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Abstract—In this paper we take a closer look at the operation
of software defined networking (SDN) in intra-domain networks.
The focus is on the dependability issues related to interworking of
SDN controllers, network OS (NOS), and forwarding in the data
plane. Both the separation of the control and data planes, and the
(virtually) centralized control processes, are challenging from a
dependability perspective. In particular, consistency in operation
and information is a challenge, both between the control and data
planes, but also within a given plane. To ensure the necessary
level of consistency there could be a conflict with the strict real-
time requirements given by the per-flow operation of the SDN
controller. A principle system model is introduced to discuss
the consistency challenge, and to point out undesirable cyclic
dependencies between functions that are necessary to configure
and operate SDN. The separation of control processing and
forwarding do also introduce structural vulnerabilities, which
are exemplified.

Index Terms—Software defined networking, dependability,
structural analysis, threats

I. INTRODUCTION

Software Defined Networking (SDN), a fast emerging
paradigm, is changing how networks are designed and man-
aged. It is claimed that SDN has great potential to change the
way networks operate [1], because it has centralized control,
which implies simplified algorithms to configure and control
sessions on a per flow basis. This has the advantage that you
can run the forwarding plane on commodity network hardware,
eliminate middleboxes, and ease and open up the network to
design and deployment of new third-party service applications.

SDN is an architectural framework for creating pro-
grammable networks that are application aware and more
open. The two major characteristics are (i) the separation of
the control plane from the data plane with the establishment of
abstractions between the two planes, and (ii) the consolidation
of the control plane whereby a single software control plane
controls multiple data plane elements [2]. A high level layered
view of the SDN architecture is shown in Figure 1. Thus,
SDN enables applications to request and manipulate services
provided by the network and allows the network to expose
network state back to the applications. The key service offered
by SDN is the provisioning of end-to-end services in an
optimal manner, and in near real-time where the granularity
can vary from individual flows to large traffic aggregates.
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Fig. 1. SDN architecture from IETF RFC7426 [3]

Examples of services provided by SDN include new connec-
tivity services such as bandwidth-on-demand and scheduled
bandwidth; multi-layer transport (IP and transport) with cross-
layer awareness and convergence; access/aggregation virtu-
alization for differentiation of customer groups with policy
enforcement at the network edge, service creation and insertion
to automate traffic steering; network analytics and monitoring
for optimizing network resources and flows, and load balanc-
ing [4]. As seen from Figure 1, management is an integral part
of SDN. With respect to dependability, the fault management
functionality is of utmost importance.

SDN has attracted a lot of attention over the last few years,
and with reports of successful applications of SDN such as in
and between Google’s data centers [5], the focus is amplified.
Two surveys of SDN [1], [6] present the past, present and
future of programmable networks starting from the OPENSIG
group in 1995 and to SDN today. In addition, the Internet
Engineering Task Force (IETF) recently published an RFC
7426 [3] where they define a taxonomy and an architecture for
SDN. Both the surveys and the RFC point at several research
challenges, but dependability issues are touched on only briefly
with respect to the conflict between real-time requirements and
the need for consistency.



The main objective of this paper, therefore, is to present
a qualitative analysis of the SDN architecture with respect
to dependability, in order to provide insights and guidance
for the design phase. The main contribution of this paper
is the identification of dependability issues that need to be
addressed in the design of SDN to ensure proper functionality
and dependable operations. A few known dependability issues
are recognized, that should either be avoided, or carefully
addressed.

In Section II a system model of SDN is described, followed
by Section III where different dependability challenges are
identified and discussed. Related work is described in Sec-
tion IV. In Section V, two simple system examples are intro-
duced to demonstrate the potential in structural analysis for
assessment of dependability. Section VI contains concluding
remarks and directions for further research.

II. SYSTEM MODEL OF THE SDN ARCHITECTURE

The data plane does packet forwarding and switching on
predefined ports as per the current routing table, which is
maintained and updated by the control plane through a routing
protocol. In conventional routers the control plane logic and
the routing software are highly integrated and deployed on the
same hardware node as the forwarding engine. In SDN, the
control and the data planes are separated and the complexity of
the control logic is moved to an SDN controller. The controller
logic is (virtually) centralized, and will typically be deployed
on multiple controller processes for fault-tolerance and scala-
bility. The controller processes run on one or more servers that
may be co-located or distributed over a geographical distance.

