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Problem description

The purpose of this thesis is to develop optimization model(s) and method(s) to solve
a multi-product maritime inventory routing problem (MIRP) with undedicated compart-
ments. A problem within a tactical planning horizon will be considered taking ship routing
and scheduling, inventory management and the allocation of products on board the ships
into consideration. Due to the complexity of the problem, the focus in this thesis will be
to develop suitable solution method(s).

Main contents:

– Description of the problem

– Overview and discussion of relevant literature

– Development of mathematical model(s) of the underlying problem and suitable solu-
tion method(s)

– Implementation of mathematical model(s) and method(s) using commercial software

– Testing and discussion of model(s) and method(s)

– An evaluation of the model(s) and solution method(s) developed
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This master thesis is the final result of the work for our Master in Science degree at the
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Abstract

Maritime transportation has a long tradition of taking a dominant role in the global trade.
Remarkable improvements in the efficiency of maritime transportation have been made in
the last 50 years, but still significant improvements can be made by improving the routing
and scheduling of ships through the use of operations research (OR).

This thesis considers the problem of routing bulk tankers to minimize costs while managing
the inventory in ports. Multiple unmixable products are transported and the allocation of
products to undedicated compartments on board the ships is an important aspect of the
problem. One aim of the thesis is to contribute to the literature on maritime inventory
routing problems (MIRPs) by including the dynamic allocation of products to undedicated
compartments on board the ships. An arc-flow formulation of the problem is proposed
together with several types of valid inequalities and tightening constraints. The model has
been tested on three differently sized test cases. The valid inequality imposed on the mini-
mum number of compartments needed in each port was the most efficient valid inequality.

The formulation proposed proved difficult to solve with an exact solution method within
a reasonable time. We propose a new optimization based algorithm for solving the multi-
product MIRP. The algorithm is an iterative matheuristic, and it utilizes the structure of
the problem. In a construction phase, the routing component of the problem is extracted
and solved independently based on the series of valid inequalities designed. When the solu-
tion of the routing problem is known, the remaining part of the problem is solved with the
sequence of port visits from the routing problem fixed. If the problem is not feasible given
the current routes, new routes are generated utilizing information from the infeasibilities.
The iterations continue until a feasible solution is found. An improvement heuristic is
utilized to improve the discovered feasible solution.

By decomposing the problem, the size of each of the two subproblems is reduced remark-
ably. The effectiveness of the exact solution method decreases with the size of the test
case. Simultaneously, the effectiveness of the matheuristic increases with the size of the
test case. On average, the construction phase of the matheuristic returns high quality
solutions in significantly shorter time than the exact solution method. The solutions are
further improved in the improvement phase. The proposed matheuristic represents a re-
markable improvement in both efficiency and solution quality when solving the complex
MIRP.
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Sammendrag

Sjøtransport har lenge hatt en dominerende rolle i det globale handelsmarkedet. Til tross
for at sjøtransportnæringen har opplevd signifikante forbedringer de siste 50 årene, finnes
det fortsatt et stort forbedringspotensialet på flere områder. Både ruting og timeplanleg-
ging av skip har potensiale til å bli effektivisert ved hjelp av operasjonsanalyse.

Denne masteroppgaven tar for seg et problem hvor både ruteplanleggingen av bulk tankskip,
samt lagerstyring av et flertalls produkter i havner skal optimeres. Problemet optimeres ved
å minimere kostnader. Flere produkter som ikke kan blandes transporteres av tankskipet og
allokeringen av disse produktene til ikke dedikerte tanker er en essensiell del av problemet.
Et av målene med masteroppgaven er å bidra til litteraturen på kombinerte lagerstyrings-
og ruteplanleggingsproblemer ved å inkludere dynamisk allokering av produkter til ikke-
dedikerte tanker på skipet. En arc-flow formulering, samt en serie med gyldige ulikheter,
er designet for dette problemet. Modellen har blitt testet med en eksakt løsningsme-
tode på tre datasett av forskjellig størrelse. Den gyldige ulikheten på minste antall tanker
nødvendig i hver havn for hvert produkt presterte best og hadde størst effekt på kjøretiden.

Til tross for utviklingen av gyldige ulikheter, er modellen for kompleks til å kunne løses in-
nen rimelig tid med en eksakt løsningsmetode. En optimeringsbasert algoritme ble utviklet
for å kunne løse modellen mer effektivt. Algoritmen er en iterativ matheuristikk som ut-
nytter strukturen til problemet. I en konstruksjonsfase, trekkes selve ruteplanleggingen
ut av problemet og løses uavhengig ved hjelp av de gyldige ulikhetene som er utviklet.
Resten av problemet løses så med ruteløsningen fiksert. Hvis løsningen ulovlig gitt rutene
fra ruteproblemet, genereres nye ruter i ruteproblemet med informasjon om ulovlighetene
ved nåværende løsning. Det iterative søket fortsetter til algoritmen finner en lovlig løsning
til det originale problemet. En forbedringsheuristikk benyttes til å forbedre den lovlige
løsningen.

Ved å dekomponere problemet reduseres hvert av de to delproblemene signifikant i stør-
relse. Effektiviteten til den eksakte løsningsmetoden reduseres med størrelsen på dataset-
tet. Samtidig øker effektiviteten til matheuristikken med størrelsen på datasettet. Kon-
struksjonsfasen returnerer løsninger av høy kvalitet på mye kortere tid enn den eksakte
løsningsmetoden. Løsningene blir videre forbedret av forbedringsheuristikken. Matheuris-
tikken som er utviklet har vist seg å være en bemerkelsesverdig bedre løsningsmetode for
den komplekse modellen enn den eksakte løsningsmetoden.
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Chapter 1

Introduction

The purpose of this chapter is to first give a brief overview of relevant aspects of the mar-
itime transportation industry, as well as providing an introduction to the problem modelled
in this thesis. Further, we also provide a motivation and purpose for studying the thesis
problem.

1.1 The shipping industry

1.1.1 Maritime transportation

Maritime transportation is a prominent player in the global economy through its dominat-
ing role in the global trade industry (Michel & Noble, 2008). As a result of the free market
forces in the global trading industry, the maritime transportation segment has managed to
achieve a cost efficient structure. By providing a low-cost movement of goods around the
world, the shipping industry has contributed to expanding the global economy. According
to AON (2012), 90 % of all goods traded across boarders are moved by the shipping indus-
try. In 2013, 9.6 billion tons of cargo was transported using seaborne transportation on a
fleet of size 1.69 billion dwt. By 2015 the fleet size had increased to 1.75 billion dwt (AON,
2012). Figure 1.1 shows the historical development in volume transported by sea from 1990
to 2013, corresponding to a 6% average yearly increase. Preliminary estimates presented
by UNCTAD (2015) indicated that the volume of world seaborne shipments expanded with
3,4% in 2014.

With the global economical growth as main driver of demand, the drivers of revenue are
also highly dependent on the global economical state. The global financial crisis in 2007-
2009 strongly impacted the maritime transportation industry by slowing down demand for
maritime shipments as the economics worldwide deteriorated (AON, 2012). The ongoing
drop in the oil price since June 2014 has also affected shipping and seaborne trade. The
drop affects the industry indirectly through changes in the areas of activity and changes in
the sector generating demand for maritime transport services (UNCTAD, 2015). However,
the overall growth in world GDP, merchandise trade and seaborne shipments was expected
to continue at a moderate pace in 2015 (UNCTAD, 2015).
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CHAPTER 1. INTRODUCTION

Figure 1.1: Transport volume of seaborne trade from 1990 to 2013

The cost structure of the industry is dependent on multiple factors, including the size of
the vessels and distance of travel. The maritime transportation industry is both labor-
and capital-intensive. The principal expenses are the costs and maintenance of the ships,
salaries, equipment, and fuel (AON, 2012). As the revenue side of the profit function suffers
from low oil prices, the cost segment is positively affected. A lower oil price leads to lower
fuel and consequently transportation costs. This again reduces the expenditures and rates
paid by the ship operators. The reduction in costs can in turn stimulate the demand for
maritime transport services and increase the seaborne cargo flows (UNCTAD, 2015).

Another important aspect impacting the business of the operators is the investment ac-
tivity. The investment activity in the maritime transportation industry is also correlated
with the global economical state and the oil price. According to AON (2012), the maritime
transport industry tends to follow boom-and-bust patterns. In good times, the industry
tends to be overly optimistic causing an over-building of new vessels. The result is an
over-supply of carrying capacity and decreased rates. Following the optimistic times with
over-building of ships is a drop-off period where production of new ships is reduced. As
a result, demand surpasses the supply and when demand rises again there is a mismatch
between supply and demand that causes prices to spike.

1.1.2 Segments of the shipping market

There are three large international shipping market segments, namely the tanker, dry bulk
and the container market (AON, 2012). Tankers mainly transport "wet" cargos that are
often energy related, such as crude oil and petroleum products like LNG. The dry-bulk
shipping market consists principally of the six cargo types; iron, ore, grain, coal, baux-
ite/alumina and phosphate. The market also includes a variety of other dry bulk products,
with scrap metal as an example. Finally, the container market primarily, as the name
suggests, includes products that can be shipped as containerized cargo (UNCTAD, 2015).
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CHAPTER 1. INTRODUCTION

Figure 1.2: World fleet by vessel type 2014

Figure 1.2 displays the world fleet by vessel type in 2014 (UNCTAD, 2015). Evidently, dry
bulk has the highest market share with 43% of the vessels in the markets, while tankers is
the second largest with 29% market share. Other cargo ships and barges include general
cargo ships, reefer ships, roll on-roll off (Ro-Ro) vessels, car carriers, forest-product carriers,
barge carriers, heavy-lift ships, dry and tank barges, and articulated tug and barge units.
Many of these are specialized vessels designed to carry specific types of cargoes.

1.1.3 Modes of operation

It is possible to distinguish between three different modes of operation in the maritime
transportation industry, namely liner, tramp and industrial shipping. Christiansen et al.
(2007) make a comparison between liner operations and bus lines, because both operate
on a predetermined schedule. An example of liner operations is container shipping. Tramp
shipping, however, can be compared with a taxicab as the ships follow the available cargoes
and can service both contracted and spot market cargoes (Christiansen et al., 2007). The
operators of both liner and tramp operations have the objective to maximize profit. The
aspiration of industrial operators are different from the two other modes of operation. In
industrial shipping operations, the operators usually both own the cargoes to be shipped
and control the means of transportation. Consequently, the objective is always to mini-
mize the cost of transportation and handling of the cargoes. Industrial and tramp shipping
normally transport liquid or dry bulk cargoes shipped in large quantities. Figure 1.3 shows
the historical development of tonnage orders over the last 14 years. As can be seen, bulk
carriers stand for almost 50% of the orders in 2014.
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CHAPTER 1. INTRODUCTION

Figure 1.3: World tonnage orders by vessel type

1.1.4 Levels of planning

Shipping companies are faced with three levels of decisions; strategic, tactical and opera-
tional, depending on the planning horizon used (Christiansen et al., 2007). The strategic
decisions are long term decisions with a time span of several years. These decisions in-
clude problems like fleet size and mix, port and facility location, and ship design problems.
Strategic decisions lay the foundation for the tactical and operational decisions. The tac-
tical planning level has a shorter time horizon, usually limited to one year. It includes
problems like ship routing and scheduling and inventory management problems. Lastly,
the operational planning level includes problems like sailing speed, pickup of spot cargoes
and allocation of products to compartments on the ships. The decisions are made on a
daily or weekly basis. Operational short-term planning problems are used when uncer-
tainty in the operational environment is high, the situation is dynamic or when decisions
have short-term impact. Due to the dependency across decision levels, it is essential for a
shipping operator to make good decisions on all levels (Christiansen et al., 2007).

1.1.5 Geographical characteristics

Maritime transportation also differ in the geographical characteristics of the shipping
routes. Shipping routes are normally classified as either short-sea, deep-sea or coastal
and inland waterways. The type and size of the vessels used vary with the geographical
characteristics (Christiansen et al., 2007). Short-sea shipping often use smaller container
ships to transport goods over relatively short distances. Deep-sea shipping covers inter-
continental cross-ocean transportation legs and utilize larger sized vessels. The deep-sea
shipping segment can thus enjoy the benefits of economies of scale (Christiansen et al.,
2007). Hemmati et al. (2016) emphasize that in contrary to deep-sea shipping, short sea
shipping consisting of relatively short voyage legs compared to the time spent in ports.
Lastly, coastal and inland waterways are mainly used by barges (Christiansen et al., 2007).
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1.1.6 Maritime inventory routing problems

A maritime inventory routing problem (MIRP) is defined as a planning problem consid-
ering both the ships’ routing and scheduling as well as the inventory management at one
or both ends of the maritime transportation legs. MIRPs are considered to be industrial
planning problems where the mainstay are liquid or dry bulk cargoes that are shipped in
large quantities. MIRPs are often relevant in the context of maritime supply chain man-
agement when the inventory management and the routing and scheduling of ships have to
be coordinated simultaneously (Christiansen & Fagerholt, 2014). For instance, vertically
integrated companies are often responsible for their own internal transportation. It is an
increasing trend that supply chains take advantage of the possibility of synchronizing pro-
duction and inventories at the ports (Christiansen et al., 2004).

1.2 Motivation

As already stated, maritime transportation is an integral part of global trade. Maintain-
ing time- and cost-efficient transportation systems are important factors in the world’s
economic development. Ship routing and scheduling is the major determinant of the fleet
productivity (Christiansen et al., 2013). Thus, the fleet utilization is at the core of the
overall efficiency of the shipping industry. Improvement in time efficiency of maritime
transportation operations is an obvious effect of an increase in the fleet utilization. Fur-
ther, the building of ships impose a major capital investment and daily operating costs
of a ship can be tens of thousands of dollars. With a higher degree of fleet utilization,
high investments in possibly redundant ship capacity and high daily costs can be saved. It
is also worth mentioning that an increase in fleet utilization can help reduce the negative
environmental impact of maritime transportation due to the decrease of unnecessary use of
the fleet. From this, it is clear that the potential benefits from the use of decision support
systems (DSS) in ship scheduling are significant(Christiansen et al., 2004).

The focus on maritime supply chain optimization and the use of MIRPs in operations re-
search (OR) has increased during the last two decades. From 2002-2007, five new research
papers was published on the topic maritime inventory management (Christiansen et al.,
2013). The next five years, from 2007-2011, this number had more than doubled with
11 new research papers published. Since 2011 until now, several additional papers have
been published exploring this topic further. Coordinating the planning challenges of ship
routing and inventory management with the use of MIRPs has proven to give monetary
benefits, flexibility in services and improved robustness (Christiansen & Fagerholt, 2014).
Until now, the focus in most of the literature addressing maritime inventory routing has
been on single-product MIRPs. Lately, the attention of the research community has shifted
towards multi-product MIRPs. Christiansen et al. (2013) highlight this and propose the
allocation of products to the ship’s compartments as a relevant issue for further research.

5



CHAPTER 1. INTRODUCTION

Due to the growth in world seaborne trade and the increase in the use of DSS in the
maritime transportation industry, operations research (OR) in shipping is a field that will
continue to grow.

1.3 The thesis problem and purpose

The purpose of this thesis is to give further attention to maritime inventory routing, more
specifically, a multi-product MIRP with undedicated compartments (multi-product MIRP-
UC). The problem studied is a MIRP considering the transportation of multiple products
while managing the inventory in ports and the allocation of products to compartments.
The background for the development of the model is solely theoretical and is not grounded
in a real operation. To our knowledge, combining multiple products with partial loading,
undedicated compartments and allocation as a decision variable, is new to the literature.
Most of the literature that do exist on MIRPs with multiple products, simplifies the alloca-
tion of products by assigning them to dedicated compartments or disregarding allocation
completely. This contribution is the first, to our knowledge, that use undedicated compart-
ments dynamically and without the assumption of empty compartments when returning
to the production ports.

The MIRP is an operational and tactic decision problem and we consider short planning
periods of 2-4 weeks. The combination of inventory management and ship routing and
scheduling makes the MIRP a very complex problem to solve (Christiansen et al., 2013).
Extending the basic MIRP to include multiple products and dynamic allocation to unded-
icated compartments increase the complexity even more. As for all complex optimization
models, a trade off must be made between the solution speed of the problem and the reality
representation of the model (Nygreen et al., 1998).

As the multi-product MIRP is highly complex, it is essential to develop a solution method
appropriate for the structure of the problem. In this thesis, we develop an optimization
based algorithm that can handle the high complexity of the multi-product MIRP. The
currently existing literature on MIRPs has only been able to solve small instances using
exact solution methods. Simultaneously, much interesting work has been done on devel-
oping heuristics for this type of problem. Equivalently, much promising and relevant work
has been conducted in the overlapping field between exact solution methods and heuristic
approaches, namely matheuristics. In later years, the interest for hybrid heuristics and
matheuristic have increased (Boschetti et al., 2009). Currently, no extensive research has
been done on matheuristics for multi-product MIRPs. Consequently, to pursuit a develop-
ment of a matheuristic for the thesis problem is both constructive for the progression in
research as well as an interesting and exciting topic to work with.
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1.4 Organization of the thesis

The thesis is organized as follows. In Chapter 2, we give a detailed problem description
for our multi-product MIRP-UC. In Chapter 3, we review relevant literature that exists
on MIRPs today, with extra focus on models considering multiple products and allocation.
Literature on alternative and specialized solution methods for MIRPs are also reviewed.
This is done to get an overview of the different modelling choices that need to be made and
how similar problems have been solved before. Chapter 4 contains the model description,
including model assumptions, modelling choices, and the formulation developed along with
the valid inequalities designed to tighten the formulation. Following is Chapter 5 where
a matheuristic as an alternative solution method is presented and thoroughly described.
The results from the computational study on both the exact and the matheuristic solution
method are presented in Chapter 6. The chapter include both a thorough technical study
as well as a discussion on practical implications. Finally, in Chapter 7, we conclude the
master thesis and make suggestions for further research.

7



Chapter 2

Problem Description

The multi-product MIRP-UC in this thesis considers the transportation of multiple unmix-
able products and the allocation of the products to undedicated compartments on board
the ships. The problem can be considered in context of the bulk market segment and is
especially relevant for the shipping of liquid bulk products. It is a short-sea transportation
problem with a planning horizon of 2-4 weeks. The problem is solved with respect to the
ship routing and scheduling, inventory management in ports and the allocation of products
to compartments on each ship. The objective is to minimize the total costs of the ship
routing and loading/unloading operations.

Minimization of costs. The objective is to minimize the total costs consisting of the
following components:

– Sailing costs between ports

– Operating costs in port

– Waiting costs outside a port

– Loading/unloading unit costs in port

Since the operator is responsible for both the inventory in ports and the routing of the
ships, the inventory holding costs are ignored.

Ports. The problem considers the transportation of multiple products between the set of
ports. The distribution of products can be characterized as a many-to-many distribution
network, meaning that a ship can pick-up and deliver products to all the ports. A port
can both produce and consume any number of products, but each port either produce or
consume a product over the planning horizon. There are no fixed origin or destination
ports in the route of a ship. Each port has a berth capacity restricting the number of ships
operating in the port simultaneously.

Inventory. All ports have storages with inventory limits. The fleet of ships must be
scheduled such that inventory in all ports are within its limits at all times. There is one
separate storage for each product in each port. If a port neither produces nor consumes a
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given product during the planning horizon, the product is not handled by that port and
the port does not have a storage of that product. The inventory limits are constant upper
and lower bounds specified for each port and each product. The initial inventory for each
product in all ports is known.

Routing. Each ship has an initial start position either in a port or a point at sea. The
sailing time between all ports is known for all ships. A ship is not allowed to visit a port
(i.e sail to a port) without operating in that port. When a ship arrives at a port, it may
wait outside the port before starting to load and unload products. In this thesis, we use the
word operate when referring to the activity of loading or unloading products during a ship’s
port visit. Waiting outside a port may be necessary if there is no available berth capacity
in the port, or to better time the start of operation with the inventory levels in the port.
However, once the ship has started to operate in a port, the ship is not allowed interrupt
the operation and wait. When a ship has finished all operating activities in a port, it must
immediately sail to its next destination port. Hence, the ship is not allowed to wait prior to
departure for the next port. Figure 2.1 shows an example of a routing solution for two ships.

Figure 2.1: Example of the routing of two ships between five ports

Heterogeneous ships. The fleet consists of a set of ships that may differ with respect to
the following characteristics:

– Size

– Speed

– Cost structure

– Set of compartments and their capacities

9
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Allocation. The ships can carry a selection of products, possibly all. In addition, each
ship has a given number of undedicated compartments where products can be allocated.
The compartments can vary in size and each have a maximum capacity. The different
products that are transported cannot be mixed, and thus a compartment can only contain
one product at a time. The capacity of a compartment in a ship is often large compared to
the quantity loaded or unloaded in a given port, and hence partial loading and unloading
is allowed. This implies that unloading a product from a compartment does not necessarily
mean that the compartment is emptied. Similarly, if a compartment has available capacity
it can be loaded with more of the same product that it currently contains. However, if a
compartment is emptied at a port, any product can now be loaded into the compartment.
Allocation of products, loading/unloading in port and the possibility of partial unloading
is illustrated in Figure 2.2.

Figure 2.2: Example of the allocation of three products to a ship with two compartments

When a product is loaded into a compartment, it continues to stay in that compartment
during sailing and waiting outside ports, until it is unloaded in a different port. This means
that no reallocation of products between compartments can take place between operating
times in the ports. In a port, however, a product can be reallocated by first unloading the
product from the ship to the port and then loading it back on the ship into a different
compartment, given that the port has a storage for the product.

Loading. At the start of each schedule, the initial load of a product in every compartment
in each ship is known. All loading and unloading operations take place when a ship operates
in a port. All ships and ports have a maximum loading capacity. When a ship visits a
port, the binding loading capacity under operation is the lowest of the ship’s capacity and
the port’s capacity.
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Chapter 3

Related Literature

Both the industry and academia interest for the use of DSS in MIRPs have increased in
the later years, possibly due to the proved possibilities of monetary benefits (Christiansen
et al., 2013). As a result, several papers on MIRPs with similarities to the problem intro-
duced in this thesis have been published. The purpose of this chapter is to first provide an
overview of the literature related to the formulation of MIRPs. Following is a presentation
of relevant literature on specialized solution methods for MIRPs and problems of similar
structure.

In Section 3.1, a selection of papers on MIRPs is presented. The papers are classified
according to the dimensions of a MIRP that we consider most essential. Many of these
dimensions are also used in the presentation of the literature on general inventory routing
problems in Andersson et al. (2010). However, additional dimensions have been added
here to better reflect the problem depicted in this thesis. The classification is introduced
to help facilitate an organized discussion around the similarities and differences of the dif-
ferent models and applications presented in the papers. Following is Section 3.2, included
with the intention of presenting the most important and relevant related literature for
this thesis in greater detail. Here, the handling of multiple products and the allocation of
products are in focus. Lastly, Section 3.3 presents literature relevant for the development
of solution methods for MIRPs. A relevant classification scheme for matheuristics, as first
presented by Archetti and Speranza (2014), is also provided.

The increase in interest for MIRPs has resulted in an increase in the number of publi-
cations in the field. Over the years, several literature studies have been conducted to
present and organize the available literature. Recently, two relatively exhaustive surveys
have been conducted on literature in the area of maritime transportation optimization,
by Christiansen et al. (2013) and Andersson et al. (2010). The former presents relevant
literature and provides four basic models to illustrate different dimensions of the maritime
transportation domain. Andersson et al. (2010) focus on the industrial aspects of combined
inventory management and routing in both maritime and road-based transportation. Both
surveys are conducted with the purpose of giving a comprehensive literature review of the
current state of the research.
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This literature review does not have the intention of being an exhaustive and comprehensive
presentation of all relevant literature. Its aim is to review a representative selection of
papers depicting general MIRPs as well as papers directly related to our problem and
corresponding solution method.

3.1 Maritime inventory routing problems

A MIRP is essentially a combination of a routing problem and an inventory management
problem. The flexibility when designing a MIRP is great. According to Andersson et
al. (2010), MIRPs have no predefined clear definitions or well-defined assumptions. As a
result, each new paper published, consider a new version of a MIRP. This, in addition to the
inclusion of industrial aspects and specific cases, opens for a large variance in the underlying
problems, problem formulations and the modelling decisions that are made. Consequently,
there are great difficulties associated with the classification of these papers. We consider
the following dimensions to be the most important when classifying our selection of papers:

– length of the planning horizon

– time scheme used

– the structure of the distribution network

– fleet characteristics

– number of products handled

– handling of multiple products

– handling of inventory

– nature of production/consumption rates

Table 3.1 shows the classification of the selected papers with respect to the defined dimen-
sions. The table is not exhaustive and problems similar to the ones included are left out.
The papers presented in the table are selected on the basis of two reasons; first, coverage of
the selected dimensions, and second, well cited and known publications in its field. Even
though the problem presented in this thesis is not directly linked to a specific industrial
application, we have included both papers with real life industrial applications and papers
with a theoretical aim to give a representative overview of the MIRP literature.

Planning horizon

MIRPs are normally considered to be tactical problems, however, loading operations to
and from a ship are considered to be operational decisions (Christiansen et al., 2007).
The length of the planning horizon depends on the level of planning. A few weeks would
be considered a normal length planning horizon for tactical/operational problems such as
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MIRPs. In this thesis, we have classified a short planning horizon as approximately four
weeks, a medium horizon as a few months and a long horizon as one year or longer. Differ-
ences in the planning horizon originate from the structure of the specific problem solved.
Long sailing legs normally implicate a longer planning horizon. Most of the papers listed
in Table 3.1 address short sea inventory problems with short sailing legs compared to time
used in port. As can be seen, different lengths of planning horizons have been chosen for
the different problems, however all lie in the short-medium range. Hemmati et al. (2016)
and Agra et al. (2014) solve the planning problem with a time horizon ranging from one to
two months and several months respectively. Al-Khayyal and Hwang (2007) on the other
hand, consider a very short time horizon of only 10 days due to the focus on operations in
port.
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Our problem Short Discrete
Many-to-
many Hetero. Multi.

Undedicated
comp.

Min-max
stock levels Varying

Al-Khayyal and Hwang
(2007) Short Continuous

Many-to-
many Hetero. Multi.

Dedicated
comp.

Min-max
stock levels Fixed

Agra et al. (2013) Short Discrete
Many-to-
many Hetero. Sing. N/A

Min-max
stock levels Varying

Christiansen (1999) Short Continuous
Many-to-
many Hetero. Sing. N/A

Min-max
stock levels Fixed

Siswanto et al. (2011)
Short/
medium Continuous

Many-to-
many Hetero. Multi.

Undedicated
comp.

Min-max
stock levels Fixed

Hemmati et al. (2016) Medium Continuous
Many-to-
many Hetero. Multi. No comp.

Min-max
stock levels Fixed

Agra et al. (2014) Medium Continuous
Many-to-
many Hetero. Multi.

Dedicated
comp.

Min-max
stock levels Fixed

Ronen (2002) Short Discrete
One-to-
one Hetero. Multi. No comp. Safety stock Varying

Persson and Göthe-
Lundgren (2005)

Short/
Medium Discrete

Many-to-
many Hetero. Multi. No comp. Soft limits Variable

Dauzère-Pérès et al.
(2007) Short Discrete

One-to-
many Hetero. Multi. No comp.

Min-max
stock levels Varying

Time

MIRPs are a combination of ship routing, scheduling, and inventory management. With
ship scheduling, the aspect of time is introduced. Time can either be treated as discrete or
continuous. With a discrete time scheme, the aspect of time is modelled with time periods
and an index representing time is included on all relevant variables and parameters. A
continuous time scheme, on the other hand, represents time with a continuous decision
variable. Both Agra et al. (2013) and Ronen (2002) employ varying production and con-
sumption rates, a complicating factor overcome with the use of a discrete time scheme.
A continuous time scheme is chosen by e.g. Christiansen (1999), Al-Khayyal and Hwang
(2007) and Siswanto et al. (2011), all of which consider the production and/or consumption
rates to be fixed during the planning horizon.
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Distribution network

The transportation of products between ports can be done with either a one-to-one, one-to-
many or many-to-many distribution network. In Ronen (2002), bulk products are routed
with a one-to-one distribution network where a vessels voyage has a single loading port
and a single discharging port. Dauzère-Pérès et al. (2007) have a one-to-many distribution
network as the problem describes the transportation of products from one processing plant
(depot) to several consumption ports. As opposed to road-based transportation, there is
usually no central facility in maritime transportation. As a result, a many-to-many dis-
tribution network is the most common structure. Hence, ships can load and unload in
any number of ports, and there is no fixed start- or end-point to each route (Andersson
et al., 2010). A many-to-many distribution can be found in Christiansen (1999) where
ammonia is transported between multiple production- and consumption harbours, as well
as in Al-Khayyal and Hwang (2007) and Agra et al. (2013), among others.

Fleet

The fleet used to distribute the products can either be homogeneous or heterogeneous. In
road-based transportation problems, the fleet of vehicles often consists of identical, homo-
geneous vehicles. However, in maritime transportation, the ships usually differ on a number
of characteristics making the fleet heterogeneous. In vehicle routing problems (VRPs) the
products are often transported as cargoes that can easily be stocked together. This is
not necessarily the case in maritime transportation problems where the products handled
often need to be compartmentalized or carried in tanks. Bulk products can impose special
requirements on the compartments of the ships carrying these products. All of the example
literature included in Table 3.1, have a fleet of heterogeneous ships. The ships can vary in
size, speed, compartment structure, costs etc.

Products

A MIRP considers the transportation of either a single product or multiple products. Mul-
tiple products are in particular present in the transportation of (liquid) bulk products.
Both Agra et al. (2013) and Christiansen (1999) consider the transportation of a single
product. Ronen (2002) was the first to introduce the transportation of multiple products.
Since then several multi-product MIRPs have been modelled. For example Al-Khayyal
and Hwang (2007) modifies the model from Christiansen (1999) to account for multiple
products.

Allocation

When a MIRP considers the distribution of multiple products, the problem can be ex-
panded to include the allocation of products. Due to the nature of the products that are
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shipped, they often cannot be mixed and must be allocated to different compartments.
Up until now, little research has addressed this issue. Ronen (2002), Persson and Göthe-
Lundgren (2005), Dauzère-Pérès et al. (2007) and Hemmati et al. (2016) all have models
with multiple products, but disregard the allocation of products into compartments on
board the ship. Al-Khayyal and Hwang (2007) consider the pick-up and delivery of mul-
tiple products using ships with multiple dedicated compartments. Agra et al. (2014) also
assume that products must be dedicated to the different tanks of the ship. Siswanto et al.
(2011) relaxes the problem from Al-Khayyal and Hwang (2007) to consider an assignment
of multi-undedicated compartments to products. Undedicated compartments is also uti-
lized by Christiansen et al. (2011).

Inventory

In maritime inventory routing, problems must be solved without violating inventory and
storage limitations in each port. Ronen (2002) faces uncertainties in demand and pro-
duction and must maintain safety stocks of each product at the origins and destinations.
Persson and Göthe-Lundgren (2005) consider the shipment planning of bitumen from three
refineries to a number of depots. The refineries have a lower safety stock level and a max-
imum inventory level for each product, while the depots are modelled with soft inventory
limits where a deviation from the target inventory level is penalized with a cost. Siswanto
et al. (2011) and Hemmati et al. (2016) among others, use hard minimum and maximum
inventory limits for all products at all origins and destinations.

Production and consumption rate

The production and consumption rates at the origin and destination ports can have three
states, namely fixed, varying or variable. With a fixed production/consumption rate, the
rate is equal during the planning horizon. Opposite, with varying production/consumption
rate, the ports have rates that vary with time. Variable production implies the inclusion of
a new decision dimension, i.e. the production/consumption level is modelled as a decision
variable. Whether the production/consumption rate is fixed or varying is usually correlated
with time scheme used. With a continuous time scheme, production/consumption rates
are normally given as a parameter and is fixed over the planning horizon. Christiansen
(1999) and Siswanto et al. (2011), as well as Hemmati et al. (2016) and Agra et al. (2014)
present fixed production/consumption rates combined with continuous time. A discrete
time scheme enables a varying production/consumption rate over the planning period by
keeping the rates constant in each time period. Ronen (2002) assumes varying production,
while Dauzère-Pérès et al. (2007) assume consumption varying with time. Persson and
Göthe-Lundgren (2005) employ a variable production level. The production decision is
part of the model and the problem is thus composed of a generation of both shipment
plans and processing schedules.
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3.2 MIRPs with multiple products and allocation

In this section we look at how the papers essential for the development of this thesis handle
multiple products and the allocation problem. Hence, the focus of this section is only the
papers that consider multiple products and propose a method of handling the allocation
problem. Consequently, all papers avoiding the allocation problem are not included in this
section.

