changes in the price of a pair of shoes might a↵ect
the demand for a matching belt or shoe polish. Consequently, the literature
consists of models considering either a single or multiple di↵erent goods for
sale that might be homogeneous or heterogeneous.

In addition, some models attempt to segment the market by applying some
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preference to each segment and providing some distribution of the various
segments. Others treat the market as a single unity. Examples of such
segmenting will be further explored in the Shopbot and Shoppers & Captives
models below. The properties of myopic and strategic buyers have been
discussed in section 3.1, and will not be repeated here.

Readers familiar with the literature regarding dynamic pricing and machine
learning will note that the our definition of the Shopbot, Price-Quality, Shop-
pers & Captives and Price Information models, is not analogous with the
way they are presented by their original authors. We have found that most
of the literature implements only parts of these models, and hence we have
extracted the most relevant aspects for our analysis. Implying that some as-
pects originally part of the actual models, like those representing experienced
demand at each seller has been neglected to make the overall assumptions
of the models more widely applicable.

Shopbot Model
In a Shopbot model, first presented by Greenwald and Kephart (2000), a
single homogeneous good is o↵ered for sale by S sellers. The utility provided
by the good for buyer b, is a function of price commonly given by:

u
b

(p) =

(
v
b

� p if p  v
b

0 otherwise

implying that a given buyer has positive utility if and only if the seller’s
price is less than the respective buyer’s valuation of the good. In all other
cases, the buyer has a utility of zero. The Shopbot model does not assume
buyers to be utility maximizing, instead, they use a set of search rules taken
from a fixed sample size when selecting which seller to buy from. Buyers
are divided into i types, where 0  i  S, and searches for the lowest price
among i sellers chosen at random from the set S. Buyers of type i = 1,
i = 2, and i = S are referred to as employing Any Seller, Compare Two or
Bargain Hunter strategies. The fraction of buyers utilizing a given strategy
is exogenously determined and satisfies

P
i

w
i

= 1. The Shopbot model is as
such a simplistic representation of buyer behaviors, where factors as seller
quality, delivery times, and other preferences are not considered.

Price-Quality Model
The Price-Quality model was first described by Sairamesh and Kephart
(1998), and considers a market in which each seller o↵ers a single prod-
uct or service. The good may have a number of di↵erent attributes, each
with several discrete possible values or a continuous range of possible values.
However, for simplicity it is usually assumed that the preferences of buy-
ers are correlated in such a way that there exists a universally agreed-upon
mapping that transforms a good’s set of attributes and values into a simple
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scalar named quality. This is often referred to as a form of vertical di↵er-
entiation, exemplified by: given two distinct products, if they where sold at
the same price, then all consumer would choose the same one (the ”higher
quality” product) (Shaked and Sutton, 1987).

The buyers are informed of the price p
s

and quality q
s

of goods o↵ered by
seller s, and the sellers are assumed to report their quality honestly. Each
buyer b has a utility function dependent on both price and quality u

b

(p, q)
that might be given by:

u
b

(p, q) =

(
�
b

(q � q̄
b

) + (1� �
b

)(v
b

� p) if v
b

� p and q � q̄
b

0 otherwise

Based on its utility function, each buyer will select the single seller s that
maximizes their utility, provided that the utility is positive, and then pur-
chase a unit at the price of p

s

. The parameter v
b

is the buyer’s valuation and
q̄
b

its quality floor, �
b

represents the buyer’s bias towards price or quality
and ranges between 0 and 1. For instance, a buyer with �

b

= 1 is at the
extreme limit of quality sensitivity, meaning that he will choose the seller
with the highest quality as long as its price is below the price ceiling p̄

b

.

Shoppers & Captives Model
Raju et al. (2006) presents a model that somewhat combines features of
the Shopbot and Price-Quality model. They argue that in an e-business
market retailers can learn buyer segmentation from their preferences over
price-quantity packages. By utilizing non-linear pricing, sellers are able to
segment the buyers by self-selection, and thus employ a form of second-
degree price discrimination. For simplicity, the sellers are usually providing
two options: one price for a single unit and a buy-two-get-one-free option.

Arguably, one can infer that the consumers selecting the single unit price
can be assumed to be not so price sensitive, and that they are willing to
pay the high price if any additional service o↵er (quality) is part of the
package. In this setting, this additional service is regularly some lead time
commitment in the case of no stock being available. These consumer are
classified as captives, denoted b

c

, and by realizing over time the additional
service benefits from the seller, they will adhere to the same seller for future
purchases. Those buyers taking the three for two option are named shoppers,
denoted b

s

and they are assumed to be willing to bear with inconveniences
imposed by the sellers. Their respective utility functions can be represented
by:

u
bc(p, q) =

(
(v

bc � p)�bc (q � q̄
bc)

(1��bc ) if v
bc � p and q � q̄

bc

0 otherwise
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u
bs(p) =

(
v
bs �

2p
3 if 2p

3  v
bs

0 otherwise

and following the same parameter definitions as the two previously presented
models. The fraction of captives and shoppers experienced by each seller is
exogenously determined and satisfies w

c

+ w
s

= 1

Price Information Model
The model presented by Kephart et al. (1998) assumes an information-
filtering economy consisting of a source agent that publishes information
goods (news articles, audio files etc.), C consumer agents that are hoping to
buy goods that interest them, and B broker agents that buy selected goods
from the sellers and resell them to the consumer agents. In contrast to the
vertical di↵erentiation of the Price-Quality model, the information goods
sold in this simulated economy is horizontally di↵erentiated. Horizontal dif-
ferentiation implies that a product that is worthless to one consumer might
be priceless to another (Tirole, 1988). Horizontal attributes can include
color, size, and design. This model is a bit more complex than the previ-
ous models and seemingly less used in the literature, consequently readers
looking for an introduction are referred to Kephart et al. (2001).

4.3.4 Product Availability

Arguably, in many cases a customer’s willingness to pay is dependent on the
good’s availability. In some cases the availability of products may also be
abstracted to some level of quality for the customers. Further, as mentioned
in section 3.1, the impact of product availability has a profound e↵ect on
sellers’ prices.

Constrained Product Availability

Constrained product availability occurs due to scarce resources and is often
materialized as some limited inventory or capacity. The implications of re-
plenishment and no replenishment inventories have already been discussed,
nevertheless, we shall present a standard replenishment policy commonly
used the literature to gain further insight.

The (q,r) Replenishment Policy
Assuming that each seller has a finite inventory capacity given by I

max

, they
follow a fixed reorder policy for replenishment. When the current inventory
level plus the quantity ordered falls below a level r, the seller orders a re-
plenishment of size I

max

� r. The replenishment lead times of the sellers are
exponentially distributed with a mean of 1/µ. Moreover, each seller incurs
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an inventory holding cost rate of H
I

per unit good per unit time, and a cost
of H

q

per each backlogged request. The sellers buy the product at a price
of p

c

and incurs a reorder cost of p
k

.

Unconstrained Product Availability

In the case of unconstrained product availability, I
max

is considered to in-
finite, and as such there is no need to consider the amount of products
available.



Chapter 5

Examining the Literature

Now that we have an understanding of machine learning and market models,
we will embark on more detailed descriptions on how artificial intelligence
has been applied to the pricing problem. Based on the literature review
conducted by den Boer (2015), the machine learning-principles are classified
into nine categories, and the articles listed by den Boer within each category
are studied. Further, for each category, the most promising articles (in the
author’s view) will be discussed in more detail. Each section ends with a brief
overview of available literature in each respective ”field”, and the chapter
concludes with an overview and classification of the literature based on the
framework presented in Chapter 4.

5.1 Reinforced Learning

The majority of research regarding machine learning models in dynamic
pricing problems is focused on some form of RL-algorithm. A possible ex-
planation of why it is widely adopted could be that RL-algorithms have the
potential to solve a Markov Decision Process (MDP). RL-algorithms have
the benefit of not needing knowledge about the MDP’s transition function
and reward function, and thus, prove valuable in large MDPs were exact
methods become infeasible. Rana and Oliveira (2015) further claims that
reinforcement learning is an ideal method for solving the pricing problem
in situations where both the probability distribution of demand and the ex-
pected revenue gain for taking a pricing action is unknown. Below, two
di↵erent approaches using reinforcement learning to solve a dynamic pricing
problem are presented.

41
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5.1.1 Multiseller Reinforcement Learning

Vengerov (2008) presents a reinforcement learning algorithm that can tune
the parameters of a seller’s dynamic pricing policy in a gradient direction,
in the absence of complete information of the sellers environment. The al-
gorithm is evaluated by simulation of a Grid market environment, where
customers choose a seller from multiple Grid Service Providers (GSP) for
computing jobs based on properties of price and expected delay, or queue.
Utilizing di↵erentiated pricing, the author presents a form of second-degree
price discrimination, but instead of reducing the unit price for large quanti-
ties, they present two pricing options. One static price for a standard service
level, i.e. those who are willing to wait their turn, and one dynamic price
for the premium level, i.e. those willing to pay more to be first in line. This
resembles the Shoppers & Captives model, apart from the property that
the captives in the original model have seller preferences. The problem also
shares some of the properties of inventory based models, in that the seller
has some limited resource (CPU time), and aims to learn the optimal price
for the available CPU time to maximize revenues. Replenishment in this
setting could be thought of as when a customer’s job is finished and frees
the CPU. Given a starting function, the RL-algorithm experiments with the
premium price over time, to learn in which states a higher or lower price is
more beneficial, and thus employing a weak form of dynamic pricing.

The simulation is performed in a multi-agent Partially Observable Markov
Decision Process (POMDP) in continuous time and continuous state-action
space. Customers are modeled as myopic, and given a utility function de-
pendent on price and waiting time, with an exponential factor drawn from a
uniform distribution. Customers arrive according to a homogeneous Poisson
process with rate �.

Their simulations show that each GSP can significantly increase its profits
by o↵ering a premium service level, in addition to a standard one. Further,
they show that if all GPS charges the optimal symmetric static price X⇤ for
its premium level, no Nash equilibrium is present. However, if all (7) GSPs
uses the presented RL-algorithm to tune their premium prices, the process
converges to a Nash equilibrium, which is more profitable than the optimal
static price in a GSP duopoly and slightly less profitable in the case of four
or more static price GSPs.

The algorithm only converges to the optimal policy if the environment re-
mains stationary, meaning that the probability distributions do not change.
Thus, before releasing it in a real deployment, they suggest implementing pa-
rameter tuning in a meta-framework, that observes the important customer
characteristics and resumes tuning of the pricing policy if a change in these
characteristics is detected. By saving previously learned characteristics, the
seller can start tuning for a previously observed state if the environment
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returns to a previously learned state.

5.1.2 Q-Learning and Interdependent Demand

Many retailers o↵er a variety a products or services that are interdependent,
meaning that the demand for one good is a↵ected by the prices of others.
Rana and Oliveira (2015) explore dynamic pricing policies for such markets,
by considering a dynamic pricing problem of multiple interdependent per-
ishable products, in the presence of no-replenishment inventory constrains
over a finite sales horizon. They propose a Q-learning algorithm with eligi-
bility traces Q(�), and models the decisions in a large scale Markov Decision
Process (MDP). The policy makes no assumptions about the functional re-
lationship between price and demand, instead the model learns the relation-
ship explicitly using the observation of realized demand to derive an optimal
dynamic pricing policy.

Demand varies throughout the day, with some periods of excess demand
(peak hours) and some with low demand (o↵-peak). The customers choose
if they want the service during peak or o↵-peak hours, and are considered
myopic. Customers arrive according to a inhomogeneous Poisson process,
and their willingness to pay increases exponentially as their decision time
approaches expiry. Provided the prices for peak and o↵-peak service are
equal, customers prefer the peak option. Their goal is to find the optimal
price for the two scenarios that maximizes revenue, by adjusting prices at
each time step, consequently, modelling a weak form of dynamic pricing.

The Q-learning algorithm is first tested by simulation in which the service
is delivered at time T , and the selling period ranges from 0...T . By varying
the distribution of peak and o↵-peak time slots, they analyse the algorithm’s
performance by comparing it to an individual learning algorithm, i.e. one
that does not account for interdependencies. As expected, the interdepen-
dent learning policy outperforms the individual learning algorithm.

Perhaps more interesting is their example of a weekly pricing scheme at-
tempting to manage the demand and control ”overbooking” using dynamic
pricing. By considering a company operating from Monday to Friday with a
fixed number of employees, they aim to determine whether dynamic pricing
can be used as a mechanism to decrease the cost of having employees work-
ing overtime, and keeping the lead time at an acceptable level of quality.
Customers may place orders during the weekend, and if the quality is to be
maintained, employees might have to work overtime at the beginning of the
week. In this case, the sellers objective is two-fold, improve allocation of
resources to maximize expected revenue, and meet pre-determined levels of
quality. They observe that the optimal prices for the services using inter-
dependent learning is generally higher than those derived using individual
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learning.

Although the algorithm provides promising results in terms of increasing
profits, there are some considerations to be made. When considering five
interdependent products and given an initial state, the number of learning
episodes needed to reach an optimal policy is close to 8000. However, the
authors claim that in the worst case scenario, that is without any prior
training, a reasonable policy for the problem can be achieved within 6000
episodes.

5.1.3 Available literature

• Kutschinski et al. (2003) examine several RL pricing strategies and
their learning behavior in a co-learning (multiple learning agents) sce-
nario with di↵erent levels of competition.

• Sridharan and Tesauro (2002) study the use of a Q-learning algorithm
with regression tree function approximation to learn pricing strate-
gies in a competitive marketplace. They compare their Q-learning
algorithm’s learning ability when using a regression tree function ap-
proximation, and evaluates how their approach compares to function
approximation done by a neural network.

• Han et al. (2008) develop a multiagent Q-learning algorithm capa-
ble of integrating the observed objective actions with the subjective
inferential intention of the opponents, implying that the algorithm be-
comes adaptive, by establishing the decision model of other agents and
predicting their next move in advance. Han (2010) later explores a dif-
ferent approach by considering a Bayesian model aiming to account
for the general problem of exploration vs. exploitation trade-o↵. In
simulations, the Bayesian RL outperforms the multiagent RL.

• Cheng (2008) examine a Q-learning approach in a POMDP model
to find the optimal price for a single-seller selling a given stock of
perishable items in a finite sales horizon. In his later work (Cheng,
2009), a revised Q-learning algorithm for finding optimal prices for
seasonal and style products is proposed.

• Jintian and Lei (2009) look into a duopoly market in which a simu-
lated annealing Q-learning and win-or-learn-fast policy hill climbing
algorithm compete under partial information.

• Raju et al. (2006) use RL techniques in a monopolistic market with in-
ventory replenishment consisting of captives and shoppers with limited
available information.
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• Schwind (2007) provides a thorough review of RL algorithms for dy-
namic pricing and automated resource allocation.

• Dogan and Güner (2015) analyze simultaneous ordering and pricing
decisions in a multi-seller environment over an infinite horizon. They
use an RL-algorithm to analyze the e↵ects of competitiveness and per-
formance in monopolistic and duopolistic markets.

• Könönen (2006) evaluates two competing brokers selling identical prod-
ucts and models the dynamic pricing problem as an asymmetric Markov
game. The problem is then solved in simulation by two di↵erent rein-
forcement learning algorithms.

• Collins and Thomas (2012) performs a comparison of RL approaches
for solving game theoretic dynamic pricing models.

• Chinthalapati et al. (2006) study di↵erent RL algorithms used for
multi-seller markets with inventory replenishment, and evaluates the
performance of the di↵erent approaches under the cases of no and par-
tial information.

• Collins and Thomas (2013) examines how di↵erent consumer model’s
impact the airline pricing game, and solve the various games using an
RL algorithm.

5.1.4 Discussion

Overall, the literature provides a fair amount of evidence that reinforcement
learning is suited for finding optimal, or close to optimal, pricing policies
in simulated environments, and can outperform simpler pricing polices such
as static pricing, the Derivative-Following and the Goal-Directed strategies.
However, since their performance is measured in a simplified simulated en-
vironment, it is hard to evaluate how they would perform when deployed in
a real market. This issue will be further discussed in chapter 6

To converge to an optimal solution, the RL-algorithms have to be trained and
learn about their market environment. When analysing their performance
by market simulation, these training periods are trivial to perform in the
thousands. In a real market environment, however, one needs to consider
not only the time until which an optimal policy is reached, but also at what
cost. If optimality is to be achieved, exploration by the algorithm must
be done in order to learn the markets demand curve. Hence, there will be
periods when the algorithm needs to explore its solution space, and thus,
revenues might be lost. To exemplify this, an algorithm might believe that
raising its price in the next period will increase revenues when, in fact, the
opposite might be true if the price then exceeds the reservations price of its
customers.
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Many authors argue that companies operating online today already have
considerable amounts of data regarding their customer and competitors be-
havior. This helps to create a somewhat better initial state for the RL-policy,
by letting the algorithm learn from historical sales data. However, if the data
provided stems from a fixed price strategy with few or no price changes, the
quality of o✏ine learning is limited.

Another question to be made is what information the sellers are able to infer
about the market from an RL-algorithm. Do the various states and actions
experienced by the RL-agent, transform info valuable information for the
company, or is it just kept hidden? Or put di↵erently, is it the company or
the software agent that ultimately learns? These questions seems to only be
vaguely addressed in the literature.

Also, the majority of literature focuses on using some underlying Markov
Decision Process. This might be justified by considering that it is an some-
what appropriate way to model reality, and because it is possible to solve
them to optimality in polynomial time. However, most real-world problems
do not have the Markov property as they are often non-stationary, history-
dependent and/or not fully observable. In order for RL-methods to be more
generally useful in solving such problems, they need to be extended to han-
dle these non-Markovian properties, which is arguably the reason for the
increasing focus on using POMDPs and Markov games for dynamic pricing.
It should be noted that the assumption of stationarity needed to prove con-
vergence of a normal Q-learning algorithm will be violated in POMDPs and
Markov games. A Q-learning agent would face an MDP only of the buyers
and all opponent sellers use stationary policies, which is a bold assumption.
Still as noted by Tesauro and Kephart (2002) this does not mean that all
Q-learning algorithms are expected to behave badly, it simply implies that
theory can not say how well the algorithms are expected to work.

5.2 Neural Networks

The approach of using neural networks in the setting of dynamic pricing
is rather new, but still there are some research available that explores the
problem. Neural networks are mostly used for learning demand functions
in complex and unknown market environments, and seemingly less used for
automating pricing decisions. The common approach is to estimate demand
using a NN, and then apply some other pricing algorithm based on this
demand.
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5.2.1 Modelling Demand as a Neural Network

Shakya et al. (2012) were among the first researchers to propose using a neu-
ral network based demand model for dynamic pricing. Traditional models of
demand usually require some assumption on its functional form, i.e. linearity
or non-linearity, whereas in the real world these assumptions may not hold
and the model is unlikely to correctly represent the true distribution of the
data. When modeling demand as a neural network, one does not make any
assumptions about the relationship between di↵erent factors in advance, and
so, demand is modeled more realistically. Neural networks learn the underly-
ing relationships, thus inferring demand from the data itself. Consequently
they are able to derive meaning from complex relationships that are too
di�cult to be handled by humans or other computer techniques.

In their paper Shakya et al. (2012) propose using evolutionary algorithms
(EA) to optimize the dynamic pricing problem based on a neural network
demand model. The dynamic pricing model used focuses on a single firm
aiming to maximize its profits given some production quantity constraint.
Demand for a good in a period is assumed to be dependent on the price
in that period and also the prices for the product in the other periods in
the planning horizon. In order to evaluate the performance of modeling
demand in a neural network, they employ the same set of evolutionary pricing
algorithms to more traditional demand models such as a linear, exponential
and multinomial logit model.

Figure 5.1: The structure of the neural network presented by Shakya et al.
(2012)
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Considering a fixed topology network with three layers, an input layer, a
hidden layer, and an output layer, they build a set of T neural networks
that each represents the demand in a given period t. The parameters of the
neural networks are the weights associated with the connections, and the
authors estimate these parameters using back-propagation from historical
sales data. This method takes the prices from the data as inputs to the
current model, and then makes an estimation of what production should be.
By evaluating the squared di↵erence between its estimation and the actual
production given by the data, it slightly adjust its weight vector to minimize
the di↵erence. This process continues until a termination criteria is met.

The authors show that by using evolutionary algorithms together with the
neural network demand model one can successfully optimize the pricing pol-
icy. Further they prove that in contrast ot the traditional demand models,
the neural network is more consistent over a wide range of data generated
from di↵erent sources and provides results closer to optimal in a range of
di↵erent scenarios.

5.2.2 Available Literature

• Kong (2004) applies a dynamic pricing strategy using the Sales-Directed
Neural Network (SDNN) to the Learning Curve Simulator presented
by Dimicco et al. (2003) and proves that his approach exhibits su-
perior performance to the other competing strategies included in the
simulator (Goal Directed and Derivative Following). The SDNN supe-
riority stems from its ability to predict and account for the long-term
consequences of its actions.

• Liu and Wang (2013) propose a sequential feed-forward neural network
model to capture the demand information from real-time data and
predict the dynamic demand curve online.

• Ghose and Tran (2009) use a feed forward neural network to deter-
mine the product price dynamically, but unlike the approaches of Kong
(2004) and Liu and Wang (2013), their model does not require the sell-
ers to figure out the demand curve for the products.

• Brooks et al. (1999) present a comparison of neural networks and di-
rect search methods across price schedules of varying complexity in a
monopoly price information market.

5.2.3 Discussion

With its ability to learn relationships between di↵erent factors from a given
or experienced dataset, neural networks seems to be a robust approach for
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modeling demand. They enable the modeling of complex environments, like
those consisting of a mixture of strategic and myopic buyers in addition to
demand interdependencies and seller competition, and can approximate any
market demand function.

However, aspect like those of competition, price-quality trade-o↵s and buyer
preferences are only indirectly captured through the observed demand. Con-
sequently the implications on demand by, for instance, multiple competing
firms are hidden in the network, thus making it hard for the seller to observe
the strategies of others and infer information. The presented NNs only rely
on the indirect e↵ects from the other agents’ actions. Subsequently, a seller
is not able to infer what underlying causes e↵ect the demand curve, and
thus analyzing and evaluating the di↵erent factors implications is hard to
achieve.

5.3 Goal Directed and Derivative Following

The Goal Directed and Derivative Following algorithms are computationally
cheap and have proved to be e↵ective for real time learning when processing
power was a scarcer resource than it is today. They are also commonly used
in the literature for comparing the performance of more complex algorithms.

5.3.1 Learning Curve Simulator

Dimicco et al. (2003) present a market simulator designed for analyzing
agent pricing strategies in markets under finite time horizons and fluctuating
buyer demand, to demonstrate the strength of a simulation based approach
for understanding agent pricing strategies. They develop a platform for
running di↵erent dynamic pricing algorithms in simulated markets, called
the Learning Curve Simulator.

According to the McKinsey Quarterly (Baker et al., 2001) sellers should
pursue dynamic pricing on-line by running di↵erent pricing experiments,
by making small price adjustments to discover the demand levels of their
buyers. Dimicco et al. (2003) expands on this idea, but propose that sellers
simulate the e↵ects of price changes prior to enrolling such a strategy in a
real market. They believe that a more sophisticated implementation strategy
can be found, if the sellers have an intuitive understanding of the theoretical
aspects beforehand.

The Learning Curve Simulator aims to address the complexities of e-commerce
buying behavior, and does so by providing a variety of behavior parameters.
For instance, variance in buyer reservation price, di↵erent buyer distribution
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curves, number of buyers who employ comparison shop and buyer prefer-
ences for sellers. The user is able to run simulations for di↵erent values of
the parameters, and then simulate how di↵erent pricing strategies perform
in monopolistic or multi-seller scenarios, as well as considering a single or
multiple learning agents.

They demonstrate that by observing market conditions, a seller can take ad-
vantage of fluctuations in buyer demand to earn more revenue and sell more
inventory. Using the Goal Directed and Derivative Following algorithms,
they evaluate their performance compared to a fixed pricing strategy and
show that they outperform static pricing strategies in a variety of di↵erent
market situations.

5.3.2 Available Literature

• Vázquez-Gallo et al. (2014) further develop the derivative following
strategy proposed by Dimicco et al. (2001). They add a scale factor
of price variation enabling them to adjust prices based on increasing
average revenues, final revenues, recent revenues and comparative rev-
enues, and not just the previous time steps revenue.

5.3.3 Discussion

The Goal Directed and Derivative Following strategies are simple to imple-
ment and require limited processing power, still they are rather e↵ective
dynamic pricing strategies. They perform well in simulations when sellers
have little knowledge of buyer behavior or the other sellers prices, provided
that there is only a single learning agent present. There is no option of
training the algorithms o✏ine, but as they are able to quickly adapt to the
demand curve, this of little concern.

