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Description of the Thesis

The purpose of this thesis is to investigate the benefits of including uncertainty
in the in-port routing problem of a chemical tanker. The problem entails find-
ing a sequence to service a given number of cargoes located in several different
terminals. Each cargo will either be picked up or delivered. The ship must ser-
vice all cargoes while complying with capacity and draft limit constraints. The
case port is particularly long and narrow, and the movement of the ship can be
considered as movement along a straight line. Accounting for uncertainty in
the problem implies modelling the waiting times at the terminals as stochas-
tic variables. Both a static and a dynamic version of the problem are solved.
The objective is to find the route that maximizes the probability of route
completion within a given threshold. The static stochastic version is solved
using an exact solution algorithm presented by Nikolova et al. (2006), and the
dynamic stochastic version is solved by simulation, where the exact solution
algorithm is used in each stage to decide the next cargo to service. Various
conditions have different effects on the uncertainty pertaining to a route, and
these conditions and effects are examined. Analysis and simulations are used
to evaluate the performance of the model, the stochastic solutions, and the
applied approximations.
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Abstract

Chemical tankers spend a substantial amount of time in port as the devel-
opment of port infrastructure has not followed the fast paced increase in the
world fleet. The resulting traffic at terminals causes ships to wait for a long
time before a terminal is ready to accommodate it. A large amount of uncer-
tainty is associated with the waiting times, which complicates the planning of
port operations.

The aim of the thesis is to investigate the benefits of including uncertainty in
the in-port routing problem of a chemical tanker. The chemical tanker has
to pick up and deliver a given number of cargoes located at different termi-
nals while complying with capacity and draft limit constraints. The waiting
times at the terminals are stochastic, which results in stochastic travel times
between terminals. The problem studied in this thesis is a stochastic pickup
and delivery problem. The problem is dynamic by nature, and both a static
and a dynamic version of the problem are solved. A review of deterministic
and stochastic routing problems resembling the pickup and delivery problem
is presented. To our knowledge, few or none have studied the pickup and de-
livery problem where travel times are stochastic. Our thesis contributes to the
literature by studying the pickup and delivery problem with uncertain travel
times, subject to constraining draft limits. In addition, due to the particu-
larly narrow port channel in the case port, we consider the ship’s movement as
movement along a straight line. This gives a unique relation between stochas-
tic waiting times at terminals and travel times between terminals. As far as
we know, this has not been studied before, and the unique conditions and
aspects of the travel times this gives are examined and discussed.

The stochastic waiting times at terminals are assumed normally distributed.
The stochastic travel times between cargoes in different terminals and the
stochastic waiting time at the destination terminal are correlated. The distri-
bution of the arc travel times are assumed normally distributed, and approx-
imations are used to obtain the distributions.

Both a static and a dynamic version of the problem are solved. The objective
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is to find the route that maximizes the probability of completing within a
given threshold. As the objective function is non-linear fractional, which is
not straightforward to handle, specialized solution methods are used. An exact
algorithm presented by Nikolova et al. (2006) is used to solve both versions
of the problem. What confidence level is required for a route to be optimal
depends on the risk profile of the decision maker. When solving the static
version of the problem, the optimal route for the given threshold is identified
prior to route execution, while the dynamic problem is solved using the exact
algorithm iteratively to decide which cargo to service next.

When solving the static version of the problem, a base set of 100 test instances
is generated and tested. The instances are generated based on realistic input
data from Houston Ship Channel. We find that for less than 20% of the
instances, the optimal stochastic solution performs better than the optimal
deterministic. However, the improvements in threshold and confidence level
is less than 0.5% for all instances.

An evaluation of the applied approximation of the distribution of arc travel
times shows that our model suggests less variance to be associated with the
routes than what is the real case. This means that the value of the stochastic
solution might be higher than what our results suggest. The results from
solving the dynamic version of the problem support the findings from solving
the static version of the problem.
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Sammendrag

Utviklingen av infrastukturen i havner har ikke holdt følge med den raske
veksten i verdensfl̊aten. Kjemikalietankere bruker derfor en betydelig an-
del av tiden sin i havn. Dette gir trafikk ved terminalene, og medfører at
skip ofte m̊a vente lenge før en terminal er klar til å ta imot skipet. Det
er usikkerhet assosiert med ventetidene. Dette kompliserer planleggingen av
havneoperasjoner.

Målet med v̊ar avhandling er å undersøke nytten av å inkludre usikkerhet i
problemet med å finne optimal rute i havn for en kjemikalietanker. Kjemikalie-
tankeren m̊a hente og levere et gitt antall laster i ulike terminaler samtidig som
den overholder begrensninger for skipets kapasitet og dypgang. Ventetidene
ved terminalene er stokastiske. Dette gir stokastiske reisetider mellom termi-
nalene. Problemet vi studerer i denne avhandlingen er dermed et stokastisk
pickup and delivery-problem. Problemet er dynamisk av natur, og b̊ade en
dynamisk og en statisk versjon av problemet er løst. Et litteraturstudie av
dynamiske og stokastiske ruteproblemer som ligner p̊a pickup and delivery-
problemer er inkludert. S̊a vidt vi vet har ingen, eventuelt svært f̊a, studert
pickup and delivery-problemer med stokastiske reisetider. Denne avhandlin-
gen bidrar derfor til litteraturen ved å studere et pickup and delivery-problem
med usikre reisetider begrenset av kapasitet og dypgang. P̊a grunn av den spe-
sielt lange og smale havnekanalen som brukes som eksempel i denne avhandlin-
gen anser vi bevegelsene til skipet som bevegelser langs en rett linje. Dette gir
et unikt forhold mellom den stokastiske ventetiden ved terminalene og reiseti-
den mellom terminalene. S̊a vidt vi vet har ikke dette blitt studert tidligere.
De unike forholdene og aspektene ved resitidene dette medfører er undersøkt
og diskutert.

De stokastiske ventetidene ved terminalene er antatt å være normalfordelt.
De stokastiske reisetidene mellom laster i ulike terminaler og den stokastiske
ventetiden er korrelert. Distribusjonene til reisetidene langs kanter er antatt
å være normalfordelt, og approksimasjoner er brukt for å konstruere dem.

B̊ade en statisk og en dynamisk versjon av problemet er løst. Form̊alet er
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å finne den ruten som maksimerer sannsynligheten for å fullføre ruten in-
nen en gitt tid. Det er utfordrende å h̊andtere den ikke-lineære fraksjonelle
objektivfunksjonen, og en spesialtilpasset løsningsmetode er nødvendig. En
eksakt algoritme, presentert av Nikolova et al. (2006), er brukt for å løse b̊ade
den statiske og den dynamiske versjonen av problemet. Hvilken rute som
anses for å være optimal avhenger av kravet til konfidensniv̊a. Hvilket konfi-
densniv̊a som anvendes avhenger av risikoprofilen til beslutningstakeren. For
den statiske versjonen av problemet blir den optimale ruten identifisert før
ruten er p̊abegynt. Det dynamiske problemet løses iterativt med den eksakte
løsningsalgoritmen. I hver iterasjon blir den optimale neste lasten å betjene
identifisert.

Vi genererer et basesett med 100 testinstanser. Disse instansene utgjør grunn-
laget for testing og analyse av den statiske versjonen av problemet. Basein-
stansene er generert ved å bruke realistisk data fra eksempelhavnen, Houston
Ship Channel. Vi finner at for mindre enn 20% av baseinstansene er den
optimale løsningen p̊a det stokastiske problemet ulik fra den optimal deter-
miniske løsningen. Men forbedringen i tidskravet man oppn̊ar ved å bruke
den optimale stokastiske løsning fremfor den optimale determiniske løsningen
er mindre enn 0.5% for alle instanser.

Approksimasjonen brukt for å konstruere distribusjonene for reisetider langs
kantene blir evaluert. Evalueringen viser at v̊ar modell foresl̊ar mindre var-
ianse assosiert med hver kant enn hva som er tilfellet i virkeligheten. Dette
innebærer at verdien av å bruke den stokastiske løsningen kan være større enn
det resultatene v̊are tilsier. Betydningen av resultatene vi f̊ar ved å løse den
dynamiske versjonen av problemet samsvarer med betydningen av resultatene
vi f̊ar n̊ar vi løser den statiske versjonen av problemet.
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Chapter 1

Introduction

The work presented in this thesis is motivated by a real-life problem faced by
the chemical shipping company Odfjell SE. Odfjell’s chemical tankers spend
a substantial amount of their operating time in port. Much of the time is
spent waiting for terminals to become available. The unknown number of
ships queueing for the different terminals and the possibility of unscheduled
surveys and tank cleanings give rise to uncertain waiting times. Improving the
sequence of terminal visits to handle the uncertainty in an appropriate manner
can give better control of the time spent in port and thus the associated costs
and environmental effects. A case from Houston Ship Channel by Galveston
Bay in the Port of Houston is used to explain in more detail the problem
experienced by Odfjell.

In the following sections we highlight aspects of maritime transportation in
general, and chemical shipping in particular, that are relevant for this thesis.
The material in this chapter is largely based on Odfjell (2003), Odfjell (2014),
and the master thesis by Arnesen and Gjestvang (2015).

1.1 Background

1.1.1 Maritime Transportation

International trade heavily depends on maritime transportation. In 2014, 9.84
billion tons of goods were transported at sea, which means that around 80%
of total world merchandise trade is seaborne (UNCTAD, 2015). Demands
for maritime transport services and seaborne trade volumes are shaped by
global economic growth. Thus, population growth, increasing standards of
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living, rapid industrialization, exhaustion of local resources, road congestion,
and elimination of trade barriers all contribute to the continuing growth in
maritime transportation (Christiansen et al., 2007). Preliminary UNCTAD
estimates indicate that global seaborne shipment has increased by 3.4% in
2014, which is similar to the increase in 2013. Figure 1.1 highlights the asso-
ciation between economic growth, industrial activity, merchandise trade, and
seaborne shipments. Industrial activity is here measured by the Organization
for Economic Cooperation and Development’s (OECD) Industrial Production
Index. The development of the associated port infrastructure does, however,
not follow the same pace.

Figure 1.1: The OECD Industrial Production Index and indices for world GDP,
merchandise trade and seaborne shipments, 1975-2014 (base year 1990 = 100) (UNC-
TAD, 2015).

Strategical, Tactical, and Operational Planning

Planning problems in maritime transportation can be classified into strate-
gical, tactical, and operational problems depending on the planning horizon
(Christiansen et al., 2007). Problems at the strategic planning level have a
time horizon of more than a year, and typical problems could be market and
trade selection, fleet size and mix decisions, or ship design. Tactical planning
problems have a time horizon of one week to one year and include decisions
like fleet deployment, and ship routing and scheduling. At the operational
level, decisions for the next day or week are addressed. This can be decisions
on the speed for a sailing leg, the allocation of products to compartments, the
next customer request to serve, or decisions regarding whether to take spot
loads or not.

2



1.1. Background

Shipping Modes

Shipping companies can operate its fleet in different modes; tramp, liner,
or industrial shipping (Lawrence, 1972). Vessels in liner shipping follow a
fixed route according to a public schedule. The object of a shipping company
operating its vessels in a liner mode is to maximize profits. Vessels in tramp
shipping, on the other hand, trade on the spot marked with no fixed schedule.
They operate as taxis and the routes are decided based on the requirements
to the chartered cargo. The objective of tramp shipping is also to maximize
profits. In industrial shipping, the shipping company owns both the ships and
the cargoes they transport. The objective of the company is to transport all
their cargo while minimizing costs. A shipping company can operate its fleet
in multiple modes and transfer ships from one mode to another depending on
its strategy.

1.1.2 The Chemical Tanker Market

The shipping market can be categorized into different segments based on the
type of cargo being shipped. As seen from Figure 1.2, dry bulk, containerized
cargo, and oil represent the larger part of seaborne trade. Transportation of
chemicals, gas, and oil are often categorized as part of the tanker market, as
they are transported by tanker ships.

Figure 1.2: World seaborne trade in cargo ton-miles by cargo type, 2000-2015
(billions of ton-miles) (UNCTAD, 2015).
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Products

The chemical tanker market is a niche of the much bigger tanker market,
and includes carriage of a range of products (Odfjell, 2003). More than 600
types of products are transported by Odfjell’s chemical tankers. Odfjell’s main
chemical tanker cargoes are organic chemicals, inorganic chemicals, vegetable
oils and animal fats, clean petroleum products and a few other assorted prod-
ucts. Chemical tankers are ships constructed or adapted for carrying, in bulk,
any liquid product listed in the International Bulk Chemical Code (Interna-
tional Maritime Organization, 2014). The products have different physical
properties, values and handling requirements.

Requirements and Regulations

What products are allowed onto various types of ships and tanks is regulated
by strict international rules. The rules are subject to requirements to pollution
prevention, vapour handling, tank cleaning, and disposal of waste water etc.
In addition, there are rules and regulations pertaining to stowage, adjacent
cargoes and previous cargoes. What material tanks are made from also influ-
ences what sorts of products ships may carry. Tanks made from stainless steel
are most common, whilst coated tanks have various compatibility restrictions
(Odfjell, 2003).

Contracts

What cargoes are transported depends on the business arrangements. These
can be either contracts of affreightment (CoA) or spot cargoes. Contracts are
binding long-term agreements between customers (charterers) and ship owners
(such as Odfjell). Cargo space for a specified time and freight is reserved and
at the customer’s disposal in exchange for payment to the ship owner. The
CoA does typically not specify what ship is to be used. Spot cargo contracts
are determined by supply and demand. Transportation of spot cargoes is
optional. Ship utilization and profits can be optimized by transporting a mix
of contracted cargoes and spot cargoes.

Logistics

Within a port there are several terminals. Different customers require delivery
or pickup of their cargo at different terminals, but some customer requests can
be located within the same terminal. The chemical tankers have between 30
and 55 segregated compartments enabling them to transport different chem-
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icals simultaneously. The freight usually constitutes of cargoes designated to
a number of different customers, implying the need for tankers to visit a large
number of terminals within a port. A terminal visit may require loading,
unloading or both.

When in port, scheduling conflicts and logistics challenges often cause unnec-
essary transits between terminals and anchorage or layberths. These transits
are time consuming. Consequently, a substantial amount of time is spent in
port. Odfjell’s tankers spend more than 40% of time in port. Optimizing the
sequence in which terminals are visited is thus crucial to minimize the time
spent in port.

Economics

The running of chemical tankers is in many respects similar to running any
transportation vehicle. The key to profitability lies in the highest degree
of employment with the most revenue-making business. The revenues from
running chemical tankers mainly come from freight (Odfjell, 2003).

An important profitability indicator for a ship owner like Odfjell is the time-
charter (T/C) result. It is used to compare the economic performance between
different geographical areas, ship types, and segments. The voyage earnings
in terms of T/C results are calculated as

T/C result =
freight income− voyage costs

voyage duration
. (1.1)

Freight income is decided by the freight rates fixed in the CoAs. The company
aims at finding a combination of CoAs that results in a high utilization of their
ships. If a ship is not fully utilized, the company may include spot cargoes.
The fixing of spot cargoes is a marginal consideration, where the owners have
to evaluate the effect on the bottom line result of the potential income as
opposed to the anticipated extra costs and time spent.

There are numerous voyage related costs, pertaining to port charges includ-
ing agency fees, pilot and tug boat assistance, commissions/fees, and special
tank cleaning material. By using good purchasing routines and proper voyage
planning, the company tries to minimize these costs (Odfjell, 2003).

It is not only increasing freight income and reducing voyage costs that is
important for the company’s profits. Reducing the duration of the voyage
is equally important. Thus, the key to optimal T/C results is proper fleet
scheduling and planning. Making the ships carry out their voyages as fast as
possible is an important contribution to good results.
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1.2 The Thesis Problem

The problem studied in this thesis is motivated by the problem faced by the
chemical shipping company, Odfjell SE. When visiting a port, a chemical
tanker has a set of contracted cargoes to pick up or deliver at various ter-
minals. Deciding the sequence in which the cargoes will be serviced is a key
activity in the tactical planning procedure. In the chemical tanker market,
time is a valuable resource. Voyage duration, including time spent in port,
is a key component of a shipping company’s profitability. Odfjell’s chemical
tankers spend more than 40% of their time in port. A large amount of time
in port is spent waiting for terminals to become available. There is much un-
certainty related to waiting for terminal availability, as there is an uncertain
amount of traffic and queuing related to each terminal. This uncertainty is
an important element when planning the sequence in which port operations
will be conducted. Other important considerations to take into account are
requirements and regulations, contracts and business arrangements, draft lim-
its and ship capacity. Houston Ship Channel in The port of Houston is used
as a case port to explain the situation faced by Odfjell. The particularly long
and narrow port channel affects the nature of the uncertain elements, advo-
cating the importance of taking uncertainty into account during the planning
process.

The aim of the thesis is to investigate the benefits of including uncertainty in
the in-port routing problem of a chemical tanker. When uncertainty is at play,
it is not obvious what is regarded as an optimal route. A route may have a low
expected completion time, but be subject to a large amount of uncertainty.
For different geographic locations of customer requests, relative sizes of termi-
nal waiting times and distances between terminals, different route sequences
and characteristics may be favoured. To investigate the effects of these vari-
ations, both a static and a dynamic version of the problem are solved. The
static model identifies the optimal route prior to route execution, while the
dynamic simulation utilizes information about waiting times revealed during
the execution of the route to decide what cargo to service next. In reality,
information about realised waiting times are revealed during route execution,
and the planning problem is dynamic by nature.

The objective is to maximize the probability of route completion within a
required threshold (i.e. a deadline). By including uncertainty in the planning
process in this manner, it is possible to find routes which are better posi-
tioned with respect to uncertainty than routes found by using a deterministic
approach. Models accounting for uncertainty also provide information about
the level of risk associated with routes. The focus of the thesis is on the prac-
tical analysis and decision support rather than on technical performance and
model efficiency.
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1.3 Upcoming Chapters

In Chapter 2, the problem faced by Odfjell is described in more detail, and
aspects important for the mathematical model formulation are highlighted.
Chapter 3 reviews literature relevant to stochastic routing problems, while
the mathematical model formulation is presented in Chapter 4. In Chapter
5, the method used to solve the mathematical model presented in Chapter 4
is explained. The nature of the stochastic variables is discussed in Chapter
6. A description of the input data applied to generate test instances is pre-
sented in Chapter 7. The results obtained by solving the static version of the
problem are presented and analysed in Chapter 8. In Chapter 9, the results
from solving the dynamic version of the problem are presented and analysed.
Conclusion remarks and recommendation for future research is presented in
Chapter 10.
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Chapter 2

Problem Description

In this chapter, the real-life problem faced by Odfjell SE is described in more
detail. Examples from Houston Ship Channel in the Port of Houston are
used to highlight some of the issues. First, an overview of the problem is
presented in Section 2.1. Implications of including uncertainty in the planning
problem are discussed in Section 2.2. Lastly, a summary is presented in Section
2.3. Information about the problem is mostly gathered from Arnesen and
Gjestvang (2015) and Kruse (2015).

2.1 The Stochastic Problem

As explained in Chapter 1, the T/C result is an important profitability in-
dicator for a chemical shipping company like Odfjell. Voyage duration is a
key factor for the profitability. Odfjell’s ships spend a lot of time in port,
and the majority of this time is spent waiting for an occupied terminal to
become available. Uncertainty associated with the travel times is largely due
to uncertainty of these waiting times. The uncertainty complicates the route
planning and is a matter which must be taken into consideration. Thus, the
focus in this thesis is on planning of a single ship’s customer servicing sequence
in a port while handling uncertainty in a proper manner. We also study how
different elements affect uncertainty and how uncertainty affects the choice of
optimal routes.
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Geography of Houston Ship Channel

The Port of Houston is located in the state of Texas, and is one of the United
State’s busiest seaports. Houston Ship Channel is part of the Port of Houston.
It is a long and narrow channel, 60 meters wide, 14 meters deep and 80 km
long, with numerous terminals. The long and narrow geography makes the
planning problem in Houston Ship Channel particularly interesting. Figure
2.1 shows a map of Houston Ship Channel, where the red line marks the
channel.

Figure 2.1: Houston Ship Channel in the Port of Houston. The red line marks the
channel.

Contracts and Demands

On average, 96 % of the cargo serviced during a port visit is booked by the
time the ship arrives at the port. Which contracted cargoes the ship has to
service in a specific port is hence considered known a priori. As the terminal
location of the cargoes to be serviced are known, this implies that for each port,
the ship has a known set of terminals it must visit to service the predefined
customers, and quantities are known. It is also known which cargoes are to
be loaded and which are to be discharged. It is not required that all cargoes
to be serviced at the same terminal have to be serviced consecutively. There
is no limitation on the number of times the ship can return to a terminal, but
each time a terminal is entered, uncertain waiting time applies.
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Tendering and Queuing

When arriving at port, the ship moors at an anchorage point outside the port
while waiting for permission to visit terminals. When the ship is ready to visit
terminals, notices of readiness (NOR) are tendered to relevant terminals. To
be allowed send NORs, the ship must have space in suitable and satisfactory
cleaned tanks to service the loading or unloading of cargoes at the terminal.
When receiving NORs, the terminals reply with a berth advice. The berth
advice includes an approximated waiting time before the ship may approach
the terminal. Prior to a ship’s arrival, terminals must often prepare equipment
at the shore, which may take up to 12 hours (Kruse, 2015). Once a terminal is
ready to receive the ship, it signals its readiness by sending a berth readiness.
The time spent waiting for a terminal to become available depends on the
number of preceding ships in the queue occupying the berth, as the ships are
serviced at a first-come-first-served basis. Upon receiving the berth readiness,
the ship arranges for a harbour pilot to sail the ship to its designated berth
at the terminal. A ship must cancel all other NORs and loses its place in
line when it starts sailing towards a terminal. Once the ship has finished
its operations at the terminal, it sends out NORs to the remaining terminals
on its schedule. If a terminal is ready to receive the ship, the ship may sail
directly to the next terminal. However, the ship often has to wait before the
terminal is ready.

In most ports, ships are not allowed to wait at the terminal when it is finished
servicing the cargoes in that terminal. Instead, ships must sail back to an-
chorage or to dedicated layberths before the next terminal visit. If the next
terminal sends its berth readiness before the ship has returned to anchorage
or a layberth, the ship may turn around on the spot. If not, the ship sails
all the way to anchorage or a layberth where it waits until the terminal is
ready. Two cases where this may happen are illustrated in Figure 2.2. For
both cases, the ship first services a cargo in Terminal 1, before the next cargo
located in Terminal 2 is serviced. The full lines illustrate the distance traveled
when the ship sails directly from Terminal 1 to Terminal 2. The dashed lines
illustrate scenarios where a long waiting time at Terminal 2 forces the ship
to sail all the way back to anchorage, where it waits until berth readiness is
received. Then it may sail back to Terminal 2.

In Figure 2.2a, Terminal 2 is located further away from anchorage than Ter-
minal 1. If the ship has to wait before Terminal 2 is ready to accommodate it,
the ship must sail towards anchorage and possibly wait there until the termi-
nal is ready. In this case, sailing towards anchorage means sailing away from
the destination terminal. This is illustrated by the upper dashed line in Figure
2.2a. Consequently, if the waiting time at Terminal 2 is larger than zero, the
distance the ship has to sail to get from Terminal 1 to Terminal 2 becomes
larger than the direct geographical distance between the two terminals.
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If Terminal 2 is located closer to anchorage than Terminal 1, as illustrated in
Figure 2.2b, sailing towards anchorage means sailing towards the next terminal
initially. For scenarios with zero waiting time at Terminal 2, the ship may sail
directly to the terminal. This is illustrated by the full line. If the waiting time
at Terminal 2 is short enough, i.e. berth readiness is received before the ship
has passed the Terminal 2, the ship avoids unnecessary additional sailing time
and may also then sail directly to the terminal. If the waiting time exceeds
the time it takes to travel from Terminal 1 to Terminal 2, the ship passes
Terminal 2 and sails away from it on its way to anchorage. Consequently,
the distance between the ship and the next terminal increases. The ship may
have to wait at anchorage for some amount of time before it can sail back to
Terminal 2. This case is illustrated by the dashed line in Figure 2.2b. The
dashed circle illustrates waiting at anchorage.

(a) Possible additional sailing distance due to waiting times when sailing from
Terminal 1 to Terminal 2, when Terminal 2 is located further away from the
anchorage than Terminal 1.

(b) Possible additional sailing distance due to waiting times when sailing from
Terminal 1 to Terminal 2, when Terminal 2 is located closer to the anchorage
than Terminal 1.

Figure 2.2: Additional sailing distance due to waiting times. The full line represent
the direct sailing distance if no waiting times incur, while the dashed lines illustrate
the possible additional sailing distance due to waiting times.

Thus, in both cases of Figure 2.2, the actual distance traveled between ter-
minals may exceed the direct geographical distance between the terminals.
Hence, the uncertain waiting time causes the total distance to be sailed to be
uncertain which results in uncertain sailing time.

12



2.1. The Stochastic Problem

Draft Limits

Draft is the height of the submerged ship, from the lowest part of the ship
to the waterline. Draft limit is the depth of the water, from the seabed to
the waterline. The terminals have different draft limits. The draft of the ship
depends on the weight of the ship, including the cargo it is carrying, as can
be seen from Figure 2.3.

Based on the ship’s weight and other characteristics, the draft limits can be
expressed in terms of the weight of the cargoes on board the ship. Thus, in
this thesis, the draft limits are expressed as tonnes of load on board the ship.
The route planning problem we consider includes both pickup and delivery of
cargoes, making it uncertain whether the ship’s draft is largest when arriving
or departing a terminal. This implies that the ship’s draft must be evalu-
ated both when arriving and departing the terminals, and may constrain the
problem (Arnesen and Gjestvang, 2015).

Figure 2.3: Draft and draft limit of a) an unladen ship, and b) a laden ship (Rakke
et al., 2012).

Ship Capacity

For each customer request, the quantity to be serviced is known, and a request
cannot be split. The ship has limited capacity, and this capacity must be
complied to at all times. When arriving at a port, the ship is loaded with
cargoes to be discharged, and the ship capacity may constrain the order in
which cargoes can be loaded and discharged throughout the port visit. If all
of the load on board when arriving at the port is discharged during the port
visit, the ship is loaded only with the total load picked up during the port
visit when leaving the port. If some of the load on board at arrival is not
discharged, the load when leaving the port exceeds the total load picked up
during the port visit. Regardless, the ship capacity can never be exceeded.