The incorporation of multiple products in the traditional inventory routing problem intro-
duces new challenges. Which ports handle which products, which products can be handled
simultaneously and which ships can transport which products are just some of the con-
siderations that need to be reviewed. Similarly to the problem proposed in this thesis,
Hemmati et al. (2016) have chosen not to enforce any restrictions on the combinations of
products and ports, i.e. all products can be both consumed and produced in any ports.
Al-Khayyal and Hwang (2007), Siswanto et al. (2011) and Agra et al. (2014) on the other
hand have a set of production ports and a set of consumption ports which in a greater de-
gree limit the flow of products. In this way, they remove the challenges of modelling both
loading and unloading activities in the same port, reducing the problem size. In both Hem-
mati et al. (2016) and Al-Khayyal and Hwang (2007), ships are allowed to load/unload
different products simultaneously in the same port, but handling the same products by
different ships in the same ports simultaneously is not allowed. Agra et al. (2014) have
solved this issue by restricting the ports to only have one ship operating at a time and
thus removing the possibility of different ships handling the same product simultaneously
in the same port. Siswanto et al. (2011) impose that each ship can only handle one product
at a time. Sequential handling and no parallel handling of products for a ship reduce the
size of the problem. Further on, challenges with multiple products in MIRPs can be found
in pulp industry (Andersson, 2011) and (Bredstrom et al., 2005), grain industry (Bilgen
& Ozkarahan, 2007), liquid bulk industry (Ronen, 2002) and calcium carbonate industry
(Dauzère-Pérès et al., 2007).

A natural extension to the introduction of multiple products is the issue with how these
products are to be loaded on board the ship. In the context of multi-product MIRPs,
it is normal to consider bulk products that need to be transported in compartments due
to their unmixable nature. Both Agra et al. (2014) and Al-Khayyal and Hwang (2007)
as well as Li et al. (2010) assume the products to be unmixable and are thus forced to
address the problem of allocating products to compartments. They solve the problem by
defining each compartment to be dedicated to a specific product, introducing a limitation
on which products that can be carried by each compartment of a ship. This implies that
reallocation of the products into other compartments is impossible. The use of dedicated
compartments is the most used method of solving the allocation problem. Siswanto et al.
(2011) and Christiansen et al. (2011) on the other hand, introduce the use of undedicated
compartments. The paper by Siswanto et al. (2011) defines an undedicated compartment
to be a compartment that can take any product, but it can only store one product at a
time. Introducing undedicated compartments relaxes the models utilizing dedicated com-
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partments as a result of a greater flexibility in the allocation of products. In the event of
an empty compartment, any product can be loaded to that compartment. Siswanto et al.
(2011) have imposed a limitation that all compartments in the ship must be emptied before
returning to a production port to be reloaded and thus the danger of mixing products in
the same compartment during the shipment is removed. There still does not exist much
literature on the allocation problem and the papers mentioned here are about the only ones
addressing the problem. In Hemmati et al. (2016), even though the dimension of multiple
products is included, the allocation into compartments is disregarded. The lack of com-
partments in the ships implies that the only capacity constraint that needs to be respected
is the total ship capacity. This approach is also used by Ronen (2002), Dauzère-Pérès et
al. (2007) and Persson and Göthe-Lundgren (2005) among others.

3.3 Matheuristics as a solution approach

In this section we present and review literature that consider matheuristics as a solution
approach to inventory routing problems (IRPs).

The class of IRPs includes optimization problems that differ on numerous characteristics,
but they all simultaneously consider a routing and an inventory management component
of an optimization problem (Berttazzi & Speranza, 2012). VRPs, that consider only the
routing part of IRPs, are known to be computationally very hard to solve. IRPs are known
to be even harder to solve (Berttazzi & Speranza, 2012). The current leading methodology
for solving VRPs with an exact algorithm is a branch-and-price-and-cut (Archetti, 2014).
For IRPs, there have been few attempts to find the optimal solution and mostly heuristic
algorithms have been presented in the literature (Berttazzi & Speranza, 2012).

Both classical heuristics and metaheuristics have shown good results for solving VRPs,
but they are often over-engineered to the extent that the flexibility is reduced (Archetti,
2014). For a long time, the design of exact and heuristic algorithms have proceeded in
parallel. However, in recent years a new class of heuristics have emerged with increasing
popularity, so-called matheuristics. Matheuristics are heuristic algorithms which embed
the optimal solution of mathematical programming models, typically mixed integer linear
problems MILPs (Archetti, 2014). The interest for matheuristics has been driven partly
by the improvements in computational effectiveness of exact commercial solvers and the
availability of such software (Berttazzi & Speranza, 2012). It is expected that matheuris-
tics will become increasingly popular and successful as a solution method. By both making
use of mathematical programming formulations and exploiting the specific structure of a
problem, matheuristics bring us closer to the goal of solving large-sized instances close to
optimality (Archetti & Speranza, 2014).

Even though there has been a significant increase in the number of papers devoted to
matheuristics for solving routing problems the last decade, the available literature is still
limited. In Archetti and Speranza (2014), an overview of literature on matheuristics pro-
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posed to solve routing problems is given. In our literature review we have included all of the
papers listed in this survey that consider IRPs and that we consider relevant. The papers
presented include both land-based routing problems and maritime ship routing problems.
We have also included papers not presented in the survey which we regard as relevant for
our thesis, some of which are published after the publication of the survey.

3.3.1 Classification of matheuristics

In Archetti and Speranza (2014), the proposed literature is classified in three different
classes; decomposition approaches, improvement heuristics, and column generation based
approaches. The recent literature mainly focus on improvement heuristics and column gen-
eration based approaches. However, the survey shows that the decomposition approaches
are still popular for complex problems such as IRPs.

Decomposition approach
The underlying idea of the decomposition approach is to divide the problem into smaller
and favorably simpler problems such that each subproblem can be solved using an exact
solution method (Archetti & Speranza, 2014). In order for it to be called a matheuristic,
at least one subproblem must be solved with a mixed integer linear programming (MILP).
This approach is particularly suitable for integrated problems such as IRPs. In IRPs, it
is natural to decompose the different decision components. According to Archetti and
Speranza (2014), decomposition approaches have also proved to behave better than other
heuristic algorithms for IRPs. The class of decomposition approaches is further divided
into the following subclasses by Archetti and Speranza (2014).

– Cluster-first route-second. Divides the two main decisions. First customers are as-
signed to vehicles according to clusters. Subsequently, the sequence of the customers
for each vehicle is decided. The latter part of the problem is typically solved using
heuristics.

– Two-phase approaches. The problem is decomposed into two phases where each
phase is solved separately. Includes all two-phase matheuristics, except from the
cluster-first route-second scheme.

– Partial optimization approaches. MILPs are used to handle a part of the problem
otherwise handled by heuristics. Routing decisions are typically handled by heuris-
tics, while the quantity decisions are solved using MILPs.

– Rolling horizon approaches. The decisions must be taken over a period of time and
the time horizon is divided into smaller periods.

Improvement heuristics
In the class of improvement heuristics, the matheuristics use a MILP to improve a solution
found by a different heuristic approach (Archetti & Speranza, 2014). This approach is
popular due to the fact that the MILP can be used to improve any solution no matter
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which heuristic is implemented. Archetti (2014) further classify the improvement heuristics
approach into the following two categories.

– One-shot approach. The MILP is used as a final improvement procedure and is solved
once after a solution is obtained by a heuristic. This approach is typically preferred
when the MILP is difficult and complex to solve.

– Iterated approach. The MILP is integrated in the heuristic scheme and is used as an
operator inside a searching procedure.

Column generation based approach
In the column generation based approaches, branch-and-price and/or column generation is
used to build heuristic solutions. Most of these approaches use heuristic schemes to gener-
ate columns. The success of exact algorithms for branch-and-price has made this approach
more and more popular in recent years.

Classification of the included literature
In Berttazzi and Speranza (2012), the authors present different classes of matheuristics for
solving inventory routing problems. They separate the different matheuristics by how the
mathematical model is embedded in the heuristic scheme; by solving sub-problems, solving
parts of an instance, restricting the search space or exploring neighborhoods.

Evidently, there are numerous opportunities of integrating MILPs with heuristics. In the
following presentation of literature related to the thesis problem, we use the three classes
presented above as well as the subclasses proposed by Archetti and Speranza (2014) to
classify the included literature. Table 3.1 presents all the papers included in this literature
review, classified after type of scheme. It should be noted that we have chosen to classify
each paper in only one subclass, the one we find most fitting, even though the research
presented might include components from multiple subclasses. This becomes evident when
we review the literature in greater detail.

3.3.2 Applications

Decomposition approaches

Cluster first - route second. Campbell and Savelsbergh (2004) consider an IRP with
a long time horizon. A cluster first- route second approach is the chosen framework for
the design of the matheuristic. The problem is decomposed into two phases due to the
long time horizon. Initially in the first phase, the customers are clustered by geographical
location. This is a measure to reduce the size of the problem. However, the main focus
of the first phase is the decision on which day to serve which cluster of customers, along
with a suggestion on delivery quantities. These decisions are made by solving a MIP over
the full planning horizon. In the second phase, the time horizon is shortened and vehicle
routes are constructed using an insertion construction heuristic. The underlying idea is
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Table 3.1: Classification of literature considering matheuristics

Decomposition Improvement Col. gen.

Paper Cluster-first
route-second

Two-
phase

Partial
opt.

Rolling
horizon One Shot Iterative

Campbell and Savelsbergh (2004)
Guerrero et al. (2013)
Yu et al. (2008)
Halvorsen-Weare and Fagerholt (2013)
Coelho et al. (2011)
Coelho et al. (2012)
Cóccola and Méndez (2015)
Rakke et al. (2011)
Agra et al. (2014)
Savelsbergh and Song (2008)
Stålhane et al. (2012)
Archetti et al. (2013)
Song and Furman (2013)
Agra et al. (2016)
Archetti et al. (2012)
Maraš et al. (2013)
Hemmati et al. (2016)
Aghezzaf et al. (2006)
Raa and Aghezzaf (2008)
Raa and Aghezzaf (2009)

that the delivery quantities and time specified in the first phase are always good in a long-
time perspective, but not necessarily in the short term. Thus, these decisions are treated
as suggestions when finding a solution in phase two (Campbell & Savelsbergh, 2004). A
rolling horizon framework is used and the solutions from the second phase is used to update
the input of the first phase in the next iteration.

Like Campbell and Savelsbergh (2004), Guerrero et al. (2013) employ a cluster first-route
second approach. However, Guerrero et al. (2013) consider a more complex type of IRP
called inventory location routing problem (ILRP). An ILRP can be described as a multiple
supplier IRP combined with supplier plant location decisions. Thus, the objective is to
minimize the standard IRP costs, as well as location costs from the location decision. Sim-
ilarly to the first phase strategy proposed by Campbell and Savelsbergh (2004), a MILP
formulation is used to determine the distribution plan. In Guerrero et al. (2013) however,
the first phase also determines the location of the supplier plants. Following is the second
phase where a randomized routing heuristic is implemented. The second phase optimizes
the routing decisions attempts to improve the location decisions, similarly to Campbell
and Savelsbergh (2004). This is done through a local search followed by an intensification
procedure that evaluates the interaction between the inventory and routing decisions made
in the different phases.

Two-phase. Yu et al. (2008) consider an IRP with split deliveries and propose an approx-
imate model to quickly find near-optimal solutions to the problem. The model is solved
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with a Lagrangian relaxation decomposition scheme which decompose the problem into
an inventory subproblem and a routing subproblem. The inventory subproblem is solved
using a MILP formulation, while the routing subproblem is solved with a minimum cost
flow algorithm. Based on the solution of the subproblems, a feasible solution to the origi-
nal model can be constructed by solving a series of assignment problems. The constructed
solution is further improved by a local search heuristic, and like Campbell and Savelsbergh
(2004), a rolling horizon framework is incorporated.

Similar as Yu et al. (2008), Halvorsen-Weare and Fagerholt (2013) decompose their problem
into two phases, but here in a routing-first, inventory-second scheme. Halvorsen-Weare and
Fagerholt (2013) consider an LNG problem where the goal is to make an annual delivery
program (ADP). By first disregarding the berth and inventory constraints, they decompose
the problem into one or more routing problems and a feasibility scheduling problem. A
multi-start local search heuristic is used to solve the routing subproblems. Subsequently,
the feasibility problem is solved with a MIP. It can be noted that a distinguishing factor
between Halvorsen-Weare and Fagerholt (2013) and Yu et al. (2008) is the sequence in
decisions made. While Yu et al. (2008) make the inventory decision first, Halvorsen-Weare
and Fagerholt (2013) turn it around and make the routing decision first.

Partial optimization. Coelho et al. (2011) use an optimization based adaptive large
neighborhood search heuristic (ALNS) to solve an IRP with transshipment. In each iter-
ation of the ALNS, heuristics are used to explore the neighborhood and manipulate the
vehicle routes. A partial optimization scheme is used by iteratively fixing the routing
decisions and optimizing the remaining part of the problem. The remaining problem of
determining delivery quantities and transshipment moves is solved through a network flow
algorithm. A similar approach is used by the same authors in Coelho et al. (2012) to solve
a multi-vehicle IRP with consistency requirements. Here, two subproblems are solved ex-
actly. The first subproblem, Delivery Quantities (DQ), optimizes the delivery quantities
and it is solved every time a new routing solution is computed by the ALNS. The second
subproblem is called Solution Improvement (SI) and is solved every θ iterations or when-
ever a new best solution is found. The iterative scheme proposed, where restricted parts
of the problem are optimized in turn, is in line with the definition of partial optimization.

Cóccola and Méndez (2015) introduce a new MILP-based approach for handling large-scale
ship routing and scheduling problems. Note that this paper only consider routing decisions,
however it included due to its relevance for the thesis problem. Like Coelho et al. (2011,
2012), a partial optimization approach is used, solving smaller sub problems in an iterative
solution procedure. However, Cóccola and Méndez (2015) propose a different, systematic
decomposition strategy. At first, the solution approach is decomposed by individually
scheduling each ship tour. To gradually build a feasible solution, highly constrained ver-
sions of the model are solved by fixing a subset of the binary variables. In this way, the
number of decisions is maintained at a reasonable level, and computational efficiency of the
MILP branch and bound solution procedures can be improved. The procedure terminates
when all ship schedules are feasible.
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Rolling Horizon. Rakke et al. (2011) propose a rolling horizon heuristic (RHH) for
creating an ADP to solve an LNG problem. The RHH solves the problem by iteratively
solving the MIP for shorter sub-horizons using branch-and-bound. Each shortened time
interval is divided into a frozen period, a central period and a forecast period. The vari-
ables in the frozen period are fixed to the values they were assigned in the central period
of the previous time interval. A requirement on integrality is enforced in the central pe-
riod, but relaxed in the forecast period. The ADP is then further improved by applying
an improvement heuristic on a modified version of the mathematical problem. By using
the feasible ADP as a starting point, the number of variables in the formulation can be
limited by fixing some values and, hence, focus the search effort to a more restricted area
of the solution space. This part of the solution process corresponds to the policy-based
matheuristics mentioned by Berttazzi and Speranza (2012) which restrict the search space
according to simplification policies.

Agra et al. (2014) present a matheuristic composed of different known approaches used
when solving MIRPs. As Rakke et al. (2011), Agra et al. (2014) utilize the rolling hori-
zon scheme to decompose the problem into shorter sub-horizons. Agra et al. (2014) also
propose local branching and a feasibility pump procedure. Local branching is included in
the matheuristic to improve a given feasible solution by searching for local optimum when
restricting the number of variables that can change its value. The feasibility pump proce-
dure is a scheme to find an initial feasible solution and it is based on the iterative rounding
of fractional variables. The authors have included this procedure to more efficiently find
an initial feasible solution.

Improvement heuristics

One-shot improvement. Savelsbergh and Song (2008), Song and Furman (2013),
Stålhane et al. (2012), Archetti et al. (2013) and Agra et al. (2016) all utilize a one-shot
approach in their proposed improvement matheuristics. Savelsbergh and Song (2008) use
a randomized greedy heuristic (RGH) to produce a complete schedule for their IRP with
continuous moves. They also propose an integer programming based optimization algo-
rithm to improve portions of that schedule. Thus, following the RGH is an improvement
phase that optimizes the schedules of a subset of the vehicles while keeping the schedules
of the remaining vehicles fixed. This is done iteratively, each time optimizing the schedules
for different vehicles. This can be viewed as a neighborhood search scheme that relies on
integer programming to explore neighborhoods. This idea is further developed by Song and
Furman (2013). They propose a similar optimization-based large neighborhood search pro-
cedure to solve a MIRP. After obtaining a feasible initial solution using a branch-and-cut
algorithm, small sub-problems are constructed by fixing some values. The sub-problems
can be characterized as MIPs and are now solved separately to improve the initial solution.
This process is continued until no further improvements can be found.
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Stålhane et al. (2012) study the same problem as Rakke et al. (2011), namely to create
ADPs for an LNG inventory routing problem. The matheuristic consists of a construc-
tion and improvement heuristic (CIH), followed by an intensification phase. The CIH is
a multi-start, first-descent, local search heuristic that by greedy insertion constructs a set
of solutions. The intensification phase is the one-shot improvement strategy where the
authors use a MILP. A subset of the variables in the original problem is fixed to the value
found by the construction heuristic, and a branch-and-bound algorithm is used to optimize
the value of the free variables. Archetti et al. (2013) also propose a matheuristic where
the scheme is finalized with solving a MILP model using branch-and-bound to improve the
solution. The problem considers the delivery of free newspapers from a production plant
to subway, bus or tram stations. The problem is decomposed into two phases, and is thus
also an example of the two-phase decomposition scheme discussed earlier. A MILP model
is used to create a delivery plan in the first phase, while a heuristic constructs the routes
in the second phase. The improvement phase, where a MILP is utilized, aims to reduce
the number of trips by changing delivery quantities from the first phase.

Agra et al. (2016) consider a MIRP for the salmon farming industry and propose a method
for improving the efficiency of the branch-and-bound algorithm used on the MIRP. This
is done by a one-shot approach where the branch-and-cut is run for a given time, and
then algorithms are used to either improve the feasible solution that is obtained or build a
feasible solution if none is obtained in the branch-and-cit algorithm.

Iterative improvement. Hemmati et al. (2016), Archetti et al. (2012), and Maraš et
al. (2013) use an iterative improvement heuristic approach. Hemmati et al. (2016) propose
a two-phase heuristic to determine routes and schedules for a shipping company. By trans-
forming the inventories into sets of cargoes, they convert the cargo and inventory routing
problem into a pure cargo routing problem. The improvement heuristic iterates between
solving the cargo routing problem for a given set of cargo sizes and updating the cargo
sizes to obtain a new cargo routing problem. Archetti et al. (2012), on the other hand, pro-
pose a heuristic, called HAIR, that combines a tabu search scheme with an intensification
technique consisting of solving a sequence of MILPs. As an iterative improvement heuris-
tics approach, the intensification is applied every time the current solution is improved in
order to improve it further. Maraš et al. (2013) propose three different matheuristics for
exploring the neighborhood. The matheuristics are based on a local and variable neighbor-
hood branching technique, and a variable neighborhood decomposition search, respectively.

Column generation based approach

Aghezzaf et al. (2006), Raa and Aghezzaf (2008, 2009) all use a column generation based
approach for solving long term IRPs. All three papers differ from the other literature
included in that they consider an IRP with deterministic and constant customer demand
rates. Hence, they are defined as cyclical distribution problems. Therefore, the solutions
of the problems can be given in the form of long-term cyclical distribution patterns for the
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vehicles. The concept of multi-tours is introduced, which is distribution patterns consisting
of vehicles performing multiple tours with possibly different frequencies. The same optimal
cycle is repeated for a long period and the solution is a repetitive multi-tour for each vehicle.

Aghezzaf et al. (2006) propose a formulation where binary variables are used to represent
vehicle routes. A column generation based approximation method is developed which uti-
lizes a heuristic algorithm to generate columns (multi-tours). In Raa and Aghezzaf (2008)
and Raa and Aghezzaf (2009) an extension of this solution approach is applied, also ex-
ploiting the concept of multi-tours and integrating several heuristic procedures within a
column generation framework.
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Chapter 4

Model Description and Valid Inequalities

In this chapter, we present the model of this thesis. In Section 4.1, we introduce all assump-
tions necessary for the design of the model. Section 4.2 presents the model formulation.
The following section, Section 4.3, introduces the proposed valid inequalities.

4.1 Model assumptions

When modelling the multi-product MIRP-UC, a series of modelling choices and assump-
tions have to be considered. The first choice to be made for any optimization problem con-
taining some aspect of time is whether to use a time-discrete or time-continuous scheme.
The scheme should be chosen based on the characteristics of the problem to be modelled.
We have chosen to use a time-discrete formulation in this thesis to overcome the com-
plexity of varying production and consumption. The time is discretized into a number of
uniform time periods over the planning horizon. When using a time-discrete formulation,
it is important to consider the balance between the length of the planning horizon and the
size of the time periods to both achieve the desired detail level and maintain a tolerable
size on the problem.

In this thesis, a schedule consists of a geographical route, a sequence of ports, together with
the time periods of when the ship waits and operates in that port (Agra et al., 2013). Each
ship only has one schedule during the planning horizon. This implies that if the schedule
of a ship ends prior the end of the planning horizon the ship cannot be utilized later in
that planning horizon.

Each ship is assumed to have three types of modes; sailing, waiting, and operating. With a
time-discrete formulation, sailing time, waiting time, and operating time can be expressed
as an integer multiple of a time period. The number of time periods needed for each ship
to sail between two ports is assumed to be known and is used as input to the model. In
a schedule, there is no limitation on the number of times a ship can visit each port. An
example of a ship route in the discrete time frame is presented in Figure 4.1
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Figure 4.1: Example of a ship route consisting of sailing s, waiting w, and operating o

Figure 4.1 shows the routing of a ship between three ports. In time period one, t = 1, the
ship sails directly from its origin node, o, to Port 2, where it arrives in time period five. In
Port 2, the ship waits for one time period and then it operates in two time periods before
it sails to Port 1 in time period eight. The ship arrives in Port 1 in time period ten, waits
in time period 11 and operates in time period 12. Finally, the ship sails to Port 3 and
operates in one time period before the schedule ends in time period 16 when the ship sails
to the destination node, d. Note that waiting is only done prior to operating in each port,
as specified in the problem description.

Each ship has an initial starting position either in a port or a point at sea. The initial
position, denoted o(v), is known and is the starting point of the schedule of ship v. If a
ship’s initial position is in a port, the ship can start its schedule with operation, waiting
or sailing. If the ship is located at a point at sea however, it must immediately sail to a
port. The end of a schedule is modelled with an artificial ending node, called d(v).

Since we are using a time-discrete model, each ship has a sailing-, waiting,- and operating-
cost defined as a unit cost per time period used on an activity. We are also using an
additional operation cost defined to be a unit cost per quantity loaded/unloaded in a port.
The fixed operation cost per time period ensures that a ship minimizes the time used in a
port, while the variable operation cost makes sure that a ship does not load/unload more
of a product than what is necessary.

All production- and consumption quantities are assumed to be deterministic. Even though
the production- and consumption quantities can vary over the planning horizon, they are
assumed constant in each time period for each product. In each port, as long as the num-
ber of ships berthed does not exceed berth capacity, we assume that all ships can operate
simultaneously. Hence, equipment and manpower limitations in the port are accounted for
in the berth capacity measure.

Since we have assumed no technical limitations in a port, the only factor restricting the
quantity loaded/unloaded in a port is the loading/unloading capacity to the ship and port.
In other words, each ship can load/unload as much of one product or multiple products
within one time period as long as it does not exceed the loading/unloading capacity. We
also assume that no costs are associated with the time used on switching between load-
ing/unloading different products because we consider the switching time to be insignificant
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compared to the length of a time period.

Even though the assumption of unmixable products is at the core of this problem, the cost
associated with time necessary to wash and clean a compartment during the switching of
products in a compartment is not taken into account. We assume that the washing of
compartments can be done without a decisive cost compared to the other cost components
due to the similar nature of the products. Hence, extensive cleaning is not necessary and
the time used on washing is insignificant compared to the length of a time period.

In general, MIRPs are considered continuous planning problems without a predetermined
ending. To be able to model these problems however, the ships are assigned schedules lim-
ited to a finite planning horizon. Thus, it is natural to assume that end conditions must
be imposed to ensure that the solution over the finite planning horizon adheres with the
solution over the infinite planning horizon. However, such problems are often re-optimized
prior to the end of the planning horizon to enable a rolling horizon that models the con-
tinuous operations of the fleet. Considering this, no predetermined end conditions on the
inventory and loading variables are necessarily needed. Introducing end conditions can also
bias the results considering that we have a relatively short planning horizon. Due to these
arguments we have chosen not to include any end conditions on the inventory variables.
When considering the routing variables, we assume that a ship’s schedule can end, i.e. it
can travel to d(v), at any time during the planning horizon without having to empty its
compartments. Potential costs associated with an early finish of a ship’s schedule is not
included in the model. Hence, we have not included any end conditions for the loading
variables.

4.2 Multi-product MIRP-UC formulation

The following section presents the mixed integer linear program that model the multi-
product MIRP-UC in this thesis. The model is originally based upon the work of Agra et
al. (2013), but significant modifications have been made to account for multiple products
and undedicated compartments. It is also the continuation of the work conducted on the
model in Foss et al. (2016).

Sets

V Set of all ships
K Set of all products
Kv Set of all products carried by ship v
Cv Set of all compartments in ship v
N Set of all ports
T Set of all time periods

27



CHAPTER 4. MODEL DESCRIPTION AND VALID INEQUALITIES

Indices

i, j ports
v ships
c compartments
k products
t time periods

o(v) origin node of ship v
d(v) artifical destination node of ship v

Parameters

CT
ijv Cost of sailing from port i to port j with ship v

CW
v Cost of waiting outside a port per time period for ship v

CO
iv Cost of operating in port i per time period for ship v

CQ
ivk Cost of loading/unloading one unit of product k for ship v in port i

Tijv Sailing time from port i to port j for ship v

T Number of time periods in the planning horizon

Bit Berth capacity in port i in time period t

Q
V

v Upper loading/unloading capacity of ship v per time period

Q
P

i Upper loading/unloading capacity of port i per time period

L0
vck Initial load of product k in compartment c on board ship v

Kvc Capacity of compartment c in ship v

Dikt Consumption of product k in port i in time period t

Pikt Production of product k in port i in time period t

S0
ik Initial inventory level of product k in port i

Sik Lower inventory limit in port i for product k

Sik Upper inventory limit in port i for product k
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Variables

xijvt





1, if ship v sails from port i starting in the beginning of period t

directly to port j

0, otherwise

wivt

{
1, if ship v waits outside port i in time period t

0, otherwise

oivt

{
1, if ship v operates in port i in time period t

0, otherwise

lvckt load on board ship v of product k in compartment c at the end of time
period t

qLivckt quantity of product k loaded to compartment c by ship v from port i in
time period t

qUivckt quantity of product k unloaded from compartment c by ship v to port i
in time period t

sikt inventory level in port i of product k at the end of time period t

yvckt





1, if compartment c in ship v contains product k at the end of

time period t

0, otherwise

Figure 4.2: Illustration of variables
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Objective function

minimize
∑

v∈V

∑

i∈N∪o(v)

∑

j∈N∪d(v)

∑

t∈T

CT
ijvxijvt +

∑

i∈N

∑

v∈V

∑

t∈T

CW
v wivt +

∑

i∈N

∑

v∈V

∑

t∈T

CO
ivoivt +

∑

i∈N

∑

v∈V

∑

c∈Cv

∑

k∈Kv

∑

t∈T

CQ
ivk(qLivckt + qUivckt)

(4.1)

The objective function is presented in (4.1). It minimizes the sum of the transportation
costs, waiting costs outside the ports, operation costs in the ports and the variable unit
cost for loading and unloading activities.

Constraints

Routing constraints

∑

j∈N∪d(v)

xo(v)jv1 + oo(v)v1 + wo(v)v1 = 1 v ∈ V (4.2)

∑

i∈N∪o(v)

∑

t∈T

xid(v)vt = 1 v ∈ V (4.3)

∑

j∈N∪o(v)

xjiv(t−Tjiv) + wiv(t−1) + oiv(t−1) =

∑

j∈N∪d(v)

xijvt + wivt + oivt
i ∈ N , v ∈ V , t ∈ T (4.4)

oiv(t−1) ≤
∑

j∈N∪d(v)

xijvt + oivt i ∈ N , v ∈ V , t ∈ T (4.5)

oiv(t−1) ≥
∑

j∈N∪d(v)

xijvt i ∈ N , v ∈ V , t ∈ T (4.6)

∑

v∈V

oivt ≤ Bit i ∈ N , t ∈ T (4.7)

Constraints (4.2) and (4.3) ensure that all ship schedules have a beginning and an end, i.e.
from start-node o(v) to the artificial end-node d(v), respectively. If a ship travels directly
from o(v) to d(v), the ship is not used and is idle during the entire planning horizon.
Constraints (4.4) are the ship flow conservation constraints. The flow conservation ensures
that in each time period of a ship’s schedule, the ship either sails, waits or operates.
Constraints (4.5) restrict a ship to only have the option to wait when it arrives at the port,
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i.e. prior to operation. Constraints (4.6) enforce operations in a port, i.e. a ship cannot
leave a port prior to operating, while constraints (4.7) restrict the number of ships in a
port in the same time period to not exceed the berth capacity of the port.

Loading and unloading constraints

∑

k∈Kv

∑

c∈Cv

(qLivckt + qUivckt) ≤ min{QV

v , Q
P

i } · oivt i ∈ N , v ∈ V , t ∈ T (4.8)

lvck(t−1) +
∑

i∈N

qLivckt −
∑

i∈N

qUivckt − lvckt = 0 v ∈ V , c ∈ Cv, k ∈ Kv, t ∈ T (4.9)

lvck0 = L0
vck v ∈ V , c ∈ Cv, k ∈ Kv (4.10)

∑

k∈Kv

yvckt ≤ 1 v ∈ V , c ∈ Cv, t ∈ T (4.11)

lvckt ≤ Kvcyvckt v ∈ V , c ∈ Cv, k ∈ Kv, t ∈ T (4.12)

Constraints (4.8) ensure that a ship can only load/unload when it is operating in a port and
define the upper limit on the total quantity loaded/unloaded. Constraints (4.9) represent
the load balance for each ship, while Constraints (4.10) define the initial load of every
product in every compartment for each ship. Constraints (4.11) ensure that only one
product can be in each compartment in the same time period. The load capacity of each
compartment is given in Constraints (4.12), which also enforce the binary variable yvtkc to
be active when there is a load in a compartment.

Inventory constraints

sik(t−1) +
∑

v∈V

∑

c∈Cv

qUivckt + Pikt = Dikt +
∑

v∈V

∑

c∈Cv

qLivckt + sikt i ∈ N , k ∈ K, t ∈ T (4.13)

Sik ≤ sikt ≤ Sik i ∈ N , k ∈ K, t ∈ T (4.14)

sik0 = S0
ik i ∈ N , k ∈ K (4.15)

Constraints (4.13) are the inventory balance for all ports and products. Constraints (4.14)
define lower and upper inventory limits for each product in every port. Lastly, Constraints
(4.15) define the initial inventory of each product.
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Binary and Non-negativity constraints

qLivckt, q
U
ivckt ≥ 0 i ∈ N , v ∈ V , c ∈ Cv, k ∈ Kv, t ∈ T (4.16)

lvckt ≥ 0 v ∈ V , c ∈ Cv, k ∈ Kv, t ∈ T (4.17)

xijvt ∈ {0, 1} i ∈ N , j ∈ N , v ∈ V , t ∈ T (4.18)

wivt, oivt ∈ {0, 1} i ∈ N , v ∈ V , t ∈ T (4.19)

yvckt ∈ {0, 1} v ∈ V , c ∈ Cv, k ∈ Kv, t ∈ T (4.20)

4.3 Valid inequalities

The purpose of this section is to introduce different ways of strengthening the model for-
mulation introduced in Section 4.2. This is done through the use of of valid inequalities.

In a general integer program max{cx, x ∈ X}, where X = {x : Ax ≤ B, x ∈ Zn
+}, an

inequality Gx ≤ G0 is a valid inequality for X ⊆ Rn if Gx ≤ G0 for all x ∈ X (Stålhane,
2015b). In words, a valid inequality is said to be an inequality that does not remove any
integer feasible solutions from the feasible area. A valid inequality can be called a cut if
the inequality removes the optimal solution of the linear programming (LP) relaxation of
the integer programming (IP) problem. The wanted result of adding valid inequalities is
an improved optimistic bound for the IP problem, and thus a problem that might be faster
to solve. The valid inequalities cannot impose any alterations to the IP problem and the
optimal integer solution must remain the same after adding valid inequalities.

Since one purpose of a valid inequality is to remove parts of the feasible region that does not
contain integer feasible solutions, we studied the LP relaxation of the problem to identify
how the model structure was altered when removing the integer requirements. By doing
this we could evaluate which parts of the model that has the highest potential for im-
provement. When removing the integer requirement, the binary constraints on the binary
variables are removed and the former binary variables are assigned values continuously be-
tween 0 and 1. The binary variables oivt, wivt and xijvt are all part of the objective function
and since the objective function is minimized, the model assigns the variables values as
close to 0 as possible while also satisfying the constraints in the model. When separating
the terms of the objective function in both the IP problem and the LP relaxation, the sail-
ing cost was the cost with the greatest difference between the two solutions. An example
that illustrates the difference between the sailing cost from the IP solution and the LP
relaxation of the basic model using the large-sized test case is portrayed in Figure 4.3.