However, when multiple learning agents are imposed, these simple strategies
are unable to predict and account for the long term consequences of their
actions. As a result, they often create price wars when competing with agents
utilizing the same strategy as them-selves. Arguably this is one of the most
important lessons learned from the simulations, if they had been employed in
a real setting without any previous studies these algorithms would be trapped
in cyclic price wars, and thus performing suboptimally. Further when faced
with more sophisticated algorithms such as reinforcement learning, they are
easily outperformed.
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5.4 Evolutionary Algorithms

Evolutionary algorithms are less used than the above mentioned approaches,
but might still be an interesting approach for solving a dynamic pricing
problem.

5.4.1 Adaptive Strategies

Ramezani et al. (2011) design an adaptive dynamic pricing strategy and
optimize its parameters with an evolutionary algorithm. They consider a
duopoly market supplying a single type of good for a limited time period,
given no-replenishment inventory restrictions. They consider two cases of
demand, one in which the average of the customer’s stochastic valuation for
each good is constant throughout the selling horizon, and one where the
average valuation is changed according to a random Brownian motion.

Customers behave according to the bargain hunter strategy of the Shop-
bot model and demand is assumed independent, but the distribution of the
customers’ valuation may change in time. However to introduce another
dimension of uncertainty, they assume that with some probability �, a cus-
tomer might choose not to buy the good, even though having found the seller
providing them with the highest positive utility.

They develop an Inventory Based Adaptive Heuristic Strategy that uses
an evolutionary algorithm to compute its parameters and compare it to
other strategies as the Derivative Following and Goal Directed in a simulated
environment. They prove that their suggested strategy yields consistently
higher revenues than the previously mentioned ones.

5.4.2 Available Literature

• Shakya et al. (2012) show how evolutionary algorithms can be used for
analyzing the e↵ects of demand uncertainty in dynamic pricing. They
find that the reliability of evolutionary algorithms for finding accurate
policies could be higher when there are higher fluctuations in demand
and that a generic algorithm is the most reliable algorithm for finding
optimal dynamic prices in their market model.

5.4.3 Discussion

Evolutionary algorithms have been used for a variety of di↵erent problems
and seems to be of value to dynamic pricing problems as well. Perhaps the
most notable feature of the literature on EA is that they are focusing on
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simple markets without segmentation and problems with no replenishment
inventory. Generic algorithms, which is the EA principle used in both ar-
ticles, are known for having issues dealing with high degrees of complexity,
and as such more sophisticated market models might have been rejected.

The technique of evolutionary algorithms is suitable for black-box optimiza-
tion, where no derivatives are known, and should therefore be a promising
approach to the dynamic pricing problem. One should try to evaluate how an
EA would perform in a multi-attribute market, and when considering more
than two competitors, to see if the algorithm e�ciently can approximate a
good solution.

5.5 Other Approaches

In addition to the above mentioned algorithms, there exists a few less used
approaches that will be presented next. Because of their variability and
uniqueness, the di↵erent algorithms will only be presented briefly.

5.5.1 Simulated Annealing

Xia and Dube (2007) propose an approach to solving a dynamic pricing
problem that combines a simulated annealing algorithm with Bayesian learn-
ing. They show that the trade-o↵ between exploration and exploitation in
a Bayesian Markov Decision Processes with Gittins Indices leads to spatial
price dispersion. That is if several players were to experiment with the same
initial belief, they might end up choosing di↵erent o↵erings in the long run.
The authors suggest borrowing techniques from simulated annealing to avoid
this problem.

They simulate their algorithm in a market closely resembling a Price-Quality
model with multiple goods and independent demand. By performing nu-
merical experiments, they show that by combining simulated annealing with
learning, price dispersion is avoided. Further, when combined with shrinkage
techniques, their algorithm results in complete learning and also generates
the optimal average reward in the long run.

5.5.2 Particle Swarm

Mullen et al. (2006) compare a Kalman Filter and existing particle swarm
adaptations for dynamic and/or noisy environments with a novel approach
that time decays each particle’s previous best value. They argue that this
provides a more graceful and e↵ective transition between exploitation and
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exploration, which is a necessity in the dynamic and noisy environments of
the dynamic pricing problem.

5.5.3 Markov Chain Monte Carlo

Chung et al. (2012) develop a new demand learning algorithm for firms in
monopoly or oligopoly markets using Markov Chain Monte Carlo methods
to estimate the model parameters, unobserved state variables and functional
coe�cients.

5.5.4 Aggregated Logarithmic

Levina et al. (2009) study the problem a monopolistic seller faces when selling
a perishable product to a market in which the buyers know that prices are
dynamic and may time their purchases strategically. They derive the demand
model using a game-theoretic consumer choice model and propose applying
an aggregating algorithm to predict the demand. The seller’s pricing policy is
optimized using a simulation based approach integrated with the aggregating
algorithm.

5.5.5 Direct Search

In their work, (Brooks et al., 2002, 2001; Kephart et al., 2001), demonstrate
the trade-o↵ between complexity and profitability for some common price
schedules for an information economy. An information economy, is defined
as a market where information goods such as news articles and audio files
are traded. They propose that by explicitly considering both the learnability
and the generated profits extracted by di↵erent price schedules, a producer
can extract more profits while learning, than if it naively choose models that
only perform well after a substantial learning period. The authors examine
the problem under di↵erent information assumptions, ranging from supplied
complete information to cases where information has to be learned.

5.6 Classification of Literature

Now that we have an understanding of some of the underlying components
of dynamic pricing problems solved by machine learning, we can try to cat-
egorize some of the literature to see if there are any similarities among the
di↵erent research approaches and papers. This categorization can be seen
in Table 5.1 and 5.2 below. The same papers are listed in both tables, and
splitting was necessary to increase readability. It should also be noted that
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the following categorization is not indisputable; still it provides a general
overview of the listed articles.

Of all the 31 articles evaluated, all but one was testing their algorithms
performance in a simulated market environment dealing with myopic cus-
tomers. Levina et al. (2009) provided the only approach explicitly dealing
with strategic customers. However, Shakya et al. (2012) Liu and Wang
(2013) and Ghose and Tran (2009) can be said to indirectly consider the im-
plications of strategic customers, in that they make no assumptions about
their customers’ behavior, and just consider estimating a demand curve from
sales data.

Further, it seems that, for the majority of literature, the number of buyers
has little significance when designing an algorithm, and as a result, the com-
mon approach is to assume that there are no finite number of consumers. The
number of sellers and learning agents, however, has a considerably greater
impact on how the problem is evaluated and modeled.

A total of eight articles combines a machine learning approach with a game
theoretic model to gain insights regarding competition and co-operation of
multiagent pricing algorithms in such a framework. Those considering multi-
agent markets in a non-game-theoretic framework, usually evaluate how the
overall market demand and profitability changes due to competition, and
does not consider the algorithms to be strategic in their evaluations.

Unsurprisingly demand is considered to be stochastic in most of the liter-
ature, as demand is generally uncertain for real-world sellers, and because
deterministic demand can often be solved to optimality using more tradi-
tional methods. The article by Collins and Thomas (2013) dealing with
deterministic linear demand, focuses on modeling a pricing game in a mul-
tiagent economy and for simplicity assumes the demand to be fully known
to all players. Further, the stochastic demand is often considered to be
non-linear.

The majority of literature modeling buyers arrival rate using a Poisson pro-
cess, implements an arrival rate that is inhomogeneous. These papers assume
that the arrival rate of buyers changes linearly with time. This is a more
realistic assumption than the homogeneous Poisson process which assumes
the arrival rate of customers to be stationary throughout the period.

Relating to the classification presented by Elmaghraby and Keskinocak (2003),
we see that, as is also the case for their review, the bulk of the literature
studied in this thesis consider constrained product availability can be defined
as being either NR-I-M or R-I-M models. Fourteen of the considered papers
assumes no-replenishment-independent-demand (NR-I-M), whereas only six
evaluates the replenishment-independent demand (R-I-M). Dependent and
interdependent demand is generally harder to evaluate, because, as the num-
ber of interdependencies among products increase, the speed of convergence
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decreases exponentially (Rana and Oliveira, 2015).

We further see that the Shopbot model of demand, that is, a market in
which consumers are only focused on price and perform various levels of
price comparison tactics, is the most commonly used. Three of the articles
experiments with their proposed algorithm in the Shopbot, Price-Quality
and Price-Information approach, to see how they cope with changes in de-
mand models and how di↵erent assumptions a↵ect market dynamics.

The majority of literature on machine learning and dynamic pricing is fo-
cused on some form of reinforcement learning. Undoubtedly one can find
many other articles than the ones presented here, but its likely that the ra-
tio between di↵erent approaches is rather accurate. Hence, we are able to
evaluate which approaches seems to be the most popular. Further, all rein-
forcement learning literature presented use some form of Q-learning. There
has been no attempt aiming to separate the di↵erent Q-learning techniques
from each other, for instance, some use a gradient approach, where others
are combining Q-learning with simulated annealing. However, we find that
the common approach is to use a look-up table for storing learned Q-values,
as Sridharan and Tesauro (2002) is the only one considering using function
approximation instead. Nevertheless, one should expect to find some inter-
esting di↵erences in how the algorithms are developed and how they perform
in di↵erent markets.

Finally, many researchers on this topic try to prove their machine learn-
ing algorithms performance by comparing it to other pricing algorithms or
strategies. Consequently, we have also listed the various algorithms used for
performance measure, enabling us to evaluate the how the authors validate
their results. Chapter 6 will in greater detail discuss the findings from the
evaluated literature.
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Chapter 6

Evaluation of Current
Literature

By now, we have an understanding of dynamic pricing, machine learning
and how these topics can be combined. Considering the literature studied in
Table 5.1 & 5.2, we will in this chapter point to some general and interesting
observations, relate the aspects of dynamic pricing to real-world consumers
and point towards future directions for research regarding dynamic pricing
by machine learning. Furthermore, this evaluation will highlight some of the
issues we address in our own market simulator, presented in Chapter 7.

6.1 Observations

In this section, we will perform an evaluation of what value machine learning
can have for companies, by considering our findings and discussing some of
the general assumptions and methods used in the literature.

6.1.1 Lack of Evidence and Performance Metrics

Perhaps the most interesting observation is the lack of empirical evidence
regarding the revenue increases di↵erent approaches are argued to create in a
real-world application. The majority of the algorithms presented are claimed
by their authors to be suitable for more or less direct implementation in a real
market setting, but none of the above-mentioned articles have provided any
empirical evidence of their performance in an actual market. All algorithms
are evaluated in a purely simulated and simplistic market. Considering the
fact that, one of the benefits of machine learning is its adaptability and
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ability to relate to uncertainties, it seems contradictory that these methods
are not tested in a proper marketplace. Hence, the need for proper evaluation
of machine learning principles are an important area for future research.

Some research has been performed to analyze the impact of shopbot use
amongst customers on prices and price dispersion (Tang et al., 2010), but
proof of seller’s increased profits still lacks in the literature. Other ap-
proaches to the dynamic pricing problem have to some extent validated
its value for sellers. For instance, Fisher et al. (2016) test a best-response
pricing algorithm through a carefully controlled live experiment, and docu-
ment an 11% increase in revenue. However, they derive this algorithm using
constrained optimization, and not machine learning. Nevertheless, DPOSPs
such as Wiser that utilize machine learning advertise that their product can
help increase bottom line profits by 32% (WiseCommerce, 2015). However,
this statement is lacking some additional information in regards to what ma-
chine learning algorithm they apply, and also fails to specify what previous
price strategy they use to calculate this increase in revenue.

Another key observation is that the majority of literature, in addition to
skipping empirical evidence, compare their suggested improved algorithm
to the simplest of algorithms. The static price strategies are proved to be
beatable over and over again, but few seems to consider how the machine
learning algorithms perform when evaluated against each other. Some have
evaluated their algorithms to the Derivative-Following and Goal-Directed
strategies, but these are very rudimentary adaptive algorithms. Research
in which the author(s) develop multiple algorithms commonly compare the
algorithms to each other, but we are missing comparisons of the suggested
algorithms performance to other researcher’s advanced algorithms. It would
be especially interesting to see for instance how an RL-algorithm would
perform when faced with a competing neural network. Arguably, this lack
of proper comparison methods might be a result of variations in underlying
market assumptions, but still, objectively evaluating di↵erent approaches
should be possible. A comprehensive study evaluating the impact on market
dynamics from multiple di↵erent smart agents would be welcomed.

6.1.2 Relating to the Model Assumptions

First of all, there is a wide adoption of myopic consumers in the studied liter-
ature. Of the 31 articles investigated, the paper by Levina et al. (2009) was
the only one dealing explicitly with strategic consumers. It is assumed that
the matter of strategic consumers has been excluded as it introduces addi-
tional complexity in already complicated matters. Furthermore, Elmaghraby
and Keskinocak (2003) claim that the assumption of myopic buying behavior
can be appropriate in several settings, such as for; (1) necessity items where
consumers cannot wait for the price to drop, (2) the prices or price changes
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are small, thus the value of waiting is also small, (3) a large customer pool
so that one single customers purchase has no e↵ect on prices, (4) a market
where customers do mostly impulse purchases.

However, there is reason to believe that a substantial portion of consumers
act more strategic in most situations. For instance, some people might with-
hold purchases until after Christmas when the season sales start. Moreover,
although the assumption of myopic customers might be justified in some
special situations, most markets are bound to have some portion of strategic
buyers.

Many authors have studied the issue of pricing when customers behave
strategic, and perhaps the most famous of which is Ronald Coase and the
Coase conjecture. In his work, Coase (1972) considers a monopolist selling a
consumer durable facing strategic consumers. He proposes that if the seller
is unaware of its customers willingness to pay, then trying to separate con-
sumers by di↵erent price levels in di↵erent periods will fail, as the consumers
will anticipate the declining price path. Consequently, the seller is in compe-
tition with itself, and if consumers are willing to wait, those with the highest
valuation will be able to buy the product at the lowest price. The seller is
arguably left with no other choice than to simply o↵er a competitive price in
the first selling period. To gain further insight and a better understanding of
reality, a possible future direction for the machine learning approach should
be to include some portion of strategic buyers in the market.

Second, all examined literature employ some form of weak dynamic pricing.
The papers utilizing a Shoppers and Captives model, do encourage self-
selection by second degree-price discriminating, but so far research refining
such systems is lacking. Due to the massive collection of data available to
retailers, and possibilities for consideration set evaluations, we believe that
there are opportunities for finer segmentation of the market. Developing
new di↵erencing value propositions by o↵ering additional levels of service
or quality might be an approach to increase the supplier’s portion of the
consumers’ surplus. The exploration of strong dynamic pricing models is
assumed to have been neglected due to the lack of consumers fairness per-
ception. Still, it would be interesting to explore the benefits of such an
approach by simulation. Needless to say, one has to address the problem
regarding fairness, but shedding light on the possible increased profits and
e�ciency might encourage creative ways of avoiding this issue.

Third, a large portion of the assessed literature assumes that customers
arrive according to a Poisson process. The Poisson process is commonly used
for estimating demand arrivals, and consequently, it is assumed to present
some representation of reality. There seems to be an even amount of papers
considering homogeneous and inhomogeneous Poisson processes. Arguably
the adaptation of inhomogeneous Poisson processes is more representative
of real life, as i.e. the number of arriving customers is likely to be dependent
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on price or time. Evaluating the assumptions regarding the Poisson process,
there are two assumptions that might not hold in the real world:

1. The probability of an event within a certain interval must not change
over di↵erent intervals

2. The probability of an event in one interval is independent of the prob-
ability of an event in any other non-overlapping interval

Assumption one might be overruled by the fact that for some goods, demand
might be higher during the afternoon, or on Fridays. This can to some extent
be addressed by the inhomogeneous Poisson processes, where the rate of
arrival can change according to time. The second assumption is well suited
for markets dealing with independent arrivals, but if more realistic models
are to be made, dependencies of arrivals need to be included, and as such,
this assumption might not hold. It is easy to imagine that the arrival rate of
consumers are dependent, i.e. by considering that a consumer having made a
successful purchase previously is likely to return to the same seller for future
purchases or browsing. Interestingly the wide usage of Poisson processes and
its implications are seldom discussed, and we would like to see some level of
theoretical or empirical justification to further enhance the literature.

Fourth, the bulk of literature simulates their algorithms in rather simplistic
market environments. The models representing customers buying behavior
seems to be overly simplistic, and the simulated buyers are far from replicat-
ing a real world scenario. This is also evident from the popular assumption
that sellers reconsider their prices simultaneously, thus forgoing some as-
pects of a real world strategic interplay between agents. Since there is a
lack of real-world performance measures, one might assume that the sim-
ulation models would be more realistic to help justify the performance of
the algorithms. Neglecting dependencies and behavior might be analytically
beneficial but at the cost of forgoing important information. Especially when
considering that the goal of many simulation models is to learn about how
one expects the real market to respond, the need for a su�ciently accurate
model of the market is fundamental.

Fifth, there are many di↵erent machine learning approaches, and although
the literature on reinforcement learning seems to be the most promising,
considering the amount of research performed, there seems to be no unified
consensus regarding which approach is the most valuable. A modeler who
assumes that the world can be represented using an MDP would prefer a
reinforcement learning algorithm, whereas if one were to make few or no
assumptions about the market, a neural network might be a good approach
for learning demand. It seems that it all boils down to what the researcher
finds to be interesting and how they assume their market to behave. Presum-
ably, because of its multidisciplinary nature, the problem of dynamic pricing
should to be evaluated by economists, computer scientists and marketers if
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a comprehensive model is to be made.

Sixth, the supervised and reinforcement learning algorithms, all require some
historical data and/or a lengthy training period to reach a level of su�cient
performance. Although understandable, this issue of learning imposes some
important questions for the sellers that they might not be able to compre-
hend. For instance, the algorithm might be able to learn from past sales
data, but if those data points have been generated by a static price algo-
rithm, then the data represent more of a forecast of demand given a fixed
price, rather than representing a demand curve dependent on the product
price. If the data points are of little learning value, then the trade-o↵ be-
tween exploration and exploitation, especially for RL-algorithms, has to be
considered to a larger extent, as it then has limited input to base initial
pricing decisions on. This trade-o↵ is generally implemented in the algo-
rithm themselves, but the sellers, or users, should be able to understand the
implications of this issue which might not be that easy.

6.2 Relating to the Consumer

One aspect of the machine learning literature is that although one tries to
construct an algorithm that is suitable for implementation in a real world
application, few articles from the economic and computer science community
consider how customers in the real world are assumed to react to these new
pricing schedules.

By now, people are used to the fact that prices fluctuate. It has been part
of our lives for a long time, and classical examples of prices changing with
time include the happy-hour phenomenon, and that buying shorts is almost
always cheaper in September. There is a need to study how the general
community will react as more and more companies utilize some form of
dynamic pricing. Research regarding this issue has been performed in the
marketing literature:

Haws and Bearden (2006) evaluate dynamic pricing and consumer fairness
perception, when prices vary over time, consumers and/or circumstances.
They find that di↵erences in price between consumers resulted in the great-
est perception of unfairness. Also, customers view price changes within a
short time period as more unfair than changes over a more extended time pe-
riod, particularity when exposed to lower prices. The studies were however
performed in a lab involving students and purchase scenarios, and is only
an approximation of how people are expected to react. They argue that
the e↵ects of dynamic pricing might be even more pronounced when varying
prices are encountered in realistic shopping environments. Garbarino and
Lee (2003) find that experiencing dynamic pricing reduces mean trust in
the benevolence of firms and that people seemingly are equally displeased
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whether they got the higher or lower price. Apparently, people feel that all
customers should be o↵ered similar prices. Still, this study is also based on
a constructed environment, and as such, might not include the full picture.

From the literature evaluated in this thesis, it is clear that weak dynamic
pricing is the preferred form, and hence the need to evaluate fairness is
limited. However, economic theory tells us that first-degree price discrimi-
nation can maximize economic welfare if output is increased, the drawback
of course is that the firms captures all available surplus. Arguably, the con-
sumers could hold shares in the company and get dividends to indirectly
increase their surplus. Still such an approach is bound to be met with some
resistance. Regardless, the tempting aspect of strong dynamic pricing has to
be evaluated accordingly. Perhaps the benefits of possible increased profits
will significantly outrun the additional risk exposure to consumer trust?

6.3 Future Directions

Based on the findings in this thesis some interesting suggestions for further
research can be explored. As previously stated, there is a need for unbiased
evaluations of the performance of machine learning algorithms in real world
dynamic pricing applications. These results might be readily available at
the di↵erent DPSOPs operating today, however, they seem to be kept as
company secrets. E↵orts should be devoted to gain insight regarding the
benefits of dynamic pricing, as ultimately, the real measure of success for
this literature would be to justify its revenue-maximizing promises.

The Learning Curve Simulator presented by Dimicco et al. (2003) provided a
solid framework for experimenting with simple machine learning algorithms
in the early 21st century. However, as processing power and our ability to
model more complex relations has increased, the development of a new and
improved market simulator would be valuable to the scientific community.
Predominantly, such a simulator should enable the benchmarking of di↵erent
algorithms in the same environment, and as such di↵erent approaches could
be justified based on the same assumptions and basis. Providing a frame-
work for enabling the evaluation and comparison of di↵erent approaches, in
order to study which approaches might work better than others under given
assumptions. Suggestions for such a simulator would include the opportunity
to model strategic and myopic consumers, defining multiple di↵erent market
segments, heterogeneous goods, interdependencies of demand and di↵erent
arrival models. Addressing more complex buyer models and the e↵ect they
might have on market price development and learning of pricing strategies
is a commonly stated area of future research in the literature.

The issue of a company selling multiple heterogeneous products with inter-
dependent demand might also be an interesting exercise for dynamic pricing
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algorithms. Perhaps one could construct a policy that improves profit allo-
cation amongst goods by considering multiple goods with di↵erent marginal
cost and prices. For instance, a simple example of such a strategy is to sell
a TV-screen at a completive price, while selling add-ons and extra equip-
ment as HDMI-cables with a high premium. Dynamically altering the prices
of such interdependent products, implementing discrete choice theory, and
more advanced buyer behaviors, can be an exiting topic for future studies.

Ultimately, theoretical economic e�ciency is reached when whoever values
the good the most, gets the good. In an e�cient economy, excess demand
for events, concerts and iPhones is non-existent. Still, as our technology
progresses, the rate at which events is sold out is steadily increasing. For
instance, it is not uncommon for a concert to sell thousands of tickets within
minutes of launch. The problem of pricing such perishable goods, has been
considered by Vázquez-Gallo et al. (2014) and others, and is an interest-
ing area for research. Arguably because of the limited sales horizon and
perishable property, pricing tickets for popular events can enable close to
first-degree price discrimination without imposing varying prices between
consumers. This might be achieved by a Dutch auction like approach, in
which posted prices start high and decrease with time. Hence, one might
get the benefits of strong dynamic pricing, without having to consider the
downsides.

Although it might not be considered fair, the idea of perfect price discrim-
ination is an intriguing one. One might not need to employ methods that
would encourage an Orwellian economy (Odlyzko, 2003), where a package
of aspirin might cost a $1 if the purchaser could prove to be indigent, but
$1000 if he was Bill Gates, but perhaps only slight adjustments in prices
between consumers can lead to large profits. Thus, studying the possibilities
of strong dynamic pricing, while maintaining consumer fairness (or do so in
secrecy) might be an interesting approach to the dynamic pricing problem.

We end our discussion by expanding on an interesting suggestion by Surowiecki
(2014) that might help e�cient allocation of goods, but not necessarily im-
prove a seller’s surplus. This idea is to dynamically price goods under short
supply according to demand, but instead of giving the di↵erence between a
”standard price” and the dynamic price to the seller as profits, it is given
away to charity. This might be utilized for many applications, for instance,
one could imagine that during rush hour, commuters driving cars could be
able to buy access to the bus lane by paying money to a charity and this
“gift” is determined dynamically by the amount of tra�c.



Chapter 7

Our Approach

The previous chapter pointed us towards some interesting new fields of study
when considering machine learning and dynamic pricing. Unfortunately, we
will not be able to address all of these findings, however, by focusing on
three of the main findings, namely the lack of strategic customers, consumer
heterogeneity, and machine learning comparisons, we can expand the current
literature and provide new insights. The remaining chapters of this thesis
will, therefore, be used to present and analyze our approach for simulating
dynamic pricing algorithm performance in heterogeneous markets.