Inspections

When arriving at port, ships go through inspections. The ship may only
enter the port after the tanks and cargo on board has been inspected and
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approved. The coast guard must also clear the ship before it may proceed
to its business. In addition, customs and immigration inspect the ship, its
documents and cargo at the terminal. Inspections may be visual, or there
may be a more thorough chemical analysis. If a ship does not satisfy the
requirements, it must sail to anchorage and either wash or change the tanks.

Terminal Operations

There is a number of operations to be performed once the ship arrives at the
terminal. These include customer-required inspections, loading and unloading
of cargo and cleaning of tanks. If there are enough resources available, several
cargoes may be serviced at the same time. The time it takes to load or unload
is referred to as loading time. When cargo has been unloaded, the tanks must
be cleaned. The time it takes to clean a tank is referred to as cleaning time,
and depends on the type and size of cargo unloaded. Total servicing times at
terminals in the Port of Houston are on average 24 to 26 hours (Kruse, 2015).

2.2 Implications of Including Uncertainty

In the above section we identify five major time consuming activities a ship
goes through several times during a port visit: sailing between terminals,
loading/unloading of cargo, cleaning of tanks, waiting for terminals to become
available, and the possible additional sailing time incurred because of waiting
times. In reality, all these activities include uncertainty, and the waiting time
is particularly uncertain. The waiting time depends on the amount of traffic,
that is the number of ships in line to be serviced, and can affect the choice
of optimal route. Note that we distinguish between sailing time and travel
time. The sailing time is the time spent sailing or waiting at anchorage, while
the travel time includes loading/unloading and cleaning in addition to sailing
time. Hence, the travel time always exceeds the sailing time. The problem we
study can be regarded as finding a route through a network of nodes, where
the arcs between nodes have given weights, or costs, associated with them.
For our problem, we let the weight of an arc be the travel time.

In additional to uncertain waiting times, travel times are subject to the possi-
bility of unscheduled events or failure. The ship could meet another vessel in
a narrow part of the port and be forced to turn around or do another manoeu-
vre that leads the ship away from its planned path. The engine could break
down or equipment onshore needed for the loading/unloading could break
down. But there is a very low probability for these events to occur, and their
effect on what solution is optimal is expected to be significantly less than the
uncertain waiting times.
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Due to the uncertain waiting times that apply when entering a new terminal,
other routes may be optimal for the stochastic problem than for the corre-
sponding deterministic problem. What route is optimal is dependent on how
optimality is defined. From a business point of view, it is not necessarily only
the expected completion time of the route that should be optimized. The real-
ity companies face is complex, and the ability to plan ahead can be of equally
great importance. Reducing uncertainty as much as possible at the cost of
a somewhat higher expected completion time may thus yield better results.
Probabilities are affected by both the expected value and the variance of the
completion time, and each route has a unique combination of these two char-
acteristics. What is regarded as an optimal route depends on the company’s
risk profile.

As illustrated in Figure 2.2 and explained above, the time it takes to sail
from one terminal to another is closely related to distances, directions and
traffic and the waiting times at terminals. As such, the uncertain travel times
are dependent on a combination of both uncertain elements and deterministic
elements.

Figure 2.4 illustrates two possible routes for a simplified and limited route
planning problem.

Figure 2.4: An example of two feasible routes with different means and variances
of route completion times.
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The figure shows three terminals, A, B, and C, and the anchorage. Above each
grey square representing a terminal are the characteristics of the normally
distributed waiting times, N (µ, σ2). For this simplified example waiting time
only applies to Terminal A. The draft limits of each terminal is labeled by
DL. The draft limits are expressed as the maximum load allowed on board
the ship for it to enter (or leave) the terminal. There are three loads included
in this limited problem, one in each terminal. The load of the cargo located in
a terminal is shown inside the terminal icon. The sign “+” indicates a pickup
cargo, while the sign “−” indicates a delivery cargo. The horizontal lines
between the terminals represent the direct sailing times between terminals in
hours, i.e. the time it takes to sail between terminals when waiting times
are ignored or are equal to 0. The vertical lines do not impose any sailing
time. The terminal visiting sequence of each of the two routes are illustrated
in the figure. The sailing times along arcs are also assumed to be normally
distributed, and the characteristics of the distribution of each arc sailing time
is indicated above the arc.

The figure shows that the terminal visiting sequence of Route 1 is Anchorage−
A − C − B − Anchorage. This amounts to an expected completion for the
route of µ = 32 hours, and σ = 5 hours. The terminal sequence of Route
2 is Anchorage − C − A − B − Anchorage. Relative to Route 1, Route 2
includes a detour, and gives an expected route completion time for Route 2
of µ = 32.5 hours with σ = 3.1 hours. For both routes, the tight draft limit
at Terminal B forces the ship to visit Terminal A before Terminal B. The
variance of the two routes are not the same. Terminal A is the only terminal
with uncertain waiting times, and arcs with terminal A as the destination
node are the only uncertain arcs. Route 1 visits Terminal A as the first node,
while Route 2 visits Terminal A after terminal C, which is further away, and
then takes a detour to Terminal B before finishing. The arc from C to A is
associated with less uncertainty than the arc from Anchorage to A. This is
due to different sailing direction relative to anchorage, as discussed for Figure
2.2, and that some of the time spent waiting is spent sailing in the correct
direction. This gives different expected completion times and variances of
the routes. For one route, the expected completion time is lower at a cost
of a higher uncertainty, while for the other route, the uncertainty is lower at
the cost of a slightly higher expected completion time. If the objective is to
merely minimize the expected route completion time, Route 1 is optimal, but
if uncertainty matters, what route is optimal is not obvious.

The example above shows that routes can have different expected comple-
tion times and variances depending on what arcs are chosen. The uncertainty
related to terminals, directions of arcs relative to anchorage and relative dis-
tances can cause some routes to have a lower mean, but higher variance than
others. This indicates that for stochastic versions of the problem, there is a
trade off between time saved and uncertainty reduced, which must be taken
into account when optimality is defined.
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2.3 Summary

In this thesis, we consider a problem where a single ship is going to service a
set of customers within a port. Customers requires either pickup or delivery of
cargoes. Both the customers and their requests (i.e. locations and quantities)
are known. Each cargo is located in one out several possible terminals within
the port. The ship starts from anchorage and must service all cargoes at their
respective terminal locations before finalizing the port visit and returning to
anchorage. The aim is to determine a sequence to service the given cargoes
which is optimal with respect to both expected route completion time and
uncertainty.

Sailing between cargo locations includes a set of time consuming activities,
such as waiting for the next terminal to become available when consecutive
cargoes are placed in different terminals. Terminals are subject to traffic, and
the time it takes before terminals are ready to receive the ship is uncertain.
The ship is not allowed to wait at a terminal until the next terminal to visit
becomes available, and as the length of the waiting time is uncertain, the
time it takes to sail between terminals also becomes uncertain. The amount of
uncertainty and the expected time associated with sailing between terminals is
dependent on the distance between terminals, direction relative to anchorage
and the waiting times. The resulting total travel time, which also includes
deterministic terminal operations, is stochastic. This complicates the planning
problem.
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Chapter 3

Literature Review

In this chapter we present and discuss literature relevant for the stochastic
in-port ship routing problem studied in this thesis. The problem can be mod-
elled as a Single Vehicle Pickup and Delivery Problem with Draft Limits and
Stochastic Travel Times (PDP-DLST). In this chapter, the problem studied
in this thesis is referred to as PDP-DLST. Classification of and literature on
the Pickup and Delivery Problem (PDP) is reviewed in Section 3.1, before
stochastic routing problems are addressed in Section 3.2. As the literature on
PDPs with stochastic travel times is scarce, other relevant routing problems
with stochastic travel times are studied, among them the Travelling Salesman
Problem (TSP), the Vehicle Routing Problem (VRP), and the Shortest Path
Problem (SPP). PDP is closely related to the TSP, and the VRP is a gener-
alization of the TSP (Dantzig and Ramser, 1959). Both theory and solution
methods of stochastic routing problems is addressed. The thesis problem is
a dynamic problem by nature, but it is also interesting to consider a static
version of the problem. Thus, theory and literature on static and dynamic
routing problems is reviewed in section 3.3. Lastly, Section 3.4 sums up the
contribution of this thesis to the literature.

3.1 Pickup and Delivery Problems

The Pickup and Delivery Problem (PDP) is an important class of the Vehicle
Routing Problem (VRP), in which objects or people are transported between
origins and destinations (Berbeglia et al., 2007). As for the VRP, a number
of variants of the PDP has been studied. In this section we first present a
framework for classification of PDPs. The framework is suggested in Berbeglia
et al. (2007) and presented here because of its comprehensive and usable
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structure. Secondly, we present general notation for the PDP, suggested by
Berbeglia et al., before literature on solution methods for PDPs is reviewed.

3.1.1 Classification

There is a vast amount of versions of the PDP. To get an overview of the
different versions of the PDP, and to be able to classify the problem studied
in this thesis, we present a modelling framework and classification scheme
for PDPs. The framework is introduced by Berbeglia et al., and is shown in
Figure 3.1. A three-field scheme to classify the problem versions is used and it
is denoted by [Structure|V isits|V ehicles]. Structure indicates the number of
origins and destinations. Visits specifies the way in which pickup and delivery
operations are performed at customer vertices. Vehicles gives the number of
vehicles used. According to the survey, the thesis problem can be classified as
a version of PDP referred to as a dynamic single-vehicle one-to-many-to-one
Problem with Single Demands and Mixed Solutions ([ 1-M-1|P/D|1 ], or 1-
M-1-PDPSDMS). The notation is described in detail in the remainder of this
section.

Figure 3.1: Classification of PDPs by Berbeglia et al. (2007).

The authors define many-to-many problems (M-M) as having several origins
and several destinations for each commodity. For one-to-one problems (1-1),
each commodity has exactly one pickup vertex and one delivery vertex. In one-
to-many-to-one problems (1-M-1), some commodities are initially located at
the depot and destined to customer vertices while other commodities supplied
by the customers are brought back to the depot. Thus, there is only one origin
and one destination. The problem studied in this thesis has only one anchorage
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which for modelling purposes represents both the origin for all deliveries and
the destination for all pickups. Transhipment is not allowed, and the problem
is a 1-M-1 PDP. Hence, the focus is on 1-M-1-PDPs for the remainder of this
section.

Berbeglia et al. (2007) further distinguish between the demand structures
single demands and combined demands. P/D indicates that each customer
node is either a pickup or a delivery node, but not both. This is referred to
as single demands. P-D indicates that at least one customer node is both a
pickup request and a delivery request simultaneously, which is referred to as
combined demands. The problem studied in this thesis is a P/D problem, and
the remainder of this section focuses on this type of problem.

When delivery and pickup customers may be serviced in any order, the prob-
lem is classified by Berbeglia et al. (2007) as mixed. When all delivery cus-
tomers must be serviced before any pickups, the problem is said to have back-
hauls. The problem we study is a mixed problem as cargoes may be serviced in
any order. Note that backhauls may also be used to refer to pickup requests
destined to a warehouse (which corresponds to an anchorage). Anily and
Mosheiov (1994) use backhauls to refer to pickup customers destined directly
to the warehouse, but does not constrain the order in which the customers
may be serviced. When all pickup customers are backhauls, it implies that
they do not allow delivery requirement to be satisfied using backhaul stock.
This corresponds to a 1-M-1 problem, but Anily and Mosheiov (1994) do not
use this notation. This somewhat different usage of the term allows Anily
and Mosheiov (1994) to use the term backhaul when defining a problem that
corresponds to what Berbeglia et al. (2007) refers to as mixed.

Berbeglia et al. (2007) also distinguish between static and dynamic problems.
In the former, all information is assumed to be known a priori, while the latter
allows information to gradually be revealed over time. The thesis problem is
dynamic in reality. Hence, according to Berbeglia et al. (2007), the problem
studied in this thesis is a dynamic one-to-many-to-one Problem with Single
Demands and Mixed Solutions. A model handling the problem statically will
be used as the key building block to develop a dynamic approach.

It is apparent that the deterministic version of the problem described in Chap-
ter 2 is classified by Berbeglia et al. (2007) as one-to-many-to-one Problem with
Single Demands and Mixed Solutions ([ 1-M-1|P/D|1 ], or 1-M-1-PDPSDMS).
The deterministic version of this problem has been much studied, but differ-
ent authors are not consistent in their denotation of the problem. Mosheiov
(1994) refers to it as Travelling Salesman Problem with Pickup and Delivery
(TSPD), while Anily and Mosheiov (1994) call the same problem TSP with
Delivery and Backhauls (TSPDB), and Baldacci et al. (2003) as TSP with
Deliveries and Collections (TSPDC). For the remaining part of the chap-
ter we choose to use 1-M-1-PDP when referring to this type of PDP. Note,

21



Chapter 3. Literature Review

however, that the problem studied in this thesis extends the 1-M-1-PDP by
including draft limits and stochastic travel times. The thesis problem is thus
referred to as a PDP-DLST in this chapter.

3.1.2 General Notation

Berbeglia et al. (2007) describe PDPs by the complete and directed graph
G = (V,A) in which V = 0, ..., n is the set of vertices. For this thesis, vertices
and nodes is used interchangeably. Vertex 0 represents the depot, while the
remaining vertices represent the customers. The set of arcs is defined as
A = (i, j) : i, j ∈ V, i 6= j. cij denotes the non-negative cost or travel times.
The set of commodities to be transported is defined as H = 1, ..., p, and the
supply or request of a commodity h at vertex i is denoted as dih ∈ D = (dih).
If dih < 0, −dih is the amount of commodity h requested by node i. The
fleet to be used to carry the commodities is the set of carriers K = 1, ...,m,
each with a capacity Q. The problem described in Chapter 2 conforms with
the above problem description, and is thus a PDP problem. Each i, j ∈ V
describes the set of cargoes, the anchorage point is represented by the depot,
m = 1 corresponds to the single ship. Regarding the set of commodities,
H, we ignore what type of commodities are handled, which corresponds to
assuming p = 1, and dih is known. cij represents the travel time from cargo i
to cargo j. However, there is uncertainty associated with cij for the problem
described in Chapter 2. Note that cij is not used as notation for the travel
times in this thesis, but they do correspond with a stochastic version of cij as
described by Berbeglia et al. (2007).

3.1.3 Solution Methods

When designing a combined pickup and delivery route, one needs to consider
an additional constraint: the vehicle load must remain feasible throughout
the tour (Mosheiov, 1994). Hence, the 1-M-1-PDP can be considered as a
generalization of the TSP. 1-M-1-PDP reduces to the classical TSP by defining
the total pickup load or the total delivery load to be zero. TSP is NP-hard,
and so is 1-M-1-PDP (Anily and Mosheiov, 1994). As such, exact solution
methods become impractical when the problem size increases, and several
authors have developed heuristics for solving the 1-M-1-PDP in polynomial
time. Mosheiov (1994) presents two such heuristics. The first is called Pick-
up and Delivery along Optimal Tour, and starts with an optimal TSP tour
through all customer points. Next, a feasible starting point with respect to
capacity restrictions is identified by search. By inserting the depot on the arc
between the start node and its predecessor, a feasible solution to the 1-M-
1-PDP is obtained. The second heuristic is an extension of the well known
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TSP heuristic Cheapest Insertion, referred to as Cheapest Feasible Insertion.
Starting from an optimal delivery tour, pickup-points are inserted one at a
time, always choosing the cheapest insertion while maintaining feasibility. The
author argues that if an optimal TSP tour can be found, pickup and delivery
along the tour is a better technique than insertion of pickup points into an
optimal delivery tour. However, the author shows that both heuristics are
able to solve instances with up to 200 customer within a reasonable time.

Anily and Mosheiov (1994) suggest a heuristic based on doubling the mini-
mum spanning tree. They prove that their heuristic has a better bound than
the heuristic developed by Mosheiov (1994). However, computational expe-
rience shows that Mosheiov’s heuristic performs somewhat better, while the
heuristic proposed by Anily and Mosheiov has a substantial lower running
time. All these heuristics are based on construction heuristics using the arc
costs between the customer locations. In the problem studied in this thesis
the arc costs (i.e. travel times) are uncertain. As such, it may be challenging
to adapt the proposed heuristics to the thesis problem.

Two heuristics for the 1-M-1-PDP are developed by Gendreau et al. (1999).
The first is based on the optimal solution of the special case arising when the
graph, which represents the pickup and delivery network, is a cycle. A linear
exact algorithm is developed and then used as a basis for solving general cases
of the 1-M-1-PDP. The second heuristic is based on tabu search tailored for the
1-M-1-PDP. The author did several computational experiments to compare
the new heuristics to the ones proposed by Mosheiov (1994) and Anily and
Mosheiov (1994). The results showed that a combination of the two heuristics
by Gendreau et al. (1999) outperformed the others.

Baldacci et al. (2003) suggest a branch-and-cut algorithm for 1-M-1-PDP
using a two-commodity flow formulation, which is able to solve problems with
up to 200 customers. But the authors define the pickup goods to be of one
kind, and the delivery goods to be of another. For the problem we study,
however, there is no restriction saying that pickup and delivery cargoes can
not be of the same type.

Süral and Bookbinder (2003) propose a model for the single VRP with un-
restricted backhauls. Serving of customers’ pickup requests is optional, and
the problem deals with choosing the best optional backhaul opportunities to
optimize revenues. The model is based on Miller-Tucker-Zemlin subtour elim-
inating constraints, and several tight LP-relaxations are considered. They
propose an exact solution method which is able to solve medium-sized prac-
tical problems. The problem they study applies to the real-life problem faced
by Odfjell. But for this thesis, the decision regarding which customers to serve
is beyond the scope of the planning problem, i.e. spot cargoes are ignored.

An important distinction between 1-M-1-PDP and the problem described in
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Chapter 2, is the stochastic travel times. To our knowledge, few or none have
studied PDP with stochastic travel times. However, PDP with stochastic
demands has been studied by Swihart and Papastavrou (1999), among others.
The problem they study handles stochastic demands which arrive according to
a Poisson process, while the problem studied in this thesis regards stochastic
travel times.

The models and solution methods described in this section handle determinis-
tic problems in which all information is known deterministically. As described
in Chapter 2, the problem studied in this thesis is subject to uncertain waiting
and travel times and is thus a stochastic problem. Literature on stochastic
routing problems is presented in the next section.

3.2 Stochastic Routing Problems

In this section, we take a closer look at stochastic routing problems. Real-
world routing problems and applications often include uncertain data. Several
variables of a routing problem may be subject to uncertainty, but most com-
monly it is the number and/or location of the customers, the size of their
requests, or, as in our problem, the travel time along an arc which is sub-
ject to uncertainty. Hence, routing problems in which travel times or travel
distances are stochastic are of interest in our work. Literature on stochastic
PDPs is scarce. The PDP is similar to the much studied TSP, and VRP is
a generalization of the TSP (Dantzig and Ramser, 1959). Studies of VRP
and TSP with stochastic travel times or distances may thus be relevant for
the problem studied in this thesis. The problem of finding the shortest path
(SPP) in a stochastic network is a problem that has received a lot of attention
in recent years. Although the SPP is a different problem than the PDP, a lot
can be learned from the literature on this problem. As such, stochastic VRPs,
TSPs and SPPs are reviewed in this section. When uncertainty is at play, it is
not obvious what is an optimal route. We first discuss what may be regarded
as an optimal route. Secondly, we present various approaches for modelling
stochastic routing problems in general, before relevant research on the above
mentioned problems is reviewed. A short review of various probability distri-
butions used in routing problems with stochastic travel times is included at
the end of this section.

3.2.1 Definition of Optimality

When dealing with routing in stochastic networks the definition of what is an
optimal path is not straight forward. Loui (1983) reports that the standard
procedure for addressing the time independent stochastic SPP is to identify
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the route with least expected travel time (LET). Others who support this for-
mulation of optimality for stochastic SPPs are Fu and Rilett (1998), Miller-
Hooks and Mahmassani (2000) and Waller and Ziliaskopoulos (2002). The
approach of minimizing expected completion time is computationally equal
to the deterministic problem (Fan et al., 2005a), in which the deterministic
variables take the expected value of their stochastic equivalent. However, the
route with the least expected travel time could be subject to a large variance
in travel time and thus have a substantial amount of risk associated with
it. This would not necessarily be an optimal route for a risk-averse decision
maker. If there was a path with slightly higher expected completion time with
little probability of realising very large completion times, it might conceivably
be preferable (Loui, 1983). As is apparent, the definition of an optimal path
is not always obvious in the stochastic context. As it incorporates notions of
both expected time and reliability, we consider a multi-criterion optimization
problem (Samaranayake et al., 2011). Frank (1969) suggest defining the op-
timal path to be the path that maximizes the probability of realising a travel
time less than a constant k. This definition of optimality in stochastic routing
is supported by Mirchandani, Fan et al. (2005a), Nie and Wu (2009), Nikolova
et al. (2006) and Samaranayake et al. (2011), among others. While a prob-
lem modelled as an LET might be easier to solve, the formulation where the
probability of on-time arrival is maximized might be easier to interpret.

3.2.2 Modelling Approaches

Gendreau et al. (1996) state that a stochastic problem is usually modelled as
a stochastic program with recourse (SPR) or as a chance constrained program
(CCP). In SPRs, one aims to make first stage decisions that take the costs
of consecutive stages into account. The total costs to be optimized are thus
the cost of the first stage decisions and the expected cost of recourse actions
taken in consecutive stages. Charnes and Cooper were the first to introduce
CCP as a means of handling uncertainty in which known or approximated
distributions for the stochastic variables are used to ensure prescribed levels
of probability (Charnes and Cooper, 1959). This is done by constraining the
CCP by a prescribed confidence level, i.e. by including a chance constraint.
Constraint (3.1) shows a chance constraint where one requires to complete a
route by a deadline, b, with a prescribed probability (i.e. confidence level), α.

P (Ax ≤ b) ≥ α (3.1)

In a CCP one does typically not perform corrective actions in consecutive
stages when uncertain variables are realised, and the focus is on a priori
planning and finding robust enough routes. This differs from SPRs, where
recourse actions are used to respond to the realisation of uncertain variables.
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Another means of handling uncertainty in stochastic routing is the problem
of maximizing the probability of realising a route completion time less than a
prescribed deadline. It becomes implicit that reliability is of great importance
when the confidence level for on-time arrival is maximized. Fan et al. (2005a)
introduced an algorithm for solving the problem of maximizing the on-time
arrival in a stochastic network, referred to as the SOTA algorithm. In a SOTA
model, as for a CCP, known or approximated distributions are exploited to
identify optimal routes. The SOTA model is further presented in Section 3.3.
The remainder of this section is a review of literature on stochastic routing
where the above mentioned approaches are applied.

3.2.3 Travelling Salesman Problems

Kao (1978) is one of the earlier studies of the TSP with stochastic travel times
(TSPST). The problem studied involves n cities to be visited once and only
once. The aim is to find a route that has the greatest probability of comple-
tion by time C, i.e. P (T (t) ≤ C) is maximized. This resembles the SOTA
formulation. The entire tour has to be fixed a priori. When disregarding the
draft limits and the limited ship capacity, the PDP-DLST corresponds well
with the problem Kao studies. The author proposes two heuristics for the
TSPST. The main solution method presented is a preference order dynamic
program, which reduces storage requirement at the expense of computational
executions. An implicit enumeration algorithm is proposed as an alternative
approach. One achieves a reduction in nodes at the cost of an increase in the
number of arcs emanating from each node (Kao, 1978). The author shows
that the computational effort of the two approaches is the same, except that
they handle nodes and arcs differently.

In some cases, Kao’s preference order dynamic program yields suboptimal
solutions. This was proved by Sniedovich (1981). For nontrivial TSPSTs it
may be difficult to verify the completeness of the proposed preference ordering
operator due to potential violation of the monotonicity condition of dynamic
programming (DP). The author states that an attempt to correct the pro-
cedure transforms it into brute force enumeration. The procedure should
therefore be used with caution, unless it is possible to verify the monotonicity
condition. In the case of normally distributed travel times, however, it may
be appropriate to use Kao’s approach as a heuristic.

Carraway et al. (1989) suggest Generalized Dynamic Programming (GDP),
a modification of conventional DP, that guarantees optimal solution to the
counterexample presented by Sniedovich (1981). With Generalized DP it
is possible to find an optimal solution to stochastic combinatorial optimiza-
tion problems when the monotonicity assumption is violated. Hence, the
issues identified by Sniedovich are resolved. The authors assume normally
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distributed inter city distances, (µ, σ2) ∈ Z, and uses both µ and σ2 to define
local preference conditions, as opposed to a global preference condition. For
the very last stage, however, a global preference condition is used.

3.2.4 Vehicle Routing Problems

Kenyon and Morton (2003) study a version of the stochastic VRP (SVRP)
that, according to Pillac et al. (2013), can be classified as static and stochastic.
A fleet of one or more vehicles is to be routed through a network where travel
and service times are uncertain. The routes are selected before the stochastic
variables are known and the vehicles must follow the route set a priori. Two
alternative models for solving the problem are presented in the article. The
first model maximizes the probability that the operation is completed within a
specified threshold time, which is similar to the SOTA model proposed in Fan
et al. (2005a). The other model minimizes the expected completion time of the
tour. This corresponds to the LET model. Kenyon and Morton’s problem and
the PDP-DLST have several characteristics in common, and both the proposed
models may be regarded as interesting for this thesis. The authors argue that
the second version is typically easier to solve, but the objective function of the
maximization problem is typically easier to interpret. They also show that
for problems with only one vehicle, the model where expected completion
time is to be minimized is obtained by solving the deterministic equivalent
where stochastic variables take their mean value. As mentioned, this is also
pointed out by Fan et al. (2005a). Thus, the value of the stochastic solution
(VSS) may be negligible and the deterministic solution becomes adequate. A
problem with a low expected completion time may still have a high variance
in travel time and yield suboptimal results for risk averse planners (Fan et al.,
2005a). As such, the minimization problem ignores risk, and it is particularly
the maximization model (i.e. the SOTA model) that is interesting in relation
to the PDP-DLST. If the minimization model was constrained by a required
level of probability (i.e. modelled as a CCP), however, this model becomes
more interesting for the PDP-DLST. This is done by Laporte et al. (1992),
which is presented in the following paragraph.

Laporte et al. (1992) introduce stochastic travel and service times into VRPs.
Three formulations are presented: a CCP, and two distinct recourse models.
All three models set routes a priori, and the problem is classified as static and
stochastic according to Pillac et al. (2013). Laporte et al. (1992) regard a prob-
lem with incapacitated vehicles. Each node must be serviced, and the vehicles
have a threshold for target completion time. The CCP uses this threshold to
constrain the confidence level for the route. The SPRs penalize the expected
value by which route travel times exceed the respective thresholds. The de-
veloped branch-and-cut algorithm can solve the CCP with up to 20 vehicles.
It can handle problems where the travel times can take on a value from five
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discrete states. As for the problem presented by Kenyon and Morton (2003),
the problem described by these authors differs from the PDP-DLST e.g. by
allowing multiple and incapacitated vehicles and regarding service times as
stochastic.

