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P R O B L E M D E S C R I P T I O N

The purpose of this thesis is to study jack-up vessel chartering for maintenance op-
erations on offshore wind farms. A tactical problem with a finite planning period is
formulated using mathematical programming methods. Different solution methods
for the models are evaluated and technical and economic analyses are conducted.
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A B S T R A C T

Offshore wind energy is an industry in rapid growth. However, it is still outperformed
by conventional sources of energy in terms of costs. One way to cut costs is to make
operations and maintenance (O&M) more efficient; O&M costs can constitute up to
one third of overall lifetime costs for an offshore wind farm. Jack-up vessel charter-
ing represents a significant part of these costs. This creates a demand for effective
chartering strategies for the jack-up vessel.

Two stochastic models considering uncertainties in weather and turbine component
failure occurrences are presented in this thesis. The models suggest chartering sched-
ules for the jack-up vessel based on electricity prices, charter rates, mobilization costs
and failure and weather scenarios. The schedules contain information about when and
for how long the vessel should be chartered.

Due to the complexity of the studied problem, exact methods were insufficient and
the Sample Average Approximation (SAA) method and heuristics are proposed. The
SAA method solves a number of smaller problems in order to provide optimistic and
pessimistic bounds for the optimal objective value of the true problem. The idea be-
hind the heuristics is to create sequences of maintenance operations using a greedy
approach. The most successful heuristic also has a random component.

When solving the jack-up chartering strategy problem, the combination of the SAA
method and a greedy, randomized heuristic proved to be successful. The SAA method
helped reduce computational complexity, and in combination with the heuristic, pro-
vided tight bounds for the optimal objective value.

It was found that for wind farm sizes ranging from 50 to 100 turbines, the costs of
chartering the jack-up vessel dominate turbine downtime costs. This points towards
an imbalance in the jack-up vessel charter market where demand is higher than supply,
driving prices up. Analyses show that charter prices are at a level such that buying a
vessel should be considered when wind farm size exceeds about 71 turbines.

Solving the stochastic jack-up vessel chartering strategy problem can provide useful
insights for offshore wind farm operators and jack-up vessel owners. This is illustrated
by analyses of whether chartering of buying a vessel is most economically sensible for
different wind farm sizes. Moreover, the models can provide information about the
value of having a more weather robust vessel.
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S A M M E N D R A G

Offshore vindenergi er en bransje i sterk vekst, men kostnadsmessig ligger den langt
bak konvensjonelle energikilder. En måte å kutte kostnader på, er å effektivisere drift
og vedlikehold da disse kostnadene kan utgjøre opptil én tredel av totale levetidskost-
nader for en offshore vindpark. Innleie av jack-up fartøy utgjør en betydelig andel
av vedlikeholdskostnadene, derfor er det behov for effektive innleiingsstrategier for
denne fartøytypen.

Denne studien presenterer to stokastiske modeller som tar hensyn til usikkerhet i
værforhold og feilhendelser på turbinkomponenter. Modellene foreslår innleieplaner
for jack-up fartøy basert på elektrisitetspriser, innleiepriser, mobiliseringskostnader og
feil- og værscenarier. Innleieplanene inneholder informasjon om når og hvor lenge
fartøyet bør leies inn.

Det studerte problemet er svært komplekst og kan derfor ikke løses med eksakte
metoder innen rimelig tid. Heuristikker og Sample Average Approximation-metoden
(SAA) introduseres for å løse problemer av realistisk størrelse. SAA-metoden løser et
antall mindre problemer og gir optimistiske og pessimistike grenser for den optimale
objektivverdien til det faktiske problemet. Grunnideen bak heuristikkene er å lage
sekvenser av fartøyets vedlikeholdsoppgaver ved hjelp av en grådig tilnærming. Den
beste heuristikken hadde en tilfeldig komponent i tillegg.

Testing viser at SAA kombinert med den beste heuristikken gir en god løsningsmetode
for det studerte problemet. SAA-metoden reduserte kompleksiteten til problemet og
ga, sammen med heuristikken, stramme løsningsgrenser.

For vindparker med 50 til 100 turbiner, ble det konstatert at innleiekostnaden var
mange ganger større enn nedetidskostnaden for de ødelagte turbinene. Dette tyder
på en ubalanse i markedet for jack-up fartøy der etterspørselen er mye høyere enn
tilbudet, som driver prisene i været. Analyser viser at innleieprisene er på et slikt
nivå at kjøp av et eget fartøy kan være økonomisk lønnsomt når vindparkstørrelsen
overstiger omtrent 71 turbiner.

Å løse det stokastiske innleiestrategiproblemet for jack-up fartøy til offshore vind-
parker kan gi verdifull innsikt for vinparkoperatører. Dette illustreres gjennom anal-
yser av hvorvidt innkjøp eller innleie lønner seg for forskjellige vindparkstørrelser og
verdien av et værmessig mer robust fartøy.
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1

I N T R O D U C T I O N

As the demand for electricity and green energy is increasing worldwide, offshore wind
is an industry in rapid growth [74]. Between 2000 and 2012, world electricity consump-
tion increased by about 48% [79]. Projections for the future show continued consump-
tion growth. Currently, fossil fuels constitute the largest share of generation; about
67% of electricity generated worldwide hailed from fossil fuels in 2013 [4]. The num-
bers are approximately the same for Europe [2]. The EU goals for 2020 state that 20%
of the energy consumption in EU countries should come from renewables [21], and
this will further increase the focus on green energy.

Generation of renewable energy, and wind in particular, has experienced solid growth
the last few years. In 2015, 419 new offshore wind turbines were installed in Europe
and six new projects were under construction. Total grid-connected capacity at year
end was about 11.0 GW. When completed, the six projects expand the capacity by 1.9
GW, thus reaching 12.9 GW, which gives an increase of 17% [73]. Figure 1 depicts
cumulative and annual offshore wind power installation in Europe.

There are several reasons for wind turbines to be installed offshore rather than onshore,
the most important being space. Offshore installation allows for wind farms with
larger and more turbines being located where wind conditions are more stable, thus
increasing production. Furthermore, noise and visual effects are minimized. However,
currently, offshore wind is not financially competitive with lifetime levelized costs
being 59% higher than onshore wind and about 127% higher than fossil fuels [78]. On
the other hand, the load factor of an offshore wind turbine is higher than that of an
onshore turbine and roughly the same as large scale hydropower [62]. Here, the load
factor means the actual output as a percentage of theoretical output. This indicates
reducing costs of offshore wind sufficiently can make it financially viable.

The elevated costs of offshore wind energy are caused by significant installation as
well as operations and maintenance, hereinafter denoted O&M, costs. Currently, O&M
costs constitute about one-third of lifetime costs [55]. This includes spare parts, trans-
portation, technician salaries and costs of repair action as well as forfeit revenue due
to turbines not producing. Rough weather does not only increase the failure rate, but
also decreases accessibility. The harsher offshore conditions play a large part, with the
availability of turbines plunging to 60-70% compared to 95-99% onshore [68]. With
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introduction

Figure 1: Cumulative and annual offshore wind capacity installations in Europe [74]

the turbines situated far offshore, the opportunities for conducting maintenance are
limited and expensive as extended periods of favorable weather are required. When
conditions become worse in winter time, downtime for turbines can be extensive.

One way to make offshore wind more financially competitive, is to reduce O&M costs.
Vessel chartering constitutes around 70% of lifetime O&M costs [12] and decision sup-
porting tools for this problem are limited. Thus, in order to lower costs of energy, there
is a need for better vessel chartering strategies. The charter rate of a jack-up vessel vary
between £45,000 and £287,000 (585,000 - 3,371,000 NOK) per day [12], while access ves-
sels used for crew transfer, is about one fifth or one fourth of that [13]. Because of the
high charter rate, efficient use is required.

This study is based upon the work by Kirkeby and Mikkelsen [39] who modelled the
Jack-Up Vessel Chartering Strategy Problem. Much of the material presented in this
thesis can also be found in their project thesis. Models presented in their thesis are
further developed and solution methods for the problem are studied. The models
presented in this study are stochastic and aim to suggest when to charter a jack-up
vessel in order to minimize downtime costs and chartering costs and, by extension,
O&M costs for an offshore wind farm. The models consider charter decisions for one
wind farm only. As large stochastic problems are difficult to solve exactly, heuristics
and the Sample Average Approximation method are introduced to facilitate solving
the problem.

The organization of the thesis is as follows: background information needed to prop-
erly understand the studied problem is presented in chapter 2. Following is a review

2



introduction

of offshore wind O&M optimization and vessel chartering strategy literature, and a re-
view of literature related to the solution methods used. Chapter 4 contains a thorough
description of the problem studied in this thesis and chapter 5 presents the basic math-
ematical model in developed. Following, in chapter 6 is an alternative formulation of
the mathematical model and a model considering multiple vessel types is presented
in chapter 7. Chapters 8, 9, and 10 describe solution methods, the implementation of
presented models and a scenario generator, and a computational study, respectively.
Chapter 11 provides concluding remarks and chapter 12 presents suggestions for fu-
ture research relevant to this thesis.
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2

B A C K G R O U N D

This chapter outlines background information on offshore wind required to under-
stand the problem studied. A presentation of the current offshore wind market status
and projected development is given in section 2.1. Section 2.2 describes different types
of jack-up vessels, including functionalities and applications as well as charter market
characteristics. In section 2.3, an elaboration on maintenance strategies and failure
rates on offshore wind turbines is given. Section 2.4 presents aspects related to down-
time costs of turbines and section 2.5 presents some background on different subsidy
schemes.

2.1 offshore wind market

Current offshore wind capacity is about 11 GW in Europe, producing 40.6 TWh in a
normal wind year, enough to cover 1.5% of EU’s total electricity consumption. The
most significant contributors are the UK, Germany, and Denmark with 45.9%, 29.9%
and 11.5% of installed capacity, respectively [74]. Figure 2 shows a map of current and
planned offshore wind turbine capacity in Northern Europe.

It is expected that European offshore wind turbine capacity in 2020 will be about
23.5 GW. The growth is anticipated mainly in the UK, France, and the Netherlands.
However, to achieve the projected growth, costs for the generated electricity must be
reduced. EY reckon the levelized costs of energy to be competitive by 2023 at about
826 NOK/MWh. The introduction of turbines with higher capacity is expected to be
the main driver of lowered costs along with increased effects of economies of scale,
fiercer competition and optimization of supply chain and logistics [52].

For the future, projections suggest that offshore wind farms will be larger, move fur-
ther from shore and be situated at greater water depths. Today, the average wind farm
has a 337.9 MW capacity and is located 43.3 km from the shore at 27.1 m water depth.
From Figure 3, it is apparent that the coming wind farms, marked by red and green
dots, will increase both average water depth and distance from shore.
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2.1 offshore wind market

Figure 2: Map showing current and planned offshore wind turbine capacity in North-
ern Europe [20]

To sustain growth, access to financing must be improved. Currently, government sub-
sidies are necessary to make offshore wind financially viable. The UK government is
contemplating to gradually reduce subsidies, thus, the industry must look somewhere
else for financing [5]. Project finance has been an important tool in the industry. In
2014, project finance was integral in funding 41% of new capacity that reached a final
investment decision during the course of the year. The equity side is, per 2014, domi-
nated by power producers, as shown in Figure 4. For the future, EY describes offshore
wind as an attractive investment opportunity due to low operating costs, a constant
generation price, and great natural potential. However, high price volatility together
with increased carbon taxes might make investments in fossil fuels a risky affair. A
continued oil price decrease could magnify these effects. Offshore wind is labelled as
a reliable technology appropriate for hedging against price volatilities [52].
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2.1 offshore wind market

Figure 3: Average water depth and distance to shore of online, under construction and
consented wind farms [74]

Figure 4: Market segmentation of major equity investors in European offshore wind
industry in 2014 [73]

6



2.2 jack-up vessels

2.2 jack-up vessels

A jack-up vessel is characterized by a number of extendable legs able to lift the vessel’s
hull above the sea surface. When at the desired location, the hull is lifted using the
seabed for support. When the maintenance operation is complete, the hull is lowered
down to the sea surface and the legs are retracted to their default position. There are
both self-propelled vessels and barges dependent upon tug boats for relocation. The
jack-up vessel possesses a strong crane as well as generous deck space to accommodate
spare parts which limits the need for sailing back to a depot. When jacked up, the
far-reaching crane has a stable platform which facilitates heavy-lift maintenance that
agrees with health and safety standards. Prior to the vessel arriving, technicians have
prepared the turbine to ensure maintenance goes smoothly; for instance, electric and
control cables are disconnected and oil is emptied [71]. Figure 5 depicts the jack-up
vessel Pacific Orca.

Figure 5: Wind turbine installation jack-up vessel Pacific Orca [32]

There are different types of jack-up vessels in terms of size, operating depth and
weather capabilities, among other factors. Generally, a vessel that can operate in
deeper waters and in rougher weather conditions is more expensive. It should be
noted that not one vessel in the current market is able to access all offshore wind
farms built or planned. Shenton and Mallett [71] compiled an extensive list of vessels
in the market. Table 1 describes the ranges of specifications.

Table 1: Jack-up vessel specifications. Based upon [71]
Specification Range
Maximum Operating Depth (meters) 24 - 75

Deck Capacity (m2) 430 - 4,300

Deck Capacity (tonnes) 492 - 8,400

Crane Load Capacity (tonnes) 30 - 1,500

7



2.3 corrective maintenance and failure rates

Costs are affected by site and task specific, vessel related and market-related factors.
Site and task-specific factors include location, transit time, the number of turbines re-
quiring heavy-lift maintenance and all disruptions due to weather. The vessel size,
specifications and capital cost or owners’ target utilization make up the vessel related
factors. Market-related factors are type of charter, market demand, and seasonal vari-
ations [71].

Vessel chartering is strongly affected by weather and wind farm location. With maxi-
mum operating depths between 24 and 75 meters and the rule of thumb that charter
rates increase along with operating depth, it is obvious that location will be an im-
portant factor. Furthermore, only a very limited number of vessels can operate when
wave height exceeds 2.5 meters [52].

Chartering a jack-up vessel is expensive. Rates vary between £45,000 and £287,000

(585,000 - 3,371,000 NOK) per day and are volatile [12], [11]. Naturally, long-term
charter will be cheaper per day than short-term spot charter, with studies estimating
rates being up to 40% more expensive in the spot market [11]. Due to the volatility
of rates, vessel chartering is viewed as a high-risk cost item for offshore wind farm
operators, especially when long-term charter is not considered.

Charter rates are dictated by the availability of vessels. All vessels fitted for wind
turbine installation are suited for heavy-lift maintenance. Most, however, exceed the
required specifications and are thus unnecessarily expensive. The availability of these
vessels might be limited in the future because of the significant expected growth in
the industry. There are purpose-built vessels for offshore wind farm O&M that are
cheaper to charter, if available. The vessels require severe alterations to be suited for
other types of offshore operations and will therefore not be affected by any surge in
oil and gas activity. The third category of jack-ups is multi-purpose vessels which can
also be used in the oil and gas sector, for instance. The availability of these vessels is
dependent upon activity in the oil and gas sector, thus highly volatile [71].

Offshore wind farms require extensive and varied maintenance throughout their lifes-
pan. A significant portion of the maintenance, both corrective and preventive, can be
done using regular Crew Transfer Vessels, technicians and the built-in turbine crane
only [71]. Operators would want, because of the severe increase in charter costs, to
limit the usage of a jack-up vessel to a minimum, therefore, it will only be chartered
for major maintenance operations where the turbine’s built-in crane is not sufficient.

2.3 corrective maintenance and failure rates

Maintenance operations can be divided in two, namely corrective and preventive main-
tenance. Preventive maintenance is planned and precautionary operations to prevent
failures. Jack-up vessels are usually not used for preventive maintenance [71]. Correc-
tive maintenance is repairing or replacing already failed components.
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2.4 downtime costs

Wind turbines are equipped with an alarm system notifying the operator of any fail-
ures. In the case of failure, the magnitude must be assessed to evaluate what kind
of maintenance operation is needed. When an alarm is triggered, the wind turbine is
shut down until the alarm is checked, thus not producing power [72]. The time the
turbine is not generating electricity is called downtime.

Estimates of how much corrective maintenance is needed on a wind turbine are based
upon historical failure data. Realistically, failure rates follow a Weibull distribution
over the component’s lifetime [12]. Weibull distribution is probably the most widely
used in reliability engineering because of its flexibility, simple interpretation of dis-
tribution parameters and the close relation to the bathtub curve concept [51]. The
bathtub curve is, by intuition, an appropriate way to present failure rates. A high ini-
tial probability reflects manufacturing defects and wrongful installation, for instance.
The probability decreases rapidly, then less so. Near the end of the expected lifetime,
the failure rate rises exponentially to account for normal wear and tear. Since offshore
wind is a quite immature business, historical data is scarce.

2.4 downtime costs

When a major component fails, the turbine will stop generating electricity. Lost rev-
enues due to generation disruptions are called downtime costs. The downtime costs
of a failure is determined by how much electricity the turbine would have generated
if not shut down, the electricity price pluss subsidies, and how long the turbine is
shut down. Together, these factors constitute forfeit revenue. Downtime costs can be
calculated as:

Downtime Costs = Turbine E f f iciency given Wind Speed [−]
∗ Turbine Electricity Generation given Wind Speed [MW]

∗ (Electricity Price + Subsidies) [NOK/MWh]

∗ Downtime [h]

As indicated above, wind turbine efficiency and electricity generation are dependent
upon wind speeds. This dependency is often presented as power and efficiency curves.
Typical wind speed - generation/efficiency relations are depicted in Figure 6. Note that
turbine efficiency is often referred to as the turbine’s power coefficient. Furthermore,
wind turbines only operate within certain wind speed windows. The wind speed at
which a turbine shuts down to prevent being damaged is called the cut-off speed [43].
For the Enercon E-126 EP4 turbine presented, the cut-off wind speed is 25

[m
s

]
. At

low wind speeds, the turbine electricity generation, naturally, is low while the power
coefficient is higher.
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2.4 downtime costs

Figure 6: Power curve for Enercons E-126 EP4 wind turbine [19]

The revenue obtained from generated electricity is dependent upon the electricity price
and subsidies. The electricity price is dictated by the market the operator delivers to.
Electricity prices are relatively predictable and tend to vary with the seasons. Subsidy
schemes differ between countries and are discussed further in section 2.5

The downtime includes time needed for identifying the failure, mobilization of re-
quired vessels and crew, waiting for spare parts and suitable weather windows in
addition to the actual repair time. The chosen maintenance strategy is decisive for
the downtime. When performing preventive maintenance tasks, the turbines are only
shut down while maintenance takes place. Corrective maintenance, on the other hand,
experience longer downtimes as there will be a time delay between failure occurrence
and maintenance initiation. For maintenance requiring a jack-up vessel, downtime can
be extensive because such a vessel is not necessarily available overnight.