By pushing the values of the routing variable xijvt closer to 1, the difference between the
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Figure 4.3: Development of sailing cost over the planning horizon. The total sailing cost
in the IP solution is 31 640, while the sailing cost in the LP solution is 1 314

sailing cost in the IP and LP solutions decreases. This can be achieved by introducing
valid inequalities involving xijvt. The reason why the routing variable is of special interest
is that it lacks a lower bound and little forces the routing variable to be positive. When
evaluating the difference in the LP and IP solutions for the operation variable oivt, on the
other hand, the difference between the LP and IP solution is not as significant. This is
because the ships still need to satisfy and handle excess demand and supply, and as a
result oivt is pushed up. Hence, the routing variables xijvt are in focus when developing
valid inequalities.

4.3.1 Minimum number of visits with ship capacity sequence

Agra et al. (2013), among others, address valid inequalities that give a lower bound on
the number of visits a port needs during the planning period for single-product MIRPs.
Rakke et al. (2014) introduce a way of strengthening these types of valid inequalities for
MIRPs for LNG. Andersson et al. (2015) attempt to further strengthen the lower bound.
Andersson et al. (2015) introduce a ship capacity sequence to avoid the generalization done
when the maximum ship capacity is used to calculate the lower bound for the entire plan-
ning horizon. This subsection describes the same type of valid inequalities as introduced in
Agra et al. (2013) with the strengthening introduced in Andersson et al. (2015), adjusted
to a multi-product MIRP-UC model.

We start by defining a time interval as a subinterval of the planning horizon. A ship ca-
pacity sequence is defined over a time interval and is built upon two major building blocks.
These building blocks are the maximum number of times each ship can visit a port during
the planning horizon and the capacity of each ship.

Maximum number of visits. For a given time interval length, the maximum number of
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times each ship can visit each port must be calculated. Since we have no predefined routes,
loading ports or fixed number of operation hours in each port, the maximum number of
visits each ship can have to a port i is calculated based on two valid assumptions; (1)
each ship only travel back and forth from port i to its nearest port after the initial visit
to port i and (2) each ship only operate for one period in each port visit. For this set of
assumptions, the maximum number of visits ship v can make to port i in time interval T ′,
V MAX
iv , is calculated in (4.21).

V MAX
iv =

⌈ |T ′| − Tjiv
2 ∗ TMIN

i + 2

⌉
i ∈ N , v ∈ V (4.21)

|T ′| is the length of time interval T ′, and TMIN
i is the sailing time for ship v from port i

to its nearest port. The index j in Tjiv denotes the ship’s position at the beginning of the
time interval. In the case where the interval starts in the first time period, j is equivalent
to o(v). Equation (4.21) takes the length of the time interval minus the time it takes to
travel to port i the first time and divides it with the number of time periods that is neces-
sary to complete one visit. According to the stated assumptions, this is equal to two times
the sailing time from port i to the nearest port, plus two operation periods, one in each port.

Ship capacity sequence. The ship capacity sequence, defined for each port i, gives the
maximum amount of products that can be loaded or unloaded in a port in m visits during
a time interval. First, the ship capacity of the largest ship is added cumulatively to the
capacity sequence a number of times equal to the maximum number of visits defined in
Equation (4.21). The same follows for the rest of the ships, in descending order based on
capacity. The length of the ship capacity sequence is equal to the total number of visits to
port i from all ships v in the time interval. The ship capacity sequence of port i is denoted
K

V

i .

K
V

i = {KV

i0, K
V

i1, .., K
V

im} i ∈ N (4.22)

The dynamics of the creation of the ship capacity sequence can more easily be illustrated
with an example. Assume a fleet of two ships where the largest ship in the fleet has a
capacity of 200 and that it can visit port i a maximum of three times in time interval T ′.
The other ship has a capacity of 100 and can visit port i a maximum of two times. Port
i’s ship capacity sequence would then be equal to KV

i = {200, 400, 600, 700, 800}.

Excess production and consumption. The excess production of product k in port i, ePikT ′
and the excess consumption of product k in port i, eDikT ′ , during time interval T’, are
defined in (4.23) and (4.24), respectively. Figure 4.4 illustrates the calculation of the
excess production and consumption.

ePikT ′ =
∑

t∈T ′
Pikt + sik(T ′−1) − Sik i ∈ N , k ∈ K (4.23)

eDikT ′ =
∑

t∈T ′
Dikt − sik(T ′−1) + Sik i ∈ N , k ∈ K (4.24)
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Since a ship can handle both excess consumption and production in the same visit, the
lower bound on visits for produced and consumed products cannot be added together. On
this note, the maximum of ePikT ′ and eDikT ′ aggregated over product, eiT ′ =

max{∑k∈K e
P
ikT ′ ,

∑
k∈K e

D
ikT ′}, are used as the restricting quantity in the inequalities.

Figure 4.4: Illustration of excess production and consumption over the planning horizon

It is important to note that when using time intervals, the initial stock level is not neces-
sarily fixed. It depends on the start of the time interval. In the case where the time interval
starts in the first time period, the initial stock level is S0

ik, as can be seen in Figure 4.4.
In all other cases, the initial stock level is represented by sik(T ′−1). As the initial inventory
is known to be S0

ik when the time interval T ′ start in t=1, the minimum number of visits
needed to serve the excess level can be pre-calculated. Let pi be the first position in the
ship capacity sequence corresponding to a capacity high enough to cover eiT ′ . Hence, pi
corresponds to the minimum number of visits needed. In all other cases, the incoming
inventory is a variable and this simplification is impossible. The valid inequalities for time
interval T ′ are defined by (4.25) or (4.26) depending on the starting period of the time
interval.

∑

j∈N

∑

v∈V

∑

t∈T ′
xjivt ≥ pi i ∈ N (4.25)

∑

j∈N

∑

v∈V

∑

t∈T ′
xjivt ≥

eiT ′ + (m− 1)K
V

im −mK
V

i(m−1)

K
V

im −K
V

i(m−1)

i ∈ N , 1 < m < |KV

i | (4.26)

Valid inequalities (4.25) and (4.26) give a lower bound on the number of ships that needs
to be routed to port i in time interval T ′. In the case where the time interval starts in
t = 1, valid inequalities (4.25) are always stronger than (4.26). Valid inequalities (4.26)
calculate a lower bound for all number of visitsm that can be done during the time interval,
where only the highest lower bound is restricting. The fraction on the right hand side of
the inequality calculates the number of visits needed by dividing the excess production or
consumption by the ship capacity applicable in the m’th visit. In each of the m iterations,
the excess production or consumption is adjusted for the amount of the product that can
be handled by ships with a higher capacity in the last m− 1 visits.
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4.3.2 Minimum number of compartments per product with com-
partment capacity sequence

A different way of formulating the minimum number of visits constraints is to give a lower
bound on the number of compartments that needs to be routed to a port to cover the
excess production or consumption of a product. This is an extension of the valid inequality
presented by Andersson et al. (2015) adapted to account for both multiple products and a
heterogeneous set of compartments.

A compartment capacity sequence is designed equivalently to the ship capacity sequence,
using compartment capacities. The sequence is created for all products k and ports i using
the compartment capacity and the number of visits for each ship from Equation (4.21). It
is written as CV

ik = {C
V

ik0, C
V

ik1, .., C
V

ikm}. The sequence is created in the exact same manner
as in Equation (4.22) only on compartment level instead of ship level.

The excess production, ePikT ′ , and consumption, eDikT ′ , is calculated in (4.23) and (4.24)
respectively. However, when using compartments, the total excess production or consump-
tion is not aggregated over products since two products cannot share the same compartment
like two products can share the same ship. However, production and consumption products
can still be handled during the same visit. Hence, the applicable production/consumption
amount is always the maximum of ePikT ′ and eDikT ′ , denoted eikT ′ . As presented in Section
4.3.1, if the time interval starts in t = 1, excess production/consumption is a parameter
and the minimum number of compartments needed can be precalculated. Let pik represent
the first position in the ship compartment capacity sequence sufficient to cover eikT ′ . Then,
pik is the minimum number of compartments needed for each port, product combination.
The valid inequalities for time interval T ′ giving the lower bound on the number of com-
partments of ships in Vk that has to be routed to a port i for handling product k are
presented in (4.27) and (4.28).
∑

j∈N

∑

v∈Vk

∑

t∈T ′
N c

vxjivt ≥ pik i ∈ N , k ∈ K

(4.27)

∑

j∈N

∑

v∈Vk

∑

t∈T ′
N c

vxjivt ≥
eikT ′ + (m− 1)C

V

im −mC
V

i(m−1)

C
V

im − C
V

i(m−1)

i ∈ N , k ∈ K, 1 < m < |CV

i |

(4.28)

N c
v is the number of compartments on board ship v. By multiplying N c

v with the routing
variable xijvt on the left hand side of the equation, we know the number of compartments
in port i if ship v is routed to that port. The sum of compartments in a port must always
be greater than the minimum number of compartments required by product k.
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4.3.3 Minimum number of operation periods

In continuation of the above idea of minimum number of visits and compartments, the pur-
pose of the following inequality is to give a bound on the minimum number of operation
periods in each port. A similar type of valid inequality for minimum number of operation
periods formulated for single-product inventory problems can be found in e.g. Agra et al.
(2013). Compared to the valid inequalities of this type stated in Agra et al. (2013), we
have extended it to account for multiple products and it can be applied on ports that can
both produce and consume different products.

Excess production, ePikT ′ , and consumption, eDikT ′ is calculated by (4.23) and (4.24) for time
interval T ′. However, for a lower bound on the operation periods in a port, the excess
production and consumption for the entire planning horizon is needed. This is calculated
equivalently as (4.23) and (4.24), however the initial stock level is always S0

ik and the set
of time periods used is T . The excess production and consumption for the entire planning
horizon is denoted ePik or eDik respectively. The minimum number of operation periods re-
quired by each port is equivalent to the sum of operation periods required by each product.
Since the operation variable is not connected to product handled during operation, it is
not possible to impose any direct conditions on minimum number of operation periods for
each product.

Valid inequalities (4.29) enforce a lower bound on the number of operation periods needed
in each port.

∑

v∈V

∑

t∈T

oivt ≥
⌈∑

k∈K

ePik + eDik

min{QP

i ,max{Q
V

v ; v ∈ V}}

⌉
i ∈ N (4.29)

4.3.4 Timing of first (F), second (S) and last (L) visit to a port

The previously presented valid inequalities only constrain the number of visits or operating
periods needed for the entire planning horizon. Now, we present a type of valid inequality
that identifies the timing of both the first visit and the second visit in each port to be able
to adhere the inventory limits.

Figure 4.5: Determine the time interval for the occurrence of the first visit
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In order to identify the time interval for the first visits, the last time period before the in-
ventory limits are violated must be calculated. The method of calculating the time interval
for the first visit is illustrated in Figure 4.5. We calculate the last time period feasible for
the first visit for each product-port combination and it is denoted Z1

ik.

if (Port i is a consumption port for Product k) then
if S0

ik −
∑

y∈T |y≤tDiky ≤ Sik i ∈ N , k ∈ K, t ∈ T then
Z1

ik ← t

end if
else if (Port i is a production port for Product k) then
if
∑

y∈T |y≤t Piky + S0
ik ≥ Sik i ∈ N , k ∈ K, t ∈ T then

Z1
ik ← t

end if
end if

A binary parameter Fik is introduced to keep account of whether or not port i needs a
visit for a product k during the planning horizon. Thus, Fik is one if Z1

ik is smaller than
the total length of the planning horizon and zero otherwise. Given this, it is possible to
construct a valid inequality stating that Fik visit(s) must happen prior to Z1

ik. The valid
inequality is presented in Constraints (4.30) and it states that at least one ship must be
routed to and arrive to port j prior to Z1

jk.

∑

i∈N∪o(v)

∑

v∈Vk

∑

t∈T |
t<Z1

jk

xijvt−T ijv ≥ Fjk j ∈ N , k ∈ K (4.30)

Alternatively, the constraint above can be designed using the operation variable oivt. Con-
straints (4.31) state that a ship must operate at least Fjk timeperiod(s) in port j in time
period Z1

jk or before.

∑

v∈Vk

∑

t∈T |
t≤Z1

jk

ojvt ≥ Fjk j ∈ N , k ∈ K (4.31)

Figure 4.6: Determine the time interval for the occurrence of the second visit
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We also want to determine the timing of a potential second visit. A second visit can be
calculated given the assumption that a first visit happened in the port in the last period
feasible for a first visit, and that the inventory was either filled up/emptied or visited by the
largest ship. The method for determining the time interval for a second visit to a port for a
given product is illustrated in Figure 4.6. Given these assumptions and the illustration, the
last feasible time period for a second visit to port i for product k, denoted Z2

ik, is calculated.

if (Port i is a consumption port for Product k) then
if min{Ck, Sik} −

∑
y∈T |z1ik≤y & y≤tDiky ≤ Sik i ∈ N , k ∈ K, t ∈ T |t ≤ Z1

ik then
Z2

ik ← t

end if
else if (Port i is a production port for Product k) then
if
∑

y∈T |z1ik≤y & y≤t Piky +min{Ck, Sik} ≥ Sik i ∈ N , k ∈ K, t ∈ T |t ≤ Z2
ik then

Z2
ik ← t

end if
end if

As for handling the first visit, we need a binary parameter, Aik, to keep account of the
visits to port i for each product k. Equivalently to Fik, Aik is only one if a second visit
is needed during the planning horizon. Given that Aik is one, the second visit is required
to occur between time Z1

ik and Z2
ik. The corresponding valid inequality is presented in

Constraints (4.32). As for the first visit, this can also be written in terms of the operation
variable. This is presented in Constraints (4.33).

∑

i∈N∪o(v)

∑

v∈Vk

∑

t∈T |
Z1
jk<t<Z2

jk

xijvt−T ijv ≥ Ajk j ∈ N , k ∈ K (4.32)

∑

v∈Vk

∑

t∈T |
Z1
jk<t≤Z2

jk

ojvt ≥ Ajk j ∈ N , k ∈ K (4.33)

Figure 4.7: Determine the time interval for the occurrence of the last visit

Finally, it is also possible to derive the timing of a time interval for a last visit to a port
for a given product. In other words, how long before the final time period of the planning
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horizon can the port be visited for the last time and also secure that the inventory limits
are not violated at the end of the planning horizon. This is illustrated in Figure 4.7. Given
that the inventory is at the extreme limit in the last time period, in which earlier time
period is the inventory at the opposite extreme. That time period is equivalent to the
start of the time interval for the last visit and it is denoted Z3

ik for port i, product k. It is
derived using the algorithm presented below.

if (Port i is a production port for Product k) then
if Sik −

∑
g∈T |g≤|T |−t+1 Pikg ≤ Sik i ∈ N , k ∈ K, t ∈ T then

Z3
ik ← |T | − t+ 1

end if
else if (Port i is a consumption port for Product k) then
if
∑

g∈T |g≤|T |−t+1Dikg + Sik ≥ Sik i ∈ N , k ∈ K, t ∈ T then
Z3

ik ← |T | − t+ 1

end if
end if

As explained for both the first and the second visit, Lik is equal to one if Z3
ik is greater

than one for port i, product k. Given that Lik is greater than one, a visit is required to
occur during the time interval starting in Z3

ik and ending at the last time period of the
planning horizon. The constraints using the routing variable are presented in Constraints
(4.34) and the constraints with the operation varible are presented in Constraints (4.35).

∑

i∈N∪o(v)

∑

v∈Vk

∑

t∈T |
t≥Z3

jk

xijvt−T ijv ≥ Ljk j ∈ N , k ∈ K (4.34)

∑

v∈Vk

∑

t∈T |
t≥Z3

jk

ojvt ≥ Ljk j ∈ N , k ∈ K (4.35)

40



Chapter 5

Solution Methods

Basic MIRPs are considered to be highly complex problems. This complexity increases
with the addition of multiple products and with the use of undedicated compartments to
handle the allocation of products. With this level of complexity, an exact solution method
is likely to be too time consuming even with a model tightened by valid inequalities. Hence,
we propose an alternative solution method to investigate the potential of this problem. In
this chapter we propose a matheuristic solution method to solve our MIRP-UC. Boschetti
et al. (2009) define matheuristics as heuristic algorithms made by the inter-cooperation
of metaheuristics and mathematical programming techniques. However, matheuristics can
also be viewed in broader terms as any method where mathematical programming tech-
niques play an important role, but there is no proof of optimality (Stålhane, 2015a).

In this chapter we present our matheuristic solution method designed to solve the MIRP-UC
for short sea problems. In Section 5.1, we introduce the overall scheme and idea behind the
matheuristic. The following three sections, Sections 5.2-5.4 present the components of the
matheuristic in greater detail. Section 5.5 introduces and elaborates on the improvement
component of the matheuristic.

5.1 Matheuristic solution method

The matheuristic is composed of two separate phases. First, a construction phase is exe-
cuted to find a feasible solution to the problem. The construction phase terminates once
a feasible solution is found. Following is an improvement phase where the solution is
improved through the use of an improvement heuristic. Figure 5.1 depicts the proposed
matheuristic.

To design the construction phase, a decomposition strategy is used and the original prob-
lem is decomposed into a routing problem and a scheduling- and inventory management
problem. Several types of decomposition methods was introduced in Section 3.3. We clas-
sify the proposed matheuristic as a partial optimization algorithm, since the problem is
decomposed into smaller components and solved iteratively. In this thesis, the idea recog-
nized is that the routing problem and the scheduling- and inventory management problem
does not necessarily have to be solved together. The routing problem is solved to generate
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Figure 5.1: Flow chart representing the iterative matheuristic scheme

a set of routes, namely the geography for each ship. Then, the scheduling-and inventory
management problem, hereafter called the inventory problem, is solved with the routes
found by the routing problem. The scheme is based on the idea of iteratively working
towards a feasible solution.

In the first iteration, the routing problem generates a set of initial routes based on a series
of valid inequalities presented in Section 4.3. The solution of the routing problem, the set
of routes for the ships, serves as input to the inventory problem. Note that it is only the
routes, and not the schedules of the ships, that are used by the inventory problem. Since
there is no guarantee that the routes generated by the routing problem are optimal in the
original model, the inventory problem must be adjusted to be able to handle an infeasible
set of routes. The inventory problem is almost equivalent to the original problem, however
soft inventory limits are added to be able to handle a set of infeasible routes. The inventory
problem is fixed to the routes from the routing problem and is solved to optimality with
soft inventory limits. If the inventory problem manages to find a solution that does not
utilize the soft limits and stay within the original inventory limits, the construction phase
has found a feasible solution. However, if the soft inventory limits are utilized at any point
in time, the corresponding solution is infeasible in the original problem and a new iteration
is needed.
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One of the main ideas of this matheuristic scheme is to utilize the information from the in-
feasibilities of the inventory problem to guide the generation of routes in the next iteration
routing problem. This is done by imposing additional constraints in the routing problem
based on the infeasibility information. The purpose is to gradually constrain the routing
problem in a way that forces the generated routes towards a set of routes that is feasible in
the inventory problem. Thus, the infeasibilities identified in the inventory problem function
as input to the next iteration of the routing problem. Hence, for each iteration, the routing
problem is further constrained to adhere the inventory requirements of the original problem.

Since the construction phase terminates immediately when the first feasible solution is
found, an improvement phase is added to the matheuristic in order to be able to further
improve the solution. There is no guarantee that the constraints that are created in the
routing problem to handle the violations does not remove the optimal solution. The im-
provement heuristic uses the solution found in the construction phase as input and explores
the neighborhood of this solution to see if a better solution can be found. The improvement
phase iteratively relaxes parts of the problem to explore parts of the feasible area that were
possibly removed in the construction phase.

In addition to the flow chart presented in Figure 5.1, Algorithm 1 roughly describes the
presented matheuristic in a pseudo code framework.

5.2 Construction phase: The routing problem

One of the essential ideas of the proposed matheuristic is the extraction of the routing
problem from the inventory and load management part of the problem. The main purpose
of solving the routing problem separately is to constrain the remaining part of the problem
to a set of fixed routes and thus reduce the size of the problem to a manageable size. The
solution of the routing problem is a set of ship routes and schedules. A route of a ship is
the sequence of port visits, and as noted earlier, it is only the routes and not the schedules
that are used as input to the inventory problem.

The routing problem is used to decide which ports each ship visits during the planning
horizon. A goal of the design of the matheuristic is efficiency, and so it is important to keep
the problem size of the routing problem as small as possible. In the original formulation,
the routing-and scheduling component of the formulation included three variables, namely
the routing variable, operation variable and waiting variable. In the routing problem of the
matheuristic we, however, only need two types of variables to describe the geography of
the solution. The routing variable xijvt presented in Section 4.2 is essential. In the original
formulation, if a ship is routed to a port, at least one operation period is required in that
port before the ship is allowed to leave. This should be accounted for in the routing, so
that the utilization of the ships over the planning horizon more correctly corresponds to the
utilization needed in the original problem. With this in mind, operation variables oivt are
included in the routing problem, and operation periods are assigned to ships according to
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Algorithm 1 Overview of Matheuristic
Calculate minimum number of visits (pi), compartment visits (pik), operation periods
(σi) and time periods for mandatory visits (z1jk, z2jk, z3jk)
initialRoutes ← RouteGenerator(pi,pik,σi,z1jk, z2jk, z3jk)
fix sequence of initialRoutes → Sequence

continue := true
while continue do
CurrentSolution = InventoryProblem(Sequence)
Save inventory infeasibilities from InventoryProblem(Sequence) →

inventoryViolations
if inventoryViolations is_empty then

continue := false
return CurrentSolution

else

Routes = RouteGenerator(inventoryViolations)
Fixed sequence of Routes → Sequence

end if

end while

Run Improvement heuristic with CurrentSolution
return CurrentSolution

the requirements known from the problem definition and the valid inequalities. The orig-
inal waiting variables are not included. Since the routing problem is not directly subject
to inventory limits, it is never necessary to wait prior to operation in the routing problem.

In order to generate routes as close to the optimal routes as possible, it is essential to utilize
as much information as possible from the inventory management part of the original for-
mulation. A series of types of valid inequalities that employ this information was proposed
in Section 4.3, all of which are included in the routing problem formulation. The goal is
to force the routing problem to adhere to the original inventory limits through these valid
inequalities. The idea of imposing restrictions on the timing of visits is essential. Even
though it is only the routing of the ships that is kept by the inventory problem, imposing
a limit on the timing of visits can impact the sequence of the port visits.

By incorporating the introduced valid inequalities and the routing constraints from the
original formulation, we have the routing problem as it is in the first iteration. In Section
5.4, the constraints added to the routing problem as a result of infeasibilities in the inven-
tory problem are presented.
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Objective function

minimize
∑

v∈V

∑

i∈N∪o(v)

∑

j∈N∪d(v)

∑

t∈T

CT
ijvxijvt +

∑

i∈N

∑

v∈V

∑

t∈T

CO
ivoivt (5.1)

Constraints
∑

j∈N∪d(v)

xo(v)jv1 + oo(v)v1 = 1 v ∈ V (5.2)

∑

i∈N∪o(v)

∑

t∈T

xid(v)vt = 1 v ∈ V (5.3)

∑

j∈N∪o(v)

xjiv(t−Tjiv) + oiv(t−1) =
∑

j∈N∪d(v)

xijvt + oivt i ∈ N , v ∈ V , t ∈ T (5.4)

oiv(t−1) ≤
∑

j∈N∪d(v)

xijvt + oivt i ∈ N , v ∈ V , t ∈ T (5.5)

oiv(t−1) ≥
∑

j∈N∪d(v)

xijvt i ∈ N , v ∈ V , t ∈ T (5.6)

∑

v∈V

oivt ≤ Bit i ∈ N , t ∈ T (5.7)

∑

j∈N

∑

v∈V

∑

t∈T ′
xjivt ≥ pi i ∈ N (5.8)

∑

j∈N

∑

v∈Vk

∑

t∈T ′
N c

vxjivt ≥ pik i ∈ N , k ∈ K (5.9)

∑

v∈V

∑

t∈T

oivt ≥ σi i ∈ N (5.10)

∑

v∈Vk

∑

i∈N∪o(v)

∑

t∈T |
t<Z1

jk

xijvt−T ijv ≥ Fjk j ∈ N , k ∈ K (5.11)

∑

v∈Vk

∑

i∈N∪o(v)

∑

t∈T |
Z1
jk<t<Z2

jk

xijvt−T ijv ≥ Ajk j ∈ N , k ∈ K (5.12)
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∑

v∈Vk

∑

t∈T |
t≥Z3

jk

ojvt ≥ Ljk j ∈ N , k ∈ K (5.13)

xijvt ∈ {0, 1} i ∈ N , j ∈ N , v ∈ V , t ∈ T (5.14)

oivt ∈ {0, 1} i ∈ N , v ∈ V , t ∈ T (5.15)

Constraints (5.2) and (5.3) are the start and end conditions, respectively, while Constraints
(5.4) give the flow balance. Constraints (5.5) and (5.6) handle the timing of operation and
require operation in a port prior to sailing to the next port. Constraints (5.7) are the
berth capacity constraints. Constraints (5.8) enforce a minimum number of visits to a
port as presented in Section 4.3.1, while Constraints (5.9) enforce a minimum number of
compartments necessary for each port-product combination and are presented in Section
4.3.2. Constraints (5.10) require a minimum number of operation periods in a port and
are presented in Section 4.3.3. Constraints (5.11)- (5.13) are the first, second and last visit
constraints which are presented in Section 4.3.4. Finally, Constraints (5.14) and (5.15)
are the binary restrictions. The objective function is given in Equation 5.1, and only the
relevant components of the original model formulation are included.

5.3 Construction phase: The inventory problem

The matheuristic iteratively tries to find a feasible solution to the problem. The purpose
of the inventory problem is to check the feasibility of the routes generated by the routing
problem as well as solving the scheduling, allocation and inventory management problem.
The inventory problem essentially corresponds to the original MIRP that is formulated
in Chapter 4, however with the set of routes fixed. This greatly reduces the size of the
problem and likewise the solution time. The routes are included in the inventory problem
as parameters originating from the routing problem. For each iteration, new routes are
generated and the parameters are updated correspondingly.

Since the route of each ship is fixed, the decisions to be made by the inventory problem is
the scheduling of each ship, the allocation of products to compartments and the inventory
management in each port. There is no guarantee that the routes generated by the routing
problem is feasible in the inventory problem. The only consequence of an infeasible route
in the inventory problem is that at least one product exceeds its inventory limits in a port
at some or several points during the planning horizon. The only adaptation that must be
made to account for possible route infeasibilities is the addition of soft inventory limits.

With soft inventory limits, the inventories of each product in the ports are allowed to ex-
ceed their inventory limits at a high penalty cost. Consequently, the inventory problem is
considered feasible when the soft inventory limits are utilized. However, the need to utilize
the soft inventory is equivalent with an infeasible set of routes in the original problem. The
feasible solution of the inventory problem includes information about the port, product,
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time combination where the soft inventory limits are utilized. With this information, it is
possible to understand what makes the routes from the routing problem infeasible. Hence,
this is the information returned to the routing problem from the inventory problem. When
the solution of the inventory problem does not use the soft inventory limits, a feasible
solution to the original problem is found and the construction phase is terminated. Figure
5.2 illustrates an example of an inventory problem solution with a set of infeasible routes
forcing the inventory problem to utilize the soft inventory. In the figure, the usage of the
soft inventory is marked with red in port 2.

In the remainder of this section, the discussed inventory problem is presented. The inven-
tory problem represents the result of adapting the original problem formulation presented
in Section 4.2 to the above specifications.

Figure 5.2: Illustration of the functionality of the inventory problem

Sets and indices
Hv Set of all hops h made by ship v To keep the routes received from the rout-

ing problem fixed in the inventory problem, a hop formulation is used. To be able to index
each hop that a ship makes, i.e. keep account of every arc that is traversed by ship v and
in which order the arcs are traversed, set Hv is introduced. In Hv, each element h is the
h’th arc traversed in the route of ship v.

Parameters
All of the parameters from the original formulation are kept in the inventory problem. In
addition, the following parameters are added.

Rvml
Port visited as number m in the route
of ship v in Iteration l of the routing problem

Aijvl
Number of times ship v traverses the arc between port i and port j
during the planning horizon in iteration l

CP
t

Penalty cost for extending the inventory limits for a product in a port in
time period t

SS Additional inventory if soft inventory limits are evoked

Hv Number of hops made by ship v
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For practical reasons, we refer to Rvl as the route of ship v in Iteration l, where Rvl =

{Rvml|m = 1, ..,M}.

Variables
The original routing variables xijvt are replaced by rijvht. The hop index h is added to
control which xijvt variable a routing variable rijvht in the inventory problem corresponds
to. In addition, penalty variables pikt are added to the problem to penalize the use of soft
inventory limits.

rijhvt





1, if ship v in hop h sails from port i starting in the beginning of

time period t directly to port j

0, otherwise

pikt

{
1, if port i extends its inventory limits for product k in time period t

0, otherwise

Rvl contains the route received from the routing problem in terms of the sequence of port
visits. The routing variable of the inventory problem, rijhvt, is limited to the sequence
given by Rvl. Hence, the inventory problem can only make scheduling decisions for the
routes received from the routing problem. The ijv combinations defining the arcs that are
travelled by each ship, is given by i = Rvml and j = Rv(m+1)l. The hop index h corresponds
to the m index in Rvml. For example, the routing problem generates the following route
for Ship 1: Port 1 → Port 3 → Port 2 → d(v). Then the only rijhvt variables that are
created for Ship 1 are r1311t, r3221t, and r2051t for all time periods t. Eliminating all other
combinations reduces the size of the inventory problem significantly. The creation of op-
eration variables oivt and wivt to ship v is also restricted to the ship route Rvl.

pikt is the binary variable used to introduce the soft inventory limits in the inventory prob-
lem. In other words, pikt gives information about when a port i for product k violate the
inventory limits of the original problem. Note that a violation in a port cannot occur before
it is possible for a ship to arrive to the port. Hence, the penalty variables pikt are only
created for time periods after the nearest ship that can carry product k is able to reach
port i.
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Objective function

minimize
∑

v∈V

∑

i∈N∪o(v)

∑

j∈N∪d(v)

∑

h∈Hv

∑

t∈T

CT
ijvrijhvt +

∑

i∈N

∑

v∈V

∑

t∈T

CW
v wivt +

∑

i∈N

∑

v∈V

∑

t∈T

CO
ivoivt +

∑

i∈N

∑

v∈V

∑

c∈Cv

∑

k∈Kv

∑

t∈T

CQ
ivk(qLivckt + qUivckt) +

+
∑

i∈N

∑

k∈K

∑

t∈T

CPpikt

(5.16)

The objective function used in the inventory problem is presented in (5.16). Note that
with the new hop index introduced in the routing variables, we must also sum over all
hops to find the transportation costs. In addition to the original costs, the penalty cost for
enforcing soft inventory limits for a product in a port in a time period is added. When the
original inventory limits are adhered, no penalty cost is incurred. Hence, the cost structure
of the real problem described in Chapter 2 is not changed.

Constraints
All routing constraints (4.2)-(4.7) and loading constraints (4.8)-(4.12) are kept unchanged,
except for the routing variables xijvt being replaced by rijhvt. Even though the routing is
fixed and defined by Rvl, flow conservation must be maintained when scheduling decisions
are made. Note that similarly to the objective function, whenever the routing variables
are part of the constraints, a summation over all hops must be added to correctly include
the routing variables.

Hop constraints
In addition to the original flow conservation constraints, the following constraints are in-
cluded to force the routes in the inventory problem to be equal to the routes defined in Rvl.

∑

j∈N∪o(v)

∑

t′∈T |t′<t

rjivt′h ≥
∑

j∈N∪d(v)

rijvt(h+1) i ∈ N , v ∈ V , t ∈ T , h ∈ Hv|h < Hv (5.17)

∑

i∈N∪o(v)

∑

j∈N∪d(v)

∑

t∈T

rijhvt = 1 v ∈ V , h ∈ Hv (5.18)

∑

t∈T

rijvt = Aijvl i ∈ N ∪ o(v), j ∈ N ∪ d(v), v ∈ V (5.19)

Constraints (5.17) make sure that the sequence of port visits of each ship v is maintained
in the schedule created by the inventory problem. This means that the routing variable
corresponding to the h’th arc that ship v traverses, cannot be positive until the previous
(h-1)’th arc has been traversed by the same ship. Constraints (5.18) make sure that each
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hop made by a ship v is distinct for a (ijt) combination, and must be made exactly once.
In addition, Constraints (5.19) state that the number of times ship v travels from port
i to port j during the planning horizon, must be equal to the number of times the port
combination (i, j) occurs in the ship’s route.

In Section 4.3.4, valid inequalities on timing was presented. Since only the route and not
the schedule is fixed from the routing problem, this type of valid inequalities is also needed
in the inventory problem. Constraints (4.31), (4.33), and (4.35), presented in Section 4.3.4,
are included to enforce restrictions on the timing of visits made to a port.

Inventory constraints
Inventory balance constraints (4.13) and initial inventory constraints (4.15) are kept un-
changed, while constraints (4.14) are adjusted to include soft inventory limits, presented
in constraints (5.20).

Sik − SSpikt ≤ sikt ≤ Sik + SSpikt i ∈ N , k ∈ K, t ∈ T (5.20)

Constraints (5.20) define lower and upper inventory limits for each product in every port.
As can be seen, the inventory problem introduces the possibility of extending the inventory
limits for a product in a port and by that forcing the binary variable pikt to be equal to
one in those time periods.

