
Accelerated Smoothing and Construction
of Prolongation Operators for the
Multiscale Restricted-Smoothed Basis
Method on Distributed Memory Systems

Fredrik Johannessen

Master of Science in Physics and Mathematics

Supervisor: Knut Andreas Lie, MATH
Co-supervisor: Olav Møyner, SINTEF anvendt matematikk

Department of Mathematical Sciences

Submission date: October 2016

Norwegian University of Science and Technology

Abstract

During the last two decades, several multiscale solvers have been developed in
an attempt to reduce the computational cost of reservoir simulations. One such
method is the recently proposed and promising multiscale restricted-smoothed ba-
sis method. As with other multiscale methods, it relies on capturing local varia-
tions in form of basis functions, which are represented by a prolongation operator.
The prolongation operator is used to develop a coarse system, and after this system
has been solved, the operator is used once more to construct a fine-scale pressure
approximation from the coarse-scale solution. The basis functions are solutions to
local flow problems, and are formed by an iterative algorithm that gradually makes
them algebraically smooth while restricting them to remain local and preserving
partition of unity for the union of basis functions.

The work presented in this thesis has been made to advance the computational
efficiency in the construction of the prolongation operator. A modified version of
the preexisting construction algorithm is presented, which has shown to be more
numerically stable. Further, two Gauss-Seidel type smoothers are proposed as al-
ternatives to the currently used relaxed Jacobi smoother. Numerical evidence is
presented which suggests that the new smoothers have improved convergence rate.
The second contribution in this thesis is a program able to compute the prolonga-
tion operator on distributed memory systems. Results show that a high speedup of
the iteration algorithm can be achieved, but it greatly depends on the number of
connections in the reservoir model.

i

ii

Sammendrag

Flere multiskalametoder har blitt utviklet gjennom de siste par tiårene i et forsøk
på å redusere beregningskostnadene innenfor reservoarsimulering. En av disse
er den nylig foreslåtte og lovende multiskala-begrenset-glattede basis metoden. I
likhet med andre multiskalametoder bygger den på å fange lokale variasjoner i
mediets egenskaper i form av basisfunksjoner, som er representert med en pro-
longeringsoperator. Prolongeringsopperatoren brukes til å mappe ukjente definert
på et grovt grid til ukjente definert på et fint grid. Ved å sette operatoren inn det
fine likningssystemet og summere disse for hver grov blokk, får man et redusert
sett av likninger. Etter at det reduserte problemet er løst, brukes prolongeringsop-
peratoren igjen til å konstruere en finskala trykkapproximasjon fra den reduserte
løsningen. Basisfunksjonene er løsninger av lokale problemer, og er konstruert
gjennom en iterativ algoritme som gradvis gjør dem algebraisk glatte, samtidig
som de begrenses til å forbli lokale og bevare partisjon av enheten for unionen av
basisfunksjoner.

Arbeidet som presenteres i denne avhandlingen har blitt gjort for å utvikle
beregningseffektiviteten i konstruksjonen av prolongeringsoperatoren. En modifis-
ert versjon av den eksisterende konstruksjonsalgoritmen presenteres, som har vist
seg å være mer numerisk stabil. Det introduseres også to modifiserte Gauss-Seidel
glattere som foreslåtte alternativer til den nåværende Jacobiglatteren. Numeriske
resultater blir presentert, som tyder på at de nye glatterene konvergerer raskere
enn Jacobi. Det andre bidraget i avhandlingen er et program som kan konstruere
prolongeringsoperatoren på distribuert minne systemer. Vi presenterer tester som
viser at programmet oppnår god effektivitet for iterasjonsalgoritmen på et høyt
antall prosessorer, men effektiviteten avhenger i stor grad av antall forbindelser i
reservoarmodellen.

iii

iv

Preface

The following thesis is written for the of master of science degree in numerical
mathematics, at the Norwegian University of Sciences and Technology (NTNU),
Trondheim, Norway.

Acknowledgment

First of all, I would like to express my gratitude to my advisor Prof. Knut-Andreas
Lie for his help and support, for guiding my work in the right direction, and for
providing such an exiting and enjoyable assignment. I want to thank my advi-
sor PhD candidate Olav Møyner for his valuable feedback, and for providing the
starting point of my programing project. I also want to thank Prof. Jo Eidsvik for
his help with the structure of my thesis, and Per Kristian Hove for his technical
support. A special thanks goes to Kenneth Aase, Christer Hølestøl and Endre Ja-
cobsen for allowing me to sleep in their dining room during the last weeks of my
work.

Trondheim, October 2016
Fredrik Johannessen

v

vi

Table of Contents

Abstract i

Sammendrag iii

Preface v

Acknowledgment v

Table of Contents ix

List of Tables xi

List of Figures xvi

1 Introduction 1

1.1 Background . 1

1.1.1 Applications and Challenges for Reservoir Simulation . . 2

1.1.2 Multiscale Methods . 3

1.1.3 Restricted-Smoothed Basis Functions 6

1.1.4 Parallel Computing . 7

1.1.5 Matlab Reservoir Simulation Toolbox 9

vii

1.2 Structure of the Thesis . 10

2 Problem Derivation and Method Presentation 13

2.1 Flow Model and Discretization 13

2.1.1 Flow Model . 14

2.1.2 Two-Point Flux-Approximation 15

2.1.3 SPE 10 Dataset . 18

2.2 Jacobi and Gauss-Seidel Methods 18

2.2.1 Red-black Gauss-Seidel 22

2.3 Coarse Grid . 23

2.4 Multiscale Restricted-Smoothed Basis Formulation 26

2.5 Constructing the Prolongation Operator 29

2.6 Multiscale Method Application 33

3 Improving Construction of the Prolongation Operator 35

3.1 A Change to the Original Construction Algorithm 36

3.2 Analyzing the Construction Algorithm 37

3.3 Gauss-Seidel as Smoother . 40

3.4 Red-black Gauss-Seidel Smoother 42

3.5 Partially Red-black Gauss-Seidel Algorithm 44

3.6 Boundary Last Gauss-Seidel Algorithm 45

3.7 Numerical Results . 47

3.7.1 Comparison of Construction Algorithms 47

3.7.2 Changing the Smoother 50

4 Constructing Prolongation Operator on Distributed Memory Systems 55

4.1 The Union Boundary . 56

4.2 Sparse Data Formats . 57

4.3 Sequential Program . 60

4.4 Message-Passing Program . 61

viii

4.4.1 Graph Representing Computational Work 62

4.4.2 Graph Partitioning . 63

4.4.3 Message-Passing . 65

4.5 Testing the Program . 70

4.5.1 Single-Processor Runtimes 71

4.5.2 Iteration Speedup . 74

4.5.3 Setup Cost . 82

4.5.4 Modification to Reduce Communication Cost 84

4.6 Results Summary and Improvement Ideas 87

5 Concluding Remarks 89

Bibliography 90

ix

x

List of Tables

3.1 Discrepancy in the prolongation operator resulting from imple-
mentations of Algorithm 1 and 2, with respect to the Matlab pro-
gram, measured in the scaled L∞ norm. 49

3.2 Number of iterations required to reach tolerance for three test-
cases, and the converged quality measures τ∗. 51

4.1 Information about Vilje. 70

4.2 Time to read problem data and η for the five test cases. 71

4.3 The fraction of cells belonging to the union boundary, η, for the
test-grids. 74

4.4 Number of iterations to reach tolerance for s = 0, with respective
computation times, and number of iterations to reach tolerance for
s = 1, with respective speedups relative to times for s = 0. The
problem is Test Case 4, and the times are results of applying the
hybrid approach with 8 OpenMP threads in each MPI process on
640 cores. 86

xi

xii

List of Figures

1.1 Visualization of the permeability field for a geological rock model
of the Johansen formation, located offshore the south-west coast of
Norway. The formation has been considered a candidate location
for CO2 storage. 3

1.2 A basis function for a two-dimensional rock model with homoge-
neous and heterogeneous permeability fields, as computed by the
MsRSB method. 7

1.3 Perfect speedup and realistic speedup as functions of the number
of processing units. 8

2.1 Example of two connected cells resulting from a grid-partitioning. 15

2.2 Horizontal permeability field of the SPE 10 rock model. A loga-
rithmic color-scale is used. 19

2.3 (a) Red-black colored Cartesian grid, and (b) the regular five-point
stencil. 23

2.4 A triangular grid partitioned into blocks. 23

2.5 (a) A grid with two support regions highlighted, and (b) a grid with
one support region highlighted together with union boundary cells. 25

2.6 Interpretation of (Ac)jk. The red cells are the intersection of block
j and the support region to basis function k. The blue arrows
illustrate flux out of the area. 28

xiii

2.7 A one-dimensional characteristic function, here denoted fa,b(x).
It is zero everywhere except in the interval [a, b], where it equals
unity. 29

2.8 (a) One-dimensional permeability field over 120 file cells, (b) de-
velopment of a single basis function, and (c) resulting residuals
|AP j | in each cell. 31

2.9 (a) Permeability field and (b) fine-scale pressure solution of the
model-problem. 33

2.10 Error measures of the multiscale pressure solution as a function of
smoothing iterations applied to the prolongation operator. 34