To pinpoint some downtime cost challenges, climate and seasons are considered im-
portant factors; stable wind conditions and higher wind speeds at the site will cause
downtime to be more expensive and higher charter frequency a possibly viable option.
On the other hand, higher wind speeds mean fewer time windows viable for main-
tenance. Unpredictable weather also leads to more uncertainty in planning which in
turn leads to higher downtime costs.
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2.5 subsidy schemes for offshore wind farms

The downtime costs are, as mentioned, dependent upon subsidy schemes. How sub-
sidies are structured, varies from country to country and may or may not include tax
refunds. A report by PwC compares subsidy schemes for offshore wind in six coun-
tries, namely Denmark, France, the UK, Belgium, the Netherlands, and Germany. As
for revenue from generation, the two main types of subsidy schemes are feed-in tariffs
and feed-in premiums, where the latter is the most common. In short, feed-in tariff
contracts are long-term contracts based upon levelized costs of energy to offer produc-
ers of renewable energy some revenue stability. Feed-in premium contracts involve
selling the generated power on the energy market and then receiving a premium on
top, which can either be fixed or sliding based upon market price [54].

The UK utilizes a feed-in premium scheme; a budgetary pot is assigned for a given
period and producers bid for funds. If the sum of all bids exceeds the budgetary pot,
the highest bidder within budgetary constraints sets the strike price. This strike price
applies to all bidders eligible for subsidies and the premium received is the difference
between strike price and market price, and is thus sliding. The UK does not offer any
tax schemes targeted specifically towards the offshore wind industry [54].

France uses feed-in tariff with a guaranteed price for 20 years. As mentioned, the feed-
in tariff depends on levelized costs of energy, and in France the tariff ranges between
e0.15/kWh and e0.22/kWh. In contrast to the other countries studied, levelized costs
of energy includes development of grid connection [54].
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3

L I T E R AT U R E A N D T H E O RY

This chapter contains a review of literature and theory relevant to the studied problem
and applied solution methods. First, literature on offshore wind O&M optimization
is presented in section 3.1. The same section includes a description of literature con-
cerning jack-up vessel chartering for offshore wind farms. In section 3.2, a review of
literature on vessel chartering strategies in other applications is presented since this
is comparable to the jack-up vessel chartering strategy problem. Section 3.3 provides
some insights on how to handle failure rates. Section 3.4 concerns stability of scenario
generation methods used to solve stochastic problems. It also explains mathematical
theory behind stability testing. Finally, some literature on Sample Average Approxima-
tion and GRASP, solution methods for stochastic problems, are provided in section 3.5
and section 3.6.

3.1 offshore wind o&m optimization

An article by Shafiee [69] from 2014 structures and summarizes 137 articles on O&M
operations for offshore wind. The article outlines a framework for classification of
maintenance logistics based upon the length of the planning period. The framework
divides maintenance in three echelons; operational, tactical and strategic. These eche-
lons are covered in subsections 3.1.1, 3.1.2 and 3.1.3, respectively.

3.1.1 Strategic Echelon

The strategic echelon has a planning period close to the wind farm’s lifespan. Shafiee
[69] identifies three studied logistic decisions within the strategic echelon.

The first decision concerns wind farm design. The two main design parameters are
geographical placement and layout of the wind farm. These parameters heavily influ-
ence maintenance logistics and profitability. A wind farm with long distances between
turbines experiences less wake effects, thus higher power output [57]. Wind farms far
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3.1 offshore wind o&m optimization

from shore will face elevated power outputs because of higher and more stable wind
speeds, but also increased logistics expenditures because of rough weather [69].

Marmidis et al. [47] optimize the placement and arrangement of wind turbines with
the objective of maximizing energy production and minimizing installation cost, utiliz-
ing a Monte Carlo approach. Pookpunt and Ongsakul [57] optimize the geographical
location of offshore wind farms using a binary particle swarm optimization model.
Their objective is to maximize the power output while minimizing the investment cost.
Pérez et al. [59] publish a similar approach, seeking to optimize expected power out-
put while minimizing wake effects using mathematical programming techniques. A
publication by Samorani [65] discusses how the wind farm layout can influence energy
production and the cost related to maintenance. Chen and MacDonald [10] develop a
cost-of-energy optimization model which optimizes turbine layout considering mainte-
nance, replacement and overhaul costs. For further information, a thorough literature
review of wind farm design optimization was published by González et al. [67] in
2014.

Selection of maintenance strategy has also been subject to optimization. Initially, one
can separate between reactive and proactive strategies. Researchers seem to agree that
reactive strategies are only feasible at wind farms close to shore and at locations where
weather conditions are not too harsh. Project reports by van Bussel and Schöntag [76],
and van Bussel and Henderson [75] support this attitude. They underline frequent
stoppages, high repair costs and long delays as results of choosing a reactive strat-
egy. Shafiee [69] divides the proactive strategies further into preventive and predictive
strategies. Preventive maintenance operations are undertaken after a predefined pe-
riod of time or at given power output levels. Predictive maintenance on the other
hand, are sort of reactive in that it involves acting at specified system conditions, with-
out those conditions meaning a component has failed. Such system conditions may be
temperature, noise or corrosion.

Andrawus et al. [3] identify suitable condition based maintenance activities and assess
their impact over the life cycle of wind turbines to maximize the return on investment
in wind farms. Tian and Ding [15], [16] study opportunistic maintenance strategies
of wind turbines. They make a comparative study with the widely used corrective
maintenance policy which demonstrates the advantage of the proposed opportunistic
maintenance methods, significantly reducing the maintenance cost. Rangel-Ramı́rez
and Sørensen [61] propose risk based inspection planning as a methodology to identify
the optimal maintenance strategy of offshore wind farms.

The third decision within the strategic echelon is whether to outsource repair services.
To keep maintenance tasks in-house can be very expensive as it requires substantial
investment in infrastructure and equipment as well as training of staff. Because of
its expensive nature, there has been an increasing trend of outsourcing activities. It
must also be mentioned that today, wind turbines are commonly delivered with a 2-
to 5-year full-service contract [70]. These contracts cover maintenance, i.e. repair or
replacement, of failed components and a rejuvenation action is carried out on critical
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components in order to reduce probability of future failures. After this initial contract
expires, wind farm owners can choose to further outsource maintenance.

The demand for maintenance services increases in the offshore wind market. As little
research exist on the subject, the potential is considerable. Poore and Walford [58]
propose outsourcing of maintenance, especially in early years, as a way to reduce O&M
costs. A mathematical model which aims to reduce O&M costs under a performance
based service contract is proposed by Jin et al. [34]. The purpose of such a contract is
for the owner to define an availability goal which the service provider aims to satisfy.

3.1.2 Tactical Echelon

The tactical echelon, concerning planning periods from a few months to a couple of
years, includes the problem described in this study. In [69], Shafiee describes the
chartering of service vessels as a critical issue. This is further supported by Dalgic et
al. [12] who state that vessel costs can constitute up to 73% of lifetime O&M costs.
Several papers suggest optimization models for fleet size and mix for maintenance on
offshore wind farms, e.g. Gundegjerde et al. [25], Gundegjerde and Halvorsen [24] and
Halvorsen-Weare et al. [26]. The models assign different maintenance tasks to each
type of vessel and output suggest the number of each vessel type to acquire within
given budgetary constraints. Both deterministic and stochastic models are presented.
Gundegjerde et al. [25] propose a stochastic three stage model considering uncertainty
in vessel spot rates, weather conditions, electricity prices and failure rates. At stage
one, the operator decides on what vessels and vessel bases are needed. At stage two,
new information about charter rates is available and the operator can decide to charter
now or wait. Stage 3 reveals true weather conditions, electricity prices, failure and
charter rates. The model takes these uncertainties into account by scenario generation.

The literature concerning jack-up vessel chartering strategy is severely limited. Dalgic
et al. [12] exclaim the fact that jack-up vessel chartering is the largest contributor to
lifetime O&M costs. Other key findings include rapid utilization drop for small sites
as the charter period increases. Further, regional collaboration is hinted as being a
solution towards optimized jack-up vessel costs. The authors suggest a Monte Carlo
simulation approach which considers climate parameters, failure characteristics and
vessel specifications. Thus, the article does not contain any mathematical optimization
model of the problem; the results rely on repeated random sampling [27]. The sam-
pling gives a distribution showcasing the uncertainties and a decision is made based
upon this. It should be noted that in all simulated cases, the jack-up vessel chartering
costs dominated the total O&M costs. For the studied 100-, 200- and 300-turbine farms,
optimum short-term chartering times were determined as 3, 7 and 16 weeks respec-
tively. Corresponding total O&M costs were found to be £39.2/MWh, £37.4/MWh
and £36.2/MWh. Comparably, by utilizing long-term charter, the 100-, 200- and 300-
turbine wind farms face total O&M costs of £67.6/MWh, £37.1/MWh and £27.1/MWh
respectively. Thus, the article suggests long-term charter being more cost effective for
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200- and 300-turbine wind farms and for 300 turbines, significantly so. The paper
concludes that total O&M costs can be reduced by 41.9%, 0.6% and 25.1% for 100-,
200- and 300-turbine wind farms, respectively, only by optimizing the jack-up vessel
chartering strategy.

Dinwoodie and McMillan [17] investigate four operational strategies for heavy-lift op-
erations at offshore wind farms using scenario simulation. The proposed strategies are
fix on fail, batch repair, annual charter and purchase. The paper explores different fail-
ure rates to find key cost drivers and under which circumstances an operator would
adopt what operational strategy. Not surprisingly, purchasing is a strong candidate
when failure rates are high, and the strategy is not very sensitive to increasing failure
rates. The optimum strategy is driven principally by the number of turbines in a wind
farm as well as the number of failures requiring specialist vessels. Figure 7 shows the
relationship between lifetime and levelized cost and the number of turbines in a wind
farm. The costs only include direct vessel procurement cost and lost revenue due to
downtime.

Figure 7: Total lifetime cost and levelized cost of energy for different chartering strate-
gies over a range of wind farm sizes [17]

For a 75-turbine wind farm, it is shown that the key cost drivers vary between the
strategies. Batch repairing and purchasing, for instance, are driven by lost revenue
and vessel costs respectively. It should be noted that an annual chartering strategy is
between 20-30% more expensive than the others regardless of whether failure rates are
high, medium or low. The authors identified strengths and weaknesses of the different
strategies. Fix on failure is cost effective with low failure rates, it has no upfront costs
and one can switch strategy without any penalty. However, the operator is exposed to
volatile mobilization times as well as spot rates, and vessel costs increase dramatically
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if failure rates increase. The advantages of batch repair are similar to the those of fix on
failure, but batch repair reduces exposure to vessel market price and mobilization time.
An important problem in batch repair is to determine the optimum quantity. Adopting
a wrong quantity in a strict batch approach may lead to some turbines having long
downtimes as well as surpassing the favorable maintenance time windows during
spring and summer. Additionally, if electricity prices increase, the performance of this
approach deteriorates. In the case of purchasing, a significant capital investment is
needed. In the case of lower than expected failure rates, purchasing is more expensive
than any other approach and due to transaction-specific costs, the flexibility of the
approach is low. However, availability is the highest, minimizing lost revenue costs
and it is shown to be more expensive to underestimate failure rates and rely on the
spot market than to overestimate failure rates and purchase a vessel. It should be
noted that sub-chartering is not considered in this paper. For annual charter, the
most significant advantages are consistent vessel costs and a guaranteed contract price,
reducing exposure to spot rates.

3.1.3 Operational Echelon

The operational echelon which consists of short term planning, considers day to day
operations. Aspects in the operational echelon include maintenance scheduling and
routing of maintenance vessels [69]. Besnard et al. [7] propose a stochastic model
for opportunistic maintenance planning for offshore wind farms. The model utilizes
seven days wind production ensemble forecast and opportunities at corrective mainte-
nance activities in order to perform service maintenance tasks at the lowest cost. The
optimization is done on a daily basis to update maintenance planning. An interest-
ing aspect of the model, is that it rewards performing preventive maintenance when
downtime costs are low or the turbine is already out of service due to some failure
requiring corrective maintenance. The model output is a set of corrective and preven-
tive maintenance tasks advised to be performed during that day. In a real life example,
the model saved 32% of production losses and transportation costs. The base case
is performing maintenance during a fixed period. It should be noted that the model
assumes a fixed-size maintenance staff and does not include helicopter use. The pa-
per considers uncertainty in weather forecasts and power production, however, for the
first time step, the uncertainty is negligible. Electricity prices and charter rates for the
maintenance vessel are assumed constant, based upon historical figures.

Fonseca et al. [22] develop a method to schedule maintenance activities using genetic
algorithms for both offshore and onshore wind farms. The paper compares perfor-
mance of three methods: genetic algorithms, Djikstra’s algorithm and ant optimization
when determining the cheapest path between wind farms for maintenance.
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3.2 vessel chartering in other applications

This section presents some literature on vessel chartering strategies in other applica-
tions. This is considered relevant to the studied problem since the literature on jack-up
vessel chartering is severely limited.

Goulielmos and Goulielmos [23] consider the problem of timing in decisions to buy or
charter a vessel and underline the lack of decision-making tools available in this area
of interest. The article is geared towards vessels used in the offshore oil industry and
uses Rescaled Range Analysis to analyze both the freight market and second hand
ship market. When analyzing historical data, a strong seasonal effect is found in the
25th week in all three years presented. It is shown that the first half of the year, the
prices are falling and from there to the year end, the prices are rising.

Meng and Wang [48] propose a scenario-based dynamic programming model for
multi-period liner ship fleet planning. The model considers a liner shipping com-
pany facing a deterministic container shipping demand. To meet the demand, the
model allows usage of own ships as well as chartering from the spot market or pur-
chasing new or used ships. Sub-chartering is also incorporated. Each scenario is made
up of vessel fleet size and mix options; for instance, one scenario is to keep and op-
erate vessels 1 and 2, sublease vessel 3, charter vessel 4 and purchase vessel 5. The
scenarios are suggested by experts before the model is run and solved for each sce-
nario separately. Then, Djikstra’s algorithm is used to find the combined maximum
profit for the entire planning period given the solutions for every scenario. Output
is purchases, sub-chartering, chartering and selling, route and cargo assignment and
number of lay-up days for every vessel in every period. The computational example
has a planning period of ten years; however, the model is flexible enough to consider
planning periods as short as one year. The authors note that longer planning periods
reward purchasing vessels rather than short-term charter.

Laake and Zhang [41] present an optimization model for strategic fleet planning in
tramp shipping. It can be used to evaluate contracts against each other, thus finding
the best mix of short and long term contracts given a fleet or find the optimal fleet
size and mix for a set of contracts. This means, the model can be used to aid decisions
in a fleet renewal program helping to find out when to buy, sell and charter vessels.
The model is deterministic, which is different from Meng and Wang [48]. To handle
end effects, an artificial period is added at the end of planning where only selling is
allowed.

3.3 failure rates

Only the major components blade, gearbox, generator and transformer require a jack-
up vessel [12]. Expected failure rates of the different components are of course an
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integral part of maintenance planning. Dinwoodie and McMillan [17] show that dif-
ferent failure rates may strongly affect the cost-effectiveness of the chartering strategy
selected. Dalgic et al. [12] propose a failure model using Weibull distribution based
upon failure rates found by Lindqvist and Lundin [42]. Lindqvist and Lundin found
that the most failure prone components are the electrical system, control system, hy-
draulics and sensors, see Figure 8. The electrical system includes the transformer,
however, the paper does not investigate its failure rate separately. Furthermore, it is
highlighted that the components causing longest downtimes are generator, gearbox
and rotor/blades, which require a jack-up vessel, see Figure 9. Both Dalgic et al. [12]
and Lindqvist and Lundin [42] highlight the limited knowledge about turbine failure
rates, especially offshore. The most important reasons are the low number of offshore
wind farms currently in operation and unwillingness of manufacturers to publish ex-
pected failure rates of their turbines.

Figure 8: Average number of failures per year per wind turbine subsystem. Based
upon [42]

3.4 stability of scenario generation methods in stochastic program-
ming

This section presents literature and theory about scenario generation methods for
stochastic programming. Stochastic models cannot be solved with continuous dis-
tributions except for some trivial cases, thus the distributions of stochastic parameters
must be discretized. Computational power often limit the number of possible out-
comes. Kaut and Wallace [35] call the discretization scenario tree or event tree. The
quality of the stochastic solution is directly tied to the quality of the scenario tree, i.e.
how exact the scenario tree represents the uncertainties present. The article suggests
to calculate the discretization error by finding the optimal solutions of the true and
approximated problems. The error is then the difference between the value of the true
objective function at the two solutions.
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Figure 9: Mean downtime (days) per failure per wind turbine subsystem. Based upon
[42]

Kaut and Wallace [35] propose criteria which a scenario-generation method must sat-
isfy. In-sample and Out-of-sample stability are the two such criteria and are presented
in the following subsections.

3.4.1 In-Sample and Out-of-Sample Stability

Kaut and Wallace [35] state the requirement of in-sample stability as follows: if several
scenario trees are generated with the same input data and the optimization problem
is solved with these trees, the optimal objective values should be approximately the
same.

Out-of-sample stability testing is described as solving the optimization problem with
several scenario trees and then evaluate how the solutions compare when used in a
reference tree. If solution performance is approximately equal, out-of-sample stability
is present. The reference tree should ideally represent the real world quite closely and
thus be large [35].