Binary and non-negativity constraints

rijhvt ∈ {0, 1} i ∈ N , j ∈ N , v ∈ V , t ∈ T (5.21)

pikt ∈ {0, 1} i ∈ N , k ∈ K, t ∈ T (5.22)

5.4 Construction phase: Handling of infeasibilities

As discussed in Section 5.1, an important component of this matheuristic scheme is the
transition from the solution of the inventory problem to the next iteration of the routing
problem. If the inventory problem is only able to find a feasible solution by utilizing the
soft inventory, a new iteration of the construction phase is executed. The next iteration
routing problem is further constrained by utilizing information from the infeasibilities of
the inventory problem. The purpose of this section is to develop suitable strategies for
handling the infeasibility information in the routing problem.

Essentially, an infeasibility in the inventory problem occurs when a product in a port is not
served in time, forcing the inventory problem to utilize the soft inventory. Given that an
infeasibility occurs in port i for product k in time period t, the penalty variable pikt is set
equal to one and we call this port, product and time period combination for a violation.
Hence, each violation has a violation port, violation product and a violation time. The
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violation also includes information about whether it is a violation to a production product
or a consumption product in the violation port. The incurred violations are used when
constructing constraints for the next iteration routing problem. It is important to note that
pikt is positive for the port, product combination for all time periods that the inventory
limits are violated, however it is only the first time period the violation occurs that is used
when constructing the constraints for the routing problem.

In this section, we present six different strategies for handling the violations, i.e. ways
of creating constraints using the information from the violations. The focus when devel-
oping the strategies is two-folded. We both want to restrict the next iteration routing
problem enough to avoid getting the same violations in the inventory problem but also
avoid removing the optimal route solution. Note that when solving the MIRP-UC with
the matheuristic, it might be necessary to use multiple of the following strategies simulta-
neously to secure a faster convergence towards a feasible set of routes.

5.4.1 Strategy 1: Increasing the minimum number of arcs required
to the violation port prior to the violation time

One way to utilize the violation information is to impose a requirement on the number of
arcs going into the violation port. In a greedy mindset, we can utilize the information on
whether the violation product is produced or consumed in the violation port. In the case
of a consumption violation product, i.e consumption violation, we impose an arc from a
production port of the violation product directly to the violation port prior to the viola-
tion time. A consumption violation is equivalent to a shortage of the violation product,
which can be supplied from a production port of the violation product. Similarly, a direct
arc is imposed from a consumption port to the violation port in the case of a production
violation product, i.e. a production violation, prior to the violation time. As a production
violation is equivalent to excess inventory of the violation product in the violation port, it
is not possible to validly justify the direct arc from a consumption port to the violation
port. However, by forcing a visit to a consumption port directly prior to the production vi-
olation port, the ship is able to free up space in its compartments for the violation product.

Figure 5.3 shows an example of how Strategy 1 handles violations from the inventory prob-
lem. This example illustrates a consumption violation. Before the strategy is presented in
a pseudo code, the new needed notation is presented.

L Set of all iterations

N P
k Set of production ports for product k

NC
k Set of consumption ports for product k

TL
ikt The first time period the violation (i, k, t) can be resolved

Aijvtl
Number of times ship v traverse the arc between port i and port j
prior to time period t in Iteration l
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Figure 5.3: Illustration of Strategy 1 functionality for a consumption port violation

Algorithm 2 Strategy 1: Increasing the minimum number of arcs required to the violation
port prior to the violation time
for (l in Iteration) do
for each (Violation of l) do
Violation port = i, Violation product = k, Violation time = t
if (Port i is a consumption port for Product k) then

∑

j∈NP
k

∑

v∈Vk

∑

t′∈T |t′≤t−Tjiv−1

xjivt ≥
∑

j∈NP
k

∑

v∈Vk

∑

t′∈T |
t′≤t−Tjiv−1

t≥TL
ikt

Aijvtl + 1 (5.23)

else if (Port i is a production port for Product k) then
∑

j∈NC
k

∑

v∈Vk

∑

t′∈T |t′≤t−Tjiv−1

xjivt ≥
∑

j∈NC
k

∑

v∈Vk

∑

t′∈T |
t′≤t−Tjiv−1

t≥TL
ikt

Aijvtl + 1 (5.24)

end if
end for

end for

The procedure of creating new constraints for the next iteration routing problem is pre-
sented in Algorithm 2. It is important to note that in Iteration l, all violations from
1...l − 1 are added to the routing problem to avoid returning to a previous violation.

If a violation occurs in the last time period, it is not necessarily possible to resolve this
violation in the first time period. By this we mean that routing a ship to a violation port in
first time period might not ensure that a the violation in the last time period is accounted
for. Hence, the first time period in which the violation can be resolved must be calculated.
A violation in time period t is equivalent to saying that the inventory of product k is at
or beyond its extreme limit, i.e upper inventory limit for a production product and lower
inventory limit for a consumption product. Given the time of the violation, the inventory
limit in that time period and the quantity produced or consumed in each time period are
needed to calculate the earliest time period in the time horizon where the inventory is at
the opposite inventory limit. This time period is denoted TL

ikt. Time interval [TL
ikt, t] is

thus the time interval where it is possible to solve the violation with violation time period t.
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Compared to the last iteration routing solution, the result of this strategy is not necessarily
one additional arc into the violation port. The dimension of time is included in the greedy
constraints presented in Algorithm 2. It is only demanded that an additional arc is added
prior to the violation time, and it might be that the arc added is in fact only an arc moved
to an earlier time. It is, however, essential that the measures taken to resolve the viola-
tions result in a change in port visit sequence and not only a scheduling difference, as the
time stamps of the visits in the routing problem is not forwarded to the inventory problem.
Hence, if there is only a scheduling change and not a routing change, the inventory problem
will return the same set of violations in the next iteration, making the previous iteration
redundant.

5.4.2 Strategy 2: Increasing the minimum number of operation
periods in violation ports

Another way of handling the violations from the inventory problem is to impose restric-
tions on the operation periods needed in each port. The idea is that the lower bound on
the total number of operation periods in a violation port can be improved by demanding
additional operation periods to account for the shortage/excess amount of the violation
products. pikt is the binary variable in the inventory problem accounting for the violations
to the original inventory limits. From this variable, the first and the last time period for
each violation can be derived. This time interval is used to calculate the total amount
that violate the inventory limits and thus also the number of operation periods needed to
account for the violation. First, the new notation needed is introduced.

KV
i Set of violation products for violation port i

Oil
Number of operation periods used in port i in iteration l
of the inventory problem

T 1
ikl

First time period of violation for violation port i and
violation product k in iteration l

T 2
ikl

Last time period of violation for violation port i and
violation product k in iteration l

In addition to the number of operation periods used in the previous iteration of the inven-
tory problem, the number of operation periods needed to account for all violation products
in a port should be added to this bound. In each violation port i in Iteration l, the
shortage/excess amount of violation product k in the violation time interval [T 1

ikl,T 2
ikl] can

be calculated. The total quantity in which the inventory limits are violated is the sum
over all the violation products in the violation port. Thus, the total number of operation
time periods needed to account for the violation quantity is the ceil of the total violation
quantity divided by the appropriate loading capacity. One constraint for each violation
port is added to the next iteration of the routing problem. The corresponding algorithm
is presented in Algorithm 3.
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Algorithm 3 Strategy 2: Increasing the minimum number of operation periods in violation
ports
for (l in Iteration) do
for each (Violation in l) do
Violation port = i, Violation product = k

∑

k∈NP
k

∑

v∈Vk

∑

t∈T

oivt ≥ Oi(l−1) +




∑

k∈KV
i

∑

t∈T |
T 1
ik(l−1)

≤t≤T 2
ik(l−1)

(Dikt + Pikt)

max{min{QP

i , Q
V

v }; v ∈ V}




(5.25)

end for
end for

5.4.3 Strategy 3: Introducing a commodity flow formulation for
each violation

The first strategy presented, Strategy 1, is quite restrictive. A way of making Strategy 1
less restrictive is to relax the requirement on the sequence of port visits. With Strategy
3, we only impose that a port visit must be made prior to, and not directly precede, the
visit to the violation port. Apart from this relaxation, Strategy 3 is based on the same
assumptions as introduced in Strategy 1. Hence, in the case of a consumption violation,
a production port of the violation product must be visited prior to the violation port.
Equivalently, for a production violation, a consumption port of the violation product must
be visited prior to the violation port.

To accommodate this, a commodity flow formulation is proposed. With a commodity flow
formulation, it is possible to impose restrictions on the port visit sequence by requiring that
a flow of a commodity goes from a source port to a sink port. The sink always corresponds
to the violation port, while the sources are always the corresponding consumption or pro-
duction ports depending on the type of violation. For each violation port and product,
a flow network is created where only the edges to transport the commodity to the sink
within the violation time are created. Since there might be more than one source, a super
source is introduced. From the super source, only the arcs going to the sources are created
and with unlimited capacity.

First, we define the different concepts needed to understand a flow formulation. Following
is an introduction of the notation used, as well as a presentation of the commodity flow
formulation in a pseudocode framework.

– Source nodes - N P
k is the set of source nodes for a consumption violation, while the

set ND
k is the source nodes for a production violation.

– Super source - artificial node connecting multiple source nodes
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– Sink node - the violation port

– Transshipment nodes - all nodes that are neither source nor sink nodes for a given
violation

Sets and parameters

N S Set of all source ports

N SS Set of all source ports including the super source S

QC
kdl

Violation product k commodity with destination
in violation port d in iteration l

Variables

fX
ijvtkdl

flow between port i and port j with ship v in time period t of violation
product k with destination port d in iteration l

fO
ivtkdl

flow during operation in port i with ship v in time period t of violation
product k with destination port d in iteration l

It is assumed that all violations are uniquely defined by violation port, violation product
and iteration number. Thus the variables does not have an index for violation number
from the inventory problem. In Iteration l of the routing problem, an isolated commodity
flow network is created for each violation for each of the iterations 1...l−1 of the inventory
problem of the construction phase. The reason for this is that the node definitions, i.e.
which ports are defined as source, sink or transshipment nodes, are specific for each viola-
tion. Therefore, the violations must be treated separately in order for the flow balance to
be correct. The functionality of solving a violation using Strategy 3 is illustrated in Fig-
ure 5.4. Algorithm 4 shows how the commodity flow formulation is added to the routing
problem.

Figure 5.4: Illustration of Strategy 3 functionality for a consumption port violation

Constraints (5.26) and (5.27) defined in Algorithm 4, restrict the flow variables to be pos-
itive only when the corresponding routing or operation variables are positive. Hence, the
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Algorithm 4 Strategy 3: Introducing a commodity flow formulation for each violation
for (l in Iteration) do
for each (Violation in l) do
Violation port = d, Violation product = k, Violation time = t

fX
ijvgkdl ≤ QC

kdlxijvg i ∈ N , j ∈ N v ∈ Vk, g ∈ T |g ≤ t− Tidv (5.26)

fO
ivgkdl ≤ QC

kdloivg i ∈ N , v ∈ Vk, g ∈ T |g ≤ t− Tidv (5.27)

∑

i∈N|i 6=d

∑

v∈Vk

∑

t∈T |g≤t

fx
idv(g−Tijv)kdl

= QC
kdl (5.28)

∑

j∈NS

∑

v∈Vk

∑

t∈T |g≤t−Tjdv

fx
Sjvgkdl = QC

kdl (5.29)

∑

i∈NSS |i 6=d

fx
ijv(g−Tijv)kdl

+ f o
jvg−1kdl =

∑

i∈N

fx
jivgkdl + f o

jvgkdl j ∈ N|j 6= d, v ∈ Vkg ∈ T |g ≤ t− Tjdv
(5.30)

end for
end for

flow can only follow the path of a ship. Constraints (5.30) give the commodity flow bal-
ance. A flow from either the super source or any other node that is not the sink node
to a port i, must be equal to the flow going out from port i to all other nodes, including
the sink node. The variables f o

jvtkdl are included to ensure that the flow is preserved in
every time period, also the time periods used for operation. Constraints (5.28) force the
commodity to be transported to the sink node, i.e. the violation port d, before violation
time t. Finally, Constraints (5.29) ensure that the commodity must travel from the super
source to at least one of the sources.

Elimination of flow variables. This strategy impose a significant increase in the number of
variables in the routing problem. Hence, it is important to keep the number of variables
as low as possible. The right side of Figure 5.4 gives an illustration of which arcs that are
created. No arcs leaving the sink node is created. The only arcs created in association to
the super source are the arcs going from the super source to the set of source nodes. All
other arcs are only created in the part of the time domain that is feasible with respect to
the violation time. This also applies for the flow operation variables.
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5.4.4 Strategy 4: Alternative commodity flow formulation for each
violation

As introduced above, a commodity flow network has a source and a sink. In this thesis
problem, there are multiple sources which produce/consume the violation product and
a single sink that consumes/produces the violation product. In the above formulation,
a super source was introduced to be able to handle multiple potential sources for the
commodity. When developing the formulation, an alternative method to handle multiple
sources emerged. There are still three distinct categories of nodes in the commodity flow
network, namely the sources, the sink and the transshipment nodes. The idea is to for-
mulate the commodity flow formulation with multiple potential sources without utilizing
a super source.

With multiple potential sources and the possibility of travelling between those source, it
is hard to formulate the flow balance for the source nodes. It is necessary to have one
flow balance for the source nodes, aggregated over all source nodes and all time periods.
Consequently, discrepancies in the formulation can occur due to the possibility of sailing
between source nodes. When the ships can sail between the potential sources, the same
flow variables can occur on both sides of the source flow balance, consequently cancelling
them out. This is illustrated in Figure 5.5. Figure 5.5 shows a case where both Port A

and Port A are source nodes. All the possible incoming and outgoing edges are also in-
cluded. As can be seen in the figure, the arc between Port A and Port B occurs both as
an incoming arc to a source and an outgoing arc from the source node, marked in blue.
The same applies to the arc between Port b and Port A, marked in orange. Since we sum
over all ports on both sides of the balance, these two sets of arcs will cancel each other out
in the flow balance. This leads to an infeasible formulation. Thus, we need to distinguish
between the edges going into a node and the edges leaving the node to be able to avoid the
use of a super source. We now introduce the flow variables as in the previous subsection,
however adjusted for the distinguishing factor introduced above.

Variables

fX,IN
ijvtkdl

commodity flow from port i IN to port j with ship v in time period t
of product k with destination port d in iteration l

fX,OUT
ijvtkdl

commodity flow OUT of port i to port j with ship v in time period t
of product k with destination port d in iteration l

fO
ivtkdl

flow during operation in transshipment port i with ship v in time period t
of product k with destination port d in iteration l

The flow operation variables are now only created for the transshipment nodes as these
are the only nodes that have a flow balance in each time period. We have two sets of
flow routing variables, one set of IN variables and one set of OUT variables. For the edu-
cated reader this might seem strange as these two variables are always equal for the same
(i, j, v, t) combination. However, this formulation twist is one way of making a commodity
flow formulation with multiple sources without utilizing a super source. Again, one com-
modity flow network is created for each violation in each of the previous iterations and
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Figure 5.5: Illustration of issue with multiple sources

added to the next iteration routing problem. The algorithm and constraints are presented
in Algorithm 5.

Constraint (5.31) is an aggregated flow balance for all the source nodes, forcing a commod-
ity QC

kdl to leave at least one source. Constraint (5.32) is the flow balance for the sink node,
i.e. the violation port, demanding a commodity QC

kdl to arrive prior to the violation time
period t′. Following are Constraints (5.33), which are the flow conservation constraints in
all the transshipment nodes. Constraints (5.34)-(5.37) are all included with the purpose of
connecting the IN-edge flow variables with the OUT-edge flow variables, which should be
the same on all edges between i and j. The only combination not included above is the edge
i to j where both i and j are source nodes. In all solutions these are also identical, however
this is where the distinction between the IN and OUT edges is needed. The distinction
ensures that the flow balance for the sources is feasible. Finally, Constraints (5.38)-(5.40)
limit the flow to only be positive when the corresponding routing or operation variable is
positive.

5.4.5 Strategy 5: Require a change in routes generated in each
iteration

In order to ensure that the matheuristic converges fast towards a feasible solution, it is
important that the routing problem is limited from generating the same set of routes in
two separate iterations. To elaborate, if a set of routes is generated in Iteration l and are
proven to not be feasible in the inventory problem, it should not be possible to generate
this set of routes in any later iteration. One way of enforcing this restriction is to use a
hop formulation by adding a hop index to the routing variable. This approach would be
similar to the approach used in the inventory problem. The hop index keeps control of the
sequence of port visits in every route. Thus, it can be used to demand the next iteration
route solution to be different from all previous solutions. However, this formulation requires
a significant increase in routing variables, as each routing variable xijvt would be created
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Algorithm 5 Strategy 4: Alternative commodity flow formulation for each violation
for each (Iteration) do
for each (Violation) do
Violation port = d, Violation product = k, Violation time = t′, Iteration = l

∑

j∈N

∑

i∈NS

∑

v∈Vk

∑

t∈T |t<t′−Tijv

fX,IN
jivtkdl +QC

kdl =
∑

i∈NS

∑

j∈N

∑

v∈Vk

∑

t∈T |t<t′−Tijv

fX,OUT
ijvtkdl

(5.31)

∑

j∈N|j 6=d

∑

v∈Vk

∑

t∈T |t<t′−Tijv

fX,IN
jdvtkdl = QC

kdl (5.32)

∑

i∈N

fX,IN
ijv(t−Tijv)kdl

+ fO
jv(t−1)kdl

=
∑

i∈N

fX,OUT
ijvtkdl + fO

jvtkdl

j ∈ N −N S|j 6= d, v ∈ V , t ∈ T |t ≤ t′ (5.33)

fX,OUT
ijvtkdl = fX,IN

ijvtkdl i ∈ N S, j ∈ N −N S|j 6= d, v ∈ Vk, t ∈ T |t < t′

(5.34)

fX,OUT
jdvtkdl = fX,IN

jdvtkdl j ∈ N −N S|j 6= d, v ∈ Vk, t ∈ T |t < t′ (5.35)

fX,OUT
idvtkdl = fX,IN

idvtkdl i ∈ N S, v ∈ Vk, t ∈ T |t < t′ (5.36)

fX,OUT
jzvtkdl = fX,IN

jzvtkdl j, z ∈ N −N S|j, z 6= d, v ∈ Vk, t ∈ T |t < t′

(5.37)

fX,IN
ijvtkdl ≤ QC

kdlxijvt i ∈ N , j ∈ N , v ∈ Vk, t ∈ T |t ≤ t′ − Tidv (5.38)

fX,OUT
ijvtkdl ≤ QC

kdlxijvt i ∈ N , j ∈ N , v ∈ Vk, t ∈ T |t ≤ t′ − Tidv (5.39)

fO
ivtkdl ≤ QC

kdloivt i ∈ N , v ∈ Vk, t ∈ T |t ≤ t′ − Tidv (5.40)

end for
end for

for each hop. The size of the hop set depends on the length of the routes. Considering that
the MIRP-UC we are solving is already very large, an alternative formulation is developed.

To restrict the routing problem from creating the same set of routes, a hop formulation
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is introduced through an additional variable, zijvh. Hence, we can avoid the additional
index on the routing variable and limit the increase in variables. The variable is referred
to as a hop variable, because it is a variable keeping count of the visit number on each arc
travelled by the ship.

zijvh

{
1, if ship v sails arc i, j as the h’th arc

0, otherwise

Let H be the set of all possible hops, i.e. the visit numbers of travelled arcs. Constraints
(5.41) - (5.44) are needed for merging the hop variable into the routing problem.

∑

i∈N∪o(v)

∑

j∈N∪d(v)

zijvh ≤ 1 v ∈ V , h ∈ H (5.41)

∑

j∈N∪d(v)

zijvh −
∑

j∈N∪o(v)

zjiv(h−1) ≤ 0 i ∈ N , v ∈ V , h ∈ H|h ≥ 1 (5.42)

∑

h∈H

zijvh −
∑

t∈T

xijvt = 0 v ∈ V , i ∈ N ∪ o(v), j ∈ N ∪ d(v) (5.43)

∑

j∈N∪d(v)

zo(v)jv1 = 1 v ∈ V (5.44)

The hop constraints are used to make sure that the hop variable zijvh corresponds to the
behavior of the routing variable xijvt. Constraints (5.41) ensure that only one arc is asso-
ciated with one hop number, while Constraints (5.42) require that hop h can only exist if
hop h− 1 exists. Constraints (5.43) ensure a connection between the hop variable and the
routing variable, while Constraints (5.44) are the start conditions.

By creating an interdependence between zijvh and xijvt, it is possible to impose restric-
tions on xijvt through zijvh. With the information about the hop number of each arc, it
is possible to state that the hop numbers can not be identical in any succeeding iteration.
However, before presenting the constraint that require change in each iteration, one impor-
tant remark must be made. Constraints (5.43) are the only set of constraints in the hop
formulation that connects the xijvt and zijvh variables. Thus, the only connection imposed
is that the total number of hops on arc (i, j) is equal to the total number of times the
ship traverses the arc (i, j). This implies that there is no restrictions imposed ensuring
that the zijvh is awarded the correct visit number other than Constraints (5.42). Hence, in
theory, it is possible to rearrange the arcs into a new sequence, such that the zijvh does not
get the correct sequence numbers and does not directly correspond to xijvt. As a result,
when imposing that the set of solutions of zijvh must change in the next iteration, it does
not necessarily impact xijvt. Hence, a change is not enforced in the next iteration. It is
important to note that in the majority of cases, it is not possible to rearrange the arcs as
previously described. The only cases where this is possible is when the same arc is tra-
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versed multiple times. It is not possible to remove this discrepancy in the hop formulation
with linear constraints given the assumptions of this thesis. However, we consider it better
to have this formulation with a small degree of malfunction in some rare occasions rather
than a hop index on the routing variable. The solution for these exceptions is presented
after the strategy constraint is introduced.

In order to restrict the routing problem from generating the same set of routes more than
once, the restriction use information about the routing solutions from earlier iterations.
The following constraints demand that at least one of the binary hop variables that in
previous iterations was 1 must be 0 or vice versa, at least one of the variables that was 1

must be 0. By enforcing this, the routing problem ensures that the new routes generated
must be changed with at least one hop from earlier solutions. The constraints are presented
in (5.45). New notation is used; z∗ijvh(l − 1) denotes the optimal solution of zijvh in the
previous iteration, l − 1.

∑

i∈N∪o(v),
j∈N∪d(v),

v∈V,
h∈Hv |

z∗ijvh(l−1)=0

zijvh +
∑

i∈N∪o(v),
j∈N∪d(v),

v∈V,
h∈Hv |

z∗ijvh(l−1)=1

zijvh ≥ 1 l ∈ L (5.45)

When the routing problem is not subject to the presented exception, Constraints (5.45)
are binding. Hence, the routing problem is forced to create a new set of routes. In the
exceptions described above, when the route of the hop variable can differ from the routing
variable, the restriction fails to be binding and thus Iteration l of the routing problem can
generate the same routes as in Iteration l − 1. If the hop variable manages to rearrange
the edges and still fulfill all the constraints of the hop formulation, it is important that
the construction phase does not have to run a complete iteration with an identical set of
routes as an earlier iteration. In order to limit this, the construction phase is designed in
such a way that the route generated by the routing problem, xijvt, is checked before the
solution is forwarded to the inventory problem. If the route is identical to the previously
generated routes, the matheuristic return to a new iteration of the routing problem with
information about the new solution of zijvh. Hence, the discrepancy in the hop formulation
is solved without incurring a high time cost. This functionality is presented in a flow chart
in Figure 5.6.

5.4.6 Strategy 6: Safety inventory

In the construction phase, it is essential that the routing problem manages to find rep-
resentative routes for the overall inventory routing problem. It is hard to create realistic
conditions in the routing problem corresponding to the conditions of the inventory prob-
lem. Since there are no inventory limits in the routing problem and the routes in the first
iteration must be created solely based on valid inequalities, there is a good chance that the
routes are not able to capture all the port activity. One way of mitigating this effect is to
introduce a safety inventory in the routing problem, meaning that the inventory window
to be respected by the routing problem is smaller than the original window. Imposing

61



CHAPTER 5. SOLUTION METHODS

Figure 5.6: Flow chart presenting the matheuristic when Strategy 5 is included

safety inventory increases the activity to be respected in each port and the probability of
violating the original inventory limits is possibly reduced. The concept of safety inventory
can be applied to all iterations and is illustrated in Figure 5.7.

Figure 5.7: Safety inventory of routing problem

5.4.7 Additional techniques and features

In addition to the strategies presented above, we also propose some additional techniques
and features to improve the chances of convergence of the construction phase. First, it is
possible to impose restrictions on the run time of each restriction. Three main restrictions
are proposed. In order to limit the total time of each iteration, the time used by each iter-
ation is limited. Second, the global search is stopped when a MIP solution has been found
and the Optimizer can guarantee that it is within x% of the optimal solution. Finally,
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to increase the efficiency of the overall matheuristic, a third time constraint is imposed
in the Optimizer. If the time since the last discovered MIP solution is greater than a
defined threshold, the current iteration search is terminated. The goal of imposing these
restrictions on running time is to achieve efficiency in the search for a feasible solution.
The setting of these parameters is further elaborated on in Section 6.2.2.

Further, actions have been taken to increase the efficiency of the inventory problem. The
idea of the following feature is to ensure that the violations are likely to occur in the
same time span of the planning horizon. First, it is very hard to adjust for many violations
occurring in the earliest time periods of the planning horizon. In all strategies of the routing
problem, we require that all violations that occurred in all previous inventory problems
are accounted for. Thus, if there are enough violations in the different ports early in the
planning horizon, it might be infeasible for the succeeding routing problem to construct
routes with respect to these violations. Violations occurring the very last time periods
of the planning horizon can also be hard to resolve. This is because in all the strategies
presented above, some conditions are imposed to the routing problem for each violation.
However, all the conditions only ensure that some action happen prior to the violation time.
In other words, there is no guarantee that the action taken to resolve the violation happen
close enough to the violation. Thus it might not resolve the violation and the violation
returns in the next iteration. To account for this, we impose a time dependent violation
cost. The middle time periods are less expensive since violations occurring in those time
periods are easier to resolve. This measure does not prevent violations from occurring the
early and late time periods, however, it comes at a cost and the occurrence of violations in
these time periods is reduced. By differentiating the time periods the violation occurs, we
also manage to reduce the symmetry in the violation dimension.

5.5 Improvement phase

The construction phase terminates once it finds a feasible solution to the original problem.
With such a scheme, there is no guarantee on the quality of the solution. Due to this
uncertainty, an improvement phase is added to the matheuristic.

The idea is to explore the neighborhood around the feasible solution. In general, it is
difficult to only make small adjustments to the feasible solution of a MIRP and still adhere
the inventory limits of all products in all ports. Consequently, the neighborhood is always
quite large and the difference between neighbors can be significant. We propose three dif-
ferent operators to create the neighborhood to be explored.

The improvement heuristic always starts with a feasible solution found by the construction
phase of the matheuristic. In order to be able to find improved solutions, some parts of the
given feasible solution must be opened up. When designing the different operators for the
neighborhood search, the essential decisions to be made are precisely which parts of the
solution to improve and which parts to keep fixed to the current solution. It is important to
keep in mind the balance between the degree of freedom introduced and the corresponding
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complexity. The goal is to improve the feasible solutions within an acceptable amount of
time.

We propose an iterative improvement scheme that is designed in a first improvement fash-
ion. In each iteration, certain components of the solution are open for improvement and
the remaining parts are fixed. An iteration is terminated a given number of seconds after
the first improving solution is found. The reason for including this time buffer is to capture
the possibly better solutions found in close proximity to the first discovered solution. When
an iteration is terminated due to the discovery of a better solution, the newly discovered
solution is saved, both in terms of objective value and route solution. This newly saved
solution is used as input for the next iteration of the improvement heuristic.

With this functionality in mind, the three operators are presented.

5.5.1 Intra ship route improvement

The first operator, Intra, focus on optimizing the routes of each ship separately. In each
iteration, all but one ship is fixed to the currently best solution. The ship that is open
for improvement is fixed to the port visits of the route, but neither the sequence nor the
number of visits to each port is fixed. The purpose of this operator is thus to optimize
the utilization of each ship given the port visits of the original solution. This operator
never gives a solution where the ships visits other ports than the ports visited in the input
solution.

The number of ships in the fleet, defined as V , is used as the minimum of number of
iterations executed. This means that if the test case being used has a fleet of 4 ships, a
minimum of four iterations is executed. After V iterations, the improvement heuristic has
iterated over each of the ships. The Intra operator continue to iterate until a predefined
termination criteria. The termination criteria for the Intra operator is discussed and de-
fined in the Section 6.2.5. Figure 5.8 illustrates the functionality of the Intra operator. In
Iteration 1, Ship 1 is subject for improvement, marked in orange. Equivalently, the route
of Ship 2 can be improved in Iteration2, marked in blue.

Figure 5.8: Illustration of the Intra ship improvement operator

64



CHAPTER 5. SOLUTION METHODS

5.5.2 Time-constrained inter ship route improvement

While the first improvement operator only improves the schedule of one ship at a time, the
Inter operator allows for improvements across ship schedules. By employing time intervals
to open parts of the solution in each iteration, the Inter operator iteratively search for
improvements in highly constrained versions of the original problem.

In each iteration of the Inter execution, a time interval is defined where the routing-,
operating-, and waiting-variables are free for all ships. This means that all variables for all
port, ship, and time period combinations are created. Hence, inside the range of this in-
terval, the model functions similarly as the original model and improvements can be made
with respect to the ship routing and scheduling, inventory management in ports and the
allocation of products.

For all time periods outside the time interval of the current iteration, all variables are
created based on the current best solution. The ship-port combinations from the current
best solution are kept fixed for all variables outside the time interval. However, a slack is
introduced on which time periods the combinations can occur. The time slack is introduced
to be able to adjust to the changes across ship schedules that are possible within the time
interval. The time slack parameter is defined as T Slack. For example, if T Slack = 1 and
Ship 2 operates in Port 4 in time period six in the current best solution, the following
operation variables are created: o425, o426 and o427.

Apart from the adjustments that can be made due to the time slack, the solution is kept
fixed outside of the time interval. However, it is always optional for a ship to utilize the
arc going to d(v) according to the fixed route. This does not mean that a ship does not
have to end its schedule. It only facilitates a potential adjustment within the time interval
that involves a change in the last port visit. Hence, a new arc to d(v) is needed within
the time interval. In that case, the original arc to d(v) in the fixed solution does not have
to be used. The procedure for the Inter ship route improvement operator is illustrated in
Figure 5.9. The arcs colored in orange are the only arcs that can be changed and that are
subject for improvement.

Figure 5.9: Illustration of the Inter ship improvement operator
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One iteration of the Inter operator corresponds to running the improvement heuristic for
one specific time interval. To test all improvement possibilities, the improvement heuristic
changes the time interval in each iteration. For each iteration, the current best solution is
saved and used as the basis for further improvements.

The start of the interval shifts with a predefined number of time periods in each itera-
tion. However, the interval shift is smaller than the length of the time interval and so the
intervals overlap. For example, if the first time interval is [1,10] and the interval shift is
5 time periods, then the second time interval is [6,15]. This overlap between consecutive
time intervals is constant during an execution of the heuristic.

For the Inter operator, the number of intervals needed to cover the planning horizon, I,
is used as the minimum number of iterations to be executed. The number of intervals,
I, depends on the length of the time interval and how much the interval shifts for each
iteration. Equivalently as for the Intra operator the termination criteria is defined in
Section 6.2.5.

5.5.3 A combination of the Intra and Inter operators

The Combination operator incorporates the Intra operator and Inter operator in one exe-
cution of the improvement heuristic. Intra optimizes each ship route by rearranging each
ship’s port visits or shortening the ship route, while Inter can change which ships that
serve which port-product combinations. When combining these operators, if either oper-
ator finds a new solution, the neighborhood of this solution is reachable for both. This
open up parts of the feasible area to the operators not attainable through executing the
operators independently. By combining these two in one improvement scheme, even further
improvements to the solution can be found.

When employing the Combination operator, the Intra and Inter operator is are executed in
that order. Hence, the heuristic first systematically iterates through all the ships with the
Intra operator, and then all possible time intervals using the Inter operator. The heuristic
continues to execute the operators sequentially in that order until the termination crite-
ria is met. As already mentioned, termination criteria is defined and further discussed in
Chapter 6.
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Chapter 6

Computational Study

The purpose of this chapter is to present an overview of the results from the testing of the
MIRP-UC with both an exact solution method and the matheuristic solution method pre-
sented in Chapter 5. When using the term exact solution method, we refer to solving the
MIRP-UC with the solver in Mosel Xpress-MP. For testing the model with the exact solu-
tion method and the valid inequalities proposed in Section 4.3, three test cases of different
sizes are utilized. When testing the matheuristic method, additional test cases are used
to achieve a comprehensive evaluation of the alternative solution method. This chapter
is organized in three main sections. First, in Section 6.1, we present the results from the
exact solution method and the effectiveness of the proposed valid inequalities. Following
is Section 6.2, presenting the results of the matheuristic solution method. Lastly, Section
6.3 discusses practical implications of the formulation and the different solution methods.

All test instances of our mathematical programming models are solved using Mosel Xpress-
MP. Mosel Xpress-MP is run on a Hewlett Packard 64-bit Windows 7 Enterprise PC with
Intel(R) Core(TM) i7-3770 3.40 GHz processor and 16,0 GB (15.9 GB usable) RAM.