Li et al. (2010) study VRP with stochastic travel and service times, and in-
clude time windows. The problem they study is similar to the one studied by
Laporte et al. (1992), but differs by including time windows. The problem is
formulated both as a CCP and a two-stage SPR. The former includes chance
constraints for both the time windows and for the route as a whole. The
objective of the CCP is to minimize stochastic travel distance. In the SPR,
the determination of an a priori route is considered as the first-stage decision.
In the second stage, the uncertain travel and service times are realised, and
it is possible to calculate the total cost of the route. The overall objective is
to minimize the sum of the first-stage routing cost and the expected recourse
cost. The authors argue that, since SVRPs combine the characteristics of
stochastic and integer programming, they are often regarded as computation-
ally intractable. Thus, it is reasonable to develop a heuristics algorithm to
solve SVRPs. The problem is solved by a Tabu Search-based heuristic.

Another two-stage stochastic routing problem is studied by Verweij et al.
(2003). To solve the problem, the authors propose a heuristic that penalizes
routes that exceed the deadline. The penalty is proportional to the size of
the violation. The method uses a sample average approximation technique in
which a sample of instance realisations is drawn using a Monte Carlo simu-
lation, and each realisation is solved optimally by means of a deterministic
technique. By repeating the method with different samples a statistical esti-
mate of the optimality gap can be computed.

A solution approach for the time-dependent VRPST is suggested by Nahum
and Hadas (2009). The problem is modelled as a CCP, where the total average
time is minimized. The authors take into account the variation in travel times
throughout the day as well as the uncertainty of the travel times in their model.
An efficient heuristic, which is a version of the saving algorithm, is introduced.
Simulations are used to label each route’s probability of being the quickest
one. The stochastic and time-dependent data is transformed to deterministic
cases using three filters: average values for each time period and probability
intervals, the minimal time for all periods regardless of the probability, and
the maximal time for all time periods regardless of the probability. Results are
then compared to the deterministic results, and the approach yields optimal
solutions for rather small instances (up to seven customers). However, due to
the time dependency and usage of time periods, the problem differs from the
PDP-DLST even for a single vehicle case.
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3.2.5 Shortest Path Problems

Frank (1969) provides an exact method to compute the continuous probability
distribution for the SPP. The shortest paths are identified through a pairwise
comparison in a set of enumerated paths. Frank develops efficient methods of
hypothesis testing using Monte Carlo results, and was, to our knowledge, the
first to present work on shortest paths in random networks.

Loui (1983) considers a general utility function of path length which is mono-
tone and non-decreasing, and proves that the expected utility becomes separa-
ble into the edge lengths only when the utility function is linear or exponential.
In that case the path which maximizes expected utility can be found using
traditional shortest path algorithms. For general utility functions, Loui gives
an algorithm based on enumeration of paths with a very large running time,
O(nn).

An exact algorithm for the stochastic shortest path problem is proposed by
Nikolova et al. (2006). The objective is to maximize the probability that the
path length does not exceed some threshold value. Path lengths are drawn
from normal distributions, and routes can be characterized by their mean and
variance. By maximizing a quasi-convex combination of the path mean and
variance, and by varying the weights used to construct the convex combina-
tion, the author is able to identify all the extreme points of the dominant of
the projection of the path polytope onto the mean-variance plane. The path
polytope is the convex hull of the feasible {01}-vectors x ∈ Rm, where the
x-vector represents the set of all feasible routes in a network of n nodes and
m edges (Nikolova, 2009). The optimal path is found within the set of these
extreme points. The algorithm is applied to solve the PDP-DLST studied in
this thesis, and is described in more detail in Chapter 5.

3.2.6 Distribution of Stochastic Travel Times

In stochastic programming, three common ways to characterize parameter
uncertainty are distribution based, fuzzy based, and scenario based (Meng and
Wang, 2010). The distribution-based approach is commonly used to describe
problems with exact concepts which depend on random factors (Meng and
Wang, 2010).

Mazmanyan and Trietsch (2013) argue that, according to the Central Limit
Theorem (CLT), the uncertain travel times for TSP may be modelled using
normal distribution as long as the number of visits is large enough. The CLT
gives conditions under which the distribution function of a suitably standard-
ized sum of independent random variables is approximately normal (Adams,
2009). If a sufficiently large number of randomly selected, independent sam-
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ples are drawn from an identical distribution, the sum of those samples tends
to follow a normal distribution - even if the original population does not (Dud-
ley, 1999). In the PDP-DLST the uncertain travel times are assumed to be
independent, but not identically distributed. Aleksandr Lyapunov suggests a
variant of the CLT where the random variables Xi have to be independent,
but not necessarily identically distributed (Adams, 2009). Lyapunov’s theo-
rem states that under certain conditions, the CLT holds if the samples are
independent, but not identically distributed.

As stated by Taş et al. (2013), the distributions for the travel times most com-
monly applied in routing problems are normal, log-normal, shifted gamma and
gamma distributions. Fan et al. (2005b), Russell and Urban (2008), Fan et
al. (2005b) and Taş et al. (2013) assume gamma distribution. Russell and
Urban (2008) model the stochastic travel times with shifted gamma distribu-
tion. Kaparias et al. (2008) assume log-normal distribution. Li et al. (2010),
Carraway et al. (1989) and Ehmke et al. (2015) are some of the many authors
who assume normal distributions. However, Ehmke et al. (2015) argue that
travel times often do not follow normal distributions in practice. Kenyon and
Morton (2003) argue that assuming travel times are normally distributed is
inconsistent with non-negative travel times. They also argue that in the case
of negligible likelihood of negative travel times, assuming normal distribution
may be appropriate nonetheless. Allowing skewed normal distributions allows
them to create a more realistic approximation of the distribution of the arc
travel times. Kenyon and Morton find that the value of the stochastic solution
tends to increase with increased skewness.

3.3 Static and Dynamic Routing Problems

Real-world applications often include two important dimensions: evolution
and quality of information (Pillac et al., 2013). Quality of information reflects
the possible uncertainty on the available data, and based on this we separate
problems into deterministic and stochastic problems. Evolution of information
relates to the fact that in some problems the information available to the
planner may change during the execution of the routes. Based on the evolution
of information we categorize problems as static or dynamic. The problems
addressed in Section 3.1 are deterministic in nature, and stochastic problems
are reviewed in Section and 3.2. In this section we take a closer look at the
distinction between static and dynamic problems.

Routing in a stochastic network is typically either used to provide an a priori
shortest paths or adaptive en-route guidance (Nie and Wu, 2009), depending
on whether the problem is treated as static or dynamic. In a static problem,
the route is decided merely based on information available initially, and no
new information is accounted for during the execution of the planned route.
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We say that the route is decided a priori, and no changes are made to the
initial plan. For a stochastic static problem, known information implies that
the probability distributions of the uncertain data are known. For a stochastic
static problem, the challenge is to design a set of robust routes a priori, that
will undergo minor changes during the execution (Pillac et al., 2013). In a dy-
namic problem, information is revealed during the execution of the route. As
new information becomes available, the problem is re-optimized and improved
solutions can be found. In a stochastic dynamic problem new information is
stochastic data that is realised, i.e. exploitable stochastic knowledge is avail-
able on the dynamically revealed information (Pillac et al., 2013). As an
example, after an arc is traversed in a stochastic network, its true length
becomes known, and a new route can be calculated based on the new infor-
mation. The problem studied in this this thesis is a dynamic and stochastic
problem. As such, literature on dynamic and stochastic routing problems are
reviewed in the remainder of this section.

Traditionallay, approaches for solving dynamic vehicle routing problems are
straightforward adaptions of static procedures, where a static problem is
solved each time new information becomes available (Psaraftis, 1995). This
is referred to as an adaptive approach. As mentioned, Nikolova et al. (2006)
presents an algorithm for solving the stochastic SPP, but considers a non-
adaptive, i.e. static, scenario. Nikolova et al. point out that this can easily
be converted to an adaptive scenario by rerunning the algorithm when new
information becomes available, and the approach thereby becomes adaptive
(i.e. dynamic).

As mentioned in Section 3.2, Kao (1978), Sniedovich (1981) and Carraway
et al. (1989) study a dynamic and stochastic TSP. Carraway et al. (1989)
presents a solution method refered to as Generalized Dynamic Programming
(GDP). GDP is based on conventional DP, and with modifications such as
usage of local preference conditions, the stochastic problem can be properly
handled. In Fan et al. (2005a) a dynamic and stochastic SPP is studied.
Given a current location, the goal is to identify the next location to visit
so that the probability of arriving at the destination by time t or sooner is
maximized. The authors propose an adaptive optimal path algorithm based on
conventional DP. The problem is treated as a multistage decision process, and
the Bellman principle of optimality is applied to formulate the mathematical
model. The Bellman principle of optimality states that an optimal sequence
of decisions has the property that, whatever the initial state and decision are,
the remaining decisions must be optimal with respect to the state resulting
from the initial decision (Fan et al., 2005a).
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3.4 Contribution to Literature

The problem studied in this thesis is a pickup and delivery problem with
draft limits and stochastic travel times (PDP-DLST). Through this literature
review it has come to our attention that there has been done relatively little
research on the pickup and delivery problem where travel times are stochastic.
The pickup and delivery problem with stochastic demands has been studied by
others, but the problem becomes rather different when it is the demands, not
the travel times, that are subject to uncertainty. The TSP, VRP, and SPP
with stochastic travel times have been studied by others as well, but these
problems also differ from the problem we study. Our thesis contributes to the
literature by studying both a static and dynamic version of the pickup and
delivery problem with uncertain travel times, subject to constraining draft
limits.
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Mathematical Formulation

In this chapter, the mathematical formulation used to model the problem de-
scribed in Chapter 2 is presented. Both the static and dynamic versions of the
problem are solved using the mathematical formulation presented here. The
model is solved iteratively for the dynamic problem, but this is described in
more detail in Chapter 9. The method applied for solving the mathematical
model is presented in Chapter 5. Section 4.1 describes the assumptions and
simplification that are made while Section 4.2 explains the modelling nota-
tion. The mathematical formulation is presented in Section 4.3. The applied
preprocessing is described in Section 4.4.

4.1 Modelling Assumptions

The problem faced by Odfjell is complex. To be able to apply solution methods
to solve the problem, some simplifications are made. The simplifications and
assumptions used to relax the real-life problem are addressed in this section.

At each terminal there can be one or several cargoes. It is assumed that all
cargoes within a terminal can be serviced from the same berth, meaning that
the ship does not need to change berths during a terminal visit. It is also
assumed that only one cargo can be handled at a time, i.e. parallel handling
of cargoes is not possible. This also applies to the cleaning of tanks, meaning
that tanks used for different cargoes have to be cleaned sequentially. We
assume tanks to be cleaned once for each delivery cargo, but never for pickup
cargoes.

The time it takes for the ship to move from a cargo at one terminal to a cargo
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at another terminal includes a number of operations. The operations we
have chosen to include are waiting for the next terminal to become available,
sailing to the next terminal, loading/unloading of the cargo at the destination
terminal and cleaning of the associated tank if it is a delivery cargo. This is
illustrated in Figure 4.1. These operations are included because they are the
major time consuming activities. Inspections and other minor time consuming
activities are ignored. The loading time and cleaning time are assumed to be
deterministic. Note that the time spent unloading is also referred to as loading
time.

Figure 4.1: Components of the travel time between two customers in different
terminals.

For cargoes located in the same terminal, the sailing time between them is
set to zero. As the ship does not have to enter a new terminal, the uncertain
waiting time and additional sailing are also zero. However, loading and clean-
ing time still incur. The time between servicing two cargoes located at the
same terminal is thus deterministic.

In accordance with the Lyapunov’s version of the Central Limit Theorem, as
explained in Section 3.2.6, it is assumed that the probability distribution of
the completion time of the entire route follows a normal distribution. The
accumulated variance of the stochastic variables represents the variance for
the entire route, and the mean is the sum of the means of the stochastic
variables. The sailing time is the stochastic component of the travel time,
and to obtain the mean of the travel time of an arc, the sailing time of the arc
is shifted to the right by the sum of the deterministic cleaning and loading
times. As explained above, for pickup cargoes, the cleaning time is zero, and
only loading time incurs.

A single ship is considered. It is assumed that the charterer is always ready
to accommodate the ship, which implies that there are no time windows. In
reality, time windows are rather wide, and this assumptions does not cause
significant deviation from reality. Transhipment is assumed not to be allowed.
In reality there are several layberths which the ship may sail to and wait at
instead of sailing all the way to anchorage. However, we assume there is only
one anchorage which the ship must sail towards and possibly wait at until
terminals are ready to accommodate the ship. We also ignore that the ship
in reality can tender to more than one terminal at the same time. In other
words, we assume that the ship only sends a NOR when the next cargo to
service is in a different terminal than the current one, and a NOR is only sent
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to that specific terminal.

Restrictions on hazardous chemicals, the capacity of different tanks, and the
stability of the ship, makes the allocation of cargoes to tanks a challenge in
chemical shipping. In this thesis the tank allocation is not considered, and the
problem can be regarded as always having suitable tanks available. Arnesen
and Gjestvang (2015) modelled two problems - one with and one without tank
allocation. The authors found that there were routes which were optimal for
the problem without tank allocations, which were also feasible for the problem
with tank allocation. Including tank allocation is hence not crucial to find
optimal paths, which supports our choice of not including tank allocation.

As discussed, the definition of optimality is not obvious in a stochastic setting.
We define the optimal route to be the route that maximizes the probability
of route completion within a given threshold. As mentioned in Chapter 3,
this definition is supported by Frank (1969), Mirchandani (1976), Fan et al.
(2005a), Nie and Wu (2009), Nikolova et al. (2006) and Samaranayake et al.
(2011), among others.

4.2 Modelling Notation

The problem is defined on a graph G = (N,A), where N is the set of all
nodes and A is the set of all arcs in the network. Cargoes are modelled as
nodes indexed by i and j. Let N = {0, ...., n + 1} be the set of all nodes,
and NC = {1, ..., n} be the set of all cargoes. The anchorage is modelled as
both the origin node, i = 0, and the destination node, i = n+ 1, at the same
geographical place at sea outside the port. A cargo is either a pickup node or
a delivery node. Let N+ ⊂ NC be the set of pickup nodes, and N− ⊂ NC be
the set of delivery nodes.

Let Q+ be the total amount in tonnes that will be picked up, and Q− the total
amount that will be delivered. All weights are given in tonnes. Let Qi be the
weight of cargo i. The weights of the pickup cargoes are given as positive
numbers, and the weights of the delivery cargoes as negative numbers. The
total weight capacity of the ship is denoted by K, while Di is the draft limit at
the terminal associated with cargo i. The draft limits are represented in terms
of weight. t̃ij is the time it takes from the end of loading/unloading cargo i
to the end of loading/unloading cargo j. Included in t̃ij is the deterministic
loading time of cargo j, lj , the cleaning time for the tank associated with cargo
j, cj , the stochastic sailing time, s̃ij , and the stochastic waiting time, w̃j , to
the end node. For pickup cargoes, cj is zero. The reason why the loading and
cleaning time of cargo j is included in t̃ij instead of the loading and cleaning
time for node i is that, in reality, the ship decides the next node when it is
finished servicing node i, and by choosing the next node, it also commits to
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the loading and cleaning time of the next node it decides to visit. Hence, it
makes sense that the washing and cleaning times of node j are included in
t̃ij . As is explained in more detail in Chapter 6, the sailing time depends on
the waiting time, and these elements are hence combined into one variable,
s̃(w̃)ij . t̃ij is the weight on the arc from i to j in the network, and can be
expressed as

t̃ij = s̃(w̃)ij + lj + cj .

The expected value of t̃ij is µij ,

µij = E[t̃ij ] = E[s̃(w̃)ij ] + lj + cj .

The matrix σ2
ij holds the variance for arc (i, j) ∈ A. σ2

ij is non-zero for arcs
where cargo i and cargo j are located in different terminals, and zero otherwise.
How the variance of each arc is found, is further explained in Chapter 6. All
arcs with node n+ 1 as destination node are not subject to waiting times and
are given deterministic sailing times.

The binary variable, xij , is equal to one if the ship sails from node i to node
j, and zero otherwise. The continuous variable yij denotes the total weight on
board the ship when sailing from node i to node j. The variable σ2 represents
the sum of the variances of the arcs used for the complete route. The expected
completion time for the entire route is denoted by µ, and the realised total
travel time is denoted by T .

4.3 The Mathematical Model Formulation

Given a threshold, H, for the completion time of a route, the objective is
to maximize the probability, α, of obtaining a total travel time, T , less than
the threshold. Uncertainty is associated with each route, and the completion
time for each route follows a normal distribution. Hence, a route can be
characterized by its expected completion time, µ, and variance, σ2. The
objective function becomes

max α = P (T ≤ H) = Φ(
H − µ
σ

), T ∼ N (µ, σ2) (4.1)

Where Φ(z) is the cumulative distribution function (CDF) of the standard
normal distribution, and z = H−µ

σ in accordance with statistics theory. Figure
4.2 illustrates the maximization problem. P (T ≤ H) is the probability that
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the route completion time, T , takes a value less than or equal to the threshold,
H, when T follows a normal distribution. This probability is represented by
the grey area in Figure 4.2, and the model aims at maximizing the grey area.

t = H

P (T ≤ H)

t

P

Figure 4.2: The grey area is the probability of the completion time, T , being lower
than the threshold, H.

Flow Constraints ∑
j∈N

x0j = 1, (4.2)

∑
j∈N |(i,j)∈A

xij = 1, i ∈ NC (4.3)

∑
i∈N |(i,j)∈A

xij = 1, j ∈ NC (4.4)

∑
i∈N

xi,n+1 = 1, (4.5)

Constraints (4.2)-(4.5) describe the flow along the route, making sure every
node is visited once, and only once, and that the ship starts and ends its route
at the anchorage.

Cargo Constraints ∑
j∈NC

y0j = Q− (4.6)
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Constraint (4.6) ensures that when leaving from anchorage at the beginning
of the route, the ship contains all the cargo that is to be delivered at the
terminals.

∑
(i,j)∈A

yij −
∑

(j,i)∈A

yji = −Qj , j ∈ NC (4.7)

Constraint (4.7) ensures that the difference between ingoing and outgoing
shipload in each node equals the weight of the cargo that has been loaded or
unloaded in the node.

Capacity Constraints

0 ≤ y0j ≤ Q−x0j , (0, j) ∈ A | j ∈ N \ {0} (4.8)

0 ≤ yi,n+1 ≤ Q+xi,n+1, (i, n+ 1) ∈ A | i ∈ N \ {n+ 1} (4.9)

Qixij ≤ yij ≤ (K −Qj)xij , (i, j) ∈ A | i, j ∈ N+ (4.10)

(Qi −Qj)xij ≤ yij ≤ Kxij , (i, j) ∈ A | i ∈ N+, j ∈ N− (4.11)

−Qjxij ≤ yij ≤ (K +Qi)xij , (i, j) ∈ A | i, j ∈ N− (4.12)

0 ≤ yij ≤ (K −Qj)xij , (i, j) ∈ A | i ∈ N−, j ∈ N+ (4.13)

Constraints (4.8) and (4.9) connect the x- and y-variables in to and out from
anchorage, respectively. Constraint (4.8) prevents the initial load on the ship
to exceed the total delivery quantity. Constraints (4.9) prevents the load on
the ship when arriving at anchorage at the end of the route to exceed the
total pickup quantity. Constraints (4.10)-(4.13) ensure that the load on the
ship never exceeds the total capacity of the ship.

Draft Limit Constraints

0 ≤ yij ≤ Djxij , (i, j) ∈ A | j ∈ N− (4.14)

0 ≤ yij ≤ Dixij , (i, j) ∈ A | i ∈ N+ (4.15)

(4.16)

Constraints (4.14) and (4.15) impose limits on the ship’s draft when arriving
at a delivery node and departing from a pickup node, respectively.
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Time Constraint
µ =

∑
(i,j)∈A

µijxij (4.17)

Constraint (4.17) sets the expected total time of the route, µ, equal to the
sum of the expected travel time of the arcs used. µij is the expected travel
time of the arc between i and j.

Variance Constraint ∑
(i,j)∈A

σ2
ijxij = σ2 (4.18)

Constraint (4.18) sets the variance for the route equal to the accumulated
variance of the travel times of each arc used.

Integer Constraint

xij ∈ {0, 1}, (i, j) ∈ A (4.19)

The decision variable xij is binary, and an arc may either be used or not.
Hence the binary restriction imposed in constraint (4.19).

Subtour Eliminating Constraints
Additional constraints are included to strengthen the formulation. The in-
tention is to reduce the computational time and more efficiently find a feasi-
ble solution. Rakke et al. (2012) show that introducing subtour elimination
constraints, although it is not necessary for the completeness of the model
formulation, gives a significant advantage. Arnesen and Gjestvang (2015)
also proved that constraint (4.20) improved the solution time. Including the
two-node subtour eliminating constraints

xij + xji ≤ 1, (i, j) ∈ A (4.20)

is not necessary, but reduces the run times of the model and the constraints
are thus included as valid inequalities.

4.4 Preprocessing

To further improve the solution speed, additional preprocessing is done before
running the model. The applied preprocessing is explained in this section.
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An important factor affecting the solution time is the number of symmetric
solutions, i.e. solutions that seem logically different to the solver, but are
equal for all practical purposes (Williams, 2013). An example is when several
cargoes are to be delivered in the same terminal. Then, for most practical
cases, it is of no difference which sequence these are delivered in since we do
not include time windows. By defining rules that describe sequences within
the terminals we are able to remove a number of arcs from the network.
Hence, to reduce the number of symmetric solutions, as many arcs as possible
are removed from the network prior to solving the problem. As all arcs in
the network are defined by the set A, removing an arc from the network is
equivalent to removing it from A. The value of the removed arcs in the matrix
A are set to 0, and the ship is only allowed to use an arc (i, j) if A(i, j) = 1.

When the ship is in a terminal, it is assumed that it always delivers all cargo
destined to the terminal before picking up any cargo from the same terminal.
Consequently, the arcs from a pickup node to a delivery node within a termi-
nal, are removed from A. In addition, it is assumed that the delivery cargo
with the largest load is to be discharged first, then the second largest and so
forth. This implies that once a delivery cargo is discharged all other delivery
cargoes in the same terminal are discharged as well. By defining a delivery se-
quence like this, several arcs are excluded and symmetry reduced. Figure 4.3
illustrates which arcs are removed in a terminal with several delivery cargoes.
The figure also illustrates the arcs that are kept in the problem. The “+”-sign
in a node indicates that it is a pickup cargo, and a “−”-sign indicates that
it is a delivery cargo. The number inside each node icon indicates the size
of the load. In reality these loads typically range from 115 to 7,225 tonnes
(Arnesen and Gjestvang, 2015), but their relative sizes are more important
than realistic representation to explain arc removal here.

When it comes to removing arcs, the biggest difference between delivery and
pickup nodes is that once a terminal is visited the first time, all the delivery
cargoes are discharged consecutively, while pickup cargoes can be loaded at
different terminal visits and in different combinations depending on the draft
limits. Hence, if there are several pickup nodes in a terminal, and since these
can be picked up at different terminal visits and in various combinations, we
can not remove arcs to/from nodes in other terminals like we can with delivery
nodes. Even so, it is possible to remove symmetry by assuming that, for all
practical reasons, if more than one pickup node is serviced during the same
terminal visit, the larger cargo is always picked up before the smaller. As
such, all arcs from a pickup cargo to all larger pickup cargoes in the same
terminal are removed. Figure 4.4 illustrates what arcs are removed internally
between pickup nodes in the same terminal to remove symmetry.

As mentioned, anchorage is modelled as two nodes, the origin node, 0, and a
destination node, n + 1. It is not possible to sail to the origin node or out
from the destination node. Consequently, these arcs are removed from A. It
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Figure 4.3: Arcs to be removed from the matrix A (left) and those being kept in
A (right) related to delivery nodes to reduce symmetry. Arcs ending or beginning
outside the terminal represents all arcs to or from cargoes in other terminals. The
numbers represent the size of the loads.

Figure 4.4: Arcs that are removed from the matrix A between pickup nodes in the
same terminal to reduce symmetry (left), and the arcs that are kept in A (right).
The numbers represent the size of the loads.

is not possible to sail from the origin directly to the final destination, n + 1,
or from a node to the same node (self loops). These arcs are removed from A
as well.
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Chapter 5

Solution Methods

The mathematical model presented in Chapter 4 has a non-linear fractional
objective function. This implies that the problem is not straightforward to
solve and a specialized solution method is needed. The method presented by
Nikolova, mentioned in Chapter 3, is chosen as the applied solution method,
and the exact algorithm is described in detail in Section 5.1. The adaption of
the algorithm to solve the problem is explained in Section 5.2, and the method
involves solving the mathematical model presented in Chapter 4. Note that
the solution method presented here is used iteratively to solve the dynamic
version of the problem. Adaptions to solve the dynamic version of the problem
are presented in Section 9.1 in Chapter 9.

5.1 Nikolova’s Method

The problem described in Chapter 4 is solved using an algorithm presented by
Nikolova et al. (2006). The suggested algorithm is exact and was initially used
to solve the stochastic SPP. The material in this section is mainly based on
the work done by Nikolova et al. (2006) and Nikolova (2009). Nikolova et al.
consider the problem of finding the shortest path in a graph with independent
randomly and normally distributed edge lengths. The optimal path is defined
to be the one that maximizes the probability that the path length does not
exceed a given threshold (or deadline), t. The optimal path to the problem
they study is a solution to
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max
t− µx√
σ2x

s.t. x ∈ path polytope

x ∈ {0, 1}m,

(5.1)

where the {0, 1}m-vector is a set of vectors representing the edges, each with
m elements which are either 0 or 1. The vectors µ and σ2 represents the
mean and variance of each of the m edges, respectively. The expression in the
objective function in (5.1) corresponds to computing the z-score (also known
as standard score) of the route given by the x-vector. Nikolova et al. prove
that for deadlines larger than the mean of the smallest-mean path, the optimal
path is an extreme point of the dominant of the path polytope shadow. Some
definitions are given in the following paragraph.

Figure 5.1: Projection of the unit hypercube and the path polytope in the (µ, σ2)-
plane (Nikolova et al., 2006).