Figure 2 shows a system model of the SDN architecture
to point out potential dependability challenges. The model
includes the control and data planes in the SDN architecture
in Figure 1. The focus is on the interworking of replicated
SDN controllers, the network OS (NOS), and the forwarding
in the data plane through the network devices.

The controller service and application processes in the
control plane will be replicated, both for fault-tolerance and
load sharing purposes. The best replication strategy is a trade
off between the dependability and performance requirements.
For fault-tolerance physical and geographical separation is
recommended, while for load-sharing it is useful to have
shared data disc or memory storage, for which physical, or
at least geographical co-location is recommended to minimize
propagation delays. The model shows an example of the
physical connections between the network devices in the data
plane, and (dual-homed) connections to the physical platform
of the control plane. This network connectivity is important
for the enabling of federation of controller processes, for the
geographical separation in the control plane, to get flow state
(in the data plane) and to set flow configuration.

III. DEPENDABILITY CHALLENGES

In this section we take a closer look at what can go wrong in
terms of failures and data inconsistencies and discuss potential
countermeasures to mitigate these problems. Furthermore,
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Fig. 2. SDN system model showing the separate data and control planes

we pose fundamental questions regarding the dependability
of the proposed SDN architecture in RFC 7426 [3], where
the consistency of information is challenging. The necessary
means to meet the dependability requirements might be in
conflict with the strict real-time requirements given by the
per-flow operation of the SDN controller.

A. Services and metrics

The service provided by SDN is the provisioning of end-to-
end connectivity for a session or flow on the IP and transport
level as per the functional requirements. That is, with the
required attributes such as bandwidth, security, multicast or
unicast service, QoS, etc.

Availability is the delivery of service in compliance with the
service specification [7]. Reliability is the continuity of service
in compliance with the service specification [7].

We define here the availability and reliability metrics in the
context of SDN.

• Availability - Probability of the readiness to provide
service compliant with the requirements, for example,
service new demand

• Partial availability - Probability of the readiness to pro-
vide service compliant with a subset of the requirements,
downtime is pro-rated, for example, service some of the
demands

• Reliability - Probability of the continuity of service
compliant with the requirements, for example, provide
service for the required duration and then terminate

We have not seen explicit availability and reliability require-
ments for SDN such as the traditional ”five 9’s” availability
requirements for telecom products. A comparable requirement
could be ”the SDN control plane should have an availability
of x 9s”. Given that the SDN control plane is comprised of
multiple federated controllers the expected availability will be



greatly influenced not only by the topology and replication
scheme, but also by the underlying network and servers
used for control plane elements. This indicates the need for
availability budgets for each of the elements in the serial path.
In addition, availability and reliability requirements can be
specified on a per service basis, which would typically be
specified in Service Level Agreements (SLAs).

There is a growing concern from the telecom community
about the reliability/availability (R/A) of emerging technolo-
gies, e.g., Software Defined Networking (SDN), Network
Function Virtualization (NFV), Cloud Computing networks,
including services provision under failure conditions. Recent
discussion in the IEEE/CQR standards groups, and IEEE
SRPSDVE Study Group, are suggesting that the reliability
requirements of Emerging Technologies (SDN/NFV) should
move away from a white-box approach to a black-box ap-
proach.

• White-box approach: PSTN (public switched telephone
network) RAM (Reliability, Availability, Maintenance)
metrics or criteria are derived from, and are specific
to, PSTN service, architecture and technology. A tight
coupling of network functions to Network Elements (NE),
architecture and geography exists.

• Black-box approach: With emerging network technolo-
gies it is not appropriate to transfer Network Function-
specific box metrics to multi-service packet NEs using
NFV and SDN. In NFV and SDN systems there are
multiple applications and multiple services over packet
networks, with a diverse set of architectural options
and decoupling of control and network functions from
the hardware. There is a need for new user-driven R/A
metrics based on service criticality, failure modes, costs.

The RAM metrics must be de-coupled from equipment to
the Virtual Network Function (VNF). A new metrics hierarchy
needs to be established, consisting of service, network, and
VNF-subsystem. In a service view, the focus is on user-driven
metrics such as service failures, service outage, poor QoE, etc.
This requires consistent SLAs that are rich with respect to
reliability and availability attributes. In this context, it should
be kept in mind that an SDN handling individual flows, defacto
is handling virtual paths in the network. Hence, the connection,
transfer, disconnect phases, cf. ITU-T I. 350 [8], become
relevant in establishing SLAs. The SLAs are derived from the
service requirements and will drive the specification of the
network requirements.