Having out-of-sample stability means that the performance of the solution is stable
and does not depend on the scenario tree. However, without testing for in-sample
stability, one can not know how strong the solution actually is compared to the optimal
solution of the stochastic process. If in-sample stability is not present, then the solution
value depends heavily on the scenario tree chosen, which is unfortunate [35].
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3.4.2 Theory on Stability Testing

Kaut and Wallace [35] provide some mathematical theory on stability testing if sce-
nario generation methods. F(·) represents a solution to a stochastic problem. The
uncertain parameter is called ξ and a large reference tree assumed to mimic real-life
uncertainties quite closely, is called ξ̃. K scenario trees ξk, of smaller size than ξ̃, are
generated to represent the stochastic process and the optimization problem is solved
with each of those trees, yielding optimal solutions x∗k , k = 1, .., K. In-sample stability
is then

F(x∗k ; ξk) ≈ F(x∗l ; ξl) k, l ∈ 1...K

Out-of-sample stability is described as

F(x∗k ; ξ̃) ≈ F(x∗l ; ξ̃) k, l ∈ 1...K

Testing out-of-sample stability might be hard due to the nature of problem and the
need to solve the large reference tree ξ̃ [35]. In cases where the distribution is unknown
or solving the complete problem is impractical, a weaker out-of-sample stability test
can be executed [38]. If the model is out-of-sample stable, then

F(x∗k ; ξl) ≈ F(x∗l ; ξk) k, l ∈ 1...K

A way to measure both in-sample and out-of-sample stability, is coefficient of variation,
which is standard deviation divided by the arithmetic mean. It is often expressed
as a percentage [8]. Evaluating stability of scenario generators is an used in solving
stochastic problems. Kaut and Wallace [36] evaluated the in-sample and out-of-sample
stability of a shape based scenario generator using copulas. Di Domenica et al. [14]
investigate stability when they look at scenario generation in an information systems
perspective.

3.5 the sample average approximation method

Sample Average Approximation is a solution method for stochastic optimization prob-
lems. Generally, the method utilizes statistical properties and solves many smaller
problems to represent a larger problem. It was introduced by Kleywegt, Shapiro and
Homem-De-Mello in 2001 [40]. The article proposes a Monte Carlo simulation-based
approach to stochastic discrete optimization problems. A random sample of N scenar-
ios is generated and the expected value function is approximated using the correspond-
ing sample average function. A solution is found for the sample average optimization
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problem and the procedure is repeated a number of times until a stopping criteria is
satisfied. The method allows for solution of stochastic problems where the feasible
region is very large, for example when the probability distribution is continuous [40].
A theoretical outline of the SAA algorithm is provided in section 8.1.

3.5.1 Applications in Stochastic Problems

Sample Average Approximation is quite useful in solving a wide range of stochas-
tic optimization problems. Schütz et al. [66] use the Sample Average Approximation
method on a stochastic supply chain design problem. First stage decisions are strategic
location decisions and the second stage consists of operational decisions. Kim, Pasu-
pathy and Henderson [37] provide a guide to Sample Average Approximation and
apply the method to a two-stage multi-dimensional news vendor problem. The arti-
cle discusses when SAA is appropriate, listing two key principles: the approximating
function must have some structure enabling application of an efficient deterministic
optimization algorithm. Additionally, the limiting function subject to minimization
shares that structure, so that the properties of the limiting function such as the loca-
tion of local minima are similar to those of the approximating function. Royset and
Szechtmann [63] use SAA when optimizing an investment portfolio, combining it with
the subgradient method, steepest descent method and Newton’s method. Verweij et al.
[77] apply SAA together with branch-and-cut and decomposition to stochastic routing
problems. Computational results indicate the method is successful in solving prob-
lems with up to 21694 scenarios to within an estimated 1% of optimality. The number
of optimality cuts required to solve the approximating problem to optimality does not
significantly increase with the size of the sample. Chaisiri et al. [9] utilize SAA in
solving a cloud resource provisioning problem where future consumer demand and
providers’ resource prices are the stochastic parameters. They conclude that the SAA
approach can be used to effectively achieve an estimated optimal solution, even when
the number of scenarios is very large.

3.6 grasp heuristics

The Greedy Randomized Adaptive Search Procedure is a construction-based meta-
heuristic which usually has two phases. In the first phase, a feasible solution is cre-
ated from scratch using some greedy algorithm combined with randomization. The
constructed solution may then be modified using some local search, but this is not
required [28].

A basic outline of the GRASP algorithm is provided in [28]. It is assumed that V#

is the set of indices j for variables which no value has been assigned and Dj is the
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domain for the variable xj. n is the total number of indices. Decisions made during
construction are setting of a single variable.

while stopping criteria not met do
V# := {1, ..., n} ;
while V# 6= ∅ do

Define the set of possible assignments L := {(j, d)|j ∈ V#, d ∈ Dj} ;
Find a reduced candidate list, LRC ⊆ L, consisting of the best
assignments according to a greedy criterion ;
Select randomly (j, d) ∈ LRC ;
Set xj := d and V# := V# \ {j} ;

end
Perform a local search starting from the constructed solution x ;
Update the incumbent solution xI if a new best solution is found ;
output: solution xI ;

end
Algorithm 1: GRASP pseudocode

At any construction step, there will be a set of possible assignments L. In a pure greedy
algorithm, the best of these assignments is selected at each step, creating identical
solutions every time. GRASP uses a restricted candidate list LRC limited for instance
by number of assignments [28].

3.6.1 Applications in Wind Energy Problems

GRASP can be adapted to a wide range of applications by tailoring the greedy criteria,
the size of the reduced candidate list and how the local search is conducted. However,
wind farm applications are scarce. Yin and Wang [82] combine GRASP with Variable
Neighborhood Search (VNS) for placement of turbines in a wind farm. The wind
farm is modelled as a grid where each grid point is a possible location for a wind
turbine. First, the attributes of all grid points are calculated and a number of grid
points are added to a restricted candidate list according to some greedy criteria. The
decision variables of where to place a turbine are tied to grid points. After each
placement, the grid point attributes are recalculated taking wake effects and the like
into account. Then, a new candidate list is created, a new placement selected randomly
and so on until a viable first solution is finished. The VNS attempts to improve the
suggested solution. Computational results showed that the procedure is superior to
genetic algorithms solving the same type of problems.
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P R O B L E M D E S C R I P T I O N

The objective of the jack-up vessel chartering strategy problem is to minimize char-
tering costs for the jack-up vessel and the expected downtime costs for turbines. The
problem is based upon the existence of a jack-up vessel chartering market where prices
are dependent upon factors such as seasonality. The problem addresses the schedul-
ing of jack-up vessel chartering for offshore wind farms that do not possess their own
jack-up vessel, and the option of buying one in the immediate future is not considered.

The jack-up vessel performs heavy-lift maintenance on offshore wind turbines. The
components requiring a jack-up vessel are blades, gearbox, transformer, and generator.
These components are too heavy for regular maintenance vessels. The vessel uses a
number of extendable legs that elevates the hull above the sea surface for stabilization
purposes and it makes the vessel suitable for heavy-lift maintenance operations.

For offshore wind farm operators, the issue of jack-up vessel chartering is well-known.
The vessel pool is limited, on-site weather conditions are harsh and uncertain, and
charter rates soar when conditions for maintenance are most favorable. Costs of char-
tering this vessel type make up a significant part of total O&M costs. For offshore
wind to be a financially competitive option in the future, O&M costs must be reduced.
Optimizing the chartering and usage of the jack-up vessel is an important step towards
accomplishing this. The problem is, however, subject to several uncertain factors. The
most notable ones are weather, failure rates, electricity prices and charter rates.

As mentioned in the background chapter, charter rates fluctuate based upon demand.
For jack-up vessels, seasonality can be observed in historical data because of more
favorable weather conditions during spring and summer. Furthermore, chartering
comes with a mobilization cost, which is the costs related to sailing the vessel to the
wind farm location.

Jack-up vessels are subject to weather restrictions both during the actual jack-up from
the sea surface and when performing maintenance activities. This means the weather
is of great importance when developing a chartering strategy. As the weather is unpre-
dictable by nature, the operator is not necessarily able to utilize the vessel when it is
chartered. Another weather aspect is seasonality, which affects the average number of
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possible maintenance days. Weather is also important as it affects the potential power
output of the wind turbines. In general, downtime costs increase at elevated wind
speeds when potential power output is high.

Turbine components are subject to a failure rate which gives the probability that the
component will fail at a certain time. Thus, there is a considerable uncertainty as to
when a jack-up vessel is needed. Moreover, failure rates are difficult to estimate, as
stated in the background chapter.

Electricity prices are another important parameter to consider. The electricity price
and subsidies, together with the power output of the wind farm, decide the operator’s
revenue. Electricity prices are continuously fluctuating and represent major uncertain-
ties when developing a chartering strategy. No wind farm operator wants the turbines
to be broken down when electricity prices are high.

Maintenance operations can be divided into two main categories; preventive mainte-
nance and corrective maintenance. Preventive maintenance involves performing main-
tenance on components before they fail, prolonging the lifetime of the turbine. Cor-
rective maintenance, on the other hand, is maintenance on already failed components.
A maintenance strategy can focus on either preventive, corrective, or a combination of
the two. For jack-up vessels, only corrective maintenance is considered. For preventive
maintenance, other cheaper vessels are utilized.

To sum up, the jack-up vessel chartering strategy model supports the operator’s de-
cision of when and for how long he/she is to charter a jack-up vessel. The strategy
should account for uncertain factors such as failure rates of components, weather, elec-
tricity price and charter rate.
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M AT H E M AT I C A L M O D E L

This chapter presents the basic stochastic model using a generalized set partitioning
formulation. First, notes one how time is modelled is presented in section 5.1. All
relevant assumptions are presented and their effects explained in section 5.2. This in-
cludes how the model handles all uncertainties in parameters. The basic mathematical
formulation of the jack-up vessel chartering strategy problem including sets, indices,
parameters and variables is presented in section 5.3.

5.1 notes on time modelling

A finite time horizon is discretized in the model. How to handle end effects is a well-
known challenge when modelling problems with a finite discrete time horizon [49].
The model presented handles this by connecting the last and the first time period.
To illustrate, imagine that the ends of a straight timeline are connected, effectively
creating a circular time line. As a result, failures occurring in the last time periods
that are not repaired before the end of the planning period, are considered to be in a
failed state at the start of planning. This approach avoids results that compensate for
the fact that failures occurring in late time periods might be best left in a failed state
for the remaining time periods. This gives the wind farm operator incentives to repair
failures regardless of when they occur. This is considered a realistic approach for this
study and was recommend by the supervisors.

5.2 model assumptions

This section concerns problem uncertainty and assumptions relevant to the mathemat-
ical formulation proposed in section 5.3.
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5.2 model assumptions

5.2.1 Repair Time

The model assumes the vessel requires a number of time periods to finish a main-
tenance operation. When the vessel commences maintenance, the vessel is consid-
ered occupied in a number of time periods after maintenance start. Realistically, the
time needed to perform maintenance on large components would be longer in harsh
weather conditions. For instance, it would be more difficult to fit a new turbine blade
when winds are strong. In this study it is assumed that the number of time periods re-
quired to complete maintenance on a component is not affected by the weather. Time
periods in which the vessel have to pause maintenance because of weather, however,
can still occur. The turbine will start producing in the time period succeeding the
finished maintenance operation.

It is assumed that spare components are always available and the operator knows
what component type has failed immediately after failure and these factors do not
affect repair time.

5.2.2 Weather and Failure Scenarios

A set of weather and failure scenarios is modelled and every scenario is subject to
a probability. Weather conditions are assumed not to change within a time period
or between turbines. Scenario inputs are given for the entire planning period, and
the operator knows the scenario probability distribution. The weather component of
the scenarios affects turbine generation, since wind speed is decisive when calculating
turbine output. The jack-up vessel is subject to weather restrictions, both in terms of
wave height and wind speed, due to health and safety standards. The input scenarios
dictate whether the vessel is able to operate.

The scenarios also include a set of failures. The model assumes all turbines to be
identical and that the failure rates of the different components are independent and
known by the operator. It is assumed that each component can only fail once in each
scenario. For tactical planning, which is from a few months to a few years, this is
considered realistic.

The model does not incorporate costs for replaced components. These costs are as-
sumed fixed, i.e. they are not dependent upon the choice of chartering strategy. One
can argue that the choice of not replacing the component could be viable when the
wind farm is close to decommissioning, but this is not considered in this model.

26



5.2 model assumptions

5.2.3 Charter Rates and Mobilization Cost

The model proposed in this study assumes deterministic charter rates for the planning
period and a rate is given for every time period. An important assumption is that the
vessel is always available as long as the operator is willing to pay, thus implying that
if all vessels are chartered, a high price will convince other operators to sub-charter
the vessel and postpone their own maintenance.

Mobilization costs are modelled deterministically and is constant throughout all time
periods. It is assumed that the operator plans charter schedules sufficiently early so
that a vessel can be chartered at any time during the planning period and is unaffected
by mobilization times.

5.2.4 Minimum Length of Charter Period

It is assumed that if charter of a vessel is started, it must be chartered a minimum
number of time periods in succession. There is, however, no maximum length of a
charter period.

5.2.5 Electricity Prices

Electricity prices affect downtime costs for the wind farm and, by extension, the op-
timum chartering strategy. There are spot markets as NordPool giving hourly price
fluctuations, however, in this model, the price is assumed constant throughout one
time period. A price is generated for every time period in the planning period and, as
charter rates, electricity prices are assumed deterministic and known by the operator.

5.2.6 Jack-Up, Jack-Down and Transit Time

In this model, one time period is assigned to transit and jacking operations. Transit
times include travel from dock to the wind farm and between turbines. Supporting
these assumptions, an EWEA report from January 2016 [74] states that the average
distance from shore to operational wind farms was 43.3 km in 2015. Typical transit
speed of a jack-up vessel is around 12 knots, or ∼ 22 km

h [33] [31], meaning transit
time is about 2 hours on average. Typical elevation speed is 0.7 m

min [71] and with
typical operating depths being between 24 and 75 meters, an estimated time needed
for jacking is ∼ 70min. These simplifications are assumed not to affect the model
significantly.
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5.3 mathematical formulation

5.2.7 Unrepaired Components

It is assumed that the wind farm operator wants that no components are left unre-
paired after the planning period. If components are left unrepaired every year, the
expected number of failures increases in later years. As the number of failed compo-
nents accumulates, a large section of the wind farm will not be generating electricity.
Therefore, costs are imposed to penalize unrepaired components. Penalty costs are
divided into downtime and future charter costs.

5.3 mathematical formulation

This section describes the mathematical formulation, starting with all sets, indices,
parameters and variables followed by the objective function and first and second stage
constraints.

definitions

Lower case letters represent variables and indices. Upper case letters represent sets,
parameters and are used to distinguish parameters with the same name.

Sets

P - Turbines
C - Components
T - Time periods
S - Scenarios
CB

s - Failed components on all turbines over the planning period in scenario s

Indices

p - Turbines
c - Components
t - Time periods
τ - Time periods
s - Scenarios
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5.3 mathematical formulation

Parameters

Ps - Probability of scenario s

Tctsτ - 1 if a vessel has to be chartered in time period τ if maintenance is
initiated on component c in time period t in scenario s, 0 otherwise

CD
pcts - The total downtime costs at turbine p if the vessel jacks up at the

failed component c in time period t given scenario s

CP
t - Jack-up vessel charter rate in time period t

CM - Mobilization costs for the jack-up vessel

CE
s - Total downtime costs associated with leaving a component unrepaired

throughout the planning period in scenario s

TL - Minimum length of charter periods for the vessel

CC - Anticipated costs of one additional charter period beyond the
planning period

F - Factor indicating the maximum number of failed turbines not serviced
during the planning period which can be handled by one additional
charter period beyond the planning period

Decision Variables

δpcts - 1 if the vessel jacks up at turbine p to do maintenance on the failed
component c in time period t given scenario s, 0 otherwise

xpcs - 1 if the failed component c on turbine p is left unrepaired throughout
the planning period in scenario s, 0 otherwise

vt - 1 if a vessel charter period starts in time period t, 0 otherwise

yt - 1 if a vessel is chartered and ready to jack up/down or perform
maintenance operations in time period t, 0 otherwise

Auxiliary Variables

w - Integer representing the number of future charter periods required to
service the expected number of unrepaired components
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5.3 mathematical formulation

5.3.1 Objective Function

min z = ∑
t∈T

CP
t · yt︸ ︷︷ ︸

a)

+ ∑
t∈T

CM · vt︸ ︷︷ ︸
b)

+ ∑
p∈P

∑
c∈C

∑
t∈T

∑
s∈S

Ps · CD
pcts · δpcts︸ ︷︷ ︸

c)

+ ∑
p∈P

∑
c∈C

∑
s∈S

Ps · CE
s · xpcs︸ ︷︷ ︸
d)

+ Ps · CC · w︸ ︷︷ ︸
e)

(5.1)

The objective function aims to minimize jack-up vessel charter costs and expected
downtime costs for a wind farm. Part a) gives the vessel charter costs, part b) is the
corresponding mobilization costs while part c) represents the expected forfeit revenue
caused by turbine downtime. Part d) represents the expected total downtime costs
incurred by components being left unrepaired throughout the planning period. More-
over, if a number of failed components are left unrepaired, expected future charter
costs will be incurred; this is represented by part e).

5.3.2 First Stage Constraints

First stage constraints concern the first stage decision of when and for how long to
charter a vessel.

yt − vt − y(t−1) ≤ 0 t ∈ T \ {1} (5.2)

y1 − v1 − y|T| ≤ 0 (5.3)

Constraints (5.2) and (5.3) ensure a vessel is available in time period t only if a charter
period was started in time period t or if it was available in the preceding time period
t− 1, with constraint (5.3) handling end effects.

TL · vt −
t+TL−1

∑̂
t=t

yt̂ ≤ 0 t ∈ T \ {|T|, |T| − 1, ..., |T| − (TL − 2)} (5.4)

TL · vt −
|T|

∑̂
t=t

yt̂ −
TL−(|T|−t)−1

∑̂
t=1

yt̂ ≤ 0 t ∈ T \ {1, 2, ..., |T| − (TL − 1)} (5.5)

Constraints (5.4) ensure that if a vessel charter period starts in time period t, the
minimum charter time TL must be satisfied in the time periods immediately following
t. Corresponding end effects are handled by constraints (5.5).
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5.3 mathematical formulation

5.3.3 Second Stage Constraints

Second stage constraints concern the second stage decisions of which components to
do maintenance on when a vessel is already chartered.

∑
p∈P

∑
c∈C

∑
t∈T

Tctsτ · δpcts − yτ ≤ 0 s ∈ S τ ∈ T (5.6)

Constraints (5.6) ensure that a vessel is chartered in the required time periods corre-
sponding to selected maintenance operations. Furthermore, the constraints prevent
more than one maintenance operation being executed at any time in a single scenario.
Thus, no maintenance operation can be started before the previous one is finished.