For a graph, G, with n nodes and m edges, a solution (i.e. a route) is repre-
sented by the {0, 1}-vector {x} ∈ Rm, where xi = 1 if edge i is in the route
and 0 otherwise. This gives 2m possible subsets of edges, and all the subsets
correspond to the vertices of what is referred to as the unit hypercube in Rm.
The convex hull of the set of feasible x-vectors is called the path polytope, and
is a subset of the unit hypercube. The shadow of the path polytope is the
convex polygon we get when the path polytope is projected onto the span of
vectors µ = (µ1, ..., µm) and σ2 = (σ2

1 , ...σ
2
m) (Nikolova et al., 2006). Figure

5.1 shows the projection of the unit hypercube and the path polytope in the
(µ, σ2)-plane.

The dominant of a set, C, is defined by Nikolova et al. as the set of all points
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that are greater than a point in C, {x ∈ Rm|x ≥ y for some y ∈ C}. To explain
why the solution to (5.1) is found at an extreme point of the dominant of the
path polytope shadow, let us follow the example given by Nikolova et al.
(2006) and consider the relaxed version of (5.1). Let z1 = µx and z2 = σ2x.
We rewrite Equation (5.1) as the continuous system

max
t− z1√
z2

s.t. (z1, z2) ∈ path polytope shadow S.

(5.2)

We denote the objective function as f = t−z1√
z2

. In other words, f(z1, z2) is

the z-score of the route with z1 = µ and z2 = +sigma2x. For a subset
S̄ = S ∩ {z1|z1 < t} which we assume to be non-empty (i.e. there exists a
path with mean less than t), the set f(z1, z2) on this feasible subset must be
positive since z1 < t, and it must contain the maximum value of f as the
subset contains all the feasible points (z1, z2) for which the mean, z1, is lower
than t. Let us consider the level set Lγ = {z ∈ R2|f(z) ≤ γ}. This is the set of
points (z1, z2) (i.e. paths) with z-scores lower than the given level, γ (γ can be
regarded as a z-score) for some given deadline, t. Lower z-scores correspond to
lower probabilities of route completion within the given deadline. Lγ consists
of points (z1, z2) such that

t− z1√
z2

≤γ ⇐⇒ z2 ≥
(
t− z1
γ

)2

. (5.3)

For positive γ and z1 < t, the level set Lγ is convex, as the right side of (5.3) is
convex. The area above the convex function given by ( t−z1γ )2 contains points

(z1, z2) with lower z-scores than for points on or under the line, as illustrated
by Figure 5.2.

To argue why the maximum is attained at an extreme point of S̄, we need also
provide the theorem stated by Nikolova et al. (2006).

Theorem 1 Let C ∈ Rm be a compact convex set. A quasi-convex function
f : C → R that attains a maximum over C, attains the maximum at some
extreme point of C.

Hence, f(z1, z2) is quasi-convex on S̄, which is the part of the path polytope
shadow to the left of z1 = t, and the maximum is attained at an extreme
point of S̄. Nikolova et al. have also shown that the optimal solution of
the continuous formulation is the same as the optimal solution to the discrete

45



Chapter 5. Solution Methods

Figure 5.2: The marked area contains points with lower z-scores than a given
z-score, γ, for a given deadline, t.

problem, which is necessary for the method to be valid for the problem studied
in this thesis.

To find the extreme points of the dominant of the path polytope shadow,
a convex combination of the paths’ means and variances is minimized. The
algorithm can be thought of as a search algorithm on the values of the weight
to be used in the convex combination (Nikolova, 2009). The objective function
to be minimized looks as follows:

min αµ+ (1− α)σ2. (5.4)

The algorithm first sets the weight, α, equal to 1 and then to 0 and solves the
two resulting single objective problems. This way, the method is initialized
by first finding the two routes with the smallest mean and with the smallest
variance. These two routes are then considered as points, P1 and P2, in the two
dimensional (µ, σ2)-plane. This way, the first route equals the deterministic
solution. Figures 5.3 and 5.4 illustrate how P1 and P2 are typically placed
in the (µ, σ2)-plane. Obviously, there exists no path such that its (µ, σ2)
combination places it to the left of P1 or below P2 in the (µ, σ2)-plane, as
these have the lowest mean and variance, respectively. In Figure 5.3, the area
with grey lines illustrates the area containing feasible (µ, σ2) combinations
that can not exist based on the two initial points.
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Figure 5.3: The dashed grey area contains feasible combinations of mean and
variance which do not exist.

Next, the weight, α, is updated and set such that the slope of the linear
objective function is equal to the slope connecting the points P1 and P2. This
implies that the weight, α, is set as

α =
slope

slope− 1
. (5.5)

The model is rerun with α as in Equation 5.5, and the new resulting path,
if any, is denoted by P3. The search for more routes continues by searching
for routes using the edge between P1 and P3 and between P3 and P2, etc.,
until no more new routes are found. The updating of the weight makes the
algorithm a logical search on the convex hull of the path polytope shadow,
and the convex hull is expanded iteratively based on the extreme points found
so far. When no new routes are found and the area can not be expanded any
more, we have attained the convex hull and the set of points that constitute
the dominant of the shadow path polytope. The optimal path can be found
in this set of extreme points.
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Figure 5.4: Finding and enumerating the candidate solution-paths (Nikolova,
2009).

5.2 Adaption of Nikolova’s Method to our Prob-
lem

When the algorithm is adopted to the problem studied in this thesis, the
extreme points of the dominant of the shadow path polytope are identified by
minimizing a convex combination of the routes’ mean and variance, as seen
in the expression in (5.4). This expression becomes the objective function,
and is subject to equations (4.2) - (4.20) in Chapter 4. The weight used to
construct the convex combination, α, is updated as described above, always
using the slope between the most recent new point and its adjacent points.
To choose what adjacent point to use, the slope of the edge between the most
recent point and its nearest neighbor to the left is always used to find the
new weight and thereby the new objective function. When no new point is
found, the search continues by using the edge between the newest point and
its nearest neighbor point to the right. If a new point is found, one searches
to the left again, and if not, the search continues to the right. Figure 5.5
illustrates the order in which extreme points of the path polytope shadow
(i.e. routes) are found and shows the resulting order in which edges are used
to set α.

The extreme points of the shadow path polytope are the candidate points for
the optimal route, i.e. the possibly optimal routes. For each threshold within
some range of thresholds, the probability of completing each route within that
threshold is calculated. This way, the optimal route for each given threshold
can be identified.

For the model presented in Chapter 4, the threshold, H, is a constant. It is of
interest to examine confidence levels for the route completion time for various
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Figure 5.5: The order for discovering routes and using edges between adjacent
nodes to update the weight of the objective function and search for new routes. The
red letters indicate the order in which extreme points of the path polytope shadow
(routes) are found, and the black numbers indicate the order of edges used for setting
α.

thresholds. In reality, the threshold (or deadline) is often a requirement from
customers which must be adhered to. For any given route, there is a one-
to-one correspondence between a threshold and the confidence level for route
completion within that threshold. Note that in a business context, there is
typically a lower limit for confidence levels to be accepted. Such limits are
commonly rather high. To present the model output in an understandable
way, the lower limit for thresholds for which each route’s confidence level is
calculated for is the threshold that gives a confidence level, β, of 0.05 for
the route with the lowest mean (i.e. P1 from Nikolova’s method). Let us
for now label this confidence level as βl, and the corresponding threshold as
Hl. The upper limit for the range of thresholds used is the threshold that
yields a confidence level, β, of 0.95 for the route with the highest mean (i.e.
P2 from Nikolova’s method). Let us for now label this confidence level as
βh, and the corresponding thresholds as Hh. For a given test instance, each
identified route’s confidence level is calculated for all threshold with an integer
value between these two limits, Hl and Hh. Confidence levels of 0.05 are not
interesting from a business perspective, but including these low confidence
levels allows us to see the full picture. For an instance with 3 possible optimal
routes, the range of thresholds used is illustrated in Figure 5.6.
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Hl Hh

βl=0.05
βh=0.95

Figure 5.6: The upper and lower limits for the range of thresholds for witch the
confidence level for all identified routes are calculated for a given instance.

Implementation in MATLAB R2015a and Xpress-IVE

To solve the problem using Nikolova’s method, the algorithm is implemented
in MATLAB R2015a. MATLAB R2015a accesses Xpress-IVE Version 1.24.06
64 bit with Xpress Optimizer Version 27.01.02 to solve the problem in Chapter
4 each time a new objective function (i.e. a new weight, α), is used to search
for more possible optimal routes. In other words, decisions regarding what
adjacent point (i.e. route) to use when setting the weight, α, are handled
in MATLAB R2015a. Every time we we search for a new point, we solve
the mathematical model presented in Chapter 4 with an objective function as
defined in Equation (5.4) with some weight, α, and this is done using Xpress.
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Chapter 6

Probability Distributions
of the Stochastic Variables

The nature of the stochastic sailing times of the arcs in the network and
how they are handled is explained in more detail in this chapter. Section 6.1
explains the relation between the realised sailing times and the realised waiting
times. Section 6.2 explains some aspects of the distributions associated with
the stochastic sailing times of each arc. The real distributions of the sailing
times are found by simulation. The (µ, σ2)-characteristics of the real sailing
time distributions are used to approximate the distributions used as input
data to our model. They are also used to better understand the behaviour of
the stochastic variables.

Recall that we denote the stochastic sailing time between nodes i and j as
s̃(w̃)ij . This sailing time is not the same as the travel time, as the travel time
also includes loading time and cleaning time of node j. The weight of an arc in
the network equals the travel time. To decide the arc means and the variances,
we need to separate the stochastic and the deterministic contributions to the
travel times. As mentioned in Chapter 2, the stochastic sailing times (between
different terminals) depend on the waiting time at the destination terminal,
the direction from start node to end node relative to the direction from the
nodes to anchorage, and the distances between terminals.

The speed of the ship is assumed to be 4.3 knots (Arnesen and Gjestvang,
2015), and the distances between terminals are known and fixed. The resulting
direct sailing times (i.e. the time it takes to sail between terminals if the ship
could sail directly to the next terminal) are given in hours. The waiting time
at terminals is assumed to follow a normal distribution. The variance and
expected value of the waiting time for each terminal is set to some value,
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which is further explained in Chapter 7.

6.1 Realisations of Stochastic Sailing Times

The dependency between the sailing times, the waiting times and the direction
of the arc is further explained in this section. Both the sailing times and the
waiting times are stochastic. However, for a given realised waiting time, one
can find the resulting realised sailing time. We show the expression for the
realised sailing time with respect to the realised waiting time for arcs with
a source node in one terminal and destination node in a different terminal.
How the distributions of the stochastic sailing times are found and set using
a set of randomly drawn realised waiting times is explained in Chapter 7. An
explanation of the applied notation and concepts follows first. We then explain
the relation between the realised sailing times and the realised waiting times
when arcs are directed away from anchorage, before the same is explained for
arcs directed towards anchorage.

In Figure 6.1 we consider sailing from Terminal A to Terminal B, and in
Figure 6.2 we consider sailing from Terminal B to Terminal A. In Figure
6.1, the direction is away from anchorage, Terminal 0, while the direction of
the arc from B to A in Figure 6.2 is towards anchorage. The unit we are
concerned with is hours. Recall from Chapter 2 that Houston Ship Channel
in the Port of Houston is long and narrow, and the movement of the ship can
be regarded as movement along a straight line. Hence, the time it takes to sail
along the vertical lines are considered to be zero. The grey arrow indicates
the direction we would sail if there were no waiting times and we could have
sailed directly to the next terminal. This is referred to as direct sailing times.
The realised waiting time at Terminal A is denoted by wA and for Terminal
B by wB . The realised sailing times resulting from the realised waiting times
at the destination terminal are denoted as sAB and sBA. Because the ship
is not allowed to wait at a terminal, but has to sail towards anchorage while
waiting, sAB and sBA can take other values than the direct sailing times. As
such, sAB is the times it takes from the ship leaves Terminal A until it arrives
at Terminal B. sAB depends on direction and waiting time at the end node,
wB . Because wB is stochastic, it makes sAB stochastic as well. In Chapter 4,
this stochastic variable is denoted as s̃(w̃)AB , but for simplicity, we use sAB
in this section.

The length of the arrow illustrating sAB or sBA only shows the direction and
indicates that we are considering sailing from A to B, or from B to A. By
adding the associated loading and cleaning times to sAB and sBA, we get the
travel time along the arc, which is the weight the arc is given in the network.
But for now, we are explaining the nature of the stochastic part of the travel
times. In other words, cleaning and loading are ignored in this chapter and
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are not included in sAB or sBA.

During the waiting time, the ship either sails towards anchorage, or it waits at
anchorage. An arc can either be directed towards or away from anchorage, and
this is illustrated in Figures 6.1 and 6.2, respectively. For these two figures,
the direct sailing time between Terminals A and B is denoted by DAB or DBA,
and D0A is the direct sailing time from anchorage to Terminal A and DA0 from
Terminal A to anchorage. Equivalently, D0B is the direct sailing time from
anchorage to Terminal B and DB0 is the direct sailing time from Terminal B
to anchorage. These values (DAB , DBA, D0A, DA0, D0B and DB0) are known
and fixed for a given problem instance. Note that DAB = DBA, D0A = DA0,
D0B = DB0 but the directions are opposite.

Sailing from Terminal A to Terminal B, away from an-
chorage

In Figure 6.1, we differ between two cases; the waiting time at Terminal B,
wB , can be less than or equal to the time it takes to sail from A to anchorage
(wB ≤ DA0), or wB exceeds the time it takes to sail from Terminal A to
anchorage (wB > DA0).

In the first case, if wB is zero, the ship sails directly from A to B along the
DAB segment. If wB is larger than zero but smaller than the time it takes to
sail along the DA0 segment, the ship first sails towards anchorage from A and
turns around before reaching anchorage (i.e. it turns around somewhere on
the DA0 segment). Then it sails back along the part of the D0A segment that
has been travelled, passes Terminal A and sails to B along the DAB segment.
This gives sAB = 2wB +DAB . Note that if there is no waiting time (wB = 0)
the ship still sails 2wB + DAB , which then equals sailing directly from A to
B.

In the second case, where wB > DA0, the ship sails to anchorage along the
D0A line, waits there and then sail all the way back to B. This gives sAB =
wB+D0A+DAB . Equation (6.1) sums up the two possible cases for the values
of the realised sailing time depending on the realised waiting time.

Figure 6.1: Sailing time and waiting time dependency for arcs directed away from
anchorage.
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sAB =

{
2wB +DAB , if wB ≤ DA0

wB +D0A +DAB , otherwise.
(6.1)

Sailing from Terminal B to Terminal A, towards anchor-
age

In Figure 6.2, we differ between three cases; the realised waiting time, wA,
at Terminal A can be less than or equal to the direct sailing time from B
to A (wA ≤ DBA), it can be higher than the direct sailing time from B
to A but smaller or equal to the direct sailing time from B to anchorage
(DBA < wA ≤ DBA +DA0), or wA can be larger than the direct sailing time
from B to anchorage (wA > DBA +DA0).

In the first case, the realised sailing time equals the direct sailing time from
B to A, DBA. In the second case, the ship turns around somewhere between
A and anchorage (on the DA0 segment), and realised sailing time becomes
2wA − DBA hours. In the last case, the realised sailing time is wB + D0A

hours. This connects the realised sailing time (excluding the deterministic
time for loading/unloading/cleaning) to the realised waiting time. Equation
(6.2) sums up the three possible cases.

Figure 6.2: Sailing time and waiting time dependency for arcs directed towards
anchorage.

sBA =


DBA, if wA ≤ DBA

2wA −DBA, if DBA < wA ≤ DBA +DA0

wA +D0A, otherwise.

(6.2)

6.2 Distribution of the Stochastic Sailing Times

The previous section clarifies how different sailing directions relative to an-
chorage and the realised waiting times result in different realised sailing times
between two terminals. In this section, the distributions of the stochastic
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variables are examined, and the resulting behaviour and effects this gives are
explained. Keep in mind that we are still only addressing arcs between car-
goes in different terminals, not between cargoes in the same terminal. If we
let σ2

AB represent the variance of the arc from A to B and σ2
BA the variance

for the arc from B to A, σ2
AB and σ2

BA are different from each other in most
cases. There are especially two effects, the Pile-Up Effect and the Anchorage
Effect, on which the variance of an arc depends. The unique combination of
the distances between terminals, directions of the arcs, the distributions of
the waiting times, and the distances to anchorage are crucial for how and to
what degree the Pile-Up Effect and the Anchorage Effect contribute to the
arcs’ variances. These effects and conditions are explained in more detail in
this section.

6.2.1 The Pile-Up Effect

Consider Figure 6.3 with Terminals A and B. The waiting time at each ter-
minal follows independent normal distributions. Let us first consider an arc
from Terminal B to Terminal A, and let us denote the arc (B,A). This is il-
lustrated in Figure 6.3. The full line between Terminal B and A in Figure 6.3
illustrates the direct sailing time between Terminal B and A. The dashed line
illustrates possible additional sailing time, and the dashed circle illustrates
possible waiting at anchorage which happens for large enough waiting times.

Figure 6.3: Possible outcomes for arc (B,A), which is directed towards anchorage.

For this arc, (B,A), the ship initially sails in the direction of the destination,
Terminal A. For all realised waiting times less than or equal to the time it
takes to sail along this full line, i.e. the direct sailing time, the resulting
realised sailing times are equal to each other, and their value is the direct
sailing time. This gives a lower limit for possible realised sailing times, and
suggests a truncated distribution of the sailing times. For this distribution,
sailing times equal to the direct sailing times between B and A are piled
up. A higher probability for the waiting time to be equal to or less than the
direct sailing time gives a higher amount of realised sailing time equal to the
direct sailing time from B to A, i.e. a higher pile. For arcs directed towards
anchorage, the accumulation of sailing times with value equal to the direct
sailing time depends on the size of the direct sailing time between the two
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terminals relative to the distribution of the waiting time at the destination
terminal.

If the waiting time at A exceeds the time it takes to sail directly from B to A,
the ship passes Terminal A and sails away from it and towards anchorage along
the dashed line. Additional sailing time that would not have been necessary
if there was no waiting time then applies. Hence, waiting times exceeding
the direct sailing time contribute to a higher mean of the distribution of the
sailing time. A larger difference between the direct sailing time and the mean
of the distribution of the sailing times causes the pile of realised sailing times
equal to the direct sailing time to contribute with more variance.

This means that the distribution of the sailing times of the arcs directed
towards anchorage are truncated and piled up. This affects the variance as-
sociated with the arc. The effect this has on the variance depends on the
distribution of the waiting time relative to the direct sailing time between the
terminals. The distance to anchorage also matters as it affects how large the
mean of the distribution of the sailing time can be. For low enough probabil-
ities for the ship to pass the destination terminal, the pile becomes high and
the variance low. For higher probabilities for the ship to pass the destination
terminal, the mean of the sailing time increases. The higher the mean, the
larger the variance as the pile gives more variance. This effect is henceforth
referred to as the Pile-Up Effect.

Note that as negative waiting times is not realistic, the distributions of the
waiting times are truncated at zero. For this reason, arcs directed away from
anchorage will also have a pile for realised sailing times equal to the direct
sailing times. This pile is smaller than for the symmetric arc, but the effect
this pile has on the variance resembles the Pile-Up Effect.

6.2.2 The Anchorage Effect

In the above section, we explain how the Pile-Up Effect works for arc (B,A)
in Figure 6.3 directed towards anchorage. The symmetric arc (A,B), directed
towards anchorage, is illustrated in Figure 6.4. In this subsection we examine
another effect that influences the variance of the stochastic sailing time of an
arc, the Anchorage Effect. The Anchorage Effect applies both to arcs directed
towards anchorage and to arcs directed away from anchorage.

For arc (A,B) the ship starts sailing away from the destination terminal from
the very start and additional sailing time applies at once for waiting times
larger than zero. For both arcs (B,A) in Figure 6.3 and (A,B) in Figure
6.4, the ship turns around before reaching anchorage if the waiting times
are short enough. The dashed circle illustrates possible waiting at anchorage
which happens for large enough waiting times. For the ship to actually reach
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Figure 6.4: Possible outcomes for arc (A,B), which is directed away from anchor-
age.

anchorage, the waiting time must be large enough relative to the sailing time
to anchorage.

Let us consider situations where the ship sails towards anchorage and away
from the destination node. For each unit of distance travelled before the ship
reaches anchorage, it must eventually sail this same distance in the opposite
direction when it sails back to reach the destination. This implies that the
contribution to the realised sailing time is the double of the units of waiting
time spent somewhere between the anchorage and the closer of the two termi-
nals to anchorage (Terminal A in the figures). For the amount of time spent
waiting at anchorage, the contribution to realised sailing time is not doubled
in the same way, as the ship stands still. This means that the realised sailing
times are more spread out for lower values of realised sailing times, and less
spread out (i.e. more concentrated) for higher values of realised sailing times.
This indicates a more right skewed distribution for cases where the waiting
times are distributed such that the ship reaches anchorage more often. For
two symmetric arcs, when ignoring the possible difference in the distributions
of the waiting times at the two destination terminals, the ship ends up at an-
chorage more often for the arc directed away from anchorage than for the arc
directed towards anchorage. This is because the departure terminal is closer
to anchorage for the arc directed away from anchorage than for the symmetric
arc.

How the skewness affects the variance of the distribution of the sailing times
depends on several conditions. The higher the probability that the ship will
end up at anchorage, the more right skewed will the distribution of realised
sailing times be. When the mean is to the left of the concentrated, high
realised sailing times, then the concentrated sailing times contribute to more
variance than when the mean coincides with the values of the concentrated
sailing times. In other words, where the frequent sailing times are concentrated
relative to the mean affects the contribution that the Anchorage Effect has on
the variance.

The Pile-Up Effect only applies to arcs directed towards anchorage, and con-
tributes to left skewness, while the Anchorage Effect applies to arcs in both
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directions and contributes to right skewness. As such, for arcs directed to-
wards anchorage, the Pile-Up Effect and the Anchorage Effect may interfere.
If the two effects contribute to lower or higher variance for the sailing time
distribution of an arc depends on the relative sizes of the distances between
terminals, distances to anchorage and the distribution of the waiting times.
Longer distances to anchorage mitigates the Anchorage Effect (i.e. less right
skewness). Longer distances between terminals increases the Pile-Up Effect
(i.e. more left skewness).

6.2.3 Simulation of Arc Distributions

To illustrate the Pile-Up Effect and the Anchorage Effect, we do a simulation
of realised sailing times of the two artificial, symmetric arcs (A,B) and (B,A)
from Figures 6.3 and 6.4. We let the direct sailing time between Terminals A
and B be 1 hour. Terminal A is located closer to anchorage than Terminal B,
and (A,B) is directed away from anchorage while (B,A) is directed towards
anchorage. The direct sailing time from anchorage to Terminal A is 7 hours,
and from anchorage to Terminal B the direct sailing time is 8 hours. The
distributions of the waiting times at Terminals A and B are wA ∼ N(3.0, 1.52)
and wB ∼ N(5.0, 2.52), respectively. These characteristics are summed up in
Figure 6.5.

Figure 6.5: Characteristics of the port used to simulate and explain the distribution
of arc sailing times.

From the distribution of the waiting time at the destination terminal, we draw
10,000 realised waiting times at random and calculate the resulting sailing
times using Equations (6.1) and (6.2). As waiting times are normally dis-
tributed, there is a left tail where negative values may be drawn from. This
is not realistic, thus if a sample is negative, it is set to zero. In other words,
the distribution of waiting times is truncated. Figure 6.6 shows the resulting
distributions of the realised sailing times for the two symmetric arcs, (A,B)
and (B,A), and Table 6.6c summarizes the characteristics of the distributions.
Note that the loading and cleaning times are not included as they are not a
part of the stochastic sailing time.

From Figure 6.6 we see that both distributions are truncated, as predicted.
The truncated distribution of (B,A), shown in Figure 6.6a, is partly due to
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(a) Skewed distribution of the realised sailing
times of arc (B,A), directed towards anchorage.

(b) Skewed distribution of the realised sailing
times of arc (A,B), directed away from anchor-
age.

(B,A) (A,B)

Sample set µ 5.1 hours 10.7 hours
Sample set σ2 2.762 4.462

Sample set skewness 0.4 (left skewed) -0.3 (right skewed)

(c) Characteristics of the distributions of realised sailing times for arcs (B,A)
and (A,B), directed towards and away from anchorage, respectively.

Figure 6.6: Distributions of realised sailing times for two symmetric arcs given
realised waiting times at the destination terminals. The table summarizes the char-
acteristics of the distributions.

the truncated distribution of the waiting time, but mostly due to the Pile-
Up Effect explained above. The truncated distribution of (A,B), shown in
Figure 6.6b, is only due to the truncated distribution of the waiting times, as
the Pile-Up Effect does not apply to arcs directed away from anchorage.

As discussed, the Pile-Up Effect contributes to a more left skewed distribution
of sailing times, and the Anchorage Effect contributes to a more right skewed
distribution of sailing times. As the probability of waiting at anchorage is
higher for an arc directed away from anchorage than for the corresponding
symmetric arc (given equal waiting time distributions at terminals), arcs di-
rected away from anchorage are typically right skewed. However, when dis-
tances to anchorage are small relative to the waiting times at terminals, arcs
directed towards anchorage may also become right skewed. Whether arcs are
left skewed or right skewed, and to what degree, depends on several condi-
tions, and the Pile-Up Effect and the Anchorage Effect may interfere with
each other.

From Table 6.6c we see that (B,A) is left skewed with a skewness of 0.4, while
(A,B) is right skewed with a skewness of -0.3, implying that the Anchorage
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Effect is at play for arc (A,B), directed away from anchorage. Figure 6.6b
shows that the distribution of sailing times for arc (A,B) has a second peak to
the right of the mean, at approximately 16 hours. It is for these high sailing
times that the ship has waited at anchorage. Recall that when the ship waits
at anchorage the realised sailing time only increases by one unit for each extra
unit of waiting time, as opposed to an increase of two units of sailing time
for each unit of waiting time when the ship sails toward anchorage. For arc
(B,A), directed towards anchorage, the distribution is right skewed and it is
the Pile-Up Effect that affects the variance the most. As (B,A) has a very
low probability of ending up at anchorage, the Anchorage Effect does not
contribute much to the variance.

Both the mean and the variance of the sailing time distribution of arc (A,B)
is much higher than for (B,A), implying that for this example the Anchorage
Effect contributes to more variance of sailing times distributions than the Pile-
Up Effect does. Which of the effects contributes to more variance depends on
the distribution of waiting times at the terminals and the relative distances
between the terminals, and the anchorage and the terminals. Note that for
other conditions, the stronger Pile-Up Effect or Anchorage Effect may give
lower variance.