B. Consistency and availability

Consistency challenges are found between the controller
processes in the control plane, between the switches in the data
plane, and between the control and data planes. Horizontal
consistency is between the replicated control processors that
need to have the same global view of the current state of
the data plane in order to assign new flows optimally while
maintaining the existing flows. In the data plane, all switching
ports associated with the active flows must be consistently
set. Vertical consistency means that the state information sent

between the data and control plane must (i) reflect the current
state of all the switches and flows in the data plane, and
(ii) correctly update all ports in the switches of the data plane
with the optimal solution from SDN controllers.

In the management plane and in its dealing with the
network devices, both horizontal and vertical consistency must
be maintained. For management operations, the transaction
volume is less and the real time requirements weaker, which
eases the maintaining of consistency. However, in handling
faults, the management plane relies on a data plane with failed
elements to perform a set of consistent operations, which
introduces a functional interdependence problem as discussed
in Subsection III-F.

For strict guarantees of the consistency atomic actions are
required, [9]. These are time consuming, imply a trade-off with
availability of the flow forwarding, and are in conflict with
the real-time requirements for a flow setup and per incident
handling. This will increase the application logic complexity
and robustness to inconsistency ([2], and ref therein), and
increase the failure probability and consequences of a failure.

The conflict between consistency in data and availability of
a function that depends on these data, is a classical problem,
e.g., as defined by the CAP-theorem (Consistency, Availability,
Partition tolerance) [10]. In SDN the conflict is between strict
consistency of the state information about the active flows
(both from data plane to the control plane, and between the
processes in the control plane) for the optimal flow assignment
procedure, and the need for continuity (reliability) of the flow
forwarding in the data plane. For short lived flows (”mice”)
it is (almost) impossible to have an optimal, consistent flow
assignment at any time, which implies that per flow setup
might not be feasible. Another, and important, comment is
that the optimization of flows should not reorganize the global
flow assignment for every change in the active flows, because
it implies too many, and time consuming, network device
reconfigurations. Note also that reorganizations that are not
synchronized will cause micro-loops and packet loss.

The bottom line is that the compromise between the consis-
tency and availability must be carefully addressed. The focus
should be on potential alternatives to per flow updates (at
least for ”mice”-flows), and on the time granularity of the
consistency and availability requirements. It is impossible to
be ”always” consistent and available. Priority should be given
to meet R/A requirements, because typically it is better to
ensure that the flows can be setup (system is available), rather
than that the flow assignment is always optimal.

The control applications will be plentiful, not necessarily
well defined (out of the control of the network operator) and
their mixture will change rapidly. This will pose a challenge
with respect to the stable operation of the control system.

C. What can fail?

In general, software faults/errors and failures cannot be
associated with a single controller node or implementation of
a specific functionality, and may have network wide impact
(see Table 1):



• Failures dues to design/software.
• ”Common mode” among several controllers due to sim-

ilar software and corresponding failures triggered by the
same condition.

• Error propagation; an incorrect internal state is spreading
in the system, which is difficult or impossible to rectify
by restarts or reloads of individual controller nodes.

• Escalation of failures; the consequence increases through-
out (part of) the recovery stages.

• The network OS is likely to be a software dependability
”bottleneck”.

• Operational/procedural errors (e.g. configuration failures)
are the cause of the majority of network outages today.
In SDN, the frequency of procedural failures should be
reduced because of automation. However, due to the
complexity and large span of control, when failures do
occur the impact of failures will be widespread with
long recovery times, since the root causes are difficult
to determine.

D. Network operating system

The network operating system (NOS) in the control plane is
responsible for collecting state information from the switching
elements, including port assignment, physical topology, active
flows. The NOS also updates the ports in each node according
to the optimal flow assignment obtained by the optimization
process in the SDN controller, which is triggered by new flows,
termination of flows, node failure and repair. The update of
ports in every affected node has to be an atomic action in order
to guarantee consistency. This means that an update action
must be successfully completed for all switching elements, or
not performed at all for any of the elements. Furthermore, no
other updates must be active at the same time. Ensuring atom-
icity is a time-consuming process, that might be in conflict
with strict real-time requirements that are put on the update of
routing information in the switches on a per flow basis. Many
of the flows are short lived. Some of the existing NOS attempt
to address these issues. One example is Onyx [11]. Onyx
has incorporated work from distributed systems to satisfy the
state consistency and durability requirements. It runs an active
timer to detect inactive flows when the timer expires. Onyx
has a persistent transactional database backed by a replicated
state machine for slowly-changing network state and an in-
memory distributed hash table (DHT) for fast changing state
with weaker consistency requirements. The ONOS system is
an open source controller offering similar functionality [12].