7.1 Defining the Scope

Our overall goal with the coming simulations is to get an understanding of the
market dynamics when one introduces di↵erent machine learning algorithms
in a heterogeneous market, and thus be able to discuss the opportunities
and obstacles of the algorithms. As previously explored, there exists a vast
number of possible machine learning algorithms, many of whom have never
been applied to the problem of dynamic pricing. Therefore to limit our
scope we have chosen only to focus on previously tested techniques. From
our literature study it seems clear that Q-learning and neural networks are
the two most used approaches, and as such, we will be concentrating on
these two families of algorithms. Moreover, the algorithms we use, will not
be at the forefront of artificial intelligence, due to its incredible complexity.
Instead, we focus on implementing functional and basic algorithms; that
will provide us with a su�cient foundation for analyzing general behavior
and implications of Q-learning and neural networks when faced against each
other.
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In addition, since our interest lies in the algorithms performance and impli-
cations on a market in an economic sense, we have chosen to omit discussions
regarding the underlying mechanics of the algorithms. Therefore, topics such
as overfitting, Q-learning convergence, and evaluation of di↵erent training
techniques will only be touched upon briefly. There is without any doubt
many interesting discussions to be had on these topics, but we will leave
those out to the science of artificial intelligence. Additionally, our goal is
not to find ways of optimizing the algorithms to best suit our simulated
market. A future addition to this thesis could include ways of modifying the
suggested algorithms to make them perform better, but due to the time con-
straint, we spend the majority of time analyzing their current performance,
and not how they can be improved.

In regards to the market dynamics, we have chosen not to reinvent the wheel,
but implement previously known market models from the literature. How-
ever, we take a novel approach in that we combine several of the previously
presented methods in a way that has not been done before, at least to our
knowledge. We follow the same principle used for the machine learning al-
gorithms; that is we aim for a simple, yet functional market representation.
First and foremost, we think of our model as a starting point for future more
advanced simulations. In a sense, our model represents the minimum viable
product for analyzing machine learning performance in heterogeneous mar-
kets. Consequently, we derive our model from the widely used model of weak
dynamic pricing, with independent stochastic non-linear demand and no re-
plenishment of inventory. Furthermore, we chose to use the Shopbot model
as the premise for the implemented consumers, and will not be evaluating
how the algorithms would perform using a di↵erent market representation.

7.2 Areas of Interest

The subsequent sections will present the three areas of interest for our model,
and where needed, provide some new theory necessary to understand how
other literature has dealt with the issues at hand.

First of all, we have the intention to learn more about how di↵erent machine
learning algorithms compare to each other in terms of performance when
faced with the same underlying market. Furthermore, we want to develop
an understanding of how these algorithms a↵ect each other and the distri-
bution of welfare when machine learning algorithms compete for revenue in
a market.

Secondly, since simulation is our preferred approach, we have the opportu-
nity to implement a diverse and heterogeneous composition of consumers
which would have been almost impossible using an analytic approach. Con-
sequently, our goal is to develop a model that enables us to see what could
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happen in a market where consumers behave di↵erently, and especially, how
the algorithms would adapt to such a market.

Finally, in Section 4.3 we took a closer look at how the majority of machine
learning models have been representing a marketplace, however as noted
there is a lack of research regarding machine learning models and the use
of strategic customer behavior. Therefore, we aim to gain a better under-
standing of how these algorithms perform under rational customer behavior.
Hence, we need to pivot outside the machine learning literature to learn more
about how customers buying behavior has been modeled in other dynamic
pricing literature.

7.2.1 Multiple Learning Agents

The issue of having multiple learning agents interact and compete lies in
the intersection between machine learning and multiagent systems. We have
previously discussed machine learning, but the topic of multiagent systems
has not been touch upon. The idea of multiagent systems very simple, but
their implementation is complex and challenging. A multiagent system is one
that consists of multiple agents, which interact with one another, typically
by exchanging messages through some computer network infrastructure. At
its core, the agents in a multiagent system will be acting or representing
on behalf of their users or owners with very di↵erent goals and motivations.
Therefore, to successfully interact, these agents require the ability to cooper-
ate, coordinate, and negotiate with each other, in much the same ways that
we do in our everyday lives (Wooldridge, 2009). The science of multiagent
systems then, is about addressing the two following problems:

• How do we build agents that are capable of independent, autonomous
action in order to successfully carry out the tasks delegated to them?

• How do we build agents that are capable of interacting (cooperating,
coordinating and negotiating) with other agents in order to successfully
carry out the tasks that we delegate to them, particularly when the
other agents cannot be assumed to share the same interest/goals?

The first problem, relates to that of agent design, whereas the second issue
is that of society design. These problems are not independent, for instance,
in order for us to build a society of agents that work together e↵ectively,
it would help if we give the members of the society models of the other
agents in it. Furthermore, the science of machine learning revolves around
agent design, where on the other hand, researchers in multiagent systems
may predominantly be concerned with engineering systems. However, the
two are closely interconnected.

The majority of literature presented in Chapter 5 evaluates a market with
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multiple learning agents. However, all of these articles are focused on agent
design, and none includes a system in which the agents can interact in a
multiagent society model. It is bound to be many articles that explore the
issue of system design and dynamic pricing of goods, though these seems
to take more of an approach of dynamic pricing and automated resource
allocation, like that of Schwind (2007). Consequently, our model will not
implement interactions between agents, but instead focus on the implicit
interactions between agents when they have no means of communicating
amongst each other.

7.2.2 Market Heterogeneity

Market heterogeneity is often analogous to consumer segmenting, or the
splitting of a large population of consumers into smaller unique groups. In
Section 2.2.1, we learned that customer heterogeneity and the possibility
of segmenting, are two of the conditions needed to be fulfilled for dynamic
pricing to succeed. Still, we find that the majority of current literature does
not deal with highly heterogeneous consumers. Common practice seems to
be separating consumers according to their evaluation of sellers, willingness
to pay and seller preference, but authors often ignore the possibility of hav-
ing more complex variations between the segments, like those of myopic or
strategic behavior. Arguably, this stems from the issue that the more het-
erogeneous a market is, the more complicated it is to find the best pricing
policy.

Furthermore, it is our belief that the literature examined predominantly aims
to provide insights regarding the engineering and value of algorithms when
pricing goods. Hence, it would be natural to assume that more attention has
been devoted to the development of suitable algorithms, than what has been
devoted to constructing realistic replicating marketplaces. That is not to say
it has been neglected, but it seems that since this area of research is still in
its early stages, the major concern has first and foremost been to discuss the
applicability of smart algorithms. Therefore, we expect to see more complex
markets and increased customer heterogeneity in future research.

In our model, we aim to take a step towards increased heterogeneity by allow-
ing for multiple consumer segments having di↵erent behaviors, and mixing
myopic consumers with strategic consumers. This should allow for some ad-
ditional knowledge of how algorithms can be expected to work when faced
with a real marketplace, and provide some indication of what issues arise in
such settings.
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7.2.3 Strategic Customer Behavior

Trying to capture how we as humans make decisions is a complex and little
understood process. Despite years of psychological and medical research,
we only have limited knowledge of why we choose what we do. A common
practice in operations management is to characterize customer demand ex-
ogenously (Shen and Su, 2007). Often, as is the case with machine learning
models, market size is represented by a demand distribution, price sensi-
tivity is captured by a demand curve, and customer arrivals are commonly
modeled using some stochastic process. The commonality of all these models
is that the consumers are passive, and do not engage in any decision-making
process. They are simply governed by the demand profile specified initially.
This is surely not how markets function, as all customers to some degree
actively evaluate alternatives and make choices. Customers need to assess
which product to buy, when to buy it, and how much they are willing to
pay for it. When considering building a market simulator, one of our main
focuses has to be to represent real consumers as best as we possibly can.
Therefore, we turn our focus to strategic customer behavior and present
some possible approaches suitable for modeling consumers.

In their review Shen and Su (2007) present how customer behavior has been
represented in the revenue management literature. They classify customer
behavior into two groups, intertemporal substitution, and multi-product
choice. Multi-product revenue management considers discrete choice prob-
abilities and tries to model how customers choose which product to buy,
or which seller to buy from. Examples of this include when sellers o↵er
similar goods for sale, and the customer has to choose what to buy from
a set of products. These problems include complicated demand dependen-
cies that arise due to substitution or complementary e↵ects across products.
Anderson et al. (1992, pp. 1) claims that “...understanding product di↵eren-
tiation is crucial to understanding how modern market economies operate”.
Furthermore, they argue that the wide array of products available in the
marketplace is a response to the wide diversity of consumer tastes. Still,
we find that only a few articles, like those of Dogan and Güner (2015) and
Levina et al. (2009), include the problem of multi-product choice. Conse-
quently, the added complexity and lack of previous research have led us to
neglect this issue from our model.

Intertemporal substitution, on the other hand, considers how customers may
choose to postpone their purchase because of an anticipation that prices will
be lower in the future. This implies that individuals may choose when to
buy a particular product in response to firms’ dynamic pricing practices,
especially when they anticipate price reductions. The practice of delaying a
purchase to a future point in time is known as intertemporal substitution,
and is also commonly referred to as strategic customer behavior. Since
our goal is to implement strategic behavior in our model, the remainder
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of this chapter will focus how this has previously been achieved in revenue
management literature.

Intertemporal Substitution

Take a minute and consider; when was the last time you passed on an im-
mediate purchase because you had a feeling that the product you were con-
sidering might be sold at a discount in the future? Arguably the delaying
of purchase can be a smart choice as intertemporal price fluctuations are
common across industries. Prices for high-tech gadgets with short life cycles
tend to dip soon after release, fashion items are marked down at the end of
a season, and storable goods are periodically put on sale (Li et al., 2014).
There are of course many cases where delaying a purchase is inconvenient,
and customers may choose to ignore, intentionally or unintentionally, the
possible benefit of delaying a purchase. Customers might not be aware of
the possibility that prices may decrease, they experience high waiting costs
or are not willing to risk immediate gains for the uncertainty of a possibly
larger future gain. However, in many markets, it is safe to assume that at
least a portion of the buyer population exhibits strategic behavior. In a re-
cent study, Li et al. (2014) provide evidence that in air travel industries the
amount of customers behaving strategic varies between 5,2% and 19,2%.

Until recently, revenue management literature has almost entirely ignored
this matter, and just assumed that demand arriving at each instance in
time is either realized or lost forever. This is an issue because, as stated
by Shen and Su (2007, pp. 714), “there is no opportunity for demand to
lie dormant in the market in anticipation of future purchase opportunities”.
Neglecting these issues cause us to lose an additional dimension that can have
a significant impact on revenues, and by realizing that the assumption of a
homogeneous myopic market is unrealistic, recent work has begun exploring
the impacts of inter-temporal substitution. Next, we will explore three ways
customer rationality has been previously modeled.

The work done by Su (2007) was among the first to study the impact of
strategic customer behavior while allowing prices to increase or decrease
freely over time. Previous work tended only to consider the option of mark-
down pricing, and the fact that prices could also increase was mostly ne-
glected. Perhaps one of the most interesting insights from their article is that
they demonstrate that, optimal prices over time may be increasing, decreas-
ing or even non-monotone over time depending on the customer composition.
Customers wish to maximize individual utility, and at each point in time they
may choose to purchase a product at current prices, remain in the market at
a cost to purchase later or exit the market altogether. Their customer popu-
lation is heterogeneous along two dimensions; they may have di↵erent valua-
tions for the product and various degrees of patience or waiting-costs. Their



CHAPTER 7. OUR APPROACH 71

analysis concludes that increasing prices are optimal when customers with a
high reservation price are proportionally more strategic, whereas decreasing
prices are optimal when high reservation price customers are more myopic.
They also, contrary to intuition, highlight two ways in which strategic wait-
ing by customers may benefit the seller. Firstly, intertemporal substitution
implies that when prices are high initially, demand is not immediately lost
and hence may increase revenues when prices are eventually lowered. Sec-
ond, when customers with low reservation prices wait, they compete for
product availability with high reservation prices customers and thus their
valuations may increase as their fear of not getting the product can increase
their willingness to pay. The authors make some unrealistic assumptions in
that the sellers must post their pricing schemes p(t) and rationing policies
r(t) at the start of the market, and that there must not exist any time t
when it is to the sellers’ advantage to deviate to di↵erent policies than the
ones first posted.

Ahn et al. (2007) introduce strategic customer behavior in a di↵erent and
simpler way. Arguably “their” customers do not behave properly strategic
in the sense that they do not actively try to find the best deal. Instead,
they remain in the market for a fixed number of time periods and purchase
if the price is set below their valuations within this time-frame. As a result,
demand faced by sellers in a particular period depends on prices over mul-
tiple periods in the past. E↵ectively demand in each period is divided into
two groups, current demand, and residual demand. Current demand is the
demand by customers who enters the system at that period, and residual
demand is that portion of demand resulting from customers who entered
the market in previous periods, but who still have not made a purchase or
left the market. Within this setup, the authors explore joint pricing and
inventory decisions and identify structural properties and develop e↵ective
heuristics for some special cases.

Levin, McGill, and Nediak (2010) explore customer rationality in a series
of papers where they assume that customer valuations are volatile and may
stochastically vary over time. The degree of strategic behavior among cus-
tomers is represented using a discount factor, in which a discount factor
of zero implicates myopic behavior and a factor of one implies that future
purchases are as valuable as current purchases and as such consumers are
fully strategic. Given the customer’s realized valuations and the seller’s
price, customers choose a purchase probability or shopping intensity �. The
problem for the sellers is then to set prices dynamically to maximize their
revenues under customers response to these prices. The authors examine
two special cases, one where all customers are myopic and one where they
are all strategic, and derive dynamic equilibrium conditions and structural
properties for these special cases. They further extend their analysis to an
oligopolistic setting in Levin et al. (2009). Following this, they incorporate
the use of demand learning and introduce seller uncertainty for some of the
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parameters of the demand process in Levina et al. (2009). The introduction
of imperfect information makes the customers unable to predict future prices
via rational expectations. Consequently, consumers are assumed to believe
that prices follow a certain stochastic process and set their demand inten-
sity accordingly. To analyze this problem, the authors use simulation-based
techniques to find optimal pricing policies.

We end this chapter by briefly introducing the concept of capacity rationing,
which is how sellers can use pricing and rationing to extract maximal rev-
enue. Seeing that capacity, or inventory, is scarce, it is quite natural for firms
to use inventory control as a strategic tool in the face of strategic customers.
The common approach amongst researchers is to adapt a two-period model,
where prices in the first period are higher, and then prices get lowered in
the second period, but at the same time, there may now be limited product
availability (Shen and Su, 2007). Broadly speaking, the majority of capac-
ity rationing models investigate how rationing a↵ects strategic demand by
making customers more inclined to purchase earlier at higher prices. This
is an intriguing addition to seller strategies, and as a result, it is our ambi-
tion to include some form of capacity rationing in our model, which is to be
presented next.



Chapter 8

Model Description

As seen from the previous chapters, simulating di↵erent market scenarios can
provide us with valuable insights regarding how algorithms can be expected
to perform when applied in a real marketplace. We aim to gain a better
understanding of how the introduction of strategic customers and multiple
machine learning algorithms might a↵ect a market, and we analyze their
performance using numerical analysis on a variety of di↵erent market sce-
narios. The following chapter will go into detail on how the market simulator
is constructed and how it works.

Our simulator originates from the Learning Curve Simulator presented by
Dimicco et al. (2003) but has several extensions which improve its represen-
tation of a realistic market. We chose the Learning Curve Simulator as a
starting point because it captures important market dynamics and allows for
the construction and testing of multiple scenarios within the same model.
We expand the work done by Dimicco, Maes, and Greenwald (2003) and by
implementing more sophisticated buying behaviors, the possibility of having
more than two heterogeneous segments and implementing advanced machine
learning agents, new insights can be gained. We start o↵ our model descrip-
tion by looking at the overall market parameters, before embarking on how
we have set up the buyers’ and sellers’ behaviors.

8.1 Market Parameters

Our simulated market is a finite market lasting for a specified number of
time steps, or days, in which sellers are given an initial amount of goods to
sell, and they have no option of replenishing their inventory in the case of
a stock out. At each time step, the sellers post their prices simultaneously,
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and customers arrive hoping to purchase goods if the price is ”right”. The
market ends when the specified number of periods has been run, and any
inventory left is lost with a salvage value of zero.

This setup can be related to a variety of di↵erent real e-commerce scenarios.
For instance, seasonal fashion items or tickets to a sporting event or concert
have a finite selling horizon, as do some short cycled consumer electronic
products. Furthermore, since adding more seats to a concert can be rather
inconvenient, and seasonal goods might have to be ordered well in advance,
there are few options for replenishing inventory.

We use the following market parameters to initialize a marketplace.

Table 8.1: The market parameters used in the model

Simulator input Input values
The total number of buyers B Integer value
The number of sellers S Integer value
The number of selling periods T Integer
Vector describing the ratio of consumers in each segment C Real value [0,1]

By altering the number of sellers, we can simulate various degrees of com-
petition amongst sellers, such as monopoly, duopoly and oligopoly markets.
There is no upper bound on the number of possible sellers. However, we find
that a large number of sellers utilizing machine learning algorithms drasti-
cally increase the run time of the program. The number of selling periods
dictates for how long we want our selling season to last, or how many peri-
ods of sale we allow. Conceptually, the discretization of time into decision
periods can be related to days, in the case of seasonal products or recurring
one-time events, such as concerts or airplane tickets. There could also be
an option to increase the number of selling periods to be su�ciently large
so that any continuous-time counting process can be approximated by its
discrete-time analog, as done by Talluri and van Ryzin (2004). However,
such an approximation would require the probability of more than one event
occurring in a decision period to be relatively small so that it is safe to
assume that at most one event can happen per decision period. In order
to achieve this, our model would need some additional adaptation, but this
should be possible in a future version.

The length of vector C dictates the number of segments present in the mar-
ket, and each scalar represents the initial ratio of buyers within each segment.
The sum of the elements in vector C equals one, and the number of buyers
in any given segment is then a product of the segment’s given ratio and the
total number of buyers. The total number of buyers dictates the maximum
possible sales available in one simulation run, and we assume that this figure
stays fixed during the whole selling period. The remaining number of latent
buyers at any given time step is then equal to B less the number of arrivals
so far.
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8.2 Buyer Behavior

After initializing the market scenario, we need to model how we want each of
the segments, or buyers, to behave in our market. Our simulations di↵er from
previous work in this area, in that we enable the introduction of multiple
segments with di↵erent buying behaviors. This allows us to create a more
realistic marketplace, where consumers might have di↵erent valuations over
time, behave strategically or prefer one seller above the others. Conceptually,
we assume that the market can be divided into multiple buyer segments and
that buyers from within each segment behave identically. Hence, one could
choose to think of the segments as one single buyer and let the total number
of buyers equal the number of segments. However, this would drastically
increase the size and run time of the simulator. Each segment is initialized
by its own set of the following parameters:

Table 8.2: The buyer behavior parameters used in the model

Simulator input Input values
Maximum valuation V

max

Integer value
Minimum valuation V

min

Integer value
Standard deviation per day �

std

Real value
Daily price variance �2

D

Real value
Buyer tactic BH, CT, AS, FL
Preference for certain sellers �

s

Real value
Lifetime of buyers Integer value
Buyer valuation over time Increasing, Decreasing, Mid-dipping, Mid-peaking
Daily price distribution Normal distribution

The following subsections will further explain the use of these parameters
and the buyer behavior setup.

8.2.1 Product Valuation

Over the course of the market, the collective behavior of the buyers is de-
fined by the four variables, minimum and maximum valuation, type of valu-
ation curve and lifetime. The minimum and maximum valuations, together
with the valuation curve choices, specify how the consumers’ underlying val-
uations change over time. The value curve selection determines how the
segments average reservation prices changes as time progress, whereas the
minimum and max valuations functions as upper and lower bounds for the
curve. We have implemented four di↵erent valuation curves, namely the in-
creasing, decreasing, mid-dipping and mid-peaking, as illustrated by Figure
8.1. Our motivation for having a selection of di↵erent value curves is that we
want to see how the algorithms cope with, i.e. a product that increases in
popularity/valuation due to market trends over time, and if they can exploit
increases in consumer willingness to pay.



CHAPTER 8. MODEL DESCRIPTION 76

To account for further di↵erences in valuations we introduce some daily fluc-
tuation from the given mean. At each time step, the value resulting from the
value curve is modified by adding a sample value from a normal distribution
with a mean of zero and standard deviation set to �

std

. Additionally, to
account for seller preferences, irrespective of buyer tactics, the parameter
�
s

is used to add an additional level of seller preference. A segment’s seller
preference tries to represent real world di↵erentiations among products and
sellers. This could be due to factors such as better quality products, easier
checkout or a better shopping experience, product features or brand loyalty.

A segment with no particular preference for seller s would have a �
s

of
one whereas segments which have certain seller preferences would have a �

s

of greater than one. A beta less than one would, in this case, indicate a
segment’s negative attitude towards the given seller, resulting from perhaps
a previous bad customer experience or lack of trustworthiness. Note that a
buyer using, for instance, a bargain hunter tactic, may prefer a given seller
and as such be willing to pay a premium over the lowest available price in
the market. The resulting curves for a given segment, one for each seller, is
then the final valuation curve for that segment.

Figure 8.1: Illustrations of the di↵erent value curves utilized by customers

To generate the value curves we modify a quadratic expression to fit with
the parameters of the segment. To exemplify this, the following equation
represents the decreasing value curve:

V
mean

(t) =
V
max

� V
min

T 2
⇤ (t� T )2 + V

min

+ �
s

N(0,�2
std

) (8.1)
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8.2.2 Product Demand

The value curves map the collective relationship between time and mean
valuations amongst the segments. However, we also need to implement a
relationship between price and demand. To do this, we introduce the variable
�2
D

, which represents the daily spread of valuations. By taking the value
curves output as a valuation mean, V

mean

, and the realized number of arrivals
µ for the given segment at time t, we can generate the demand curve p(q)
by equation 8.2.

p(q) =
2�2

D

µ
⇤ (q � µ)2 + V

mean

� �2
D

(8.2)

Since we are looking to find the demand for the posted price by the chosen
seller, we need to invert Equation 8.2. Doing this gives us Equation 8.3,
and by solving it for the posted price, we obtain the demand for the good
at time t for the chosen segment. Note that the demand curve is decreasing
and that we have only defined a range of values in which there is an explicit
relationship between price and unit demand.

q(p) =

8
>><

>>:

0 if p � V
mean

+ �2
D

µ if p  V
mean

� �2
D

µ�
p
p� (V

mean

� �2)
q

µ

2

2�2 otherwise

(8.3)

8.2.3 Customer Arrival

To represent the customers’ arrival to the marketplace at each point in time,
we employ a homogeneous Poisson distribution with arrival intensity �. This
is a commonly used distribution for representing customers arrivals in the
literature. In our case, we set the arrival rate � to be constant through-
out the selling period and the total number of arrivals at each time step is
then sampled from this distribution. The number of arrivals from any given
segment is then calculated by taking the product of the realized number of
arrivals µ and the segment’s ratio. A future extension to our model would
be to introduce an inhomogeneous Poisson process with some dependency
among the segment’s utility and arrival rate, to account for the likely event
that unusually low or high prices should increase or decrease the number of
arriving customers to the marketplace.
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8.2.4 Strategic Customer Behavior

As explored in Chapter 7, previous research has presented a variety of ways
for representing strategic behavior with consumers. We follow the approach
of Ahn et al. (2007) where we assume that customers exerting strategic
behavior stay active for a given number of days and return to the marketplace
at later times to check whether prices have changed in their favor. We use
the parameter lifetime of buyers for representing the “degree” of strategic
behavior. We assume that buyers from a segment having a lifetime of more
than zero will return to the market at later randomized times drawn from
a uniform distribution if they were not able to buy when they first entered
the market. This would happen if they receive a utility of less than zero
from doing the transaction or if their seller of choice was in stock out. The
”unsuccessful” strategic buyers are then stored as residual demand, keeping
their original valuations fixed throughout their lifetime, and their number
of random returns to the marketplace is given by the respective segment’s
lifetime. It follows that buyers arising from a segment having a lifetime of
zero, will adopt a myopic strategic, and thus leave the market altogether if
they are unsuccessful in purchasing an item at their arrival. This simple, yet
quite e↵ective way of introducing strategic customer behavior enables us to
represent the customers utility using the following representation from the
Shopbot model presented in Section 4.3.3:

u
b

(p) =

(
v
b

� p if p  v
b

0 otherwise
(8.4)

8.2.5 Choosing a Seller

Despite the introduction of online shopbots and the general decrease in
search costs in online retailing, empirical evidence reveals that not all buy-
ers are actively looking for the lowest price possible. For instance, in their
article regarding the impact of shopbot use and price dispersion Tang et al.
(2010) found that in the case of online book retailing in the years 1999 -
2001 the share of shopbot users were about 25%. The share of shopbot users
has likely increased in later years, still, arriving customers might behave dif-
ferently and to incorporate this we have added several options controlling
how consumers choose their sellers. To cope with this factor, we introduce
buyer tactics to represent how consumers choose between the available sell-
ers. Each segment can be initialized to following a certain seller evaluation
strategy, and in agreement with other literature, such as Greenwald and
Kephart (2000), we have defined these tactics as:

• Bargain Hunters (BH): These customers will check prices from all avail-
able sellers using i.e., a shopbot service and buy from whichever seller
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has the lowest price.