From Figure 6.6 we see that the sailing times of the arcs are not normally
distributed, but parts of the distributions resemble normal distributions. Most
relevant literature assume normal distributions and the contributions to the
problem at hand when considering skewed and truncated distributions instead
of normal distributions are minor relative to the complications it brings. For
these reasons, we assume the distribution of the sailing time of each arc to
follow an unskewed normal distribution. The mean and standard deviation of
the normal distribution are set equal the mean and standard deviation of the
real distribution of the arc’s sailing time found by simulation. One must keep
in mind that the distributions of the sailing times are found assuming normally
distributed waiting times, which is not necessarily the case. However, due to
incomplete data for real waiting times, and for simplicity, we assume normally
distributed waiting times for the remainder of this thesis.

6.2.4 The Pile-Up Effect and Anchorage Effect for Var-
ious Port Characteristics

As explained, the Pile-Up Effect and the Anchorage Effect give rise to varia-
tions in the uncertainty of different arc sailing time distributions, which mo-
tivates the search for routes with lower variance than the deterministic route.
To illustrate how the Pile-Up Effect and the Anchorage Effect may contribute
to the variance of the distributions of arc sailing times, the realised sailing
times for varying port characteristics that impose the two effects are simu-
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lated.

Table 6.1 shows the Pile-Up Effect for arc (B,A) in Figure 6.7 directed towards
anchorage. The characteristics of the port are as shown in Figure 6.7, except
for the direct sailing time between Terminal A and Terminal B, DAB , which
we give a different value for each distribution. All other characteristics are
held constant. By changing DAB , and holding the distribution of the waiting
time at Terminal A constant, the probability that the ship sails directly to
Terminal A changes. The sailing time for (B,A) is simulated with five different
values of DAB , and these values are 0.5 hours, 1 hours, 2 hours, 3 hours, and
5 hours. The waiting time at terminal A is normally distributed with a mean
of 3 hours and and a standard deviation of 1.5 hours. As the waiting time at
Terminal A is constant, a higher DAB increases the probability for the ship
to sail directly to Terminal A without passing the terminal. We see from the
characteristics of the distributions in Table 6.1 that variance of the realised
sailing time distributions decreases with increasing DAB . This is because the
size of the pile increases and the mean is shifted horizontally towards the pile.
Note that for different port characteristics the Pile-Up Effect could behave
differently, especially if the Anchorage Effect comes into play as well. For the
examples in Table 6.1 the Anchorage Effect is minimal due to the high sailing
time to anchorage.

Figure 6.7: Characteristics of the port used to simulate the Pile-Up and Anchorage
Effect.

The Anchorage Effect is illustrated in Table 6.2. The distributions shown are
for realised sailing times of arc (A,B) directed away from anchorage. Except
from the direct sailing time between anchorage and Terminal A, D0A, the
port characteristics are equal for all distributions, and the characteristics are
shown in Figure 6.7. When D0A changes, the probability of to ship to wait at
anchorage changes as well. The first distribution in Table 6.2 is for D0A = 10
hours, where the probability of having to wait at anchorage is quite low as the
waiting time at Terminal B is normally distributed with a mean and standard
deviation of 5 and 2.5 hours, respectively. For the other distributions, D0A

decreases such that the probability of having to wait at anchorage increases,
as everything else is held constant. From the table, we see how the variance
of the sailing time distribution decreases for increased anchorage effect. As
the arc is directed away form anchorage, the Pile-Up Effect is not at play.
The pile of values at the lower limit is due to the fact that drawn waiting
times less than zero are set equal to zero in the simulation. We see from
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the characteristics reported in Table 6.2 that the distributions are all right
skewed. The skewness is first low, then high, and then low again. Whether
the Anchorage Effect and the Pile-Up Effect give more or less variance depends
on the specific combination of various conditions.
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Table 6.1: The Pile-Up Effect for arc (B,A) directed towards anchorage.

Distribution of realised sailing times Characteristics of the distributions

DAB = 0.5
wA ∼ N(5, 2.52)
P (sail dir. to A) = 0.0
µ = 9.6
σ2 = 4.82

Skewness = 0.13

DAB = 1
wA ∼ N(5, 2.52)
P (sail dir. to A) = 0.06
µ = 9.1
σ2 = 4.82

Skewness = 0.20

DAB = 2
wA ∼ N(5, 2.52)
P (sail dir. to A) = 0.12
µ = 8.3
σ2 = 4.52

Skewness = 0.44

DAB = 3
wA ∼ N(5, 2.52)
P (sail dir. to A) = 0.21
µ = 7.6
σ2 = 4.22

Skewness = 0.74

DAB = 5
wA ∼ N(5, 2.52)
P (sail dir. to A) = 0.50
µ = 7.0
σ2 = 2.92

Skewness = 1.67
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Table 6.2: The Anchorage Effect for arc (A,B) directed away from anchorage.

Distribution of realised sailing times Characteristics of the distributions

D0A = 10
wB ∼ N(5, 2.52)
P (wait at anch.) = 0.00
µ = 12.0
σ2 = 4.82

Skewness = 0.051

D0A = 7
wB ∼ N(5, 2.52)
P (wait at anch.) = 0.06
µ = 11.6
σ2 = 4.42

Skewness = -0.276

D0A = 5
wB ∼ N(5, 2.52)
P (wait at anch.) = 0.21
µ = 11.0
σ2 = 3.72

Skewness = -0.579

D0A = 3
wB ∼ N(5, 2.52)
P (wait at anch.) = 0.50
µ = 9.7
σ2 = 2.92

Skewness = -0.505

D0A = 1
wB ∼ N(5, 2.52)
P (wait at anch.) = 0.79
µ = 8.0
σ2 = 2.52

Skewness = -0.051
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6.3 Summary

The direction of an arc relative to anchorage as well a the relative sizes of the
distances and the waiting times affect both the realised sailing times and what
variance is associated with each arc. In reality, the distributions of the sailing
times are skewed and truncated. The linear movement and the possibility of
having to wait at anchorage give rise to the Pile-Up Effect and the Anchorage
Effect. The Pile-Up Effect applies to arcs directed toward anchorage, while
the Anchorage Effect applies both to arcs directed toward anchorage and to
arcs directed away from anchorage. In spite of the skewed and truncated char-
acteristics of the real distributions of arc sailing times, we assume unskewed
normally distributed arc sailing times for simplicity. To approximate reality
as much as possible, we use the mean and standard deviation of the real dis-
tributions of arc sailing times, found by simulation as described in Section
6.2.3, as the mean and standard deviation of the normal distributions of arc
sailing times used in the model.
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Chapter 7

Input Data and Generation
of Test Instances

In this chapter, we explain how input data is generated and test instances
created. The input data used is presented in Section 7.1. The data is based
on realistic data from the case port, Houston Ship Channel, and the case
company, Odfjell SE. We also explain in more detail how some of the additional
parameters necessary for the test instances are decided. In this thesis a set of
100 instances is used as a basis for the analysis and as a reference group for
the sensitivity analysis. This set is referred to as the Base Set. A summary
of the generated test instances is presented in Section 7.2 at the end of this
chapter.

7.1 Input Data

The input data is based on numbers for Houston Ship Channel, Houston,
Texas, which is the case port. In this port, Odfjell’s chemical tankers can visit
a number of terminals and may service several customers at each terminal.
Figure 7.1 shows a map of Houston Ship Channel with the location of 11
terminals, here referred to as Terminals A-K. The anchorage is located at sea
outside the port, 22 nautical miles from Terminal A.
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Figure 7.1: Terminals in Houston Ship Channel used in the test instances (Arnesen
and Gjestvang, 2015).

Direct sailing times

As can be seen from Figure 7.1, the terminals are located along the narrow
port channel. To be able to analyse the effects this narrow geography gives
rise to, we assume the terminals are distributed along a straight line, and
all ship movement can be regarded as movement along this line. Figure 7.2
shows Terminals A-K the way they are modelled in the test instances. By
using Google Maps Distance Calculator, we estimate the distance between
the different terminals. Hence, the distances may deviate slightly from the
true distances, but are close enough to the real values to service the purpose
of this thesis. Approximated direct sailing times, i.e. the time it takes for
a ship to sail the distance between the terminals, are then calculated using
the estimated distances and a sailing speed of 4.3 knots, as used by Arnesen
and Gjestvang (2015). All test instances generated in this thesis have six
terminals. The direct sailing times between the terminals shown in Figure 7.1
are presented in Figure 7.2.

Figure 7.2: Terminals in Houston Ship Channel the way they are modelled in the
test instances. The numbers show the approximated direct sailing time in hours
between each pair of adjacent terminals.
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Geography

Depending on where the customers require their cargo to be loaded/unloaded,
the ship has to visit different terminals on different port calls. The geogra-
phy of the routing problem depends on the location of the customer requests
to be serviced. To illustrate this, we differentiate between three types of ge-
ographies, namely Even, Far Away and Split. For the Even geography, all
terminals and the anchorage are spread out evenly along a line segment. This
is illustrated in the upper figure in Figure 7.3. For the Far Away geography,
the terminals are evenly distributed, but the anchorage is located further away
than in the Even geography. This is illustrated in the middle figure in Figure
7.3. For the third geography, Split, at least one of the terminals is placed
closer to the anchorage than to the closest of the remaining terminals, causing
a gap/split. This is illustrated in the bottom figure in Figure 7.3.

Figure 7.3: The three different geographies, Even, Far Away, and Split.

The terminals in Houston Ship Channel do not allow us to obtain perfectly
distributed locations of the terminals, so the set of terminals used for each of
the geographies are picked such that the chosen set of terminals approximate
the geographies mentioned above. For this thesis, instances with six terminals
are used for testing. Hence, for each geography, six of the Terminals A-K are
picked to approximate the geographies as good as possible. Terminals A,
B, D, G, I and K are used for the Even geography, Terminals F-K for Far
Away geography, and A, B, H, I, J and K for Split geography. In reality, the
main anchorage used for Houston Ship Channel is located approximately 22
nautical miles away from the terminal labeled as terminal A in Figure 7.1.
This corresponds to a sailing time of 5.12 hours for a speed of 4.3 knots. As
seen from Figure 7.2, this direct sailing time is used. Note, however, that for
the Far Away geography, terminal F is the terminal closest to anchorage. The
sum of the sailing time along the arcs from anchorage to terminal F in Figure
7.2 is 7.79 hours, and this is the distance used for the Far Away geography.
The information regarding which terminals are being used for the different
geographies is summarized in Table 7.1.

69



Chapter 7. Input Data and Generation of Test Instances

Table 7.1: Terminals from Figure 7.1 used to approximate the geographies Even,
Far Away and Split.

6 Terminals

Even A B D G I K

Far away F G H I J K

Split A B H I J K

For the Base Set used as a basis for analysis and as a reference group when
analysing different variations in parameters, the Even geography is used.

Mean and Variance of the Stochastic Waiting Times

To be able to analyse the impact of the mean and the standard deviation of
the distribution of the stochastic waiting times, we create test instances with
varying values for these two variables. For a given set of data for realised
waiting times for the terminals in Houston which Odfjell’s chemical tankers
can visit, the average waiting time is in reality approximately 36 hours. For
this given set of data, the waiting times vary quite a lot, with a standard
deviation of approximately 2.15 days (more than 51 hours). The waiting times
of this data set range from 0 hours to approximately 366 hours (15.26 days).
However, waiting times of two days and more is typically due to complications
beyond regular waiting times, and we do not consider these data points as
representative. About 80% of the realised waiting times for this data set are
less than 1.75 days (42 hours), and only this part of the data set is used to
set the parameters. 50% of these 80% of the data points lower than 42 hours
are 0 hours or almost 0 hours, and the average of these results in a mean of
approximately 10 hours. The standard deviation is 13.0 hours. Figure 7.4
shows the distribution of the realised waiting times as given by the data set
provided by representatives for Odfjell.

We see that the waiting times are not normally distributed. However, this
is only based on a limited amount of data. As relevant literature commonly
assume normally distributed arc travel times, and for simplicity, we also as-
sume normally distributed waiting times and sailing times in spite of the data
shown in Figure 7.4.

We let the mean of the waiting times be drawn at random between 0 and 10
hours. For each instance, these are drawn for each terminal independently
of other terminals used for the same instance. In other words, the various
terminals used in the same instance have different distributions of the waiting
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Figure 7.4: Distribution of the realised waiting times for a collection of terminals
at Houston Ship Channel, based on a set of data received from Odfjell SE.

times. The standard deviation of the data less than 42 hours is, as mentioned,
13.0 hours, which corresponds to 130% of the mean of 10 hours. However, such
a large standard deviation gives a too thick left tail for our purposes. This is
because the left tail covers some negative values for waiting times, which is not
possible in the real case. Instead, to assign variances for the waiting time for
a given terminal, we let the standard deviation be set to 50% of the respective
mean. In addition, the distributions of the waiting times are truncated at
zero.

Ship and Cargo Information

The ship types used by the case company for chemical shipping have capacities
ranging from 4,000 to 50,000 dead weight tonnes. For this thesis, the same
total ship capacity applies for all test instances. However, we let draft limits
and cargo sizes be expressed as percentages of the total ship capacity, implying
that the results are representative for more than one type of ship. The way
draft limits vary with ship capacity is explained in the next paragraph, and the
following paragraph explains how cargo sizes vary depending on ship capacity.

All test instances generated for this thesis have 20 cargoes. The sizes of the
cargoes are set such that the larger of the total pickup load and the total
delivery load each corresponds to 80%-90% of a fully loaded ship. In other
words, the total pickup load is drawn at random from 80% to 90% of total ship
capacity, and the total delivery load is drawn at random from 80% to 90% of
total ship capacity. This way, the ship capacity can be binding. In reality, the
ship capacity is often a binding constraint, and using larger, non-binding ship
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capacities is not interesting for practical applications.

For a given number of cargoes, some cargoes are to be picked up and others are
to be delivered. The integer number of pickups is picked at random between 2

5
and 3

5 of the total number of cargoes, and the remaining cargoes are deliveries.
The indexes are distributed randomly between pickup and delivery cargoes.
This way, the difference between the amount of pickups and deliveries is not
too big, but can vary a bit. The loads of the pickups are set at random,
but such that their sum equals the total pickup load. The same goes for the
delivery cargoes, whose sum equals the total delivery load.

We let each terminal used for an instance contain at least one cargo. The
cargo indexed as 1 is always located in the first terminal, and the cargo with
the highest index is always located in the last terminal (the terminal furthest
away from anchorage). The remaining cargoes are also ordered with their
index increasing along the terminals.

Draft Limits

In the real problem faced by the case company the draft limits are usually
binding at some of the terminals. Thus, we wish to examine instances where
draft limits may be restrictive. In this thesis we express the draft of the ship
as the loaded weight on board the ship in tonnes. As such, draft limits at the
terminals are also expressed in tonnes, and give the maximum load on board
the ship for the ship to be able to enter and leave the terminal. At least one
terminal must have large enough draft limit for the ship to be able to enter the
port with total delivery load on board, and leave the port with total pickup
load on board. For this reason, one or two terminals are drawn at random
from the set of terminals, and their draft limits are set to 120% of total ship
capacity. The draft limits for the remaining terminals are chosen randomly
between 50% and 90% of total ship capacity. This does not, however, ensure
that there exists feasible routes for a given instance. For the Base Set, we
make sure that there exists at least one feasible route for each instance. A
discussion of the impact of various draft limits follows in Chapter 8.

Assigning Means and Variances to the Distributions of
the Stochastic Sailing Times

Recall from Chapter 6 that the distributions of the stochastic travel times
must be approximated. The simulations used to construct the travel time
distributions inputted to our model is explained here. The sailing time is
the time it takes to sail from one cargo location to another excluding cargo
loading and cleaning times. Adding cleaning and loading times is discussed in

72



7.1. Input Data

the next subsection, and only the stochastic sailing times are discussed here.
As explained in Chapter 6, when the two cargoes associated with an arc are
located in different terminals, the sailing time is stochastic. The stochastic
sailing times depend on the stochastic waiting times at the destination ter-
minal. The relation between the sailing times and the waiting times is also
influenced by sailing directions relative to anchorage and the size of the direct
sailing times relative to the size of waiting times. This relation is explained
in Equations (6.1) and (6.2) in Chapter 6.

As explained above, the terminals are assigned independent normal waiting
time distributions where the mean of the distributions are randomly drawn
between 0 and 10 hours, and the standard deviation is set to 50% of the
associated mean for a given distribution. For a test instance with six terminals,
as used for the test instances in this thesis, there is a set of six independent
waiting time distributions. To decide the distribution of the sailing times, we
begin by drawing 10,000 sets of realised waiting times at random from the set
of waiting time distributions. In other words, we get 10,000 sets where each
set includes six realised waiting times for an instance with six terminals. For
each set of realised waiting times, the corresponding realised sailing times can
be calculated using Equations (6.1) and (6.2) for each arc. This results in
10,000 realised sailing time matrices. Each element (i, j) in a realised sailing
time matrix represents the realised sailing time from cargo i to cargo j for
a given set of realised waiting times. The mean of the approximated normal
distribution of the sailing time for a given arc used as input data to our model
equals the mean of the 10,000 sailing time samples for this given arc.

The same goes for the standard deviation used to construct the approximated
normal distribution of an arc; to decide the standard deviation of arc (i, j), we
use the standard deviation of the 10,000 sailing time samples for that arc as
the standard deviation of the distribution assigned to the arc. As the means
and standard deviations we get from this approach are used to construct the
normal distributions of the sailing time of each arc, this is an approximation.
As explained in Chapter 6, the real sailing times follow truncated, skewed
distribution even if the waiting times follow unskewed normal distributions.
This skewness is ignored when this approach is used. A discussion on and
evaluation of this approximation is presented in Chapter 8.

Cleaning and Loading Time

To obtain the stochastic travel time, t̃ij , the loading and cleaning times are
added to the expected sailing time, s̃(w̃)ij , for each arc. How the distribution
of s̃(w̃)ij is constructed is explained above. As shown in Chapter 4, the travel
time can be expressed as
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t̃ij = s̃(w̃)ij + lj + cj .

The time it takes to load or unload a cargo depends on the type and size of the
cargo. For the case company, loading or unloading of cargoes can take from
0.5 to 14 hours. Hence, each cargo, regardless of if it is a pickup or delivery
cargo, is assigned a random loading time between 0.5 and 14 hours. The tanks
used by the case company take from 3 to 15 hours to clean after a cargo has
been discharged. Cleaning of tanks only applies after cargoes are delivered.
The cargoes that are to be delivered are hence assigned an additional random
cleaning time between 3 and 15 hours (Arnesen and Gjestvang, 2015). The
varying cleaning times are used to illustrate different cleaning and disposal
requirements for different types of cargoes.

Risk Profile of the Decision Maker

There is a one-to-one correspondence between the confidence level and thresh-
old for a given normal distribution of a route’s completion time. This implies
that from a set of routes with different distributions, which one is optimal
depends on both the threshold and the confidence level. In this thesis, the op-
timal route of a set of routes is defined as the route with the lowest threshold
corresponding to a given confidence level. In a business context, reliability is
important in customer relations, and for a business to perform well, planning
ahead is crucial. As such, we assume a relatively risk averse decision maker,
and set the required confidence level for a route to be optimal to 95%.

7.2 Summary of the Test Instances

In this thesis, a set of 100 test instances, the Base Set, is used as a basis for
the analysis. The generated test instances are based on real values for the case
company in Houston Ship Channel in the Port of Houston. All instances have
20 cargoes and six terminals. The true distances between terminals in Houston
Ship Channel are approximated, and a speed of 4.3 knots is used to obtain
the direct sailing time between each terminal. We differentiate between three
types of geographies, Even, Far Away and Split, where different terminals in
Houston Ship Channel are used to approximate each geography. The Base Set
has an Even geography. The distribution of the waiting time at each terminal
is independent of the distribution at other terminals, and is assumed to be
normal. The means of the distributions of the waiting times are randomly
drawn from 0 to 10 hours, and the standard deviation is set to 50% of the
corresponding mean. The total load to be picked up and delivered are both
randomly set between 80% and 90% of total ship capacity. The total pickup
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and delivery loads are distributed randomly among the pickup and delivery
cargoes. The cargoes are randomly distributed among the terminals such
that at least one cargo is located in each terminal. To make sure the ship
can leave and enter the port, one or two terminals are randomly chosen and
given draft limits of 120% of total ship capacity. The draft limits at the
remaining terminals vary randomly from 50% to 90% of total ship capacity.
The distribution of the stochastic sailing times are constructed by calculating
the realised sailing times resulting from 10,000 realised waiting times drawn
at random from the distribution of the waiting time at the corresponding
terminal. The mean and standard deviation of these 10,000 realised sailing
times of each arc are used to construct the normal distribution of each arc
of the test instance. This is an approximation that ignores the skewness of
the distribution of the true realised sailing times. To obtain the travel times,
loading times and cleaning times are added to the sailing times. The loading
times are randomly drawn between 0.5 and 14 hours and are assigned to both
pickup cargoes and delivery cargoes. Cleaning times only apply for delivery
cargoes, as cleaning must be conducted after discharge, and vary from 3 to 15
hours. Table 7.2 summarizes the most important input values used to generate
the Base Set. The analysis presented in Chapter 8 is based on results from
the Base Set. Variations in some of the values are also tested and the results
are discussed Chapter 8.4.

Table 7.2: Summary of input data used to generate the Base Set of test instances.

Explanation of data input Values

Geography Even

Number of cargoes 20

Number of terminals 6

Range for total pickup/delivery as
percentage of total ship capacity

80% - 90%

Range for draft limits as percentage
of total ship capacity

50% - 90%

Range for mean of waiting time 0 - 10 hours

SD as percentage of mean 50%

Range for loading time 0.5 - 14 hours

Range for cleaning time 3 - 15 hours

Confidence level for choice of
optimal route

95%
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Chapter 8

Computational Study:
Static Version of the
Problem

In this chapter, we analyse the results of the static version of the problem
and how the solutions are influenced by uncertainty. The results are obtained
using the solution method explained in Chapter 5 and the Base Set of 100
test instances generated as described in Chapter 7. For each test instance,
the solution method is used to identify a set of possibly optimal routes a
priori. The routes are compared to each other and to the optimal deterministic
route. For test instances where more than one route is identified, it is not
always obvious what is the optimal route. Thus, the model output must be
processed and analysed further for a decision maker to be able to use it as
decision support.

Section 8.1 presents and explains the output of the solution method and gives
some guidance on how to interpret the results. The results from testing the
Base Set of 100 instances are aggregated and analysed in Section 8.2. In Sec-
tion 8.3, some of the instances are analysed in more detail, and the effect
of the aspects discussed in Chapter 6 are analysed. A sensitivity analysis is
presented in Section 8.4, where variations in aspects such as geographic char-
acteristics, draft limits, and risk profiles of the decision maker are examined.
What is learnt about the behaviour of the stochastic variables is summarized
Section 8.5. An evaluation of the approximation used to model the distri-
butions of the stochastic sailing times is presented in section 8.6, before the
practical implications and the value of accounting for uncertainty is assessed
in Section 8.7.

77



Chapter 8. Computational Study: Static Version of the Problem

The solution algorithm is implemented in MATLAB R2015a. The optimiza-
tion model is implemented using Xpress Mosel Version 3.8.0 as the modelling
language, and is run using Xpress-IVE Version 1.24.06 64 bit with Xpress
Optimizer Version 27.01.02. The computer used runs Windows 7 Enterprise
64-bit Operating System with Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz,
and has installed memory of 16 GB. All test instances are created using MAT-
LAB R2015a.

8.1 Model Output and Interpretation

In this section we present and explain the output we get when we use the
solution method explained in Chapter 5. The aim is to give the reader an
introduction to how information can be extracted from the employed analysis
tools and model outputs.

By using the solution method explained in Chapter 5, a set of possibly optimal
routes for each test instance is found. These routes can be characterized by
the mean and standard deviation, or variance, of the completion time of the
route, (µ, σ2).

The first route found for a given test instance, labeled as Route 1 in graphs
and tables throughout this chapter, is always found by minimizing the expected
completion time, and no attention is paid to the variance. Route 1 is thus
always equal to the optimal deterministic route of the instance. As explained
in Chapter 5, the rest of the set of possibly optimal routes are found by
minimizing a linear combination of the mean and variance of the expected
completion time. Thus, the routes labeled Route 2 and higher are referred to
as stochastic solutions or routes.

For a given confidence level, there is one optimal route. The set of possibly
optimal routes found for a test instance has to be further analysed to be able
to find the optimal route for a given confidence level. What confidence level
should be applied depends on the risk profile of the decision maker. For the
Base Set of 100 instances, a confidence level of 95% is assumed. A discussion
on different required confidence levels is presented in Section 8.4.

An example of a set of possibly optimal routes found using the chosen solution
method is shown in Figure 8.1. The figure presents the (µ, σ2)-characteristics
of the routes found for one of the instances in the Base Set. The charac-
teristics of the three routes identified using Nikolova’s method are plotted in
Figure 8.1a, each point representing a route. Figure 8.1b shows the cumu-
lative distribution function (CDF) of the routes. Route 1 is, as always, the
optimal deterministic route. Route 2 and Route 3 are stochastic routes. Fig-
ure 8.1b allows us to examine the prescribed level of confidence, α, by which
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the completion time of the route is less than a threshold, H.
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(a) The (µ, σ2)-characteristics of the com-
pletion time of the three routes found for an
instance.
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(b) Cumulative distribution function (CDF) of the com-
pletion times of the three possibly optimal routes found for
an instance.

Figure 8.1: Example of model output for a test instance from the Base Set. Three
routes are identified as possibly optimal routes.

From Figure 8.1b we see that for every threshold shown in the graph, either
Route 1 or Route 3 gives the highest confidence level, i.e. the highest prob-
ability of completing within the threshold. Route 2 is thus dominated by
Routes 1 and 3 for the thresholds shown in the graph. Recall the one-to-one
correspondence between the confidence level and the threshold for a given
combination of route mean and variance. Thresholds, or deadlines, often rep-
resent requirements imposed by customers. Confidence levels often represent
requirements set internally by the case company based on their risk profile.

Figure 8.1b can be read both ways. For a given required confidence level, we
can see which of the routes is the optimal one and the associated threshold the
route should complete within. Let us say a confidence level of 0.9 is required.
Moving horizontally from left to right from α = 0.9 on the y-axis, the first
graph that intersects the line for α = 0.9 is the graph representing Route 3
(the red graph). That is, for α = 0.9, Route 3 has the lowest corresponding
threshold. Moving downwards vertically from the point where the line repre-
senting α = 0.9 intersects the graph representing Route 3, we hit the x-axis
and find that for Route 3 to provide a confidence level of 0.9, the threshold
can be no less than 460 hours. For lower thresholds than 460 hours, Route 3
offers lower confidence levels for route completion within the threshold than
α = 0.9.