3.1 (a) Example-grid with union boundary and block centers high-
lighted, and (b-i) development of a basis function for a homoge-
neous permeability field. The grey line highlights the frontier of
the basis function. 40

3.2 Example-grid with (a) support regions and boundaries for the
bottom-left and top-right basis functions highlighted, and (b,c) re-
sulting basis functions after one sweep of Gauss-Seidel. 42

3.3 Example-grid (a) in red-black coloring, (b) with a support region
and support boundaries B0

j and B1
j highlighted, and (c) nonzero

updated values colored red and black. 43

3.4 Example-grid with partially red-black coloring. 44

3.5 Error measure between diverged prolongation operator and the
prolongation operator produced by Algorithms 1 and 2 as a func-
tion of smoothing steps. 48

3.6 The left figures show the quality measure of the prolongation oper-
ator, λ, as a function of the number of steps by the four smoothers.
The right figures show the fraction of number of iterations re-
quired for the BLGS and partially red-black GS smoothers to reach
equally high quality, s, as the Jacobi smoother, as a function of
number of steps applied with the Jacobi smoother and ω = 0.95 . 53

4.1 Union boundary cells, U , for square fine and coarse grids, in two
and three dimensions. 56

xiv

4.2 Ratio of cells that belong to the union boundary, η, as a function
of the upscaling factor for square fine and coarse grids, in two and
three dimensions. 57

4.3 Example of a graph. 59

4.4 (a,b) A support region highlighted in grey before and after the
center of exterior blocks are moved, and (c) the example grid. . . 64

4.5 Graph resulting from the grid in Figure 4.4c with vertex weights
µj and edge weights γjk. Vertexes with the same weights have
been highlighted with the same color. 64

4.6 Partitions of the example-grid considered in Section 4.4.1 result-
ing from the multilevel recursive bisection algorithm. 66

4.7 Partitions of the SPE 10 dataset with 6 × 11 × 17 coarse blocks,
resulting from the multilevel recursive bisection algorithm. 66

4.8 (a) Highlighted blocks distributed to a process, giving Xc =
{a, b, c, d, e, f, g, h}. (b) Highlighted cells belonging to Dc, Ec
and Fc. Here, cells in Ec are blue, cells in Fc are red, and Dc are
cells in both Ec and Fc, and the grey ones. Neighboring block-
centers are colored green. 67

4.9 Setup times used by the original (shared memory) program and the
new (distributed memory) program when executed on a single core
on Vilje. Numbers over the red bars are absolute times used by the
original program, and numbers over the green bars are relative
speedups of the new program, with respect to the original. 72

4.10 Times used to perform a single iteration by the original (shared
memory) program and the new (distributed memory) program when
executed on a single core on Vilje. Numbers over the red bars are
absolute times used by the original program, and numbers over the
green bars are relative speedups of the new program, with respect
to the original. 73

4.11 Speedup of the iteration procedure using the pure MPI approach
for Test Case 1. 75

4.12 Fraction of time used in different parts of the iteration procedure
by the pure MPI approach for Test Case 1. 75

xv

4.13 Speedup of the iteration procedure for the pure MPI approach and
the hybrid approach with 8 OpenMP threads in each MPI pro-
cesses, for Test Case 2. Figure (a) is a closeup for a small number
of cores. 76

4.14 Fraction of time used in different parts of the iteration procedure
by the pure MPI approach for Test Case 2. 77

4.15 Speedup of the iteration procedure for the pure MPI approach and
the hybrid approach with 8 OpenMP threads in each MPI pro-
cesses, for Test Case 3. Figure (a) is a closeup for a small number
of cores. 78

4.16 Fraction of time used in different parts of the iteration procedure
by the pure MPI approach for Test Case 3. 79

4.17 Speedup of the iteration procedure for the pure MPI approach
and the hybrid approach with 8 OpenMP threads in each MPI pro-
cesses, for Test Case 4. Figure (a) is a closeup for a small number
of cores. 79

4.18 Fraction of time used in different parts of the iteration procedure
by the pure MPI approach for Test Case 4. 80

4.19 (a) Highlighted coarse blocks for Test Case 5, and (b) a small 2.5
PEBI-grid. 81

4.20 Speedup of the iteration procedure for the pure MPI approach and
the hybrid approach with 8 OpenMP threads in each MPI process,
for Test Case 5. 81

4.21 Fraction of time used in different parts of the iteration procedure
by the pure MPI and Hybrid approach for Test Case 5. 81

4.22 Setup times for the pure MPI approach and the pure OpenMP ap-
proach for Test Case 1, and setup times for the pure MPI approach
and the hybrid approach for Test Case 2 and 3. The numbers over
the bars are the speedups. 83

4.23 Setup times for the pure MPI approach and the hybrid approach
for Test Case 4 and 5. The numbers over the bars are the speedups. 84

xvi

Chapter 1
Introduction

1.1 Background

Modeling of fluid flow in the subsurface has several important applications. Among
these are storing of greenhouse gases, acquiring knowledge of groundwater basins
and exploiting geothermal energy. During the past decades and up until today, a
prime driving force behind technological progress in modeling subsurface flow is
the challenge of recovering oil and gas from petroleum reservoirs.

A petroleum reservoir is a subsurface formation which has developed over
millions of years. During these years, oil and gas has gradually been formed from
organic material in a time-consuming process requiring high pressure, high tem-
perature and limited inflow of oxygen. The oil and gas is contained within small
void spaces, or pores, of the reservoir. In a good reservoir, these pores are con-
nected to make up a continuous network where the fluids are able to flow. For this
reason, a petroleum reservoir is regularly called a porous rock. The oil and gas can
be extracted by drilling wells into this rock. The extraction can often be achieved
to a certain extent by exploiting natural pressure differences, however, this driv-
ing force will decline as more oil is extracted. Therefore, modern technologies
have developed multiple methods to enhance the pressure within the reservoir, to
recover and increase extraction as natural driving forces decline.

1

Chapter 1. Introduction

1.1.1 Applications and Challenges for Reservoir Simulation

In recent years, the number of newly discovered petroleum reservoirs has been
significantly reduced. This has resulted in an increasing demand to access oil
and gas from reservoirs where the the extraction is more challenging. Further, a
high amount of competition among oil companies requires them to increase cost
efficiency. Among the challenges this offers is to maximize the recovery of oil
and gas in a particular reservoir while minimizing expenses. To achieve this, it is
often of vital importance to acquire knowledge of how the fluids in the reservoir
rock are able to flow under changing conditions. In particular, this can help the
oil companies to position wells in order to maximize extraction. This leads to a
continuous demand for the technology to produce more accurate reservoir models
and flow patterns.

The movement of fluids in a porous rock is driven by processes taking place
on a large span of spatial scales. On the large scale the flow is governed by global
forces like pressure differences and gravity, while on the pore-scale the flow is
determined by tiny flow paths. While a hydrocarbon reservoir may extend over
several square kilometers, the pores are often on the micrometers scale. It is ob-
viously not possible to embed pore-scale details into a model of the entire reser-
voir. However, the goal in our context is to predict global flow patterns rather than
micro-scale fluid displacements. For this purpose, the rock model is described by
petrophysical properties like porosity, which is a measure of average void space
in the rock, and permeability, which measures the rocks ability to allow fluids to
pass through it. In petroleum reservoirs, the spatial distributions of these proper-
ties follow complex statistical and empirical relationships, and often exhibit great
variations over short distances. This makes it a substantial challenge to predict the
fluid flow. In Figure 1.1 you see the permeability field of a rock model visualized.

Among the important tools used to predict flow patterns is reservoir simula-
tion, where a mathematical model of the fluid flow is used together with a model of
the reservoir rock to predict the flow characteristics. Progress in modern technolo-
gies such as reservoir characterization and data integration techniques has provided
increasingly complex and detailed models of the reservoirs. Today, these models
typically have a resolution down to the meter scale. Considering the sizes of the
reservoirs, this amounts to massive volumes of data, or even tens of millions of
cells. To simulate flow on these models is a major challenge. Together with a
continuous demand from the industry to predict increasingly accurate flow charac-
teristics, this has contributed to much effort devoted to improving reservoir simula-
tion techniques. However, despite major advances, they have not been able to keep
up with the increasingly detailed reservoir descriptions and the requirements by

2

1.1 Background

Figure 1.1: Visualization of the permeability field for a geological rock model of the
Johansen formation, located offshore the south-west coast of Norway. The formation has
been considered a candidate location for CO2 storage.

the industry. Simulating flow directly on the scale provided by todays rock models
are typically too computational demanding, even with state-of-the-art computer
power. We say that there exists a resolution gap between the provided rock mod-
els and the capability of simulation technologies. The traditional approach to deal
with this resolution gap is through upscaling techniques [45].

The strategy behind upscaling techniques is to use the original rock model to
create a reduced problem. The objective is for the resulting coarse model to embed
high quality upscaled properties which can be used to compute relatively accurate
flow solutions. But upscaling techniques tend to have problems in computing ac-
curate and robust solutions to models that exhibit high heterogeneity with no clear
scale separation, which is the normal case for reservoir rocks.

1.1.2 Multiscale Methods

More recently, so-called multiscale methods have been developed in attempt to
overcome the shortcomings of upscaling techniques. In the same way as with
upscaling, these methods rely on a coarse partition of the underlying fine grid to
create a reduced problem. But in contrast to upscaling, the methods produce flow
solutions on the fine scale.