There are several concerns that makes the design of a fault-
tolerant NOS controller very challenging:

• new fault modes for new virtualization layers
• virtualization separates the HW and the HW fault detec-

tion system
• root cause analysis of the network OS failures may be

difficult to correlate to the physical layer (HW server
failure which caused the NOS failure) and there is a
likelihood that new instances of the NOS may be started
on the failed HW server

• if not architected properly (NOS and controller) in terms
of placement of redundant instances on HW servers,
failure of a server could span multiple functions/instances
and the probability of a catastrophic failure could be
higher than with traditional network physical infrastruc-
ture.

E. Path restoration in the data plane

With reconfiguration and rerouting requirements in the order
of 10-20 ms, these operations have to be done in hard-
ware [13]. The implication is that the switches need support
for this, since neither the OS on the switch, and definitely not
the NOS and the SDN controller are able to do this within
such a short time window.

F. Functional interdependence

The control system is dependent on the data-plane it is
controlling for its functionality, and vice versa. Setting up a
depends on graph [14] between the (internal) services in the
system may yield a graph with cycles, where fault tolerance
and proper fault handling cannot be guaranteed.

In a depends on graph, cycles of dependencies should not
exist. Figure 3 shows the relation between management of
path setup in the control plane, which depends on that the
paths in the data plane are correct. This is only possible if the
path is correctly selected and setup. The cyclic dependency
is bad from the dependability perspective. However, as shown
in Figure 3, a solution is to pre-provision redundant paths in
the data plane dedicated for control traffic. This includes the
updates of data plane state information, and the configuration
of the new paths in the data plane. The cycle is then broken.

Path selection process

Path setup

End-to-end packet flow

Maintenance of global view

Fig. 3. The depend-on-graph for SDN. With preplanning of redundant
paths in the data plane for control traffic, the inter-dependency is removed
as indicated by the crossed out link. Then the dependency cycles is broken.

G. SDN in the inter-domain

It is not clear how SDN will work in the inter-domain,
and how the interworking will be between the conventional
IP domain and an SDN enabled domain. There is a min-
imum of information that needs to be exchanged between
domain-specific control planes to optimize and improve the
end-to-end performance and dependability, and also security,
e.g. detecting attacks in progress. Proper incentives must be



TABLE I
THREATS TO DEPENDABILITY

Error in Failure impact

1. Controller
• NOS instances Restart NOS instance

• partial outage for restart duration
• includes time to get state information from FE

• Controller software Recovery based on redundancy scheme implemented
• loss of service in transition state (e.g., connection setup)
• loss of state information if cold standby or no checkpointing
• partial outage for recovery duration

• Controller hardware Recovery based on redundancy scheme implemented
• loss of state information if cold standby or no checkpointing
• partial outage for recovery duration

2. Connectivity
• Link NOS instance (incorrectly) assumes FE is failed and updates global view accordingly, which results

in inconsistent state information among NOS instances until the link failure is detected and the
physical network automatically reconfigures (5 ms in the best case)

• Forwarding element (FE) Inconsistent global network view for the duration of the error detection interval for the FE failure
• NOS instance and FE Incorrect state information in NOS instance

3. Between controller instances
• Intra-domain Inconsistent state information amongst controllers, which implies service failure due to incorrect global

network view, partial downtime confined to impact controller instances, and in worst case is total downtime
• Inter-domain

4. Design or software Likely to have network wide impact
• Common mode software Failure of several controllers
• Incorrect internal state Error propagation of incorrect state, requires system restart and not only restart of individual nodes
• Failure escalation

5. Procedural
• Mis-configuration of networks

defined for the providers and operators to exchange more
information, for instance though a richer SLA. Furthermore,
the interworking between communication systems, and other
critical infrastructures, such as the Smart Grid, is an unsolved
challenge. In this interworking, we not only increase the
complexity of the (virtually centralized) control, but also add
logic and increase the complexity to the controlled devices.