Reading the figure the opposite way, we start with a given threshold or dead-
line that must be adhered to, and move upwards vertically to find the route
that can provide us with the highest confidence level. For a deadline of e.g.
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460 hours, Routes 1 and 3 both give confidence levels close to α = 0.9, but
Route 3 can provide a slightly higher confidence level for this threshold. Thus,
Route 3 is the optimal choice of route for a threshold of 460 hours.

Figure 8.1a shows that the difference in the mean of Routes 1 and 3 is rather
small, but the difference in variance is larger. Route 1 has a lower mean, but
Route 3 has a lower variance. Knowing this, it is not surprising that Route
1 has a higher confidence level than Route 3 for some thresholds lower than
approximately 455 hours, but Route 3 has the highest confidence level and is
optimal for thresholds larger than 455 hours.

For all practical purposes, confidence lower than 0.5 are never interesting.
For this reason, only the part of the figure showing the CDF representing
confidence levels from α = 0.5 and higher will be shown for the rest of the
analysis presented in this chapter.

8.2 Aggregated Analysis of the Base Set

In this section we present the results and analysis of the Base Set. The 100
instances in the Base Set all have an even geography, randomly drawn draft
limits between 50%-90% of total ship capacity, total pickup and delivery each
randomly drawn between 80%-90% of total ship capacity, and the optimal
route is found using a required confidence level of 95%. As such, we assume
a relatively risk averse planner. For more information about the values used
for the Base Set, see Chapter 7 and Table 7.2.

As explained in the previous section, for each test instance, we find both the
optimal deterministic route and several stochastic routes. We then find which
of these routes is the optimal route for the given confidence level. If the optimal
route for the given confidence level differs from the optimal deterministic
route, the test instance has an optimal stochastic route. On the contrary, if
the deterministic route is the optimal route for the given confidence level, the
test instance has an optimal deterministic route.

When analysing the results of a set of test instances, two measures are used.
The first measure is the percentage of instances with a stochastic optimal
route (i.e. Route 1 is not optimal) out of the total number of instances in the
set. The instances where a stochastic route is optimal for the given confidence
level are referred to as interesting instances. In other words, the interesting
instances have an optimal solution which differs from the optimal deterministic
solution. The measure is shown in Equation (8.1).
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Percentage of interesting
instances for a set

=

Number of instances with
optimal stochastic solution

Total number of instances in the set
(8.1)

For the interesting instances, we observe that the optimal stochastic solution
has a somewhat higher expected completion time than the optimal determin-
istic solution, but a lower standard deviation. Motivated by this, the second
performance measure is the ratio of decrease in standard deviation to the in-
crease in expected completion time between the optimal stochastic route and
the optimal deterministic route. We refer to this ratio as the SD/Mean ra-
tio, and the SD/Mean ratio only applies to the interesting instances. For an
interesting instance,

SD/Mean ratio =
decrease in standard deviation

increase in mean
=

σD − σS
|µD − µS |

, (8.2)

where µD and σD are the mean and standard deviation of the completion
time of the optimal deterministic route, and µS and σS are the mean and
standard deviation of the completion time of the optimal stochastic route.
The SD/Mean ratio tells us by how much we are able to reduce uncertainty
by allowing a slightly higher mean. A higher SD/Mean ratio indicates more
interesting instances, because taking uncertainty into account is more valuable
the higher the SD/Mean ratio is. When analysing and comparing sets of
instances we are interested in the average SD/Mean ratio of the interesting
instances in the set.

Table 8.1 shows the aggregated results for the Base Set. The table includes
the number of instances in each set, the average SD/mean ratio and the ratio
of interesting instances. In addition, we have included the average mean
and average standard deviation of the completion time of both the optimal
stochastic solutions and the optimal deterministic solutions for the interesting
instances.

From Table 8.1 we see that the percentage of interesting instances is 18%,
i.e. 18 of the 100 instances in the Base Set have a stochastic solution as
the optimal solution. This implies that for more than 80% of the instances,
the optimal deterministic route performs better than the optimal stochastic
route. Hence, taking uncertainty into account matters to some degree, but in
most cases a deterministic approach would give equally good results. For the
interesting instances we thus want to examine how much better the optimal
stochastic solution performs than the optimal deterministic solution. We see
from Table 8.1 that the SD/Mean ratio is 1.24 on average for the interesting
instances. This implies that the standard deviation, and hence uncertainty,
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Table 8.1: Aggregated results for the Base Set.

The Base Set

Number of instances in the set 100

Percentage of interesting instances 18%

The interesting instances of the Base Set

Average SD/Mean ratio 1.24

Average mean of optimal stochastic routes 387.2 hours

Average standard deviation of optimal stochastic routes 10.0 hours

Average mean of optimal deterministic routes 386.7 hours

Average standard deviation of optimal deterministic routes 10.6 hours

is on average reduced 1.24 times per unit of increase of the mean from the
optimal deterministic to the optimal stochastic solution for these instances. To
decide if this is a large enough improvement to justify the use of a stochastic
approach when solving the route planning problem we have to assess the
possible gains from using the stochastic solution.

As further explained in Section 8.7, we find that by using a stochastic approach
when solving the route planning problem for the instances in the Base Set we
get less than 0.5% improvement of the threshold we can adhere to for a given
confidence level. The improvement of confidence level for a given threshold
is less than one percentage point. Solving an optimization problem requires
more resources when using stochastic approaches compared to deterministic
approaches, and the results form solving the Base Set give reason to question
the necessity of using a stochastic approach when considering route planning in
a port where waiting times at terminals are uncertain and the characteristics
are similar to the instances in the Base Set. One can argue that a route
planner will obtain good enough results even though uncertainty is not taken
into account. But there could be ports with other characteristics which causes
uncertainty to matter more. Some of these characteristics are examined in the
following sections. In section 8.3, we take a closer look at the nature of arc
and route variance, and in section 8.4 we take a closer look at what happens
when certain parameters of the Base Set are changed.

8.3 Detailed Analysis

In this section, we take a closer look at the optimal routes of some test in-
stances from the Base Set, and examine the differences between the optimal
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stochastic and optimal deterministic route. Reasons why routes have different
variances are identified and discussed. The larger the decrease in the standard
deviation of the route completion time from the optimal deterministic solution
to the optimal stochastic solution relative to the increase in the mean of the
route completion from the deterministic solution to the stochastic solution,
the higher the SD/Mean ratio. Implying that the higher the SD/Mean ratio,
the better the performance of the optimal stochastic solution relative to the
performance of the optimal deterministic solution, and the more important it
is to take uncertainty into account for the given test instance. For this reason,
we begin by examining the test instance from the Base Set with the highest
SD/Mean ratio, Instance 46. To give insights in reasons to why routes have
different variances beyond what Instance 46 can provide, one other instance
is also examined.

8.3.1 Comparing Routes for Instance 46 from the Base
Set

Figure 8.2 shows the geography and characteristics for Instance 46 in terms of
draft limits, waiting times distributions, cargo locations and sizes, and direct
sailing times.

Figure 8.2: Details of Instance 46 from the Base Set. The first row shows the
draft limits for each terminal in tonnes. The second row shows the characteristics
of the distribution of the waiting time at each terminal. The letters indicate what
terminal from Figure 7.1 is used. The first integer in each cargo icon shows the cargo
index, and the number inside is the load. The signs “+” and “-” indicate if it is a
pickup or delivery cargo, respectively. The numbers under the black line indicate
the approximated direct sailing time between the terminals in hours.

Figure 8.3 shows the cumulative distribution function and the plot of the
(µ, σ2)-characteristics of the completion times of the routes found for Instance
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46 using the solution method described in Chapter 5.
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(a) Cumulative distribution function (CDF) of the comple-
tion times of the four possibly optimal routes identified for
Instance 46.
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(b) Scatter plot of (µ, σ2)-characteristics
of the completion times of the four possi-
bly optimal routes identified for Instance
46.

Figure 8.3: Model output for Instance 46 from the Base Set. Four routes are
identified as possibly optimal routes.

Recall that we assume a relatively risk averse planner, and the confidence
level, α, required for a route to be optimal is α = 0.95 for the Base Set.
Figure 8.3a shows that Route 3 is the route with the lowest threshold for
α = 0.95, and Route 3 is thus regarded as optimal. The black and green lines
representing Routes 1 and 3, respectively, intersect at approximately threshold
= 378 hours and confidence level α = 0.67. This means that for thresholds, or
deadlines, lower than 378 hours, Route 1 is optimal, while Route 3 is optimal
for thresholds higher than 378 hours. For a risk averse planner, a confidence
level of 0.67 is rarely interesting. Hence, for risk averse planners, Route 3 is
always optimal.

Looking at Figure 8.3b we see that Route 3 has a slightly higher mean than
Route 1, but a lower variance. Recall that the SD/Mean ratio is the decrease in
standard deviation over the increase in mean for the optimal stochastic route
relative to the optimal deterministic route. For instance 46, the SD/Mean
ratio is 2.74, which gives a measure for how much we gain by allowing a slightly
higher mean. For the instances of the Base Set with a different optimal route
than the optimal deterministic route, the average of the SD/Mean ratio is
1.14. As such, for Instance 46, taking uncertainty into account gives a higher
gain than for other instances. The two remaining routes, Routes 2 and 4, are
completely dominated by the two other routes for all practical purposes.

Table 8.2 shows the sequence of cargo and terminal visits and the mean,
standard deviation, and variance of the complete Routes 1 and 3 for Instance
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46. The letters A, B, D, G, I and K indicate what terminal shown in Figure 8.3
is visited, and in what sequence. The routes begin and finish at anchorage, but
this is not included in the table as it is true for all routes without exception.

Table 8.2: Cargo and terminal visiting sequence for Routes 1 and 3 of Instance 46
from the Base Set.

Route 1
Cargo seq. 4 3 1 20 18 19 11 12 13 15 17 16 14 7 6 8 10 9 2 5

Terminal seq. A K D G I B D A

(µ, σ2) (373.24, 10.932) = (373.24, 119.5)

Route 3
Cargo seq. 4 3 1 11 20 18 19 12 13 15 17 16 14 7 6 8 10 9 2 5

Terminal seq. A D K G I B D A

(µ, σ2) (373.49, 10.252) = (373.49, 105.0)

From Table 8.2 we can look more closely at what arcs are used in the two
routes. To highlight the difference between the routes, Figure 8.4 illustrates
the two routes graphically.

The normal distribution of the waiting time for each terminal is represented by
the values for (µ, σ2) above each terminal. The letters indicate the terminals
corresponding to terminals from Figure 7.1. The draft limits are omitted here
as they are not necessary for the following discussion. The cargo indexes
and loads are presented inside each cargo icon, and the direct sailing times
are included under each line segment. The terminal sequence of the optimal
deterministic route, Route 1, and the optimal stochastic route, Route 3, are
shown in the figure. The (µ, σ2)-characteristics of the normal distribution
of the sailing time of each arc is included above the arc. At each vertical
line representing a terminal visit, the serviced cargoes are indicated by their
index. The figure shows that the routes only differ for some of the arcs.
The difference between these arcs is what is interesting when analysing the
differences between the routes. For this reason, the rest of the route is dashed
and the values shaded, and the parts of the routes that differ are accentuated.

It is interesting to examine the parts of the routes which differ, that is the
part of the routes which are not dashed in Figure 8.4. Table 8.3 summarizes
the distributions of the sailing times for arcs that differ for Routes 1 and 3.

The sum of the arc means from leaving Terminal A the first time until arriving
at Terminal G is 28.09 hours for Route 1 and 28.33 hours for Route 3. Note
that this is only the mean for the stochastic part of the route, namely the
sailing times, and the loading and cleaning times are omitted here as the sum
of these are the same for all routes. The difference in the mean of the sailing
times for these limited parts of the routes is exactly equal to the difference in
the means for the complete routes. This difference amounts to approximately
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Figure 8.4: Cargo and terminal visiting sequence of the optimal deterministic
route, (Route 1), and the optimal stochastic route (Route 3) of Instance 46 from
the Base Set.

0.25 hours (some rounding of numbers cause the minor deviation). The means
of the complete routes are 373.24 for Route 1 and 373.49 for Route 3. We see
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Table 8.3: Distribution of the sailing times of the arcs which differ between Routes
1 and 3 for Instance 46 from the Base Set.

Route 1 Route 3

Arc µ σ2 Arc µ σ2

(A,K) 9.716 2.3302 = 5.429 (A,D) 8.195 2.8962 = 8.378
(K,D) 7.594 4.3552 = 18.966 (D,K) 7.490 2.3412 = 5.480
(D,G) 10.776 4.5642 = 20.830 (K,G) 12.647 4.1072 = 16.867

sum 28.086 6.7252 = 45.227 sum 28.332 5.5442 = 30.736

that the difference between the means and variances of these limited parts of
the routes is what gives the overall difference in mean and variance that we
also saw from Table 8.2, with approximately ∆µ = 0.25 and ∆σ2 = 14.49.

Where Route 1 uses the arc from A to K, (A,K), Route 3 instead uses the
arc from A to D, (A,D). Arc (A,D) used by Route 3 has a higher standard
deviation than arc (A,K) used by Route 1, which is due to the different
distributions of the waiting time at the destination Terminals D and K. In
spite of this, the complete Route 3 has an over all lower variance than Route
1. This is due to the lower variance of arcs (K,G) and from (D,K) used by
Route 3, instead of arcs (K,D) and (D,G), used by Route 1.

Recall that for arcs directed towards anchorage, which is the case for arcs
(K,D) and (K,G), the variance is affected by both the Pile-Up Effect and
the Anchorage Effect, explained in Chapter 6. For (K,D), the ship sails
directly to the destination terminal without passing it more often than for
(K,G). This causes a larger pile of sailing times equal to the direct sailing
distances for (K,D) than for (K,G). In fact, the probability for the ship to
sail directly to the destination terminal for (K,D) (Pr(wd ≤ DKD) where
DKD = 1.020 + 0.73 + 1.02) is approximately 44%, while the corresponding
probability for (K,G) is less than 3%. From Section 6.2.4 we know that, when
the Anchorage Effect is marginal, the Pile-Up Effect gives a decrease in the
variance relative to when there is no Pile-Up Effect, and the Pile-Up Effect
is stronger the higher the probability of sailing directly to the next terminal.
This argues that (K,D) should have less variance than (K,G), which is not
the case. However, the Anchorage Effect is also at play here, and interferes
with the Pile-Up Effect. From Section 6.2.4, we also know that the higher the
probability of waiting at anchorage, i.e. stronger the Anchorage Effect, the
less the resulting variance. The Anchorage Effect is stronger for (K,G) than
(K,D) because of the higher expected waiting time at Terminal G than at
Terminal D. When both effects are at play, their contribution to the variance
is not necessarily by reduction, as the mean of the distributions is typically
between the pile causing the Pile-Up Effect and the concentrated values giving
the Anchorage Effect, such that the pile and the concentrated values might
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contribute to more variance instead of reducing the variance. This must be
the explanation to why there can be less variance associated with (K,G) than
with (K,D), even if the Pile-Up effect is stronger for (K,D).

Arc (D,G), used by Route 1, has a higher variance than arc (D,K), used by
Route 3. It is more likely for the ship to end up waiting at anchorage for
(D,G) than for (D,K) due to the different distributions of the waiting times
at the two destination terminals. There is approximately a 17% probability
for the ship to wait at anchorage for (D,G), while this probability is almost
zero for (D,K). Hence, the Anchorage Effect is stronger for (D,G), which
argues that (D,G) should have less variance associated with it according to
the results of the simulations in Section 6.2.4. However, this is not the case,
and the difference in the distributions of the waiting times at the destination
terminals must be the reason why (D,K) has less variance associated with it.

Comparing the symmetric arcs (D,K) and (K,D) reveals how the conditions
and relative sizes affect the resulting variance to a large degree, and the unique
conditions are important for the outcome. With the small distances between
terminals and the relatively large waiting times possible (mean of the distri-
butions vary randomly between 0 and 10 hours) for all the instances in the
Base Set, one might expect the Anchorage Effect to often overrule the Pile-
Up Effect. The distance to anchorage is small enough for this to often be the
case. When the Anchorage Effect generally overrules the Pile-Up Effect, arcs
directed away from anchorage are typically more right-skewed than the sym-
metric arcs directed towards anchorage, and the results for the simulation in
Section 6.2.4 suggest that increased Anchorage Effect reduces variance. The
Anchorage Effect is stronger for (D,K), directed away from anchorage, than
for (K,D), directed towards anchorage. This corresponds well with the lower
variance associated with (D,K) than with (K,D). However, as described
some paragraphs above, the Pile-Up Effect is rather strong for (K,D) in this
specific example. The probability for the ship to sail directly to D when using
(K,D) is much higher than the probability for the ship to wait at anchorage
when using (D,K), which argues that (K,D) should have a lower variance.
However, with the specific conditions here, the difference in variance must
be due to the different distribution of the waiting times at the destination
terminals.

Based on the discussion above, it is apparent that when there are several fac-
tors that affect the variance of arcs, it is not always straightforward what is
the main reason why some routes have a lower variance than others. For this
test instance, we see that the main reason why arcs have different variances as-
sociated with them is different distributions of the waiting times at terminals.
However, the Pile-Up Effect and the Anchorage Effect can also contribute to
making it possible to find a different route with a smaller variance than the
optimal deterministic route.
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8.3.2 Comparing Routes for Instance 1 from the Base
Set

Instance 1 from the Base Set has a stochastic optimal route, and the reason
why the optimal route has a lower variance than the optimal deterministic
route can be explained differently than for Instance 46. Figure 8.5 shows the
details of Instance 1 from the Base Set.

Figure 8.5: Details of Instance 1 from the Base Set. The first row shows the
draft limits for each terminal in tonnes. The second row shows the characteristics
of the distribution of the waiting time at each terminal. The letters indicate what
terminal from Figure 7.1 is used. The first integer in each cargo icon shows the cargo
index, and the number inside is the load. The signs “+” and “-” indicate if it is a
pickup or delivery cargo, respectively. The numbers under the black line indicate
the approximated direct sailing time between the terminals in hours.

Figure 8.6 shows the CDF and (µ, σ2)-characteristics for the routes found for
Instance 1. We see from the figure that Route 4 has a slightly higher mean,
but a lower variance than Route 1. For thresholds lower than approximately
423 hours, Route 1 is optimal, while Route 4 is optimal for thresholds higher
than 423 hours. The confidence level for which the graphs for Routes 1 and 4
intersect is approximately α = 0.88. For confidence levels of 0.9977 and higher,
corresponding to thresholds of 439.9 and higher, Route 3 becomes optimal.
But these values are very high, and for all practical purposes, Route 4 is
optimal for all thresholds equal to 423 hours and higher. This corresponds
to required confidence levels of α = 0.88 and higher. Route 2 and 5 are
completely dominated by the other routes. Table 8.4 summarizes the cargo
and terminal sequence of Routes 1 and 4.

As is done in the previous section for Instance 46, we can use Table 8.4 to
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mal routes identified for Instance 1.

Figure 8.6: Model output for Instance 1 from the Base Set. Five routes are
identified as possibly optimal routes.

Table 8.4: Cargo and terminal visiting sequence for Routes 1 and 4 of Instance 1
from the Base Set.

Route 1
Cargo seq. 11 10 9 13 12 3 1 2 6 4 14 15 19 20 18 16 17 5 8 7

Terminal seq. D G A B I K B D

(µ, σ2) (409.63, 11.202) = (409.63, 125.44)

Route 4
Cargo seq. 11 10 9 13 12 14 15 6 4 3 1 2 19 20 18 16 17 5 8 7

Terminal seq. D G I B A K B D

(µ, σ2) (410.63, 10.342) = (410.63, 106.91)

extract information about the different arcs that are used in Routes 1 and 4.
We see that the routes differ by Route 1 using arcs (G,A), (A,B), (B, I) and
(I,K) where Route 4 uses arcs (G, I), (I,B), (B,A) and (A,K). Figure 8.7
illustrates the routes graphically.

Figure 8.7 shows the terminal sequence of the optimal deterministic route,
Route 1, and the optimal stochastic route, Route 4, of Instance 1 from the
Base Set. The (µ, σ2)-characteristics of the sailing time for each arc excluding
loading and cleaning is included above each arcs, and the vertical lines repre-
senting terminal visits, the serviced cargoes are indicated by their index. The
dashed and shaded parts of the figure represents the parts of the routes that
are equal for Routes 1 and 4, and we are interested in the part of the route
that is not dashed. Table 8.5 summarizes the characteristics of the arcs that
differ between the routes.
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Figure 8.7: Cargo and terminal visiting sequence of the optimal deterministic route (Route
1) and the optimal stochastic route (Route 4) of Instance 1 from the Base Set.

From Table 8.5 we see that the difference between the means corresponds to
the difference we saw for the complete routes in Table 8.4, with approximately
∆µ = 1. The difference in variance between the two routes of approximately
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Table 8.5: Distribution of the sailing times of the arcs which differ between Routes
1 and 4 for Instance 1 from the Base Set.

Route 1 Route 4

Arc µ σ2 Arc µ σ2

(G,A) 8.761 3.6402 = 13.253 (G,I) 2.188 0.7202 = 0.519
(A,B) 10.042 3.8262 = 14.639 (I,B) 10.188 4.0042 = 16.031
(B,I) 4.238 0.7202 = 0.519 (B,A) 9.505 2.9242 = 8.551
(I,K) 14.002 35.528 = 35.528 (A,K) 16.161 4.4932 = 20.189

sum 37.043 8.0012=63.939 sum 38.042 6.7302 =45.290

∆σ2 = 18.6 also corresponds to the difference for the complete routes from
Table 8.4 (minor deviations are due to rounding).

The most important difference between the routes, is that Route 4 avoids the
large variance that applies when entering Terminal K from Terminal I. To do
so, Route 4 enters Terminal K from Terminal A instead. To understand what
gives arc (A,K) a lower variance than (I,K), even if the destination terminal
is the same, we did a simulation of the realised sailing times. The resulting
distributions of the sailing times for (I,K) and (A,K) are shown in Figure
8.8.

(a) Distribution of the realised sailing times of
arc (I,K).

(b) Distribution of the realised sailing times of
arc (A,K)

Figure 8.8: Distributions of arcs (I,K) and (A,K) used for Routes 1 and 4,
respectively, for Instance 1 from the Base Set.

Figure 8.8 shows that the Anchorage Effect is at play for both arcs (I,K)
and (A,K). The high concentration of sailing times derived from waiting
at anchorage is wider for (A,K) than for (I,K). This is not surprising, as
Terminal A is located much closer to anchorage than Terminal I is, and a larger
amount of the realised waiting times cause the ship to wait at anchorage. From
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the simulations in Section 6.2.4 we know that when only the Anchorage Effect
is at play, a stronger Anchorage Effect gives a lower variance, which is the
case for these two arcs. We see that for arc (A,K), the mean of the arc, of
16.2 hours, falls within the range of sailing times where the ship has waited
at anchorage for some amount of time. This, way, the concentration around
the mean is high, causing a lower variance. For (I,K), the mean of 14.0 hours
does not fall within the concentrated realised sailing times around 20 hours,
and the sailing times where the ship has waited at anchorage contribute to a
larger variance instead. This gives (I,K) a higher variance than (A,K).

We see from Figure 8.7 that Route 4 has one more arc directed towards an-
chorage than Route 1. When ignoring the difference in the waiting times
distributions as a main reason why arcs have different variances, different
conditions cause the Anchorage Effect and the Pile-Up Effect to work in vari-
ous ways, and they often interfere. For shorter anchorage distances, or higher
means of the waiting times, when the remaining distances are unchanged,
ships will more often end up at anchorage. When the Anchorage Effect is
strong relative to the Pile-Up Effect, arcs directed away from anchorage can
typically have less variance associated with them. When the Pile-Up Effect
is strong, arcs directed towards anchorage can typically have less variance as-
sociated with them. However, this ignores the possible differences of waiting
times distributions and how the unique conditions largely affect the outcome
when the two effects interfere. For the conditions used in the instances in the
Base Set, with distances between terminals of approximately 1 hour, mean of
the waiting time varying from 0 to 10 hours and a sailing time to anchorage
of approximately 5 hours from the closest terminal, we see that for the 18
interesting instances from the Base Set, the optimal stochastic route always
has equally many or more arcs directed towards anchorage compared to the
optimal deterministic route. This must mean that the conditions in the Base
Set in general cause the Pile-Up Effect to be stronger than the Anchorage
Effect.

8.4 Sensitivity Analysis

In this section we analyse the impact of changing certain parameters in the
input data explained in Chapter 7. For each variation we want to examine, a
new set of 100 instances is generated from the Base Set, holding everything
constant except from the parameter we want to analyse. The aggregated
information of the new set is compared to the Base Set. We analyse variations
in geography, draft limits, and the risk profile of the decision maker.
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8.4.1 Geography

As explained earlier, the geography of the true routing problem changes based
on which terminals the customer requests are located in. To investigate the
impact of different geographies, two new sets of instances are generated. The
instances in the new sets are equal to the Base Set except for the geography
of the terminals. The instances in the Base Set have, as mentioned, Even
geography, while the instances in the two new sets have Far Away and Split
geographies, respectively. The geographies are explained in more detail in
Chapter 7. When changing the geography, the direct sailing times change,
and the expected travel times and variances of the arcs have to be recalcu-
lated. Every thing else, including the distribution of the waiting times at the
terminals, is held constant.

Table 8.6 shows the aggregated results of the sets of test instances with Even,
Far Away, and Split geographies. Recall that the interesting instances are the
test instances where the optimal stochastic route performs better than the
optimal deterministic route for the chosen confidence level of 95%. The table
includes the number of instances in each set, the average SD/Mean ratio
and the percentage of interesting instances. In addition, we have included
the average mean and average standard deviation of the completion time of
both the optimal stochastic solutions (opt. stoch. solution) and the optimal
deterministic solutions (opt. det. solution) for the interesting instances.

Table 8.6: Aggregated results from the set of test instances with Even, Far Away,
and Split geographies.