To describe the elementary idea behind multiscale methods, we consider the

3

Chapter 1. Introduction

variable-coefficient Poisson’s equation,

∇ ·
(
K∇p

)
= −q,

where p is the fluid pressure, q is the source terms, and K is the permeability
tensor that may undergo large variations over short distances. The above equation
is discretized using a cell-centered finite-volume method, resulting in the linear
system of equations for the pressure solution,

Ap = q.

To solve this system, multiscale methods rely on dividing the initial fine-scale
problem into several local problems, which are then solved. Their solutions, called
basis functions, are used to assemble a prolongation operator P , that maps quan-
tities on the coarse grid to quantities on the fine grid. In addition, a restriction
operator R is created, which is an analogous map going the other way. The pro-
longation and restriction operators are related to the operators by the same names
used in traditional multigrid methods [41, 42]. The two operators are used together
with the fine-scale cell-connections to develop the coarse-scale problem,

(RAP)pc = Rq.

After the coarse solution has been found, the prolongation operator is used once
more to reconstruct a pressure approximation on the fine scale,

p = Ppc,

which can be used to find a fine-scale velocity approximation for the fluid flow.
The idea behind this approach is to separate effects determining flow on the lo-
cal and global scales. While global driving forces are captured by the coarse-scale
solution, the local solutions incorporated within the prolongation operator will sys-
tematically correct for fine-scale variations in the reservoir rock.

The development of multiscale methods started with the formulation of the
multiscale finite-element (MsFE) method by Hou and Wu in 1997 [17]. Since then,
several other multiscale methods have been proposed, and much effort has been
made to advance these techniques to handle problems of real-world complexity.
Todays industry requests methods that can handle very flexible simulation grids,
complex flow physics, and are simple to integrate into existing frameworks.

Over the past decade, essentially two multiscale methods have been developed
in this direction, the multiscale finite-volume (MsFV) method [18, 19, 20] and
the multiscale mixed finite-element (MsMFE) method [12, 7, 8]. In contrast to the

4

1.1 Background

MsFE method, these two provide conservation of mass for the fine-scale velocity,
which is a crucial requirement when solving fine-scale transport problems.

Since the MsFV method was first formulated, it has been extended from an
original geometric form to algebraic form [46, 47, 33]. This has played an impor-
tant role to reduce the complexity of the implementations, permitting the method
to be manipulated and extended in an efficient manner, and to allow for simple
integration into existing reservoir simulators.

A main focus in the development of the MsFV method has been to expand it
from handling simple incompressible flow to more realistic flow physics [30, 31,
21, 15, 27], such as compressible and multi-phase flow, e.g, compressible black-oil
models. Along this dimension, the method has come very far. However, the MsFV
method has shown to often produce significant errors when applied to models with
very heterogeneous properties [32, 44].

This was one of the factors that motivated iterative formulations of the method
[14, 47, 34]. It has been shown that these iterative schemes have the desired prop-
erty of converging to the fine-scale reference solution, granting a systematic ap-
proach to increase the accuracy of the solution to a given tolerance. In addition,
the schemes can also be used as an efficient linear solver. A key advantage of these
formulations compared with multigrid and domain-decomposition methods is that
they allow for reconstruction of conservative fluxes at any state of the iteration.

However, a main limitation of the current MsFV formulations is to handle grids
of industry complexity. Here, there has been far less progress. A main challenge
encountered when attempting to extend the method to handle more complex grids
arise from the fact that it relies on a primal-dual coarse partitioning. An important
step was made in this direction when O. Møyner and K-A. Lie extended the MsFV
method in an implementation that could handle Stratigraphic Grids with faults and
wells [40]. In this work, they present coarsening methods that create the required
primal-dual partition for a wide class of stratigraphic grids. Their results show that
the method produces accurate results to many complex flow problems. However,
in cases with strong heterogeneities, the method may produce very large errors.
They conclude that it remains a challenge to create reliable and robust coarsening
algorithm for the MsFV method.

On the other hand, the MsMFE method, which does not require a dual coarse
grid partitioning, has come far to allow the use of very complex and flexible grids
[9, 10, 11]. However, it has proved hard to extend the method to realistic flow
physics, and still today the MsMFE formulations are primarily able to produce
reliable results only on incompressible and weakly compressible flow models.

The multiscale Two-point Flux Approximation (MsTPFA) method [37] was

5

Chapter 1. Introduction

proposed as an attempt to combine the best features of the MsFV and MsMFE
methods. It is derived based mainly on the same principles as MsFV, but removes
the need for a dual coarse partition. This makes it much more flexible with respect
to the coarse partitioning. The MsTPFA method was shown to be significantly
more robust than MsFV on models with high heterogeneity. However, it is less
accurate on problems with smooth heterogeneities, and is somewhat intricate to
implement due to the use of both grid-specific partition-of-unity functions and
local flow problems.

1.1.3 Restricted-Smoothed Basis Functions

A newly proposed approach is the multiscale restricted-smoothed basis (MsRSB)
method [38, 39]. It is connected to the MsTPFA method in the sense that it is
based on the underlying principles of the MsFV method, and does not require a
dual coarse partitioning. However, it applies a quite different strategy to create the
prolongation operator.

The prolongation operator is formed through what we call a restricted-smoothing
iterative procedure applied to the basis functions (localized problems). The pres-
sure values of each basis function is initialized as the characteristic function on its
corresponding coarse subdomain. A relaxed Jacobi smoother is then iteratively ap-
plied to the basis functions, making them gradually adapt to the local permeability
field of the rock. The iteration is restricted to force the basis functions to remain
within their defined support regions, and to preserve partition of unity for the union
of basis functions. In Figure 1.2 you see two such basis functions resulting from
both homogeneous and heterogeneous permeability fields.

A key advantage of the iterative approach is that the basis functions can be
modified inexpensively by applying a few extra steps on the existing ones, which is
advantageous when faced with dynamic mobility changes in the rock. The MsRSB
method has proved to be accurate and robust when compared with other existing
multiscale methods [38, 39, 36]. Like the MsMFE method it is flexible concerning
the fine and coarse grids, and like the MsFV method it is can handle complicated
flow physics used by the industry. Further, the method is formed in a fully alge-
braic manner, is easy to implement and relatively cheap to compute.

At the time of writing, the MsRSB method is considered the state-of-the-art
multiscale method. For a good review of the development of multiscale method,
we refer to the recent article K-A. Lie et al. (2016) [29].

6

1.1 Background

(a) Homogeneous. (b) Heterogeneous.

Figure 1.2: A basis function for a two-dimensional rock model with homogeneous and
heterogeneous permeability fields, as computed by the MsRSB method.

1.1.4 Parallel Computing

As already established, reservoir simulations are in general very computationally
demanding, even when the most effective solvers are used. It is therefore desirable
to harness the computational power of modern supercomputers. These computers
consist of a large number of processing units, or cores, each able to perform their
own computations.

Designing a program to efficiently take advantage of this structure offers two
main challenges. Firstly, it relies on distributing the computations evenly among
the processing units, to achieve so-called load balance. In particular, an effective
distribution should minimize the work executed by any processing units. The unit
distributed the largest amount of work will be a typical weakest link, preventing
the full program to achieve a better run-time. Secondly, it relies on minimizing
the communication carried out between the processing units, since sending and
receiving of data typically consume a significant fraction of the total runtime, es-
pecially when using a large number of cores. To what extent such a division can
be achieved will typically rely on the underlying algorithm to be computed. In
most situations, an optimal load-balance can not be achieved at the same time as
minimizing the communication cost, and finding a good compromise between the
two consideration can be hard. An algorithm ideally suited for parallelism will
consist of a large number of entirely independent computations, but this is rarely
the situation in practice. The growing use of supercomputers has therefore resulted
in an increasing importance to develop algorithms well suited for multiprocessor
computations.

7

Chapter 1. Introduction

To measure how efficient a program utilizes the available processing units, we
use the so-called speedup. Let tp be the time it takes to run a given program on p
processing cores. The speedup sp is defined as

sp =
t1
tp
,

that is, it equals the ratio between the runtime on a single core and on p cores. The
best we can hope to achieve is for the program to run p times as fast on p cores
than on one, which we call a perfect speedup. In practice, however, the speedup
typically declines by increasing the number of processing cores. When we do
this, each core is assigned less work while the communication overhead typically
increases. How well the speedup scales when adding more cores depends on the
total amount of work to be performed and by how fast the communication volume
increases as a function of cores. Figure 1.3 illustrates the difference in perfect
speedup and what we normally see in practice. As you can see, adding more
processing units will at some point stop being beneficial.

Prosessor units

S
pe

ed
up

Realistic speddup
Perfect speedup

Figure 1.3: Perfect speedup and realistic speedup as functions of the number of process-
ing units.

The hardware structure of the supercomputer impacts how the parallelization
should and must be carried out. Here, the main dividing line runs between shared
memory machines and distributed memory systems.