IV. RELATED WORK

Given the great interest in SDN there has been considerable
work published on the topic in recent years. However, work
in terms of the overall system dependability of SDN is rather
limited. Different studies focus on either the controller logic
or the network OS. In this section we survey the existing work
on SDN dependability and identify where there are gaps.

Kreutze et al. [6] provide a comprehensive survey on
SDN covering its context, rationale, main concepts, distinctive
features, and future challenges; and include the research efforts
and challenges for the design of switches and control platforms
with a focus on resiliency, scalability, performance, security,
and dependability. In a subsequent work they [15] posit that
security and dependability of the SDN is still an open issue
and list threat vectors that can enable the exploitation of SDN
vulnerabilities, and outline concepts for the design of a secure
and dependable SDN control platform.

The reliability and scalability issues for SDN that are pre-
sented in [16], focus on additional computational and network
resources consumed due to the decoupling of control and

data planes which can lead to additional failures. They study
disaster scenarios running experiments on a GENI test-bed.

Algorithms for the reliability-aware placement of controllers
in SDN are developed to maximize the reliability of the control
network [17]. The metric used to characterize the control net-
work reliability is the expected percentage of control path loss.
Their results show that proper placement of controllers in the
SDN can improve reliability without introducing unacceptable
switch-to-controller latencies.

Sharma et al. [13] focus on fault tolerance of OpenFlow
(a communications protocol used in SDN to access the data
plane) for deployment in carrier-grade networks where there
is a requirement that the network recovers from switch and
link failures within a 50 ms interval. Their simulation results
show that if the controller has to notify all the switches about
recovery actions (restoration and protection) this can cause
a significant load on the controller and OpenFlow may not
be able to achieve failure recovery within a 50 ms interval.
Adding the recovery action in the switches then the switches
can do recovery without the controller and achieve recovery
within 50 ms in a large-scale network serving many flows.

Shalimov et al. [18] present an analysis of the perfor-
mance, scalability, reliability, and security of some open source
SDN/OpenFlow controllers (NOX, POX, Beacon, Floodlight,
MuL, Maestro, Ryu). Their overall results indicate that the
tested controllers are not ready to be used in production,
and have to be improved in order to improve all the above



mentioned characteristics. Reliability here is the ability of the
controller to continuously provide service, which means to
provide service under an average workload without acciden-
tally closing connections with switches or dropping OpenFlow
messages from the switches. To evaluate the reliability, the
number of failures during long-term testing under a given
workload is measured.

The work by Ros et al. [19] is focused on determining how
many controllers need to be instantiated, where they must
be deployed, and what network nodes are under control of
each of them, in order to achieve at least five nines reliability
in the southbound interface between controllers and nodes.
For this, the Fault Tolerant Controller Placement problem is
presented and a heuristic algorithm is developed that computes
placements with the required reliability. The algorithm is run
on a set of 124 publicly available network topologies. The
results indicate that each node is required to connect to just 2
or 3 controllers, which typically provides more than five nines
reliability. At the same time, the total number of controllers
varies greatly and is more related to the network topology than
to the network size, 10 controllers or less cover 75 % of the
most interesting cases.

To achieve resilient control traffic forwarding, the authors
of [20] investigate the protection of control traffic in SDNs
with multiple controllers combining local rerouting and con-
strained reverse forwarding protection. This scheme enables
switches to locally react to failures and redirect the control
traffic to controllers by using standby backup forwarding
options. The goal is to find a set of primary routes for control
traffic whereas much control traffic as possible can benefit
from the proposed protection scheme. Simulation results on
real topologies show that the approach significantly improves
the resilience of control traffic.

In SDN the network controller can be a single point of
failure. In [21] the authors consider different active/standby
strategies to provide a controller failover in the event of a
failure. A high-availability controller architecture is proposed
and a prototype is developed to demonstrate the efficiency of
the solution and demonstrate experimental results.

V. EXAMPLES: STRUCTURAL ANALYSIS OF SDN

In this section two examples of qualitative structural anal-
ysis are given. The examples illustrate the increase in the
vulnerability of an SDN system, which requires connectivity
between network elements and the controller(s) in addition to
connectivity in the forwarding path.

A. Simple example

In the first example we are considering the SDN system
model from Section II. The four replicated control processes
are merged into one highly reliable process, which is dual-
homed with node 2 and 4. The CDN and BGP nodes are not
included in the model. This is illustrated in Figure 2 where
also the network elements (links and nodes) are labelled.