The Base Set Variation Set 1 Variation Set 2

Geography Even Far Away Split

Instances in the set 100 100 100

Percentage of interesting instances 18% 20% 22%

Interesting instances

Average SD/Mean ratio 1.24 1.51 1.99

Average µ of opt. stoch. solution, µ̄is 387.2 hours 396.7 hours 402.6 hours

Average σ of opt. stoch. solution, σ̄is 10.0 hours 10.7 hours 10.7 hours

Average µ of opt. det. solution, µ̄id 386.7 hours 395.8 hours 401.9 hours

Average σ of opt. det. solution, σ̄id 10.6 hours 11.6 hours 11.4 hours

From the table we see that both Far Away and Split have a somewhat higher
percentage of interesting instances the Base Set, meaning that taking uncer-
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tainty into account matters more often for these geographies. The physical
split, or gap, of the Split geography gives longer arcs, and for arcs directed to-
wards anchorage where the gap is crossed, the Pile-Up Effect can be stronger.
When ignoring the Anchorage Effect, the Pile-Up Effect contributes to less
variance, but when both effects are at play, they typically contribute to more
variance, as the mean of the distribution of the sailing times typically falls
somewhere between the pile associated with the Pile-Up Effect and the concen-
trated sailing times associated with the Anchorage Effect. This way, stronger
Pile-Up Effect might cause more variance, which can be the reason why vari-
ance in general increases for the Split geography. The higher SD/Mean ratios
and the higher percentages of interesting instances for Split and Far Awat ge-
ographies, taking uncertainty into account is somewhat more important than
for the Even geography.

The value of the stochastic solution of the interesting instances of Variation
Sets 1 and 2 should also be examined. In Section 8.2 it is mentioned that
the value of the average stochastic solution for the interesting instances of
the Base Set is very small. This is examined in more detail in Section 8.7.
From Table 8.6 we see that µ̄V S1s = 396.7 hours and µ̄V S1d = 395.8 hours are
the average means of the completion time of the optimal stochastic solutions
and optimal deterministic solutions of the interesting instances of Variation
Set 1. The difference in the expected value of these two routes is 0.9 hours,
which is very little, considering that the routes last for around 16 days. This
is also true for Variation Set 2, as µ̄V S2s = 402.6 hours to µ̄V S2d = 401.9
hours, a difference of 0.7 hours during almost 17 days. The small increase in
expected completion time from the optimal deterministic route to the optimal
stochastic route is something one could accept as long as the gain in decreased
uncertainty makes up for it. But when looking at the decrease in standard
deviation from the average optimal stochastic to average optimal deterministic
routes, we see that this decrease is rather small for both Variation Set 1 and
Variation Set 2. These small differences in the distributions of the completion
times of the average optimal stochastic and deterministic routes, respectively,
suggest that the value of the stochastic solution is rather small. As for the
Base Set, uncertainty matters to some degree for Variation Sets 1 and 2, as
there are instances where the stochastic optimal route performs better than
the deterministic optimal route. But choosing the optimal stochastic route
over the optimal deterministic route does in reality not result in significant
improvements.

The reason for the relatively small differences between the values of Base Set,
Variation Set 1, and Variation Set 2 could be that the direct sailing times
between the terminals in Houston Ship Channel are short compared to the
sizes of the waiting times and the loading and cleaning times. Load and clean
times contribute to typically 60% to 80% of the total completion time of the
route. Thus, changing the geography does not give rise to large changes of
the problem network.
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Distance Between Anchorage and the Closest Terminal

In the case port, Houston Ship Channel, the anchorage is located at sea 22
nautical miles away from the closest terminal. In other ports, the anchorage
could be placed closer to shore. In Houston Ship Channel, there are in reality
layberths closer to the terminals that can be used. Hence, we are interested in
examining the impact that the distance between anchorage and the terminal
closest to anchorage has on our results. For the instances in the Base Set,
which uses realistic numbers from Houston Ship Channel, the direct sailing
time from anchorage to the terminal closest to anchorage is 5.12 hours. For
the 100 new instances generated the direct sailing time to the terminal closest
to anchorage is set to 1.00 hour, while everything else is held constant. 1.00
hour is chosen because it equals the average direct sailing distance between the
terminals in the Base Set. This means that for the new instances, the terminals
and and the anchorage are close to evenly distributed along a horizontal line.

Table 8.7 shows the aggregated results of the Base Set and the new set of test
instances with a shorter distance between anchorage and the closest terminal.
This new set of test instances is referred to as Variation Set 3. Recall that
the interesting instances are the instances where the optimal stochastic route
performs better than the optimal deterministic route for the chosen confidence
level of 95%. The table shows the sailing time between anchorage and the
terminal closest to anchorage (Sailing time to anchorage) used for the two
sets. includes the number of instances in each set, the average SD/Mean ratio
and the percentage of interesting instances. In addition, we have included the
average mean and average standard deviation of the completion time of both
the optimal stochastic solutions and the optimal deterministic solutions for
the interesting instances.

From Table 8.7 we see that the percentage of interesting instances for Variation
Set 3 is much higher than for the Base Set. For Variation Set 3, more than
half of the instances have a stochastic optimal solution, i.e. another route
than the optimal deterministic route is the best choice. This suggests that
uncertainty is more important when the distance to anchorage is closer to the
closest terminal.

When anchorage is closer while the expected waiting times at terminals re-
main unchanged, the ship ends up waiting at anchorage more often, and the
distribution of the sailing times of the arcs are on average more right skewed
than for the corresponding arcs in instances from the Base Set. For a skewed
distribution of the sailing time of an arc where the conditions are such that
a large portion of the sailing times are concentrated close to the mean, the
variance is typically smaller than when the mean of the distribution does not
coincide with the concentrated sailing time values. For a short anchorage
distance, the conditions typically cause the mean to coincide with the concen-
trated sailing time values. This happens more often for arcs in Variation set 3

96



8.4. Sensitivity Analysis

Table 8.7: Aggregated results from the set of test instances with a shorter distance
between anchorage and the terminal closest to anchorage.

The Base Set Variation Set 3

Sailing time to anchorage 5.12 hours 1.00 hours

Instances in the set 100 100

Percentage of interesting instances 18% 56%

Interesting instances

Average SD/Mean ratio 1.24 2.29

Average µ of stochastic optimal routes 387.2 hours 378.8 hours

Average σ of stochastic optimal routes 10.0 hours 8.5 hours

Average µ of deterministic solution 386.7 hours 378.5 hours

Average σ of deterministic solution 10.6 hours 8.8 hours

than in the Base Set, because anchorage distance in Variation Set 3 is shorter.
In other words, the Anchorage Effect is stronger and gives lower variance on
average for the optimal routes found for instances from Variation Set 3, as
seen from table 8.7.

The average SD/Mean ratio is higher for Variation Set 3 than for the Base Set.
A reason for this could be that when there exists routes with lower variances,
the possibility to improve from the deterministic solution increases. Ignoring
differences in waiting times distributions, the increased Anchorage Effect is
typically stronger for arcs directed away from anchorage, as the departure
terminal is closer to anchorage. This way, the increased Anchorage Effect
might give bigger differences between the variances associated with different
arcs, even if the overall variance is lower. The higher percentage of interesting
instances shows that taking uncertainty into account matters more often, while
the higher SD/Mean ratio indicates that taking uncertainty into account is
more valuable per interesting instance. However, the increase in SD/Mean
ratio is marginal compared to the increase in the percentage of interesting
instances.

If we take a closer look at how much better the stochastic solutions are on
average compared to the average optimal deterministic solutions, we see that
the differences in the distributions of the route completion times are very
small. The expected completion time increases with 0.3 hours on average when
choosing the stochastic optimal route instead of the average deterministic
optimal routes for Variation Set 3. The standard deviation decreases with
0.3 hours. This implies that even though the stochastic route is optimal for
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almost half of the instances, i.e. more frequently than for the Base Set, the
benefit from choosing this route instead of the optimal deterministic route is
usually very small.

8.4.2 Draft Limits

The draft limits at the terminals can affect the optimal solution of a test
instance as well as the run time of the model. When draft limits become
tighter, the problem is restricted, and the solution space decreases. As such,
the optimal route becomes the same or worse when draft limits become tighter.
For many instances, the ship will have to visit the terminals more often than
for less tight draft limits to be able to service all the cargo without violating
the draft limits. The problem becomes harder to solve, and the solution time
increases.

Recall from Chapter 7 that the draft limits of the test instance are expressed
as a percentage of ship capacity and are randomly drawn for each terminal
from a certain range, except for one or two terminals which get a draft limit
of 120% of total ship capacity to ensure that the ship is allowed to leave and
enter the port. For the Base Set, the draft limits are randomly drawn from the
range of 50%-90% of total ship capacity. For the new set, the draft limits are
randomly drawn from the range of 40%-80% of total ship capacity. Everything
else remains unchanged. The new set generated with tighter draft limits is
referred to as Variation Set 4.

Table 8.8 shows the aggregated results of the Base Set and of Variation Set 4.
Recall that the interesting instances are the test instances where the optimal
stochastic route performs better than the optimal deterministic route for the
chosen confidence level of 95%. The table includes the number of instances
in each set, the average SD/Mean ratio and the percentage of interesting in-
stances. In addition, we have included the average mean and average standard
deviation of the completion time of both the optimal stochastic solutions and
the optimal deterministic solutions for the interesting instances.

When tightening the draft limits, almost half of the instances have no feasible
solutions. In addition, the run time of the model increases drastically. From
taking 20 minutes for solving the 100 instances in the Base Set, the model takes
more than 2 hours for the 100 instances in Variation Set 4, where everything
is equal to the Base Set except for the draft limits. It is interesting to observe
that a small change in the draft limit range give rise to quite large changes in
the results.

The rate of interesting instances is only 9% for Variation Set 4 compared to
18% of the Base Set, suggesting that the importance of including uncertainty
is less when the draft limits are tighter. Again, we see that the difference
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Table 8.8: Aggregated results from the set of test instances with more binding
draft limits.

The Base Set Variation Set 4

Draft limit range: 50%-90% 40%-80%

Instances in the set 100 100

Interesting instances 18% 9%

Model run time 20 min 2.3 hours

Instances with no solution 0% 44%

Interesting instances

Average SD/Mean ratio 1.24 1.11

Average µ of optimal routes 387.2 hours 418.4 hours

Average σ of optimal routes 10.0 hours 11.6 hours

Average µ of deterministic solution 386.7 hours 417.6 hours

Average σ of deterministic solution 10.6 hours 12.4 hours

between the average characteristics of the stochastic optimal routes and the
deterministic optimal routes of the interesting instances of Variation Set 4 is
rather small. This implies that there is not too much to gain by solving the
route planning problem with a stochastic approach instead of a deterministic
approach even though the draft limits are tighter.

In addition, we find that, on average, the expected completion time of the
routes are higher. This is not surprising as the ship has to visit terminals
more often for each terminal to be able to service all the cargoes located at
the terminal.

8.4.3 Risk Profile of the Decision Maker

The risk profile of the decision maker, and hence the confidence level used
to determine what route is the optimal route, can affect the results. Less
risk averse decision makers will allow lower confidence levels when deciding
what route is the optimal one. A less risk averse decision maker typically
prefers routes with lower expected completion times at the expense of higher
variances. A set of instances where the optimal route is identified as the route
with the best threshold for the confidence level α = 0.6 is generated, and the
set is referred to as Variation Set 5.
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Table 8.8 shows the aggregated results of the Base Set and the new set of
test instances having a lower confidence level for choice of optimal route.
Recall that the interesting instances are the test instances where the optimal
stochastic route performs better than the optimal deterministic route for the
chosen confidence level. The table includes the number of instances in each
set, the average SD/Mean ratio and the percentage of interesting instances. In
addition, we have included the average mean and average standard deviation
of the completion time of both the optimal stochastic solutions and the optimal
deterministic solutions for the interesting instances.

Table 8.9: Aggregated results from the set of test instances where a lower confidence
level is require for routes to be optimal.

The Base Set Variation Set 5

Confidence level 95% 60%

Instances in the set 100 100

Interesting instances 18% 0%

Interesting instances

Average SD/Mean ratio 1.24 N/A

Average µ of optimal routes 387.2 hours N/A

Average σ of optimal routes 10.0 hours N/A

Average µ of deterministic solution 386.7 hours N/A

Average σ of deterministic solution 10.6 hours N/A

As reported in Table 8.9, none of the instances have a stochastic solution as
the optimal, i.e. the deterministic solution is always the preferred one. This
implies that less risk averse planners should not bother to use a stochastic
approach when solving the route planning problem.

8.5 Summary of Reasons to Different Variances

From Sections 8.3 and 8.4, it is apparent that there are many conditions and
relative sizes that must be taken into account when trying to understand the
behaviour of the uncertain sailing times, and the interaction of the conditions
is rather complex. From Section 8.3 we can learn that for the interesting in-
stances in the Base Set, the different variances associated with arcs is often
largely due to the differences between the distributions of waiting times at ter-
minals. But the difference between arc variances can sometimes be explained
by the Anchorage Effect and the Pile-Up Effect.
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The possibility of waiting at anchorage gives rise to a higher concentration of
realised sailing times stemming from waiting times where the ship waits at an-
chorage. This gives the Anchorage Effect, which contributes to right-skewed
distributions. When the Pile-Up effect is ignored or is marginal, stronger
Anchorage Effect gives less variance, as seen from the simulations in Section
6.2.4. The strength of the Anchorage Effect depends the distances between
terminals and anchorage, the distributions of the waiting times at the desti-
nation terminals and the means of the sailing time distributions relative to
the value of more frequent and concentrated realised sailing times. For arcs
directed towards anchorage, the possibility for the ship to sail directly to the
destination terminal gives high frequency of realised sailing times to equal the
direct sailing time, i.e. a high pile for values equal to the direct sailing time
for the distribution of sailing times. This is referred to as the Pile-Up Effect,
which gives left-skewed distributions. When the Anchorage Effect is ignored
or is marginal, a stronger Pile-Up effect contributes to decreased variance of
the distribution of the sailing times. However, when both effects are at play,
they interfere. When they interfere, the mean of the distribution of the sailing
time typically falls between the pile associated with the Pile-Up Effect and
the concentrated realised sailing times associated with the Anchorage Effect.
This might cause stronger Pile-Up Effect and the Anchorage Effect to increase
the variance of the distribution of arc sailing times when they interfere.

Regarding the Pile-Up Effect, the contribution to decrease in variance can be
two-sided. Ignoring interference with the Anchorage Effect, the strength of
the Pile-Up Effect depends on the mean of the waiting time at the destination
terminal relative to the direct sailing time between the terminals. The larger
the sailing time between the terminals relative to the mean of the waiting
time, the stronger the Pile-Up Effect, and the lower the arc variances, as
shown in Section 6.2.4. But, as explained in Chapter 7, the distribution of
the waiting times are modelled such that the standard deviation, and hence
the variance, increases as the mean increases. A lower expected waiting time
gives a stronger Pile-Up Effect, but a lower expected waiting time also gives a
lower variance regardless of the Pile Up Effect. When the direct sailing time
is increased rather than decreasing the mean of waiting time distribution, as
is done in Section 6.2.4, it is the Pile-Up Effect alone that gives the decrease
in variance. This means that the decrease in variance that we see when the
Pile-Up Effect is the only effect at play, is in general not necessarily only due
to the Pile-Up Effect, but can also be due to changes in the distribution of
the waiting time.

In general, we see that the difference in the behaviour of the stochastic sailing
times for different arcs is sometimes due to the possibility of sailing directly
to the next terminal and/or the possibility of waiting at anchorage and the
resulting Pile-Up Effect and Anchorage Effect, but more often the difference is
due to the differences in the distributions of the waiting times at terminals. By
choosing arcs with different variances, the variance associated with complete
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routes differ, naturally.

8.6 Evaluation of the Approximation

In this section, we evaluate the assumption that arcs and hence complete
routes follow unskewed normal distributions. As explained in Chapter 6 and in
the above sections, there are in reality several effects at play which cause arcs
to follow skewed and truncated distributions. To approximate the distribution
of the arc sailing times, we use the mean and variance of the skewed and
truncated distributions of the sailing times we get from simulation to construct
regular, unskewed normal distributions. These approximated, unskewed and
non-truncated normal distributions are used when solving our model. To
evaluate this approximation, we focus on Instance 46. Recall from Section 8.2
that Instance 46 is the instance with the highest SD/Mean ratio, meaning it is
the instance from the Base Set where taking uncertainty into account matters
the most.

To be able to evaluate the assumption of normally distributed arcs and routes
and the applied approximation, a simulation is done. For this simulation
we obtain a distribution of realised route completion times resulting from
randomly drawn waiting times. 10,000 sets of realised waiting times are drawn
at random from the distributions of waiting times at each terminal, and the
corresponding realised arc sailing times are calculated. In other words, we
get 10,000 sets of realised sailing times along each arc. The sailing times for
the arcs used by the optimal deterministic and optimal stochastic routes, and
the sum of the fixed loading and cleaning times, can then be summed to get
10,000 realised route completion times for these two routes. Note that unlike
simulations done in earlier chapters and sections, we now simulate the entire
route completion times, not just arcs. Recall from Section 8.3.1 that Route 1
is the optimal deterministic route for Instance 46, and Route 3 is the optimal
stochastic route.

For the optimal stochastic route, Route 3, of Instance 46, Figure 8.9 shows
the distribution of route completion times we get from the simulation. The
probability density function (PDF) of the normal distribution of completion
times based on the output from our model presented in Chapters 4 and 5 (i.e.
the (µ, σ2)-characteristics we get using Nikolova’s method) is illustrated by
the orange line (scaled up as the y-axis of a PDF graph never exceeds 1).

From Figure 8.9 we see that the realised route completion time sample set is
not far from normally distributed. However, one must keep in mind that this
is based on the assumption of underlying normally distributed waiting times.
The assumption of normally distributed waiting times is difficult to evaluate
given the limited access to real data for waiting times, and this assumption is
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Figure 8.9: Sample distribution and distribution outputted by our model for route
completion times for the optimal stochastic route, Route 3, for Instance 46. The
y-axis is occurrences and the x-axis is values in hours for route completion times.

not evaluated in this thesis. Table 8.10 summarizes some interesting charac-
teristics of the sample set and the characteristics outputted by our model for
Route 3 of Instance 46. The table shows that the distribution of the samples
is only slightly skewed. This indicates that the approximation we do when
ignoring skewness and assuming normally distributed route completion times
is not that far off.

Table 8.10: Characteristics of the sample set of realised route completion times and
characteristics outputted by the model for the optimal stochastic solution, Route 3,
for Instance 46.

The Sample Set Our Model

Mean, µ 373.58 hours 373.49 hours

Variance, σ2 11.412 10.252

Skewness -0.21 N/A

Table 8.10 also shows that the means of the distributions are approximately
the same. This is not surprising as the arc means are constructed by sampling
10,000 realised sailing times based on waiting times drawn from the same
distributions as used for this simulation. However, the variance is higher for
the sampled set of realised route completion times than what is suggested
by our model. Kenyon and Morton (2003) found that the more skewed the
underlying arc travel time distribution is, the higher the variance of the sum
(i.e. the variance of the complete route) became. This conforms with the fact
that our model, assuming non-skewed distributions, suggest a lower variance
than the true variance. Note that it is the sum of skewed distributions that has
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more variance than the sum of corresponding but unskewed distributions. The
underlying arc travel times that are summed in our model are not completely
normally distributed in reality, as we saw from Sections 6.2.4 and 6.2.3, while
the approximated distributions used by our optimization models are unskewed
normal distributions. This explains why our model suggests a lower variance
than the distribution found by simulation suggests.

Figure 8.10 shows the set of route completion times for the optimal determin-
istic route, Route 1. The sampled waiting times, and hence resulting sailing
times, are the same as for Figure 8.9. Table 8.11 summarizes some interesting
characteristics of the sample set of route completion times for Route 1 and the
distribution characteristics outputted by our model for Route 1 of Instance
46 (scaled up as the y-axis for a PDF graph never exceeds 1).

Figure 8.10: Sample distribution and distribution outputted by our model for
route completion times for the optimal deterministic route, Route 1, for Instance
46. The y-axis is occurrences and the x-axis is route completion time values.

Table 8.11: Characteristics of the sample set of realised route completion times
and characteristics outputted by the model for the optimal deterministic solution,
Route 1, for Instance 46.

The Sample Set Our Model

Mean, µ 373.37 hours 373.24 hours

Variance, σ2 12.262 10.932

Skewness -0.14 N/A

Table 8.11 also shows a mean of the sample set approximately equal to the
mean suggested by the model, but a higher variance. Not surprisingly, the
variance for the samples for Route 1 is higher than the variance of the samples
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for Route 3, and the mean is somewhat smaller. The SD/Mean ratio we get
based on the samples for the two routes is 4.05, compared to 2.74 based on the
model outputs. This might indicate that in reality, taking uncertainty into
account is more important than what the results from our model indicate. The
fact that our model suggests a lower variance than the real variance of the
distributions supports this argument. When there is more uncertainty related
to the problem than what is suggested by the model, the gain of accounting
for uncertainty might be higher than suggested by our results.

8.7 Practical Implications

In this section, the practical implications of the results found in the above
sections are discussed. To be able to assess the gain from accounting for un-
certainty and choosing the stochastic solution over the deterministic solution,
improvements in the threshold one must adhere to and in the achieved confi-
dence levels are analysed. These improvements say something about the value
of the stochastic solution.

As mentioned, Instance 46 is the instance of the Base Set with the highest
SD/Mean ratio, implying that it is the instance where one gains the most by
choosing the stochastic route over the deterministic route, as the increase in
mean is small compared to the decrease in standard deviation. The analysis
in Section 8.3.1 examines in details why the optimal stochastic route has a
lower variance than the optimal deterministic route for Instance 46. In this
section we look into how much the shipping company really gain by choosing
the optimal stochastic route over the optimal deterministic route.

Figure 8.3a shows that for a confidence level of 95% the optimal stochastic
route of Instance 46 is better than the optimal deterministic route, because it
can provide a lower threshold for the completion time. The optimal stochastic
route has a 95% probability of completing within 390.3 hours. The optimal
deterministic route, on the other hand, can with 95% probability complete
within 391.2 hours. This gives an improvement in the threshold of less than
one hour. As both routes take approximately 16 days to finish, a difference in
one hour is not much. It equals an improvement of 0.22% of the threshold.

For a confidence level of 99.9% the optimal stochastic route will complete
within a threshold of 405.2 hours while the optimal deterministic route will
complete within 407.0 hours. For this high confidence level the difference is
about two hours, implying an improvement of confidence level of 0.46%. As
the difference in completion time of the two routes increases with increasing
confidence levels, we can assume that the improvement of the threshold from
choosing the stochastic route over the deterministic route will be less than
0.5% for Instance 46. As Instance 46 is the instance where including uncer-
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tainty matters the most, we can conclude that for all the instances in the Base
Set, we gain less than 0.5% in improved threshold by choosing the stochastic
optimal route over the deterministic optimal route.

Recall the one-to-on correspondence between the threshold and the confidence
level for a given route with given mean and variance. In the above para-
graphs, the confidence level is fixed at some level (95%), and the threshold
one must adhere to for this given confidence level depend on the route charac-
teristics (i.e. mean and variance). If, on the other hand, the threshold is the
fixed, required parameter which the company must adhere to, we can calculate
the corresponding improvements of confidence level one gets by choosing the
stochastic solution over the deterministic solution. If the threshold the com-
pany must adhere to is 390 hours, the stochastic route will complete within
this threshold with 94.6% certainty. The deterministic route will complete
within this threshold of 390 hours with 93.7% certainty. This implies an in-
crease of confidence level by 0.9 percentage points. In real life an improvement
of the confidence level of 0.9 percentage points does not give significant gains.
For all practical purposes this can be considered as a negligible improvement.
One might argue that as the fixed loading and cleaning times constitute 60%-
80% of the sailing times the change as percentage of the remaining 20%-40%
is larger, and it is changes to these 20%-40% which are of interest. This means
that the value of using the stochastic solution over the deterministic can be
considered as larger. However, the cleaning and loading times are necessary
and an unavoidable part of the complete route, so it makes more sense to
compare the change to the complete routes and not just the stochastic part
of the routes.

In Chapter 1, a profitability indicator, the T/C result, is presented. The
measure is expressed as

T/C result =
freight income− voyage costs

voyage duration
.

From the above paragraphs when the optimal stochastic solution is chosen
over the deterministic solution, the threshold one must adhere to for a given
confidence level is slightly reduced, but the expected route completion time
this entails is slightly increased. The increase of route completion time is
done at gain of higher confidence levels for given thresholds. This means that
the denominator in the T/C result increases, which actually results in worse
T/C results. However, the gain in increased predictability might be advanta-
geous in business arrangements. If on-time arrival contributes to decrease in
lost income or lower costs, or if schedules can be made tighter and different
port-visits can be made more back-to-back, the nominator might improve.
This depends on the extent to which income or costs depend on predictabil-
ity. However, the increase of 0.9 percentage points does not suggest a high
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improvement of the nominator.

From the sensitivity analysis in Section 8.4 we see that the distance to anchor-
age is what influences the percentage of interesting instances the most. For
the set of instances with shorter anchorage distance the stochastic solution
performs better than the optimal deterministic solution for almost half of the
instances. Even so, the average SD/Mean ratio is 2.29, just a little higher
than the SD/Mean ratio of Instance 46 of 2.74, implying that even though
the optimal stochastic solution is the better, there is not too much to gain by
choosing it.

From Section 8.6, we saw that the variance of the distribution of route com-
pletion times outputted by our model is lower than the true variance. This
might indicated that taking uncertainty into account is more valuable than
what our results suggests. This is not necessarily the case, as this means that
both the optimal stochastic and deterministic solutions are subject to more
variance than our model says. The reduction in variance from choosing the
optimal stochastic solution over the optimal stochastic solution is not neces-
sarily better, but one might expect uncertainty to matter more often. In other
words, the percentage of interesting instances might be higher than suggested
by our model, but the SD/Mean ratio is not necessarily higher.
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Chapter 9

Computational Study:
Dynamic Version of the
Problem

The real-life problem faced by the case company is dynamic by nature; the
case company uses information about waiting times and travel times revealed
during route execution when deciding what terminal to tender to next. For
this reason, it is interesting to examine a dynamic version of the problem,
where the revealed information is incorporated in the planning process. In
this chapter, the results from solving the dynamic version of the problem are
presented. The same mathematical model as presented in Chapter 4 is solved
iteratively as new cargoes are serviced, and each iteration is referred to as a
stage. The input data used to solve the mathematical model changes slightly
between each stage, and the modifications are presented in Section 9.1. Two
different planning strategies used to solve the dynamic problem are tested,
and the results are presented in Section 9.2. Section 9.3 summarizes the value
of using a stochastic dynamic approach.

To solve the dynamic version of the problem, the method and mathematical
model used to solve the static version of the problem are used as a basis. In
each stage, Nikolova’s method is used to identify the optimal next node by
solving a reduced version of the problem. The problem is reduced based on
the chosen next node to be able to find the successive node, and so fourth.
The reduced problem solved in a given stage is referred to as a subproblem.
This way, the solution to the dynamic version of the problem is found by
simulation of the method used to solve the static version of the problem.