• Compare Two (CT): Customers following this strategy will choose two
sellers at random and compare their prices and choose to buy from the
one that has the lowest price.

• Any Seller (AS): These customers have an equal probability of choosing
any one of the sellers, and choose one at random. This would be
consumers without any store loyalty or limited knowledge of possible
sellers.

• Full Loyalty (FL): Customers using this strategy have strong customer
loyalty and will only buy from their preferred seller.

Note that Equation 8.4 applies for all of the above-presented buyer tactics.
We further assume that the buyers who are not bargain hunters, only check
prices with their selected sellers. If they gain no surplus from purchasing the
product from these sellers, they either exit the market in the case of myopic
behavior or stay in the market hoping for a future decrease in price in the
case of strategic behavior. In the case where a seller reaches stock out before
meeting the demand at a given time step, buyers that are unable to purchase
are either lost or kept as residual depending on whether they are myopic or
strategic. Furthermore, the buyers only evaluate active sellers, that is sellers
that have goods available for sale at the beginning of the period, and in the
unlikely event that a buyer receives the exact same utility from purchasing
from di↵erent sellers, they make their choice randomly.

An alternative approach could be to let the buyers using ”compare two” or
”any seller” tactic iteratively search for prices at di↵erent sellers until one is
found below its reservation price if their selected sellers provide them with
no positive utility. Moreover, one could also let the buyers who have chosen
a seller but finds themselves unable to purchase because their seller of choice
reached stock-out some time during that time period, re-evaluate the active
sellers and make a new seller choice.

8.2.6 Economic Welfare & Consumer Surplus

To better understand the allocation of welfare in the marketplace we need
to find the economic welfare and consumer surplus. We find the economic
welfare by integrating the demand curve from 0 to  as represented by equa-
tion 8.5. In this case,  is the number of goods sold to a specific segment at
a given time.

Z


0
p(q)dq =

2�2

µ
(
1

3
3 � 2µ+ µ2) + (V

mean

� �2) (8.5)
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After calculating the economic welfare, we can then find the consumer sur-
plus for that given segment by subtracting the seller surplus, given by  ⇤ p.
Consequently, doing this for all active segments allows us to add together
the values to find the total economic welfare, consumer surplus, and seller
surplus for any given time step.

8.2.7 Optimal Value

Since we are looking to analyze the performance of di↵erent pricing algo-
rithms, it would be convenient to know the best possible pricing policy for
any market scenario to use as a benchmark for our suggested algorithms.
Unfortunately, due to the stochasticity of the problem and the many dimen-
sions, finding this best practice policy is far from trivial. As a result, we
have chosen instead to calculate the maximum possible seller surplus that
can be extracted from the marketplace, and use this value to compare how
e↵ective the pricing algorithms are. In a way, what we are calculating is the
total value of the population of consumers. We find this optimal value for a
given segment by Equation 8.6:

µ ⇤ (V
mean

� �2
D

) (8.6)

Then by summing for all segments and over the entire selling period, we can
comment on how much value that can be extracted from the marketplace
by the sellers. Note, however, that extracting the maximum value from the
market might not be possible as it in some cases can only be achieved by
o↵ering di↵erent prices to each segment. Also, in special cases where the
customers V

mean

� �2
D

is very small, it might not be optimal to meet the
entire current demand µ, however, for all our simulated scenarios, Equation
8.6 calculate the optimal value.

8.3 Seller behavior

The simulator allows multiple sellers to operate within the same market
using the same or di↵erent strategies, enabling us to see how the various
seller strategies compare to each other and what kind of impact they have on
each other. We have chosen to omit the sellers fixed and marginal costs and
only focus on achieved revenue, as the e↵ects of cost heterogeneity amongst
sellers is of less significance to our analysis. Consequently, we define a price
of zero in this market to represent the sellers’ marginal cost. Furthermore,
we want to represent a market that has a realistic amount of information
available to the sellers. Hence, we do not assume that the sellers have any
information regarding the actual demand, arrival rate of consumers or buyer
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behaviors, but need to estimate these parameters from the observed market.
Each seller gets initialized by the following parameters:

Table 8.3: The seller parameters used in the model

Simulator input Input values
Seller strategy GD, DF, SDNN, RBNN, APNN, QL
Initial price P0 Integer value
Initial inventory I Integer value
Available inventory per t Integer

The initial inventory at each seller dictates how many goods a seller can sell
during the selling period as there is no option to replenish the inventory. We
have also imposed an option to restrict the number of goods o↵ered for sale
each day, to avoid having sellers selling out their full inventory on day one
due to a large number of arriving buyers, or to impose a strategic capacity
rationing tactic.

The sellers’ initial price e↵ects the first day of sales, and in the case of a
fixed price strategy the fixed price equals the initial price. As will be noted
in our analysis we see that the choice of initial price will have an e↵ect on
the seller revenues as the initial price directly or indirectly a↵ects the future
prices for the seller strategies.

In the next subsections, we will have a closer look at the di↵erent seller
strategies we have chosen to implement. The adaptive algorithms Goal-
Directed (GD) and Derivative-Following (DF) are computationally cheap
and have proved to be e↵ective for real-time learning when processing power
was a scarcer resource than it is today. They are also often used in the
literature for comparing the performance of more complex algorithms. Of
more complicated algorithms the simulator supports the use of three online
learning artificial neural networks and a model-free reinforcement learning
algorithm from the Q-learning family.

8.3.1 Derivative-Following

The Derivative-Following strategy demands little information and can be
used in the absence of any knowledge or assumptions about the seller’s com-
petitors or the buyer demand function. The strategy adjusts its price by
looking at the amount of revenue earned on the previous day as a result of
the previous day’s price change. It works by experimenting with di↵erent
prices using incremental increases or decreases, continuing in the same direc-
tion until the observed profitability level falls, at which point the direction
of movement is reversed (Greenwald et al., 1999). As a result, if yester-
day’s price change gave more revenue per good than the previous day, then
a similar change in price is imposed. However, if the previous change made
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less revenue per good the strategy makes an opposing price change. In this
setting revenue per good is equal to the sales price, except when no goods
are sold, and consequently, the seller will always adjust its price aiming to
sell at the highest price that generates sales.

price
i+1 = price

i

+ (change
i+1)

change
i+1 = price

i

⇤ (� +
T � i

(T + i) ⇤ ↵ ) ⇤ yestSuccess ⇤ yestChange

yestSuccess =

8
><

>:

+1 if revenue
i

> revenue
i�1

�1 if revenue
i

< revenue
i�i

�1 if revenue
i

= revenue
i�i

yestChange =

8
><

>:

+1 if change
i

> 0

�1 if change
i

< 0

+1 if revenue
i

= revenue
i�i

(8.7)

Equation 8.7 computes the price for a particular day, price
i

, by adjusting
yesterday’s price change by a percentage change, change

i+1, scaled by a
ratio based on its progress through the market. The scaling ratio ensures
that the day of the market is accounted for and is an adaptation of the
original DF strategy for a finite market (Dimicco et al., 2003). The constant
� guarantees a minimum price change each day, whereas ↵ counterbalances
beta to ensure that the price changes are not too large at the beginning of
the market. We have added an additional condition to the original algorithm
presented by Greenwald et al. (1999); that ensures that if the revenue of the
previous day equals the revenue of the current day, the price is decreased.
This only happens if no goods are sold, and as such the seller is charging a
price above the segments’ valuations leading us to reduce the price in the
next period.

8.3.2 Goal-Directed

The Goal-Directed strategy adjusts its price by attempting to reach the goal
of selling its entire inventory by the last day of the market, and not before
(Dimicco et al., 2003). Its aims at selling to the highest paying buyers on
each day, and tries to achieve this by lowering prices when sales are low and
raising prices when sales are high, hence it tries to pace its sales over the
entire selling period.
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p
t+1 = p0 + p0 ⇤

P
t

n=1 goodsSoldn � expGoodSold
t

expGoodSold
t

⇤ scale
t

expGoodsSold
t

= t ⇤ initalInventory
T

scale
t

=
T

2 ⇤ (T � t)

(8.8)

The price posted on a given day is calculated by adjusting the price the
seller o↵ered at the beginning of the market by the ratio of the number of
goods sold thus far in the market by the number of goods it had expected
to sell by day t. The scaling factor improves the strategy’s ability to make
price adjustments at the end of the market and enables more dramatic price
changes during the final days when sales are most important if the seller is
to reach stock-out just in time (Dimicco et al., 2003).

8.3.3 Neural Networks

In our model, we have implemented three di↵erent neural networks, namely
the Sales-Directed Neural Network (SDNN), the Aggressive Pricing Neural
Network (APNN) and the Revenue Based Neural Network (RBNN). Our
motivation for using neural networks for pricing is that they can earn com-
plex relationships from experience, and enable quite e↵ortless o✏ine training.
Also, previous research has gained solid results from demand learning using
neural networks. Furthermore, we find potential in implementing the pricing
decision directly in the network, following the approach of Kong (2004) and
Ghose and Tran (2009).

All neural networks act by building a complex curve out of simpler ones in
order to fit the data presented to it. They consist of minimum three layers,
one input layer, one output layer, and any number of hidden layers. Each
layer has a given number of nodes used to represent values, and each node
apart from the input node(s) forms a weighted sum using a simple curve.
Typically this transformation function is a sigmoid function represented by
equation 8.9, and this will also be the transformation function we use for all
our neural networks.

f(x) =
1

1 + e�x

(8.9)

Figure 8.2 illustrates the basic structure of our three-layered neural networks.
The matrix X consists of our input variables, the matrices W (1) and W (2)

contain the weights, and the matrix y stores the output parameters.
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When calculating the values, each neuron, or node, receives a signal from the
previous layer, and each one of those signals is then multiplied by a separate
weight value. Then the weighted input to the given node is passed through
a sigmoid function, which scales the output to a fixed range of values. The
resulting output is then passed on to the neurons in the next layer. A forward
pass in a three-layered network can be represented by:

z(2) = XW (1)

a(2) = f(z(2))

z(3) = a(2)W (2)

ŷ = f(z(3))

(8.10)

The networks intelligence lies in the weight values between the neurons, and
by adjusting these weights, the network can adapt to the underlying data.
Perhaps the most common approach for adjusting these weights is using a
learning algorithm called backpropagation which will be presented next.

Figure 8.2: The structure of a three-layered neural network
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Backpropagation

Back Propagation is a form of gradient descent in that we are looking to find
in which direction we should move to decrease our networks error, or cost,
given by:

J =
X 1

2
(y � ŷ)2 (8.11)

Training our network is then a matter of minimizing our costs by adjusting
the weights trying to find the combination of weights that makes our costs
as small as possible. This can be achieved by using batched gradient decent
and partial derivation of our cost function J , represented by Equation 8.12:

@J

@W (1)
= XT �(2)

@J

@W (2)
= (a(2))T �(3)

�(2) = �(3)(W (2))T f 0(z(2))

�(3) = �(y � ŷ)f 0(z(3))

(8.12)

A method is batch styled if we are using all of the input-output examples
at once. After performing a backpropagating step, we need to update our
current W (1) and W (2) according to the calculated �(2) and �(3).

Although gradient descent is a clever method, it provides no guarantees
of convergence to a good solution; that we will converge within a certain
amount of time; or that we will converge to a solution at all. There exists
a wide choice of methods suitable for training or updating a neural network
from the mathematical optimization research community, ranging from sim-
ple heuristics to rigorous theoretical methods. LeCun et al. (2012) analyze
the convergence of back propagation learning, and evaluates a variety of dif-
ferent methods. For our networks we will start by using the simplest learning
procedure for standard backpropagation learning where our weights are it-
eratively adjusted as follows:

W
(1)
t

= W
(1)
t�1 � ⌘

@J

@W (1)

W
(2)
t

= W
(2)
t�1 � ⌘

@J

@W (2)

(8.13)
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Data normalization and Overfitting

Before we can employ our neural networks, we also need to account for the
di↵erences in the units for our data. Intuitively, we need to make sure that
our neural network does not compare apples to oranges, but rather apples
to apples, and as such we need to scale our data. As all of our data are
positive, we simply chose to normalize our data by dividing the input and
output values by their maximum possible value, to scale them to a number
of 0 and 1. In our case we normalize the current inventory by dividing it by
the initial inventory and the price is divided by a maximum price well above
the customers maximum valuation.

Overfitting is one of the problems that can occur during training of neural
networks. It happens when the error on the training data set is driven to
a very small value, but when new data is presented, the network fails to
represent it appropriately and thus a significant error is generated (Russell
and Norvig, 2010). The problem of overfitting is most common when the
model is excessively complex. Hence, one method for avoiding this issue is
to design a network that is just large enough to provide an adequate fit.
Since all our implemented neural networks are rather limited in size, we can
assume that overfitting will not occur in our model.

Sales-Directed Neural Network

The sales-directed neural network implemented in our model is based on the
neural network presented by Kong (2004) and consist of three layers with
one input node, one hidden node, and one output node. In our simulated
market, the price is the only parameter controlled by the seller agent. To find
a suitable price, the SDNN-strategy uses observed sales to calculate the error
between the observed sales and desired sales. In this setting desired sales
are calculated based on the number of goods left in stock and the number
of days left in the market. In other words, sellers using this strategy aim
to sell an equal amount of goods each day for the remaining time period,
closely resembling the GD-strategy. If there is a discrepancy between the
desired sales and actual sales, the error is then backpropagated through the
network and small changes are made to the weights in each layer. Based
on the resulting network, which is then our “best guess” of the relationship
between price and sales, we calculate the appropriate price based on our
expected sales and desired sales which can bring about the desired sales
quantity.

The functional relationship between price and sales quantity represented by
this neural network can be represented by:

Sales = f(W (2) ⇤ f(W (1) ⇤ Price) (8.14)
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Since we are trying to find what price the seller should charge to reach its
desired sales, we need to invert the neural network represented by Equation
8.14 and solve for the price. Inverting a Neural Network is, in general, an
ill-posed problem because the mapping from the output space to the input
space is a one-to-many mapping (Lu et al., 1999). In this case, where we
only have one node in each layer, we can represent the inverted network using
Equation 8.15. However, we need to be wary of the infeasible solutions and
take some precaution when solving for the price. Note also that the matrices
W (2) and W (1) for the SDNN is, in this case, 1-by-1.

g(sales) =

(
�W

(1) ln (�1�W

(2))
ln ( 1

sales�1)
if sales > 0

Infitiy if sales  0
(8.15)

Due to the issues of inversion, the SDNN strategy is quite sensitive in regards
to the initial weights we provide. As an example, we see that for our nor-
malized sales the denominator of equation 8.15 will always be positive. The
numerator, on the other hand, is only defined in real numbers for values of
W (2) < �1, and consequently W (1) > 0 or else the returned price would be
negative, or we could be dealing with imaginary numbers. An exemplifying
pseudocode for the SDNN-algorithm is provided in Algorithm 1

The inverted SDNN strategy takes the expected sales quantity as its only
input, and the price is then its output. Consequently, the SDNN strategy
needs no information about the buyer population or the competitors prices.
It learns from the observed sales by building its own representation of ex-
pected sales from a range of prices. As a result, the relationship between
market demand and competitor pricing strategies should indirectly be re-
flected in the estimated relationship between the sellers price and observed
sales. By letting the network learn online, that is in real time; it should be
able to adapt to the current market conditions.

Aggressive Pricing Neural Network

The Aggressive Pricing Neural Network tries to learn the lowest price o↵ered
by the other sellers at any given time, and aims to undercut their prices by
a certain percentage �. We have given the APNN one input node, three
hidden nodes, and one output node. As its input, it takes the current time
step, and the output is the network’s best guess at what the lowest price in
the market might be. Its values are then readjusted after the market closes
at the given time step, and it updates its weights using backpropagation by
looking at the di↵erence between its estimated lowest price and the actual
lowest price.
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Algorithm 1 Pseudocode for the Sales-Directed Neural Network

procedure Run Neural Network

Intitialize:
Starting time t = 1
Predicted price pt = initial price
Desired sales st = inventoryt/T
Weigth W (1) = constant
Weigth W (2) = constant

Loop:
for each time step t < T do

Post price pt

Observe current sales ct = inventoryt�1 � inventoryt

if current sales ct = desired sales st then
No prediction error! No change in weights
Set st+1 = inventoryt/(T � t)
Set pt+1 = g(st+1)

end if
if current sales ct! = desired sales st then

Set prediction error = st � ct

Adjust W (1) and W (2) according to backpropagation
Set st+1 = inventoryt/(T � t)
Set pt+1 = g(st+1)

end if
end for

end procedure



CHAPTER 8. MODEL DESCRIPTION 89

price = f(W (2) ⇤ f(W (1) ⇤ t) ⇤ � (8.16)

The APNN is predominantly a price war inducing seller strategy, as it will
aggressively price its goods to undercut its competitors’ prices. Furthermore,
since it has no way of learning the actual product demand, it relies on the
intelligence of others. It is for instance rather useless in a monopoly set-
ting, but can be an interesting addition to an oligopolistic market. Another
interesting feature of the APNN-strategy is that it resembles some of the
available real-world pricing algorithms. Companies like Wiser, o↵er sellers
an automated software agent that prices their goods marginally below other
sellers (WiseCommerce, 2015).

Revenue Based Neural Network

Our suggested Revenue Based Neural Network tries to learn what price it
should be charging for it to reach its desired sales at any time step. It
has two input nodes, three hidden nodes, and one output node. The input
data X consists of the time step we are currently in and the number of
desired sales with the seller. The desired sale is calculated in the same way
as for the SDNN-strategy. The output of the network is the algorithm’s
best guess at what revenue we should achieve with the stated inputs. We
then use these parameters to calculate the seller’s price and then observe
what revenue we actually achieve. By evaluating the di↵erence between the
desired revenue and the currently realized revenue, we can find the networks’
error and update the weight matrices using backpropagation when necessary.
Algorithm 2 provides a pseudocode for the RBNN-strategy.

The RBNN and SDNN strategy have some similarities, in that they both
aim to sell an equal amount of inventory at each selling period. However,
where the SDNN needed to be inverted in order for us to find the relationship
between price and demand, the RBNN strategy tries to learn this relationship
implicitly by evaluating the revenues. Since the RBNN knows the desired
sales and can learn the desired revenue by evaluating realized revenue, we
can then find the desired price for next period by dividing the desired revenue
by the desired sales.

Like the SDNN, the RBNN strategy needs no information about the buyer
population or the competitors prices. However, because it is not a↵ected by
the issues of invention, we can e↵ectively train the RBNN o✏ine, enabling
us to initialize an expected relationship between time, desired sales, and
revenues, utilizing very little information.
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Algorithm 2 Revenue Based Neural Network

procedure Run Neural Network

Initialize:
Starting time t = 1
Desired sales st = inventoryt/T
Desired revenue rt = initial price ⇤ st
Weigth W (1) = constant
Weigth W (2) = constant

Loop:
for each time step t < T do

Post price pt

Observe current revenue Crt = (inventoryt�1 � inventoryt) ⇤ pt
if current revenue Crt = desired revenue rt then

No change in weights No prediction error
Set st+1 = inventoryt/(T � t)
Set X = [t+ 1, st+1]
Set rt+1 = f(W (2) ⇤ f(W (1) ⇤X)
Set pt+1 = rt+1/st+1

end if
if current revenue Crt! = desired revenue rt then

Set prediction error = 0.5 ⇤ (st � Crt)2

Adjust W (1) and W (2) according to backpropagation
Set st+1 = inventoryt/(T � t)
Set X = [t+ 1, st+1]
Set rt+1 = f(W (2) ⇤ f(W (1) ⇤X)
Set pt+1 = rt+1/st+1

end if
end for

end procedure
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8.3.4 Q-learning

Given the parametric nature of the model presented, it might appear that
it is possible to explicitly define the transition structure of the underlying
processes for finding an optimal price policy. However, the computation of
transition probabilities is highly non-trival in this case, and it can be ex-
tremely challenging for realistic cases. Also, since the customers’ demand
functions are unknown to the sellers, we need an approach that would work
with any form of demand function. These two reasons, in addition to current
literature’s focus on reinforcement learning algorithms, contend our motiva-
tion for exploring a model-free RL-approach for the pricing of goods.

The family of Q-learning algorithms is one of the most significant and ac-
tively investigated reinforcement learning algorithms (Watkins, 1989). They
have the property that they do not need a model of their environment, hence
the name model-free modeling, and such they are suited for online learning.
Given a Markov Decision Problem, Q-learning has been proved to converge
to exact optimal value functions and policies when lookup table represen-
tations of the Q-function are used, which is feasible in small state spaces
(Watkins, 1992).

For our problem, we define the set of states S
t

to be the number of remaining
inventory left at the seller at time t. The set of actionsA defines the allowable
actions to be taken by the agent, and this is simply a discretized range of
possible prices bounded by a lower and upper price bound. The reward
function, as well as the transition function, are unknown to the seller. Hence
we can only observe the immediate reward from taking action a in state s
and the transition from s! s0 given a. The reward the agent receives after a
transition is simply the revenue gained from transitioning from state s! s0

by taking action a as given by Equation 8.17.

r = (s� s0)a (8.17)

Further, we let Q(s, a) represent the discounted long-term expected reward
of an agent for taking action a in state s. The discounting of future rewards
is done at a rate of �, such that the value of an expected future reward at n
time steps in the future is discounted by �n. The values of Q(s, a) are stored
in a look-up table containing a value for each possible state-action pair and
is initialized to being zero for all entries. Then, the procedure for solving
Q(s, a) is to repeat the following procedure infinitely:

1. Select a particular state s and action a, observe the immediate reward
r and the resulting next state s0

2. Adjust Q̂(s, a) according to equation 8.18
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Q̂(s, a) (1� ↵
t

)Q̂(s, a) + ↵
t

(r + �max
a

0
Q̂(s0, a0)) (8.18)

This will cause Q̂(s, a) to converge to Q(s, a) and solves the Bellman equa-
tion. However, we need to visit each state-action pair infinitely often if we
are to have any chance at converging to the optimal policy. To cope with
this issue, a common approach is to initialize Q̂(s, a) to some values believed
to be good and then introduce a simulated annealing approach, in which we
allow for some random action with the probability of Epsilon, ✏. Implying
that every once in a while, we will take a random action helping us to ex-
plore more of the solution space, and not just take an action that we initially
believed to be good since we have not explored enough of the solution space.
Using a greedy limit infinite exploration tactic should let Q̂! Q and ⇡̂ ! ⇡⇤

by decaying ✏ as time progresses, making the probability of taking a random
action smaller and smaller as we progress and learn. Using this approach,
we are continuously learning more about our solution space, while also using
what we have previously learned. Implying that this should provide us with
a good solution to the exploration-exploitation trade-o↵. However, finding
good initialization values for Q̂(s, a) is not always easy.

Since we are simulating multiple agents in the same environment, some is-
sues might arise when utilizing Q-learning. The problem of having multiple
agents adapting simultaneously to the underlying market conditions is in
general non-Markov, in that each agent then provides an e↵ectively non-
stationary environment for the other agents. This is problematic in that it
breaks the stationarity requirement needed for the Q-learning algorithm to
converge to its optimal policy. Consequently, we do not know whether any
global convergence will be obtained, and if so, we have no way of telling if
such solutions are optimal (Tesauro and Kephart, 2002). However, this does
not imply that we expect the Q-learning algorithm to behave badly; it rather
means that we have no theory enabling us to say how well the Q-learning
algorithm is supposed to work. This absence of theoretical guidance mo-
tivates us to develop an empirical understanding of multiagent Q-learning
performance in our simulations.



Chapter 9

Strategy Analysis

The following chapter is used for analyzing di↵erent market scenarios using
the model presented in the previous chapter. Our ambition is to learn more
about how the dynamics of the market changes and how the di↵erent algo-
rithms perform under various circumstances. Hopefully, by examining this
simulated market, we can gain new knowledge that can provide us with fur-
ther insights regarding the opportunities and obstacles when using machine
learning for pricing goods in an electronic marketplace. We programmed the
model in Java 1.8, and all simulations were run on a MacBook Pro with 2.7
GHz Intel Core i7 and 16 GB of RAM. The Java code for the implemented
model is attached as a .zip-file.