From a qualitative assessment perspective, the vulnerability
is best illustrated by identifying the minimal cut sets, S, i.e.,

the minimal sets of network elements whose failure causes
inability to establish a connection between node n1 and n5,
[22]. We assume that both nodes and links in the system may
fail.

SDN controller

   COREn1 
(ingress)

n3

n5 
(egress)

n4

n2

n0

l1,3

l1,2

l2,5
l3,4 l4,5

l3,5

l2,4

l0,4

l0,2

Fig. 4. Case for structural analysis of SDN model in Figure 2

Establishing a connection requires the following paths:
• flow triggering: a path for the trigger message that should

be sent from n1 to n0 (SDN controller) on arrival of a
new flow

• network state update and route directives: a path from
the SDN controller to each node, ni, i = 1, · · · , 5.

• forwarding: a path from n1 to n5

The structural analysis for the connection from n1 to n5 in
the SDN example, identifies that S consists of 26 minimal cut
sets, S = {s1, . . . , s26}:

S = {n0, n1, {n2, n3}, {n2, n4}, {n2, l0,4}, {n2, l1,3},
{n2, l3,4, l3,5}, {n2, l3,4, l4,5}, {n2, l3,5, l4,5}, {n3, n4, l2,5},
{n3, l1,2}, {n3, l2,4, l2,5}, {n3, l2,5, l4,5}, {n4, l0,2},
{n4, l1,2, l2,5}, {n4, l1,2, l3,5}, {n4, l1,3, l2,5},
{n4, l2,5, l3,5}, n5, {l1,2, l1,3}, {l1,2, l2,4, l3,5, l4,5},
{l1,2, l3,4, l3,5}, {l1,3, l2,4, l2,5}, {l1,3, l2,5, l3,4, l4,5},
{l2,4, l2,5, l3,4, l3,5}, {l2,5, l3,5, l4,5}}

The vulnerability in this example study is reflected in the
number of low cardinality cut sets, i.e., the system fails with
few simultaneous network element failures. Hence, we regard
the cardinality, cj = ‖sj‖ of each of the minimal cut sets,
j = 1, · · · 26. In Table II each column contains the number of
sets that have cardinality k, i.e., Ck = ‖{sj ∈ S|cj = k}‖,
k = 1, 2, 3, 4. The table compares the minimal cut sets of
an SDN system with a conventional IP network where the
control plane is embedded in the nodes, ni, i = 1, · · · , 5. For
the conventional IP network control node n0 is not required
and only a forwarding path is needed. From the table we can
see that the number of minimal cut sets with cardinality one
has increased from 2 (the peering nodes n1 and n5) to 3 due to
the inclusion of control node n0. Furthermore, observe that the
number of minimal cut sets with cardinality 2 has increased
from 4 to 7. This indicates that, even in this very simple



TABLE II
THE DISTRIBUTION OF THE CARDINALITY OF THE MINIMUM CUT SETS

FOR AN IP NETWORK AND AN SDN

C1 C2 C3 C4 sum
IP network 2 4 12 3 21
SDN 3 7 13 3 26

example, a significant increase in vulnerability is observed for
the SDN case that is not explained solely by the introduction
of a single control node. As the next example shows, similar
results are obtained for larger networks with two independent
controller sites that are disjoint and dual-homed to the network.

B. A nation-wide backbone network example

In the second example we study a nation-wide backbone
network that consists of 10 nodes across 4 cities, and two dual-
homed SDN controllers, see Figure 5 for an illustration of the
topology. The nodes are located in the four major cities in
Norway, Bergen (BRG), Trondheim (TRD), Stavanger (STV),
and Oslo (OSL). Each town has duplicated nodes, except
Oslo which has four nodes (OSL1 and OSL2). The duplicated
nodes are labelled, X1 and X2, where X=OSL1, OSL2, BRG,
STV, and TRD. In addition to the forwarding nodes, there are
two dual-homed SDN controllers (SC1 and SC2), which are
connected to TRD and OSL1.

CORE

SDN controllers

OSL12

TRD1 TRD2

SC1

OSL21 OSL22

STA1 STA2

BRG1 BRG2

SC2

OSL11

metro/
access
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metro/
access
network

long-distance link

intercity link

Fig. 5. Case for structural analysis of SDN model of a nation-wide backbone
network

The objective of the study is again to compare SDN with
traditional IP network, with the same topology and localization
of IP routers and SDN forwarding switches. We assume that
nodes, links and controllers in the system may fail. The peering
traffic in a city is routed through an access and metro network,
with a connection to both (all four) nodes in the city. The
system is working, i.e., is up, when all the access and metro

networks are connected. Note that for SDN, a controller must
also be reachable from all nodes along a working path.