6.1 Exact solution method

First, the test instances and parameter settings are presented, along with the corresponding
problem sizes. Following is a presentation of the test results of the MIRP-UC model and
the proposed valid inequalities. For each test case, we have tested the valid inequalities
independently, as well as in combination with each other.

6.1.1 Test instances and notation

The name of each test instance is built up of two components; test case and valid inequalities
included. An overview of all abbreviations used in Section 6.1 is presented in Table 6.1.
UC refers to the original model solved exactly, without any valid inequalities. MV, MCP,
MO, F, and L refer to the valid inequalities presented in Section 4.3. For example, the
test instance M_MO refers to the model with the medium-sized test case and the valid
inequality on minimum number of operation periods in each port added.
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Table 6.1: Notation for exact solution method test instances and valid inequalities

Models Notation

Undedicated compartments UC

Test cases Notation

Small test case: 2 ships 4 ports 3 products S

Medium test case: 3 ships 6 ports 4 products M

Large test case: 4 ships 8 ports 4 products L

Valid Inequalities

No cuts UC

Minimum number of visits per port with ship sequence [4.25] MVs

Minimum number of compartments per product with ship sequence [4.27] MCP

Minimum number of operation periods per port [4.29] MO

Timing of first visit to a port [4.30] F

Timing of last visit to a port [4.34] L

All cuts remaining at the time of use A

The only valid inequality presented in Section 4.3 not included in Table 6.1 is the timing
of the second visit constraint. With the current test cases, there is not enough activity in
any port to be able to determine the time of a second visit validly. Hence, the performance
results of this valid inequality is not included in the following sections.

For the smallest test case, we present the optimal integer solution, time to optimality or
gap if optimal solution is not found for the test instance. For the medium and large test
cases, we present the best integer solution found, best bound and optimality gap. We also
present the LP bounds for all of the test instances. The LP bounds, best solutions and
best bounds are given in absolute value, the optimality gap is given in %, and time to
optimality in the small test case is given in seconds. A bold font is used to identify the
best solution and best lower bounds in the tables of results. Other important notation
is the dash, ’-’, which means that no integer solution is found within the predetermined
running time and ’N/A’ for not applicable results.

6.1.2 Parameter settings

Due to time and computational power resource constraints during the work on the thesis,
it is important to ensure that the resources are used optimally. Prior to any empirical
results, we suggested 10 000 seconds to be a reasonable running time to both get sufficient
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results and to use the resources efficiently. However, when running instance L_UC, we
saw that the last integer solution was found prior to 3 000 seconds running time. This is
illustrated in Figure 6.1. Hence, we can limit the maximum running time of our models
substantially compared to a maximum running time of 10 000 seconds. This observation
also applies to the other test instances. Due to the large number of test instances to run,
the maximum running time is set to 5 000 seconds for all test instances.

Figure 6.1: Discovery of feasible solutions in Mosel Xpress-MP

Several of the valid inequalities presented in Section 4.3 apply the use of a time interval
when deciding the binding capacity of a ship or a compartment in the ship/compartment
capacity sequence. Preliminary testing showed that using the entire length of the planning
horizon as the length of the time interval gives the tightest formulation and thus the best
results. This is also evident in earlier studies by Andersson et al. (2015). Consequently, the
length of the planning horizon is used as the length of the time interval in all succeeding
tests.

Another decision to be made when implementing the valid inequalities employing time
interval is the starting period of the time interval. In theory, there could be multiple time
intervals starting at different times. However, the results presented by Andersson et al.
(2015) suggest that having the time interval start in the first time period is most beneficial.
We have limited the testing to a single time interval and defined it to start in the first time
period of the planning horizon, i.e. T ′ = 1. Consequently, the incoming inventory level
sik(T ′−1) of the time interval is always equal to the initial inventory level of the product,
S0
ik, and not the variable inventory level, i.e. sikt. Hence, of the alternative formulations of

the valid inequalities employing a ship/compartment capacity sequence defined in Section
4.3, only valid inequalities 4.25 and 4.27 are applicable.
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6.1.3 Problem Sizes

Table 6.2 shows the problem size of each test instance. The problem sizes are given before
and after Presolve. Presolve is a function integrated in Xpress Optimizer where one of the
purposes is to reduce the number of redundant variables and constraints, and thus reduce
the complexity of the problem and improve running time. From the table, we see that
the Presolve function is successful in eliminating both constraints and variables redundant
to the problem when solving the formulation with Presolve. The fact that Presolve have
managed to eliminate a large number of variables suggests that we should have used more
time and focused more on eliminating unnecessary variables in the process of implementa-
tion. That could have been beneficial for the efficiency of the solution process.

Table 6.2: Problem size of exact solution method instances

Presolve S M L

Total number of variables Before 4427 11401 21992

After 3702 9633 18685

Number of constraints Before 3895 8078 12114

After 2252 4745 7888

The small test case consists of two ships, four ports. When looking at the size of the
medium test case, which consists of three ships and six ports, the number of variable of
the problem more than doubles compared with the small-sized test case. A similar pattern
can be seen for the large test case, compared with the medium test case.

6.1.4 Exact solution method results

The performance results of the test instances are presented in Table 6.3. As justified in
Section 6.1.1, all instances have a maximum running time of 5 000 seconds.Hence, a test
instance is either run to the maximal running time or to optimality. All test instances
are run with the Presolve function integrated in the Xpress Optimizer. One part of the
functionality of Presolve is to generate cuts and thus improve the bounds of the problem
prior to the branch-and-bound search. When disabling Presolve, the tree to search through
becomes much larger and the bounds weaker. Running the models without Presolve, and
thus without non-specified improvements, would have shown the true effect of the valid
inequalities. However, the difference in performance before and after Presolve is not a focus
area in this thesis.
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Table 6.3: Results of small-, medium- and large-sized test cases with different valid in-
equalities. Running time 5000 seconds

Test
case Info UC MV MCP MO F L

S LP bounds 16 257 18 975 25 199 16 510 16 257 16 257

Best solution 29 883 29 883 29 883 29 883 29 883 30 010

Best bound 29 883 29 883 29 883 29 883 29 883 28 772

Gap - - - - - 4,12%

Time to optimality 2 066 s 1 749 s 1 032 s 1 325 s 848 s N/A

M LP bounds 19 016 21 589 25 128 19 463 19 059 19 016

Best solution 35 633 42 708 36 673 34 948 37 446 37 593

Best bound 26 018 25 731 27 544 25 946 26 689 25 035

Gap 26,9% 39,8% 24,9% 25,8% 28,7% 33,4%

L LP bounds 24 473 28 293 34 391 24 527 24 688 24 473

Best solution 64 930 57 251 61 703 62 360 61 717 62 733

Best bound 30 902 30 629 34 933 30 886 32 684 31 139

Gap 52,4% 46,5% 43,4% 50,5% 47,0% 50,4%

LP bounds

In Table 6.3, we see that all the valid inequalities but L can be categorized as a cut. The
LP bound performance of all the valid inequalities follow approximately the same trend in
all test instances. MCP has the largest impact on the LP bound and is thus the tightest
cut.

The addition of a valid inequality is always a restriction of the feasible region. Hence,
an LP bound can never be reduced when adding a valid inequality to a model, because a
reduction in the LP bound would be equivalent to a relaxation of the problem. However, a
reduction in LP bound after the inclusion of a valid inequality can be seen in Table 6.3 for
multiple test instances of the medium-sized test case. The only possible reason for this is
our use of the Presolve function in Xpress. With Presolve, Xpress always tries to optimize
which constraints are included in the running of a model. Hence, in some case, it can end
up choosing a set of constraints actually relaxing the problem resulting in a lower LP bound.

We strive for a tighter formulation because it enables a smaller search space. The result
of of a smaller solution space is a smaller branch-and-bound tree and possibly a shorter
solving time. However, a tighter formulation often comes at the expense of an increase in
the number of variables. As a result, even though the size of the whole branch-and-bound
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tree decreases, the solution time in each branch-and-bound node increases. We now look at
the running time performance to see how the complexity added with the valid inequalities
affects the running time.

Minimum number of visits with ship capacity sequence (MV)

The purpose of this valid inequality is to impose a lower bound on the number of visits to
each port by employing a ship capacity sequence when determining maximum capacity of
a ship. When imposing this lower bound, the optimal LP solution is improved, making the
model tighter. The bound in the root node of the branch-and-bound tree is thus higher,
resulting in a reduced search space and a more efficient branch-and-bound procedure. In
S_MV this is evident as the time to optimality is improved from S_UC. L_MV returns
a smaller gap than L_UC due to the discovery of a better feasible solution.

Minimum number of compartments per product with ship capacity sequence
(MCP)

MCP gives the strongest LP bound of all the valid inequalities proposed. MCP reduces
the gap between the LP bound and the optimal integer solution of the small test case
from 45,6% to 15,9%. It is reasonable to believe that this reduction can explain the great
efficiency of the MCP addition. S_MCP gives a significantly better time to optimality
and is the cut with the second best performance on the small test case. M_MCP has the
best performance in terms of the highest bound and the lowest gap. For the large test case,
MCP continue its good performance giving the strongest lower bound and correspondingly
the smallest gap.

Minimum number of operation periods (MO)

This valid inequality is imposed with the intention of creating a lower bound on the mini-
mum number of operation periods needed by each port. MO can be characterized as a cut
since it removes the optimal LP solution making the formulation tighter. MO significantly
improves the time to optimality in S_MO. However, for the larger test cases it does not
manage to contribute as notably to the efficiency.

Timing of first visit in port (F)

F is included with the intention of limiting the number of options in the time dimension
by forcing a first visit prior to a specific time period. It does not manage to tighten the
formulation by improving the LP bound in the small test case, and it only tightens the
LP bound by a small fraction for the larger test cases. However, F performed best in the
smallest test case and offered the shortest time to optimality. In the smallest test case,
it manages to contribute to efficiency, however, the contribution from F in the larger test
cases is not equally essential.
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Timing of last visit in port (L)

L is added with the same intention as F. It does not improve the LP bound of the test
cases, and it is the only valid inequality preventing the small test case from finding the
optimal solution within 5000 seconds. For the largest test case, L contributes to finding a
higher best bound.

6.1.5 Results on combination of valid inequalities

Until now, the valid inequalities have only been tested independently. However, it is at
least equally interesting to test different combinations of the valid inequalities and see how
it affect the efficiency of the exact solution method. First, we test all valid inequalities
combined, followed by this combination excluding one of the valid inequalities in turn.
S_A denotes all valid inequalities are included in the small test case, while S_A_MV

denotes all valid inequalities except for MV are in the combination of the small-sized test
case. The performance results of the MIRP-UC with these combinations can be found in
Table 6.4.

Table 6.4: Results on combination of valid inequalities for all test cases. Running time
5000 seconds

Test
case Info A A_MV A_MCP A_MO A_F A_L

S LP bounds 25 711 25 711 19 443 25 472 25 435 25 711

Best solution 29 883 29 883 29 883 29 883 29 883 29 883

Best bound 29 883 29 883 29 883 29 883 29 883 29 883

Time to optimality 516 s 516 s 262 s 1 357 s 444 s 367 s

M LP bounds 25 467 25 467 22 044 25 128 25 465 25 467

Best solution 35 461 36 867 37 010 38 903 36 918 35 937

Best bound 28 441 28 402 26 042 27 135 27 879 27 752

Gap 19,8% 23,0% 29,6% 30,3% 24,5% 22,8%

L LP bounds 34 396 34 396 28 445 34 395 34 391 34 395

Best solution 65 253 - 65 533 62 040 - -

Best bound 35 039 35 231 31 919 35 106 34 973 34 952

Gap 46,3% - 51,2% 43,4% - -

When testing the valid inequalities independently, MCP had the tightest LP bound in all
test cases. The LP bounds reported in Table 6.4 show how the LP bound is improved in all
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test instances where MCP is included. The combination where MCP is left out, A_MCP

consistently return the weakest LP bound. It is clear that MCP has the largest impact on
the LP bound. This is in line with the increase of the LP bound when only including MCP.

For the small test case, the running times to optimality are significantly improved in all
the combination test instances. S − A_MCP gives the shortest running time to opti-
mality, which is somewhat surprising given the independent high quality performance of
MCP. This deviating result is most likely due to the inclusion of the Presolve function in
Xpress. As expected, the exclusion of L in S−A_L has a positive impact on the efficiency.

M −A is the only test instance in the medium test case able to find a better solution than
M_UC, however only by a small margin. None of the combination instances are able to
find a better solution than M_MO. Several of the instances with different combinations
of valid inequalities achieves higher bounds than the best reported bound in Table 6.3. On
average, the combination test instances have an improved performance compared to the
independent testing of the valid inequalities for the medium-sized test case.

In the large-sized test case, the performance of the combination test instances are not en-
hanced compared to the independent testing. L− A, L− A_MCP , and L− A_MO are
the only test instances able to find a feasible solution within the 5000 seconds of running
time. Of these, only L − A_MO discovers a better solution than L_UC. However, all
combination test instances present a notable improvement of the lower bound. It is hard
to explain why removing MV, F or L disables the model to find a feasible solution within
the 5000 seconds when several feasible solutions are found when all valid inequalities are
included. L − A should be the test instance with the highest degree of complexity. It is
also hard to explain why removing MCP and MO does not disable the model from finding
a feasible solution, when especially MCP is essential for tightening the model. Again, it
is likely that one explanation for these diverging results is the inclusion of the Presolve
function in Xpress. Anyway, it is clear that adding multiple valid inequalities when solving
the large-sized test case increases the complexity significantly. For the large-size test case,
the increase in complexity outweigh the tightening of the formulation.

6.1.6 Concluding the exact solution results

As evident in Table 6.3, the valid inequalities MV, MCP, and MO all enhance the perfor-
mance of the model for all test cases. In the small-sized test case, all the valid inequalities
manage to improve the time to optimality independently. The effect of the valid inequal-
ities on the LP bound in the medium-sized test case is somewhat unclear due to the case
of Presolve relaxing the problem. However, for the large-sized test case, all the valid in-
equalities have an exclusively positive effect on the optimality gap. It is apparent from the
performance results in Table 6.3 that MCP is the overall best performing valid inequality.

Table 6.4 shows an overall enhancement in performance for both the small- and the
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medium-sized test case when using different combinations of valid inequalities. However,
for the large-sized test case, the increase in complexity from the inclusion of multiple valid
inequalities prevent the model from improving its performance compared to using the valid
inequalities independently.

Even though MCP stands out as the best performing valid inequality, on average, the search
for the optimal solution is most efficient when including all the presented valid inequalities.
The performance of A is superior to the performance of MCP for both the small- and the
medium-sized test cases. MCP has a slightly better performance than A on the large test
case, however, this is outweighed in the overall performance. Hence, the standard setting
for the model is the original MIRP-UC formulation in combination with all the presented
valid inequalities. In all further tests, the model is solved with this setting.

6.2 Matheuristic solution method

In Chapter 5, a matheuristic solution method was introduced as an alternative to the
exact solution method. The purpose of this section is to test and analyze the potential
of the matheuristic. First, the strategies presented in Section 5.4 are further explained
before relevant combinations are tested. Along with the explanations of the functionality
presented in Chapter 5, a presentation of parameter settings is given. Section 6.2.3 presents
the performance of the construction phase of the matheuristic with the different strategy
settings. The performance of the matheuristic is evaluated in relation to the performance
of the exact solution method. Finally, the improvement phase of the matheuristic is tested
and the results are presented in Section 6.2.5.

6.2.1 Construction phase: Defining the strategy settings

As previously explained, a decomposition of the MIRP into a routing problem and an in-
ventory problem lies at the core of the matheuristic. A solution to the MIRP-UC is found
by iterating between solving these two problems, converging towards a feasible solution.
Multiple techniques for guiding the iterations have been proposed in terms of strategies in
the previous chapter. The purpose of this subsection is to define relevant and interesting
strategy settings to be tested. The term strategy setting is used to denote a specific com-
bination of strategies.

Before introducing the strategy settings tested, some final notes on the strategies presented
in Chapter 5 have to be made. The following solution strategies are proposed:

1. Strategy 1: Increasing the number of arcs required to the violation port prior to the
violation time

2. Strategy 2: Increasing the minimum number of operation periods in violation ports

3. Strategy 3: Introducing a commodity flow formulation for each violation
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4. Strategy 4: Alternative commodity flow formulation for each violation

5. Strategy 5: Require a change in routes generated in each iteration

6. Strategy 6: Safety inventory

When forcing an arc directly between a production/consumption port and the consump-
tion/production violation port, all feasible solutions where the origin port only precede
and not directly precede the violation port are removed. Thus, there is no guarantee that
the optimal solution remains in the feasible region. Strategy 1 is a greedy strategy where
the greedy choice is to impose a direct arc to the violation port.

The aim of Strategy 2 is to impose additional operation periods needed to account for the
violation amount in the violation port. Only the sequence of port visits is saved between
the routing problem and the inventory problem. Hence, a strategy only impact the solution
if it requires change in the route and not only the schedule. During preliminary testing
of Strategy 2, it was evident that imposing additional operation periods was not always
restrictive enough to alter the sequence of port visits. As a result, the convergence of the
matheuristic was slow. However, due to the nature of the strategy as a valid inequality, it
can be included in combination with other strategies.

Strategy 3 can be viewed as a more valid version of Strategy 1. The constraint imposed is
that a commodity source port must be visited prior to the violation port but not directly
prior to the violation port. Some uncertainty is still present on whether the integer feasible
area is reduced. However, compared to Strategy 1, Strategy 3 is more consistent with the
use of valid inequalities. Strategy 4 has the same goal as Strategy 3, however it makes use
of an alternative and experimental formulation of the commodity flow.

Strategy 5 imposes an obvious wish for this matheuristic, namely that the routes generated
in each iteration is never generated more than once. Independently, this strategy only re-
quire one arbitrary change in the set of routes in each iteration, making the convergence of
the construction phase slow. However, this strategy can be essential in combination with
other strategies. It can prevent a situation where no new constraints are imposed in each
iteration as a result of returning violations and that the set of routes generated are identical.

As mentioned, all strategies can be combined into different strategy settings. The purpose
of the strategies is to handle the violations caused by the current routes in the inventory
problem. In the case of returning violations, different actions can be taken. One idea is to
allow greedy choices to be made. A specific example could be that Strategy 3 is used to
handle the violations and to ensure convergence, but in the case of a returning violation,
the violation is handled using Strategy 1.

We now have all the fundamental components for understanding how the violations from
the inventory problem are handled in the routing problem. Hence, we can introduce the
different strategy settings to be tested and the following notation. The set of strategy

76



CHAPTER 6. COMPUTATIONAL STUDY

settings reflects the combinations of strategies we find interesting and most promising.

Strategy settings. The different strategy settings that are chosen for testing are presented
in Table 6.5. Each strategy setting is named and presented with corresponding solution
strategies from Section 5.4.

Table 6.5: Notation for matheuristic solution method strategy settings

Construction approach Solution strategies Notation

Greedy strategy Strategy 1 G

Valid approach 1 Strategy 2,3,5 V1

Valid approach 1 w/ safety inv. Strategy 2,3,5,6 V1s

Valid approach 2 Strategy 3,5 V2

Valid approach 2 w/ safety inv. Strategy 3,5,6 V2s

Hybrid approach Strategy 2,3 & Strategy 1 on returning vio. H

Hybrid approach w/ safety inv. Strategy 2,3,6 & Strategy 1 on returning vio. Hs

Valid alternative Strategy 2,4,5 VA

Valid alternative w/ safety inv. Strategy 2,4,5,6 VAs

The name of each test instance used in all preceding tests is built up of two components.
The first component is the strategy setting used, and the second component is the test
case. For example, G_S is small test case solution of the construction phase employing
the greedy strategy setting.

6.2.2 Construction phase: Parameter setting

One purpose of implementing the proposed matheuristic is to increase the run time ef-
ficiency compared to the exact solution method. Along with the basic functionality of
the matheuristic, several parameters are needed to facilitate a fast running construction
phase. In this section, we elaborate on the already presented parameters and introduce
new relevant parameters. The purpose of this section is to motivate the decisions made
on the relevant parameters, both through testing and theoretical reasoning. It is worth
mentioning that extensive testing has been done, however, only the most relevant results
are presented. Even though a great deal of testing has been done, it is nowhere near com-
plete. Ideally, the parameter settings should have been tested on a larger number of test
instances. In that way the settings could have been determined with statistical methods.
Due to both time and computational power constraints, the number of tests are limited.
Also, we have chosen to test the dimensions that we consider most interesting and relevant
for the thesis.
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Time limits

As presented in Section 5.4, introducing time constraints and limits can help increase the
efficiency of the construction phase. As a result, we have chosen to impose a max time for
each iteration to limit unnecessary time used on each iteration. During preliminary testing
we observed that a time limit of 500 seconds for each iteration of either the routing problem
or the inventory problem is suitable. If the optimal solution of the iteration has not been
found within 500 seconds, it is likely more beneficial to go to the next iteration where new
information is supplied rather than to continue further. However, with a shorter time limit
for each iteration, the iteration might be terminated prematurely before currently available
information is utilized to its fullest.

The next relevant parameter is a time limit on the amount of time since the discovery of
last feasible solution. It is necessary to limit situations where no new feasible solutions are
found in a long period of time. During these situations, the execution of the iteration is
inefficient and little progress is made. After testing the construction phase using different
time limits since the last discovered feasible solution, we concluded with 200 seconds as a
reasonable time limit. Lastly, each iteration is terminated when the optimality gap is at
1%. This is because it is not necessary to prove optimality in each iteration. The difference
between a solution with a 1% gap and the optimal solution is insignificant in this scheme.

First iteration parameters

Another dimension which is important to consider is the handling of the first iteration.
The first iteration routing problem is the initialization of the construction phase. It is
unlikely that the first iteration routing problem is constrained such that it can find a set
of feasible routes immediately. Hence, whether the first iteration routing problem should
be run to optimality or be terminated earlier is a relevant question. In later iterations,
the quality of the routes are likely higher due to the addition of the violation handling
constraints. Hence, the parameter settings controlling the first iteration routing problem
and the subsequent inventory problem must be evaluated.

Before we continue to elaborate on the parameter settings of the first iteration routing prob-
lem and inventory problem, an important phenomenon of this matheuristic scheme must be
explained and clarified. When separating the routing problem and the inventory problem,
it is impossible for the routing problem to adopt all inventory considerations made by the
inventory problem. The routing problem can, in the first iteration, generate respectable
routes as a result of a series of valid inequalities. However, not to the same degree as the
inventory problem. This implies that it cannot be known which of the feasible solutions
found by the routing problem in the search for the optimal solution of the routing problem
is the optimal solution in the inventory problem. The discovery of feasible route solutions
in the routing problem in one iteration is not necessarily strictly improving in relation to
the inventory problem. In one iteration, the best set of routes for the inventory problem
might be the third best route solution found by the routing problem. In an other iteration
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it might be the optimal route solution of the routing problem that indeed is the optimal
route solution in the inventory problem. Since the routing problem presents no guarantee
that the next route solution discovered is improved from the currently best solution with
respect to the original problem, it is difficult to both test and decide the parameter settings.

The greedy approach. In Section 5.4, we presented several strategies for handling violations
from the inventory problem in the routing problem. The parameter setting for the first
iteration of the routing and inventory problem depends on the strategy used. This can
be explained by the fact that the strategies depend differently on the quality of the route
solution of the first iteration. A greedy strategy is likely more dependent on a good quality
in the first iteration route solution than more valid strategies. The greedy approach, only
impose strict requirements through adding direct arcs. Such a greedy scheme does not fa-
cilitate much flexibility to change none-violation components of the initial route solution.
Hence, for the greedy strategy, it is important to find good initial route solutions. Since
the measures taken by the next iteration routing problem are strict, it is also likely that
the specifics of the violations in the inventory problem should be close to optimal. The
probability of a good second iteration route solution should thus increase when having the
"correct" violations from the inventory problem. With this theoretical reasoning in mind,
we look at the test results for the greedy strategy with different combinations of parameters
for the first iteration. The termination of the routing problem is tested for four different
settings, differing on percentage gap and the number of feasible solutions demanded. The
inventory problem is only tested with either no settings or a termination on 5% gap. The
parameter test results can be found in Table 6.6.

From the test results presented in Table 6.6, it is evident that terminating the first iteration
routing problem at the first feasible solution is the most efficient parameter setting. How-
ever, the quality of the solution found is affected by the choice of the first feasible solution.
This is along the lines of the theoretical reasoning presented above. The performance of
the greedy strategy is improved when having a better first iteration route solution. In
the medium test case, terminating the first iteration inventory problem early positively
affects the running time while ensuring the same quality on the returned solutions. This
shows that ensuring that the inventory problem returns the "correct" violations does not
necessarily have an effect on the quality of the final solution. From the test results avail-
able, the parameter setting facilitating the best overall performance of the greedy approach
is breaking the first iteration routing problem at a 10% gap or 10 feasible solutions and
breaking the first iteration inventory problem at 5% gap. We use this parameter setting
in all further tests with the greedy strategy.

The remaining approaches. For the remaining strategies introduced, there is a larger degree
of freedom in the measures imposed in later iterations of the routing problem to overcome
the violations from the inventory problem. Hence, it is reasonable to assume that these
strategies are not as dependent on the quality of the first iteration routing problem so-
lution as the greedy strategy. Consequently, it could be beneficial for the efficiency of
these instances to break the first iteration routing problem as early as possible. Table
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Table 6.6: Parameter testing: First iteration, Greedy strategy

Test
size

Param -
route

Param -
inv. Sol. Nr.

iter.
Total
Time

Time-
1st route

Time -
1st inv.

Tot. time -
route

Tot. time -
inv.

M None None 38 650 3 292 s 9 s 147 s 12 s 279 s

First feas. None 39 553 4 86 s 1 s 25 s 16 s 70 s

20% gap /
5 feas. sol. None 38 830 3 281 s 4 s 200 s 12 s 269 s

10% gap /
10 feas. sol. None 38 210 3 238 s 8 s 200 s 17 s 223 s

5% gap /
15 feas. sol. None 39 503 4 359 s 9 s 200 s 20 s 339 s

First feas. 5% gap 39 543 4 58 s 1 s 10 s 18 s 40 s

20% gap /
5 feas. sol. 5% gap 38 830 3 239 s 4 s 157 s 15 s 149 s

10% gap /
10 feas. sol. 5% gap 38 210 3 164 s 8 s 125 s 12 s 227 s

5% gap /
15 feas. sol. 5% gap 39 503 4 357 s 9 s 200 s 19 s 339 s

L None None 50 586 2 215 s 179 s 6 s 199 s 16 s

First feas. None 50 340 3 171 s 17 s 22 s 94 s 76 s

20% gap /
5 feas. sol. None 51 776 3 498 s 29 s 58 s 308 s 191 s

10% gap /
10 feas. sol. None 50 586 2 116 s 80 s 6 s 100 s 16 s

5% gap /
15 feas. sol. None 50 586 2 215 s 179 s 6 s 199 s 16 s

First feas. 5% gap 51 360 3 136 s 16 s 6 s 86 s 49 s

20% gap /
5 feas. sol. 5% gap 49 076 2 366 s 27 s 17 s 96 s 13 s

10% gap /
10 feas. sol. 5% gap 50 586 2 110 s 81 s 3 s 136 s 536 s

5% gap /
15 feas.sol. 5% gap 50 586 2 208 s 179 s 4 s 195 s 13 s

6.7 shows the equivalent parameter testing as for the greedy strategy in Table 6.6. For
these tests we have chosen to use strategy setting Valid 1 introduced in the previous section.

Table 6.7 portrays no clear conclusion on which parameter setting is optimal for the re-
maining approaches. As for the greedy approach, there is a trade off between the quality
of the solution returned and the time used to return the solution. On average, the fastest
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Table 6.7: Parameter testing: First iteration, Valid strategy

Test
size

Param -
route

Param -
inv. Sol. Nr.

iter.
Total
Time

Time-
1st route

Time -
1st inv.

Tot. time -
route

Tot. time -
inv.

M None None 36 413 3 1 126 s 10 s 160 s 592 s 535 s

First feas. None 36 283 3 670 s 1 s 25 s 596 s 167 s

20% gap /
5 feas. sol. None 35 480 4 771 s 4 s 200 s 326 s 444 s

10% gap /
10 feas. sol. None 35 913 8 1 998 s 8 s 200 s 1 387 s 61 s

5% gap /
15 feas. sol. None 36 413 3 1 116 s 10 s 160 s 580 s 536 s

First feas. 5% gap 36 283 10 4 387 s 1 s 10 s 3 352 s 1 035 s

20% gap /
5 feas. sol. 5% gap 35 480 4 779 s 4 s 204 s 330 s 449 s

10% gap /
10 feas. sol. 5% gap 35 913 8 1 922 s 8 s 136 s 1 389 s 532 s

5% gap /
15 feas. sol. 5% gap 36 973 20 12 412 s 9 s 209 s 6 451 s 5 961 s

L None None 51 073 4 1 806 s 180 s 6 s 1 225 s 581 s

First feas. None 46 790 4 1 864 s 16 s 22 s 1 311 s 553 s

20% gap /
5 feas. sol. None 55 983 2 374 s 36 s 53 s 260 s 114 s

10% gap /
10 feas. sol. None 51 393 4 1 704 s 81 s 6 s 1 048 s 655 s

5% gap /
15 feas. sol. None 51 393 4 1 806 s 181 s 6 s 1 152 s 654 s

First feas. 5% gap 55 936 3 1 438 s 16 s 6 s 518 s 920 s

20% gap /
5 feas. sol. 5% gap 55 586 2 592 s 28 s 17 s 276 s 316 s

10% gap /
10 feas. sol. 5% gap 47 500 2 530 s 81 s 4 s 506 s 24 s

5% gap /
15 feas. sol. 5% gap 47 500 2 629 s 181 s 3 s 606 s 23 s

parameter setting is terminating the first iteration routing problem on 20% or 5 feasible
solutions. However, the quality of the corresponding solutions are not equally good. The
goal of the construction phase is to find the best possible feasible solution at the shortest
amount of time. Given the test results in Table 6.7, the parameter setting resulting in
the best balance between time and solution quality is to terminate the first iteration rout-
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ing problem at the first feasible solution and not terminate the inventory problem. This
is consistent with the logical reasoning presented earlier. Thus, this is the parameter set-
ting that is used in all further tests on the strategy settings except for the greedy approach.

Safety inventory

In Section 5.4, the concept of safety inventory in the routing problem was introduced as
a strategy. In this thesis we express the safety inventory as a percentage of the original
inventory windows. Preliminary testing was executed to find the best level of safety inven-
tory. In all later test instances where safety inventory is included, we use 5% of the original
inventory window as safety inventory. During parameter testing, it was evident that a too
low level of safety inventory lacks influence on the resulting routes. Equivalently, a too
high level of safety inventory influenced the routes too much and the end solution lacked
quality.

6.2.3 Construction phase: Results

In Section 6.1, the performance of the exact solution method was analyzed using three
different sized test cases. In this section, the performance results of the construction phase
of the matheuristic is presented. However, when testing the construction phase, multiple
test cases of each size are needed. With a greater number of test instances, it is possible
to ensure that the construction phase is independent of test case and not designed to fit a
specific test case. Hence, in order to truly test the performance of the matheuristic, five
small-sized test cases and four medium- and large-sized test cases are used.

In order to assess the performance of the construction phase, the exact method performance
results are needed as benchmark. Table 6.8 shows the performance results of 13 test
cases. The three original test cases, corresponding to the test cases used to test the valid
inequalities in the previous section are marked as S1, M1 and L1 respectively. The table
shows the best solution found within a 5000 second time limit, along with the best bound
and corresponding gap. For the test cases that reach optimality within 5000 seconds, the
time to optimality is provided instead of optimality gap. All the exact solutions presented
in Table 6.8 are the result of the exact solution method with the valid inequality settings
recommended in Section 6.1, namely the inclusion of all tested valid inequalities. In Table
6.8, it can be seen that all small test cases manage to find the optimal solution. None of
the test cases of medium-and large size are able to find the optimal solution within the
5000 second time limit.

The remaining part of this section is organized as follows. First, the performance of the
small-sized test cases are analyzed, followed by an analysis of both the medium- and the
large-sized test cases. To conclude, we look at the overall average to identify the best
performing strategy settings. The final part of this section is an analysis of the scalability
of the construction phase.
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Table 6.8: Benchmark from exact solution method results

Best solution Best bound Gap Time to optimality

S1 29 883 29 883 N/A 516 s

S2 27 170 27 170 N/A 938 s

S3 26 590 26 590 N/A 2 084 s

S4 32 404 32 404 N/A 119 s

S5 33 113 33 113 N/A 512 s

M1 35 462 28 420 19,9% N/A

M2 25 262 20 396 19,3% N/A

M3 28 036 20 476 27,0% N/A

M4 21 682 16 851 22,2% N/A

L1 65 253 35 039 46,3% N/A

L2 62 550 34 789 44,4% N/A

L3 34 190 25 134 26,5% N/A

L4 36 313 28 897 20,4% N/A

Small-sized test cases

All small-sized test cases have two ships, four ships and three products. The performance
results of the five small-sized test cases are presented in Table 6.9. For each test case, the
solution found in the construction phase, along with the time and number of iterations
used are presented. To be able to judge the quality of the performance of the construction
phase, the exact solution method performance is given in the first results column, denoted
E for exact. For all strategy settings, the gap between the solution found by the construc-
tion phase of the matheuristic and the best bound identified by the exact solution method
in Table 6.8 is reported. Hence a gap of 0% is equivalent to the optimal solution, while
a gap lower than the gap presented in the E column is equivalent to an improvement in
quality of the solution found. The bottom row of Table 6.9 present the overall average
for the small-sized test cases. The overall average results are color marked in order to
highlight the difference in quality of the solutions found and the time used, in relation to
the exact results. The colors are on a scale from green to red, where green denotes the
highest quality and red denotes lowest quality.