We start the strategy analysis by discussing some of the implications and
issues we found needed to be addressed when implementing machine learning
algorithms. Then we evaluate a “balanced” market scenario consisting of
seven segments and four sellers, before performing a sensitivity analysis,
enabling us to comment on the di↵erent market parameters’ impact on the
market. After that, we experiment with varied value curves, compositions
of sellers and algorithms.

9.1 Machine Learning Insights

Before we embark on analyzing the market scenarios and strategies, there are
some insights we need to address regarding the machine learning algorithms.
Because machine learning algorithms try to learn underlying parameters of
the data presented to them, we face the issue of training our algorithms. A
naive approach would be to “release” the algorithms into the marketplace,
and just let them learn online as time progresses. This method would imply

93
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that we need to perform a vast number of simulator runs in order for the
algorithms perform satisfactorily. Consequently, we find that we have a lot to
gain by initializing our algorithms using some training data and performing
o↵-line learning. However, as will be evident, this might not always be
straightforward.

9.1.1 Initializing the Neural Networks

The RBNN and APNN strategies are both originally supplied with random-
ized weight matrices at their initialization at the beginning of the market.
As a result, we then have nine random weight elements for the RBNN and six
random weight elements for the APNN. To help the neural networks perform
better from the start, we can utilize o✏ine training of the network using a
small data set consisting of three input-output examples. This training data
can be regarded as market insights acquired by the seller from some form of
market research; that tells us something about what the seller initially be-
lieves the relationship between input and output to be. For both the RBNN
and the APNN we have chosen to provide them with an estimate of what
the lowest price or expected revenue could be at the beginning, mid and
ending of the market. These training values enable the networks to get an
understanding of what the weights should be before we start the actual simu-
lations. Hence, if the sellers believe that prices will decrease with time, they
would train the network using data conforming to this hunch, and thus, they
have already initialized a curve with the preferred shape and in an appropri-
ate region before they o↵er their products for sale. Initializing the networks
in this way, makes them perform way better, as they now only have to eval-
uate whether the seller’s initial guess was right, and the chances are that
the initial guess is closer to the actual values than the values produced by
the randomized weight matrices. To perform this o✏ine training, we let the
neural networks adjust their randomized weight matrices from the training
data set using back propagation for 50000 iterations using a learning rate of
0.1.

The SDNN on the other hand needs to be initialized in a slightly di↵erent
manner, mainly due to the issues of inversion. As a result, simply training
the network using the same approach as for the RBNN and APNN could
easily lead us to have weights that are outside the defined scope of the
inverted function. This brings us to another approach, in which we initialize
the weights in such a way that the initial desired sales ⇡ f(W (2) ⇤ f(W (1) ⇤
initialprice

pricescale

). Doing this, we provide the network with a feasible starting
point, and thus, points it towards what region we expect the weights to be
in for the coming next periods. Given a feasible starting point, we find that
the likelihood of the weights being adjusted into the infeasible region can be
neglected.
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9.1.2 Initializing Q-learning

Initializing the Q-learning algorithm, on the contrary, is a much more rigor-
ous procedure in comparison with the neural networks initialization. This is
mainly due to the use of a look-up table; that aims to store the Q(s, a) value
for all possible state-action pairs. Since we do not know the transition prob-
abilities of moving from one state to another, initializing the look-up table
with satisfactory values is hard. Despite our best e↵orts, we have not been
able to find a suitable way of estimating the value of being in any particular
state using only a few training examples. That is not to say it cannot be
achieved. One plausible approach could be to formulate a best-guess tran-
sition function, but examining this procedure would be outside the scope of
this thesis.

However, we have had some moderate success using two di↵erent approaches.
Firstly, we can choose to initialize a starting price policy, and then use sim-
ulated annealing to update our policy as we progressively learn more about
the market. The issue with this approach is that we are only initializing
the policy and not the underlying Q-values. For instance, we could choose
to initialize the Q-learning algorithm to perform pricing according to the
Goal-Directed strategy, but this initial policy is quickly deviated from as we
update the Q-values for each state we visit. The problem being that since
all Q-values are zero to begin with, almost any visited state will be updated
with a Q-value larger than zero, and thus be the new preferred state in the
policy. Furthermore, after the first run of the simulator, whatever policy
generated from the GD-policy during that specific simulation, will now be
the policy in the next period. Hence, its quite possible that we update the
policy with a suboptimal action since the algorithm has very limited data
available for determining whether the initial GD-policy, the full GD-policy
or the randomly chosen action is better. As a result, this approach can per-
form satisfactory for the first few simulation runs, but we are still dependent
on a vast number of iterations in order for the algorithm to perform well.

A second approach is to initialize the Q-values and just neglect the fact that
we do not know the transition function. Doing this we can set the values of
Q̂(s, a) doing the following procedure presented in Algorithm 3.

This procedure places a value for each state-action pair, however, since we do
not know the probability of the transitions, the Q-values do not reflect the
actual dynamics of the market. Following this approach, we would always
make the algorithm choose the highest action, or price possible. We have
capped this price, to a “max price”, and as such we are then e↵ectively
initializing a fixed pricing policy. Consequently, we do not experience much
improvement in the algorithms performance doing this, as such, we are better
o↵ just letting the algorithm perform random actions.

Subsequently, these issues make the Q-learning algorithm a bit more tedious
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Algorithm 3 Pseudocode for initializing Q̂(s, a) values

procedure Initialize

Loop:
for each time step t < T do

for each stock of inventory I < initialinventory do
for each action p < maxprice do

Q̂(s, a) = (I � I⇤t
T

) ⇤ p
end for

end for
end for

end procedure

to handle. The two suggested procedures would not be particularly inter-
esting to evaluate, because they do not reduce training time much, nor do
they have any significant impact on increasing revenues. The fact that we
have no good method for o↵-line training implies that we need to let the
algorithm learn everything online. We are able to produce rather good com-
plete policies from the Q-learning algorithm despite this, but only after a
few million simulation runs. Hence, we have chosen to omit Q-learning from
the following sensitivity analysis, because the many market scenarios and
long run-time, makes it too time-consuming to include. We will, however,
return to Q-learning performance in Section 9.7.

9.2 Understanding Market Dynamics

In order for us to understand how the di↵erent agents and market param-
eters influence each other, we start of our analysis by performing a form of
sensitivity analysis on a “balanced” base scenario. Then, by altering the pa-
rameters individually from this base scenario, we can gain insights regarding
how each individual parameter a↵ects the overall market.

For our base scenarios we have chosen to activate seven segments and four
sellers. Our motivation for considering oligopolistic markets with four sellers
stems from the increased price transparency in modern e-commerce, which
suggests that prices should be close to marginal cost. Hence, these trans-
parent competitive markets cannon substantiate investments, and thus, we
can infer that only a few players can remain in the market. Furthermore,
utilizing seven segments allows us to adequately represent a heterogeneous
market.

The total number of buyers is set to 1000 and we define one run of the market
to last for 100 time periods or days. We further want to ensure that virtually
all 1000 buyers has arrived when the market ends, and an appropriate arrival
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rate for achieving this is 1.1 ⇤ NumberofBuyers

NumberofPeriods

. We will use this arrival rate
calculation throughout all coming market scenarios. Table 9.1 contains the
seven segments starting parameters.

Table 9.1: The simulator inputs used for the segments in the base scenario

Simulator input Seg. 1 Seg. 2 Seg. 3 Seg. 4 Seg. 5 Seg. 6 Seg. 7
Segment ratio 0.2 0.2 0.1 0.125 0.125 0.125 0.125
Max valuation V

max

350 500 500 500 500 500 500
Min valuation V

min

100 100 100 100 100 100 100
Price variance �2

D

25 25 25 25 25 25 25
Daily price deviation �

std

5 10 10 10 10 10 10
Buyer tactic BH AS CT BH BH BH BH
Seller preference �

s

N/A N/A N/A #1 #2 #3 #4
Buyer lifetime 10 0 0 0 0 0 0

For our base scenario we have a balanced mix of di↵erent segment character-
istics. However, we have chosen to let all segments have a decreasing value
curve. Our use of the decreasing value curve stems from our belief that in
most markets, consumers willingness to pay decrease in time. Segment 1,
represents 20% of the consumers, and as stated by a lifetime of 10, all buy-
ers from within this segment behave strategically. As a starting point, we
have chosen to keep the percentage of strategic buyers at 20%, relating to
the study performed by Li et al. (2014), and consequently, the remaining six
segments all utilize myopic behavior. Furthermore, we assume that because
of their strategic behavior, these buyers would utilize the Bargain Hunter
tactic and have a lower max valuation and daily price deviation than the
average consumer due to their rational behavior and price awareness. Seg-
ment 2 to 7 all share the same max valuation, min valuation, price variance
and daily price deviation as a starting point. However, they vary in terms
of buyer tactic and seller preferences. Segment 2 also amounts to 20% of the
market, but they choose their seller randomly and have no seller preference.
Segment 3 constitutes 10% the market and choose their sellers by comparing
the prices of two randomly selected sellers. Segment 4 to 7 share the exact
same parameters, except for their seller preference. These segments have
preferences for one seller each, and we have initialized the seller preference
�
s

to be 1.1 for their preferred seller and 1 for the others.

Altogether, these segments have been initialized this way with two things in
mind. Firstly, we want to have a heterogeneous market consisting of multiple
segments having di↵erent behaviors. Secondly, our base scenario should
be balanced, meaning that each seller should have the same probability of
success in the market, implying that we have no favoritism towards one seller
or another. Because of this, we can evaluate which of the pricing algorithms
that performs best.

In regards to the sellers, we have initialized them with the parameters stated
in Table 9.2. Continuing our concept of a balanced scenario, we have chosen
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to provide all sellers with an equal amount of inventory, available inventory
per day, and initial price. However, they all employ the use of di↵erent pric-
ing algorithms. We implement the two adaptive algorithms, the Derivative-
Following and the Goal-Directed, and two neural networks, the SDNN and
the RBNN in our base scenario. Arguably, we could have chosen to use
any of the implemented seller strategies for our base scenario, however, as
previously noted the Q-learning algorithm is in need of a vast number of
iterations to perform satisfactorily. The APNN’s aggressive pricing strategy
increases the price wars in the market, and will often cause prices to fall
near marginal cost. Therefore, we chose to omit these two from our starting
point, but we will return to these pricing algorithms later.

Table 9.2: The simulator inputs used for the sellers in the base scenario

Simulator input Sel. 1 Sel .2 Sel. 3 Sel. 4
Initial inventory I 250 250 250 250
Initial price P0 499 499 499 499
Seller strategy GD DF SDNN RBNN
Available inventory per t 30 30 30 30

The DF-strategy is initialized with a � = 0.05 and ↵ = 5, which proved us
with a 5% minimum change in price each day, and the ↵ counterbalances � to
ensure that the price changes are not too large at the beginning of the market.
As explored in Section 9.1.1, we can significantly improve the performance
of the neural networks by performing some o✏ine training. Using the same
methodology as previously presented, we initialize the weights of the SDNN
to be W (1) = [0.9] and W (2) = [�4.9]. Whereas the RBNN strategy has been
trained for 50000 iterations using the following normalized training data:

X =

2

4
10 2.5
50 2.5
80 2.5

3

5 =

2

4
0.1 0.05
0.5 0.05
0.8 0.05

3

5 , Y =

2

4
450 ⇤ 2.5
230 ⇤ 2.5
120 ⇤ 2.5

3

5 =

2

4
0.0225
0.0115
0.006

3

5

After initializing the agents and consumers, we run the simulator for 100 it-
erations, thus enabling us to see how the machine learning algorithms adapt
to the market conditions and each other. At each run, all parameters are
reset to their original values, except the neural networks’ weights. Conse-
quently, the neural networks can transfer previous learning to the next run,
as opposed to the adaptive algorithms.

Figure 9.1 presents six figures of the market evolve during one simulation
run. The first line of figures presents how the sellers’ prices and customer
segments’ valuations evolve with time. The second line of figures, presents
the development of each seller’s current inventory, and the final line of figures
map the revenue at each seller for each time step. The left figures represent
data from the first simulator run, whereas the right figures represent the
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final, 100th simulation run. Note that for all figures presenting market price
in this chapter, i.e. Figure 9.1a and Figure 9.1b, we plot the segments
average valuation amongst all sellers, as it would be impractical to plot four
value curves for each of the seven segments. In addition, the value curves
represents the development of the segments’ maximum valuation V

mean

+�2
D

.

Table 9.3 contains the overall averages for all hundred simulator runs and
contains the optimal value (OV), economic welfare (EW), consumer surplus
(CS), seller surplus (SS), and the individual revenues for each of the sellers.

Table 9.3: The average surpluses and revenues for all simulator runs in the
base scenario

OV EW CS SS GD DF SDNN RBNN
Value 173416 163614 35556 128058 26425 15560 41762 44309

In general, we see that the best performing algorithm is the RBNN, with
the SDNN coming in at a close second. The GD and DF performances
are well below the performance of the machine learning algorithms, and
especially the DF fails at competing for revenues in the market. From these
simulations, we find that we are not able to extract the optimal value from
the market, as the total seller surplus generated is below that of the optimal
value. This is predominantly due the loss of sales resulting from prices being
too high. Furthermore, we find that the sellers claim nearly 80% of the
economic welfare.

Considering the first simulator run, we see that the daily price dispersion be-
tween the di↵erent sellers is rather small. They are all quite good at following
the myopic segments valuation curves, at least for the first 50 days. After
this, the sellers fail at keeping prices up, due to more aggressive pricing ini-
tiated by the SDNN strategy. The SDNN-seller starts outperforming rather
small price adjustments to meet its desired sales each day, but when the
end of the selling period is near, its price changes are more dramatic. This
happens as a result of its decreasing stock of inventory and fewer remaining
days, which a↵ects its desired sales and makes it more sensitive to larger
inventory movements, which in turn a↵ect its weight adjustments. We see
that around day 60, the SDNN-seller drops its price more than “usual”, pre-
dominantly because its weights are not optimally adjusted. Unfortunately
for the SDNN-seller, the price drop are a bit too large, and as a result more
inventory than desired gets sold. For the remaining days, the SDNN-seller’s
prices get increasingly more volatile alternating between overshooting and
undershooting its prices, thus selling no or “too many” goods. Despite its ef-
fort to try and increase prices to make up for its previous suboptimal prices.
The SDNN’s bad judgment at day 60 has caused the rest of the sellers to
decrease their prices to the same level, and ultimately they are all forced
into a lower price region. As a result, they are collectively failing to realize
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(a) 1st Run, Market Prices
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(b) 100th Run, Market Prices
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(c) 1st Run, Inventory Development
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(d) 100th Run, Inventory Development
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Figure 9.1: Market prices, inventory development and revenues for the bal-
anced base scenario
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that the SDNN-seller performed a bad move, and as such, revenues are lost
to the benefit of the consumers.

Further, it is evident that the DF-seller has the highest average price through-
out the selling period. Because its goal is to sell to the highest valuing cus-
tomer at all times, it stays somewhat away from the price war between the
others, resulting in a situation where it is only able to sell to the segment
choosing a seller randomly for the final 20 days. Before this happens, the
DF-seller is able to compete for some portion of market share. The GD-
seller starts out by heavily undershooting its price, to make up for a loss
of sales the first day. It then quickly raises its price again and stays rather
competitive for the remaining periods. Whats interesting to note, is that as
time progresses, the GD-sellers fear of not selling its entire inventory before
the market closes, makes it lower its prices more aggressively towards the
end of the market, and thus the GD-seller joins in at lowering overall market
prices together with the SDNN-seller for the last quarter of the market.

The RBNN-seller, on the other hand, has the least volatile prices and is
also the best performing seller, for the simple reason that it has the lowest
average price. Because it has more hidden nodes, it can better represent
the underlying data and generate a more complex curve, and we see that its
price changes are more modest than for the SDNN-seller. For approximately
the first half of the market it somewhat underprices its goods, losing out on
some possible additional revenue, and as the market nears its end, it is drawn
into the increasingly aggressive price war.

Another interesting thing to notice is the development of the current stock
of inventory with each seller. We see that the DF-seller is left with 200 items
in stock because of its poor pricing decisions. The inventory focused pricing
algorithms, the SDNN and the RBNN, would prefer to sell an equal amount
of goods each day, and as such their optimal inventory development would be
a straight line from the initial inventory at day one to zero at day 100. The
RBNN and SDNN seller are quite successful at generating a linear inventory
development, and we see that the SDNN strategy almost reaches stock out
at the end of the market. The GD-seller, on the other hand, starts out by
selling rather few items per day, before increasing its sales quite dramatically
around day 50. Arguably this happens as a result of the algorithms scaling
ratio, enabling larger price adjustments as time progresses.

Furthermore, when evaluating the daily revenues of each seller, we see that
as expected, revenues are higher at the beginning of the market due to the
higher customer valuations and prices. As we reach the final 20 days of
the market, almost no revenue is generated due the increasingly aggressive
pricing by the sellers. From Figure 9.1e is quite easy to see the DF-seller’s
strategy in action. It adjusts its price upwards until no goods are sold, and
then lowers its price the following period. This results in revenues commonly
alternating between a positive value and zero. We further notice that the
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GD-seller gains a solid amount of revenue at the early days of the market,
but then loses revenues to the SDNN and RBNN until day 50. After this,
we see an increase in average revenues created by the GD-seller as a result
of its lower prices and more sales. The SDNN-seller shares some of the same
traits as the GD-seller, in that it forgoes revenues to the RBNN-seller in the
second quarter of the market, but gains traction after day 50. Evidently, the
reason for the RBNN-success comes from its ability to extract revenues at
times when prices and valuations are high, and it earns the majority of its
revenues in the first half of the market.

Moving on to the 100th run, we see that the situation is somewhat the same
as in the first run. The pricing of goods get more aggressive towards the end,
the SDNN-seller is still volatile, and the RBNN-seller continues to perform
the best. However, the average prices of the market are in general lower than
in the first run, resulting from the SDNN-seller’s failure to price fairly at the
beginning of the market. Presumably, this comes as a consequence of the
SDNN algorithm’s limited network size and few nodes. Its rapid changes in
weights at the end of the previous run, has led it to start o↵ the next run with
poorly adjusted weights, causing it to perform suboptimally. The SDNN-
seller quickly corrects its actions, but its early prices have consequences for
the overall market and as such the average prices are brought down. We
see that as a result of the lower prices, the strategic segment is now able to
buy at their original arrival, and as such we see that the RBNN and SDNN-
sellers’ inventories drop more rapidly from the start in the final run than in
the first one.

Overall, we find that the sellers, as expected, are sensitive towards each
other’s prices and collectively fail to seize the opportunities to increase prices.
An increase in prices would require some form of collusion, but with no means
of communicating with each other explicit collusion is unlikely. However, as
the sellers’ prices are kept well above zero, which in our model can be re-
garded as the marginal cost of the sellers, the dynamics of the market is
far from the homogeneous goods Bertrand competition model. In such a
Bertrand competition model, the competitive equilibrium would be to price
the goods at marginal cost. In fact, what we are experiencing is a form
of implicit collusion. The sellers are unable to raise average market prices
when first lowered, but they are still able to keep prices high because of
their rather modest price changes. Moreover, our model presents some form
of a repeated game, or supergame. Thus, the Folk theorem could explain
why we see this implicit cooperation amongst sellers. According to the Folk
theorem, if the product of the probability of facing the same opponent and
the discount factor 1

1+r

is large enough, there exist multiple subgame perfect
equilibriums in which the sharing of profits can range from perfect compe-
tition to monopoly pricing (Tirole, 1988). However, we find that the use of
the Folk-theorem in our case has some issues. Since our model deals with
stochasticity, it is hard for the sellers to evaluate whether an decrease in



CHAPTER 9. STRATEGY ANALYSIS 103

sales is a consequence of lower demand, or as a result of some other seller
undercutting their prices. Hence, the use of, for instance, a grim-trigger
strategy, could easily be suboptimal as the sellers lack information regarding
the underlying reason for why they might experience lower demand.
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Figure 9.2: The development of surpluses and revenues with increasing num-
ber of simulation runs for the base scenario

Figure 9.2 presents how the seller’s revenues, consumer surplus, and eco-
nomic welfare develops over the simulation runs. It plots the value from ev-
ery fifth simulation run from the first to the last. From this, we find that the
best performing seller overall is the RBNN-seller, but the competing SDNN-
seller follows closely. They are both able to extract a modest increase in
their relative revenues as more simulation runs are performed. The adaptive
GD and DF strategies’ revenues, on the other hand, stay rather constant.
What is interesting to note is that the economic welfare is increasing with
the number of runs. This happens as a consequence of the decreasing average
market prices with every simulation run. As overall prices are lowered, there
is an increase in demand. To sell an optimal number of goods the sellers
should price their goods at V

mean

� �2
D

, which in Figure 9.1a and 9.1b is
50 units below the segments valuation curve. Furthermore, when prices are
above the strategic segment’s valuation, they are left to wait for their return.
However, this residual demand might be lost if the strategic customers arrive
before prices have dropped below their valuation. We further see that the
seller surplus, stays somewhat constant, but the consumer surplus is steadily
rising. In regards to the seller surplus, the increase in goods sold, makes up
for the lower market prices, thus keeping their surplus level. Whereas for
the consumers, this has a double e↵ect, lower prices imply more surplus per
sale, and more consumers purchasing further increase their surplus.
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9.3 Buyer Behavior Sensitivity

Having evaluated the balanced base scenario, our goal is now to see how the
dynamics change as we adjust the di↵erent parameters. By increasing and
decreasing parameters individually, all else being equal, we can gain insights
regarding the given parameters impact, and use this new knowledge to see
how they a↵ect algorithm performance. We will continue keeping the initial
idea of a balanced marketplace throughout the sensitivity analysis.

9.3.1 Sensitivity Towards Strategic Customer Lifetime

We start o↵ by analyzing what impact the strategic customers lifetime have
on the market. To do this, we have run the simulator 100 times for a short
lifetime of 1 and a longer lifetime of 20. Our intuition is that as the customers
lifetime decrease, the overall market prices should decrease, and likewise, if
the buyers lifetime is increased, so should prices. This is a natural assump-
tion, as when the buyers check in at fewer times, the likelihood that prices are
below their valuation when re-entering is reduced. The more days we allow
the customers to check prices, the more likely is it that they will eventually
return on a day when their utility is above zero.

Analyzing Figure 9.3 we see that our intuition does not quite hold. If we
compare Figure 9.3a to Figure 9.3b, we see that the prices, when lifetime is
short, are close to the same prices as when lifetime is high. We find that
the overall market prices deviate further away from the strategic segment’s
valuation curve at an earlier point in time, and as such the increasingly
aggressive pricing initiated by the SDNN-seller and GD-seller starts earlier.
To grasp this phenomenon, we need to evaluate the di↵erences in inventory
development between the two scenarios. We see that the inventory curves
are in general smoother for the short lifetime scenario than the long lifetime
scenario. This makes sense seeing that a short lifetime creates less residual
demand, and consequently the realized demand each day is more stable.
When lifetime is longer, the residual demand is naturally higher because the
buyers have more days to stay active, and as such realized demand is more
volatile. This e↵ect is what’s creating the more jagged inventory curves in
the long lifetime scenario. Continuing this logic, we find that the volatility
of the SDNN-seller and GD-seller is smaller for the short lifetime scenario, as
there are fewer surprises in realized demand, caused by the residual demand.

Another interesting fact to notice is the di↵erence in surpluses and revenues
for the two scenarios. We see that when customers have a short lifetime, the
consumer surplus is generally about 0.1 points higher than for the longer
lifetime. This also has an impact on the sellers surplus, which is slightly
lower when lifetime is short. The reason behind this lies in the fact that
more goods are sold in the short lifetime scenario.
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Figure 9.3: Market prices, and inventory and surplus development when
altering the buyer’s lifetime. All graphs present results from the 100th sim-
ulator run
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9.3.2 Sensitivity Towards Customer Price Variance

Next, we turn our focus to the customers’ price variance, or the spread of
valuations, that creates the quantity demand using Equation 8.2, by evalu-
ating a low price variance of 5 and a high price variance of 50. From Figure
9.4 it is clear that the market prices is dependent on the customers price
variance, as should be expected. If the sellers are to perform optimally, they
should price their goods at V

mean

��2
D

, and it follows that a high �2
D

would
impose the sellers to lower their prices. Likewise, a low price variance should
imply higher prices.

What is more intriguing is that in the case of low variance, we see a tendency
of prices following a more concave path, as opposed to the convex path of
the high variance scenario. Arguably, this is a result of the customers value
ranges in the two scenarios. When the variance is low, the distance between
the strategic segment’s highest valuation and the lowest myopic segment’s
valuation is significant. This makes it harder for the sellers’ pricing algo-
rithms to reach a price low enough to serve the strategic segments immedi-
ately, as there is a “large” gap between the myopic and strategic segments
willingness to pay, in which there is no additional revenue to be gained by
lowering prices. Therefore, they find it more lucrative to increase prices and
ignore the opportunity to experiment with lower prices. Furthermore, a low
�2
D

also implies that it is possible to gain a higher revenue per sale, than if
�2
D

is high. Consequently, the lack of sales is counterbalanced with a higher
revenue per good, which is why we see only marginal di↵erences in revenues
between the two scenarios.