∑
t∈T

δpcts + xpcs = 1 (p, c) ∈ CB
s s ∈ S (5.7)

∑
s∈S

∑
(p,c)∈CB

s

xpcs − F · w ≤ 0 (5.8)

Set partitioning constraints (5.7) force maintenance to be executed exactly once or not
at all. The slack variable xpcs is used to impose downtime costs of CE

s in the objective
function if a component is not repaired. The constraints are created for the set of failed
components CB

s only. Constraint (5.8) assures that if a number of failed components are
left unrepaired, the variable w is increased accordingly. The increments of w happen
stepwise due to the factor F; for instance, if F = 3, then w = 1 for 1-3 unrepaired
components and w = 2 for 4-6 unrepaired components, etc. As explained above, F
describes the maximum number of failed turbines not serviced during the planning
period which can be handled by one additional charter period beyond the planning
period. w is used to add an anticipated future charter costs to the objective function
(5.1).

5.3.4 Variable Restrictions

yt ∈ {0, 1} t ∈ T (5.9)

vt ∈ {0, 1} t ∈ T (5.10)

δpcts ∈ {0, 1} p ∈ P c ∈ C t ∈ T s ∈ S (5.11)

xpcs ∈ {0, 1} p ∈ P c ∈ C s ∈ S (5.12)

w ≥ 0, integer (5.13)

Constraints (5.10)-(5.13) provide variable restrictions.
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5.3 mathematical formulation

5.3.5 Notes on Symmetry

Initially, the problem described might seem to include a lot of symmetry, and there is
in the case where weather permits maintenance on several turbines where the same
component type has failed. However, the model cannot be forced to service turbines
of lower enumeration first, because this might cut the optimal solution. Figure 10

illustrates the problem arising if the weather does not permit repairing all failed com-
ponents of the same type. Time periods a) and b) illustrates the incurred downtime
if the failed component on turbine 1 or 2 is serviced, respectively. c) is the downtime
periods corresponding to the failed component which is not repaired during the plan-
ning period. Regardless of which turbine is serviced, c) will be incurred. However, if
one implements constraints saying that turbines with lower enumeration must be ser-
viced first, then the total downtime will be a) + c), even if servicing turbine 2 is cheaper,
ending at b) + c). There is, however, a special case where symmetry is present, namely
if two components of the same type fail in the same time period in the same scenario
and a) = b). This is considered very unlikely, thus implementing symmetry breaking
constraints for this case is not considered to strengthen the formulation.

Figure 10: Explanation of how symmetry is handled in the model. The viable weather
window is only sufficient to repair one of the components, with a) and b)
showing the incurred downtime of turbine 1 and 2, respectively, and c) is
the incurred downtime for a failed turbine which is not repaired during the
planning period
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5.3 mathematical formulation

5.3.6 Similarity With Set Partitioning Problems

As stated, the presented model is a generalized set partitioning problem, illustrated by
Figure 11. This two-dimensional matrix represents the possible time periods in which
maintenance can be initiated on the specific failures in a given scenario. The matrix
element is 1 if maintenance can be initiated on failure p, c in time period t, 0 otherwise.
The number of failures in the scenario considered is five, each represented by a row.
The number of time periods is 20, each represented by a column.

Time Period
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1

Fa
il

ur
e

1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0

1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1

Figure 11: Illustration of the set partitioning component in the mathematical model

A solution covering all the failed components in this specific scenario s is to initiate
maintenance on failures 1, 2, 3, 4 and 5 in time periods 2, 6, 16, 9 and 20, respectively.
It is not desirable to force the model to repair all components as this can lead to
infeasibility issues. Therefore, the variable xpcs keeps track of components that are left
unrepaired throughout the planning period in each scenario.
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6

A LT E R N AT I V E M AT H E M AT I C A L F O R M U L AT I O N

This chapter presents an alternative way of formulating the jack-up vessel charter-
ing strategy problem. Instead of indexing possible maintenance operations on p, c
and t, the concept of batches containing all maintenance information is introduced.
The motivation for introducing this formulation is that it provides the possibility of
bundling maintenance operations, i.e. including several maintenance operations in a
single second stage decision. One can, however, choose to make one batch for each
allowed maintenance operation, thus, the model will solve the exact same problem as
the model presented in chapter 5. Selecting one batch is then equivalent to initiate
maintenance on a given component in a given time period. The model assumptions
are similar to those presented in chapter 5.

6.1 mathematical formulation

This section explains the alternative mathematical formulation, starting with sets, in-
dices, parameters and variables followed by the objective function and constraints.
Only those not earlier introduced in the basic model will be explained. Required sets,
indices, parameters and variables used in the basic formulation are still valid.

Sets

Bs - Batches in scenario s

Fs - Failures in scenario s. Contains information about turbine and
component index for each failure
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6.1 mathematical formulation

Indices

b - Batches

f - Failures

Parameters

Ttbs - 1 if a vessel has to be chartered in time period t when batch b is
chosen in scenario s, 0 otherwise

CD
bs - Downtime costs for batch b in scenario s

A f bs - 1 if maintenance on failure f is included in batch b in scenario s,
0 otherwise

Decision Variables

δbs - 1 if batch b in scenario s is selected, 0 otherwise

x f s - 1 if failure f in scenario s is left unrepaired throughout the planning
period, 0 otherwise

6.1.1 Objective Function

The objective function is changed slightly to accommodate the alternative decision
variables.

min z = ∑
t∈T

CP
t · yt︸ ︷︷ ︸

a)

+ ∑
t∈T

CM · vt︸ ︷︷ ︸
b)

+ ∑
s∈S

∑
b∈Bs

Ps · CD
bs · δB

bs︸ ︷︷ ︸
c

+ ∑
s∈S

∑
f∈Fs

Ps · CE
s · x f s︸ ︷︷ ︸
d

+ Ps · CC · w︸ ︷︷ ︸
e

(6.1)

As before, the objective function aims to minimize jack-up vessel charter costs and
expected downtime costs for a wind farm. Part a) gives the vessel chartering costs,
part b) is the corresponding mobilization costs while part c) represents the stochastic
forfeit revenue caused by turbine downtime. Part d) represents the expected total
downtime costs accrued if a failed turbine is not repaired during the planning horizon.
It is expected that if a number of failed turbines are not repaired during the planning
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6.1 mathematical formulation

horizon, some expected future charter costs will be incurred; this is represented by
part e).

6.1.2 First Stage Constraints

The first stage constraints (5.2)-(5.5) are not changed in the alternative formulation.

6.1.3 Second Stage Constraints

None of the second stage constraints from the basic formulation apply. They are
replaced by constraints (6.2) - (6.4).

∑
b∈Bs

Ttbs · δbs − yt ≤ 0 t ∈ T s ∈ S (6.2)

∑
b∈Bs

A f bs · δB
bs + x f s = 1 f ∈ Fs s ∈ S (6.3)

∑
s∈S

∑
f∈Fs

x f s − F · w ≤ 0 (6.4)

Constraints (6.2) ensure that a vessel is chartered according to the required charter
periods corresponding to the selected batches. Constraints (6.3) are the set partitioning
constraints. Either a failed component is covered by one of the selected batches, or it
is left unrepaired throughout the planning horizon. Constraints (6.4) handle future
charter costs related to unrepaired components.

6.1.4 Variable Restrictions

The variable restrictions for δB
bs and xbs are given in (6.5) - (6.6).

δB
bs ∈ {0, 1} b ∈ B s ∈ S (6.5)

x f s ∈ {0, 1} f ∈ Fs s ∈ S (6.6)
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7

I N T R O D U C I N G M U LT I P L E V E S S E L T Y P E S

This chapter presents an extension of the mathematical model presented in chapter 5

where different vessel types are available for charter. In section 7.1, the required al-
terations for this mathematical formulation of the jack-up vessel chartering strategy
problem are presented.

The extended model allows the operator to hire different types of jack-up vessels to
perform required maintenance. This provides flexibility, since cheaper vessels can be
chartered in the more fair-weathered summer months and the more expensive and
robust vessels can be reserved for winter use, for instance.

7.1 mathematical formulation

This section presents the mathematical formulation of this extension. Please note that
the formulation resembles the basic formulation, bare vessel indices. Thus, to keep it
brief, the entire model will be described mathematically, but in cases where the only
difference is a v-index, no further explanation will be provided in text. New sets,
indices, parameters and variables are presented before the objective function followed
by first and second stage constraints. Sets, indices, parameters and variables used
in the basic formulation are still valid. The model assumptions are similar to those
presented in chapter 5.

Sets

V - Vessels
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7.1 mathematical formulation

Indices

v - Vessels

Parameters

Tctsτv - 1 if vessel v has to be chartered in time period τ if maintenance is
initiated on component c in time period t in scenario s using vessel v, 0
otherwise

CD
pctsv - The total downtime costs at turbine p if vessel v jacks up at the

failed component c in time period t given scenario s

CP
tv - Charter rate for vessel v in time period t

CM
v - Mobilization costs for vessel v

Decision Variables

δpctsv - 1 if vessel v jacks up at turbine p to do maintenance on the failed
component c in time period t given scenario s, 0 otherwise

vtv - 1 if a charter period for vessel v starts in time period t, 0 otherwise

ytv - 1 if vessel v is chartered and ready to jack up/down or perform
maintenance operations in time period t, 0 otherwise

7.1.1 Objective Function

min z = ∑
t∈T

∑
v∈V

CP
tv · ytv︸ ︷︷ ︸

a)

+ ∑
t∈T

∑
v∈V

CM
v · vtv︸ ︷︷ ︸

b)

+ ∑
p∈P

∑
c∈C

∑
t∈T

∑
s∈S

∑
v∈V

Ps · CD
pctsv · δU

pctsv︸ ︷︷ ︸
c)

+ ∑
p∈P

∑
c∈C

∑
s∈S

Ps · CE
s · xpcs︸ ︷︷ ︸
d)

+ Ps · CC · w︸ ︷︷ ︸
e)

(7.1)

The objective function aims to minimize jack-up vessel charter costs and expected
downtime costs for a wind farm. Part a) gives the charter costs of the vessels, part b)
is the corresponding mobilization costs for all vessels used while part c) represents the
stochastic forfeit revenue caused by turbine downtime. Part d) represents the expected
total downtime costs accrued if a failed turbine is not repaired during the planning
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7.1 mathematical formulation

period. If a number of failed turbines are not repaired during the planning period,
some expected future charter costs will be incurred; this is represented by part e).

7.1.2 First Stage Constraints

This section presents constraints directly tied to the first stage decision of when and
how long to charter the vessel.

ytv − vtv − y(t−1)v ≤ 0 t ∈ T \ {1} v ∈ V (7.2)

y1v − v1v − y|T|v ≤ 0 v ∈ V (7.3)

TL · vtv −
t+TL−1

∑̂
t=t

yt̂v ≤ 0 (7.4)

t ∈ T \ {|T|, |T| − 1, ..., |T| − (TL − 2)} v ∈ V

TL · vtv −
|T|

∑̂
t=t

yt̂v −
TL−(|T|−t)−1

∑̂
t=1

yt̂v ≤ 0 (7.5)

t ∈ T \ {1, 2, ..., |T| − (TL − 1)} v ∈ V

Constraints (7.2)-(7.5) are unchanged from the basic formulation apart from v indices.

Constraints (7.6) and (7.7) must be added. These constraints ensure that only one
vessel is chartered at the time.

∑
v∈V

vtv ≤ 1 t ∈ T (7.6)

∑
v∈V

ytv ≤ 1 t ∈ T (7.7)

7.1.3 Second Stage Constraints

This section presents constraints governing the second stage decisions of which compo-
nents to do maintenance on when the vessel is already chartered. The only differences
from the basic model are the v indices.

∑
p∈P

∑
c∈C

∑
t∈T

Tctsτv · δpctsv − yτv ≤ 0 s ∈ S τ ∈ T v ∈ V (7.8)
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7.1 mathematical formulation

∑
t∈T

∑
v∈V

δU
pctsv + xpcs = 1 (p, c) ∈ CB

s s ∈ S (7.9)

∑
s∈S

∑
(p,c)∈CB

s

xpcs − F · w ≤ 0 (7.10)

7.1.4 Variable Restrictions

ytv ∈ {0, 1} t ∈ T v ∈ V (7.11)

vtv ∈ {0, 1} t ∈ T v ∈ V (7.12)

δU
pctsv ∈ {0, 1} p ∈ P c ∈ C t ∈ T s ∈ S v ∈ V (7.13)

Constraints (7.11)-(7.13) provide variable restrictions.
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8

S O L U T I O N M E T H O D S

The jack-up vessel chartering strategy problem considers uncertainty in weather and
failure occurrences. These are parameters whose combined uncertainty is expected to
require a high number of scenarios to represent properly, making the problem difficult
to solve as shown by Kirkeby and Mikkelsen [39]. This chapter presents how the SAA
method and heuristics can be utilized to solve the jack-up vessel chartering problem.

8.1 outline of sample average approximation algorithm

Schütz, Tomasgard and Ahmed [66] provide a thorough explanation of the SAA
method for two-stage stochastic problems, however, the notation is altered to gen-
eralize the algorithm. The model encompasses the set of scenarios S, cT is first stage
costs, y is the vector of first stage decision variables and Y is the set of feasible solu-
tions. Ps is the probability of scenario s occurring and G(ȳ, ξs) is the solution to the
second stage problem given the first stage solution ȳ and ξs as input. Realizations of
the uncertainty vector ξ in scenario s are represented by ξs. Note that the solution of
the second stage problem includes second stage decision variables different from the
first stage variables y. This yields the two-stage stochastic problem.

min
y∈Y

g(y) := cT · y + ∑
s∈S

Ps · G(ȳ, ξs) (8.1)

The first step is to convert Equation (8.1) into a sample average function. The sample
size N denotes the number of realizations of the uncertain parameters considered. The
result is shown in Equation (8.2).

min
y∈Y

ĝ(y) := cT · y +
1
N ∑

n
G(ȳ, ξn) (8.2)
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8.1 outline of sample average approximation algorithm

ξn is the nth realization of the random vector ξ. The steps of the algorithm are as
follows:

1. Generate M independent samples of N scenarios and solve the SAA problem in
Equation (8.2). The optimal objective function value and the solution is denoted
by vN

m and ŷN
m , m = 1...M respectively.

2. Compute the average of all optimal objective function values from the SAA prob-
lems, v̄N,M and the variance of the sampling distribution of objective values,
σ2

v̄N,M
. The variance of the sampling distribution of objective values is equal to

the sample variance divided by the number of samples and gives an estimate
of how spread out the sample objective values are around the objective value
of the true problem. As the sample size and/or number of samples grow, the
properties approach the population properties and the variance of the sampling
distribution of objective values decreases.

v̄N,M =
1
M

M

∑
m=1

vN
m (8.3)

σ2
v̄N,M

=
1

M(M− 1)

M

∑
m=1

(vN
m − v̄N,M)2 (8.4)

The average objective function value v̄N,M provides an optimistic bound on the
optimal objective function value for the original problem presented in Equa-
tion (8.1). For the extensive proof of this, readers are referred to Mak et al.
[45] and Norkin et al. [50].

3. Pick a feasible first stage solution ȳ ∈ Y for the original problem, preferably one
of the solutions ŷN

m . The solution is then used to estimate the objective function
value of the original problem using a reference sample of size N′ as

g̃N′(ȳ) := cT · ȳ +
1

N′
N′

∑
n=1

G(ȳ, ξn) (8.5)

4. The estimator g̃N′(ȳ) serves as a pessimistic bound on the optimal function value
[45], [50]. The reference sample of size N′ is generated independently of the other
M samples and since the first stage solution is fixed, N′ can be greater than N.
This step requires solving N′ independent second stage problems. The variance
of the sample distribution of the objective values for g̃a′(ȳ) can be estimated:

σ2
N′(ȳ) =

1
N′(N′ − 1)

N′

∑
n=1

(
cT · ȳ + G(ȳ, ξn)− g̃N′(ȳ)

)2
(8.6)
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8.2 batch construction heuristics

5. Compute the estimators for the optimality gap and its variance. Using the esti-
mators calculated in steps 2 and 3, one gets a gap estimator and an estimation of
the gap variance of the sampling distribution of the objective values

gapN,M,N′(ȳ) = g̃N′(ȳ)− v̄N,M (8.7)

σ2
gap = σ2

N′(ȳ) + σ2
v̄N,M

(8.8)

The confidence interval for the optimality gap is then calculated as

g̃N′(ȳ)− v̄N,M ± zα

(
σ2

N′(ȳ) + σ2
v̄N,M

) 1
2

(8.9)

with zα := Φ−1(1− α), where Φ(z) is the cumulative distribution function of the
standard normal distribution.

8.1.1 Notes on the Number of Samples M

Determining M is not straightforward. Suppose that M samples of size N have been
solved so far. If the distribution of the SAA problem ĝ(y) is continuous, the proba-
bility that the (M + 1)th SAA sample of size N will produce a better solution than all
preceding solutions, is equal to 1

(M+1) . In the case of discrete distributions, the prob-

ability is less than or equal to 1
(M+1) . Thus, as 1

(M+1) becomes sufficiently small, the
additional SAA sample will provide little value and the procedure should be stopped
or the sample size N increased [40].

8.2 batch construction heuristics

This section presents the Greedy Maintenance Bundling Heuristic (GMBH), a greedy
construction heuristic for the second stage problem, as well as the Greedy Random-
ized Adaptive Maintenance Bundling Heuristic (GRAMBH), which introduces adap-
tive randomness to the GMBH. The idea behind the heuristics is to extend the deci-
sion variable δbs, used in the Alternative Formulation presented in chapter 6, to cover
a sequence, or batch, of maintenance operations. Batches include information about
which components are repaired if the batch is selected, the corresponding downtime
costs and for which time periods the batch requires a vessel to be chartered. Below,
outlines of algorithms proposed for generating batches are presented along with some
required parameters. Parameters not listed are defined in the Alternative Formulation
in chapter 6.
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8.2 batch construction heuristics

Heuristic Parameters
N - Number of maintenance operations in a batch

TB - Max number of time periods in batch

TM - Max allowed waiting time between maintenance operations

NC - Number of candidate components

NB - Number of generated batches for each time period
where at least one maintenance operation can be initiated

Batches are created during preprocessing, i.e before optimization is initiated, and are
not altered at a later stage. Two different approaches for defining the batch size are
considered. One alternative is to specify the number of maintenance operations in
each batch. The other alternative is to specify the length of a batch in terms of time
periods. A detailed outline of the algorithm for the first alternative is presented below
and a simplified flow chart is depicted in Figure 12.