Since all of the small-sized test cases manage to reach optimality within 5 000 seconds
with the exact solution approach, it is possible to identify whether the construction phase
is able to find the optimal solution. For test case S4, all strategy settings but the greedy
approach manage to find the optimal solution in significantly shorter time than the exact
solution method. On average, all strategy settings manage to find a feasible solution in a

83



CHAPTER 6. COMPUTATIONAL STUDY

Table 6.9: Test results of construction phase test instances for the small test cases

Test
case E G V1 V1s V2 V2s H Hs VA VAs

S1 Solution 29 883 30 303 29 943 30 020 29 943 30 303 29 943 30 020 29 943 30 020

Time [s] 516 20,0 20,7 25,6 20,2 32,0 19,6 24,5 20,6 25,7

Iterations N/A 2 2 3 2 3 2 3 2 3

Gap [%] 0,00 1,39 0,21 0,46 0,21 1,39 0,21 0,46 0,21 0,46

S2 Solution 27 170 27 690 29 700 29 423 29 700 29 423 29 700 29 423 29 700 29 423

Time [s] 938 11,1 17,3 13,4 17,5 13,6 17,5 13,0 17,6 13,7

Iterations N/A 2 1 1 1 1 1 1 1 1

Gap [%] 0,00 1,88 8,52 7,66 8,52 7,69 8,52 7,66 8,52 7,66

S3 Solution 26 590 32 203 29 823 28 380 28 823 28 380 30 426 32 810 29 006 28 380

Time [s] 2 084 62,5 415 103 781 104 504 274 241 188

Iterations N/A 4 7 2 10 2 5 5 10 3

Gap [%] 0,00 20,5 14,2 9,81 11,2 9,81 15,9 22,0 11,8 9,81

S4 Solution 32 404 33 548 32 404 32 404 32 404 32 404 32 404 32 404 32 404 32 404

Time [s] 119 24,0 9,0 9,0 8,8 8,7 8,7 8,7 8,9 8,8

Iterations N/A 3 2 2 2 2 2 2 2 2

Gap [%] 0,00 3,41 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

S5 Solution 33 113 35 153 33 113 35 510 35 510 35 510 35 153 33 113 35 510 33 113

Time [s] 512 28,6 49,6 17,7 47,0 15,5 54,7 12,3 35,5 12,0

Iterations N/A 3 6 2 5 2 6 2 4 2

Gap [%] 0,00 5,80 0,00 6,75 6,75 6,75 5,80 0,00 6,75 0,00

Avg. Avg. sol. 29 832 31 779 30 997 31 147 31 276 31 206 31 525 31 554 31 317 30 668

Avg. time [s] 834 29,2 102 33,7 175 34,8 121 66,5 64,7 49,6

Gap [%] 0,00 6,60 4,58 4,94 5,33 5,13 6,08 6,02 5,45 3,59

significantly shorter time than the exact solution method, however, often at the cost of the
quality on the feasible solution found.

The greedy strategy setting manages to find a feasible solution fastest out of the all the
strategy settings. This is evident in the average results presented in Table 6.9. This, along
with the fact that it performs lowest on quality of the feasible solution found, is in line
with the expectations for the greedy strategy. Equivalently, the valid strategy setting is
able to find high quality solutions at the expense of slower convergence to the feasible solu-
tion. The hybrid strategy settings, are in the middle ground between the greedy strategy
setting and the valid strategy settings. Overall, the performance of the construction phase
on the small-sized test cases corresponds with the expectations. On average, none of the
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construction phase solutions manage to outperform the exact solution on solution quality.
However, the run time efficiency performance is superior to the average exact solution time
to optimality.

The strategy settings that include safety inventory use a shorter time to find a feasible
solution compared to the corresponding strategy settings without safety inventory. The
time is reduced with the inclusion of safety inventory because the number of iterations
is reduced. When looking at the results of the majority of the small-sized test instances
with safety inventory, significantly fewer iterations are needed. However, as the inclusion
of the safety inventory cannot be called a valid addition, the quality of the solutions found
with safety inventory is affected. In general, the quality of the feasible solutions found
suffers and is lower than the corresponding strategy setting without safety inventory. The
inclusion of safety inventory is a positive contribution with respect to the solution time of
the small-sized test instances. However, it is important to note that the safety inventory
increases the complexity of the routing problem, and this increase in complexity has likely
a greater impact on larger test cases.

The only difference between strategy setting V 1 and V 2 is the inclusion of Strategy 2 in
V 1. Strategy 2 imposes additional operation periods in the violation port. When looking
at the test results of the small-sized test cases, the majority of the test instances show
almost no difference in performance between strategy setting V 1 and V 2. When designing
this strategy, the focus was to retain the validity of the routing problem and not knowingly
remove the optimal solution. As a result, the majority of the small test cases is not affected
by the addition of the valid inequalities of Strategy 2.

When analyzing the functionality and effect of the proposed valid inequalities of Strategy
2, it became evident that the way the valid inequalities are designed, they will not neces-
sarily force a change on the routes of the routing problem. To be able to understand why,
it is important to consider the interaction between the routing problem and the inventory
problem. The only component of the routing problem solution that is saved between the
routing problem and the inventory problem is the set of ship routes, and the operation
variable solution of the routing problem is not utilized by the inventory problem. The
purpose of the operation variable in the routing problem is to affect the sequence of port
visits through valid inequalities on the operation variable. Hence, there is not necessarily
a connection between the number of operation periods in the routing problem and the
number of operation periods in the inventory problem. Since the routing problem is not
directly constrained by the inventory limits like the inventory problem, the distribution
of operation periods across the ports and ships in the routing problem may differ notably
from the distribution in the inventory problem. The impact of this difference in distribu-
tion of operation periods is most easily explained through an example. Lets say that in the
first iteration of the routing problem, the fleet operate for seven time periods in Port 1.
However, when returning the route solution to the inventory problem, the inventory only
operate four time periods in Port 1 and provoke a three period violation in Port 1. With
Strategy 2, a new constraint is added to the next iteration of the routing problem using the
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number of operation periods in the inventory problem as reference. The lower bound on
operation periods now become four time periods plus the periods needed to account for the
violation. In this example two time periods are needed. Thus, the valid inequality added
to the routing problem for Port 1 is a requirement of at least six time periods of operation,
a lower requirement than what was used in the first iteration of the routing problem. The
lower requirement is a result of a wrongful distribution of the operation periods in the
routing problem in the previous iteration. Hence, no changes to the routes are imposed
solely based on Strategy 2 in these situations. However, it is important to note that even
though the strategy does not necessarily enforce a change in the route in this iteration, it
serves as a lower bound for all later iterations and contributes to limit the feasible region
of the problem. Test instance V 1_S3 is a good counter example, where Strategy 2 has
contributed to a significant reduction in time before a feasible solution was found.

In order to be sure of a change in the number of operation periods in each iteration of the
routing problem, a more greedy approach is needed. An alternative way to formulate this
strategy is to always use the number of operation periods from last iteration of the routing
problem as the basis of the lower bound. However, since it not necessarily the number of
operation periods, but the distribution across both ports and ships that is the challenge,
there is no guarantee that this approach is well functioning.

Medium-sized test cases

The medium-sized test cases are designed with three ships, six ports and four products.
We now present and discuss the results of the medium-sized test cases with the strategy
settings. Table 6.10 presents the performance results of the four medium-sized test cases.
As for the small-sized test case results, all test instance results are presented with the
feasible solution found by the construction phase, along with the running time, number of
iterations and gap between the solution found and best bound from Table 6.8.

In Table 6.10, ’-’ is used to denote that no feasible solution was found given the parameter
setting chosen. Not all of the relevant test instances managed to find a feasible solution in
the iteration reported within the time limit of 500 seconds for each iteration. Hence, the
search was terminated. This impacts the calculation of the average solution and average
time since there is no solution or time to take into consideration. However, it should count
negatively for a strategy setting that it did not manage to find a feasible solution. As a
result, we have chosen to calculate the solution and the time for these test instances as
the worst solution and time found by any other strategy setting of that test case with an
addition of 20%. The penalty is added to account for the fact that it is worse for a strategy
setting to not find a feasible solution than to find a solution of low quality.

When looking at the average performance results of the medium-sized test instances in
Table 6.10, there are some strategy settings that stand out. As was evident in the results
of the small-sized test instances, the greedy strategy has the fastest rate of convergence to
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Table 6.10: Test results of construction phase test instances for the medium test cases

Test
case E G V1 V1s V2 V2s H Hs VA VAs

M1 Solution 35 462 38 210 36 683 36 683 35 753 36 747 37 323 38 093 34 813 36 683

Time [s] 5 000 166 2 253 737 348 339 1 579 849 399 705

Iterations N/A 3 5 3 2 2 5 4 2 3

Gap [%] 19,9 25,6 22,5 22,5 20,5 22,7 23,9 25,4 18,4 22,5

M2 Solution 25 262 25 513 23 730 33 444 - 33 444 27 111 33 444 24 571 33 444

Time [s] 5 000 107 5 699 37,0 - 36,9 1 206 37,2 3 329 39,4

Iterations N/A 2 13 1 17 1 7 1 9 1

Gap [%] 19,3 20,1 14,0 39,0 - 39,0 24,8 39,0 17,0 39,0

M3 Solution 28 036 32 136 27 960 - 27 960 - 28 060 34 837 27 960 27 960

Time [s] 5 000 369 1 216 - 848 - 432 1 659 1 041 1 009

Iterations N/A 7 9 20 6 20 4 7 9 6

Gap [%] 27,0 36,3 26,8 - 26,8 - 27,0 41,2 26,8 26,8

M4 Solution 21 682 21 283 20 172 - 24 966 - 21 805 23 344 23 156 21 897

Time [s] 5 000 228 3 321 - 5 460 - 3 044 3 805 8 464 3 727

Iterations N/A 4 10 13 13 9 8 7 13 7

Gap [%] 22,2 22,2 16,5 - 32,5 - 22,7 27,8 22,3 23,0

Avg. Avg. sol. 27 610 29 286 27 136 35 473 32 203 35 489 28 575 32 430 27 625 29 996

Avg. time [s] 5000 218 3 122 3 120 3 374 3 131 1 565 1 588 3 308 1 370

Gap [%] 22.1 25,7 20,0 39,1 32,2 39,1 24,6 33,4 22,3 27,8

a feasible solution. Compared to all other strategy settings, the time to a feasible solution
is significantly lower. The difference in time to a feasible solution between the different
strategies is even greater for the medium-sized test cases than for the small ones. This
is likely due to the greater complexity of the instances and corresponding longer average
time per iteration for the none-greedy approaches. However, all strategies are able to find
a feasible solution within the 5 000 second time limit. In terms of average quality on the
solutions that are found, only the Valid 1 approach manage to compete with the exact
solution method.

The average performance of strategy settings V1s and V2s along with V2 on the medium-
sized test case is dramatically affected by the penalty from the lack of ability to find a
feasible solution with the given parameter settings. The inclusion of safety inventory in-
creases the complexity greatly for test instance V 1s_M3 compared to V 1_M3. The same
applies to test instances V 2s_M3, V 1s_M4 and V 2s_M4. As already discussed, im-
posing safety inventory implies a potential for an increase in activity for the ships in the
routing problem. With stricter requirements to the number of port visits, compartments
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needed and operations periods in each port, the complexity increases. As a result, these
strategy settings fail to find a feasible routing solution in the routing problem in the given
iteration.

Large-sized test cases

The large-sized test cases are composed of four ships, eight ports and four products. The
performance of the construction phase of the matheuristic with the large test cases are
presented in Table 6.11. All test instances are presented with solution found, time to a
feasible solution, the number of iterations utilized and gap. ’-’ is used to denote the cases
where no feasible solution was found given the parameter settings, and the implications
are identical to that of the medium-sized test cases.

Table 6.11: Test results of construction phase instances for the large test cases

Test
case E G V1 V1s V2 V2s H Hs VA VAs

L1 Solution 61 310 50 587 46 790 49 030 53 323 56 600 48 726 47 843 47 160 57 013

Time [s] 5 000 109 1 844 1 180 1 887 2 446 1 645 926 1 679 3 420

Iterations N/A 2 4 3 4 5 5 3 6 6

Gap [%] 43,0 28,1 41,1 33,2 19,8 11,0 34,2 37,3 39,7 10,0

L2 Solution 62 550 47 010 42 786 45 416 45 400 46 427 42 787 47 200 47 063 55 756

Time [s] 5 000 480 1 895 4 441 2 604 4 234 2 252 2 904 2 337 4 092

Iterations N/A 2 3 6 4 6 4 5 4 7

Gap [%] 44,4 18,5 41,8 26,8 26,9 21,5 41,8 17,6 18,3 -18,5

L3 Solution 34 190 32 146 34 888 - 33 782 35 528 36 656 36 142 35 050 -

Time [s] 5 000 1 110 2 064 - 8 926 2 555 3 912 2 976 4 355 -

Iterations N/A 3 4 9 13 5 7 4 7 9

Gap [%] 26,5 29,3 9,50 - 17,1 5,32 -1,70 1,44 8,42 -

L4 Solution 36 313 36 653 35 067 34 257 33 953 34 290 36 440 38 550 33 413 34 257

Time [s] 5 000 537 1 599 5 874 8 228 386 1 164 1 553 1 222 1 002

Iterations N/A 5 3 11 14 2 6 7 3 3

Gap [%] 20,4 11,6 25,6 33,2 36,2 32,9 13,5 -3,50 41,6 33,2

Avg. Avg. sol. 49 577 41 599 39 883 43 173 41 645 43 211 41 152 42 434 40 672 47 753

Avg. time [s] 5 000 559 1 851 5 552 5 411 2 405 2 243 2 090 2 393 4 806

Gap [%] 34,4 24,9 22,3 27,6 24,5 27,0 24,7 27,1 23,4 33,7

The construction phase is not able to compete on quality with the exact solution method
for the small-sized test cases and not notably on the medium-sized test cases either. How-
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ever, there is an increase in performance on quality from the small-sized test cases to the
medium-sized test cases. In Table 6.11, it is evident that the construction phase is superior
to the exact solution method on both time and quality in the large sized test cases. It is
apparent that the value of the construction phase increases with the complexity and size of
the test cases. The more complex the test cases are, the harder it is for the exact solution
method to efficiently find good solutions.

On average, all strategy settings return a lower optimality gap than the exact method. The
Valid 1 approach, which is one of the settings striving to make valid choices and return
high quality solutions, imposes a 35% reduction of the exact gap. Unlike in the smaller
test cases, setting V1 does not sacrifice the efficiency of the search in the same degree to
produce high quality solutions. As expected and in line with earlier results, the greedy
strategy is highly efficient. However, on average, the greedy strategy also manage to find
a fairly good feasible solution. The feasible solutions found by the construction phase are
subject to a subsequent improvement phase. With the possibility of improving the quality
of the solution, the superior efficiency of the greedy strategy setting should be noted.

Strategy setting V1 outperforms V2 both in the medium- and large-sized test instances.
This implies that the contribution from Strategy 2 is both significant and important. Even
though Strategy 2 might not always impose restrictions directly forcing a change on the
routes single-handedly, the valid inequalities function as lower bounds essential for the ef-
ficiency in all later iterations.

Two of the strategy settings with the best overall average performance on the large-sized
test cases are V1 and VA. The only difference in the design of these two strategy settings
is the use of Strategy 3 in V1 and Strategy 4 in VA. Since the purpose of Strategy 3 and
4 is identical, V1 and VA should to a great extent have similar performance on the same
test cases. The only difference between Strategy 3 and 4 is the method of formulating the
commodity flow. The commodity flow in Strategy 3 is formulated with a super source to
solve the issue of possibly multiple sources for the commodity. This is considered common
practice and is the method used to solve problems with multiple sources. Strategy 4 is a
new way of solving the occurrence of multiple sources, however, it can not be considered
equally elegant as the use of a super source. Still, it is interesting to see how the difference
in formulation impacts the solution efficiency and quality.

The first iteration routing and inventory solution is identical for V1 and VA. We use test
case L1 as an illustrating example of the impact of the difference in formulation of the com-
modity flow in Strategy 3 and Strategy 4. The first iteration routing problem for instances
V 1_L1 as well as for V A_L1 is built up of 10 110 variables and 2 739 constraints after
the presolve procedure in Xpress. The most important difference between the formulation
in Strategy 3 and Strategy 4 is the number of variables and constraints added in each iter-
ation. The second iteration routing problem of test instance V 1_L1 has 24 200 variables
and 14 207 constraint, hence an 139 % increase in the number of variables from the first
to the second iteration. On the other hand, the second iteration routing problem of test
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instance V A_L1 has 26 917 variables and 18 134 constraints, which is equivalent to a 166
% increase in the number of variables. This increase in size of the routing problem results
in higher complexity of the routing problems of strategy setting VA. As a result, the rout-
ing problems of the VA instances have a harder time reaching optimality within the 500
second time limit and the 200 second time limit since the last discovered feasible solution.
In the specific case of test case V A_L1, the routing problem is terminated often due to
the fact that the time since last feasible solution found in the search exceeds 200 seconds.
Consequently, the time in each iteration is reduced at the cost of more iterations compared
to V 1_L1. Instance V 1_L1 manage to a great extent to reach the optimal solution within
the given time limits and thus use noteworthy more time in each iteration. However, since
the routing problems in V A_L1 are terminated early, the routes returned to the inventory
problem are not as good as those returned from a routing problem of V 1_L1 with closed
gap. As a result, the feasible solution returned by V A_L1 is of lower quality than the
solution returned by V 1_L1. The performance of the strategy setting V1 and VA is on
average positively correlated, however, the average performance of V1 is superior to VA
due to the lower complexity of the routing problem as a result of a more elegant formulation.

Construction phase performance

The performance of the construction phase has until now been presented and commented
independently for the three test case sizes. However, in order to conclude on which strategy
settings that facilitate for the best construction phase performance, it is essential to take
the overall results into account. Hence, we now look at the overall average performance
results of the construction phase for each strategy setting. Table 6.12 presents the average
solution found by the construction phase, along with the average time to a feasible solution.
The third row of Table 6.12 reports the average gap given the best bounds discovered by
the exact solution approach in Table 6.8.

Table 6.12: Overall average construction phase results for the different strategy settings

E G V1 V1s V2 V2s H Hs VA VAs

Avg. sol. 35 673 34 034 32 543 36 178 4 742 36 218 33 580 35 171 33 058 35 718

Avg. time [s] 3 611 250 1 569 2 715 2 770 1 717 1 218 1 157 1 779 1 920

Avg. gap [%] 18,8 14,8 12,5 18,2 17,2 18,1 15,2 17,5 13,8 18,0

At this point, it is possible to draw some conclusions on which strategy settings that are
well-functioning and which should be discarded. There are especially three strategy set-
tings that stand out as interesting for continued testing and as input to the improvement
phase of the matheuristic. First, the greedy strategy setting has consistently been proved
as the most efficient setting. On average, it has a significantly shorter time to a feasible
solution compared to the other strategy settings and the exact solution method. As can be
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seen in Table 6.12, the greedy strategy setting manages on average to be efficient while also
returning fairly good solutions. Further, it has become evident through all test results that
the Valid 1 approach manages to return the highest quality feasible solutions. The superior
performance on returning high quality solutions comes at the expense of the efficiency of
the construction phase using V1 as strategy setting. The last strategy setting that stands
out is the hybrid strategy setting. The hybrid approach is neither best on efficiency nor
quality, however, it shows overall good performance in both dimensions. Due to these con-
clusions, we continue with strategy settings G, V1, and H when testing the improvement
phase of the heuristic. Before analyzing the performance of these three strategy settings
further, some last attention is dedicated to the remaining strategy settings not chosen for
further analysis.

The use of safety inventory has had a tendency to positively affect the efficiency of the
construction phase on the smaller test instances. However, this is not equally clear in the
overall average of the safety inventory strategy as it is highly affected by the fact that
multiple instances in both the medium- and large-sized test cases failed to find a feasible
solution. The positive contribution on the efficiency does not outweigh the reduction in
quality on the solutions returned. Hence, the testing of the strategy settings with safety
inventory is not further extended.

The contribution of Strategy 2 in strategy setting V1 is significant and essential for both
the efficiency and the quality of the solution. As this is the major difference between strat-
egy settings V1 and V2, it is more interesting to precede testing with strategy setting V1
than V2.

The last remaining unaddressed strategy setting is VA. As already explained, the purpose
of VA is identical to V1, and there is only a technical difference in the formulation of the
components of VA and V1. Since V1 has consistently, on average, marginally outperformed
VA, we have chosen to continue testing with V1 rather than VA.

The three promising strategy settings: G, V1, and H
We can now evaluate the most promising strategy settings. From now on, G is referred to
as the greedy strategy, V1 as the valid strategy (V), and H as the hybrid strategy. Ta-
ble 6.13 shows the development of the number of variables and constraints in the routing
problem for each strategy setting for example test case L1. There is a significant difference
in both the number of variables and constraints between the three strategies. The number
of variables in the greedy strategy setting remains unchanged in each iteration. In the
greedy strategy, only one constraint is added for each violation in the previous inventory
problem. Hence, there is an increase in number of constraints in each iteration. Compared
to the complexity of the hybrid and valid approach, the complexity of the greedy strategy
is significantly lower which enables the efficiency of the greedy approach. The valid ap-
proach has a higher variable count than the hybrid approach due to the inclusion of the hop
formulation. The number of constraints is highly dependent on the number of violations in
the inventory problem. Hence, the numbers in Table 6.13 imply that the hybrid approach
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experienced a higher number of violations than the valid approach, since the difference in
the number of constraints is supposed to be fairly equal.

Table 6.13: Development of the size of the routing problem

Variables Constraints

Iter. G V H G V H

1 12 076 10 110 10 100 4 424 2 739 2 739

2 12 076 24 200 23 855 4 432 14 207 27 817

3 34 700 28 885 25 103 39 473

4 43 246 31 201 34 406 35 793

5 37 805 43 040

The search for a feasible solution is an iterative search, where the routing problem supplies
information to the inventory problem which return additional information to the next it-
eration routing problem. Figure 6.2 shows the development of the objective value in the
routing problem and in the inventory problem for the three chosen strategy settings for
example test case L1. As can be seen, the objective value of the two problems converge
towards each other. The objective value of the routing problem is strictly increasing after
the first iteration. In the first iteration, the routing problem is terminated early resulting
in an artificially high objective value. However, in all later iterations, new restrictions are
imposed and it becomes impossible to reduce the routing objective value. Due to the un-
predictable nature of the violation penalty, the inventory problem is not strictly decreasing.
In earlier iterations when the quality of the route solution is low, high penalty costs are
incurred and the objective value of the inventory problem is artificially high. As the qual-
ity of the route solution improves, the inventory objective value decreases. However, the
objective value might increase in later iterations in situations where the cost of resolving
the violation is higher than the actual penalty cost of the violation.

Figure 6.2: Development of objective value in the routing and inventory problem in each
iteration. Dotted/solid line represents the routing/inventory problem objective value.
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6.2.4 Construction phase: Scalability study

To be able to investigate the scalability of the construction phase, it is necessary to test
the construction phase on time horizons of different lengths. Originally, we have used 14
days as standard planning horizon with 3 time periods each day. Hence, the used time
horizon is equivalent to 42 time periods. When testing the scalability of the construction
phase, both 18 days and 21 days are tested as length of the planning horizon. This is
equivalent to a length of 54 time periods and 63 time periods, respectively. To extend
the time horizon, it was necessary to add port production and consumption levels for the
added time periods. The scalability results of the greedy strategy is presented in Table
6.14. Scalability is measured in terms of both time to find a feasible solution and the total
number of nodes processed by both the routing problem and the inventory problem in all
iterations. Overall, a significant increase in both time and the number of nodes processed
can be seen for the longer time horizons. The notation ’-’ means that the construction
phase failed to find a feasible solution given the parameter settings used.

Table 6.14: Scalability results of the greedy strategy

G

14d 18d 21d

Time [s] Nodes Time [s] Nodes Time [s] Nodes

S1 15,8 21 710 14,4 5 838 106 45 459

S3 17,2 10 735 531 315 436 1 464 454 5143

M1 182 86 795 388 202 687 - -

M3 369 148 015 1 970 320 847 1 390 131 964

L1 583 266 942 8 373 571 094 - -

L4 537 150 430 2 169 161 131 7 424 368 281

The reason for only presenting the scalability results of the greedy strategy is that the tests
with longer time horizons on both the hybrid and the valid approaches failed to return a
feasible solution within the time limits given in the parameter settings. Both of these
strategies impose a large increase in complexity to the problem compared to the greedy
strategy with the original time horizon. Hence, neither the hybrid nor the valid strategy
can be considered scalable strategies.

6.2.5 Improvement phase: Parameter setting

In this section, we present the parameter settings for the improvement phase of the
matheuristic. The purpose of the improvement phase is simply to improve the feasible
solution from the construction phase. In addition to the operators designed and presented
in Section 5.5, several parameters are needed to facilitate this improvement. First, we
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present the necessary time limit constraints applicable for all improvement operators. Sec-
ond, we present the parameter settings relevant for the three operators independently.

Time limits

As for the construction phase, time constraints and limits are necessary to secure an ef-
ficient improvement phase. First, the time limit of each iteration must be decided. For
the Inter operator, preliminary testing showed that very few iterations needed more than
100 seconds to find an improvement of the currently best solution. Equivalently, when em-
ploying the Intra operator, the majority of the iterations of the search managed to reach
a sufficiently small gap within the 100 second time limit. Hence, the time limit for each
iteration of the search is 100 seconds.

In Section 5.5, the improvement phase of the matheuristic was presented as a first im-
provement scheme, where the search is terminated in relation to the timing of the first
improvement made to the currently best solution. The concept of a time buffer was in-
troduced to not limit the search from reaching solutions in close proximity. The size of
this time buffer is determined to be 20 seconds on the basis of preliminary testing. It is
important to keep this time buffer relatively small in size to ensure the efficiency of the
improvement search.

The last technical efficiency measure added to the improvement phase is the termination
of the search at 1% optimality gap. Naturally at 1% optimality gap, we can ensure that
the current solution is only 1% away from optimum, and using time on proving optimality
is not adding any value to the improvement search.

Parameter setting: Intra operator

The Intra operator iteratively opens up for improvement of the route of each ship. With this
in mind, the only relevant parameter is the termination criteria. With termination criteria,
we mean at which criteria should the improvement heuristic stop the iterative search for
better solutions. As presented in Section 5.5, the minimum number of iterations for the
Intra operator is equivalent to the number of ships in the fleet, V . There are multiple
options of defining the maximum number of iterations, for example V iterations, 2xV

iterations, or run until no further improvements have been found in the last V iterations.
During preliminary testing, it was observed that the latter was the best option when
considering both quality of the final solution and the efficiency. Hence, for all testing of
the Intra operator, the termination criteria is the following: Stop if there has not been any
new improvements in the last V iterations.

Parameter setting: Inter operator

For the Inter improvement operator, there are four main parameters to be determined
in addition to the time constraints defined above. The relevant parameters are: termina-
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tion criteria, length of time interval, fraction overlap between time intervals and time slack.

The lower bound on the number of iterations of the improvement phase when using the
Inter operator is equivalent to the total number of intervals, I. Two termination criteria are
chosen to be tested for the Inter operator. First, the improvement heuristic is run exactly
I iterations before it is terminated. With this criteria, the improvement heuristic is able
to run through all the periods of the planning horizon exactly once. The second criteria
is equivalent to that used by the Intra operator, namely to run the improvement heuristic
until no new improvements have been found in the last I iterations. Hence, the heuristic
has the opportunity to make further improvements after the first round of improvements.
The first criteria is denoted I and the second criteria is denoted I+.

Since the number of iterations needed to cover all time periods of the planning horizon is a
function of the length of each time interval and the degree of overlap, these are important
parameters for the Inter operator. There are many considerations that need to be taken
when determining these two parameters. First, the degree of overlap must be decided. A
large degree of overlap results in a large number of intervals covering close to all time period
combinations in the route. With such an overlap, very few improvements are removed from
the list of possible improvements. However, the efficiency cost of a large degree of overlap
is high. With a small degree of overlap, the consequence is fewer intervals and thus higher
efficiency as well a reduction in possible improvements. Whether it is beneficial with a
large degree of overlap or a small degree of overlap is highly dependent on the structure of
each specific input route. As a result of the lack of consistency in the preliminary results,
we have fixed the degree of overlap to half the length of the time interval. It can be noted
that a measure to minimize the repercussions of this specific parameter setting is to arbi-
trarily change the starting points of the time intervals when starting the iterations again at
the beginning of the planning horizon. Hence, for each time you iterate over the planning
horizon, new combinations of time intervals are used, resulting in more possibilities for
improvements of the routes. However, preliminary testing showed that only marginal ben-
efits could be gained from this. This supports the decision to keep this parameter constant
without further testing.

For the remaining two parameters, the interval length and time slack, further testing is
needed. Table 6.15 presents the test results for the three dimensions we want to test,
namely termination criteria, length of time interval and the number of time periods of
time slack. The lengths of time intervals tested are 8, 10, or 12 time periods. The number
of time periods of time slack tested is 0,1,2 and 3. A maximum of three time periods
of slack is tested as preliminary tests showed that a greater number of time periods of
slack resulted in too much flexibility outside the free time interval. No significantly better
solutions were found to make up for the increase in running time. For all test results, the
objective value, running time and the number of improvements are reported. With number
of improvements we refer to how many iterations there has been an improvement to the
best current solution.
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Table 6.15: Parameter testing: Inter operator

Test
case

Interval
length

Time
slack

Objective
I iter.

Time
I iter.

Nr. of
impr.

Objective
I
+ iter.

Time
I
+ iter.

Nr. of
impr.

M 8 0 40 173 8 s 2 39 890 15 s 4

8 1 39 730 17 s 5 38 650 40 s 7

8 2 37 020 29 s 4 37 020 49 s 4

8 3 36 027 33 s 4 36 027 54 s 4

10 0 40 783 10 s 2 39 890 34 s 4

10 1 39 930 21 s 4 36 033 48 s 10

10 2 35 530 36 s 7 35 463 86 s 8

10 3 36 450 56 s 5 35 463 171 s 7

12 0 40 313 17 s 3 39 460 44 s 7

12 1 35 530 31 s 5 35 463 66 s 7

12 2 35 530 57 s 5 34 633 152 s 9

12 3 35 530 98 s 4 34 633 171 s 11

L 8 0 50 000 13 s 1 50 000 17 s 1

8 1 47 773 35 s 5 47 450 76 s 8

8 2 48 333 66 s 2 48 333 114 s 2

8 3 47 143 115 s 3 47 143 186 s 3

10 0 50 340 27 s 0 50 340 27 s 0

10 1 47 993 56 s 4 47 417 194 s 7

10 2 47 993 109 s 2 47 993 254 s 2

10 3 48 289 189 s 3 48 289 329 s 3

12 0 50 000 60 s 1 50 000 172 s 1

12 1 47 120 128 s 5 47 120 252 s 5

12 2 50 000 161 s 1 50 000 339 s 1

12 3 48 993 209 s 2 48 037 470 s 3

As can be seen in Table 6.15, for each length of time interval, the running time increases as
the time slack increases. For the medium-sized test case, the objective value also improves
with the increase in number of time periods of time slack. The running time increase with
both the length of the time interval and the number of time periods slack. This results
in a larger neighborhood and explains both the improvement in objective value and the
increase in running time. For the large-sized test instance, the objective value does not
consistently improve with the length of time interval and number of time periods slack.
This can be explained by the added size and flexibility. The result can be the need for
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more time to discover the same solutions and a termination of each iteration caused by the
time limit rather than the discovery of an improved solution.

When deciding the parameter setting, the trade-off between adding enough flexibility to
find good solutions and not increasing the problem to an unmanageable size must be con-
sidered. Without test results from a larger pool of test instances, it is hard to determine the
best suiting parameter setting for this improvement operator. However, we must conclude
on the parameter setting with the currently available information. Based on the results of
Table 6.15 and the desire to achieve a flexible problem without increasing the complexity
significantly, we conclude that the use of 10 as time interval length and 2 as the number of
time periods slack on variables outside the free time interval are suitable parameters. This
parameter setting seems able to achieve good solutions without using unreasonably long
time, independent of termination criteria. Consequently, the number of time periods each
time interval shifts is 5.

The final parameter that needs to be decided on is the termination criteria for the Inter
operator. Given the parameters already decided, the choice between the two termination
criteria comes down to the weighting of quality of solution contra the weighting of the run
time. For the medium-sized test case, the use of I+ returns a better solution than I at a
cost of longer run time. For the large-sized test case, the solutions returned are equal, but
I
+ use longer time. The use of I+ implies an increase in run time, however it also increases

the potential for finding better solutions. Since the difference in run time between the two
termination criteria is insignificant in relation to the time needed by the exact solution
method, we want to use I+ as termination criteria to facilitate a search for high quality
solutions.