9.3.3 Sensitivity Towards Customer Daily Price Devi-
ation

Moving on to the daily price deviation, we find that altering the standard
deviation has little impact on the dynamics of the market. Overall, it is
evident that when the standard deviation is small, the volatility of customers
valuations decreases, and the value curves get smoother. This, in turn, means
that the customers have little deviations in their evaluation of the sellers,
and as such the sellers’ prices get less volatile. The di↵erence in revenues
between the base scenario variation of 10 and 5 and 1 and 1, for the myopic
and strategic segments respectively, is negligible.

By increasing the deviation, it follows that valuations and prices increase in
volatility. The tendency is that the more we increase the standard devia-
tion, sellers revenues decrease and consumer surplus increase. This happens
quite naturally because, as the spread between the segments di↵erent valu-
ation and the day-to-day variations increases, the harder it is for the sellers
to anticipate the ”right” price. Consequently, the smarter algorithms, the
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Figure 9.4: Market prices and surplus development when altering customers’
price variance. All graphs present results from the 100th simulator run
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SDNN-seller and RBNN-seller, and partly the GD-seller, find it better to
price with an anticipation that valuations will be lower. The reason is due
folded. Lower prices increase the probability of making any revenue at all,
whereas higher prices decrease the probability of sale and the added surplus
resulting from a possible higher revenue per sale, just can not compensate
for the likelihood of no sales whatsoever. Moreover, since it is more opti-
mal to decrease prices, this also a↵ects the competition between sellers, and
consequently, lower prices creates even lower prices because of the ongoing
competition.

9.3.4 Sensitivity Towards Customer Tactics

Lastly, we evaluate how the choice of customers tactics impact the market.
Altering the tactics of the segments can have quite a substantial impact
on profits and market dynamics, however, only making minor adjustments
makes the e↵ects harder to identify. Hence, we have chosen to alter all
of the buyer tactics simultaneously to the same tactic, having all segments
using either an any seller, a compare two or a bargain hunter tactic. Doing
this means that we forgo some of the heterogeneity of the segments, but it
allows us to make a more general analysis of what e↵ects we experience when
changing the tactics. Table 9.4 presents the average values from 100 runs of
the simulator when all segments are using either AS, CT or BH tactics.

Table 9.4: Average surpluses and revenues for all simulator runs when vary-
ing buyer tactics

OV EW CS SS GD DF SDNN RBNN
Value (AS) 169628 141356 57303 84053 19376 17672 13261 33382
Value (CT) 169435 158881 35467 123413 24816 15756 39870 42970
Value (BH) 166785 161958 33827 128130 27363 13179 42327 45260

By examining Figure 9.5 together with Table 9.4 we see that the sellers’
revenues depend on what tactic the segments are employing. If the segments
all choose their seller randomly, we see that there is a dramatic decrease in
seller surplus and revenues, but a substantial increase in customer surplus.
This is rather counterintuitive, as one might believe that when customers
pick a seller at random, we should not see any price wars in the market and
as such revenues should be higher. Yet, this is only the case for the DF-
seller. All seller strategies depending on desired sales of inventory perform
consistently worse. In fact, the optimal pricing strategy, in this case, would
be to charge as if one were in a monopoly market.

The reason for this malfunction is related to the fact that when all segments
choose randomly, they will on average split the market and sell to 25% of the
buyer population each. In itself, this should not be so problematic, especially
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Figure 9.5: Evolution of market prices when altering the segments’ tactic
for choosing a seller
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since the sellers all have just enough inventory to cover their implicit market
share. Rather, it is the increased stochasticity of the market that causes
problems for the SDNN-, RBNN- and GD-seller. The problem is that when
a day of low demand occurs at anyone of these sellers, they decrease their
price in the next period hoping to increase demand. However, since the
demand is now given irrespective of the other sellers prices, lowering prices
below the strategic segments V

mean

� �2
D

will not have any e↵ect, it will
only result in the loss of revenue. It is their failure of realizing this fact; that
makes them continuously decrease prices expecting to find a relationship
that is not present in this market.

From Figure 9.5b, we see that this e↵ect is especially obvious for the SDNN-
seller, which ends up at pricing it is goods at zero or marginal cost in the
100th run, despite the fact that it is not really in competition with any of
the other sellers. Arguably, this is a result of its overall strategy, limited
network size and to some degree confirmation bias. The SDNN-seller starts
out by pricing at a reasonable high level during the first simulator runs, as
seen in Figure 9.5a, but gradually lowers prices with each run. As prices
are decreased, the SDNN-seller experience an increase in demand until the
price gets below the strategic segments V

mean

� �2
D

. Up to this point, the
probability of sale is increasing, seeing that one are then able to sell directly
to the strategic segment. This creates an anticipation that lowering prices
lead to higher demand for the coming periods as well. This e↵ect gets
amplified during times of low demand because it then increases the number
of desired sales for the next periods which in turn wrongly motivates further
price reductions. We would expect the opposite to happen in periods of high
demand, but the bias towards lowering prices dampens this e↵ect.

The RBNN-seller is once again the best performing seller. However, it su↵ers
from the same malfunction as the SDNN-seller. It fails to realize that there
is a given threshold for which there is no longer any gains from lowering
prices. This is evident in the overall decrease in prices between run 1 and
100, and in fact, if we let the simulator run for i.e., a 1000 times the RBNN’s
prices also gets close to zero. However, the RBNN-seller is more careful in
its price adjustments which is why it is able to extract more revenue. This is
a consequence of the larger network and o✏ine training, which has trained
the network using the initial market intelligence for 5000 iterations, and such
a hundred online training examples are not enough to make it ”forget” its
initial values.

Furthermore, this random seller scenario makes it easy for us to identify one
of the key weaknesses with the inventory reliant pricing algorithms. Because
the algorithms’ goal is not to maximize revenue, but rather sell an equal
amount of inventory each day, they can be tricked into believing that they
are performing well, when they are in fact performing suboptimally. If we
consider the inventory development at the SDNN-seller and RBNN-seller
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presented in Figure 9.6, we see that they are actually, according to their
own measure of success, performing close to optimal, as is evident from the
almost straight line from their initial inventory to zero in Figure 9.6b.

The GD-seller, on the other hand, is able to keep its prices up for quite some
time, but as the market nears its end, the scaling ratio of the algorithm
enables more drastic price changes, and we see that from approximately day
50, and onwards, prices are more heavily decreasing. Unfortunately, this
scaling ratio e↵ect is implicitly delayed for too long, and despite its price
of zero for the last 20 days, it is unable to reach its goal. Nevertheless, the
GD-seller helps us emphasize another interesting fact. For the inventory de-
pendent algorithms to reach their goal of selling an equal amount of products
each day, their price should be below the valuations of the strategic segment.
Looking at Figure 9.6, we see that it is only when the GD-seller prices its
goods below the strategic segments valuation, that it is able to achieve the
desired inventory development slope. As has become the trend, the DF-seller
is performing the worst. Its fault lies once again in its pursuit of selling to
the highest valuing customers, and consequently, demand is lost.

From Figure 9.5 we see that the di↵erences between the CT and BH segment
scenarios are rather small. There are some di↵erences, in that the volatility
of the SDNN and GD prices are a bit higher in the BH scenario than in the
CT scenario. When the buyers only compare two sellers, some sellers are
bound to be left out of the consideration. Because sellers have no means of
determining whether the decrease in demand stems from more competitive
pricing or just the stochasticity of the market, they wrongly always assume
that a rival is undercutting their price, driving overall prices down.
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Figure 9.6: Development of the sellers’ inventory when all segments use the
Any Seller tactic
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9.4 Seller Behavior Sensitivity

Having evaluated how di↵erent buyer behavior parameters alters the market,
we now turn to altering the behavior of the sellers. Note that this section
will not include any changing of seller strategies or the number of sellers,
variation of these parameters will be done later.

9.4.1 Sensitivity Towards Seller Inventory

We start o↵ by looking at how the market changes when there is excess
supply (ES) or excess demand (ED), by changing the number of available
inventory at each seller. To evaluate this, we run two scenarios, one in which
the sellers each have 150 goods to sell, and one where they have 350 goods
to sell. Keeping the number of buyers constant, we are then faced with a
shortage of 400 goods for the excess demand scenario, and an abundance of
400 goods for the excess supply case. Further, we have chosen not to alter
the o✏ine training data for the SDNN- and RBNN-seller, enabling us to
evaluate how they adapt when the market is somewhat di↵erent than they
initially expected.

Table 9.5: Average surplus and revenues for all simulator runs when changing
sellers’ initial inventory

OV EW CS SS GD DF SDNN RBNN
Value (ED) 172434 97809 15499 82310 20089 20718 16989 24512
Value (ES) 170209 175218 111844 63374 11042 8690 21578 22063

Figure 9.7 presents the development of prices and surpluses for the two sce-
narios. We begin by considering the scenario of excess demand, presented by
the graphs on the left-hand side. Comparing the evolution of market prices
from Figure 9.7a and Figure 9.7c we see that the SDNN- and RBNN-seller
initially su↵ers from the suboptimal o✏ine training. In the first simulator
run this quite clear as they both charge a price above the highest valuing
customer for the first 50 days. However, as more simulations are run, they
adapt to the new market conditions and gradually increase their revenues as
can be seen in Figure 9.7e. As would be natural in an excess demand market,
we see that prices are generally kept at a higher level throughout the market.
The SDNN-seller and GD-seller are still exaggerating their price adjustments
towards the end of the market, causing more volatile prices. However, we
see that this does not create the same price war tendency as in the base sce-
nario, predominantly because they now tend to overprice their goods rather
than underprice, as a consequence of having less inventory available than
expected.
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Figure 9.7: Evolution of market prices and surplus when we vary the sellers’
initial inventory
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The GD-seller and DF-seller on the other hand, are rather stable, and per-
form well throughout the simulator runs, and they are in fact beating the
SDNN-seller in terms of revenue generated. The RBNN-seller is able to dou-
ble its share of the optimal value during the 100 runs, and consequently is a
much better learner than the SDNN-seller, that is only able to increase its
revenue share by 50%.

Turning to the scenario of excess supply, we see that as expected, prices
are now generally lower. As the number of simulation runs increase, it is
evident that the SDNN- and RBNN-seller lowers their price even more, and
the SDNN-seller is, in fact, selling at marginal cost for about half the number
of days. Consequently, they are both su↵ering from a loss of revenues with
every simulation run and end up losing about half of their share of the
optimal value. This happens because of the limitations of the desired sales
strategies. By only focusing on selling out their inventories, they are forced
to lower their prices and engage in more aggressive pricing, and as such
revenues are lost to the benefit of the consumers.

9.4.2 Sensitivity Towards Seller Capacity Rationing

The balanced scenario is initiated with a rather generous number of inventory
available each day, and it is in fact, seldom restricting the sellers in any way.
This implies that increasing available inventory each day does not have any
noticeable e↵ect on the market dynamics. However, if we decrease available
inventory and let the sellers only sell a few goods each day, i.e. 5, the market
drastically changes. Capacity rationing does, in fact, increase price wars in
our model. From Figure 9.8 it is quite clear that with every simulation run
the sellers forgo revenues and the seller surplus gets drastically reduced. The
consumers heavily benefit from this. However, the economic welfare created
is reduced.

These e↵ects stem from the inventory dependent strategies fear of not selling
their entire stock of goods. Periods of low demand increases their desired
sales for the next periods, but since they are now restricted in their ability
to catch up with their desire in times of high demand, their “best” choice of
action is to make sure they are not stuck with more inventory than they can
sell. Once again it is the SDNN-seller that has the most aggressive prices,
and we find from examining Figure 9.8a that for the majority of the selling
period, its price equal marginal cost. The SDNN-increase its prices around
day 30, because by that time, it has sold out more than 50% of its initial
inventory, and consequently, sold ”too many” goods. The RBNN’s slower
moving network is not able to keep up with the rapidly decreasing prices
of the SDNN, and as a result it loses the fight for market share. However,
the RBNN generates approximately the same revenue as the SDNN, despite
only selling an average of 100 goods.



CHAPTER 9. STRATEGY ANALYSIS 115

0

100

200

300

400

500

600

1 10 19 28 37 46 55 64 73 82 91 100

Pr
ic

e

Time

GD DF SDNN RBNN
Segment 1 Segment 2 Segment 3 Segment 4
Segment 5 Segment 6 Segment 7

(a) 100th Run, Market Prices, CR

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
at

io

Run Number

Consumer Surplus Optimal Value Economic Welfare
Seller Surplus GD DF
SDNN RBNN

(b) Surplus share, CR

Figure 9.8: Evolution of market prices and surplus when sellers utilize ca-
pacity rationing

9.4.3 Sensitivity Towards Seller Initial Price

The sellers’ initial price a↵ects all of the pricing strategies, and to see how we
have run two scenarios, one in which the sellers all have an initial price of 299
and one where the initial price is 699. We see from Table 9.6 for the adaptive
algorithms, a lower initial price comes to their benefit, whereas for the neural
networks, a lower initial price is a slight disadvantage. Arguably, the DF-
seller performs better when prices are low, because it is then implicitly forced
to sell at a lower price at the early days of the market, and thus, it takes more
time for it to reach its suboptimal goal of only selling to the highest valuing
consumers. The GD-strategy uses its initial price together with the scaling
ratio when calculating the price for each day, and as such, a lower initial price
will often lead the GD-algorithm to generally having lower prices. Which
in this setting, results in more competitive pricing and thus an increase in
demand. As a result, we see that a lower initial price, actually increases both
the seller surplus and the consumer surplus, thus providing more economic
welfare.

Table 9.6: Average surplus and revenues for all simulator runs when altering
sellers’ initial price

OV EW CS SS GD DF SDNN RBNN
Value (LOW) 171298 171972 44501 127470 31105 19045 38210 39109
Value (HIGH) 169853 152235 35325 116910 21748 11649 41223 42288
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9.5 Altering the Value Curves

All simulations this far have been performed using a decreasing value curve.
Therefore, we next examine how these algorithms perform when faced with
the increasing (INC), the mid-dipping (DIP) and the mid-peaking (PEA)
value curves. Note that we alter the sequence of market intelligence data fed
to the RBNN’s training process, and adjust the SDNN weight according to
the standard procedure. As will be evident in this section, the way in which
consumer valuations change over time does not have a profound impact on a
competitive market dynamics. Table 9.7 presents the average revenues and
their respective ratio of the optimal value for all 100 simulation runs.

The first thing to notice is that compared to the original decreasing value
curve, all the other value curves destroys value for the sellers. The sellers
were able to extract approximately 70% of the optimal value when faced
with a decreasing value curve, but as seen from Table 9.7 the other value
curves cuts their surplus by more or less 50%. Furthermore, despite the fact
that optimal value from the mid-peaking is much larger because of its higher
average valuations, the sellers are unable to capitalize on this extra value.
Note also that our ability to replicate strategic behavior in these scenarios
is limited. In order for us to understand why we see these e↵ects, we need
to analyze the di↵erent value curves individually.

Table 9.7: Average surplus and revenues for all simulator runs when altering
the segments’ value curves

OV EW CS SS GD DF SDNN RBNN
Value (INC) 166899 170847 105957 64889 18432 11721 20832 13903
Ratio (INC) 1 - - 0.389 0.110 0.070 0.125 0.084
Value (DIP) 171882 151602 92149 59453 8817 6442 23561 20631
Ratio (DIP) 1 - - 0.345 0.051 0.037 0.137 0.120
Value (PEAK) 270896 279129 216336 62763 14516 11171 17585 19489
Ratio (PEAK) 1 - - 0.231 0.053 0.041 0.065 0.072

9.5.1 Increasing Value Curve

The increasing value curve can be related to products that increase in pop-
ularity over time due to marketing or market trends. To see how such a
markets might a↵ect the dynamics of pricing, we let the sellers start out
with an initial price of 149 and observe the resulting e↵ects from 100 simula-
tions. From Figure 9.9 we can quickly identify the reason for why the sellers
fail to generate a decent surplus in this market. The problem is that the
competitive nature of the market makes it hard to increase overall prices,
and thus, the sellers are incapable of benefiting from the segments increasing
valuations.
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Figure 9.9: Evolution of market prices and inventory when the customers
adhere to an increasing value curve
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Since the o✏ine training of the RBNN-seller adhere to an increasing price
path, the RBNN overprices its goods for the first number of simulations. It
rather quickly adapts to the market’s actual dynamics of decreasing prices,
but it loses out on some early revenues as seen by its large number of remain-
ing inventory from Figure 9.9c. Because the di↵erence between the initial
price and the average market price is much smaller in this scenario than the
decreasing scenario, the GD-seller and SDNN seller are now less volatile in
their pricing. For the SDNN this happens because the di↵erence between
its weights at the ending of one simulation and start of the next are now
smaller than previously. The GD-seller scales its initial price, and therefore,
a closer starting point to the average prices, implies that prices should be
more stable. We further see that the GD-seller now has a straighter inventory
development curve, and thus it is able to better disperse sales throughout
the selling horizon.

The only seller we would expect to have any benefit from an increasing value
curve is the DF-seller. Because it is focused on high revenues per sale, and do
not aggressively compete for market share, it should be able to approximate
a rising value curve better. However, we find that the DF is also struggling
with price increases, due to the stochastic nature of the random choosing
seller segment. Nevertheless, it is able to keep its prices at a more constant
level.

Looking at the final simulation run from Figure 9.9b, we see that for the
first 50 days or so, the sellers are successful at marginally increasing average
prices. After this, unfortunately, the GD- and SDNN-seller slightly under-
cut their prices for too many days in a row, and thus a more aggressive
downward-sloping price war gets initiated.

9.5.2 Mid-dipping Value Curve

A mid-dipping valuation curve aims to represent a product that might de-
crease in popularity for some time, before rising to its original level. Figure
9.10 presents the market prices and inventory development for such a mar-
ket, when the sellers’ initial price are set to 499. Evaluating the graphs, we
see that when customer valuations decrease, the sellers are capable of pricing
according to the customers’ willingness to pay. However, as valuations start
to increase, the sellers are unable to increase their prices and only manage
to reduce the slope of their overall prices.

Considering Figure 9.10a, we see that the algorithms price their goods close
to the myopic segments’ maximum valuation for quite some time, thus sell-
ing just a few goods at a high revenue per sale. This happens partly because
the RBNN is struggling with adapting its weights to approximate the dra-
matic shape needed to conform to its o✏ine training data. Hence, its initial
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price path is a more “shallow” bowl, than the segments valuation curves,
which causes it to decrease its prices more slowly from the start. Also, the
SDNN’s initial weights also adhere to a higher price path, and thus, since
there is little aggressive pricing going on, prices stay close to the myopic
segments’ value curves, and the sellers are not exposed to the strategic seg-
ment. Consequently, the high prices cause few goods to be sold, as is evident
from Figure 9.9c. Moving on to the last simulation run, we find that prices
are now generally lower, as the algorithms have adapted to the market and
learned that more sales can be made if prices are lower from the start.
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Figure 9.10: Evolution of market prices and inventory when the customers
adhere to a mid-dipping value curve
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9.5.3 Mid-peaking Value Curve

The final valuation curve we will be evaluating is the mid-peaking value
curve, which relates to a product that has a peak popularity at the middle
of its lifetime. Providing the sellers with an initial price of 149 we plot the
dynamics of this scenario in Figure 9.11. Having evaluated both the increas-
ing and mid-dipping value curves previously, we are easily able to predict
that we will experience similar price paths in the mid-peaking scenario.
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Figure 9.11: Evolution of market prices and inventory when the customers
adhere to a mid-peaking value curve

We see that throughout the simulation runs, the RBNN-seller tries to stick
with an increasing price path the first day of the market, but are forced to
lower its prices to compete for any market share. Furthermore, the mid-
peaking value curve drastically increase the consumers’ surplus because of
their higher average valuations, and the sellers low prices. As a result, the
sellers are only able to secure 22% of the economic welfare in this market.
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In summary, we find that it is the consumers that heavily profits from these
types of value curves. Provided that the share of comparison shoppers is
high and multiple sellers compete for market share, it seems clear that the
sellers are bound to be stuck at competing for having the lowest price and
thus destroy value for themselves.

9.6 Seller Strategies

The previous sections have given us an understanding of how the dynamics
of the base scenario evolve. Next, we will alter the strategies used by the
sellers to see how other seller compositions a↵ect the overall market. We will
continue using the same buyer and seller parameters as in the base scenario
unless noted.

9.6.1 Introducing the Aggressive Pricing Neural Net-
work

From our previous analysis, it is clear that for the scenarios tested, the
DF-seller is the worst performing of them all. Hence, any seller using a DF-
strategy in this market would be looking for a better algorithm to price its
goods. So far we have not used the Aggressive Pricing Neural Network, and
hence, we let the seller using the DF-algorithm switch to the APNN-strategy
for the next scenario. We train the APNN network using the following
normalized training data,
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and set it to undercut its competitors prices by 10%. Evaluating Figure 9.12
together with Table 9.8 we see that the introduction of the APNN-seller has
some dramatic implications for the market. Overall there is a significant
decrease in prices, and the more runs we do, the lower the price gets. This
is a natural result, as the APNN-seller constantly aims to undercut its com-
petitors’ prices and in order for them to stay competitive in the market, the
all need to join in at lowering their prices. This destructive behavior greatly
reduces the sellers’ surplus, and as a consequence, the consumers end up
with nearly 60% of the economic welfare available.

Considering the APNN-seller, we find that one of the reasons for its success
in generating the highest revenue is the fact that it can sell its entire stock
of inventory by approximately day 60. This means that it is capable of
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exploiting the consumers higher valuations at the beginning of the market,
and thus, it drops out of the market before goods are sold at marginal cost.
The other sellers fail to realize that the APNN-seller is in stock out and thus
continue lowering prices, despite the fact that the largest promoter of the
price war has left the market.

For the RBNN-seller, which in the previous scenarios has been the overall
best performer, the tables have turned. Its fails at learning the new mar-
ket conditions quickly enough, and as a result it is now one of the worst
performing sellers. This happens because it is not able to rapidly update
its weights, and thus the small and modest price movements that made it
successful in the previous scenarios, are now causing it to be lagging behind
the rest. Furthermore, the RBNN-seller is also left with the most inventory
at the end of the market.

The situation for the SDNN-network is quite the opposite. In previous sce-
narios its nimble network and rapid changes, caused it to oscillate prices
towards the end and initiate price wars. Now, however, its ability to swiftly
alter its prices is beneficial. We see from Figure 9.12d that it is rather close
to selling an equal amount of inventory each day.

Table 9.8: Average surplus and revenues for all simulator runs when one
seller utilize an APNN-algorithm

OV EW CS SS GD APNN SDNN RBNN
Value 169156 172311 102771 69539 8805 34088 17442 9204

We have experimented with the APNN-algorithm following the same sen-
sitivity analysis procedure, and for nearly all scenarios the seller using the
APNN-strategy gets the vast majority of the sellers’ surplus. However, over-
all there is a substantial decrease in the total seller surplus generated, but
the economic welfare gets increased as more customers are able to purchase.
Nevertheless, despite its success in these scenarios, the APNN-strategy is
not without its flaws. First of all, the APNN-strategy is relying on the
intelligence of other sellers, and as a result, it is only as smart as its com-
petitors. For instance, if we were to let every seller use this algorithm, prices
at marginal cost would be inevitable. Secondly, if we increase the number
of segments choosing their seller randomly, the APNN-strategy performance
decrease rapidly. We have previously touched upon the issue that all strate-
gies perform rather poorly in this setting, as they fail to realize that they are
no longer in competition, and because of its aggressive nature, this heavily
a↵ects the APNN’s revenues.
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Figure 9.12: Development of market prices, inventory and surpluses when
one seller utilize an APNN-algorithm
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9.6.2 Mixing up the Strategies

Next, we turn to see how the di↵erent compositions of algorithms impact
the market. Ignoring the Q-learning algorithm, we have five di↵erent algo-
rithms, which implies that there are 120 possible unique seller compositions.
Naturally, we will not be able to analyze them all, and besides, our previous
analysis has made us able to make some generalizing notions regarding how
the algorithms will perform, without analyzing all possible scenarios.