As the name implies, a shared memory machine consists of multiple cores that
have access to the same memory. On these machines, the OpenMP language ex-
tension [5] is widely used to realize parallel computations in a quick and simple
manner. The OpenMP API offers a framework existing of a collection of compiler
directives, environment variables, and library routines which can be used to em-
ploy parallel computations. It realizes multithreading under a fork-join approach,

8

1.1 Background

where processes, or threads as we will call them, are spawned and handled by the
compiler on the available cores. This approach often allows parallel computation
to be accomplished without extensive changes to the sequential code.

A distributed memory system consists of multiple nodes who each have their
own private memory. Here, a node is a self-contained computer unit that typi-
cally consist of multiple processing cores. When executing a program on mul-
tiple nodes, one or more separate instance of the program will be spawned on
each of them. Communication between the nodes must be carried out through ex-
plicit message-passing. Therefore, parallelizing a program for distributed memory
systems usually requires extensive changes in the sequential code. The Message
Passing Interface (MPI) [3] is a standard portable message-passing system used
for the communication. MPI provides syntax and semantics of library routines for
C, C++ and Fortran, and offers both point-to-point and collective communication
operators. Because of its portability and efficiency it has become the de factor
standard for message passing. Using MPI is more comprehensive than OpenMP,
since the developer must take into account both load balance and communication,
which for OpenMP is handled by the compiler.

A supercomputer normally consists of a cluster of nodes that communicate
through a high-speed interconnect. A much used parallelization strategy is there-
fore to apply a hybrid approach of the two models considered above, using a shared
memory programming model within each node, and a message massing model to
communicate across them. This often leads to a more efficient execution than the
pure message-passing alternative. Note that the message passing model can be
used both on shared and distributed memory machines, while the shared memory
model is only applicable on shared memory machines.

In this thesis we focus on supercomputer applications. However, today’s desk-
top computers are also multiprocessing machines, typically with 2, 4 and also 8
processing cores. Even smartphones normally have more than one core. The im-
portance of efficient parallel computations is therefore not limited to massively
parallel supercomputing, but emerges also in the everyday use of modern technol-
ogy.

1.1.5 Matlab Reservoir Simulation Toolbox

The Matlab Reservoir Simulation Toolbox (MRST) [4, 28] has been an important
tool for the work presented in this thesis. MRST is a Matlab toolbox developed
by the Computational Geoscience group in the Department of Applied Mathemat-
ics at SINTEF ICT, and is primarily intended as a toolbox for rapid prototyping

9

Chapter 1. Introduction

and demonstration of new simulation methods and modeling concepts on unstruc-
tured grids. The toolbox contains a set of data structures for representing reservoir
rock models, including grids, rock properties, and forcing terms such as gravity,
boundary conditions and source terms. It also contains several solvers, including
the MsRSB method, and visualization functionality. In this thesis it has been used
to construct reservoir models together with the corresponding system of equations
to be solved, testing new solving strategies, and to create most visual illustrations
throughout this presentation.

1.2 Structure of the Thesis

This thesis explores how to improve the computational efficiency of constructing
the prolongation operator used by the MsRSB method. Here, two prime subjects
have been investigated.

The first subject concerns how to advance the underlying construction algo-
rithm. We explore how to improve the efficiency of the smoothing step, in attempt
to reduce the computational cost needed to reach a predefined quality. In particu-
lar, we aim to develop Gauss-Seidel-type smoothers with higher convergence rate
than the originally used relaxed Jacobi smoother.

The second subject regards developing a program that constructs the prolon-
gation operator on distributed memory systems. Here, a hybrid approach is inves-
tigated, which combines the use of MPI and openMP.

The rest of the thesis is organized as follows.
Chapter 2 starts by presenting a flow model and derives the system of equations to
be solved, before describing the Jacobi and Gauss-Seidel methods. It continues by
presenting the MsRSB method and the algorithm used to construct the prolonga-
tion operator. The chapter ends by demonstrating the use of the MsRSB method
by applying in on a model-problem. After this, Chapter 3 starts by presenting a
modified version of the construction algorithm presented in Chapter 2, followed
by an analysis of its application. It continues by considering replacing the relaxed
Jacobi smoother used in the construction algorithm by the Gauss-Seidel method,
and shows that this requires modifications to provide an efficient alternative. Two
alternative smoothers are then presented, both of which are modified versions of
the Gauss-Seidel method. The chapter concludes by presenting numerical results,
comparing the modified construction algorithm to its original, and examining the
new smoothing approaches. Chapter 4 presents the C++ program that constructs
the prolongation operator, which enables computation on distributed memory sys-
tem through the use of explicit message-passing. The beginning of the chapter

10

1.2 Structure of the Thesis

describes sparse data structures that are used, before presenting the program when
executed sequentially. Thereafter follows a discussion of how the computational
work is distributed among MPI processes, and the message-passing program is
then introduced. Runtime results from testing the program on the supercomputer
Vilje are then presented, followed by introducing a strategy of how to reduce the
communication cost. The chapter ends with a discussion of the results and ideas
for future work. The thesis concludes by a summary and discussion of the main
results, presented in Chapter 5.

11

Chapter 1. Introduction

12

Chapter 2
Problem Derivation and Method
Presentation

This chapter is organized as follows. Section 2.1 gives a brief introduction to the
governing equations for flow in porous media, which are the model equations for
this thesis. Section 2.2 presents the Jacobi method and various Gauss-Seidel meth-
ods. A Jacobi iteration is used in the procedure that constructs the prolongation
operator, and later on we discuss changing it to Gauss-Seidel. In Section 2.3 we
describe the coarse grid and provide a framework that enables us to relate to differ-
ent parts of the grid which we use when formulating the MsRSB method. Section
2.4 then presents the MsRSB method by defining the coarse-scale system of equa-
tions to be solved, and illustrates how its solution is used to construct a fine-scale
flux approximation. The algorithm that constructs the prolongation operator is pre-
sented in Section 2.5. The chapter concludes by illustrating the MsRSB method
on a model-problem, which is the content of Section 2.6.

2.1 Flow Model and Discretization

In the following we will consider a single-phase, incompressible flow model, where
the permeability and the source terms are constant in time. The model is derived
from Darcy’s law and the fundamental law of mass conservation. We will then
show how the system is discretized from a two-point flux-approximation to arrive
at the system of linear equations for the steady state pressure distribution.

13

Chapter 2. Problem Derivation and Method Presentation

2.1.1 Flow Model

Darcy’s law can be stated as follows,

v = −K
µ

(
∇p− gρ∇z

)
.

Here, v is the macroscopic Darcy velocity, K is the rock permeability, µ is the
dynamic viscosity of the fluid, p is the pressure, g is the gravitational acceleration,
ρ is the fluid density and z is the vertical coordinate. Henceforth, µ will without
lack of generality be set to unity. We can continue by either introducing the fluid
potential Φ = p − gρz, or by neglecting the gravitational force. We chose to do
the latter, and the above equation simplifies to

v = −K∇p.

The fundamental law of mass conservation on differential form can be stated as
follows,

∂

∂t
(φρ) +∇ · (ρv) = ρq,

where φ is is the effective porosity of the rock and q is the fluid source term. We as-
sume incompressible fluid and constant porosity, ∂

∂t(φρ) = 0, and the relationship
becomes

∇ · v = q.

Proceeding by introducing Darcy’s law into the above relation we arrive at the
equation

∇ ·
(
K(x)∇p(x)

)
= −q(x), x ∈ Rd, K(x) ∈ Rd × Rd. (2.1)

This is a generalization of the Poisson’s equation with varying coefficients. The
dimension d will be 2 or 3 for all cases considered in this paper. Note that the
permeabilityK can in the most general case be a full tensor.

We will continue by deriving the discretized equivalent of equation (2.1), after
a few words about the grid. The fine grid is a tessellation of the planar or volumet-
ric object that constitutes the model of the rock. The tessellation results in a set of
contiguous simple shapes which we call cells. In general, a cell will be a polygon
or a polyhedron in two and three dimensions, respectively. We will use numbering

14

2.1 Flow Model and Discretization

Ωk
Ωi

Γik

πik

pi

pk

nikζik

ξik

Node

Node

Figure 2.1: Example of two connected cells resulting from a grid-partitioning.

of the cells from 1 to n, and relate to a certain cell Ωi by its number. Let F be the
set of cell-numbers,

F = [1, 2, . . . , n− 1, n],

and denote the partitioning of the grid as the set of cells,{
Ωi|i ∈ F

}
.

We say that two cells Ωi and Ωk are connected if they share a face, that is, if
(∂Ωi ∩ ∂Ωk 6= ∅). Further, we say that two cells are neighbors if they share a
node. Here, a node refers to a connection point of the tessellation that makes up
the grid. The face between two connected cells Ωi and Ωk is denoted Γik. Figure
2.1 shows two such cells.

2.1.2 Two-Point Flux-Approximation

We continue by discretizing the equation (2.1) by regarding the cells as control
volumes. The flux across the cell-face in Figure 2.1 is denoted vik, and is defined
by

vik =

∫
Γik

v · n ds, Γik = ∂Ωi ∩ ∂Ωk.