Parameter setting: Combination operator

All the parameter settings applicable for the Intra and Inter operator separately are also
applicable for the Combination operator. The Combination operator always utilizes the
termination criteria of the improvement operator that is currently being executed. Hence,
no additional parameters need to be defined.

6.2.6 Improvement phase: Results

In this subsection, we present the results from testing the improvement heuristic on so-
lutions from the construction phase of the matheuristic. In Section 6.2.3, we concluded
that strategy settings G, V1 and H were the best performing settings for the construction
phase. Consequently, we only test the improvement phase on solutions returned by the
construction phase with either of these three settings. Due to time and computational
resource constraints, only two test cases from each test case size from the construction
phase is chosen as input for the improvement phase. The input test cases were chosen at
random, and S3, S5, M1, M3, L1, and L4 are the test cases we use to test the improvement
phase. In the remaining part of this section, the results from running the improvement
heuristic with the three operators defined are presented and discussed. The Intra, Inter and
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Combination operators are all tested with the three construction phase strategy settings.

The results from running the improvement heuristic on the specified test instances is re-
ported in Table 6.16. First, the improvement solution, i.e. the final solution achieved by
the matheuristic, is reported. To be able to assess the performance of the improvement
phase, the percentage improvement from the construction phase solution to the improve-
ment phase solution is included. The construction phase solutions used to calculate the
percentage improvement can be found in Section 6.2.3. The improvement time, which
refers to the running time of the improvement phase is reported along with the number of
improvements. In the case where the optimal solution was found in the construction phase,
the improvement phase is not needed and results are thus reported as not applicable.
Overall, the improvement heuristic is able to improve the majority of the test instances. At
least one of the operators are able to find a solution that improve the construction phase
solution. In fact, it is only two test instances, V 1_M1 and V 1_M3, out of the 18 test
instances where the improvement phase fails to find an improvement from the construction
phase solution. In general, all the three improvement operators are efficient. This can be
seen by the average performance in Table 6.16. On average, all operators manage to find
an improvement for all the three strategy settings. However, Table 6.16 indicate that it
is the solutions from the construction phase run with the greedy approach that is most
responsive. This is along the lines of the expectation, and we continue this discussion
later. First, to get a deeper understanding of the functionality of the improvement phase,
we discuss the results of the different improvement operators in greater detail.

The Intra and Inter operators

As described in Section 5.5, the Intra operator improves the route of one ship at a time,
while the Inter operator can improve the solution by making changes across ship routes.
When analyzing the results in Table 6.16, it is clear that there is no consistency in which of
the Intra and Inter operator that is superior in performance. This can easily be explained
by the fact that both of Intra and Inter is highly dependent on the structure of the input
solution received from the construction phase. Hence, given one solution structure, Intra
is superior to Inter and vice versa for other structures. The solutions returned from the
construction phase are sometimes constructed in a way that enables improvements within
one ship route, while for other solutions the possibility of doing cross ship changes is es-
sential for improving the solution.

The Intra operator is able to find solutions that are not reachable through the use of the
Inter operator. This happens when the changes in a ship schedule with the Intra operator
occur beyond the limits of all the time intervals used in Inter. An example of this occur in
test instance V 1_S3. In the input solution from the construction phase, Ship 1 travels the
following route (departure time): [5(1) - 4(7) - 1(14) - 3(23) - 4(27) - 0]. After employing
Intra, the solution is improved and Ship 1 has the following route: [5 - 4 - 3 - 1- 0]. Port 4

is no longer visited twice, and Port 3 is visited before Port 1. In the first solution, Port 1

was originally visited in time period 14, while Port 3 was visited in time period 23. When
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Table 6.16: Results from testing the Intra, Inter and Combination improvement operators

Test
case Info Intra

G
Inter Comb. Intra

V1
Inter Comb. Intra

H
Inter Comb.

S3 Imp. sol. 27 813 29 793 26 763 26 763 29 793 26 763 27 713 30 377 26 763

% Imp. 13,6 7,48 17,2 10,3 0,10 10,3 8,91 0,15 12,0

Imp. time [s] 147 36 71 24 31 35 188 17 145

Nr. of impr. 2 4 4 2 0 2 3 1 4

S5 Imp. sol. 33 380 34 113 33 113 N/A N/A N/A 33 280 34 113 33 113

% Imp. 5,04 2,96 5,80 N/A N/A N/A 5,33 2,96 5,80

Imp. time [s] 71 26 83 N/A N/A N/A 69 25 83

Nr. of impr. 3 2 3 N/A N/A N/A 3 2 3

M1 Imp. sol. 36 900 35 217 35 217 36 683 36 683 36 683 37 323 36 683 36 283

% Imp. 3,43 7,83 7,83 0,00 0,00 0,00 0,00 1,71 2,79

Imp. time [s] 124 51 200 114 31 139 128 65 498

Nr. of impr. 2 3 4 0 0 0 0 2 4

M3 Imp. sol. 26 11 27 693 26 110 27 960 27 960 27 960 27 960 27 960 27 960

% Imp. 18,8 13,8 18,8 0,00 0,00 0,00 0,40 0,40 0,40

Imp. time [s] 33 88,3 50 103 41,5 262 208 53 344

Nr. of impr. 2 6 2 0 0 0 1 1 1

L1 Imp. sol. 47 850 48 743 46 637 46 540 46 637 46 540 46 637 48 643 46 637

% Imp. 5,41 3,65 7,81 0,53 0,33 0,53 4,29 0,17 4,29

Imp. time [s] 300 404 691 210 149 415 298 40 458

Nr. of impr. 3 4 6 1 1 1 2 2 2

L4 Imp. sol. 34 373 33 953 33 313 34 173 33 313 33 313 33 480 33 313 33 313

% Imp. 6,22 7,37 9,11 2,55 5,00 5,00 8,12 8,58 8,58

Imp. time [s] 482 126 255 157 154 286 140 102 178

Nr. of impr. 2 6 5 1 4 2 1 5 2

Average Avg. % Imp. 8,75 7,19 11,1 2,22 0,90 2,63 4,50 2,32 5,64

Avg. time [s] 193 122 225 101 68 189 172 50 284

employing the Inter operator with the defined parameter settings, no time interval is cre-
ated where both time period 14 and 23 are included. As a result, the Inter operator is not
able to reach the same solution as Intra in this case. This is clearly a drawback of the Inter
operator. If the improvement heuristic is to be developed further, it can be beneficial to
consider an alternative way of creating time intervals to cover the planning horizon more
exhaustively.
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Naturally, the Inter operator can also find solutions not reachable by the Intra operator.
Test instance G_L4 is an example of this. When using the Inter operator to improve the
construction phase solution, an additional port visit is added to the route of Ship 2. This
type of change in the ship routes is not possible with the Intra operator, as the operator
can only change the sequence of port visits, and/or remove a port visit from the sequence.

In the majority of the test instances, the Intra and Inter operator causes the improvement
phase to return different solutions. However, there is no clear trend on which operator
returns the highest quality solution. The major difference between the performance of
the two operators are found in the running time. As can be seen in Table 6.18, the Inter
operator is superior to the Intra operator when it comes to the average run time. Since the
difference in run time is low on the exact solution time scale, it is not enough to discard
the Intra operator. The next interesting step is to see how these two operators function
together. With the Combination operator, the improvement heuristic might be able to
reach solutions that are not reachable by either Intra or Inter independently.

The combination operator

As can be seen in Table 6.16, the Combination operator is consistently able to find at least
an equally good solution as was found by either the Intra or Inter operator. It is worth
noting that the run time cost of the Combination operator is also consistently higher than
the Intra and Inter operator. To run both Intra and Inter operators sequentially in the
same improvement scheme requires an increase in the number of iteration. The result is
an increase in running time. However, in approximately half of the instances tested, the
Combination operator is able to find a solution superior to the solutions found both by
Intra and Inter. This improvement is made possible because the Combination operator
alternate between the Intra and the Inter operator. Whenever one of the operators find
an improvement to the currently best solution, a new neighborhood that was unreachable
for the other operator is made available. The drawback of the additional running time
when employing the Combination operator must be seen in relation to the time used in
the Construction phase. Initially, the increase in run time as a result of the Combination
operator instead of the Intra or Inter operator is not substantial.

Even though it was not apparent in our test results, there is no guarantee that the Combi-
nation operator is able to find an equally good solution as was found by either the Intra or
the Inter operator. During the execution of the improvement heuristic with the Combina-
tion operator, each ship is iterated through, employing the Intra operator and keeping one
ship free in each iteration. During the execution of Intra, changes to the route of one or
more ships might occur. This consequently changes the input solution for the subsequent
Inter operator. The change in the solution results in a change in the neighborhood of the
Inter operator. High quality solutions that was originally reachable can now have been
removed from the neighborhood. The result is a lower quality solution. However, it is
important to keep in mind that it is equally likely that high quality solutions are added to
the neighborhood of Inter.
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Improvement phase performance

The improvement phase of the matheuristic is essential for finding high quality solutions.
It is a substantial difference on the effectiveness of the improvement phase between the
different strategy settings used by the construction phase. As can be seen by the results in
Table 6.17, it is the greedy strategy which is most responsive to the improvement heuristic.
Overall, the improvement phase manages to improve the greedy solutions with 9,0%. The
solutions from the construction phase with the greedy strategy often have typical greedy
characteristics. With greedy characteristics, we for instance mean visits added to the
routes to greedily resolve a violation that could have been solved through a reordering of
the current visits of the route. As a result, there are multiple possibilities for improvement
for our improvement operators. The improvement heuristic use the longest time on the
improvement of the greedy construction phase solutions as a large number of improvements
are made in total. It is important to note that the difference of average time in the
improvement heuristic is not notable in the context of both the construction phase time
and exact solution method time.

Table 6.17: Average improvement phase results of the three chosen strategy settings

Greedy Valid Hybrid

% Improvement [%] 9,0 1,9 4,2

Improvement time [s] 180 143 169

Number of improvements 3,5 0,93 2,2

It is also evident from Table 6.17 that the improvement heuristic has a hard time improving
the construction phase solution constructed with the valid approach. As the goal of the
valid approach is to construct high quality solutions, the improvement heuristic results are
in line with the expectation. The improvement phase performance on the hybrid approach
is also as expected, the results lie in between the greedy and valid average performance.

The performance of the improvement heuristic on greedy construction phase solutions is
remarkable, hence the overall performance with the greedy setting can compete with the
valid and hybrid settings. We use test case S5 to illustrate this. In the construction phase,
V 1_S5 finds the optimal solution in 49,6 seconds. We see from Table 6.16, that by employ-
ing the improvement heuristic with the Combination operator, both G_S5 and H_S5 are
also able to find the optimal solution in 83 seconds, corresponding to a total of 115 and 141
seconds, respectively. This confirms that the matheuristic is able to find an optimal solu-
tion, both as the first feasible solution found in the construction phase, and after searching
through the neighborhood of the initial solution in the improvement phase. In this specific
example, only using the construction phase with the valid approach is faster than finding
the optimal solution through both the construction and the improvement phase. In the
following section we look at the overall performance of the matheuristic and determine
which combination of strategies and operators that is beneficial on average.
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Lastly, we must evaluate the overall performance of each of the three proposed improvement
operators. Table 6.18 reports the average results of each of the improvement operators.
It is equivalent to the average of the data presented in Table 6.16. On average, Inter has
the shortest running time of 84 seconds followed by 162 seconds on average with the Intra
operator. The slowest, but still very efficient on the exact solution method time scale, is
the Combination operator with 245 seconds as average run time. All improvement oper-
ators have the ability to improve the construction phase solutions. From Table 6.18, it is
apparent that the Combination operator on average facilitates for the greatest percentage
improvement of the construction phase solutions.

Table 6.18: Average improvement phase results of the different improvement operators

Inter Intra Combination

% Improvement [%] 5,2 3,5 6,5

Improvement time [s] 162 84 245

The purpose of adding an improvement phase to the matheuristic is to find high quality
solutions. If that was the only consideration, the Combination operator would be the ob-
vious choice as the most effective operator. However, there is a second component to the
purpose of the matheuristic, namely time efficiency. Compared to the other operators, the
Combination operator is not equally time efficient. As discussed, the difference in running
time isolated is quite large, but not in relation to the time needed by the construction
phase. Hence, the combination operator is in our judgement the best suiting operator and
it is the operator used in all further testing.

6.2.7 Concluding the matheuristic test results

The proposed matheuristic is a sequential combination of a construction phase and an im-
provement phase. First the construction phase constructs a feasible solution in an iterative
scheme. The construction phase is followed by the improvement phase where the feasible
solution found by the construction phase is further improved. Until now, the construction
phase and improvement phase performance have been presented and discussed indepen-
dently. The purpose of this section is to summarize these results and evaluate the overall
performance of our matheuristic.

Table 6.19 presents the average performance results of the overall matheuristic. The aver-
age measure reported for each size is the average of the two test cases used for the testing
of the improvement phase. The first results column is the results of the exact solution
method. These results are included as a benchmark. For each test case size, the average
solution achieved after executing both the construction phase and the improvement phase
is reported. Following is the gap. As before, the gap is the average gap between the solu-
tion found by the improvement phase and the best bound discovered by the exact solution
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method. Total time of both the construction phase and the improvement phase is also
reported. A final note is that all performance results of the matheuristic reported in Table
6.19 has been achieved with the use of the Combination operator in the improvement phase.

Table 6.19: Average matheuristic test results

Exact Greedy Valid Hybrid

Small Solution 29 852 29 893 29 938 29 938

Gap [%] 0,00 0,16 0,32 0,32

Time [s] 1 298 123 250 393

Medium Solution 31 749 30 664 32 322 32 112

Gap [%] 23,4 20,4 24,6 24,2

Time [s] 5 000 393 1 935 1 427

Large Solution 50 783 39 975 39 927 39 975

Gap [%] 33,4 19,8 19,7 19,8

Time [s] 5 000 796 2 259 1 723

Total Solution 37 461 33 511 34 062 34 012

Gap [%] 18,9 13,2 14,7 14,5

Time [s] 3 766 437 1 481 1 181

The results presented in Table 6.19 clearly speak in favor of the matheuristic as opposed
to the exact solution method. Independent of strategy setting, the performance of the
matheuristic is on average superior to the performance of the exact solution method. The
matheuristic manages to return a notably smaller gap in a significantly shorter time. It
is evident that the matheuristic has the greatest impact on the larger test cases. For the
small-sized test cases, the exact solution method manages to find the optimal solution.
Consequently, it is hard for the matheuristic to compete with the exact solution method
on solution quality with the small test cases. However, the feasible solutions given by
the matheuristic is of high quality and the running time is significantly shorter than the
exact solution method. For the larger test cases, the exact solution method struggles to
reduce the gap. The matheuristic is not affected by the increase in complexity to the same
degree as the exact solution method. Hence, the matheuristic is able to close the gap of
the large-sized test cases with 40% while using significantly shorter time than the exact
solution method.

It is apparent in Table 6.19 that there is a difference in performance between the differ-
ent strategy settings. When concluding the construction phase of the matheuristic, the
greedy strategy was marked as the efficient strategy where the quality of the solution was
sacrificed. The valid strategy was the strategy serving the highest quality solution, while
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the hybrid strategy was the middle ground between the greedy and valid strategies. When
including the improvement phase, Table 6.19 suggests a different conclusion. When also
taking the improvement phase of the matheuristic into consideration, it turns out that the
greedy strategy is the strategy with both the highest quality solutions and the greatest
efficiency. The improvement phase did not have the same impact on the high quality input
solutions from the valid strategy and the strategy is no longer superior on quality. The
hybrid strategy is still on average good on both efficiency and quality of solution. Due
to the greedy component of the solutions, the hybrid strategy solutions are likely more
responsive to the improvement phase than the valid strategy solutions. As a result, also
the hybrid solution surpass the valid strategy solution on quality.

In conclusion, the overall matheuristic is performing at its best with the greedy strategy
setting and Combination as improvement operator. When only looking at the construction
phase, the valid strategy is superior on quality and the greedy strategy is superior on
efficiency. The inclusion of the improvement phase makes the greedy strategy the most
beneficial strategy setting. For the valid strategy, the additional running time required to
return high quality solutions from the construction phase does not increase the solution
quality enough to outperform the greedy strategy setting.

6.3 Practical implications

In this section, practical implications of both the exact solution method and the matheuris-
tic solution method is presented. Section 6.3.1 is included to give a deeper understanding
of the functionality of the MIRP-UC. Further, we investigate the stability of the solution.
Following, Section 6.3.2 also use a specific solution as test case to illustrate the functionality
of the matheuristic scheme developed in this thesis.

6.3.1 Exact solution method

Figure 6.3 presents the optimal solution of the small-sized test case, S1. It illustrates the
routing of the two ships as well as the inventory of each product in each port with a plan-
ning horizon of 14 days.

Ship 1 travels the following route: [Sea − 3 − 4 − 1 − 2], while Ship 2 travels:
[1 − 3 − 4 − 2]. This implies that all ports are visited twice during the planning horizon.
The timing of the visits can be seen both by the times given in the figure, as well as in
the development of the inventory in the ports. When the ships visit a port, the inventories
spike either up or down, depending on the nature of the port. In Port 1, for example,
it is evident that Ship 2 handle both Product 2 and Product 3 in the beginning of the
planning horizon. Later in the planning horizon, Ship 1 also visits Port 1. However, from
the inventory development, it is evident that it is only consumption Product 2 which is
unloaded from Ship 1 in Port 1.

When analyzing the solution depicted in Figure 6.3 in detail, it is evident that the neither
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Figure 6.3: Illustration of small test case solution

of the ships utilize the option to switch product loaded in either compartments. However,
this functionality is illustrated in Figure 6.4, where the route of Ship 4 from the best found
solution of the large-sized test case, L1, is used as example. The figure present both the
route, as well as the load development of each compartment. The load visualized in each
port is the load of the compartment at the end of the port visit. As the initial allocation
of products to compartments is not optimal, the ship chose to empty Compartment 3 by
unloading Product 2. The compartment is now free to be used by any product. During
the visit to Port 3, the empty compartment is utilized when the ship loads Product 1

as Product 1 is needed by Port 8. Consequently, Product 1 is partially unloaded during
the subsequent visit to Port 8. The example illustrates the functionality of undedicated
compartments and how this opens up for the possibility of improving the initial allocation
of products to compartments. If the compartments had not been undedicated, the ship
could not have transported Product 1 and another ship would have had to serve Port 8

with Product 1.

When further evaluating the solution presented in Figure 6.3, it is notable how all in-
ventories are at their extreme upper or lower bound in the end of the planning horizon.
As MIRPs are usually considered continuous problems without a predefined end of the
planning horizon, it is relevant to consider the concept of re-planning. In the case of re-
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Figure 6.4: Illustration of routing solution for Ship 4 in the large test case

optimizing this model after the last time period, the ship would not manage to reach all
the ports before the inventory limits are violated. Having all inventories at their extreme
values at the end of the planning horizon is equivalent to having the extreme values as
the initial conditions in the model that is re-optimized. Consequently, the re-optimized
model starts with infeasible conditions. One way of preventing this from happening is
by introducing end conditions to secure that not all ports have inventory levels at their
extreme values at the end of the planning horizon. However, continuous problems like
MIRPs are usually handled using a rolling horizon scheme where end conditions are not
necessarily needed. As a rolling horizon scheme is likely to only use a first fraction of the
solution, the ending state of the model is not equally important. In order to be able to use
a rolling horizon scheme, the stability and robustness of the solution over different lengths
of planning horizon must be investigated.

Stability of solution with respect to time horizon

In this subsection, we want to examine how the solution changes when the length of the
planning horizon changes.

The inventory routing problem is considered to be an ongoing planning problem, i.e. there
is usually no predetermined ending of the planning horizon. A continuing planning problem
is hard to solve, both due to its size and complexity. Further, for long planning horizons,
it is unlikely that all long term information is known at the point of planning. For a short
term planning problem, it might be fair to argue that demand, price and cost levels can
be assumed deterministic. This is however not a reasonable assumption if the planning
horizon is a year or so. Kimms (1997), among others, presents a rolling horizon scheme to
solve this problem. You start with a plan for the 1, ..., T periods while only the plan for the
first fraction of the planning horizon ∆T ≥ 1 is implemented. Subsequently, a new plan is
generated for the remaining planning periods, T −∆T , and a rescheduling occurs (Kimms,
1997). The basic principle of such a rolling horizon scheme is to repeatedly solve the MIRP
for shorter sub-horizons of the planning period (Rakke et al., 2011). For problems that do
not have any predetermined ending of the planning horizon, it is normal to utilize a rolling
horizon scheme.
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One important factor for the use of such a scheme is the re-planning point, i.e. at which
point in the planning horizon the plan is re-optimized. One property that is desired is thus
stability of the solution with respect to the time periods prior to the re-planning point.
For example, given a problem with a two week planning horizon and a wanted re-planning
point at one week, the solution of the first week should remain unchanged if we extend the
overall planning horizon with one week. If a solution exhibits this stability property, we
know that the solution (prior to the wanted re-planning point) is not directly dependent
on the length of the planning horizon.

Given a wanted re-planning point we want to know how long the planning horizon must
be to be able to guarantee a stable solution prior to the re-planning point. Since the size
of the problem increases with the length of the planning horizon, it is desirable to not use
a longer planning horizon than necessary. As the problem will be re-optimized multiple
times with the full length planning horizon, efficiency is essential. For the remaining parts
of this section, we use a re-planning point of one week as a starting point to evaluate the
stability. By testing the model with planning horizons of different lengths, we can investi-
gate if the model gives a stable solution during the first week of the planning horizon. We
do not go into further details on rolling horizon and its implementation, the only focus is
the stability of the solution.

To evaluate the stability, we have tested the model with three different lengths of the
planning horizon, namely 14 days, 18 days and 21 days, corresponding to 42, 54 and 63
time periods. The results from using a planning horizon of 14 days corresponds to the
original solution as presented in Figure 6.3. The resulting schedules of the three instances
are presented in Figure 6.5. The schedules of the ships with a planning horizon of 18 and
21 days are only presented up until the time period where the original schedule ends (when
both ships have sailed to the destination node). Since the purpose of this discussion is to
investigate the stability of the model, we only need the part of the schedules corresponding
to the time span of the original solution.
From the figure, we can clearly see that the solution of Ship 2 is quite stable with respect
to the length of the planning period. Out of the 42 time periods of the original solution,
the routing of Ship 2, can be judged stable the first half of the time horizon. When looking
at the schedules of Ship 1, we however see a greater variance in the schedules. None of the
three schedules follow the same route. Hence, the solution corresponding to the schedule
of Ship 1 can hardly be judged stable.

It is clear that a planning horizon of 21 days is not long enough to conclude that the first
week of the solution is stable. Therefore, we cannot guarantee a stable solution for the
wanted re-planning point of one week. Preferably, we would like to test the model with
even longer planning horizons to investigate further, but the model could not find any
feasible solutions for problems of that size, at least not in a reasonable amount of time. We
can however conclude that with a wanted re-planning point of one week, a longer planning
horizon than 21 days is needed to achieve a stable solution. It should be noted that it is
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Figure 6.5: Comparison of routing solution when different lengths of planning horizons are
applied

possible to shorten the planning horizon needed to achieve a stable solution in the first
week by introducing some simple adjustments to the model, e.g. end conditions. We do
not elaborate further on this in this thesis, but it is an interesting topic for further research.

6.3.2 Matheuristic solution method

In earlier sections of this chapter, the technical performance of the matheuristic has been
thoroughly presented, discussed and analyzed. In order to get a deeper understanding
of the procedure undertaken to produce a feasible solution, we take a look at a specific
example.

The first component of the matheuristic is the construction phase. The construction phase
is an iterative method converging towards a feasible solution. How the search is guided in
each iteration depends on the strategy setting used. We present both an example of the
greedy strategy as well as the valid strategy. The goal is to both understand the overall
procedure of the construction phase and to understand the difference between the two
strategy settings. Test case S3 is chosen as the illustrative example.

The greedy strategy
Figure 6.6 is an illustration of the iterative search for a feasible solution using the greedy
strategy to handle violations. The solution presented in each iteration is the inventory
problem solution with the corresponding violations. The figure illustrates when each port
is visited, and consequently when the violations to each port occur. The length of the
orange and blue taps, the port visits from Ship 1 and Ship 2 respectively, corresponds to
the number of time periods the ships operate in that port.
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In S3, the greedy strategy uses 4 iteration to discover a feasible solution. The initializa-
tion of the routing problem results in two violations in the first iteration of the inventory
problem, one large violation in Port 1 of Product 1 and one smaller in Port 4, also of
Product 1. In Iteration 2, the violation in Port 1 is adjusted for by routing Ship 1

directly from production Port 4 to the consumption violation Port 1. Both violations
from the first iterations are solved, however at the expense of the feasibility in Port 2 and
Port 3. The greedy strategy handles the violations in Port 3 by routing Ship 1 directly
from production Port 1 of Product 1 to consumption violation Port 3. In addition, the
visit to Port 2 is extended. As a result, only one small violation is left to be handled in the
third iteration. The violation of Product 2 in Port 2 at the end of the planning horizon is
resolved by adding an additional short visit by Ship 1 later in the planning horizon. Since
Port 4 is a production port of Product 2, a visit to Port 4 is also greedily forced into the
route as it was needed prior to the second visit to Port 2 by Ship 1.

Figure 6.6: Illustration of construction phase solution with the greedy strategy. Ship 1
marked in orange and Ship 2 marked in blue. The red tab illustrates a violation with the
violation product given inside the parenthesis

The valid strategy
The convergence of the greedy strategy is fast. This can be explained by the fact that
greedy choices that actually resolve each violation are made in each iteration. As a re-
sult, the greedy strategy does not have to struggle with the same set of violations in more
than one iteration. The constraints added by the valid strategy is not as restrictive as the
constraints of the greedy strategy. Consequently, the valid strategy on average need more
iterations to find a feasible solution than the greedy strategy. The search for a feasible
solution performed with the valid strategy on S3 is illustrated in Figure 6.7.

There is a clear difference between the development of the valid strategy search and the
greedy strategy search. In the two first iterations, the two violations incurred are the same
as for the greedy strategy. What is evident from Figure 6.7 is that the valid strategy does
not have the same restrictive impact as the greedy strategy. In Iteration 5, the same
violation as was present in Iteration 4 reoccurs. Even though valid adjustments are made
to the route solution of Iteration 4, the violation still reappear in Iteration 5. Due to the

109



CHAPTER 6. COMPUTATIONAL STUDY

Figure 6.7: Illustration of construction phase solution with the valid strategy. Ship 1
marked in orange and Ship 2 marked in blue. The red tab illustrates a violation with the
violation product given inside the parenthesis

multiple strategies of the valid strategy, it is harder to pinpoint which of the restrictions
imposed are binding. However, the resulting route is better than the resulting route of
the greedy solution. In the valid strategy solution, Ship 1 only have four port visits as
opposed to five in the greedy strategy solution. An interesting note is that in the case of
the hybrid strategy, the violation in Iteration 5 would be considered a returning violation
and a greedy restriction would have been imposed to solve it.

The improvement phase
The differentiating factor between the quality of the greedy strategy solution and the valid
strategy solution is evident in the routes illustrated in Figure 6.6 and Figure 6.7. It is now
interesting to further illustrate the functionality of the improvement phase. We continue to
use S3 as the illustrative example. Since we concluded that the greedy strategy was most
responsive to the improvement operators, we only use the solution from the construction
phase using the greedy strategy to illustrate the improvement phase. Further, we also
only use the Combination operator as it was concluded as the most promising operator.
Since the Combination operator is the sequential execution of the Intra and Inter operator,
both Intra and Inter operators are illustrated. First, we study how the routes from the
construction phase have improved after the Intra operator has been fully executed. This is
illustrated in Figure 6.8. The figure shows the original route of Ship 1 and Ship 2, marked
in blue, and the resulting routes after the Intra improvement, marked in orange.

As noted earlier, the second visit made by Ship 1 to Port 4 was added in the construction
phase solely to resolve the last violation. Due to the greedy nature of the creation of the
solution, an additional visit is added to the route instead of reordering the port visits in the
route to make the route feasible. In the first iteration of the improvement phase, Ship 1
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Figure 6.8: Comparison of construction phase input route and the resulting route from
executing the Intra operator

is subject for improvement. The ship is fixed to the set of port visits already in the route,
however not to the sequence or the frequency of visits. As a result, the Intra operator
is able to reorder the port visits by switching the second visit to Port 1 with the visit
to Port 3. Consequently, the the second visit to Port 1 is moved earlier in the planning
horizon making the first visit to Port 1 redundant. Further, with the new sequence of
port visits, the additional visit to Port 4 added by the greedy strategy is also identified
as redundant. The two redundant port visits are removed from the sequence by the Intra
operator. This illustrates how the Intra improvement operator can be used to undo some
of the greedy choices made in the construction phase. Only one improvement is made for
Ship 2 with the Intra operator, switching the port visit to Port 3 with the visit to Port 4.

After two iterations, where the route of Ship 1 and Ship 2 is improved respectfully, the
Combination operator continues with the execution of the Inter operator. For the example
test case S3, the sixth time interval stretching from time period 16 to time period 25 is
the only time interval in which changes to the routes occurred. Hence, the resulting routes
after improvement in that time interval are illustrated in Figure 6.9. As in the previous
improvement illustration, the input route from the Intra operator is marked in blue. The
improved route from employing the Inter operator is marked in orange.
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Figure 6.9: Comparison of Intra operator input route and the resulting route from executing
the Inter operator

In line with the definition of the Inter operator, changes across the ship routes of Ship 1

and Ship 2 can only be made for the port visits occurring within the current time interval.
The port visits subject to improvement are embedded in the dotted rectangle in Figure
6.9. The only changes feasible outside the current time interval are scheduling changes, i.e.
adjustments in the timing of each port visit. The adjustment cannot exceed the number
of time periods specified by the time slack parameter. One exception is the adjustment of
the departure to d(v). This allows a ship to change the last port visit of the route. It is
evident from the figure that the Inter operator improves the route of Ship 1 by removing
the visit to Port 2 at the end of the route. The action of removing the visit to Port 2

was not possible when employing the Intra operator. The removal of the visit to Port 2

was made possible because it is adjusted for in the schedule of Ship 2. In the post-Inter
solution, Ship 2 operates longer in Port 2 than in the schedules where Ship 1 also visit
Port 2. Clearly, this improvement to the solution is only possible due to the fact that the
Inter operator takes all the ships into account when improving the solution.
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Chapter 7

Concluding Remarks and
Further Research

The attention on MIRPs in OR has increased the last decade as an effect of the increase
in inter supply chain competition. Coordinating efforts between the inventory manage-
ment and the transportation planning can potentially provide benefits for the supply chain
manager, namely flexibility in services, economical benefits and improved benefits among
others. The mainstay of MIRPs are liquid bulk products. Even though most of the liquid
bulk products handled by operators are unmixable, most of the currently existing research
disregard this underlying characteristic. The majority does not take the allocation of prod-
ucts to compartments on board the ships into consideration, due to the noteworthy increase
in complexity this assumption imposes.

The problem studied in this thesis is a case independent multi-product MIRP which consid-
ers the dynamic allocation of products to undedicated compartments. To our knowledge,
this is the first contribution on MIRPs using undedicated compartments without the as-
sumption that all compartments must be empty prior to the return to a production port.
The objective of the presented model is to minimize costs while routing the ships to man-
age the multi-product inventories in the ports.

Not surprisingly, the exact solution method was only able to solve small test instances to
optimality. When the size of the instances grew, the effectiveness of the exact solution
method decreased. MIRPs are considered to be highly complex problems, and with the
addition of multiple products and undedicated compartments, the complexity increases
even further. Consequently, it was necessary to develop an alternative solution method
designed specialized for our problem. We proposed a new optimization based algorithm
to solve the multi-product MIRP. The algorithm is considered to be a matheuristic and
utilizes an interaction between the exact solution methods and heuristic approaches.

The matheuristic consists of two phases, a construction phase and an improvement phase.
The construction phase utilizes the structure of the problem and extract the solving of the
routing component of the problem from the MIRP. The routing problem and the remaining
part of the problem, denoted the inventory problem, is solved iteratively. First, the routing
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problem is solved with a series of valid inequalities to find the sequence of port visits for
each ship. This sequence is fixed in the subsequent solving of the inventory problem. If
the routes are feasible, the construction phase is terminated. If the routes are infeasible,
information about the infeasibilities are sent to the next iteration routing problem where it
is handled using the different proposed strategies. When the construction phase has con-
verged to a feasible solution, an improvement phase is executed with one of the proposed
improvement operators to further improve the feasible solution found.

7.1 Conclusion

The model formulation was tested on three different sized test cases with the exact solution
method. The model was only able to find the optimal solution on the smallest of the three
test cases, even though none of the test cases can be considered real-sized. The model was
tested with a number of valid inequalities. All but one of the proposed valid inequalities
removed the original LP solution in at least one test case and were consequently defined
as cuts. MCP gave consistently better results than the other valid inequalities and is, on
average, the best performing valid inequality. The gap between the LP bound and optimal
solution was reduced with 66% for the smallest test case. As a result, the time to opti-
mal solution was reduced with 36%. However, for the smallest test case, valid inequality
combination A_MCP was surprisingly the far the most efficient and reduced the time
to optimality by 87%. The complexity of the problem increases with the size of the test
case, and the largest test case was only able to find a solution within 43,5% of the optimal
solution within 5000 seconds. Evidently, the exact solution method is not well-suited for
this problem.