8.2.1 GMBH 1 - Specifying the Number of Repairs in a Batch

1. Specify the batch size, N, and the max allowed waiting time between mainte-
nance operations, TM. Calculate Bs and Fs based upon the generated scenario
data. The number of batches in a scenario is equal to the number of time periods
in which at least one maintenance operation can be initiated. Failures are sorted
by turbine and component index using lowest to highest, with turbine index hav-
ing priority over component index. Further, initialize CD

bs and A f bs to 0, and set
the time period in which batch b in scenario s starts to 1 in Ttbs. Proceed to step
2.

2. Starting at batch one in scenario one, set t to the time period already set to 1 in
Ttbs. Select the failure, f , with the lowest downtime costs at time period t and
add the costs to CD

bs. Set the corresponding maintenance time periods to 1 in Ttbs
and set A f bs to 1. Go to step 3.

3. Starting with the time period after the preceding maintenance operation is com-
pleted, find the first time period, t, where at least one maintenance operation can
be initiated, excluding all components already in the batch. If the waiting time,
i.e time periods in between maintenance operations, exceeds TM, go to step 5. If
not, set the waiting time periods to 1 in Ttbs and proceed to step 4.

4. As before, find the failure, f , in time period t with the lowest downtime costs
and add the costs to CD

bs. Set maintenance time periods to 1 in Ttbs and set A f bs
to 1. If the number of maintenance operations in the batch is N, go to 5. If not,
repeat step 3 and 4.
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5. The batch is complete and consists of accumulated downtime costs, a number
of time periods in which a vessel must be chartered if the batch is selected and
which components are covered by the batch. If b < |Bs|, increment b and repeat
step 2-5. If b = |Bs|, set b to one, increment s and repeat step 2-5. Steps 2-5 are
repeated until all batches in all scenarios are evaluated.

8.2.2 GMBH 2 - Specifying the Maximum Number of Time Periods in a Batch

As stated, an alternative to specifying the number of repairs in a batch N, is to specify
the length of a batch, TB. Following is a stepwise description of this approach.

1. Specify the length of a batch, TB, and the max allowed waiting time between
maintenance operations, TM. Calculate Bs and Fs based upon the generated
scenario data. Further, initialize CD

bs and A f bs to 0, and set the time period in
which batch b in scenario s starts to 1 in Ttbs. Proceed to step 2.

2. Starting at batch one in scenario one, set t to the time period already set to 1 in
Ttbs. Select the failure, f , with the lowest downtime costs at time period t and
add the costs to CD

bs. Set the corresponding maintenance time periods to 1 in Ttbs
and set A f bs to 1. Go to step 3.

3. Starting with the time period after the preceding maintenance operation is com-
pleted, find the first time period, t, where at least one maintenance operation can
be initiated, excluding all components already in the batch. If the waiting time
exceeds TM, go to step 5. If not, set the waiting time periods to 1 in Ttbs and
proceed to step 4.

4. As before, find the failure, f , in time period t with the lowest downtime cost. If
∑

t∈T
Ttbs plus maintenance time is lower than or equal to TB, add the costs to CD

bs

and set maintenance time periods to 1 in Ttbs. Set A f bs to 1. If ∑
t∈T

Ttbs ≥ TB, go

to 5. If not, repeat step 3 and 4.

5. The batch is complete and consists of accumulated downtime costs, a number
of time periods in which a vessel must be chartered if the batch is selected and
which components are covered by the batch. If b < |Bs|, increment b and repeat
step 2-5. If b = |Bs|, set b to one, increment s and repeat step 2-5. Steps 2-5 are
repeated until all batches in all scenarios are evaluated.
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Figure 12: GMBH 1 algorithm flowchart

46



8.2 batch construction heuristics

8.2.3 GRAMBH - Greedy Randomized Adaptive Maintenance Bundling Heuristic

This section briefly explains how GMBH 1 and 2 can be extended to include a random
component. The idea is that, in step 2 and 4 in the outlined algorithms, a maintenance
operation is selected randomly from a list of candidates instead of always choosing
the one with the lowest corresponding downtime cost. The candidate components
are chosen based upon downtime cost, as to ensure a greedy approach. Furthermore,
several batches are generated per allowed time period instead of just one. This reduces
the risk of only generating batches which are good by themselves, but do not combine
well.

1. Specify N or TB, NC, NB and TM. Calculate Bs and Fs based upon the generated
scenario data. |Bs| is equal to the number of time periods in which a least one
maintenance operation can be initiated times NB. Further, initialize CD

bs and A f bs
to 0, and set the time period in which batch b in scenario s starts to 1 in Ttbs.
Proceed to step 2.

2. Starting at batch one in scenario one, set t to the time period already set to 1 in
Ttbs. Select the NC failures with the lowest downtime costs at time period t and
add them to a candidate list. Randomly choose one of the candidates and add
the corresponding costs to CD

bs. Set the corresponding maintenance time periods
to 1 in Ttbs and set A f bs to 1. Go to step 3.

3. Starting with the time period after the preceding maintenance operation is com-
pleted, find the first time period, t, where at least one maintenance operation
can be initiated, excluding all components already covered in the batch. If the
waiting time exceeds TM, go to step 5. If not, set the waiting time periods to 1 in
Ttbs and proceed to step 4.

4. As before, find the NC failures in time period t with the lowest downtime costs
and add them to a new candidate list. Randomly select one of the candidates in
the list and add the corresponding costs to CD

bs. Set maintenance time periods to
1 in Ttbs and set A f bs to 1. If the number of maintenance operations in the batch
is N or ∑

t∈T
Ttbs ≥ TB, go to 5. If not, repeat step 3 and 4.

5. The batch is complete and consists of accumulated downtime costs, a number
of time periods in which a vessel must be chartered if the batch is selected and
which components are covered by the batch. If b < |Bs|, increment b and repeat
step 2-5. If b = |Bs|, set b to one, increment s and repeat step 2-5. Steps 2-5 are
repeated until all batches in all scenarios are evaluated.

Since batches are created for all time periods allowing to initiate maintenance in both
the GMBH and the GRAMBH, it is expected that a high number of the batches will be
equal in terms covered components and similar in terms of downtime costs and how
many time periods are required. Thus, when the algorithms are complete, dominance
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is used to reduce the number of batches in each scenario. A batch is considered dom-
inant if it covers the same components, has a lower downtime cost, a lower number
of required time periods where a vessel is chartered and the same last time period in
Ttbs as another batch. Hereinafter, a single time period where a vessel is chartered and
ready to do maintenance is called a vessel period.

8.2.4 Batch Illustration

An example is presented in Figure 13 to illustrate generalized set partitioning in
the Alternative Formulation when the parameter Atbs is generated using GMBH or
GRAMBH. This two-dimensional matrix represents the parameter for a given scenario,
where the number of failures, |Fs|, is nine and the number of batches, |Bs| is 20. Each
column represents one batch and each row one failure. The number of repaired com-
ponents in each batch is set to three. A solution covering all the failed components in
this specific scenario s is δB

1s = δB
8s = δB

9s = 1. If batches 1-10 are removed, no combi-
nations of batches 11-20 will cover all components. A solution covering eight failed
components is δB

12s = δB
20s = x7s = x10s = 1. This solution leaves components 7 and 9

unrepaired.

Batch
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0

1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1

Fa
il

ur
e

0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0

0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

Figure 13: Example of A f bs parameter for given scenario with nine failures and 20

batches
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9

I M P L E M E N TAT I O N

This chapter gives a thorough explanation of the implementation of the mathematical
models. Section 9.1, section 9.2 and section 9.3 describe generation of weather and fail-
ure data, potential wind turbine generation and charter and electricity prices. Further,
section 9.4 explains how downtime costs are calculated.

All mathematical formulations were implemented in FICO Xpress Optimization Suite
and all scenario generation functions were implemented in MATLAB version R2015a.
In the models, a scenario consists of two components; weather and failure data.
Weather data encompasses both wave height and wind speed. Failure data provides
information about which components fail and when. All input data generation scripts
are intertwined, prompting the user to specify the length of the planning period, time
resolution, the number of vessels, turbines, components, scenarios and expected num-
ber of failures desired. The output is the parameters presented in the mathematical
models.

9.1 weather and failure data

Weather data for a wind farm site is used as input, but must be altered to fit the
mathematical model. A MATLAB script is used to adjust data to the desired time
resolution using extreme values. For instance, if the model time resolution is four
hours, the MATLAB program finds the highest wind speed and wave height value for
every four hours and this is used as the input parameter. The weather parameters
are utilized to find time windows for maintenance and calculate downtime costs as it
affects potential production.

The user provides the size of the wind farm, the number of components, scenarios
and time periods. The number of time periods is then used to calculate the probability
of a component failing in any given time period in a scenario. A random number
generator assigns a value to every all components on all turbines in every time period
in every scenario from a uniform distribution. If the value assigned is lower than
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9.2 potential wind turbine generation

its corresponding failure probability, the component is set to fail. As per assumptions,
each component can only fail once in any given scenario for the entire planning period.

9.2 potential wind turbine generation

Wind turbine generation is an important input parameter as it is combined with elec-
tricity prices to calculate downtime costs using available turbine power curves. As tur-
bine electricity generation is dependent upon wind, the calculations are based upon
the generated wind data. Fitting polynomials to a power curve is done using an on-
line polynomial regression software [56]. The polynomials are then used directly in
MATLAB to calculate wind turbine generation given wind data as input. For visual
inspection of typical power and power coefficient curve, the reader is referred to Fig-
ure 6 in section 2.4. Note that polynomials are only fitted to the part of the curves
where polynomial behavior can be observed. Otherwise, constant values are used.
Furthermore, it should be noted that the power coefficient accounts for both the Betz’
factor and the efficiency.

The incurred future downtime costs for failed turbines not serviced are calculated as
a multiple of the downtime costs for leaving the turbines unrepaired for the entire
planning period. This is also calculated in this script.

9.3 charter rates and electricity prices

MATLAB scripts are written to generate charter rates and electricity prices for every
time period and, if desired, every vessel type. Historical figures for both charter and
electricity are used as input, they are deterministic and known by the operator, as per
model assumptions. The user can, through input, decide whether subsidies on sold
electricity should be considered or not. In the case of subsidized electricity prices,
the prices are in reality deterministic, as the price for power delivered to the grid, is
guaranteed.

9.4 downtime cost calculations

This section presents implemented downtime cost calculation methods for the different
models. First, a general description of downtime cost calculations is provided. Subsec-
tion 9.4.1, subsection 9.4.2 and subsection 9.4.3 describe three different approaches for
calculating downtime costs.

Downtime costs are calculated as potential turbine electricity generation in downtime
periods times the electricity price plus any subsidies. The downtime periods incurred
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9.4 downtime cost calculations

if a maintenance operation commences in a given time period is the time periods
between failure and finish of maintenance operations. This includes the time period
needed for jack-up and time periods in which maintenance is paused because of the
weather. Figure 14 and Figure 15 illustrate calculations when unaffected and affected
by end effects, respectively.

Figure 14: Illustration of how downtime costs are calculated. The time period between
maintenance start and maintenance time is required for jack-up

Figure 15: Illustration of how downtime costs are calculated when affected by end
effects. The time period between maintenance start and maintenance time
is required for jack-up

The downtime cost matrix serves two purposes, namely determining in which time
periods maintenance is allowed to start and how much downtime costs are incurred if
maintenance commences in a particular time period. When calculating the downtime
matrix, the parameters describing when a vessel is required, Tctsτ, Tctsτv or Ttbs, are cal-
culated depending on desired model. Three different approaches, hereinafter referred
to as models, for generating the downtime cost matrix and vessel requirement matrix
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have been evaluated. The three models differ in number of vessels and maintenance
flexibility and are presented below.

When generating the downtime cost matrix, domination criteria are used. A main-
tenance operation is considered to be dominant over another if it repairs the same
component, jacks up in a later time period and jacks down before or in the same time
period.

9.4.1 Basic Model - Maintenance in Consecutive Time Periods

For maintenance to be commenced in this model, a time window where one can jack-
up, complete maintenance, and jack down in consecutive time periods is required.
These requirements are quite constraining in terms of when a maintenance operation
can be initiated, especially if several time periods are required to complete mainte-
nance. Furthermore, the number of time periods in which maintenance can be initi-
ated will depend heavily upon the weather capability of the vessel considered. This is
hereinafter referred to as the Basic Model.

9.4.2 Vessel Model - Multiple Vessel Types

The multiple vessel types model presented in chapter 7 requires downtime cost data
for multiple vessels. The model is similar to the one used for the Basic Model in that
no waiting time during maintenance is allowed. To accommodate multiple vessels
types, one more dimension with length equal to the number of vessels types is added
to the downtime matrix. The number of time windows in which maintenance can be
initiated will depend upon each vessel’s weather capabilities. A more weather robust
vessel will always be able to initiate maintenance as long as the less robust vessel
is able to. On the contrary, if one vessel is more robust in terms of wind capabilities,
while the other is more robust in terms of wave capabilities, the two vessels will be able
to initiate maintenance in different time periods. This model is hereinafter referred to
as the Vessel Model.

9.4.3 Extended Model - Opportunity to Wait

This model considers only one vessel, but allows for more flexibility than the Basic
Model. It allows pausing maintenance operations while waiting for fairer weather.
For instance, jack up in time period 1, wait for the wind to calm in time period 2,
perform maintenance in time periods 3− 5, wait for smaller waves in time period 7
and then jack down in time period 8. Flexibility can be constrained by specifying a
maximum number of time periods allowed for the complete maintenance operation.
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9.4 downtime cost calculations

This model will see more time periods in which maintenance is allowed to start and
can thus be considered a relaxation of the second stage decisions of the Basic Model.
As a result, the model should produce a lower objective value. This is hereinafter
referred to as the Extended Model.
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C O M P U TAT I O N A L S T U D Y

This chapter presents a computational study conducted using the the presented mod-
els. Section 10.1 presents data input. Stability testing and SAA calculations are pre-
sented in section 10.2. Sections 10.4 and 10.5 present testing of heuristics and eco-
nomic analyses. As mentioned in section 9.4, the Basic Model is characterized by forc-
ing maintenance operations to be conducted in consecutive time periods. The Vessel
Model considers multiple vessels types, while the Extended Model allows for pausing
of maintenance to wait for more favorable weather. Characteristics are summarized in
Table 2.

Table 2: Summary of model characteristics
Number of Maintenance

Model Vessels Flexibility
Basic 1 No
Vessel 2 No

Extended 1 Yes

10.1 data input

This section provides explanation and justification of the chosen input parameters
introduced in chapters 5, 7. Most of the parameters were based upon external sources
such as technical specifications or journal articles.

10.1.1 Scenario Probabilities

In all test cases, all scenarios were considered equally likely, thus, the probability of a
scenario occurring Ps =

1
|S| , where |S| was the total number of scenarios considered.
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10.1.2 Planning Period Length and Time Resolution

The planning period length for all testing was one year. This was considered reason-
able for a tactical-level decision such as jack-up vessel chartering. Time resolution for
all testing was 24 hours per time period, thus, the planning period consisted of 365

time periods.

10.1.3 Minimum Length of Charter Period

The minimum length of a charter period, imposed by constraints (5.4), (5.5), (7.4) and
(7.5), was set to be two weeks. Supporting this choice is that the minimum length of a
sub-charter period is considered to be 15 days by Dalgic [12].

10.1.4 Maintenance Time

The number of time periods required to complete maintenance on each component
type was gathered from Dalgic [12]. Table 3 presents maintenance times for each
component which were considered fixed during testing. It should be noted that these
values are subject to some debate; for instance, values found in Dinwoodie et al. [18]
tend to be lower. Hereinafter, the components will be referred to by their component
number.

When generating downtime cost data for the Extended Model, the maximum time al-
lowed for completion of maintenance operations was twice as long as the maintenance
time of the corresponding components. Thus, on maximum, the vessel was allowed to
wait for as many periods as it was actually conducting maintenance. Values are listed
in the last column in Table 3

Table 3: Number of time periods required to complete maintenance on each compo-
nent type when length of one time period is 24 hours. Last column lists
maximum allowed time periods for completing maintenance when using the
Extended Model

Time Periods Allowed
Component # Component Type Maintenance Time for Maintenance (Extended)

1 Blade 1 2

2 Generator 3 6

3 Gearbox 6 12

4 Transformer 6 12
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10.1.5 Mobilization Cost

As explained in subsection 5.2.3, mobilization cost input in the models is a single value.
Average value of mobilization costs given in Dalgic [12], is 5 MNOK, which was used
as input. As the currency in the paper is GBP, an exchange rate of 13 NOK to 1 GBP
was gathered from XE Currency [81] on 10.02.2016. These mobilization costs were
used for both the primary and secondary vessel when the Vessel Model was tested.

10.1.6 Electricity Prices, Charter Rates, and Vessel Specifications

Subsidies were considered in all testing. A fixed electricity price of £150 /MWh (1,950

NOK/MWh) for the entire planning period was used. The price was gathered from
The Department of Energy and Climate Change in the UK and their list of strike prices
for offshore energy [30].

Charter rates were gathered from Dalgic [11] using Figure 16. These include fuel costs
but not crew costs. The vessel with CAPEX (Capital Expenditure) of about £64 million
was selected for single-vessel cases. For two-vessel cases, the one with CAPEX £102

million was chosen as secondary. Some of the cost factors described in section 2.2
were neglected; owner’s target utilization was not considered at all and the effects of
varying demand and seasonal variations were simplified. Furthermore, only one type
of charter was evaluated, namely spot charter. This came as a result of the applied
planning period of one year. For such a short planning period, one year charter was
regarded as infeasible.