2 x SDNN & 2 x RBNN

Our first new seller composition consists of two sellers using an SDNN-
strategy and two sellers using the RBNN-strategy. Figure 9.13 presents the
market prices from the final simulation run and the development of surplus
values. We see that as the number of runs is increased, the sellers’ prices are
lowered, and their revenues are steadily decreasing. If we repeat this mar-
ket for more than 100 simulations, we eventually reach prices at marginal
cost. Despite the di↵erences in the smoothness of the price curves, the sell-
ers generate a close to equal amount of revenue. Perhaps more interesting
is the fact that the SDNN-sellers on average sells 100 goods each more than
the RBNN-sellers, which in turn means that the RBNN-sellers can extract
a higher revenue per good sold, at the cost of losing out on sales.
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Figure 9.13: Evolution of market prices and surplus when two SDNN-
algorithms and two RBNN-algorithms compete
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2 x GD & 2 x DF

In all of the previous scenarios, there has been one or more machine learning
algorithm present. If we are to evaluate the implications of these algorithms,
it would be interesting to see how the market would play out if the sellers
only used the simpler adaptive strategies. Therefore, we have evaluated
the use of two GD-strategies and two DF-strategies in the base scenario, to
see what happens in such a setting. From Figure 9.14 is quite clear that
the market is more stable when there are no learning algorithms present,
as we are e↵ectively repeating the same market over and over. We see that
overall prices are generally higher and that the adaptive strategies are rather
successful at mimicking the value curves of the myopic segments. However,
we still get the same tendency as with the SDNN-strategy towards the end
of the market. The GD-sellers’ scaling factor and more sensitive desired
sales, causes them to decrease their prices dramatically. The random seller
choosing segments keep the DF-sellers out of the increased price war, but at
the cost of lost sales. In fact, up until day 60 or so, they have all sold about
the same number of goods, but for the remaining 40 days, the GD-sellers are
each able to sell close to 90 items more than the DF-sellers.
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Figure 9.14: Evolution of market prices and surplus when two DF-algorithms
and two GD-algorithms compete

Furthermore, we see that in comparison with our original seller composition
presented in Figure 9.2, the total economic welfare is much lower, averaging
about 40000 units below. If we consider the surplus generated by the sellers,
we find that this is partly due the sellers surplus being approximately 25000
units below and partly due to the reduction in consumer surplus. Regard-
less of their high prices, the GD-seller and DF-seller are not able to extract
the same value from the market as in the base seller scenario. The reason
being that their higher prices have a negative impact on demand, and also
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the strategic segments willingness to purchase. This points us towards an
understanding that the introduction of machine learning algorithms can in-
crease the e�ciency of our simulated market, and might, in fact, increase
both the sellers and consumer surpluses.

3 x DF & 1 x APNN

Finally, we put the APNN-strategy up against three DF-sellers in our base
scenario. In previous literature, i.e. Dimicco et al. (2003), researchers have
found the DF-strategy to induce price wars between sellers when the share
of comparison shoppers is high. Therefore, it would be interesting to see
what happens when three DF-sellers are faced with an, even more, price war
inducing strategy, namely the APNN. In contrast, when evaluating Figure
9.15, we find that this seller composition is actually quite a stable market,
with overall high prices. This happens because the DF-strategies’ consis-
tently fail to recognize that more goods can sold if prices are lowered when
the market does not consist of 100% bargain hunter customers. Thus, the
APNN-seller is able to undercut them all, and sell out its inventory by day
55, claiming close to half of the total seller surplus.

This scenario also lets us see the limitations of the APNN’s network size.
For the first ten days of the market the APNN-sellers is unable to only
marginally undercut the DF-sellers prices, and thus loses some possible ad-
ditional revenue. This is a consequence of having a small network, because
this implicates a less complex curve, and consequently there is a trade-o↵ of
between matching the DF-sellers prices early in the market, or later.
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Figure 9.15: Evolution of market prices and surplus when three DF-
algorithms and one APNN-algorithm compete
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9.7 Introducing the Q-learning Algorithm

Until now, we have ignored the Q-learning pricing algorithm, due to its dra-
matic impact on run time. One of the issues with the Q-learning algorithm
implemented in our model is that, because it uses a look-up table, it is heav-
ily su↵ering from the curse of dimensionality. To exemplify this, our base
scenario with 250 units of initial inventory and 100 time periods, creates a
state space of 25000 unique states. If we then allow the actions, or prices,
to be defined between 500 and 0, with an interval of one, we are left with a
Q(s, a) table containing 12.500.000 instances. This is a huge inconvenience,
seeing that we have no transition function, and thus cannot provide any good
initial Q(s, a) values by o✏ine calculation. The lack of a transition function
implies that if we are to get a complete policy and any decent performance
from the Q-learning algorithm, we should visit each state-action pair at least
once. This would require us to run some 20 million simulations, which would
take us days to perform.

However, quite a lot of the states are unreachable, for instance, it is impos-
sible to be in a state of zero inventory at time step 1, and as such there are
many states that can never be visited in the base scenario. In addition, the
e↵ect of unreachable states is largest at the beginning of the market, leading
us to see more optimal prices at the early days of the market, than the last.
This happens because the number of reachable inventory states increases in
time due to the buyers’ increasing aggregated arrivals and demand. Nev-
ertheless, we should decrease the size of the problem, and the easiest way
to do this is by reducing the number of periods. Hence, all simulations in
this section will be performed by using a total number of periods of 30, but
we keep all else equal unless explicitly noted. Furthermore set the values of
↵ = 0.1 and � = 0.9 for the QL-algorithm in all subsequent scenarios.

In all scenarios, we let the QL-algorithm search the state-action space by
having it perform random actions, and store the Q̂(s, a) value from each
simulation run. When we reach the final 100 simulation runs, we update the
policy of the QL-seller using the learned Q̂(s, a) values to find the actions
it believes to be the best, and let it choose actions according to its policy
and not randomly. Consequently, all data presented from the QL-algorithm
stems from the final 100 runs, meaning that we treat the previous runs up
to this point kind of like o✏ine training.

The increased run time of simulations has lead us to focus on just a few
market scenarios. We start o↵ by evaluating how the Q-learning algorithm
performs in a monopolistic market compared to the other pricing algorithms.
Then we introduce competition and see what happens when we introduce
multiple QL-sellers in the same market before we analyze how the QL-
strategy performs when opposed with the GD-, DF-, and RBNN-strategy.
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9.7.1 Monopoly Performance

The basis for the monopoly market is the base scenario previously presented.
However, since we only have one seller, we provide that seller with 1000 goods
of initial inventory. Furthermore, we adjust the available inventory each day
to be 100 and the strategic segments’ lifetime to be three days to suit the
reduced number of periods. Also, since there is only once seller, all segments
are now e↵ectively bargain hunters. We run the simulator for 10 million
iterations for the QL-strategy, but keep our original run number of a 100 for
the others. Table 9.9 presents the average revenue and surpluses created by
the di↵erent seller strategies in a monopoly market.

Table 9.9: Average revenues and surpluses all simulator runs when the sellers
operate in a monopoly market

GD DF SDNN RBNN QL
Revenue 103127 28364 23366 155113 154217
Share of Optimal Value 0.469 0.130 0.105 0.713 0.703
Optimal Value 219201 217662 220904 217315 218082
Consumer Surplus 39392 3432 181830 46551 29481
Economic Welfare 142519 15898 205179 201664 183699

From Table 9.9 we can infer that the QL-seller and RBNN-seller, by far,
are the ones able to extract the largest revenue from the market. The GD-
strategy perform rather well, but we see that the DF-seller and SDNN-seller
fail to generate revenue in this monopoly market. The SDNN-seller rapidly
decreases its average prices with every simulation run and prices its goods
at marginal cost by simulation-run 10. Consequently, the SDNN sells out
its entire inventory but fails to realize that it could price its goods higher.
However, the SDNN produces the largest economic welfare and consumer
surplus. The DF overprices its goods and is only able to sell an average of
10% of its inventory, which drastically decrease economic welfare. Note that
due to the shorter selling period; we cannot directly compare the optimal
values and revenues from these simulations to those of the original selling
period of 100 days.

If we compare the market prices of the final simulation run for the RBNN-
seller and the QL-seller from Figure 9.16, we see that despite their similar
revenues, the market prices of these two algorithms are quite di↵erent. The
RBNN-seller sells more of its inventory at a lower price, whereas the QL-
seller sells less inventory at a higher price. Furthermore, considering the last
25 days of the market, the QL-sellers prices are more volatile, because of
the larger number of reachable states and the subsequent “small” number of
iterations, prevents the algorithm from visiting every possible state-action
pair often enough. As we get closer to the market’s end, the number of
reachable states increases, and thus more iterations are needed. Moreover,
we see that at day 28, the QL-seller raises its prices above that of the myopic
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segments, because it has previously gained more revenue from selling to some
realized residual demand caused by the strategic segment.

Overall, we find that the Q-learning algorithm can perform well in this
monopoly market. In fact, because the monopoly market satisfies the notion
of stationarity and the Markov property, it will eventually converge to the
optimal policy if we let it visit every state-action pair infinitely often. The
policy we derive using only 10 million iterations is not optimal, but still
provide us with adequate evidence that there is a lot of potential in using
Q-learning for pricing goods.
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Figure 9.16: Development of monopoly market prices for the QL- and
RBNN-algorithm

9.7.2 Multiple Q-learning Sellers

Next, we move away from the notion of stationarity and introduce a duopolis-
tic market with two sellers using the Q-learning algorithm. Having multiple
Q-learning algorithms compete is in general an unknown territory, as we
have no theory that can ensure any convergence towards an optimal solu-
tion. Therefore, it is interesting to see how the algorithms adapt to each
other, and how much revenue they can extract. To initialize the market, we
let each seller get an initial inventory of 500 goods, and adjust the available
goods for sale each day to be 50. We then run the simulator for 10 million
iterations. The final run in which the QL-sellers use the learned policy is
graphed in Figure 9.17

The Figures 9.18e and 9.18f first nine values represents the overall average
values from the nine first million simulation runs. The 10th value, plots
the average for the last 100 simulations, and the remaining ten values plot
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(b) Final Run, Inventory
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(c) Evolution of market prices and sur-
plus
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(d) Evolution of market prices and sur-
plus

Figure 9.17: Evolution of market prices, inventory and surplus when two
QL-algorithms compete in a duopoly

the values from every tenth simulation run for the last 100 simulations.
From these figures, we can easily spot the increase in sellers’ revenues, and
resulting decrease in consumer surplus when the QL-algorithms starts pricing
their goods according to their learned policy. Also, we find that the total
economic welfare approximately increase by 20% as a result of this.

It is clear that despite the non-stationary environment, the algorithms per-
form great. In fact, we see from Table 9.10, that the two QL-sellers can
extract a larger share of the optimal value, close to 80%, as opposed to the
single QL-seller in the monopoly market which was only able to extract 70%
of the optimal value. Furthermore, the two QL-sellers closely follow each
other’s prices, and as opposed to the neural networks, they do not engage
in any aggressive pricing. Instead, they alternate between having the low-
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est and highest price, e↵ectively sharing the market by performing implicit
cooperation, implying that they are capable of properly evaluating the con-
sequences of their actions. Thus, we can also assume, that if two QL-sellers
operate in a duopoly market where consumers’ willingness to pay increase in
time; they should be able to capitalize on this increase given enough training.

The fact that the duopoly QL-sellers extract a higher surplus than the
monopoly QL-seller, leads us to an interesting find. When in competition,
the QL-sellers have a smaller state-space because they do not have to serve
the entire market themselves. Consequently, it takes less training to converge
to a solid price policy. The monopoly QL-seller should be able to generate
the same seller surplus, however, because its state-space is twice as large,
this would require an estimated 20 million training iterations. Also, when
the market consists of strategic and myopic segments, the optimal price pol-
icy might be closer to the strategic segments’ valuations, depending on the
value dispersion between the myopic and strategic consumers. Comparing
Figure 9.16a and 9.17a, we see that the reason for the duopoly QL-sellers’
success lies in the fact that they capitalize on the strategic segments higher
valuations early in the market, in addition to having a more e�cient price
policy towards the end of the market.

Table 9.10: Average surplus and revenues for the final 100 simulator runs
when the two QL-algorithms compete in a duoploy

OV EW CS SS QL 1 QL 2
Value 213991 204330 37454 166875 80897 85978
Share of Optimal Value 1 - - 0.779 0.378 0.401

9.7.3 Neural Network vs. Q-learning

Our final run with the Q-learning algorithm includes putting it to the test
against the RBNN-, GD- and DF-algorithms, allowing us to get an under-
standing of how they compare to each other. We run the simulator for 10
million iterations, and provide all sellers with the same parameters as in the
original base scenario, except the available inventory each day which are ad-
justed to 70 to account for the shorter selling period. Because it is necessary
to run the simulation millions of times to get decent results from the Q-
learning algorithms, we chose competing algorithms that do not drive prices
towards marginal cost. Consequently, we find that there is little knowledge
to be gained from putting the QL-algorithm up against the more aggressive
APNN and “unstable” SDNN, since prices would then be drawn to marginal
costs long before the first million simulations. The QL-strategy would, of
course, learn to price its goods at zero in time, but we find that it is more
interesting to see what happens when aggressive price wars are not an issue
because then we can explore more exciting price policies.
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Table 9.11 presents the average values from the last 100 simulations, implying
that we have then performed 9.999.900 iterations before this, in which the
QL-seller has had the opportunity to estimate the Q(s, a) values by random
action selection. It seems clear that the QL-seller can infer a good policy
from the simulations, despite the non-stationary environment. Furthermore,
the QL-seller is the best performing algorithm and claims 40% of the total
seller surplus.

Table 9.11: Average surplus and revenues for the final 100 simulator runs
when the GD, DF, QL and RBNN algorithm compete

OV EW CS SS GD DF QL RBNN
Value 214879 182000 43656 138343 26735 9532 56564 45511
Ratio 1 - - 0.643 0.124 0.044 0.263 0.212

Figure 9.18 presents the development of market prices, inventory, and sur-
pluses for these simulations. The Figures 9.18e and 9.18f first nine values
represents the overall average values from the nine first million simulation
runs. The 10th value, plots the average for the last 100 simulations, and the
remaining ten values plot the values from every tenth simulation run for the
last 100 simulations. By examining Figure 9.18b and 9.18d we see that the
reason for the QL-sellers success is the fact that it can slightly undercut its
competitors’ prices, and since it has no desire to restrict its sales, it sells out
its entire inventory by day 20.

The GD-seller’s volatility of prices dramatically increases in the last 12 days,
which is caused by its low price in day 18 and consequently the selling of 50
goods in one single day. Arguably this is an abnormally large demand, caused
by the realization of some residual demand stemming from the strategic
segment. The sudden large reduction of inventory, causes the GD-seller
to heavily increase its prices, and because prices are kept too high for too
long, it then continues to alternate between underpricing and overpricing its
goods.

Figure 9.18a and 9.18c presents what happens in the very first simulation.
From this, we can see the QL-seller’s learning actions, and rather surpris-
ingly, we find that despite choosing price randomly, the QL-seller is able to
almost sell out its entire inventory. Looking at Figure 9.18e, we find that
just setting the price randomly in this market scenario is a better strategy
than using the DF or GD algorithms. Furthermore, it is evident that when
the QL-seller starts acting according to its learned policy, we see an increase
in seller surplus and decrease in consumer surplus. However, the reduction
of revenues with the GD, DF, and RBNN seller is rather modest, implying
that when the QL-seller prices according to its policy, it does not destroy
value for its competitors, rather, it extracts its additional revenue from the
consumers.
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(a) 1st Run, Market Prices
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(b) 100th Run, Market Prices
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0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Su
rp

lu
s/

R
ev

en
ue

Run Number

Consumer Surplus Optimal Value Economic Welfare
Seller Surplus GD DF
QL RBNN

(e) Surplus values
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Figure 9.18: Evolution of market prices, inventory and surpluses when the
GD, DF, QL and RBNN algorithm compete



CHAPTER 9. STRATEGY ANALYSIS 134

The RBNN-seller is still able to generate substantial revenue, despite be-
ing superseded by the trained QL-seller. According to its own measure of
success, the RBNN-seller is performing close to optimal in this market, in-
dicated by its straight line from its initial inventory to zero. We further see
from Figure 9.18a that the large spatial price dispersion caused by the QL-
seller ”learning the market dynamics”, results in more volatile prices than
normally for the RBNN-seller. However, when the QL-seller starts acting
according to its learned policy, the RBNN’s price path smoothens. Also,
if we had averaged the values from all 10 million simulations, the RBNN
would be the overall best performer because of its o✏ine learning ability.
Hence, evaluating which machine learning algorithm performs best depends
on what assumptions and measures of success we utilize.



Chapter 10

Insights

The coming chapter will be used to derive insights regarding the simulations
and strategy analysis performed in the previous chapter, and generalize our
findings. Our model presents a novel approach, and as such the possibilities
of relating our discoveries to other literature is limited. However, we find
that there are some commonalities between our findings and that of others,
and where appropriate we will discuss how our discoveries relate to more
general literature. Furthermore, we use this chapter to evaluate the real
world applicability of the algorithms presented and aim for a better under-
standing of how the assumptions in our model compare to actual markets.
The chapter ends with a discussion regarding some of the weaknesses with
our approach.

10.1 Algorithm Performance

Overall, we find that all the pricing algorithms implemented are able to gen-
erate revenues and price their goods fairly well. Despite utilizing no, or very
limited, information, they are adaptable to various market conditions, and
do not require any knowledge of the true buyer demand, the number of other
sellers or agents, their competitors’ current inventory or prices (except the
APNN). Evaluating which of the algorithms are the overall best performer
is not easy, as they all have their own strengths and weaknesses.

In general, it seems clear that in terms of revenue generated, the adaptive
algorithms are the worst performers. Their inability to learn market param-
eters and their rather simple price tactics, makes them easily outperformed
by the more sophisticated machine learning algorithms. Nevertheless, these
adaptive algorithms are surprisingly robust. They require no lengthy train-

135
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ing period, nor information to price their goods appropriately, and although
better pricing algorithms will ultimately grab a larger market share, they
still have their use-cases.

Utilizing artificial intelligence by machine learning is arguably a much more
solid approach for pricing goods in complex markets. We have found substan-
tial evidence that machine learning algorithms can extract higher revenues
than the adaptive algorithms, as they can learn and adapt to a dynamic mar-
ket. Despite the fact that the machine learning algorithms are not strategic
in their evaluation, they succeed to some extent at implicitly coordinating
prices. A similar discovery has been found by Kutschinski et al. (2003).
Our approach is the first one, to our knowledge at least, that compares a
Q-learning algorithm to neural networks, and also let them interact in the
same market. We find no major technical issues of having multiple compet-
ing algorithms in a market, apart from the variation in o✏ine training time,
and consequently our results prove that QL and NNs can interact and adapt
to each other without any special precautions.

10.1.1 Derivative-Following

Throughout our analysis, the DF-algorithm has consistently been the worst
performer when faced with competition in a heterogeneous market. The
problem with the DF-strategy in this setting is that it is simply not suited
for a market where buyers di↵er in their valuations of a product. By always
aiming to sell to the customers that value the good the most, it forgoes
generating more sales and rather focuses on keeping revenue per good high.
The DF algorithm can easily be related to a form of greedy heuristic, in that
it tries to greedily climb the value curve of consumers. In a way, the DF-
algorithm can be said to be a price skimming price tactic, by cherry picking
the less price sensitive consumers.

Price skimming is a commonly known pricing strategy, often utilized for only
a limited duration of time, to recover the majority of investments needed to
build a product (Monroe, 1999). For a price skimming seller to gain further
market share, it needs to use other pricing strategies. Moreover, the largest
setback of using this tactic is that it often leaves the product at a high price
compared to its competitors, which is exactly the e↵ect we see in our simula-
tions. Faced with other DF strategies in a market of purely bargain hunters,
the DF-algorithms would create an aggressive price war. However, as long
as there is some stochasticity in consumer choice, the DF’s would reach a
common price setting extracting high revenues per sale from the buyer pop-
ulation, as long as no other conflicting pricing strategy is introduced to the
market.
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Dimicco et al. (2003) found that the DF strategy excels in a market with
an abundance of buyers and a peak valuations early in the market. We can
confirm that the DF algorithm performs its best when there is an abundance
of buyers, which is evident from our simulation of excess demand. Further-
more, we can also infer that the DF-strategy benefits from peak valuations
early in the market, as it has no intention of maintaining available inven-
tory throughout the selling period. However, the DF-algorithm su↵ers in a
heterogeneous market, and we can thus also add to the conclusion of Kong
(2004) that the DF-seller is a poor performer when faced with algorithms
such as GD and SDNN.

Thus far, we have implicitly assumed that the best measure of performance
is revenue generated. However, if we expand our view, we find that the DF-
algorithm has some features that could make it beneficial in a real market.
First of all, by skimming the market, the DF-seller can be a reasonable
pricing algorithm for a premium seller aiming to sell goods at a high price,
and that does not have a keen interest in obtaining a large market share.
Second, the DF is incredibly easy to implement and understand. Any real-
world seller wanting to experiment with their prices could easily implement
this pricing strategy, however, they need to comprehend the limitations of
this algorithm fully.

10.1.2 Goal-Directed

The GD-algorithm is the best performing adaptive algorithm in our simu-
lated market scenarios, yet its performance is far behind the more advanced
machine learning algorithms. We can confirm the conclusion by Dimicco
et al. (2003), that the GD consistently sells the majority of its inventory
given any combination of competition and buyer behavior, at the expense
of drastically overshooting or undershooting the valuation curve early and
late in the market. It is, therefore, most suited for use in markets in which
inventory liquidation is essential.

The majority of our simulations has been done using a decreasing value
curve. When there is a large di↵erence in max and min valuations of the
segments, the GD algorithm fails to recognize that more revenue can be made
by trying to sell more goods in a section of the days. Consequently, the GD
strategy performs its best for slower moving market, where the di↵erence
between the average valuations of the first and last customers is not too large.
The scaling ratio implemented in the GD allows for larger price adjustments
towards the end of the market. However, although the intentions behind this
scaling are reasonable, we have found that the GD’s more volatile pricing
late in the market, helps induce price wars, and commonly drives prices
towards marginal cost for the final days of the market.
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The GD-strategy implements a very rudimentary form of yield management
because it involves strategic control of inventory. However, the strategy of
pacing sales throughout the selling horizon might not always be the best
tactic. For some sellers, there might be an additional value to always having
inventory at hand to serve arriving customers, but there might often be a
trade-o↵ between keeping inventory and generating more immediate revenue.

It seems, that any seller who wishes to dispose of all its inventory at the
cost of losing revenues should consider the GD-algorithm. Furthermore, the
concave inventory development curve created by the GD, suggests that the
GD’s pricing strategy does not quite manage to pace its sales throughout the
selling horizon, as too few goods are sold early in the market, and “too many”
at its end. As a result, we believe that there is a lot potential for increasing
the performance of the GD-strategy by developing a more adaptable scaling
ratio. Like the DF, the GD is a simple and understandable pricing algorithm.
By fine-tuning its scaling ratio and parameters, it should be potential in using
the GD for pricing goods in electronic markets, if the seller consider machine
learning to be too complicated to implement.

10.1.3 Sales-Directed Neural Network

Despite its limited network size, the SDNN-algorithm is a solid performer due
to its agile and adaptable pricing strategy. It does not require any previous
training like the APNN and RBNN, expect for thoughtful initialization of
its weights. By learning the demand curve, it implicitly accounts for other
sellers strategies, and as such does not adapt to specific opponent strategies.

Because it uses its inventory as the basis for its price decisions, the SDNN’s
prices rely heavily on what initial inventory we provide it. Given an abun-
dance of inventory, the SDNN will commonly under-price its goods and drive
prices towards marginal costs. Often its price will be well below the nearest
competitors price, causing large spatial price dispersions. Without any su-
pervision or comparison of its competitor prices, the SDNN has no way of
determining whether a decrease in sales occurs due to lower demand caused
by stochasticity, or another seller undercutting its prices. This e↵ect makes
the SDNN implicitly competitive, as its “standard” response is to lower
prices and thus it may unwillingly initiate price wars.

The puzzling trait of the SDNN of commonly undercutting its prices early
in the market is arguably caused by suboptimal weights. Since desired sales
tend to vary a lot, when there are only a few days left in the market, the
SDNN starts the next selling period with weights adjusted to these desired
inventory values. Therefore, when inventory gets replenished at the next
simulation run, the SDNN has weights confirming to a di↵erent region than
it would like to be in, and thus its prices are in general too low before it has
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time to adapt to the newly restarted market. Hence, we can infer that the
SDNN performs best when there is only a small di↵erence between its initial
price and the overall average market prices.