Overall, the construction phase of the matheuristic managed to outperform the exact so-
lution method on both quality of solution and time efficiency. The construction phase
struggles to compete on solution quality with the exact solution method on the small-sized
case. However, as the size of the test cases increases, the quality of the construction phase
solutions constantly outperform the exact solution method. The same applies for the effi-
ciency.

The greedy (G), valid (V) and hybrid (H) strategy settings were the strategies of handling
violations that proved best during the testing of the construction phase. The greedy strat-
egy managed to, on average, reduce the running time with 93% while also reducing the
gap between feasible solution and exact solution method best bound with 21%. The valid
strategy is superior on quality of the solutions and reduces the gap with 34%. This is how-
ever at the cost of efficiency, and time used by the valid strategy is only reduced with 56,5%.

When including the improvement phase, the solutions improve even more compared to the
exact solution method. Three operators for improving the multi-product MIRP solution
was proposed, Inter ship, Intra ship and Combination operator. The Combination opera-
tor proved to have the overall best performance on solution quality. It is the construction
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solution produced with the greedy strategy that is most responsive to the improvement
operators. As a result, the quality of the greedy strategy solutions are improved signifi-
cantly, and it is overall superior to both the valid and hybrid strategies. The matheuristic
is superior to the exact solution method independent of both the chosen violation handling
strategy and improvement operator. However, the best combination is the greedy strategy
combined with the Combination operator. With this combination, the matheuristic man-
aged to reduce the average gap with 30% while also reducing the average time used with
88%.

7.2 Further research

In this thesis, we assume that washing of compartments between the switch of products in
a compartment can be done without large costs compared to the other cost components
or that the products are similar such that extensive cleaning is unnecessary. However,
including washing to the formulation would make the problem more general. By including
cleaning, the complexity of the model would increase even more than the model presented
in this thesis. It would be interesting to add washing to the formulation in future work on
multi-product MIRPs-UC as it would be a better representation of the reality. It would
also be interesting to further explore how the proposed matheuristic responds to this in-
crease in complexity.

As for all deterministic models, a suggestion for future research on this multi-product
MIRP-UC is to take uncertainty into account. In the maritime transportation industry,
there is no doubt that the ship route and scheduling planners are faced with a great deal
of uncertainty. The weather, fuel prices and demand are just some of the uncertain factors
relevant for this industry. In order to make this model suitable for practical use, uncer-
tainty must likely be introduced to the model. The uncertain components of this problem
have not been the focus of this thesis and we have assumed the problem to be deterministic.
However, the inclusion of uncertainty to give a better representation of reality is highly
interesting for future research on the multi-product MIRP-UC.

In Section 6.3, we discussed rolling horizon schemes in context of the exact solution method.
Since MIRPs are ongoing planning problems without any predefined end to the planning
horizon, it is important to consider what happens after the chosen length of planning
horizon in the test cases used. An interesting direction for future work is to incorporate the
proposed matheuristic into a rolling horizon scheme or other scheme for handling ongoing
planning problems. However, we consider the concept of using a rolling horizon scheme as
especially interesting.
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Abstract. This paper considers the problem of routing bulk tankers
to minimize cost while managing the inventory in ports. Multiple non-
mixable products are transported and the allocation of products to unded-
icated compartments on board the ships is an important aspect of the
problem. An arc-flow formulation of the problem is proposed together
with several valid inequalities. Computational results are reported for
an evaluation of the model and the valid inequalities. Results are also
reported for two simplified models where either the compartments are
dedicated or the products are mixable.

1 Introduction

Maritime transportation has long taken a dominant role in global trade. Ac-
cording to AON (2012), 90% of all goods traded across boarders are moved by
the maritime shipping industry. Remarkable improvements in the efficiency of
maritime transportation have been seen in the last 50 years, but still significant
improvements can be made by improving the routing and scheduling of ships
through the use of operations research.

A maritime inventory routing problem (MIRP) is a planning problem where
the problem owner has the responsibility for both the inventory management at
one or both ends of the maritime transportation legs and for the ship routing
and scheduling. MIRPs are considered to belong to the industrial shipping seg-
ment where the mainstay is liquid or dry bulk cargoes that is shipped in large
quantities. When transporting liquid bulk, the products are stored in large com-
partments on board the ship. As of 2014, tankers have the second largest market
share with 29% of the number of vessels in the markets (UNCTAD, 2015).

The purpose of this paper is to give further attention to MIRPs handling
multiple non-mixable products with allocation to undedicated compartments.
Most of the literature on MIRPs with multiple products simplifies the allocation
of products by assigning them to dedicated compartments. Our goal is to develop
a model for a MIRP with allocation of products to undedicated compartments
and to explore the behavior of this model. The trade-off between the increased
realism of the model and the increase in complexity is evaluated by considering
two simplified models with dedicated compartments and mixable products.

The remainder of this paper is organized as follows. In Sect. 2 related liter-
ature on MIRPs and the handling of multiple products are reviewed. In Sect.



3, the problem is described in detail. The mathematical formulation and valid
inequalities are presented in Sect. 4. The computational results for the undedi-
cated compartment model and the simplified models are reported and discussed
in Sect. 5. Finally, concluding remarks are given in Sect. 6.

2 Related Literature

Here, we review relevant literature on MIRPs addressing the transportation of
multiple products and the allocation of these. Two recent surveys on the area of
maritime transport optimization are Christiansen et al. (2012) and Andersson
et al. (2010).

Ronen (2002) was the first to study the transportation of multiple products
rather than a single product. Multiple products introduce new challenges like the
handling of different products in different ports and ship/product compatibility.
Similarly to the problem proposed in this paper, Hemmati et al. (2015) have
chosen not to enforce any restrictions on the combinations of products and ports,
i.e. each product can be consumed or produced in any number of ports. Al-
Khayyal and Hwang (2007), Siswanto et al. (2011), and Agra et al. (2014) have
a set of production ports and a set of consumption ports for each product which
in a greater degree limits the flow of products. In both Hemmati et al. (2015) and
Al-Khayyal and Hwang (2007), a ship is allowed to (un)load different products
at the same time, but a port cannot handle the same product by different ships
simultaneously. Agra et al. (2014) have solved this issue by restricting the ports
to only have one ship operating at a time.

In the context of multi-product MIRPs, the bulk products that are con-
sidered often need to be transported in different compartments due to their
non-mixable nature. Up until now, little research has addressed the issue of how
these products are to be loaded on board the ship. Ronen (2002), Persson and
Göthe-Lundgren (2005), Dauzère-Pérès et al. (2007), and Hemmati et al. (2015)
all have models with multiple products, but disregard the allocation of prod-
ucts into compartments onboard the ship. Agra et al. (2014), Al-Khayyal and
Hwang (2007), and Li et al. (2010) assume the products to be non-mixable and
are thus forced to address the problem of allocating products to compartments.
They define each compartment to be dedicated to a specific product, introducing
a limitation on which products that can be carried by each compartment of a
ship. The use of dedicated compartments is the most used method of solving the
problem of allocating products to compartments.

Siswanto et al. (2011) introduce undedicated compartments which they define
to be a compartment that can take any product, however it can only store one
product at a time. In the event of an empty compartment, any product can
be loaded to that compartment. However, Siswanto et al. (2011) assume that
only a ship with empty compartments returns to the production ports and thus
the danger of mixing products in the same compartment during the shipment is
removed.



3 Problem Description

The multi-product MIRP in this paper considers the transportation of multiple
non-mixable products and the allocation of the products to undedicated com-
partments onboard the ship. For maritime transportation this is especially rele-
vant for the shipping of liquid bulk products. Given the nature of the products
that are carried, the compartments must be washed regularly, and often before
they can be loaded with a different product. This is necessary to avoid pollution
of the products, e.g. to avoid a deposition of crude oil in the tankers. Since the
time used washing a compartment between switching products is insignificant
compared with the time used in port, it is disregarded.

We consider a short-sea transportation problem with a planning horizon that
spans a few weeks. It is solved with respect to the ship routing and scheduling,
inventory management in ports, and the allocation of products to compartments
on each ship. The objective is to minimize the costs consisting of four compo-
nents; sailing costs between ports, waiting costs outside a port, operating costs
in port, and (un)loading unit costs in port. The value chain owner is responsible
for both the inventory in ports and the routing and scheduling of the ships, and
for that reason the inventory holding costs are ignored.

The problem deals with the transportation of multiple products in a many-
to-many distribution network. Each port has a berth capacity restricting the
number of ships operating in the port simultaneously.

Each ship has an initial start position either at a port or a point at sea. The
sailing time between all ports is known for all ships. A ship is not allowed to
visit a port without operating in that port. When a ship arrives at a port, it
may wait outside the port before starting to operate. Operate is the activity
of (un)loading products during a ship’s port visit. Waiting outside a port may
be necessary if e.g. there is no available berth at the port, or to better time the
start of operation with the inventory levels in the port. However, after a ship has
started to operate in a port, the ship is not allowed to wait and then continue
to operate. When a ship has finished all operating activities in a port, it must
immediately sail to its next destination port without waiting.

Over the course of the planning period, a port either consumes or produces
a set of products. All ports have one separate storage for each of the products it
handles and fixed lower and upper inventory limits are specified for each product
in each port. The initial inventory for each product in all ports is known. If a
port neither produces or consumes a given product during the planning horizon,
it does not handle that product and it does not have a storage of that product.

Each ship can carry a selection of products, possibly all. In addition, each
ship has a given number of undedicated compartments where products can be
allocated. The compartments can vary in size and each have a maximum capacity.
The products that are transported cannot be mixed and thus a compartment
can only contain one product at a time. The capacity of a compartment in a ship
is often large compared with the quantity that is (un)loaded in a given port, and
hence it is natural to allow partial (un)loading. If a compartment has available
capacity it can be loaded with more of the same product which it currently



contains. However, if a compartment is emptied at a port, any product can now
be loaded into the compartment. Allocation of products, (un)loading in port and
the possibility of partial unloading are illustrated in Fig. 1.

Fig. 1. An example of allocation of three products to a ship with two compartments

At the start of each schedule, the initial load of a product in every com-
partment in each ship is known. When a ship visits a port, the binding loading
capacity under operation is the lowest of the ship’s and the port’s loading capac-
ity. When a product is loaded into a compartment, it continues to stay in that
compartment during sailing and waiting outside ports, until it is unloaded in
a different port. Hence, no reallocation of products between compartments can
take place between operating times in the ports. In a port, however, a product
can be reallocated to a different compartment via the storage of that product in
the port.

4 Model Description

The model is originally based on the work of Agra et al. (2013), but significant
modifications have been made to account for multiple products and undedicated
compartments. A time-discrete model is proposed to handle varying production
and consumption rates.

4.1 Mathematical Formulation

The formulation of the problem is described in four parts: flow conservation,
loading and unloading, inventory management, and objective function.

Flow Conservation Constraints. Let V be the set of ships to be routed and
scheduled. Each ship v has a starting position either in port or a point at sea,
o(v), and an artificial point of destination d(v). The ships are routed to serve a
set of ports N and each ship will have one schedule over the planning horizon.
T defines the set of time periods and T is the total number of time periods



in the planning horizon. The number of time periods needed for each ship to
sail between two ports is assumed to be known, and the travel time for ship v
between port i and j is defined as Tijv.

Bit is the berth capacity in port i in time period t and limits the number of
ships simultaneously operating in the port. Each ship is assumed to have three
types of possible modes; sailing, waiting, and operating. To design the routing
constraints with these modes, three binary variables are needed. xijvt equals 1
if ship v sails from port i directly to port j starting at the beginning of time
period t, and 0 otherwise. oivt equals 1 if ship v operates in port i in time period
t, and 0 otherwise. Finally, the waiting variable wivt equals 1 if ship v is waiting
outside port i in time period t, and 0 otherwise. Figure (3) illustrates all the
variables.

∑

j∈N∪d(v)
xo(v)jv1 + oo(v)v1 + wo(v)v1 = 1 v ∈ V (1)

∑

i∈N∪o(v)

∑

t∈T
xid(v)vt = 1 v ∈ V (2)

∑

j∈N∪o(v)
xjiv(t−Tjiv) + wiv(t−1) + oiv(t−1) =

∑

j∈N∪d(v)
xijvt + wivt + oivt

i ∈ N , v ∈ V, t ∈ T (3)

oiv(t−1) ≤
∑

j∈N∪d(v)
xijvt + oivt i ∈ N , v ∈ V, t ∈ T (4)

oiv(t−1) ≥
∑

j∈N∪d(v)
xijvt i ∈ N , v ∈ V, t ∈ T (5)

∑

v∈V
oivt ≤ Bit i ∈ N , t ∈ T (6)

xijvt ∈ {0, 1} i ∈ N ∪ o(v), j ∈ N ∪ d(v), v ∈ V, t ∈ T (7)

wivt, oivt ∈ {0, 1} i ∈ N , v ∈ V, t ∈ T (8)

Constraints (1) and (2) ensure that the ships’ schedules have a beginning and
an end. If a ship travels directly from o(v) to d(v), the ship is not used and is idle
during the entire planning horizon. Constraints (3) are the ship flow conservation
constraints. Constraints (4) restrict the ships to only be able to wait prior to
operation. Constraints (5) enforce operations in a port, i.e. a ship cannot leave a
port prior to operating, while constraints (6) are the berth capacity constraints.
Constraints (7) and (8) are the binary restrictions. Figure 2 shows an example
of a ship’s route.

As can be seen, at time period one, t = 1, the ship sails directly from its
origin node, o, and arrives in Port 2 at t = 5. Then, the ship waits at t = 6,
operates in two time periods and sails to Port 1 at t = 8. The ship waits outside



Fig. 2. Example of a ship route consisting of sailing s, waiting w, and operating o

Port 1 at t = 11 and operates at t = 12. Finally, the ship sails to Port 3 and
operates in one time period before the schedule ends at t = 16 when the ship
sails to the destination node, d.

Loading and Unloading Constraints. Let K be the set of all products,
Kv the set of products ship v can transport, and Vk the set of ships that can

transport product k. Q
V

v and Q
P

i define the upper (un)loading capacity of ship
v and port i in each time period. Thus, each ship can (un)load as many products
or as much of a product within one time period as long as it does not exceed the
(un)loading capacity of the port or the ship. A ship v has a set of compartments,
defined as Cv, and each compartment c has a capacity Kvc. Each ship v starts
with an initial load in each compartment c of product k, defined as L0

vck. Variable
lvckt denotes the load onboard ship v of product k in compartment c at the end
of time period t. Variables qLivckt and qUivckt represent the quantity loaded and
unloaded of product k to/from compartment c by ship v from/to port i in time
period t. Finally, to handle the allocation of products, variable yvckt equals 1 if
compartment c in ship v contains product k at the end of time period t, and 0
otherwise.

∑

k∈Kv

∑

c∈Cv
(qLivckt + qUivckt) ≤ min{QV

v , Q
P

i }oivt i ∈ N , v ∈ V, t ∈ T (9)

lvck(t−1) +
∑

i∈N
qLivckt =

∑

i∈N
qUivckt + lvckt

v ∈ V, c ∈ Cv, k ∈ Kv, t ∈ T (10)

lvck0 = L0
vck v ∈ V, c ∈ Cv, k ∈ Kv (11)

∑

k∈Kv

yvckt ≤ 1 v ∈ V, c ∈ Cv, t ∈ T (12)

lvckt ≤ Kvcyvckt v ∈ V, c ∈ Cv, k ∈ Kv, t ∈ T (13)

qLivckt, q
U
ivckt ≥ 0 i ∈ N , v ∈ V, c ∈ Cv, k ∈ Kv, t ∈ T (14)



lvckt ≥ 0 v ∈ V, c ∈ Cv, k ∈ Kv, t ∈ T (15)

yvckt ∈ {0, 1} v ∈ V, c ∈ Cv, k ∈ Kv, t ∈ T (16)

Constraints (9) ensure that a ship can only (un)load when it is operating in
a port and define the upper limit on the total quantity (un)loaded by a ship in
a time period. Constraints (10) represent the load balance for each ship, while
constraints (11) define the initial load of every product in every compartment
for each ship. Constraints (12) ensure that only one product can be in each
compartment at any time. The load capacity of each compartment is given in
constraints (13), which also enforce the binary variable yvckt to be 1 when there
is a load in a compartment. Constraints (14) – (15) define the non-negativity
constraints, while constraints (16) define the binary restrictions.

Inventory Management Constraints. The production/consumption quan-
tities of a product k in port i in time period t are denoted Pikt and Dikt, respec-
tively, and can vary over the planning horizon. Each port has a storage for each
product it handles, and the initial inventory of product k in port i is called S0

ik.
Sik and Sik define the upper and lower inventory limit in port i for product k,
respectively. Variable sikt gives the inventory level in port i of product k at the
end of time period t.

sik(t−1) +
∑

v∈V

∑

c∈Cv
qUivckt + Pikt =

Dikt +
∑

v∈V

∑

c∈Cv
qLivckt + sikt

i ∈ N , k ∈ K, t ∈ T (17)

Sik ≤ sikt ≤ Sik i ∈ N , k ∈ K, t ∈ T (18)

sik0 = S0
ik i ∈ N , k ∈ K (19)

Constraints (17) are the inventory balance for all ports and products. Con-
straints (18) state lower and upper inventory limits for each product in every
port. Lastly, constraints (19) define the initial inventory of each product.

Fig. 3. Illustration of variables



Objective Function. The objective function, presented in (20), minimizes the
sailing-, waiting-, and operation costs as well as the variable (un)loading costs.
Sailing-, waiting- and operating costs are defined as a fixed unit cost per time
period used on the activity. CT

ijv is the cost of ship v sailing from port i to j.

CW
v is the cost of waiting outside a port for ship v. CO

iv is the fixed cost of

ship v operating in port i. There is also a variable component, CQ
ivk, which is

defined as the cost per unit of product k (un)loaded in port i by ship v. We
assume that no costs are associated with switching between loading/unloading
different products in one compartment because switching time can be considered
insignificant compared with the length of a time period.

min
∑

v∈V

∑

i∈N∪o(v)

∑

j∈N∪d(v)

∑

t∈T
CT

ijvxijvt +
∑

i∈N

∑

v∈V

∑

t∈T
CW

v wivt+

∑

i∈N

∑

v∈V

∑

t∈T
CO

ivoivt +
∑

i∈N

∑

v∈V

∑

c∈Cv

∑

k∈Kv

∑

t∈T
CP

ivk(qLivckt + qUivckt)
(20)

4.2 Valid Inequalities and Tightening Constraints

By exploiting the structure of the problem, valid inequalities have been developed
to strengthen the LP-relaxation of the problem and in turn reduce the solution
time. In this paper, only the most promising valid inequalities from our studies
have been included.

Minimum Number of Visits with Ship Capacity Sequence (MV). MV
is inspired by similar valid inequalities addressed by Andersson et al. (2015).
Here, a ship capacity sequence is introduced to avoid the generalization done
when the maximum ship capacity is used to calculate the lower bound for the
entire planning horizon.

The ship capacity sequence is defined over a subinterval of the planning
horizon and is built upon the maximum number of times each ship can visit
a port. To be able to define a maximum number of visits of each ship, two
assumptions are made, (1) each ship will only travel back and forth from port
i to its nearest port after the initial visit to port i and (2) each ship will only
operate one period in each port visit. With this, the maximum number of visits

ship v can make to port i in time interval T ′ = {T ′, . . . , T ′} is V MAX
iv , as shown

in (21).

V MAX
iv =

⌈
T ′ − Tjiv

2 · TMIN
i + 2

⌉
i ∈ N , v ∈ V (21)

T ′ is the length of time interval T ′, and TMIN
i is the sailing time for ship v

from port i to its nearest port. j denotes the ship’s position at the beginning of
the time interval.



Ship Capacity Sequence. The ship capacity sequence, defined for each port i,
gives the maximum amount of products that can be (un)loaded in a port in m
visits during a time interval. First, the highest ship capacity is added cumula-
tively to the capacity sequence a number of times equal to the maximum number
of visits defined in (21). The same follows for the rest of the ships, in descending
order based on capacity. The length of the ship capacity sequence is equal to
the total number of visits to port i in the time interval, from all ships. The ship

capacity sequence of port i is denoted KV

i = {KV

i0,K
V

i1, . . . ,K
V

im} for i ∈ N .
Assume a fleet of two ships where the largest ship has a capacity of 200 and

can visit port i at most three times in time interval T ′. The other ship has a
capacity of 100 and can visit port i a maximum of two times. The ship capacity

sequence of port i, with K
V

i0 = 0 for the case of no loading, is then equal to

KV

i = {0, 200, 400, 600, 700, 800} for the given time interval.

Excess production and consumption. The excess production of product k in port
i, ePikT ′ and the excess consumption of product k in port i, eDikT ′ , during time
interval T ′ is defined in (22) and (23), respectively.

ePikT ′ =
∑

t∈T ′

Pikt + sik(T ′−1) − Sik i ∈ N , k ∈ K (22)

eDikT ′ =
∑

t∈T ′

Dikt − sik(T ′−1) + Sik i ∈ N , k ∈ K (23)

Since a ship can handle both excess consumption and production in the same
visit, the lower bounds on visits for produced and consumed products cannot
be added together. On this note, the maximum of ePikT ′ and eDikT ′ aggregated
over product, eiT ′ = max{∑k∈K ePikT ′ ,

∑
k∈K eDikT ′}, is used as the restricting

quantity in the inequalities.
If time interval T ′ starts at t = 1, then the incoming inventory level of

product k, sik(T ′−1) is equal to the initial inventory of that product, S0
ik. By

this, the minimum number of visits needed to serve the excess level can be
calculated a priori. Let pi be the first position in the ship capacity sequence
corresponding to a capacity high enough to cover eiT ′ . Hence, pi corresponds to
the minimum number of visits needed. In all other cases, the incoming inventory
is a variable and this simplification is impossible. The valid inequalities for time
interval T ′ are defined by (24) or (25) depending on the starting period of the
time interval.

∑

j∈N

∑

v∈V

∑

t∈T ′

xjivt ≥ pi i ∈ N (24)

∑

j∈N

∑

v∈V

∑

t∈T ′

xjivt ≥

eiT ′ + (m− 1)K
V

im −mK
V

i(m−1)

K
V

im −K
V

i(m−1)

i ∈ N , 1 < m < |KV

i | (25)



Valid inequalities (24) and (25) give a lower bound on the number of visits
to port i in time interval T ′.

Minimum Number of Compartments per Product with Compartment
Capacity Sequence (MCP). MCP is an extension of a valid inequality pre-
sented by Andersson et al. (2015) adapted to account for both multiple products
and a heterogeneous set of tanks on the ships. A compartment capacity sequence
is designed equivalently to the ship capacity sequence, using compartment ca-
pacities. The sequence is created for all products k and ports i and is written

as CVik = {CV

ik0, C
V

ik1, .., C
V

ikm}. The excess production, ePikT ′ , and consumption,
eDikT ′ , are calculated in (22) and (23) respectively, and eikT ′ is the maximum of
excess production and consumption. Let pik represent the first position in the
ship compartment capacity sequence sufficient to cover eikT ′ . pik is then the
minimum number of compartments needed for each port and product combina-
tion. When NC

v is the number of compartments in ship v, the valid inequalities
MCP for time interval T ′ are presented in (26) and (27).

∑

j∈N

∑

v∈Vk

∑

t∈T ′

NC
v xjivt ≥ pik i ∈ N , k ∈ K (26)

∑

j∈N

∑

v∈Vk

∑

t∈T ′

NC
v xjivt ≥

eikT ′ + (m− 1)C
V

ikm −mC
V

i(m−1)

C
V

ikm − C
V

ik(m−1)

i ∈ N , k ∈ K, 1 < m < |CVi | (27)

Minimum Number of Operation Periods (MO). The idea of imposing a
lower bound on the minimum number of operation periods has been introduced
by e.g. Agra et al. (2013) for a single-product inventory routing problem. Here,
it is extended to account for multiple products. Excess production, ePik, and
consumption, eDik are calculated by (22) and (23) respectively, but for the entire
planning horizon and thus the initial stock level is S0

ik. Under the assumption
that each product is either produced or consumed, only ePik or eDik is positive.
The minimum number of operation periods required by each port is equivalent
to the sum of operation periods required by each product. The valid inequalities
(28) enforce a lower bound on the number of operation periods needed in each
port.

∑

v∈V

∑

t∈T
oivt ≥

⌈∑

k∈K

ePik + eDik

min{QP

i ,max{QV

v ; v ∈ V}}

⌉
i ∈ N (28)



5 Computational Study

All instances of our mathematical programming models are solved using Mosel
Xpress-MP. Mosel Xpress-MP is run on a Hewlett Packard 64-bit Windows 7
Enterprise PC with Intel(R) Core(TM) i7-3770 3.40 GHz processor and 16,0 GB
(15.9 GB usable) RAM. Note that Xpress solves LP problems integrated with
the IP solution procedure. Due to the use of Presolve in Xpress, the LP bounds
that are reported in this chapter may be higher than if the LP relaxation of the
IP problem was solved explicitly.

5.1 Instances and Data

The name of each instance is built up of two components; which case is used and
which valid inequality that has been added. The small case consists of two ships
with two compartments each, four ports, and three products and is denoted by
S. The medium case have three ships, with two or three compartments each, six
ports, and four products and is denoted M . Finally, the large case is equivalently
denoted L and consists of four ships, with two or three compartments each, eight
ports, and four products. To represent which of the three valid inequalities that
has been added, the notation introduced in Sect. 4.2 is used, namely MV for valid
inequalities defined in (24) and (25), MCP for valid inequalities in (26) and (27)
and MO for valid inequalities in (28). UC is used to refer to the instance where
no valid inequalities have been added.

MV and MCP use a time interval when deciding the binding capacity of a
ship or a compartment in the ship/compartment capacity sequence. Preliminary
testing showed that using the entire length of the time horizon as the length
of the time interval gives the tightest formulation. Thus, all succeeding tests
employ the full planning horizon as time interval. Andersson et al. (2015) present
results that indicate that starting the time interval in the first time period is
most beneficial. Thus, here the incoming inventory level of the time interval,
sik(T ′−1), is always equal to the initial inventory, S0

ik.

5.2 Exact Solution Method and Valid Inequalities

In this section, the results from the testing of the model and the valid inequalities
are presented. We have tested the valid inequalities independently, as well as
other interesting combinations. Table 1 shows the results from testing the model
alone, and with the different valid inequalities. We use bold font to identify
the best solution and best lower bounds in Table 1. Note that the LP bounds
presented below corresponds to results obtained from Xpress when it solves the
LP problem integrated with the IP solution procedure. This can lead to different
results than if the LP relaxation was solved explicitly.

As can be seen, MV tightens the formulation and increases the LP bound,
resulting in a more efficient branch-and-bound procedure. This is evident in
S MV as the time to optimality is improved from S UC. MCP gives an even
tighter formulation and higher LP bound than MV. S MCP gives a significantly



Table 1. Results of small-, medium- and large-sized test cases with different valid
inequalities. Running time 5000 seconds

Test case Info UC MV MCP MO MCP MV

S LP bound 16 257 18 975 25 199 16 419 20 395
Best solution 29 883 29 883 29 883 29 883 29 883
Best bound 29 883 29 883 29 883 29 883 29 883
Time to optimality 2 100 s 1 783 s 1 012 s 3 928s 3 463s

M LP bound 19 016 21 589 25 198 19 547 19 779
Best solution 35 633 42 415 36 673 35 233 35 153
Best bound 26 065 25 742 27 582 26 183 24 518
Gap 26.9% 39.3% 24.8% 25.7% 30.3%

L LP bound 24 473 28 293 34 391 24 592 29 377
Best solution 64 930 57 252 61 310 61 673 -
Best bound 31 017 30 718 34 933 30 782 30 443
Gap 52.2% 46.3% 43.0% 50.1% -

better time to optimality and has the best performance over all test cases, in
terms of both the highest bound and the lowest gap. MCP reduced the gap
between the LP solution and the optimal integer solution from 45.6% to 15.9%
in the small test case, and it is reasonable to believe that this reduction can
explain the high efficiency of this inequality. MV and MCP are the two best
performing valid inequalities, however, a combination of the two is not efficient.
The combination of the two increases the complexity more than it manages to
reduce the search space, and the time to optimality is higher than without any
valid inequalities.

Even though the LP bound is improved, S MO has the highest running time
to optimality. While MO has one of the highest running times to optimality in
the small test case, M MO finds a good integer solution and thus achieves one
of the best bounds. Even though MO showed a slight improvement from the
small- to the medium-sized test case, it did not show any improvement in the
large-sized test case.

5.3 Model Simplifications

To use undedicated compartments (UC) to model the handling of multiple non-
mixable products is a highly realistic approach to real life applications. However,
alternative approaches do exist, namely either employing dedicated compart-
ments (DC), or assuming the products to be mixable and thus no separate com-
partments are needed (NC). Only minor changes are needed to the UC model
introduced to employ either DC or NC, and explicit formulations for these mod-
els are not included. In this section, we report and compare the performance of
the three models. To be able to compare the models, no valid inequalities have
been added to the test instances. UC, DC, and NC are used to denote which
model is tested.

The UC model has the freedom to change which products that are loaded in
which compartments and can thus choose an optimal allocation of each prod-
uct, while DC must always adhere the capacity constraints of each product’s



dedicated compartment(s). This is a restriction of the UC model; less variables
are needed and the complexity of the model is reduced. In NC models, the only
capacity limit is the ship capacity, and NC is thus a relaxation of the UC model.
NC is an even greater simplification than DC. Compared with NC, the num-
ber of variables and constraints in UC increases approximately 30% and 20%
respectively. The results of the test instances can be found in Tab. 2.

Table 2. Model simplification results of the three test cases. Running time 5 000
seconds.

Test case Info NC UC DC

S Best solution 29 883 29 883 30 303
Best bound 29 883 29 883 30 303
Time to optimality 737 s 2 100 s 1 519 s

M Best solution 35 463 35 633 36 400
Best bound 26 296 26 065 26 803
Gap 25.8% 26.9% 26.4%

L Best solution 57 713 64 930 52 500
Best bound 32 905 31 017 32 957
Gap 43.0% 52.2% 37.2%

S NC is the first to prove optimality, followed by S DC and last S UC, as
expected. The optimal objective value in S DC is higher than those of S NC
and S UC, which illustrates that NC and UC utilize a degree of freedom not ap-
plicable in DC. S NC did not, however, find a better solution than the optimal
solution of S UC. Note that the underlying flexibility on quantity (un)loaded of
all MIRP models in general, often makes it possible for a model with compart-
ments to adapt and replicate the solution of a model without compartments.
This would, however, not be possible in cases of tramp shipping where the ship
only (un)load fixed sized cargoes. For the medium-sized test case, the same pat-
tern is seen in the solutions and the size of the gaps as in the small test case.
However, due to the large gaps the results in the large-sized test case deviate
from the expected pattern.

5.4 Comparison of the Model and Model Simplifications

We have chosen to compare the solutions of the model and the model simpli-
fications on the small-sized instances since he optimal solution is known for all
models. The focus is on the comparison of models with UC and DC results, since
the solutions of UC and NC proved to be equal for the tested case.

Figure 4 shows how the routing of the ships differ between UC and DC.
The UC model manages to find a shorter feasible route compared with the DC
model. Often the reason is that in UC the ships have the flexibility of loading a
compartment with any product the ship can carry after it is emptied. Emptying
a compartment of a product will thus free up capacity that can now be available



to all products. Another aspect of the flexibility contained in UC is the ability
to reallocate products in order to obtain the optimal allocation of products
to compartments. In DC, the dedication of products to compartments is not
necessarily optimal, but it cannot be improved. For example, in the optimal
solution of DC, Product 3 is dedicated/fixed to the smallest compartment. In
contrast, Product 3 ends up using the largest compartment available in the fleet
in UC. Thus, in DC the compartment capacity of Product 3 is binding and
the fact that Product 3 is fixed to the smallest compartment prevents DC from
finding the optimal solution found by UC. This lack of flexibility is reflected in
the costs, and the possibility of saving economical values by using UC exists.

Fig. 4. Comparison of routing of ships with undedicated and dedicated compartments

When compartments are dedicated, the given capacities for each product
must remain the same through the planning horizon. This implies that the DC
model can be vulnerable to varying production rates while UC can more easily
adapt to a high variation in supply and demand during the planning horizon
by reallocating its products. UC handles the allocation of products in a more
realistic way than both NC and DC, however using undedicated compartments
come with the drawback of adding more complexity. The greater the number
of compartments in an UC model, the less capacity is locked to a product at a
time and the flexibility increases. As a result, the performance of a UC model
moves toward the performance of the NC model. In a DC model, however, the
performance is not dependent on the number of compartments due to the fact
that it always has one fixed capacity per product.



6 Concluding Remarks

In this paper, we developed a mathematical formulation for a maritime inventory
routing problem addressing the allocation of multiple products to undedicated
compartments onboard the ships. Three different types of valid inequalities were
developed and tested, the most promising using a capacity sequence to define
the minimum number of compartment visits required in a port. Computational
results were also given for two simplified models to compare different ways of
handling the allocation of products. Employing undedicated compartments is the
most realistic approach to real life applications but it comes with the drawback
of added complexity. However, comparison with models employing dedicated
compartments or mixable products indicate a potential for economical savings
by using undedicated compartments.
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