It was assumed that one year consisted of four winter months and eight summer
months, meaning there were only two different prices per vessel depending on the
season. November-February was considered winter, the rest of the year was summer.
This gave summer and winter charter rates for the primary vessel of 1.34 and 0.88

MNOK per time period, respectively. For the secondary vessel, the corresponding
values were 2.23 and 1.40 MNOK using the 13 NOK to 1 GBP [81] exchange rate.
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Figure 16: Winter and summer charter rates for jack-up vessels with different CAPEX
[11]

Vessel weather capabilities were gathered from Maples et al. [46]. These are pre-
sented in Table 4 together with seasonal charter rates. Useful data concerning wind
restrictions during jacking and wave restrictions during maintenance was not found,
but these vessel characteristics were not considered to be of great importance as they
would be binding only in really extreme weather situations.
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Table 4: Jack-up vessel charter rates and weather capabilities
Winter Charter Summer Charter Max Wave Max Wind

Vessel Rate per t Rate per t Height Speed
Primary 0.884 MNOK 1.339 MNOK 2.0 m 12

m
s

Secondary 1.400 MNOK 2.230 MNOK 2.2 m 14
m
s

10.1.7 Future Charter and Downtime Costs

Future charter costs were calculated as the 5 MNOK mobilization costs plus the costs of
14 days, the minimum length of a charter. To represent the uncertainty in future charter
costs, the worst case scenario of 2.23 MNOK was used. An increment was added to
account for the future charter to be a bit longer than 14 days, thus, future charter costs
were set to 40 MNOK. This was considered reasonable, as the components must be
repaired at some point in the future, incurring charter costs. The future charter factor
was set to 3 since it was expected that, on average, one future charter of minimum
length would be able to repair up to three failed components. Total downtime costs
incurred for failed turbines not repaired during the planning period, was calculated
as one and a half year’s worth of unsold electricity. This was to account for the extra
downtime that runs into the next planning period.

Preliminary testing showed that with the current mathematical formulation, when set-
ting F = 3 and CC = 40 MNOK, optimal solutions for a wind farm with ten expected
failures a year suggested leaving a number of components unrepaired. On average,
this number was 5.6 and 2.2 for the Basic and Extended Models, respectively. These
results did not agree with model assumptions, thus, the parameter Ps was omitted
from part e of the objective functions (5.1), (6.1) and (7.1). As a result, the accumu-
lated number of unrepaired components in all scenarios, not the expected number,
was penalized.

10.1.8 Weather

Nine years of historical data with a time resolution of one hour was available. The
weather data was gathered from the FINO 1 research platform in the North Sea be-
tween 2004 and 2012. In this study, each of the nine years represents a weather sce-
nario, thus, if the user specified three scenarios, the scenario generator would pick
three different years at random from the weather dataset. A similar approach for gen-
erating weather scenarios was used by Raknes and Ødeskaug in their master’s thesis
[60]. To ensure that all scenarios started on January 1st and ended on December 31st,
data for all occurrences of February 29th was removed. This was not considered to
weaken the scenarios notably as the portion removed was extremely small compared
to the size of the complete dataset. Dinwoodie et al. [18] aim to create reference cases
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for offshore wind O&M simulation models and consider this set of weather data to be
representative of central North Sea conditions.

The nine possible weather scenarios were closely evaluated to see whether any of
them distinguished themselves as particularly harsh or gentle. If one of the weather
scenarios were, and one of the scenario trees had abnormally many occurrences of that
weather scenario, then this could affect the objective value. A harsher (gentler) year
would have fewer (more) time windows for maintenance, thus affecting the number
of unrepaired components. By studying the distributions of wave heights and wind
speeds, they were found to be approximately equal and no year was particularly harsh
or gentle.

10.1.9 Turbine Electricity Generation

Turbine electricity generation was implemented based upon the power curve and
power coefficient curve of the Enercon E-126 EP4 turbine [19]. The curve provided
by the manufacturer can be seen in Figure 17.

Figure 17: Power curve for Enercons E-126 EP4 wind turbine [19]
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10.1.10 Failure Data

For this study, it was feasible to assume that during the considered planning period
of one year, the component failure rates were constant. This was because of the small
intra-year changes in a 20-25 year Weibull distribution assumed to represent compo-
nent failures. The concrete failure rates, i.e. the probability that a component fails in
any given time period, were selected so that the expected number of failures in one
year aligned with each component’s specific failure rate presented in figure 3 in Dalgic
et al. [12]. Failure rates are presented in Table 5.

Table 5: Probability of a component failing in any given time period
Component Probability

1 0.004/(Number of time periods)
2 0.044/(Number of time periods)
3 0.040/(Number of time periods)
4 0.012/(Number of time periods)

With the given probabilities, the expected number of failures for a 100-turbine wind
farm across, say, 100 scenarios are 40, 440, 400 and 120 for components one, two, three
and four, respectively. This gives a total of 1,000 expected failures.

10.1.11 Optimality Gap Tolerance

In Xpress, a tolerance of 1.0% optimality gap was implemented to prevent excessive so-
lution times. Furthermore, first stage solutions are not expected to change significantly
when closing the last percentage of the optimality gap.

10.2 stability testing and saa

This section presents results and accompanying discussions from in-sample and out-
of-sample stability testing, as well as SAA calculations for the different models.

Testing performed by Kirkeby and Mikkelsen [39] showed that solving the stochastic
jack-up vessel chartering strategy problem for a large number of scenarios was time-
consuming with the computational resources at hand. As a result, the SAA algorithm
was utilized throughout this study. As explained in section 8.1, when using SAA, an
appropriate sample size N is needed as well as a number of samples, or scenario trees,
M. M is chosen such that the probability of finding a better solution by adding an-
other scenario tree, 1

M+1 , is sufficiently small and computational times are tolerable.
For this study, M was set to ten. The sample size N was then calibrated ensuring
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that the M generated scenario trees represented the considered uncertainty in a satis-
fying way. This was done by performing stability testing. In the following subsections,
results from both in-sample and out-of-sample stability testing are presented and dis-
cussed. The chosen measurement of stability was the standard deviation divided by
the arithmetic mean, or coefficient of variance.

Testing was conducted on scenario trees of different sizes. All scenario trees consid-
ered a 100-turbine wind farm akin to the British Thanet Wind Farm with 100 turbines
[44]. The number of scenarios in each scenario tree varied from 25 to 100. The different
models were tested on the same scenario trees to better compare results.

10.2.1 In-Sample Stability

As explained in subsection 3.4.1, in-sample stability is a measure of variance in optimal
objective value for different scenario trees. Figure 18 presents results from the in-
sample stability testing for different number of scenarios in each scenario tree.
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Figure 18: Plot of in-sample stability for different scenario tree sizes and model eval-
uations. Coefficient of variation is the selected measurement for in-sample
stability

As the coefficients of variation presented in Figure 18 were higher than expected, es-
pecially for the Vessel Model where it increased with the number of scenarios, further
investigation of results was conducted. The scenario trees of 100 scenarios proved
the most promising for the Basic and Extended Models, and computational times for
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these scenario trees were reasonable for all models. Thus, these scenario trees were
chosen for further investigation. The improved stability of the 25-scenario case for the
Extended Model was considered an outlier, and thus, it was not considered for further
investigation. Furthermore, comparing results for the different models is more appro-
priate if the number of scenarios is the same. Therefore, the scenario tree considering
100 scenarios was also chosen for the Vessel Model. Table 6 presents objective values
and expected number of failures for the scenario trees of 100 scenarios evaluated using
the three different models. Table 7 lists correlations between objective values and the
expected number of unrepaired components along with the average total number of
maintenance windows across all scenarios for the different models.

Table 6: In-sample stability testing of the three presented models. An overview of
objective values and expected number of unrepaired components in scenario
trees 1-10 is provided. Each scenario tree considered 100 scenarios

Basic Model Vessel Model Extended Model
Scenario Objective Unrepaired Objective Unrepaired Objective Unrepaired

Tree Value (’000) Components Value (’000) Components Value (’000) Components
1 2,409,480 1.47 538,102 0.06 383,536 0.03

2 2,429,750 1.50 521,970 0.03 367,446 0.03

3 2,493,360 1.53 556,860 0.09 317,978 0.00

4 2,925,240 1.86 604,012 0.09 369,668 0.03

5 2,509,750 1.54 556,545 0.03 397,588 0.03

6 2,709,980 1.69 706,718 0.15 360,954 0.00

7 2,349,310 1.42 638,955 0.12 361,339 0.00

8 2,483,680 1.53 634,882 0.06 392,150 0.03

9 2,035,410 1.19 555,411 0.06 343,336 0.00

10 2,887,140 1.81 744,107 0.18 421,893 0.06

Table 7: Correlation between objective values and number of unrepaired components
along with average total number of maintenance windows across all scenarios

Maintenance
Model Correlation Windows
Basic 0.999 26,239

Vessel 0.899 89,744

Extended 0.862 99,436

Components being left unrepaired throughout the planning period was a result of
too few maintenance windows to complete service on all failed components in a sce-
nario. Results presented in Table 6 shows that with the Basic Model, one vessel for
a 100-turbine wind farm is not enough. The average expected number of unrepaired
components was 1.55 per year, even with very high future charter costs. An early
version of the Basic Model did not consider penalty costs but rather forced all failed
components to be repaired; this lead to infeasibility. In conclusion, the primary vessel,

62



10.2 stability testing and saa

in general, was not able to repair all failed components on a 100-turbine wind farm
placed in the North Sea when Basic Model assumptions apply.

It is evident that the Vessel, and Extended Models performed much better in terms
of how many components were repaired, which was understandable when studying
the average number of maintenance windows for the three models, listed in Table 7.
This was also reflected in the objective values, which for the Basic Model were much
higher because of the high future charter costs of unrepaired components. This was
expected, since both the Vessel and Extended Models provided more flexibility in
terms of when maintenance could be initiated, effectively being relaxations of the Basic
Model. Note that the future charter costs were applied to all unrepaired components in
all scenarios, see subsection 10.1.7. Furthermore, the significant differences in objective
values between the models meant that comparing the coefficients of variation between
the three models could give the wrong idea of which model was preferable. Naturally,
variations would be larger for the smaller numerical values found for the Vessel and
Extended Models even though the absolute numerical differences were similar to those
of the Basic Model.

From examining Table 7, it is clear that the correlations between the expected number
of unrepaired components and objective values were significant for all three models.
For the Basic Model, the values can be considered perfectly correlated for all practical
purposes. This indicates that the future charter costs for leaving components unre-
paired throughout the planning period dictated objective values. Table 8 lists objective
values for the different models when the future charter costs were subtracted, and the
corresponding coefficients of variation. It is evident that the in-sample stability im-
proved significantly as the new coefficients of variance were 3.84%, 6.69% and 4.34%
for the Basic, Vessel and Extended Models, respectively. At this stage, the variations
in objective values were considered to be as much a result of how the mathematical
formulations handle unrepaired components as the scenario generator.

To better understand the variance in number of unrepaired components, the data pro-
duced by the scenario generator was investigated. The distribution of failed compo-
nent types and the number of failures, especially on components 3 and 4, in each
scenario, were considered possible causes for unrepaired components. However, as
stated in section 9.1, no weather scenarios were significantly more gentle or harsh
than others, thus, this possible explanation was not further investigated.
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Table 8: Objective values without extra charter costs for future charter and the corre-
sponding coefficients of variation

Scenario Basic Vessel Extended
Tree Model Model Model

1 449,480 458,102 343,536

2 429,750 481,970 327,446

3 453,360 436,860 317,978

4 445,240 484,012 329,668

5 469,750 516,545 357,588

6 469,980 506,718 360,954

7 469,310 478,955 361,339

8 443,680 554,882 352,150

9 475,410 475,411 343,336

10 487,140 504,107 341,893

Coeff. of
3.84% 6.69% 4.34%

Variation

Intuitively, having a high number of failures on component types 1 and 2 and a low
number of failures on types 3 and 4 should be positive in terms of unrepaired compo-
nents as there would be more time windows for performing maintenance. In combi-
nation with the high penalty costs for not repairing a component, this might partially
explain the significant in-sample instability. Table 9 lists distribution of failed compo-
nents in the scenario trees used to evaluate the different models and correlation with
the number of unrepaired components.

Studying Table 9, it is noticeable that correlations between failures on components
1 or 2 and the number of unrepaired components were negative in all but one case.
The reason was that these components required a lower number of time periods to
repair than average, and were thus less likely to be left unrepaired. Moreover, the
components with the highest number of average failures should in general be more
influential, and thus correlate better with the number of unrepaired components. This
was the case during testing, with the combined failure probability of component 3 and
4 being higher than both component 1 and 2 probabilities.
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Table 9: Overview of failure occurrences in all scenario trees and correlation between
failure occurrences and number of unrepaired components for the different
models

Scenario Comp Unrepaired
Tree Comp 1 Comp 2 3 & 4 Components

1 48 443 529 1.47

B
as

ic
M

od
el

2 29 458 530 1.50

3 44 428 526 1.53

4 35 421 532 1.86

5 46 442 532 1.54

6 30 444 549 1.69

7 43 481 514 1.42

8 38 417 556 1.53

9 29 439 512 1.19

10 26 445 532 1.81

Average 37 442 531 1.55

Correlation -2.18 -0.296 0.507 -

1 48 443 529 0.06

V
es

se
l

M
od

el

2 29 458 530 0.03

3 44 428 526 0.09

4 35 421 532 0.09

5 46 442 532 0.03

6 30 444 549 0.15

7 43 481 514 0.12

8 38 417 556 0.06

9 29 439 512 0.06

10 26 445 532 0.18

Average 37 442 531 0.87

Correlation -0.340 0.170 0.090 -

1 48 443 529 0.03

Ex
te

nd
ed

M
od

el

2 29 458 530 0.03

3 44 428 526 0.00

4 35 421 532 0.03

5 46 442 532 0.03

6 30 444 549 0.00

7 43 481 514 0.00

8 38 417 556 0.03

9 29 439 512 0.00

10 26 445 532 0.06

Average 37 442 531 0.21

Correlation -0.195 -0.193 0.301 -
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Table 9 reveals that the number of failure occurrences on components 3 and 4 corre-
lated well with the number of unrepaired components for the Basic Model. To exem-
plify, consider scenario trees 4 and 10, the scenario trees with the highest number of
unrepaired components; the number of failures on components 3 and 4 was slightly
above average in both scenario trees. For the Extended Model, the same correlation
was less pronounced but still worth noting. The correlation between failures on com-
ponents 1 and 2 and objective value was quite low for the Basic Model. Similarly, for
the Extended Model, these correlations were less pronounced. The Vessel Model pro-
duced some unexpected results as the only notable correlation was between failures
on component 1 and the number of unrepaired components. As this was the compo-
nent with the lowest average number of failures, it was expected that this component
should be the least influential.

Based upon the above reasoning, the Basic Model left components unrepaired mainly
as a result of too few maintenance windows available for components 3 and 4, which
required six time periods to be repaired. The Extended Model was less sensitive to
the distribution of failed components, and the Vessel Model saw almost no correla-
tion. Therefore, other plausible explanations were evaluated. As mentioned above, a
possible reason is the number of failures, especially on components 3 and 4, in each
scenario. As can be read from Table 9, scenario tree 10 had the highest number of un-
repaired components for both the Vessel and Extended Models and the second highest
number of failures for the Basic Model. Scenario tree 9 was one of the trees that had
the fewest unrepaired components, on average. Figure 19 and Figure 20 present the
failure distribution and total number of failures in each scenario in scenario tree 10

and 9, respectively.

First aspect evaluated was the total number of failures in the 100 scenarios. Scenario
tree 10, presented in Figure 19, had one scenario with 20, one with 18 and three with
17 failures. Scenario tree 9, presented in Figure 20, saw at most 17 failures in a single
scenario. Furthermore, this occurred in only two scenarios. The number of scenarios
with 15 or more failures was nine and six for scenario tree 10 and scenario tree 9,
respectively.

In terms of failures on components 3 and 4, even more pronounced differences be-
tween the two scenario trees were observed. The highest number of failures on com-
ponents 3 and 4, ten, occurred in four scenarios in scenario tree 9. Scenario tree 10,
on the other hand, had two scenarios with ten, three scenarios with eleven and one
scenario with 15 failures on components 3 and 4. This indicates that scenarios with
a high number of failures on components 3 and 4, more so than scenarios with just a
high number of failures, dictated the number of unrepaired components. This can par-
tially be explained by noting that almost every viable time window for maintenance on
components 3 and 4, is also a viable time window for components 1 and 2. Intuitively,
one might think that this should be the case for all viable time windows for compo-
nents 3 and 4. However, this was not the case because of wave restrictions. It might
be possible to perform maintenance in time periods where jacking up or down is not
possible. With the added flexibility of the Extended Model, this effect is reduced.
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10.2 stability testing and saa

Based upon the above reasoning, in-sample stability was considered satisfying at 100

scenarios for both the Basic and Extended Models. As shown, the initial instability en-
countered by both models was as much a result of how the mathematical formulation
handled unrepaired components as the data produced by the scenario generation. The
main reason for having a high number of unrepaired components was single scenar-
ios with many failures on components 3 and 4. In reality this might happen, thus, the
resulting instabilities were considered acceptable. The Vessel Model also saw satisfy-
ing stability in the 100-scenario case when future charter costs related to unrepaired
components were subtracted. However, stability did not improve as the number of
scenarios in each scenario tree increased. As a result, the Vessel Model was not con-
sidered very stable.

10.2.2 Out-of-Sample Stability

Out-of-sample stability is a measure of how well the scenario tree-specific solutions
perform in the real problem. The real problem in this study, was represented by a
scenario tree of 1,000 scenarios, hereinafter referred to as the reference tree, which was
considered sufficiently large to represent the considered uncertainty in a satisfying
way. Notes on the size of the reference tree are presented in subsection 10.2.3. Results
from out-of-sample stability testing are presented in Figure 21. It should be stated that
for the problem studied, where the actual first stage decision and not the objective
value, is the most interesting, out-of-sample stability was considered more important
than in-sample stability.

For the Basic Model, out-of sample stability was very good when 75 or more scenarios
were considered. The Vessel and Extended Models, on the other hand, produced more
variable solutions. This can be explained by the increased flexibility provided by these
models, allowing these models to better tailor the first- and second stage solutions to
each scenario tree. However, both experienced a steady improvement in out-of-sample
stability as the number of scenarios increased.

To better understand what caused out-of-sample instability and what characterized
good first stage solutions, further analyses were conducted. Table 10 lists coefficients
of variation for the number of vessel periods suggested by the models for different
scenario tree sizes. Table 11 lists objective values and the number of vessel periods for
the scenario trees considering 100 scenarios.

As the Vessel and Extended Models have more flexibility in terms of maintenance
windows, second stage solutions, and thus first stage solutions, could be better tailored
to each scenario tree. This increased variance. This claim is substantiated by the results
listed in Table 10 where it is evident that the variance in number of vessel periods was
higher for the Vessel and Extended Models than for the Basic Model.
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Figure 21: Plot of out-of-sample stability for different scenario tree sizes and model
evaluations. Out-of-sample stability is measured in terms of coefficient of
variation

One finding from reading Table 11, is that the correlation between the reference tree
objective values and the number of vessel periods suggested by the corresponding so-
lution was notable for the Extended Model. The best solutions in terms of objective
value were those suggesting the highest number of vessel periods, hence the nega-
tive correlation. For the Basic Model, the correlation was less pronounced and even
hinted that more vessel periods was negative. This indicates that when having more
maintenance flexibility, the number of vessel periods dictated how well the solution
performed in the reference tree. This can be explained by the fact that with increased
flexibility, the vessel utilization rate, i.e. time periods in which the vessel is used di-
vided by the number of vessel periods, is higher. In other words, when maintenance
flexibility is present, any first stage decision can be utilized more efficiently.