The creator of the SDNN, Kong (2004), claims that the SDNN learns to
predict and account for the long-term consequences of its actions, and shows
its superiority over the GD and DF strategies. We can confirm that the
SDNN is a better performing strategy than the adaptive strategies. However,
we find evidence that the SDNN’s ability to predict and account for the
long-term consequences of its actions is somewhat vaguer. For instance, the
increasingly volatile prices during the final selling periods often intensify
price wars, and had the SDNN been able to predict this; it should have been
warier with its price adjustments.

Although not being the best performer, the SDNN is the best strategy for
sellers’ needing to sell out their entire inventory in our finite market. The
RBNN simply is not adaptable enough to take part in the final days rapidly
decreasing prices, and therefore the SDNN excels in disposing of its inventory.
Its limited network has some disadvantages, but these disadvantages can also
be beneficial because it allows the SDNN to adjust quickly to market realities
and lowering its prices to match its competitors. This is especially evident
when faced with the APNN-strategy.

Despite of being a neural network, the SDNN is rather computationally
cheap to use. Still, some improvements or additions should be included in
the SDNN algorithm before considering trying out the SDNN in a real mar-
ket. First and foremost, the SDNN algorithm should be expanded to include
a mapping of its competitors’ prices, thus enabling it to infer more informa-
tion about market prices and remove the issues of heavily underpricing its
goods. Secondly, e↵orts should be devoted to reducing the problems caused
by suboptimal weights early in the market. Finally, the issues of inversion
reduce the SDNN’s applicability and narrows its weights’ range of values,
and as such, methods for using the same approach, but without having to
invert a neural network should be explored.

10.1.4 Revenue-Based Neural Network

The underlying goal when we designed the RBNN-algorithm was to engineer
an algorithm that could expand on the idea of the SDNN network, without
having to invert the network. From our results, we can infer that the RBNN,
in general, is a great performer, and thanks to the possibility of o✏ine learn-
ing using very limited information, it has an ability to perform great from
its initialization.

There seems to be a tradeo↵ when designing pricing algorithms using neural
networks regarding the size of the network. The minimalistic network of
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the SDNN arguably causes more fluctuation in prices as it does not have
the ”memory”, or ability to create the complex pricing curve needed to
represent the market. The RBNN’s larger network makes it movements
more controlled and thus it moves more slowly than the SDNN. Commonly
this is a benefit, as massive disruptions in prices increase price wars and
creates a more unstable market. However, we saw that when faced with the
APNN-algorithm, the RBNN was simply unable to act quickly enough to
secure sales.

In terms of achieving their goal of selling an equal amount of inventory each
day, the RBNN is inferior to the SDNN. However, the RBNN is better at
generating revenue. This highlights the biggest issue with using these types
of strategic inventory control algorithms and lead us to the conclusion that
their goal is simply suboptimal. For the majority of the scenarios simulated,
selling an equal amount of inventory each day is not the best strategy. This
can cause a conflict of interest between a seller wanting to maximize revenue
and an algorithm that wants to sell out its last item during the final day,
and not before.

If we had to choose one algorithm for direct implementation in a real market
today, it would have be the RBNN. It is consistently a solid performer when
trained o✏ine, because of its ability to adapt to the actual market conditions
without dramatically destroying value. Also, sellers employing the RBNN
are more likely to have a price that is a bit too high, than way too low.
Hence, it can be well suited for retailers that aim to sell out their entire
inventory, but not at all costs.

An opportunity for further tuning the RBNN strategy is to implement a
more sophisticated evaluation of desired goods sold each day. This could
include the shifting of focus to selling more inventory early or late in the
market. One should also, as with the SDNN, include an ability to track
competitor prices.

10.1.5 Aggressive Pricing Neural Network

The APNN strategy is great at capturing market share in a market where the
majority of consumers comparison shop, but does so at the cost of destroying
value for sellers at the consumers benefit. When faced with other implicit
or explicit aggressive pricing strategies it drives prices towards marginal
cost. Since it has no intention of keeping inventory throughout the selling
period, the APNN can benefit from high customer valuations early in the
market, but also forgo revenues if prices were to rise later in the market due
to for instance an upward sloping value curve. Faced with a large number
of random shoppers, the APNN will continue to assume that lower prices
generate more sales when this might not be the case. Consequently, the
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APNN will excel in some markets, and be inferior in others.

The APNN-algorithm can be considered as a mild form of a predatory or
cutthroat pricing strategy. The algorithm does not price its goods below
cost, but its aggressive nature causes products to be priced at marginal
cost. Predatory pricing strategies are often intended for driving out com-
petitors from a market, and as confirmed by our simulations, this form of
pricing strategy will cause revenues to fall. Cutthroat competition may af-
fect the rivals’, or competing firms’ prospects, as the rivals cannot raise
enough resources to carry on. According to the ”long purse” story, a firm
with substantial financial resources, or the ”long purse”, can prey on its
weaker rivals because the strong firm can sustain losses for a longer period
of time (Tirole, 1988). When the smaller financially constrained firms are
forced out the market, the initiator of an aggressive pricing strategy aims to
increase its prices and thus extract more profits. Hence, predatory pricing
is mostly suited when entry costs are high because this makes it harder for
new competitors to enter the market. However, firms will not benefit from
this strategy in the long term, as the probability of another seller utilizing
the same tactic is high, and as such competition intensifies and major losses
occurs. Also, Tirole (1988) argues that the issue of why the prey faces a
financial constraint needs to be addressed because imperfections in capital
markets are central to comprehend the implications of the ”long purse” story.

Therefore, any seller considering implementing an APNN strategy should do
so with caution. In a way, employing an APNN strategy can be related to
a grim-trigger strategy, because if one seller starts using it, then the oth-
ers are likely to do the same, and as such price will be equal to marginal
cost and seller will be stuck in a homogeneous good Bertrand competition
model. Nevertheless, many DPSOPs already o↵er price algorithms that un-
dercut specific retailers’ prices, but we assume that these real-world imple-
mentations include a lower boundary which prevents continuous aggressive
cutthroat prices.

Using only a very limited amount of market insight for o✏ine training, we
can initiate the APNN in such a way that it becomes a quick learner, and
its prices follow a smooth path. However, we find possibilities of further
increasing the APNN’s performance, by expanding its network to get even
finer tuned prices that can adapt to more dramatic changes in day-to-day
prices.

10.1.6 Q-learning

The Q-learning algorithm is the most comprehensive pricing algorithm im-
plemented in our model, and it seems that its complexity pays o↵ in terms
of performance, at the cost of a lengthy training period. Our simulations
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provide evidence that regardless of no theoretical proof of convergence, Q-
learning is a valuable approach for pricing goods. It would, of course, be nice
to find the optimal pricing policy, but the world is seldom optimal, and our
simulations show that an optimal policy is not necessarily needed to excel in
a market. By only observing the market, the QL can understand the market
dynamics, without any information what so ever.

In their paper, Greenwald and Kephart (2000) performed simulations of
a model free Q-learning algorithm facing other equal QL-algorithms and
amongst others also the Derivate-Following strategy. As we have, they found
that Q-learning performs well, despite the non-Markovian nature of the op-
ponents’ strategies. Chinthalapati et al. (2006) also, rather unsurprisingly
found a similar QL-strategy to be superior to the DF in their simulations.
One of the di↵erences between their approach and ours is that they analyze
a simpler market, enabling them to find an optimal policy analytically and
thus are able to more accurately evaluate Q-learning convergence towards
an optimal policy. We operate in an unknown territory, where the optimal
policy cannot be found by an analytical approach.

The majority of literature studying dynamic pricing using QL follow the
same approach of letting the algorithm learn, and in the case of stationarity,
converge to the optimal policy, before introducing it to the market. This is a
somewhat unrealistic assumption, as it might be troublesome to perform in a
real world implementation. Nevertheless, the value of simulating a market, is
that one can gain further appreciation of what might happen in a real market.
Hence, if realistic simulated marketplaces can be constructed, one could use
a simulation-based approach to train a QL-algorithm o✏ine, by replicating
how one believes one’s competitors and market behave. Furthermore, an
interesting fact found in our simulations is that randomly selecting a price,
may not be a terrible approach, and we find evidence that in some markets,
randomly selecting a price can outperform adaptive algorithms, leading us
to believe that the trade-o↵ between exploration and exploitation is not that
critical in our model since substantial profits can be made even though all
focus is on exploration. In a real market, randomly choosing prices would
not only be troubling for the seller, but the consumers might have an issue
with prices not conforming to some form of pattern. Haws and Bearden
(2006) found evidence that consumer distrust can increase if the day-to-day
prices are heavily fluctuating.

If we were to select a winner in terms of which algorithm is best for pricing
goods in our market, neglecting the issues of training, the QL-strategy would
be it. Due to the long run time caused by QL, we have not extensively
studied how the algorithm performs in various market conditions, yet, we
have no reason to believe that QL would perform badly in any of our markets,
provided that it has had enough training. However, we can infer that if a
market is unstable, meaning that if its competitors’ prices in the upcoming
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simulation run, largely di↵er from the previous runs, the slow learning QL
would struggle at pricing its good properly. Implying that if the other sellers
are aware of one seller using QL, they should vary or alter their pricing
strategies from time to time, to confuse the QL-seller. As a result, the QL
algorithm is an incredibly powerful, but vulnerable approach.

The Q-learning strategy is the only true profit maximizing algorithm in our
market since the other implemented algorithms act more like greedy heuris-
tics or are inventory centered. Furthermore, since the QL can learn market
dynamics and predict future outcomes, its pricing strategy is adaptable. It
will implicitly evaluate which pricing tactic would be the best at its current
state, and thus, it can decide when it is beneficial to hold o↵ inventory for
later days, when to initiate aggressive cutthroat pricing, when to back out
of a price war, or when to implicitly cooperate.

Overall, there are two major drawbacks with the model free QL implemented.
The long and tedious training period and the problem of adapting to a highly
non-stationary market. One suggested approach to the issues of training is
to develop an algorithm that uses function approximation, instead of a look-
up table (Greenwald and Kephart, 2000). Sridharan and Tesauro (2002)
adheres to this method, and were able to produce solid improvements in
learning time, while maintaining profits close, or equal, to look-up table poli-
cies. Function approximation seems to enable more rapid learning, and with
the possibility of altering the function approximations if a market suddenly
changes might also improve the QL’s adaptability to an unstable market. In
addition, the shear size of a look-up table trying to capture the full com-
plexity of a realistic market would drastically increase an already lengthy
training period. Addressing these issues in more detail is a highly complex
task, far beyond the scope of this thesis.

10.2 Market Insights

If we assume that the underlying dynamics of the simulated market is some-
what realistic, we can infer some intriguing market insights from our model.

Sellers seem unable to benefit from customers increasing valuation curves
when in competition. The problem relates to the dynamics of competition,
which hampers the sellers’ ability to raise prices. When the number of
comparison shoppers is high, and there is little variation between customers
valuation of sellers, the greatest number of goods will be sold to the seller
with the lowest prices. Thus, the rational decision for any seller wishing to
maximize market share is to keep prices low. This is a classic game-theoretic
problem. If the sellers collectively and trustfully agreed to increase prices,
they would all have a better possibility of increasing their profits. However, if
any one seller starts behaving opportunistic, underpricing its competition, it
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would take the market share majority. Thus without any ability to cooperate
and signaling trustworthiness, the sellers supposedly best option is to create
a slow moving downward sloping price curve. We find this disability to
monetize on increasing valuation and prices to be realistic. There are many
reasons why it is uncommon to experience the average price of a consumer
good raising in time. One of which is that, if sellers were able to sell their
good for a lower price and still make a profit, the nature of competition
would make it inherently hard to increase prices.

Furthermore, we find evidence that when faced with a heterogeneous mix
of segments, a slightly aggressive pricing tactic is beneficial for the sellers.
When sellers face a market of myopic and strategic customers, a tradeo↵
between utilizing the myopic or the strategic segments higher valuation arise.
Evidentially, it would seem reasonable to keep prices above the strategic
segment for some time, as strategic consumers can return to purchase later
when prices are lower. However, the problem with this strategy is twofold.
Firstly, there is a chance that the full residual demand will not be realized
since the strategic customers might not return when prices are low enough.
Second, the probability for the sellers to capitalize on the strategic segment’s
early higher valuation falls, as the customers are more likely to return when
prices are well below their valuation than when it is close to their maximum
valuation. Therefore, we find that more sales and revenues are generated
when the sellers price their goods close to the strategic segment. This is
also the reason for why a monopolist in a heterogeneous market might have
issues extracting the same seller surplus as in an duopolistic market. Without
competition, an uninformed and unexploratory seller might be unaware of
a strategic segments presence in the market and naively enjoying its high
revenue per sale, when in reality more profits can be made from slightly
lower prices.

10.3 Critique

The way in which we have implemented strategic customer behavior has sev-
eral issues. First of all, it is a rather rudimentary approach for replicating
some of the e↵ects caused by a rational consumer, by which we imply, that
the model’s strategic consumers do not fully conform with the definition of
properly strategic behavior. A more correct approach would be to have the
consumers predict future prices, and evaluate their purchasing decision us-
ing an expected value incorporating factors as future price paths, product
availability and the cost of delaying a purchase. Secondly, we find that our
approach makes the most sense when customer valuations are decreasing.
Cases where customers’ valuations increase in time, makes our strategic seg-
ment inherently un-strategic, as, by definition, strategic customers evaluate
the option of delaying a purchase. Implying that if prices are rising, im-



CHAPTER 10. INSIGHTS 145

mediate purchasing is optimal. Thirdly, we are not able to replicate the
e↵ect arising from consumers competing for product availability and their
risk profiles, because their willingness to pay is exogenously given and not
dependent on expected product availability.

In continuation, all implemented buyers immediately purchase a good if the
price is below their willingness to pay. However, it would be more realistic
to assume that the probability of a consumer purchasing simply increases
as prices drop below their valuation. Consequently, we find it likely that
there might be times when consumers might not buy a product despite the
possibility of gaining an immediate positive utility. Likewise, we also miss
out on more realistic stochastic e↵ects in how the consumers choose their
sellers, by not including aspects of the more sophisticated discrete choice
theory models.

Our model implements a higher degree of customer heterogeneity than other
literature. Still, to properly replicate a market, one can assume that the
number of segments and variations between them are far greater than we
have explored. Therefore, simulations of even more dispersed value curves
and variations of segments’ behavior should be performed. The assumption
of a constant arrival rate is also unrealistic, as it to some degree ignores
the likely e↵ect that low prices stimulate a higher demand. Since demand
each period is capped by the segments arrivals, e↵orts should be made to
implement a dynamic arrival rate using, for instance, an inhomogeneous
Poisson process.

Furthermore, we have disregarded the sellers’ cost, thus forgoing an im-
portant dimension of the sellers and also their heterogeneity. As a result,
we miss out on e↵ects caused by factors like inventory holding costs, and
changing marginal costs. Furthermore, by not including any salvage value
or cost for unsold inventory, we cannot fully represent realistic seller behav-
ior, as there is bound to be some implications, good or bad, from unsold
inventory. In addition, we have not explored seller rationality or interplay
between strategic sellers to any extent, which also might a profound e↵ect.
We have further been unsuccessful in replicating probable market dynamics
when sellers utilize capacity rationing, as prices in most markets would not
decrease if supply becomes limited. The problem we experience is mainly
caused by the inventory centered algorithms, and the fact that we have no
method for inclining customers to purchase early when prices are high.

Our findings stem from repeating the same identical finite market over and
over, and although the algorithms causes some non-stationarity, aspects of
changes in buyer behavior over time are lost. Realistically, it is unlikely
that consumers do not adapt to the market and continuously adjust their
decision-making process and demand.
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To improve confidence in our findings, we should to a greater extent have av-
eraged the results from our simulations. Optimally each simulated scenario
should be averaged for hundreds of runs. Our approach of mostly running
100 simulations, while letting the machine learning algorithms learn, can
lead us to see e↵ects that may be coincidental and thus preventing us from
understanding the most likely dynamics. However, we found averaging hun-
dreds of di↵erent ”hundred simulation runs” to be too time-consuming, and
thus our focus has been to evaluate a greater of variety market scenarios,
and not to marginally improve our confidence in just a few scenarios. Fur-
thermore, the same also applies to our graphs of the development of market
prices and inventory. Since they are mere ”snapshots” of a single simulation
run’s market, they only present what happened in that specific simulation,
which may or may not be the common e↵ect. Implying that some of our
findings might stem from an unordinary situation, and thus might not reflect
the actual common e↵ect.

Furthermore, we have neglected discussions of technicalities regarding ma-
chine learning, and as such, we cannot evaluate issues such as Q-learning
convergence, or finding the best method and learning rate for our algo-
rithms. Also, the implemented algorithms are rather elementary, and might
not reflect the full complexity and possibilities of their respective approach.

All this combined, somewhat deprives us the opportunity of confidentially
concluding how machine learning will perform in reality. Our simulated mar-
ket lacks important market characteristics that are likely to have a profound
impact on underlying dynamics, pricing decisions and algorithm learning.
Hence, we can only infer how these algorithms perform in a constructed
simplistic market, and as such any insights beyond this are merely based on
qualified guesses and reflections.
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Concluding Remarks

By studying the literature regarding dynamic pricing by machine learning
we were able to find some similarities and generalize the papers in our frame-
work, despite their apparent variation. Every paper considered in this con-
text presented a machine learning algorithm whose performance was eval-
uated by simulation using some constructed market model. As a result,
e↵orts were devoted to present the various assumptions used for simulating
the demand and behaviors of consumers in these simulations.

From our results, we find that the majority of literature is considering rather
simplistic market models. Assumptions like those of myopic customers and
independent demand are used by almost every paper considered, predomi-
nantly due to the complexity introduced by adding more realistic assump-
tions. Further, it seems to be no consensus amongst researchers in the
literature pointing towards which machine learning approach is best suited
for solving dynamic pricing problems. Nor have we found any unified evi-
dence that some approaches are better performing than others under various
market assumptions. However, the bulk of literature considering dynamic
pricing by machine learning develops reinforcement learning algorithms us-
ing the principles of Q-learning. Still, there is a lack of research justifying
reinforcement learning as opposed to other methods like those of i.e. neural
networks and evolutionary algorithms.

Our most conclusive discovery from the literature study is that, so far, the
literature has proven to be unsuccessful in evaluating the performance of
dynamic pricing using machine learning in real-world applications. Of all
the 31 papers reviewed, not a single one presented any empirical evidence
of actual increases in revenue or profitability for sellers. Consequently, we
are unable to confidentially state the added value by these methods for real-
world sellers.

147
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What the literature present, however, is that in simulated markets incorpo-
rating simplifying assumptions, machine learning can provide solid increases
in sellers’ revenue by exploiting variations in consumers’ willingness to pay,
utilizing little or no a priory information. Further, dynamic pricing by ma-
chine learning is numerically proven to be superior to static pricing poli-
cies in these simulations. Also, many authors prove that more advanced
approaches like Q-learning can generate close to optimal price policies for
sellers in stationary markets. Lastly, because of di↵erent assumptions and
methods used for simulations, it seems to be no standard practice for de-
veloping and evaluating machine learning methods; hence, it is di�cult to
assess their performance against each other.

By focusing on some of the weaknesses of the literature, our proposed model
enabled us to consider how machine learning algorithms perform compared to
each other in heterogeneous markets. Utilizing a simulation-based approach
allowed us to evaluate how algorithms might learn, adapt and perform in a
stochastic market. Perhaps our most conclusive discovery from our simula-
tion is that what algorithm performs the best, is highly dependent on what
market the sellers are operating in. None of the suggested machine learning
algorithms are able to generate the highest revenues in all market scenarios.
Thus, we emphasize that choosing which algorithm to pursue is a tactical
issue, requiring the seller to understand both its current competitors’ and
customers’ behavior, while also considering the future consequences of their
choice of algorithm.

What we can infer is that the Q-learning algorithm present a more solid
approximation of what optimal future price paths might be, but at a cost
of a seriously lengthy training period. The neural networks show promising
results in providing a more balanced approach to training time and perfor-
mance, but they are unable to fully comprehend the consequences of their
actions and consequently show a more aggressive price path than Q-learning.

Another valuable finding is that pricing performed by machine learning seems
not only to create value for sellers, but can in many cases also increase
consumer surplus and economic welfare. A static price strategy, cannot
take advantage of fluctuations in consumer willingness to pay. Evidently,
sellers using a fixed price strategy will either underprice their goods, forgoing
surplus to the consumers, or overprice their products, thus reducing output
and economic welfare. Hence, it seems conclusive that fluctuations in price
may be good for maximizing economic welfare.

Our results further provide us with an understanding of that, when in com-
petition, it is the actual dynamic between sellers’ price policies that are of
most importance. Variations in customer valuation over time is subordinate
to seller composition because the nature of competition makes it inherently
hard to capitalize on increasing customer valuations. The inventory ori-
ented algorithms especially have a willingness to sacrifice margins for high
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sales, and in competition, these inventory focused algorithms might induce
aggressive price wars.

However, competition might increase economic welfare in heterogeneous
markets, because its lower prices persuade customers with lower valuations
to purchase early, thus increasing current demand. Capitalizing on strategic
segments early in a market will also benefit the myopic segments, by en-
suring a price below their valuation. Hence, it seems that when faced with
both strategic and myopic segments, sellers might be better o↵ by reducing
the price of their goods, as the added demand can generate higher revenues.
Still, this relies on the share of strategic consumers and the dispersion be-
tween their valuations and those of the myopic segments. Another benefit
of strategic customer presence is their ability to lie dormant in the market,
and thus, sales are not instantly lost. However as time progress, the sellers
ability to monetize on early arriving strategic customers decrease if sellers
conform to a declining price path.

Contrary to common belief, our results show that a high percentage of
comparison shoppers might actually create additional value for sellers. In
stochastic markets where firms have no way of determining why current de-
mand is not as expected, we find that inventory oriented sellers wrongly
assume that competing firms are undercutting their prices, and thus they
may initiate price wars. Seeing as markets with a high share of comparison
shoppers reduce stochasticity, the relationship between price and demand is
more stable, and thus, our algorithms can better adhere to the actual market
conditions.

We find evidence that in a duopoly, two competing Q-learning algorithms can
price their goods close to the monopolistic price and thus e↵ectively share the
market, despite lacking methods of communication and cooperation. There-
fore, it seems that the Q(s, a) values can implicitly capture the negative
consequences of aggressive competition, and thus the QL-algorithms collec-
tively and independently decide that cooperation is their best approach. The
neural networks show less implicit cooperation, yet in most cases they are
able to implicitly collude to some degree, as very few scenarios cause prices
to fall to marginal cost over the entire selling period.

Thus, we can conclude that using simulation-based models for evaluating and
developing machine learning algorithms are a valuable approach. However,
we must not forget that we cannot fully rely on results from simulations, as
what may seem reasonable in a constructed market, might not be realistic.
Hence, the value of simulation can only be confirmed by empirical studies of
real-world implementation. Still, before exploring real-world utilization of
machine learning algorithms we find some issues that need to be addressed.

Since machine learning algorithms use experienced data to learn, their abil-
ity to predict future outcomes that do not adhere to previous behavior is
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limited. Consequently, neural networks and Q-learning alike all have an in-
ability to deal with non-stationary markets. The more un-stationary the
market, the more problems the algorithms will have at pricing their goods
e↵ectively. If the underlying probabilities of the market rapidly change, due
to sudden alteration of buyer or competitor behaviors, the algorithms’ pre-
viously learned experience can instantly be close to worthless. This a huge
issue for the look-up Q-learning algorithm, due to the extensive training time
required to develop a decent price policy.

Furthermore, the more complex the market, the more complex the algo-
rithms need to be. For instance, if a market has large volatility in consumer
valuations, the algorithms need to be able to represent this complexity prop-
erly. For neural networks, this implies engineering a larger network, and with
a larger network intricate issues of training and overfitting arise. For a look-
up Q-learning algorithm, a more complex market requires an even longer
training period.

In conclusion, we find substantial evidence that sellers should pursue dy-
namic pricing of goods using machine learning. However, there are many
unanswered questions still needed to be addressed, and consequently, we
end this thesis by suggesting some exciting topics for future research in this
field of science. First of all, the need for empirical scientific evidence of ma-
chine learning is of great importance for justifying these methods. Secondly,
researchers should pursue the development of even more realistic market
models incorporating traits as strategic multiagent cooperation, demand de-
pendencies, heterogeneous goods and more advanced buyer decision-making
processes. Third, exploring what algorithm might be the best response to a
proposed multiagent market would be welcomed. By simulation, one could
then gain a numerical understanding of what might be a sellers’ best-response
algorithm when faced with a variety of machine learning agents. Finally, we
encourage the further development of a standardized model for simulating
markets, enabling researchers to: (1) evaluate the e↵ects of single and mul-
tiple learning agents utilizing various methods of machine learning have on
market dynamics, (2) compare and benchmark the performance of one algo-
rithm against others under equal conditions.
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