15

Chapter 2. Problem Derivation and Method Presentation

Here, n is the normal vector pointing into cell Ωk. We approximate this flux using
the midpoint rule,

vik ≈ Aikv(ζik) · nik,

where Aik is the area of the face, ζik is the centroid of the face, and nik is its
corresponding normal vector. Applying Darcy’s law in the above equation we
obtain

vik ≈ −Aik(K∇p)(ζik) · nik. (2.2)

Define pi to be the pressure in the center of Ωi. Further, define πik to be the pres-
sure at the face centroid, and ζik the vector from the cell center to the face cen-
troid. We approximate ∇p(ζik) by assuming a linear change in pressure between
the center of Ωi and ζik,

∇p(ζik) ≈ −
(pi − πik)ξik
|ξik|2

,

where ξik is the vector from the center of Ωi to ζik. Inserting the above equation
into (2.2) we arrive at

vik ≈ AikKi
(pi − πik)ξik
|ξik|2

· nik = T̃ik(pi − πik), T̃ik = AikKi
ξik
|ξik|2

· nik.

Here,Ki is the permeability inside cell Ωi. We name T̃ik the half-transmissibility
from Ωi to Ωk. Imposing continuity of flux across the face, i.e, vik = −vki, gives
us

T̃−1
ik vik = pi − πik, − T̃−1

ki vik = pk − πik.

We eliminate πi,k, and get

vik =
1

T̃−1
ik + T̃−1

ki

(pi − pk) = Tik(pi − pk), Tik = Tki =
1

T̃−1
ik + T̃−1

ki

, (2.3)

where Tik is the transmissibility associated with the connection between the two
cells. We require mass conservation on each cell, which on integral form can be
stated as follows, ∫

∂Ωi

v · n ds =

∫
Ωi

q dx.

16

2.1 Flow Model and Discretization

Inserting (2.3) into this equation, the following system is obtained,∑
k

Tik(pi − pk) = qi, ∀ i ∈ F.

The system matrixA = {aij} can now be assembled from

aij =

{∑
k Tik if j = i,

−Tij if j 6= i,

and we arrive at the resulting linear system of equations,

Ap = q. (2.4)

We will now state important properties of the linear system. Firstly, each row
ofA sums to zero,

n∑
k=1

aik = 0, ∀ i ∈ F. (2.5)

Secondly, an element aik of the system matrix is zero if cell i and k are not con-
nected,

aik = 0, if k 6= Qi. (2.6)

Here, Qi is the set of all cell-numbers connected to Ωi,

Qi =
{
k
∣∣(∂Ωi ∩ ∂Ωk 6= ∅), i 6= k

}
.

And lastly, the linear system is symmetric and its solution is defined up to an
arbitrary constant.

As already mentioned, the system of equations (2.4) resulting from a typical
rock model is often very computationally demanding to solve directly. This has
two main reasons. Firstly, the system is normally very large, which is a result of
the vast spatial size of the reservoir and the relatively detailed model provided.
Secondly, the permeability field of the rock is typically highly heterogeneous, and
may undergo vast variations over short distances. This results in the system ma-
trix A having highly variable coefficients, and will therefore typically be very
ill-conditioned. In Section 2.4, the MsRSB method is introduced which can be
used to develop a reduced system in order to provide an approximate or full solu-
tion in an computationally efficient manner. Keep in mind that the MsRSB method
can be applied to several more complicated flow models than the one derived here,

17

Chapter 2. Problem Derivation and Method Presentation

including multi-phase and compressible flow models. In fact, the MsRSB method
can be applied to any flow model where one can isolate a pressure equation.

Note that if the flow model derived above is applied to a rock model with
homogeneous permeability, the resulting problem to be solved would be the simple
Poisson’s equation.

2.1.3 SPE 10 Dataset

A rock model we will use as a test case in this thesis is the 10th Comparative
Solution Project [13], published by the Society of Petroleum Engineers. We will
refer to it as the SPE 10 dataset. The model uses a Cartesian grid consisting of
60×220×85 cells, each of size 20×10×2 feet. It was designed as a challenging
benchmark for upscaling methods, and is today frequently used to test multiscale
methods. Figure 2.2a visualizes the permeability field of the SPE 10 dataset.

The SPE 10 dataset consists of two rock-formations that have qualitatively dif-
ferent permeability fields. Both of them have large heterogeneities, varying with
8-12 orders of magnitude. The upper 35 layers represent a geostatistical realiza-
tion of the Tarbert formation. The permeability of this formation follows a lognor-
mal distribution, which gives relatively smooth variations in the heterogeneity and
good communication in all spatial directions. The lower 50 layers represent the
Upper Ness formation. It combines long correlation lengths of high permeability
with rapidly abrupt changes. Approximately 2.5% of its cells have zero poros-
ity and are therefore regarded as being inactive, allowing no fluid to be stored or
pass through them. Upper Ness has proved to be a very challenging formation
for upscaling and multiscale techniques to solve correctly. Figure 2.2b and 2.2c
show the permeability fields of Layers 25 and 85, respectively, and illustrate the
qualitatively different structure of the two rock-formations.

2.2 Jacobi and Gauss-Seidel Methods

In Section 2.5 we will see that the prolongation operator used by MsRSB is cre-
ated by an iterative algorithm which applies the relaxed Jacobi method to make
the prolongation operator so-called algebraically smooth. In Chapter 3, we present
alternative smoothers used in this construction which is based on modified Gauss-
Seidel methods. This section is therefore included to provide background knowl-
edge of both Jacobi and Gauss-Seidel methods, which we will see are very closely
related. Although they have slow convergence rate in general, they inhabit the

18

2.2 Jacobi and Gauss-Seidel Methods

(a) Full rock model.

(b) Layer 25. (c) Layer 85.

Figure 2.2: Horizontal permeability field of the SPE 10 rock model. A logarithmic color-
scale is used.

smoothing property of rapidly dampening the high-frequency components of the
residuals. We will return to the purpose of the smoother in Section 2.5.

Consider solving our system of linear equations Ap = q with the Jacobi
method, defined by the following iterative procedure. Denote pk the approxima-
tion of the solution p at step k. The ith component of the next approximation is
chosen to eliminate the ith component of the residual vector

r̃k = q −Ap̃k+1
i ,

where

p̃k+1
i =

(
pk1, pk2, · · · , pki−1, pk+1

i , pki+1, · · · , pkn−1, pkn
)T
.

19

Chapter 2. Problem Derivation and Method Presentation

On component form, the next approximations reads

pk+1
i =

1

aii

(
qi −

i−1∑
j=1

aijp
k
j −

n∑
j=i+1

aijp
k
j

)
, i ∈ F. (2.7)

A relaxed version of the Jacobi method is defined by

pk+1
i = (1− ω)pki +

ω

aii

(
qi −

i−1∑
j=1

aijp
k
j −

n∑
j=i+1

aijp
k
j

)

= pki +
ω

aii

(
qi −

n∑
j=1

aijp
k
j

)
, i ∈ F.

where ω is the relaxation factor.

To motivate the Gauss-Seidel (GS) iteration, assume that we solve the equa-
tions (2.7) sequentially, starting at i = 1. Gauss-Seidel iteration is the result of
changing the formula to immediately start using the updated components of pk+1

in the computation of the consecutive elements. On component form, a forward
Gauss-Seidel sweep reads

pk+1
i =

1

aii

(
qi −

i−1∑
j=1

aijp
k+1
j −

n∑
j=i+1

aijp
k
j

)
, i ∈ F.

A backward Gauss-Seidel sweep is defined analogously, but the updates are exe-
cuted in the opposite order, starting at the last element and ending at the first. On
component form, it is given by

pk+1
i =

1

aii

(
qi −

i−1∑
j=1

aijp
k
j −

n∑
j=i+1

aijp
k+1
j

)
, i ∈ F.

The successive overrelaxation (SOR) method is a relaxed version of the forward
Gauss-Seidel method. On component form, it reads

pk+1
i =

ω

aii

(
qi −

i−1∑
j=1

aijp
k
j −

n∑
j=i+1

aijp
k+1
j

)
+ (1− ω)xki , i ∈ F.

In the cases of the relaxed formulations, choosing an appropriate ω can im-
prove the convergence rates and smoothing properties of the iterations. However,
a good choice if often hard to find and depends on the properties of A. The relax-
ation factor is typically located within the interval ω ∈ [0, 2], where ω < 1 is called

20

2.2 Jacobi and Gauss-Seidel Methods

under-relaxation, while ω > 1 is called over-relaxation. Although under-relaxation
typically achieves best results for the Jacobi method, ω ∈ [1, 2] has been found to
be the optimal choice for the Gauss-Seidel method on some particular problems.

To express the above procedures in matrix notation we use the following de-
composition of the system matrix [41, p. 103],

A = D −L−U ,

where D is the diagonal, −L the strict lower, and −U the strict upper part of A.
The relaxed Jacobi method in matrix form can be stated as follows,

pk+1 = ωpk+1
J + (1− ω)pk

= ω(pk −D−1Apk +D−1q) + (1− ω)pk

= pk − ωD−1(Apk − q),

where pk+1
J is the non-relaxed Jacobi update, obtained by choosing ω = 1. In

matrix form the forward Gauss-Seidel method can be stated in the following way,

(D −L)pk+1 = Upk + q,

and SOR as

(D − ωL)pk+1 =
(
ωU + (1− ω)D

)
pk + ωq.

Note that these methods can also be interpreted as fixed point iterations on the
system Ap = q after a preconditioning matrix M has been applied. For relaxed
Jacobi, the preconditioning matrix is

M JA = ωD,

while for Gauss-Seidel it is
MGS = D −L.