Table 10: Coefficients of variation for the number of vessel periods suggested by the
ten scenario tree solutions for different scenario tree sizes

Scenario Coefficient of Variation
Tree Size Basic Model Vessel Model Extended Model

25 6.07% 13.63% 9.03%
50 3.16% 8.99% 9.36%
75 3.19% 7.76% 8.36%
100 2.33% 8.95% 4.73%
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Table 11: Scenario tree-specific solutions evaluated in the reference tree, number of
vessel periods suggested by solutions and correlation between the two

Basic Model Vessel Model Extended Model
First Stage Vessel Obj. Value Vessel Obj. Value Vessel Obj. Value
Solution # Periods in Ref. Tree Periods in Ref. Tree Periods in Ref. Tree

1 290 2,554,703 217 313,368 248 487,652

2 288 2,555,068 235 330,460 231 495,803

3 302 2,540,571 195 356,027 234 514,086

4 298 2,585,399 226 282,879 229 462,882

5 289 2,549,979 249 278,434 252 487,775

6 278 2,583,041 238 288,112 268 448,216

7 290 2,545,824 235 338,586 249 455,950

8 287 2,560,318 275 285,284 249 452,457

9 294 2,537,475 229 313,982 247 454,447

10 297 2,555,531 246 328,680 250 491,058

Correlation 0.177 -0.085 -0.478

10.2.3 Notes on Size of Reference Tree and Scenario Trees

In this study, it was assumed that 1,000 scenarios was sufficient to represent the con-
sidered uncertainty. As mentioned, the average number of vessel periods in the ten
scenario trees increased as the number of scenarios in each tree increased. This was
a result of solutions being less tailored to the scenarios considered. In general, it is
more difficult to tailor solutions to accommodate 100 different failure outcomes than
ten. This was further verified when evaluating two 1,000-scenario scenario trees which
both suggested ∼ 300 vessel periods.

As a result of the above reasoning, even though satisfying in-sample and out-of-sample
stability was achieved when ten scenario trees of 100 scenarios were considered, the
solutions might prove weak when evaluated on scenario trees of 1,000 scenarios.

10.2.4 SAA Results

The reader is referred to section 8.1 for a detailed outline of the SAA algorithm. In this
subsection, results from stability testing were used to calculate SAA values. Optimistic
bounds and corresponding variances were given by the average objective values and
variance from the ten scenario trees evaluated, listed in Table 6. Pessimistic bounds
and their variances were found by evaluating a feasible first stage solution in an in-
dependently generated reference tree of size N′ = 1, 000. The solutions selected were
those that gave the best average objective value in all other trees during out-of-sample
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stability testing. Table 12 presents bounds, the corresponding gap, gap standard devi-
ation and the 90% confidence interval.

Table 12: Optimistic and pessimistic bounds, gap, standard deviation of gap and 90%
confidence interval of the gap calculated in accordance with SAA

Optimistic Pessimistic St. Dev of 90% Confidence
Model Bound (’000) Bound (’000) Gap (’000) Gap (’000) Interval (’000)
Basic 2,523,310 2,537,475 14,165 83,466 ÷92,802 - 121,132

Vessel 605,756 695,195 89,438 23,808 58,928 - 119,949

Extended 378,589 464,712 76,627 9,353 64,642 - 88,613

Noticeable from reading Table 12 is that the gap was considerably smaller for the Ba-
sic than for both the Vessel and Extended Models. However, as Basic Model objective
values were so high, the variances corresponding to both bounds were also quite sig-
nificant, resulting in the high standard deviation and the wide confidence interval. In
combination with the small gap, this resulted in a negative lower limit for the gap,
which is peculiar in an optimization setting. A negative gap limit meant that, when
calculating bounds using the SAA method, one could get a pessimistic bound that was
lower than the optimistic bound. These results substantiate the claim that unrepaired
components are problematic in the Basic Model because of the impact these have on
the objective values, see subsection 10.1.7, Table 6 and Table 8. This was further in-
vestigated by calculating SAA values disregarding charter costs related to unrepaired
components. The bounds saw variances more in line with variances for the Extended
Model bounds.

For the the Vessel and Extended Models, the confidence intervals were more satisfying.
The results prove that as maintenance flexibility increased, either in terms of having
more robust vessels or allowing to pause a maintenance operation, SAA bounds vari-
ance decreased. This was a result of fewer unrepaired components.

Wide confidence intervals, in general, indicate that sample sizes should be larger. How-
ever, because of limited computational resources, SAA parameters were chosen ac-
cording to stability testing, thus, M = 10, N = 100 and N′ = 1, 000, and were used
throughout the this computational study.

10.3 evaluating model results

In this section, the results from the different models will be closely evaluated, com-
pared and discussed. As for solutions, the focus is on the first stage decisions, as these
are the decisions of interest and are of the same format for the Basic and Extended
Models. The first stage solutions from the Vessel Model are not directly comparable
and are more relevant in an economic analysis. Therefore, these solutions will not be
paid much attention is this section
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Computational times were the first aspect to evaluate. Table 13 presents accumulated
computational times for the three presented models. The times are divided into data
generation, i.e. how long it takes for MATLAB to generate the required data for the ten
scenario trees, and optimization time, i.e. how long Xpress takes to find the optimal
solution. Optimization time is further divided into time required to load and build
the model, and time needed to solve the problem.

Table 13: Accumulated computational times for ten scenario trees considering 100

scenarios
Data Building Solving

Total Generation Problem Problem
Model Time (MATLAB) (Xpress) (Xpress)
Basic 4,774 1,020 3,729 25

Vessel 12,859 1,570 10,669 620

Extended 7,846 1,461 5,537 848

As explained in section 9.4, the Basic Model second stage decisions were more re-
stricted than those of the Extended Model. This is verified from reading Table 7 where
the average total number of maintenance windows is listed. This restriction resulted in
a lower number of second stage variables, which reduced computational times as seen
in Table 13. The computational times were not too extensive, and one could argue
that more scenarios should have been evaluated to improve solution quality. How-
ever, with the limited computational power and time at hand for this study, increasing
computational times further were not desirable.

The first stage solutions, in general, suggested a high number of vessel periods. For
the Basic Model, the average number of vessel periods and charter periods for the
ten scenario trees were 291 and 7.4, respectively. For the Extended Model, the num-
bers were 246 and 4.6. In terms of solution similarities, there was a pattern for the
Basic Model in which time periods the vessel was chartered. However, since the total
number of vessel periods was so high, it was more interesting to look at which time
periods were not proposed for charter. No solutions suggested charter in time peri-
ods 14-25, 126-135 or 240-251. Eight out of ten solutions recommended not to charter
in time periods 67-78. For the Extended Model, such patterns were less pronounced,
but there was a tendency to suggest one or two longer charter periods in the months
April-August. This indicates that weather was more influential than the elevated daily
charter prices in March-October, see subsection 10.1.6, in terms of when to charter.
This was further investigated by calculating the weighted daily charter in the winter
and summer months. The time periods which were considered winter months were 1-
60 and 306-365. For the Extended Model, the average number of vessel periods in these
time periods was 61.6, resulting in an weighted daily charter of 0.513. For the summer
months, the average number of vessel periods was 184.1, resulting in a weighted daily
charter of 0.751. For the Basic Model, the weighted daily charter was 0.728 and 0.832

for winter and summer months, respectively. Another aspect worth mentioning is that
first stage solutions from the Vessel Model stability testing suggested chartering of the
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most robust vessel more so than the least robust vessel, even though the most robust
vessel was more expensive. Both these findings further substantiate the above claim of
weather being more influential than charter prices when generating an optimal charter
schedule.

As the suggested charter periods were of the same format, how solutions from the
Basic Model, characterized by shorter computational time, performed when tested in
the Extended Model, was evaluated. Table 14 lists objective values when the ten first
stage solutions from the Basic Model were tested in the Extended Model.

Table 14: Performance of Basic Model first stage solutions in the Extended Model. Pes-
simistic SAA bound is the one found for the Extended Model, seeTable 12

Deviation from
First Stage Objective Value in Extended Model
Solution # Reference Tree (’000) Pessimistic SAA Bound

1 518,262 11.5%
2 612,518 31.8%
3 512,315 10.2%
4 613,264 32.0%
5 562,432 21.0%
6 661,363 42.3%
7 562,589 21.1%
8 576,776 21.4%
9 561,989 20.9%
10 571,846 23.1%

In general, the solutions did not perform well, as none of the objective values were
within the Extended Model SAA gap listed in Table 12. Therefore, if the required
computational power is available, one should use the Extended Model to ensure better
charter suggestions. This is of course, only valid if the wind farm operator allows
maintenance flexibility.

10.4 testing of heuristics

This section outlines testing of the heuristics presented in section 8.2. The idea be-
hind the heuristics is to assign a sequence, or batch, of maintenance operations to a
single second stage decision. As explained, two pure greedy heuristics were intro-
duced, namely GMBH 1 and GMBH 2. The heuristic with a random component, the
GRAMBH was also tested. To determine which was the most appropriate heuristic,
testing was conducted. All testing was done using the Alternative Mathematical For-
mulation presented in chapter 6 and downtime costs were calculated in accordance
with the Extended Model described in section 9.4.
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10.4.1 Greedy Maintenance Bundling Heuristics

The purely greedy heuristics GMBH 1 and GMBH 2 were tested and optimistic SAA
bounds are listed in Table 15 and Table 16 together with the number of vessel periods
suggested. The Extended Model found a significantly cheaper optimistic bound of
379 · 106 found for the Extended Model, see Table 12. The number of vessel periods
suggested by the heuristics were high; all were over 300 and most over 330 vessel
periods per year. This was significantly higher than the same number for the Extended
Model which was 246. Thus, results show the pure greedy proposed heuristics were
weak. However, solving with the heuristics showed promising computational times.

Table 15: Optimistic SAA bounds found by the GMBH 1

Repairs in Optimistic Vessel
Batch, N Bound (’000) Periods

2 5,352,180 334

3 5,177,511 331

4 5,317,599 329

Comparing results for GMBH 1 listed in Table 15, with GMBH 2 results listed in
Table 16, shows that GMBH 1 provided the most positive results in terms of optimistic
bounds, thus this was selected for the GRAMBH; GMBH 2 was not further developed.

Table 16: Optimistic SAA bounds found by the GMBH 2

Time Periods Optimistic Vessel
in Batch, TB Bound (’000) Periods

20 5,598,905 339

30 5,405,375 346

40 5,623,617 306

10.4.2 Introduction of Randomness

The GRAMBH was tested for different numbers of repairs in one batch and the corre-
sponding SAA results are listed in Table 17 together with Extended Model results. For
an elaborate explanation of the GRAMBH, the reader is referred to section 8.2. The
reason for testing different values of N was because it was assumed that this was most
decisive for the obtained results. Ideally, all parameters should have been tested exten-
sively, but this was not done due to time constraints. Preliminary testing suggested
values for the parameters TM, the maximum waiting time between operations, NC, the
size of the candidate lists and NB, the number of batches to create in every time period
in which maintenance could be initiated. The values used for TM, NC and NB were 4,
5 and 10, respectively.
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Table 17: Comparison of vessel periods and bounds provided by GRAMBH and the
Extended Model for different number of repairs in batch, N

Repairs in Vessel Optimistic Pessimistic Gap St. Dev of 90% Confidence
Batch, N Periods Bound (’000) Bound (’000) (’000) Gap (’000) Interval (’000)

2 263 396,204 440,837 44,633 10,376 31,336 - 57,929

3 259 404,408 425,454 21,047 13,818 3,338 - 38,755

4 273 423,426 425,573 2,151 10,034 ÷10,709 - 15,010

Extended 246 371,589 464,712 76,627 9,353 64,642 - 88,613

It is evident that the GRAMBH gave tighter bounds than the Extended Model, and
that the bounds became tighter as the number of repairs in a batch increased, but high
variances yielded wide confidence intervals; four repairs even gave a negative lower
bound for the gap confidence interval. The pessimistic bounds for the heuristic models
are also pessimistic bounds for the true problem. This is a result of the heuristic models
being restricted versions of the true problem. This means that the optimal objective
value for the true problem lies somewhere between 379 · 106 and 425 · 106. The fact
that the GRAMBH finds better pessimistic bounds than the Extended Model shows
that the heuristic is useful and should be utilized accordingly. Probably, a reason for
the GRAMBH finding better pessimistic bounds was because all first stage solutions
were tested in the reference tree and the best bound was selected. For the Extended
Model, just one first stage solution was tested in the independent reference tree. When
comparing the values found with the GRAMBH to the values found with GMBH, it
is obvious that the GRAMBH performed better. The optimistic bounds found by the
GRAMBH for 2, 3 and 4 repairs were 6.6%, 8.8% and 14.0% higher than the bounds
found by the Extended Model. This was expected since the GRAMBH is a restricted
version of the true problem.

Compared to the GMBH, the numbers of vessel periods suggested by the GRAMBH
were significantly smaller. With randomness, the numbers for 2, 3 and 4 repairs in
a batch were 263, 259 and 273 respectively. These were quite close to the number
suggested by the Extended Model, namely 246. Probably, the aspect which facilitated
most of the improvements seen was creating several batches in every time period. This
provides valuable flexibility whereas earlier heuristics only created one batch for ev-
ery allowed time period. The GRAMBH also created batches in a less rigid way with
randomness, thus limiting the risk of only generating good individual batches which
did not combine well. To elaborate, consider the case where one batch is created
for every allowed time period. When the optimization solver attempts to combine
batches, it can only select one batch containing each maintenance operation; this may
lead to weak combinations because of the likely large time spread of selected batches.
When creating several batches for each allowed time period, the flexibility when op-
timizing batch combination increases since the batches contain different maintenance
operations because of randomization.

76



10.4 testing of heuristics

10.4.3 Solution Time Comparison

Important motivation for implementing heuristics was to reduce solution time and
thus enable solving larger problems. A comparison of total solution times, in seconds,
with the different models are presented in Table 18.

Table 18: Comparisons of accumulated solution time for the Basic and Extended Model
and the GRAMBH

Data Building Solving
Total Generation Problem Problem

Model Time (MATLAB) (Xpress) (Xpress)
Extended 7,846 1,461 5,537 848

G
R

A
M

B
H 2 Repairs 6,780 4,970 60 1,040

3 Repairs 17,625 5,015 160 12,450

4 Repairs 19,442 4,940 160 14,342

First thing to notice from reading Table 18, is that the building the problem in Xpress
is much faster when using the GRAMBH, while optimization times were longer. This
was unexpected, but further investigations yielded no reasonable explanation.

It is evident that the optimization time in Xpress was longer when more repairs were
added to each batch. This might be a result of the dominance criteria used. A batch
was considered dominant if it covered the same components, had a lower downtime
cost, a lower number of required vessel periods and the same last time period in Ttbs
as another batch. When the number of maintenance operations in a batch increased,
the number of dominated batches likely decreased, thus, more options were available
when the problem was sent to Xpress. This lead to a high number of variables and
constraints. Studying different types of dominance criteria were not prioritized in this
study, but is suggested for future research. In terms of total solution time, the heuristic
proved to be ineffective when the number of repairs in a batch exceeded two.

Studying the results, it is observable that the amount of time required to generate
scenario trees was higher for the heuristic models. This was expected, as the heuris-
tic function came in addition to calculating downtime costs and other parameters
required for the Extended Model. However, the solution time in Xpress decreased by
83% for the two-repair case. The solution time in Xpress for all heuristic cases largely
consisted of solving the problem, not loading and building it. Moreover, scenario gen-
eration was time consuming. It should be noted that the programming experience of
the authors is limited and it is acknowledged that the scenario generation and heuris-
tics code could probably be rationalized.
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10.5 economic analyses

This section presents economic analyses conducted with the proposed optimization
models. Some economic aspects related to having a more robust primary vessel are
discussed in subsection 10.5.1 and whether to charter or to buy a vessel is the best
decision is analysed for different wind farm sizes in subsection 10.5.2. Some economic
consequences of using Basic Model solutions for wind farms compliant with the Ex-
tended Model assumptions are discussed in subsection 10.5.3.

10.5.1 Having a More Robust Vessel as the Primary Vessel

Since the Vessel Model suggested a high number of vessel periods for the more ro-
bust vessel, it was investigated whether using it as the primary vessel in the Extended
Model would be beneficial. Thus, secondary vessel charter rates and weather capabil-
ities, see Table 4, were used as input and solved. Resulting costs and the number of
vessel periods are shown in Table 19.

Table 19: Cost comparison for primary and secondary vessel using the Extended
Model

Yearly Vessel
Vessel Costs (MNOK) Periods

Primary 425.5 246

Secondary 561.5 241

It was observed that using the expensive and more robust vessel as the primary vessel
increased yearly costs by approximately 32%. Comparing with the results from the
Vessel Model which suggested that the secondary vessel was cheapest to charter, re-
sults are contradictory. However, the Vessel Model is significantly stricter in terms of
allowed maintenance operations. Thus, when only a few time windows were available
to begin with, opting for the robust vessel expanded those enough to make it the most
economic decision. It should be noted here that the high future charter costs for un-
repaired components were a contributor to these results. For the Vessel Model, it was
cheaper to charter the robust vessel and get a lower number of unrepaired components.
For the Extended Model, the number of unrepaired components was very low even
with the primary vessel, thus, its weather capabilities were adequate. This claim is fur-
ther substantiated by the small difference in the number of suggested vessel periods
for the two vessels listed in Table 19.
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10.5.2 The Decision of Buying or Chartering a Jack-Up Vessel

In the stability testing it was pointed out that for a 100-turbine wind farm, a high
number of yearly vessel periods were suggested when solving the problem, see Ta-
ble 11. As a result, it was decided to investigate for different wind farm sizes whether
it would be preferable to buy a vessel and always having it available. Sizes studied
were 50, 75 and 100 turbines. Real-life examples of wind farms with approximately
75 turbines are Lincs, Humber Gateway and Northwind in the UK [53]. 50-turbine
wind farms are for instance Nordsee Ost and the under construction Nordsee One in
Germany [64].