Two different planning strategies are used to identify the next node in each
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stage. One strategy is to define the optimal route as the route that maximizes
the probability of route completion within the given threshold from some given
current node. The mathematical model used when this planning strategy is
applied is exactly the same as presented in Chapter 4, but the input data
changes dynamically between each subproblem. This strategy is referred to
as the stochastic planning strategy. When the second strategy is used, the
optimal route is defined as the route that minimizes the expected completion
time, which corresponds to solving the deterministic problem. This strategy
is referred to as the deterministic planning strategy. For both strategies, the
next node is the subsequent node from the current node in the optimal route.
The routes that are identified from a given stage contain a subset of the initial
set of nodes, and all routes in that stage start in the current node and end
at anchorage. Nodes and cargoes are used interchangeably throughout this
section.

9.1 Modifications

The same mathematical formulation as presented in Chapter 4 is also used
to handle the dynamic version of the problem, but some modifications of
the input data between each stage is necessary. Let us, for this explanation,
denote two consecutive stages by stages s and s + 1, and the current nodes
in the two stages as nodes γs and γs+1, respectively. At stage 0, the current
node is anchorage. The set of nodes, N = {0, ..., n + 1}, from Chapter 4,
changes from one stage to another as the problem is reduced. Ns is the set of
nodes used when solving the subproblem for stage s. The sets of cargo nodes,
NC = {1, ..., n}, pickup nodes, N+ ⊂ NC , and delivery nodes, N− ⊂ NC ,
from Chapter 4 also change from one subproblem to another, and for this
explanation, we use an index to indicate what subproblem the sets apply to.
We let NC

s , N+
s and N−s be the sets of cargo nodes, pickup nodes and delivery

nodes used to solve the subproblem for stage s. The total delivery load from
Chapter 4, Q−, also changes between each stage. We let Q−0 be the initial total
load to be delivered during the entire route, and this is used for the problem
solved in stage 0. For the subproblem to be solved in stage 1, the load of the
first cargo is added to Q−0 . This way, Q−s is the accumulated load on board
the ship, including the load of the current node at stage s, and equals the load
when leaving the current node for stage s. Recall that the load belonging to
delivery cargoes has negative values, and Q−s may either increase or decrease
from one stage to the next.
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9.1.1 The Stochastic Planning Strategy

For the stochastic planning strategy, the route that maximizes the probability
of completing within the given threshold is regarded as optimal. When the
current stage is stage s, and the current node is γs, Nikolova’s method is used
to identify an optimal route. γs is the first node in the optimal route found
for stage s, and the subsequent node after γs is referred to as the next node
for stage s. The next node is denoted as γs+1, and γs+1 becomes the current
node for stage s + 1. Several modifications of the subproblem from stage s
are necessary to obtain the subproblem for stage s + 1; To get the set of
nodes used in the subproblem for stage s+ 1, node γs is removed from Ns. If
node γs+1 is a pickup node, it is removed from the set of pickup nodes from
the previous stage, N+

s , and from the set of delivery nodes from the previous
stage, N−s , if it is a delivery node. It is, naturally, also removed from the set of
cargo nodes, NC

s . The total delivery load, Q−s+1, becomes Q−s +Qγs+1
, where

Qγs+1
is the load of cargo γs+1. When the next node from stage s has been

identified, the realised waiting time is randomly drawn from the distribution
of the waiting times at the destination terminal for the corresponding arc,
(γs, γs+1). Equations (6.1) and (6.2) from Chapter 6 are used to calculate the
realised sailing time, and the fixed loading and cleaning times of node γs+1 are
added to the realised sailing time to get the realised travel time. Recall from
Chapter 4 that the stochastic travel time along arc (i, j) can be expressed as

t̃ij = s̃(w̃)ij + lj + cj ,

where s̃(w̃) is the stochastic sailing time, lj the fixed loading time of cargo
j and cj the cleaning time for cargo j. The realised travel time along arc
(i, j) can be denoted as tij . The realised travel time along (γs, γs+1) becomes
tγs,γs+1

. The threshold can be regarded as the remaining time until deadline.
From stage s to stage s + 1, the threshold decreases by tγs,γs+1 , and we get
Hs+1 = Hs − tγs,γs+1 . This way, the threshold from Chapter 4, H, used for
the stochastic approach, also changes from one stage to another.

When N = {0, ...., n + 1}, and the next node from stage n − 2, γn−1, is
identified, there is only one remaining cargo node to visit in addition to the
anchorage node, n + 1. In other words, we do not need to solve the reduced
problems for stages n − 1 and out, as the sequence of the remaining nodes
are given by the results from solving the problem in stage n − 2. To get the
completion time of the entire route, the realised travel times of the remaining
arcs must be found as described above.

For the tests, the applied initial threshold is the threshold that corresponds to
a confidence level of α = 0.95 for the optimal deterministic route. Recall that
the optimal deterministic route is found by solving a static version of the prob-
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lem as explained in Chapters 5 and 8. This relatively high threshold is used
due to the behaviour of the model when the time used during route execution
exceeds the threshold. If the threshold is passed at some given stage where all
cargoes have not been serviced yet, the optimal route for the remaining stages
will have higher variances than desired. When the threshold is passed, and
as the threshold is the time remaining until deadline, the threshold becomes
negative. As shown in Chapter 4, the objective function of the mathematical
model is

max α = P (T ≤ H) = Φ(
H − µ
σ

), T ∼ N (µ, σ2)

where H is the threshold, T the route completion time, µ the expected route
completion time, σ the standard deviation, Φ(z) the cumulative distribution
function (CDF) of the standard normal distribution and z = H−µ

σ in ac-
cordance with statistics theory. For H < 0, α increases with increasing σ,
implying that routes with higher variances can be favoured. For this reason,
we wish to use a high threshold when solving the dynamic problem with the
stochastic solution method.

9.1.2 The Deterministic Planning Strategy

For the deterministic planning strategy, the optimal route is defined as the
route that minimizes the expected completion time. For the deterministic
problem, the travel time of each arc takes the value of the expected completion
time of the arc. The expected completion times do not change as information
is revealed, and the optimal deterministic route of the dynamic problem is
expected to be the same for all simulations. The route will always equal the
optimal deterministic route found by solving the static version of the problem.
Nevertheless, the realised travel times vary from simulation to simulation.

This planning strategy is also tested to be able to compare the results with
the results from the stochastic approach. The modifications done for the
stochastic planning strategy also apply to the deterministic planning strategy.
The mathematical model of the subproblem to solve at a given stage is very
similar to the one described for the static dynamic problem, but with some
minor differences. The objective function minimizes the expected completion
time, so the threshold is not included. The variance constraint is not necessary.

As for the stochastic planning strategy, when the next node from stage s has
been identified, the realised waiting time is randomly drawn from the distri-
bution of the waiting times at the destination terminal for the corresponding
arc, (γs, γs+1). Equations (6.1) and (6.2) from Chapter 6 are used to calculate
the realised sailing time, and the fixed loading and cleaning times of node γs+1
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are added to the realised realised sailing time to get the realised travel time.

As the route we get when solving the dynamic problem with the determinis-
tic planning strategy always equals the optimal deterministic route found by
solving the static version of the problem, we could have found the distribu-
tion by a simpler simulation. For the simpler simulation, the realised waiting
times are drawn from the distribution of the waiting times at the destination
terminal, and the realised sailing time is then calculated according to Equa-
tions (6.1) and (6.2). Lastly, the fixed cleaning and loading times for each
arc in the given route are added. If this is done 500 times, a distribution of
500 route completion times is obtained, and it is not really necessary to solve
the dynamic model. In other words, solving the dynamic problem with the
deterministic planning strategy corresponds to doing a simulation similar to
what is done in Section 8.6. Solving the dynamic problem 500 times is much
more time consuming than to find the distribution by the simpler simulation.
But, to verify that the route always equals the optimal deterministic route
when solving the dynamic problem with the deterministic solution method,
the dynamic problem is solved using the deterministic planning strategy.

9.2 Results

Figures 9.1-9.3 show the distribution of realised route completion times for
three different instances where both planning strategies have been applied to
solve the dynamic problem. Each distribution is found by simulating the given
instance with one of the planning strategies 500 times. In other words, the
dynamic problem is solved 500 times for each instance for a given planning
strategy. This is done once for the stochastic planning strategy and once
for the deterministic planning strategy for each instance, resulting in two
distributions for each instance.

Three different instances are presented in this section. The chosen instances
are Instance 46 from the Base Set, Instance 26 from Variation Set 2 with Split
geography and Instance 5 from the Base Set. Recall from Chapter 8 that
the instances in the Base Set have an Even geography, while the instances in
Variation Set 2 have a Split geography. The geographies are further explained
in Chapter 7. Instance 46 is included in the testing because it is the instance
from the Base Set with the highest SD/Mean ratio. Correspondingly, Instance
26 is the instance from Variation Set 2 with the highest SD/Mean ratio out
of the instances in this set. Instance 5 from the Base Set is tested because we
wish to examine the results from solving the dynamic problem for an instance
where the static problem version suggests that the deterministic solution is
always optimal. In other words, Instance 5 is randomly chosen from the non-
interesting instances from the Base Set.
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9.2.1 Instance 46 from the Base Set

(a) Deterministic planning strategy. (b) Stochastic planning strategy.

Deterministic Stochastic

Mean, µ 373.09 hours 373.11 hours
Variance, σ2 10.982 = 120.64 9.792 = 95.93
Initial threshold N/A 391.22
Number of simulations 500 500

(c) Information about the two distributions.

Figure 9.1: Distribution of route completion times for the dynamic problem with
deterministic and stochastic planning strategies for Instance 46 from the Base Set

Subfigures 9.1a and 9.1b in Figure 9.1 show the distributions of the route
completion times we get when solving the dynamic problem with both the
deterministic and the stochastic planning strategy for Instance 46 from the
Base Set. Table 9.1c summarizes some characteristics and information about
the distributions.

Figure 9.1a shows the distribution of the realised route completion times found
using the deterministic planning strategy. As the route is the same for each
simulation when using the deterministic planning strategy, the variation in
route completion times is due to the realised waiting times being randomly
drawn.

Figure 9.1b shows the distribution of route completion times using the stochas-
tic planning strategy. For this planning strategy, different routes may be used
in different simulations. In addition, as for the deterministic planning strat-
egy, waiting times are randomly drawn from the corresponding distributions,
which gives variation in sailing times along each arc from one simulation to
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another. In other words, the variation of route completion times are both due
to different routes being used and different waiting times being drawn.

Figure 9.1 shows that the distribution of route completion times we get from
solving the dynamic problem with the deterministic planning strategy has a
mean of 373.09 hours and a standard deviation of 10.98 hours. The stochas-
tic planning strategy gives a mean of 373.11 hours with a variance of 95.93
hours. From Section 8.3, we know that our model suggests an expected route
completion time of 373.24 hours with a standard deviation of 9.79 hours for
the optimal deterministic route, Route 1, for Instance 46. The expected route
completion time of the optimal stochastic route, Route 3, outputted by our
model for the static version of the problem is 373.49 hours with a standard
deviation of 10.25 hours for the same instance. We see that the means of
both distributions are almost the same as outputted by the model, and the
distribution we get from using the stochastic planning strategy has a slightly
higher mean than the distribution we get from using the deterministic plan-
ning strategy, but the difference is minor. The stochastic planning strategy
gives a lower variance. Note however, that the standard deviations only differ
by slightly more than an hour, and when the means are approximately 373
hours, the difference in the standard deviation is not very high. The results
from solving the static version of the problem also suggest that the stochastic
solution has a slightly higher mean and a somewhat lower variance than the
deterministic solution.

The results from solving the dynamic problem for Instance 46, shown in Fig-
ure 9.1, correspond with the results from solving the static version of the
problem. They suggest that the preferred route depends on the risk profile
of the decision maker, but that the deterministic solution, for most practical
purposes, performs good enough.

9.2.2 Instance 26 from Variation Set 2 with Split Geog-
raphy

Subfigures 9.2a and 9.2b in Figure 9.2 show the distributions of route com-
pletion times we get when solving the dynamic problem with both the de-
terministic and stochastic planning strategy for Instance 26 from Variation
Set 2 with Split geography. Table 9.2c summarizes some characteristics and
information about the distributions.

As for Instance 46, the stochastic planning strategy gives a distribution with
a slightly higher mean and a lower variance than the distribution found using
the deterministic planning strategy. The difference in the standard deviation
is minor. The results from solving the static version of Instance 26 in Variation
Set 2 suggest that the optimal deterministic route has a mean of 429.97 hours
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(a) Deterministic planning strategy (b) Stochastic planning strategy

Deterministic Stochastic

Mean, µ 430.24 hours 430.31 hours
Variance, σ2 12.452 = 155.06 12.352 = 152.50
Initial threshold N/A 450.82
Number of simulations 500 500

(c) Information about the two distributions.

Figure 9.2: Distribution of route completion times for the dynamic problem with
deterministic and stochastic planning strategies for Instance 26 from Variation Set
2.

and a standard deviation of 12.68 hours, which is not far from the results from
solving the dynamic problem with the deterministic planning strategy, shown
in Subfigure 9.2a. The optimal stochastic route found by solving the static
problem has a mean of 430 hours and a standard deviation of 12.17 hours. The
results from solving the dynamic model with the stochastic planning strategy,
shown in Subfigure 9.2b, also correspond well with the results from solving the
static problem. The results from both versions of the problem suggest that
the optimal stochastic route has a slightly higher mean and lower variance
than the deterministic solution. What planning strategy to use depends on
the risk profile of the decision maker, bur for most practical purposes, the
deterministic solution performs good enough.

9.2.3 Instance 5 from the Base Set

Subfigures 9.3a and 9.3b in Figure 9.3 show the distributions of the route
completion times we get when solving the dynamic problem with both the
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(a) Deterministic planning strategy (b) Stochastic planning strategy

Deterministic Stochastic

Mean, µ 381.53 hours 381.55 hours
Variance, σ2 10.402 = 108.11 10.692 = 114.37
Initial threshold N/A 399.53
Number of simulations 500 500

(c) Information about the two distributions.

Figure 9.3: Distribution of route completion times for the dynamic problem with
deterministic and stochastic planning strategies for Instance 5 from the Base Set.
This instance is not among the interesting instances, meaning the results from solving
the static equivalent suggests the deterministic solution is optimal.

deterministic and stochastic planning strategy for Instance 5 from the Base
Set. Table 9.3c summarizes some characteristics and information about the
distributions.

Recall that Instance 5 is one of the non-interesting instances from the Base Set,
meaning that the deterministic solution is optimal based on the results from
solving the static version of the problem. The results from solving the static
version of the problem show that the optimal deterministic route has a mean
of 382.26 hours and a standard deviation of 11.36 hours. The mean outputted
by the model from solving the static problem corresponds well with the mean
of the distributions in Figure 9.3, and the difference in the standard deviations
are minor. Table 9.3c shows that using the stochastic planning strategy gives
a slightly higher variance of the distribution than when using the deterministic
planning strategy. This is opposite of what we see for Instance 46 and Instance
26 from Variation Set 2. But, as results from solving the static version of the
problem shows that the deterministic solution is also optimal when using a
stochastic approach, this is not surprising. Again, we see that the results from
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solving the static version of the problem correspond well with the results from
solving the dynamic version of the problem.

9.3 Practical Implications

The results from solving the dynamic version of the problem correspond well
with the results presented in Chapter 8, which are obtained by solving the
static version of the problem. For instances where the optimal solution of the
static stochastic problem differs from the optimal deterministic solution (i.e.
the interesting instances), the results show that using the stochastic planning
strategy when solving the dynamic problem gives a slightly higher mean, but
lower threshold than when using the deterministic planning strategy. However,
the differences are minor. What solution approach is preferred depends on
the risk profile of the decision maker, but our results suggest that, for most
practical purposes, the deterministic solution performs good enough. The
optimal deterministic route for the static version of the problem equals the
optimal route we obtain when solving the dynamic version of the problem
with the deterministic planing strategy. Identifying the optimal deterministic
route using the static version of the problem only takes a few seconds, so does
the simple simulation of 500 route completion times for a given deterministic
route. Solving the dynamic problem with the stochastic planning strategy 500
times took 11.2 hours for Instance 46 from the Base Set, 7.9 hours for Instance
26 from Variation Set 2 with Split geography, and 7.6 hours for Instance 5 from
the Base Set. This suggests that the gain from using a stochastic approach
does not justify the long solution time.

118



Chapter 10

Concluding Remarks

This thesis addresses the in-port routing of a chemical tanker. We consider
a single ship which has to pick up and deliver a given number of cargoes
located at different terminals while complying with capacity and draft limit
constraints. The problem to be solved is deciding the sequence for servicing
cargoes. The time it takes before terminals are ready to accommodate the
ship is uncertain, and the waiting times at the port’s terminals are hence
stochastic. When the waiting times at terminals are stochastic, the travel
times between terminals also become stochastic. This makes the problem a
pickup and delivery problem subject to constraining draft limits and stochas-
tic travel times (PDP-DLST). To our knowledge, this problem has not been
explicitly studied before. The aim is to investigate the possible benefits of in-
cluding uncertainty in the in-port route-planning problem, and to understand
the behaviour of the stochastic variables.

As the case port is particularly long and narrow, the movement of the ship
can be considered as movement along a straight line. This means that when
the ship sails between terminals, it either sails towards anchorage or away
from it. When the ship is finished servicing cargoes in a terminal, it is not
allowed to wait by the terminal, and must sail towards anchorage until the
next terminal is ready to accommodate it. This may either involve that the
ship turns around on the spot before reaching anchorage, or that the ship
waits at anchorage for some amount of time.

Both a static and dynamic version of the problem are solved, and a mathe-
matical model is developed to find the route that maximizes the probability
of route completion within a given threshold. Travel times between terminals
depend directly on the waiting time at the destination terminal, arc direction
relative to anchorage and distances between the terminals and to anchorage.
Waiting times are assumed normally distributed, but are truncated at zero
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as negative values for waiting times is not realistic. The distributions of the
stochastic travel times are approximated by normal distributions to be able
to solve the optimization problem. The chosen solution method identifies a
set of possibly optimal routes which have to be further analysed to be able to
identify the optimal route for a given threshold. What level of required con-
fidence level is used to identify the optimal route depends on the risk profile
of the decision maker. We assume a relatively risk averse decision maker.

10.1 Summary and Conclusion

In this section, we summarize the key findings from the results presented in
Chapters 8 and 9, and conclude on the importance of accounting for uncer-
tainty when solving the problem presented in Chapter 2. The results for the
static version of the problem are found by solving sets of 100 test instances
with 20 cargoes and six terminals. The behaviour of the uncertain variables
has been examined, and reasons to why routes have different variances are
identified. For the dynamic version of the problem, a few chosen test instances
are used to examine the possible gains from accounting for uncertainty in the
dynamic planning process.

The possibility of sailing directly to the destination terminal for arcs directed
towards anchorage, and the possibility for the ship to wait at anchorage gives
special distributions of the arc travel times. The special distributions give rise
to different effects on arcs’ variances, depending on the unique combination
of arc direction, distribution of the waiting time at the destination termi-
nal, distances between the terminals and the distance from anchorage to the
terminal closest to anchorage. Differences between variances associated with
different arcs sometimes stem from these effects, but are more often due to
different distributions of the stochastic waiting times at the destination ter-
minals. The approximation used to model the distribution of the stochastic
travel times is evaluated in Section 8.6, and our results show that the distri-
bution of route completion times resemble normal distributions when waiting
times are normally distributed.

The computational study shows that including uncertainty in the planning
problem results in a different solution than the optimal deterministic solution
for 18% of the tested instances. This is based on a required confidence level of
α = 95% for a route to be regarded as optimal, which represents a relatively
risk averse decision maker. For a required confidence level of 60%, i.e. for less
risk averse decision makers, the deterministic solution is always optimal.

The sensitivity analysis shows that when specific port characteristics are
changed, taking uncertainty into account becomes more important. Decreas-
ing the distance to anchorage especially increases the percentage of instances
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where the optimal stochastic solution performs better than the optimal de-
terministic solution, meaning taking uncertainty into account matters more
often. Changing the draft limits also affects the results. The sensitivity anal-
ysis shows that only a slight change of the draft limits affects the results to a
rather large extent. Almost 50% of the instances from the Base Set become
infeasible when the range of the draft limits is changed from 50%-90% of total
ship capacity to 40%-80% of total ship capacity. The same change causes the
solution time (for solving a set of 100 instances with 20 cargoes) to increase
from 20 minutes to more than two hours.

For the applied confidence level, the optimal route is the route which, for this
confidence level, has the lowest corresponding threshold. For instances where
the optimal stochastic route differs from the optimal deterministic route, our
results suggest that the improvement of the threshold is less than 0.5% when
choosing the optimal stochastic solution over the optimal deterministic so-
lution. This does not represent a significant gain from using a stochastic
approach instead of a deterministic approach. But, even if using a stochastic
approach does not result in significant economical benefits for the shipping
company in Houston Ship Channel, the stochastic model provides informa-
tion about the risk levels associated with the different route options. From a
business perspective, this information can be valuable input in risk manage-
ment. It also allows decision makers to better plan for uncertainty, and lets
them know what level of risk they are operating at.

From Sections 8.6 and 8.7, we see that the variance associated with the dis-
tribution of the route completion times is in reality larger than suggested by
our model. This difference in variance is due to the applied approximation of
the distribution of the stochastic sailing times. This suggests that, in reality,
there is more variance associated with the problem studied than what is sug-
gested by our model. As such, it could be that the value of accounting for
uncertainty when solving the studied problem is higher than what our results
suggest. As the variance for both the optimal stochastic and deterministic
solutions are higher in reality, one might expect uncertainty to matter more
often, but not necessarily to a greater extent per instance.

The results from solving the dynamic version of the problem correspond well
with the results from solving the static version of the problem. Our results
suggest that the gains from using a stochastic approach do not justify the
high solution times. Theoretically, a very risk a version decision maker might
prefer using a stochastic approach, but for all practical purposes, the results
from solving both the static and the dynamic problem indicate that the de-
terministic solution performs good enough.
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10.2 Future Research

Several possible improvements of the model and solution approach have been
identified. In this section, suggestions for future research are presented. The
first thing to notice is that many simplifications of reality are made, and
extensions of the model can be done to represent the reality more accurately.
Such extensions can be to include soft time windows for customer servicing and
to include tank allocation on the ship. The choice of which cargoes to service,
i.e. including spot cargoes, will also extend the models to represent reality
more accurately. In reality, the ship is allowed to send NORs to more than
one terminal at the time, and out of the terminals that have been tendered
to, the ship must sail to the first available terminal. This entails a strategic
element, and tendering strategies could also have been included to model the
problem more realistically.

The distributions of the stochastic waiting times at terminals are modelled as
normal distributions. The means are drawn at random from the range from
0 to 10 hours, and the standard deviation is set to 50% of the corresponding
mean. Even if the range from 0 to 10 hours is based on a set of real data, the
distribution of the waiting times can be made more realistic. This might in-
volve larger sets of historical data and forecasting. The approximation of the
distributions of the sailing times can also be improved or handled differently
in the model. One suggestion is to better manage the skewness of the distri-
butions, and to include this characteristic when summing the distributions of
arc travel times to obtain the accumulated distribution of the complete route.

From the computational study, we see that the differences between waiting
time distributions is often the source to different variances of arc travel times.
We suggest modelling the problem with equal distributions of the waiting
times at terminals, just to better extract information about other sources to
different variances of arc travel times.

Future work may also focus more on technical analysis and improvement. For
this thesis, the focus has not been on technical performance of the models,
but rather on practical implications. With technical improvements, the models
may be able to solve larger instances.

More sophistical analysis of economical and environmental effects of modelling
with, and planning for, uncertainty also remains for future work. By including
demurrage costs, port charges, commissions, fees and other voyage related
costs, the economical implications can be analyzed and used to better support
decision making.
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Appendix A

Model Formulation

Sets and Indices

N set of nodes, indexed by i and j
NC set of all cargoes, indexed by i and j
N+ set of pickup nodes, indexed by i and j
N− set of delivery nodes, indexed by i and j
A set of feasible arcs (i, j) between nodes i and j

Parameters

Q+ the total load that is going to be picked up
Q− the total load that is going to be delivered
Qi load in node i
K total capacity of the ship in tonnes
Di draft limit, in tonnes, of the terminal associated with cargo i
H threshold for the completion time of the route
µij expected value of the travel time of arc (i, j)
σ2
ij variance of the travel time of arc (i, j)

Variables

xij = 1 if the ship sails directly from node i to j, 0 otherwise
yij load on board the ship on arc (i, j)
µ expected value of the route completion time
σ2 variance of the route completion time
T route completion time
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Appendix A. Model Formulation

Objective function

maximize α = P (T ≤ H) = Φ(
H − µ
σ

), T ∼ N (µ, σ2)

Flow Constraints

∑
j∈N

x0j = 1

∑
j∈N |(i,j)∈A

xij = 1, i ∈ NC

∑
i∈N |(i,j)∈A

xij = 1, j ∈ NC

∑
i∈N

xi,n+1 = 1

Cargo Constraints

∑
j∈NC

y0j = Q−

∑
(i,j)∈A

yij −
∑

(j,i)∈A

yji = −Qj , j ∈ NC

Capacity Constraints

0 ≤ y0j ≤ Q−x0j , (0, j) ∈ A | j ∈ N \ {0}
0 ≤ yi,n+1 ≤ Q+xi,n+1, (i, n+ 1) ∈ A | i ∈ N \ {n+ 1}

Qixij ≤ yij ≤ (K −Qj)xij , (i, j) ∈ A | i, j ∈ N+

(Qi −Qj)xij ≤ yij ≤ Kxij , (i, j) ∈ A | i ∈ N+, j ∈ N−

−Qjxij ≤ yij ≤ (K +Qi)xij , (i, j) ∈ A | i, j ∈ N−

0 ≤ yij ≤ (K −Qj)xij , (i, j) ∈ A | i ∈ N−, j ∈ N+
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Draft Limit Constraints

0 ≤ yij ≤ Djxij , (i, j) ∈ A | j ∈ N−

0 ≤ yij ≤ Dixij , (i, j) ∈ A | i ∈ N+

Time Constraint

µ =
∑

(i,j)∈A

µijxij

Variance Constraint

∑
(i,j)∈A

σ2
ijxij = σ2

Integer Constraint

xij ∈ {0, 1}, (i, j) ∈ A

Subtour Eliminating Constraints

xij + xji ≤ 1, (i, j) ∈ A
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