If we were to actually solve our system Ap = q with one of these methods,
we would have to adjust it so that the solution is defined uniquely. This can be
achieved by fixing the pressure in a single cell, i.e, modify a single row in A by
setting all its entries equal to zero except the diagonal which we set to unity. The
matrix would now be irreducibly diagonally dominant, which is a sufficient criteria
for the Jacobi and Gauss-Seidel methods to converge [41, p. 118]. In general, the
asymptotic convergence rate depends on the spectral radius of A, but is of less
importance when the methods are used as smoothers.

21

Chapter 2. Problem Derivation and Method Presentation

2.2.1 Red-black Gauss-Seidel

As indicated by the existence of both the forward and backward Gauss-Seidel
methods, the order in which the elements are updated by GS matters, in contrast
to the Jacobi method. To see how the ordering impacts the next approximation,
consider applying a single step of the forward and backward GS methods to some
initial guess p0. The first and the last element of p1 will be computed from the
following expressions,

Forward GS p1
1 =

1

a11

(
q1 −

n∑
j=2

a1jp
0
j

)
, p1

n =
1

ann

(
qn −

n−1∑
j=1

a1jp
1
j

)
,

Backward GS p1
1 =

1

a11

(
q1 −

n∑
j=2

a1jp
1
j

)
, p1

n =
1

ann

(
qn −

n−1∑
j=1

a1jp
0
j

)
.

Observe that p1
1 as computed by forward GS coincides with the Jacobi method.

The same is true for pn1 when computed by backward GS. On the other hand, pn1
is computed solely from updated elements in the case of forward GS, which is the
same case for p1

1 when computed by the backward method. Picture Gauss-Seidel
as iteratively sweeping through the elements of the column vector p, updating each
element based on the latest update of all other values of the vector. Forward GS
sweeps through p starting the top and moving downwards, while backward GS
starts at the bottom and moves upwards. In general, one can imagine the sweep
being done in any order. This can be expressed by renumbering the elements in
p, perturbating the matrix accordingly, and applying the forward GS method, or
as we will do, by defining the order with the vector ν. The vector contains the set
of integers between 1 and n ordered the way we wish to update the elements. A
Gauss-Seidel step with this ordering can now be expressed as

pk+1
νi =

1

aνiνi

(
qνi −

i−1∑
j=1

aνiνjp
k
νj −

n∑
j=i+1

aνiνjp
k+1
νj

)
, i ∈ F.

A common version of a non-trivial ordered Gauss-Seidel iteration is the red-
black Gauss-Seidel method. Consider solving the system (2.4) on a two-dimensional
Cartesian grid, resulting in the regular five point stencil. Color the cells red and
black in the same manner as a checkerboard, as illustrated by Figure 2.3a. A GS
update of a single cell is now computed solely from cells of opposite color, as
illustrated by Figure 2.3b. Consider applying the GS sweep ordered so that all
black cells are updated before all the red ones. The updates of the black cells will
coincide with a Jacobi update, since they are computed solely from values that

22

2.3 Coarse Grid

(a) (b)

Figure 2.3: (a) Red-black colored Cartesian grid, and (b) the regular five-point stencil.

were updated in the previous step, while the updates of the red cells will coincide
with what a Jacobi update would result in at the next step, since they are com-
puted solely from values that have been updated in the ongoing step. This results
in sort of a leaping-frog Jacobi method which approaches convergence twice as
fast as regular Jacobi. The red-black Gauss-Seidel method is popular in parallel
computing because it allows the values belonging to cells of the same color to be
computed in parallel. In contrast, the forward and backward Gauss-Seidel method
generally require the elements to be updated sequentially.

Figure 2.4: A triangular grid partitioned into blocks.

2.3 Coarse Grid

An important step towards developing a reduced system from Equation (2.4) is to
partition the fine grid into coarse blocks, each of which consists of a number of
contiguous cells. Figure 2.4 shows an example of such a partition, where 1200
fine cells have been divided into twelve blocks outlined by the bold black lines.
This results in an average of 100 cells in each block, and we say that this coarse
grid has an upscaling factor of 100. The partition of cells that defines the blocks

23

Chapter 2. Problem Derivation and Method Presentation

can be constructed in various ways, and in Figure 2.4 a uniform partitioning was
used. In practice, the choice of partitioning can have huge impact on the accuracy
when solving the model, be it by an upscaling or multiscale solver. To find an
efficient partition, it should be tailor made to fit the reservoir rock. Consider ap-
plying an upscaling technique to a rock consisting of several facies. Here, a facies
is a separate part of the rock that has specific characteristics. The difference in
permeability between different facies might be large, while each facies is typically
relatively homogeneous. In this situation it would be advantageous to let the face
of the blocks follow the facies boundaries, to achieve a good approximation of the
permeability in each block.

Before we continue by presenting the multiscale method, we will provide a
set of variables that enables us to relate to different parts of the fine grid and the
coarse blocks, which is the main content of this section. We also introduce the
prolongation operator, the basis functions, and the restriction operator which are
used in the multiscale formulation presented in the next chapter.

The grid is partitioned into m blocks, numbered from 1 to m. Denote the
coarse partitioning by {

Ωj | j ∈ [1, . . . ,m]
}
,

and let Cj be the set of all cell-numbers belonging to each subdomain Ωj ,

Cj = {i|χi ∈ Ωj}.

Here, χi is the coordinate of the center of cell i. Define the prolongation operator

P : {Ωj} → {Ωi},

which maps quantities on the coarse grid to quantities on the fine grid, and the
restriction operator

R : {Ωi} → {Ωj},

which is an analogous map going the other way. The prolongation operator will for
discrete problems be represented by an n×mmatrix, where the row-indices corre-
spond to cell-numbers, and the column-indices correspond to block-numbers. The
restriction operator will be represented by an m×n matrix, where the row-indices
correspond to block-numbers, and the column-indices correspond to cell-numbers.
We call column j of P the basis function number j, and denote it P j . We say that
the basis function P j belongs to block Ωj . Each basis function has a support re-
gion defined by Ij , which contains the set of cell-numbers where the basis function

24

2.3 Coarse Grid

(a) (b)

Figure 2.5: (a) A grid with two support regions highlighted, and (b) a grid with one
support region highlighted together with union boundary cells.

is allowed to be nonzero. Figure 2.5a shows an example of a Cartesian grid with
16 blocks divided by the bold black lines. Two support regions are colored red and
blue, with an overlapping region colored grey.

Let B0
j be the set of cells on the boundary of support region j. That is, all cells

that are connected to support region j, but are not themselves contained in it,

B0
j = I{j ∩QIj .

Here, I{j is the complement of Ij andQIj is the set of cells connected to any cell in
Ij . Further, let B1

j be the set of all cells on the second boundary of support region
j. That is, all cells that are connected to B0

j , but are not themselves contained in
neither B0

j nor Ij . Define U to be the set of cells that are members of one or more
support region boundaries,

U = B0
1 ∪B0

2 ∪ · · · ∪B0
m−1 ∪B0

m.

We will refer to U as the union boundary. Note that the union boundary will play a
very important role in the upcoming discussions regarding the construction of the
prolongation operator. We will see that what happens to these cells contribute to
complicate this procedure. Figure 2.5b shows an example of a Cartesian grid with
9 blocks, where the middle support region is colored grey, and its support boundary
is colored blue. Cells that belong to the boundary of other support regions than the
middle one are colored red. Together, the red, blue and green cells belong to U .

25

Chapter 2. Problem Derivation and Method Presentation

And lastly, letχcj denote the center of block j. To determine the support region
of this block, we use a local triangulation which is created based on the centers
of all its neighboring blocks, as well as the centroid of each coarse face which is
shared among any two of them. The support region is defined as all cells whose
centroids lie within this triangulation. In this thesis, the block centers will in most
cases coincide with its centroid. The green cells in Figure 2.5 are the block centers,
and will always belong to the union boundary.

2.4 Multiscale Restricted-Smoothed Basis Formulation

We have already introduced the restriction operator R and the prolongation oper-
ator P . While the prolongation operator is the topic of the next chapter, we now
define the restriction operator as a control-volume summation,

Rji =

{
1, if χi ∈ Ωj ,

0, otherwise.

Applying this operator to quantities on the fine grid will produce a single quan-
tity corresponding to each block, which equals the sum of fine-scale quantities
contained within the block.