10.5.2.1 Methodology

Data gathered for calculations presented in the following is listed in Table 20.

The best pessimistic bound was considered to represent the charter and downtime
costs when using an optimized chartering strategy for each year in the wind farms’
lifespan. For the 100-turbine wind farm, a pessimistic bound was already available, see
Table 17. For the other wind farm sizes, the pessimistic bounds were found using the
Extended Model. Ideally, the pessimistic bounds should be found using the GRAMBH,
but due to time constraints, bounds from the Extended Model were used. Crew costs
had to be added to get total yearly costs. Fuel costs were accounted for in the charter
costs, see subsection 10.1.6. Crew salaries were found in [12] and considered a crew
of 40 with a total salary of £2.8 million equalling 36.4 MNOK, annually [81]. When
calculating crew costs, 36.4 MNOK was multiplied by FC, see (10.1), where the number
of vessel periods equalled the average suggested when solving the model. Yearly costs
were then discounted to get present value and then summed to get total costs for the
entire lifespan of the wind farm.

FC =
Number o f vessel periods

365
(10.1)

To calculate downtime costs for the wind farm when owning a vessel, the Extended
Model was solved with the vessel chartered at all times and no charter costs were in-
curred. Since there was only one first stage solution, having the vessel available at all
times, no pessimistic bounds could be found using the SAA method. Thus, the aver-
age objective value in the reference tree was used to represent downtime costs.Vessel
operating costs were added to get total yearly costs and these were discounted over the
lifespan to get present value. The costs of buying a vessel similar to the primary vessel,
see Table 4, was added at the start of the wind farm’s lifespan to get total costs and
was considered a one-time expense. The salvage value of the vessel was considered
to be zero. A new vessel acquired by A2Sea delivered in 2014 had a price tag of 890

79



10.5 economic analyses

MDKK, or 1,110 MNOK [1] using an exchange rate of 1.247 NOK per DKK gathered
01.06.2016 [81]. This was used as the input price. Annual operating costs of an owned
vessel were gathered from Maples et al. [46] at $ 77,500 per day, equalling 233.6 MNOK
per year using an exchange rate of 8.25 NOK per USD gathered 01.06.2016 [81].

When calculating lifetime costs, annual costs were discounted by a rate of 5% and the
lifespan was considered to be 25 years [12]. Present values of costs were calculated
using equation 10.2 for present value of an annuity [6], where CY is the yearly costs,
i is the discount rate and n is the number of payments. All other input data than the
number of wind turbines was unchanged.

PV = CY · 1− (1 + i)−n

i
(10.2)

Table 20: Input data for calculation of total lifetime costs when buying or chartering a
vessel

Parameter Value
Price of Vessel (MNOK) 1,110.0

Discount Rate 5%
Lifespan (Years) 25

Yearly Operating Costs,
233.6

Owned Vessel (MNOK)
Avg. Annual Crew Salary,

36.4
Chartered Vessel (MNOK)

It was assumed that time since commissioning or time until decommissioning of the
wind farm did not affect maintenance planning. This means that maintenance was
executed at the same rate in the months right after commissioning and right before
decommissioning as in the middle of the lifespan. This was a simplification, but
since the vast majority of the lifetime sees approximately equal failure rates, it was
considered feasible.

10.5.2.2 Results

Table 21 lists the obtained results for yearly and lifetime costs when chartering or
buying a vessel for different wind farm sizes along with recommended strategy and
cost differences between strategies. The yearly costs comprised of both downtime costs
and charter costs when chartering a vessel, while when buying a vessel, the yearly
costs consisted only of downtime costs. Vessel operating costs, the costs of purchasing
a vessel and crew costs were added to the pessimistic bounds and discounted over
the wind farm lifespan. As expected, yearly costs for both buying and charter were
lower for 50- and 75- turbine wind farms; actually when chartering, costs seemed to
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increase approximately linearly from 50 to 100 turbines. This comes as no surprise as
the expected number of failures increases linearly with wind farm size.

Table 21: Yearly and lifetime costs when chartering or buying a vessel. Values in col-
umn 2-5 are quoted in MNOK

Wind Farm Charter Costs Costs of Buying Charter or Cost
Size Yearly Lifetime Yearly Lifetime Buy? Difference
50 246.4 3,473.0 238.6 4,472.4 Charter 22.3%
75 335.8 4,733.4 242.0 4,520.3 Buy 4.5%
100 451.7 6,365.6 246.8 4,588.6 Buy 31.0%

As mentioned, the Extended Model suggested a high number of yearly vessel periods
for a 100-turbine wind farm. The results listed in Table 21 verify that buying a vessel
was 31% cheaper than chartering for a wind farm of 100 turbines. For the 75-turbine
wind farm, the difference was less pronounced, but still favored buying a vessel. For
the 50-turbine case, there was a significant difference in favor of the charter option
which was 22.3% cheaper. Based upon these findings and linear interpolation, for
wind farm sizes exceeding ∼ 71 turbines, buying a vessel should be considered.

It can be seen from Table 21 that the lifetime costs did not depend heavily upon the
wind farm size when buying a vessel. As downtime costs were the only variable costs,
this was expected, since these were only a small part of total yearly costs when char-
tering. In fact, downtime costs proved to be between 2% and 5% of yearly costs for
all wind farm sizes when chartering. Furthermore, the downtime costs did not in-
crease linearly with expected failures, even when owning a vessel; this points towards
a higher vessel utilization rate for larger wind farms. Utilization rate is thus a decid-
ing parameter in terms of whether chartering or buying a vessel is the best decision.
Because of the modelling method, full information about second stage decisions was
cumbersome to retrieve, but an estimate of the utilization rate was calculated. It was
assumed that the average number of time periods spent on maintenance was equal to
the average of columns three and four in Table 3, thus, 1.5, 4.5, 9 and 9 for components
1, 2, 3 and 4, respectively. The average yearly number of failures on each component
type for the different wind farm sizes were calculated using the failure probabilities
from Table 5. Then, these numbers were multiplied by the expected required vessel
periods to find the expected number of time periods the vessel was active. Resulting
estimated expected number of active time periods and utilization rates are listed in
Table 22.

The wind farm size for which lifetime costs were approximately the same for charter-
ing and buying, was calculated to be ∼71 turbines, and the corresponding utilization
rate was 13.1%, or 47.8 days per year. The fact that the vessel only needed to be used
13.1% of the time to make buying an economically viable option reflects an imbalance
in the jack-up vessel market. The demand is high compared to the supply, driving
prices up, as stated by Dalgic et al. [11]. Assuming lifetime costs for buying are
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Table 22: Estimated vessel utilization rate for different wind farm sizes in the case
where a vessel was bought. Utilization rate equals number of time periods
where the vessel was active divided by the total number of time periods.

Wind Farm Number of Failures Active Time Utilization
Size Comp 1 Comp 2 Comp 3 & 4 Periods (avg.) Rate
50 0.2 2.2 2.6 33.6 9.2%
75 0.3 3.3 3.9 50.4 13.8%
100 0.4 4.4 5.2 67.2 18.4%

fixed, increasing charter rates lower the utilization rate required to make buying an
economically viable option.

The 18.4% utilization rate for a 100-turbine wind farm was reasonably close to the
14.4% utilization rate found by Dalgic et al. [12] for long-term charter. Long-term
charter is in this case comparable to buying since the time horizon for charter could
be close to the wind farm’s lifespan. It should be noted that some assumptions and
input data for instance weather and vessel capabilities, in the article were different
from those used in this study. Further, Dalgic et al. utilize Monte Carlo simulation
rather than optimization methods.

As the utilization rates were so low, it is expected that sub-chartering the vessel is a
feasible option to acquire additional profits. However, sub-chartering will probably
increase downtime costs as the vessel is periodically unavailable. Moreover, the time
periods in which other wind farm operators would want to charter the vessel, are the
probably most favorable for the operator’s own wind farm. Considering downtime
costs were only a small part of expected yearly costs, significant increases can be
tolerated if sub-charter rates are anywhere close to current charter rates.

10.5.3 Economic Consequences of Using Basic Model Solutions

Assume that an operator of a 100-turbine wind farm allowing maintenance flexibility
in accordance with the Extended Model, uses the Basic Model to plan jack-up vessel
chartering. Following is an analysis of the economic consequences of such a decision.
Here, no crew costs were considered, only charter costs.

Costs and the number of vessel periods for Basic Model first stage solutions evaluated
using the Extended Model for different wind farm sizes are listed and compared to
Extended Model results in Table 23. The Basic Model solution selected for the 100-
turbine wind farm was the one which gave the pessimistic bound for the Basic Model
listed in Table 12. For the other wind farm sizes, the Basic Model was solved for ten
scenario trees and those which performed best, on average, in the other scenario trees
were selected.
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Table 23: Comparison of yearly costs when using solutions for Basic and Extended
Models for different wind farm sizes. Costs for the Basic Model were calcu-
lated as the Basic Model solution inserted in the Extended Model reference
tree

Wind Farm Vessel Yearly
Model Size Periods Costs (MNOK)

Basic
50 219 323.7
75 260 388.1
100 291 512.3

Extended
50 158 230.7
75 218 314.1
100 246 425.4

Examining Table 23, it is evident that if Extended Model assumptions apply, selecting
the chartering strategy suggested by the Basic model increased costs by 86.9 MNOK
annually compared to selecting the Extended Model chartering strategy, an increase of
20%. The increase in vessel periods was 18%, negatively affecting costs and yielding
an unfavorable utilization rate. Since there are so few time windows with continuous
favorable weather, the vessel periods must cover most of these to limit total penalty
costs. This shows that the Extended Model is economically useful since the Basic
Model solutions yielded unfavorable results.

The same analyses were conducted for 50 and 75 turbines with results listed in Table 23.
For the 50-turbine case, yearly costs increased by 93.1 MNOK, 40.3%, and the number
of vessel periods increased by 38.8%. For the 75-turbine wind farm, costs increased by
74.1 MNOK or 24% and the number of vessel periods increased by 19%. This shows
that the percentage cost increase became higher for smaller wind farms. In absolute
values, the cost increases were not that different when considering 50- and 100-turbine
cases, although the increase was higher for the 50-turbine case. In the stability testing,
it was shown that when solving the 100-turbine case with the Basic Model, the average
expected number of unrepaired components were 1.55, see Table 6. For the 50- and 75-
turbine wind farms, corresponding numbers were 0.29 and 0.79, respectively. Even if
the number of turbines, and thus the expected numbers of failures, were 50% and 25%
lower for the 50- and 75-turbine cases, the number of vessel periods suggested by the
Basic Model decreased only by approximately 25% and 10%, respectively. Because of
the future charter costs the Basic Model prioritized repairing more components rather
than decreasing the number of vessel periods. This is a result of the severe future
charter costs related to unrepaired components.
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C O N C L U D I N G R E M A R K S

This thesis proposes two-stage stochastic optimization models for the jack-up charter-
ing strategy problem for offshore wind farms considering uncertainty in weather and
failure rates. The first stage solution suggests when and for how long to charter a ves-
sel and the second stage decision suggests which turbines to service at what time. The
models differ in that the Basic Model requires maintenance to be completed in consecu-
tive time periods, while the Extended Model allows for weather-induced maintenance
breaks. A model introducing more than one vessel type is also presented. The impor-
tant output of the models is a suggested schedule for jack-up vessel chartering. As
exact methods struggled to handle large instances, greedy construction heuristics and
the Sample Average Approximation (SAA) method were applied to solve the problem.

Extensive stability testing of scenario generation methods was conducted to ensure
that the underlying uncertainties were satisfyingly represented. With the implemented
scenario generator, acceptable stability was found at around 100 input scenarios per
scenario tree. However, stability testing indicated that a higher number of scenarios
could potentially further improve solution quality. Moreover, results from stability
testing were used to establish SAA parameters. In line with stability testing, acceptable
SAA results were achieved when the number of samples was 10 and the sizes of sample
and reference trees were 100 and 1,000 scenarios, respectively. Again, results indicated
that a higher number of scenarios, or more samples, would be preferable. Uncertainty
in failure occurrences was considered the most problematic as the number of possible
combinations of failure occurrences is vast.

An important finding from the computational study was the difficulties of handling
unrepaired components. It was not desired to leave components unrepaired, as there
is no guarantee that these can be serviced at a later stage. However, as vessel charter
costs dominated turbine downtime costs and weather is harsh in the North Sea, the
models proposed to leave a high number of components unrepaired. In order to
comply with model assumptions, significant future charter costs were imposed even
if it was not considered to represent reality in a satisfying way.

It was shown that the SAA method in combination with a greedy, randomized heuris-
tic was a suitable way of handling the complexity of the problem studied. While the
SAA method reduced computational complexity, the heuristic found better pessimistic
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bounds than the exact methods. Thus, when applying SAA to solve the problem stud-
ied, the heuristic should be utilized to find pessimistic bounds. Compared to the
Extended Model, solution times in Xpress were significantly lower when the number
of repairs in each batch was limited.

In general, model solutions suggested a high number of vessel periods. Furthermore,
in Basic Model solutions, an average of 15% of failed components were left unrepaired.
This indicated that one vessel was not sufficient to service a 100-turbine wind farm
subject to North Sea weather conditions when Basic Model assumptions applied. This
was a result of too few time windows for performing maintenance, especially for the
components which required long repair times.

Economic analyses were conducted using the models proposed. It was found that the
wind farm size where lifetime costs of buying and chartering a vessel were equal, was
around 71 turbines. For wind farms with 71 turbines or more, the option of buying a
jack-up vessel should be considered. The accompanying approximate utilization rate
making buying an economically sensible option was a mere 13.1%, or 47.8 days per
year. When chartering, it was shown that vessel costs dominated turbine downtime
costs with the latter constituting only 2-5% of total yearly costs. These results show
an imbalance in supply and demand for jack-up vessels with the supply being low
compared to demand, driving charter prices up.

85



12

F U T U R E R E S E A R C H

This chapter suggests aspects of the problem that could be evaluated in future research.
Section 12.1 suggests uncertainties that could be incorporated. Sections 12.2 and sec-
tion 12.3 presents suggestions for sub-chartering and further developments for the
heuristics, respectively. In sections section 12.4 and section 12.5, suggestions for how
to handle unrepaired components and improve scenario generation are presented.

12.1 uncertainty in charter rates and electricity prices

The models in this study assumed deterministic charter rates and electricity prices
over the planning period. In reality, this was a bold assumption. As data for jack-
up vessel charter rates is scarce, rates for dry bulk carriers can be investigated. The
financial crisis in 2008 prompted a 93.5% collapse in dry bulk rates in seven months.
[80]. This shows, even if it is an extreme case, that severe uncertainty is present, thus,
the model should consider this in some manner.

Recently, the UK has contemplated reducing or even removing subsidies for offshore
wind farms [5]. Thus, revenue uncertainty for wind farm operators might increase
drastically. This aspect should be incorporated in future models. One can argue that
electricity prices carry less uncertainty than charter rates. At least in the Norwegian
market, the production is somewhat flexible given enough water in hydropower reser-
voirs. Even so, a more realistic model should incorporate electricity price uncertainty.

If incorporating uncertainty in charter rates and electricity prices proves too time-
consuming or difficult, sensitivity analysis can be conducted. For instance, low,
medium and high prices/rates can be used as input and the solutions investigated
to assess the effect.
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12.2 sub-chartering

In the case where the jack-up vessel has been chartered and all failed components are
repaired, the opportunity to sub-charter the vessel might limit any losses incurred by
the wind farm operator. Because of the relatively long planning period, sub-chartering
might mitigate some of the significant risk faced; if more uncertainties are added to
the model, sub-charter provides valuable flexibility. In line with reality, a minimum
sub-charter period should be imposed on the model.

12.3 further development of heuristics

As seen in chapter 10, the heuristics developed in this study has a potential for further
development. For instance, improvement heuristics can be introduced together with
tabu search to create better batches. A simple example is for every batch, to remove
the most expensive or the most time-consuming maintenance operation and add an-
other operation from a candidate list. Tabu criteria should be implemented to ensure
maintenance operations previously in the batch are not added once more.

The authors suggest the dominance criteria utilized in this study to be investigated.
The criteria were most likely too weak to erase a substantial number of batches when
the number of repairs in a batch exceeded two. Improved heuristics might enable
solving larger scenario trees and limit the need for the somewhat cumbersome SAA
method. To facilitate usage of heuristics, the scenario generation and heuristics code
written for this study should be rationalized. Probably, the highest potential for im-
provement is in the heuristics code which increased the time needed for scenario gen-
eration by approximately 240%.

12.4 handling of unrepaired components

As described in subsection 10.1.7, the way the proposed models handle unrepaired
components is problematic. The enforced future charter for leaving components un-
repaired throughout the planning period does not reflect reality in a satisfying way
since the penalty is incurred for every unrepaired component in every scenario. In
this study, if the expected number of failures was used instead of the actual total, the
vessel was seldom chartered at all, see subsection 10.1.7. The authors suggest that the
way of handling penalty costs for unrepaired turbines is investigated and altered.

One way to handle unrepaired components is to introduce multiple objective functions
and use Pareto fronts. The idea would be to have one objective function minimizing
the number of unrepaired components and another minimizing costs without taking
unrepaired components into account. A Pareto front can be found iteratively by first
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fixing the maximum number of unrepaired components to a high number, then grad-
ually decreasing it and solve the cost problem for every instance. This may better
handle the unrepaired components and lead to more realistic solutions in terms of
both first stage decisions and objective values.

12.5 improved scenario generation

In stochastic programming, representing uncertainty, especially uncertainty with mul-
tidimensional distributions, is difficult [29]. Failure uncertainties, in combination with
weather uncertainties, are considered multidimensional as no significant correlation is
present. Thus, it would require a huge number of scenarios to satisfyingly represent
these uncertainties. In this study, the number of weather scenarios was nine. There-
fore, with 1,000 scenarios in total, 111 failure occurrence scenarios were considered for
each weather scenario, on average. Considering the vast number of possible combi-
nations of failure occurrences, this might not be enough. Further, no means of reduc-
ing the number of scenarios required to represent these uncertainties were evaluated.
This is, however, suggested for future research. If the number of scenarios required
to represent, for example, failure uncertainties, is reduced, this could help improve
computational times and allow for uncertainty in, for instance, electricity prices to be
considered. One known method for scenario reduction is moment matching. The idea
behind moment matching is to match the statistical properties, such as mean, variance
and skewness of the population sample to the corresponding statistical properties of
the entire population [29].
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