The structural analysis for all the possible connections in the
SDN example shows that the cardinality of the set of minimum
cut sets, S, is ‖S‖ = 2916. The cardinality, cj = ‖sj‖ of
each of the minimal cut sets, j = 1, · · · 2916 is given in
Table III. Each column contains the number of sets that is
Ck = ‖{sj ∈ S|cj = k}‖, k = 1, · · · , 13. The table compares
the minimal cut sets of SDN with a conventional IP network
where the control plane is embedded in the nodes, and hence,
no controllers are needed.

The number of minimal cut sets with cardinality one is
equal to zero because traffic sources are at least dual-homed
and there are two dual-homed control sites. The number of
C2 minimal cut sets has increased from 3 to 4 due to the
control nodes. Note that also the number of C3 minimal cut
sets has almost doubled. This indicates that in this example, a
significant increase in vulnerability is observed for the SDN
case that is not explained solely by the introduction of a control
node, but the fact that a controller must be reachable from
every node across the backbone in order for the network to be
working.

C. Two level hierarchical modeling

From the structural analysis in this section, assuming inde-
pendence between network elements, the network availability
may be obtained by applying the inclusion-exclusion principle
to minimal cut sets, provided that the availability of all the
network elements is known. There are two main challenges
with this approach (i) the network elements are not always
independent with respect to failure and repair, (ii) to obtain the
availability of the network elements is challenging as elements
are comprised of hardware and software components (sub-
elements) with many failure modes and repair strategies. With
more detailed models of the network elements, where the com-
pound elements are subdivided into smaller, and to some extent
known components, it is more likely that we can estimate the
model parameters, and come up with reasonable numerical
values that can be applied for quantitative assessment. Such
models can be expressed applying for instance Markov models
or (Stochastic) Petri Nets. Hence, a hierarchical combination
of structural models to handle the large scale of a full network,
and more detailed model for each type of elements, or a group
of interdependent elements, is regarded as a viable approach.
In [23] an extension of the system example of this section
is presented, where such a two level modelling approach is
applied.

VI. CLOSING REMARKS

This paper presents some of the dependability challenges
associated with the operation of SDN networks. There are
several areas of concern, one being that the controlling of the
forwarding plane depends on the very same forwarding plane
that is to be controlled, and another is the potential side-effects
of moving from traditional networking with autonomous and
distributed control designed for connectivity, to a centralized



TABLE III
THE DISTRIBUTION OF CARDINALITY OF THE MINIMUM CUT SETS FOR THE IP NETWORK AND SDN

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 sum
IP network 0 3 8 91 304 360 356 189 70 13 1394
SDN 0 4 15 107 340 520 780 584 302 170 59 31 4 2916

control with focus on QoS and cross-layer resource utilization.
The dependability challenges related to this include how to
ensure consistency in operation and information both between
the control and data planes, but also within each of the control
and data planes. The depends on graph illustrates this with
a principal system model and points out undesirable cyclic
dependencies between functions that are necessary to config-
ure and operate SDN properly. There is a tradeoff between
providing continuous guaranteed consistency and the real-time
requirements given by the failure handling, and the path setup.
Another tradeoff is the need to geographical separation of
controller process replication for fault tolerance, versus the co-
location of the same replicas to enables efficient load-sharing.

Two examples of simple structural analysis of SDN are
presented, which show that the minimal number of cut sets
with a given cardinality is greater for SDN than for a
comparable IP network. To demonstrate the full potential
of the qualitative assessment approach, even larger examples
should be studied. Furthermore, for quantitative assessment a
hierarchical combination of structural models to handle the
large scale of a full network, and more detailed dynamic
model for each type of elements, or a group of interdependent
elements, is regarded as a viable approach. This is work in
progress that will make a more realistic case and the improve
the relevance of the analysis.

In order for the SDN to be applicable in the inter-domain,
and in interworking between the conventional IP domain and
an SDN enabled domain, there is a minimum of information
that must be exchanged to manage the end-to-end security,
performance and dependability. An open and important re-
search question is how to define proper incentives so that
the providers and operators are willing to exchange more
information, for instance through richer SLAs.
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