We will now relate the physical quantities associated with the coarse grid to
physical quantities associated with the fine grid by using P and R, starting from
the fine-scale system of equations derived in Section 2.1,

Ap = q. (2.8)

Here, p and q denote the pressure and source terms in the fine cells, respectively.
Likewise, let pc and qc denote the pressure and source terms in the coarse blocks.
The prolongation operator can be used to compute a fine-scale pressure approxi-
mation pms from the coarse-scale pressure solution,

pms = Ppc. (2.9)

Inserting the fine-scale approximation into equation (2.8) and applying the restric-
tion operator on both sides, we get

(RAP)pc = Rq ≡ qc. (2.10)

This defines the coarse-scale system of equations, where the coarse system matrix
is Ac = RAP . An approximate pressure solution on the fine scale can be found

26

2.4 Multiscale Restricted-Smoothed Basis Formulation

by solving the coarse system and applying the prolongation operator to the coarse
pressure solution as in equation (2.9),

pms = PA−1
c qc = P (RAP)−1Rq. (2.11)

By construction, the flux induced by the coarse scale pressure solution pre-
serves mass globally on the coarse grid. But when the prolongation operator is
applied to obtain the pressure on the fine scale, conservation of mass is no longer
ensured on the fine scale from a direct application of Darcy’s law. That is, the
discrete fluxes obtained from,

vms
ij = −Tij(pms

i − pms
j), (2.12)

are not conservative everywhere on the fine grid. This results from the fact that
pms is not an exact solution to the system (2.8). To obtain fluxes that are mass
conservative everywhere on the fine scale, we can exploit that the fluxes computed
by equation (2.12) are conservative over the coarse block interfaces. Define pms to
be a reconstructed pressure solution on the fine scale. Solving the local problems

∇ ·
(
K(x)∇pms(x)

)
= −q(x), x ∈ Ωj ,

for each coarse block with the Neumann boundary conditions

∇pms · n = −vms, x ∈ ∂Ωj ,

allows us to apply Darcy’s law to pms to obtain a velocity field which is mass
conservative everywhere on the fine grid. This approach does not provide an exact
solution to Darcy’s law. However, it does provide a conservative approximation of
the flux that can often be used to solve fine-scale transport problems to a sufficient
degree of accuracy without the exact pressure solution being known.

To help provide a physical interpretation of the coarse system, we first define
the n×m matrix F as

F ij =
n∑
k=1

Tik(P ij − P kj) = (AP)ij ,

and denote F j column number j of F . The physical interpretation of F j is the net
flux out of all fine cells induced by basis function number j. Applying the control
volume summation operator to F results in the coarse system,

RF = RAP = Ac.

27

Chapter 2. Problem Derivation and Method Presentation

+

j

_
+

k

_

Figure 2.6: Interpretation of (Ac)jk. The red cells are the intersection of block j and the
support region to basis function k. The blue arrows illustrate flux out of the area.

The connection strength (Ac)jk from block j into to block k can thus be expressed
as the sum of fluxes induced by basis function k after having removed all fluxes
belonging to cells outside of block j,

(Ac)jk = Rj∗F k = Rj∗AP k.

Here, Rj∗ is row number j of the restriction operator. In other words, (Ac)jk
will equal the flux out of the area contained inside both the support region of basis
function k and coarse block j, as illustrated by Figure 2.6.

The fine-scale pressure solution obtained from a single solver of equation
(2.10) and (2.9) may or may not satisfy the error tolerance required in a certain
application. While the pressure approximation on the coarse scale often achieves
high accuracy, errors associated with fine-scale variations will normally still be
present. In order to provide a solution with error below some predefined tolerance,
an iterative multiscale formulation has been presented [14]. Similar to multigrid
methods, it exploits the fact that well known iterative techniques rapidly reduce
high-frequency errors, even though they converge slowly to the full solution. In
combination with an accurate pressure solution on the coarse scale, this iterative
scheme efficiently reduces both local and global error and converges to the fine-
scale reference pressure solution. Let pk denote the fine-scale pressure approxi-
mation after k iterations, and define the residual

rk = q −Apk.

Let zk = S(rk) be the result of applying a smoother to the residual. The smoother
is applied to reduce local error, and should be inexpensive to compute, while re-
ducing the local error. An iterative scheme will be stated next, motivated by the

28

2.5 Constructing the Prolongation Operator

following,

p = A−1q

= A−1q + pk − pk

= pk +A−1(q −Apk) + zk − zk

= pk +A−1(rk −Azk) + zk.

Using thatA−1 ≈ PA−1
c R, the iterative scheme is given by

pk+1 = pk + PA−1
c R(rk −Azk) + yz.

2.5 Constructing the Prolongation Operator

We will now introduce the original algorithm used by the MsRSB method to con-
struct the prolongation operator. As already mentioned, this is done by an iterative
process where the basis functions are initialized as the characteristic function on
each block,

p0
ij =

{
1 if i ∈ Cj ,
0 otherwise,

i ∈ F, j ∈ [1, 2, . . . ,m].

A characteristic function is illustrated in Figure 2.7. The purpose of the iterative
procedure is to reduce the residual norms ||AP j ||1 as much as possible. If this is
achieved, it means that the basis functions have adapted to the local permeability
field of the rock, and will incorporate this information when P is applied to the
coarse pressure solution pc.

0

1

a b

f
a,b

(x)

x

Figure 2.7: A one-dimensional characteristic function, here denoted fa,b(x). It is zero
everywhere except in the interval [a, b], where it equals unity.

29

Chapter 2. Problem Derivation and Method Presentation

In addition to be as smooth as possible, the basis functions are required to
satisfy two conditions. Firstly, they have to stay local. That is, they must be zero
outside of their defined support regions,

pij = 0, ∀ i ∈ I{j , j ∈ [1, . . . ,m]. (2.13)

Secondly, we require the prolongation operator to satisfy partition of unity on all
cells, also called the normality condition,

m∑
j=1

pij = 1, ∀ i ∈ F. (2.14)

The original algorithm used by the MsRSB method to construct the prolongation
operator uses the relaxed Jacobi method to reduce the residuals ||AP j ||1. It is
stated in Algorithm 1 [38], which takes as input the existing prolongation operator.
In the next chapter, Algorithm 1 will be reformulated and discussed in more detail.
Here, we will illustrate its application on a one-dimensional permeability field, to
give an understanding of what it does.

The permeability is shown in Figure 2.8a. In Figure 2.8b you can see the
development of a single basis function from its initial declaration to its converged
state, with three intermediate results. Figure 2.8c shows the residual vector |AP j |
in each of the cells after 0, 2 and 4 iterations, as well as for the converged result.
You can see that the residuals decrease rapidly, but do not converge to zero. That
they do not converge to zero is a results from constraining the basis functions to
satisfy partition of unity. If we were not to enforce this constraint, however, all
basis functions would merely converge to zero. The simple explanation for this is
that it would correspond to finding the pressure solution with no source-terms, and
with Dirichlet boundary conditions enforcing zero pressure on the boundary given
by equation (2.13).

30

2.5 Constructing the Prolongation Operator

20 40 60 80 100 120
Cells

0

50

100

150

P
er

m
ea

bi
lit

y

(a)

20 40 60 80 100 120

Cells

0

0.2

0.4

0.6

0.8

1

B
as

is
 v

al
ue

support
initial
4 iterations
20 iterations
100 iterations
converged

(b)

20 40 60 80 100 120
Cells

0

10

20

30

40

|A
P

|

initial
2 iterations
4 iterations
converged

(c)

Figure 2.8: (a) One-dimensional permeability field over 120 file cells, (b) development of
a single basis function, and (c) resulting residuals |AP j | in each cell.

31

Chapter 2. Problem Derivation and Method Presentation

Algorithm 1. Constructing the prolongation operator

1. Compute the non-modified increments,

ĥij = − ω

aii

n∑
l=1

ailp
k
lj , i ∈ F, j ∈ [1, 2, . . . ,m].

2. Modify the increments to avoid growth outside of the support re-
gions,

hij =

{
ĥij if i ∈ Ij ,
0 if i /∈ Ij ,

i ∈ F, j ∈ [1, 2, . . . ,m].

3. For each cell on the union boundary, compute the sum of all incre-
ments belonging to it,

ui =
m∑
l=1

hil, i ∈ U.

4. Modify the increments to preserve partition of unity,

hij =

{
hij−uipkij

1+ui
, if i ∈ Ij , i ∈ U,

hij Otherwise,
i ∈ F, j ∈ [1, 2, . . . ,m].

5. Update the basis functions,

pk+1
ij = pkij + hij , i ∈ F, j ∈ [1, 2, . . . ,m].

6. Define the error as

e = max
ij

(
|hij |

)
, i ∈ F ∩ U{, j ∈ [1, 2, . . . ,m].

If e <tol, return P = P k+1, otherwise go to Line 1.

32

2.6 Multiscale Method Application

(a) (b)

Figure 2.9: (a) Permeability field and (b) fine-scale pressure solution of the model-
problem.

2.6 Multiscale Method Application

We will now illustrate the MsRSB method by applying it to a model-problem. Here
we use a stratigraphic grid with curved boundaries, consisting of 60×30×10 cells.
The grid is partitioned into 5 × 3 × 2 blocks, giving an upscaling factor of 600.
The permeability field is the realization of a lognormal isotropic distribution, with
the average permeability equal to 1000mD. The field has been made fairly het-
erogeneous, with permeability varying with three orders of magnitude. Dirichlet
boundary conditions are assigned on the west and east faces of the rock, with a
constant pressure of 1 on the west side, and 0 on the east side. This will drive the
flow from west to east. The remaining outer faces are assigned to have no-flow
boundaries,

p(x) =

{
1, if x ∈ ∂ΩW,

0, if x ∈ ∂ΩE.

v(x) · n(x) = 0, if x ∈ ∂Ω ∩ (∂ΩW ∪ ∂ΩE){.

Here, n(x) is a vector normal to the boundary ∂Ω, and ∂ΩW and ∂ΩE are the west
and east parts of ∂Ω, respectively. The permeability field is visualized in Figure
2.9a, where the coarse grid is highlighted by the black lines.

For this flow problem, we compute a fine-scale pressure approximation using
the MsRSB method. Note that we do not use the iterative multiscale formula-
tion, and the pressure approximation is found by simply solving the coarse system
(2.10) and applying the prolongation operator to the result as in equation (2.11).
We will measure the accuracy of pms by comparison with the fine scale reference

33

Chapter 2. Problem Derivation and Method Presentation

solution, denoted pfs, which you can see visualized in Figure 2.9b. To compare
the two, we use the scaled L2 and L∞ norms,

||pfs − pms||2 =

√∑
i∈F |pfs

i − pms
i |2∑

i∈F |pfs
i |2

, ||pfs − pms||∞ =
maxi∈F |pfs

i − pms
i |

maxi∈F |pfs
i |

.

In the context of this thesis it is of particular interest to observe how the errors
vary as a function of smoothing iterations applied to the prolongation operator.
We therefore compute the errors when varying the number of iterations from 0 to
100. In Figure 2.10 you see the result.

When zero smoothing iterations are applied, the resulting multiscale pressure
approximation will simply be equal to the coarse scale pressure solution. In our
example, this results in an error relative to the fine scale solution of 0.18 and 0.30 in
the L2 and L∞ norms, respectively. But when applying more and more smoothing
steps to the prolongation operator, we gradually and systematically incorporate the
fine scale variations into the multiscale approximation, resulting in a decreasing
error. After having applied 100 smoothing iterations, the error has decreased to
0.020 and 0.057 in the L2 and L∞ norms, respectively. As you can see from
Figure 2.10, there is not much to gain by applying more than 100 smoothing steps.
If one requires a better pressure approximation, this can be achieved by using the
iterative multiscale formulation or by reducing the upscaling factor.

0 50 100
Iterations

0

0.05

0.1

0.15

0.2

E
rr

or

(a) L2 norm.

0 50 100
Iterations

0

0.1

0.2

0.3

E
rr

or

(b) L∞ norm.

Figure 2.10: Error measures of the multiscale pressure solution as a function of smoothing
iterations applied to the prolongation operator.

34

Chapter 3
Improving the Construction of the
Prolongation Operator

In this chapter we present two primary contributions to improve the original algo-
rithm that constructs the prolongation operator used in the MsRSB method. The
first contribution is a modification to the original algorithm that was presented in
the previous chapter. We will see that the suggested modified algorithm leads to
a more numerically stable implementation. The second contribution is two new
smoothing approaches, both of which are modified versions of the Gauss-Seidel
method.

The chapter is organized as follows. Section 3.1 presents the modified version
of the construction algorithm which was initially stated in Section 2.5. Section 3.2
continues by analyzing the algorithm, in particular by discussing how the Jacobi
smoothing step works. In Section 3.3, we consider replacing the Jacobi smoother
by a straightforward Gauss-Seidel smoother, and argue that it will lead to a more
expensive implementation. As an important step towards modifying the Gauss-
Seidel smoother to become more efficient, Section 3.4 consider applying the red-
black ordered Gauss-Seidel method as a smoother. In Section 3.5 and 3.6 we
present the two new smoothing procedures. These can be applied directly into the
algorithm presented in Section 3.1 by replacing the Jacobi smoother. The chapter
concludes by presenting numerical results in Section 3.7. Here, the algorithm
presented in Section 3.1 is first compared to its original formulation, followed by
comparisons of the newly presented smoothers and the relaxed Jacobi method.

35

Chapter 3. Improving Construction of the Prolongation Operator

3.1 A Change to the Original Construction Algorithm

Before we discuss the construction of the prolongation operator in more detail,
we will introduce a modified version of the original algorithm that was presented
in the previous chapter. Assuming that requirements (2.13) and (2.14) hold, the
new version will produces an equivalent updated prolongation operator. The main
difference between the two versions is when the increments are added to update
basis values. The new algorithm is stated in Algorithm 2.

Keep in mind that a straightforward implementation of Algorithm 2 would be
inefficient because a large amount of redundant computations is carried out. In
particular, the values belonging to cells outside of their respective support region
are never required to be computed since they have the constant value zero. In
Chapter 4.3 the algorithm is restated in a form more similar to the implementation.
However, to understand how the algorithm works it is instructive to consider it on
its current form.

We end this section by proving that Algorithms 1 and 2 produce the same
updates to the basis functions, provided that requirements (2.13) and (2.14) holds
after the previous step.

Proof. It is easy to see that the two algorithms produce equivalent updates to values
that do not belong to the union boundary. We will show that this is also the case
for the cells on the union boundary. Notice that

gij = pkij + hij ,

and

si =

m∑
l=1

(
pkil + hil

)
= 1 + ui,

where it is used that
m∑
l=1

pkil = 1.

Assume that we update the value of cell i belonging to basis function j, where
the cell also belongs to the union boundary. By the first algorithm we get that its
updated value is

pk+1
ij = pkij + hij = pkij +

hij − uipkij
1 + ui

=
pkij + hij

1 + ui
=
gij
si

= gij

which is the same expression as provided by the second algorithm.

36

3.2 Analyzing the Construction Algorithm

Algorithm 2. Constructing the prolongation operator - Second formulation

1. Compute the non-modified updated values,

ĝij = pkij −
ω

aii

n∑
l=1

ailp
k
lj , i ∈ F, j ∈ [1, 2, . . . ,m].

2. Modify the updated values to avoid growth outside of the support
region,

gij =

{
ĝij if i ∈ Ij ,
0 if i /∈ Ij ,

i ∈ F, j ∈ [1, 2, . . . ,m].

3. For each cell on the union boundary, compute the sum of all values
belonging to the cell,

si =
m∑
l=1

gil, i ∈ U.

4. Modify the updated values to preserve partition of unity,

gij =

{
gij
si
, if i ∈ Ij , i ∈ U,

gij Otherwise,
i ∈ F, j ∈ [1, 2, . . . ,m].

5. Update the basis functions,

pk+1
ij = gij , i ∈ F, j ∈ [1, 2, . . . ,m].

6. Define the error as

e = max
ij

(
|pk+1
ij − pk|

)
, i ∈ F ∩ U{, j ∈ [1, 2, . . . ,m].

If e <tol, return P = P k+1, otherwise go to Line 1.

3.2 Analyzing the Construction Algorithm

The content of a single step of Algorithm 2 (and 1) can be summarized as fol-
lows. Apply the smoother to each basis function to reduce the residuals ||AP j ||1.

37

Chapter 3. Improving Construction of the Prolongation Operator

Then modify the result to ensure that the two requirements (2.13) and (2.14) hold.
To show that the requirements hold, we will state two properties of the Jacobi
smoother performed in Line 1.

Jacobi smoother property 1. The Jacobi smoother preserves partition of unity.

That is, if we update the basis functions immediately after Line 1 of the above
algorithm has been executed, partition of unity is preserved.

Proof. We have that

m∑
j=1

pk+1
ij =

m∑
j=1

(
pkij −

ω

aii

n∑
l=1

ailp
k
lj

)
= 1− ω

aii

m∑
j=1

n∑
l=1

ailp
k
lj

= 1− ω

aii

n∑
l=1

ail

m∑
j=1

pklj = 1− ω

aii

n∑
l=1

ail = 1,

where equations (2.5) and (2.14) were used.

However, the Jacobi smoother does not prevent the basis functions to grow
outside of their support regions. We will now state a second property of the Jacobi
smoother.

Jacobi smoother property 2. For each basis function, the Jacobi smoother pre-
serves zero value on all cells outside of its support region, except on its support
boundary. That is, if requirement (2.13) holds at step k, and we apply the Jacobi
smoother, we have that

pk+1
ij = 0, ∀ i ∈

(
Ij ∪B0

j

){
, j ∈ [1, . . . ,m]. (3.1)

Proof. Assume that cell i does not belong to neither the support region nor the
support boundary of a particular basis function j,

i ∈
(
Ij ∪B0

j

){
.

and consider applying the Jacobi smoother to pkij . We get

pk+1
ij = pkij −

ω

aii

n∑
l=1

ailp
k
lj = − ω

aii

∑
l=Qi

ailp
k
lj ,

38

3.2 Analyzing the Construction Algorithm

Here, property (2.6) and requirement (2.13) were used. Further, since cell i is not
on the boundary of support region j, we have that

Qi ⊂ I{j . (3.2)

From (2.13) we therefore have that

pklj = 0, ∀ l ∈ Qi,

and pk+1
ij = 0 follows.

For a particular basis function, the Jacobi smoother is not guaranteed to pre-
serve zero value on cells belonging to its support boundary, which breaks require-
ment (2.13). This is because equation (3.2) is not true on these cells. Line 2 of
the algorithm is therefore needed to enforce that this requirement is preserved. Be-
cause of the Jacobi smoother property 2 however, this will only affect values on the
union boundary. But when setting the values of cells on the boundaries to be zero,
it breaks the requirement of partition of unity on the same cells. Line 3 and 4 are
therefore required to explicitly enforce partition of unity on the union boundary.
After Lines 1 − 4 have been carried out, requirements (2.13) and (2.14) are again
preserved on the entire grid.

We will now illustrate the algorithm by applying it to a simple two-dimensional
model and look at how a single basis function develops. The grid is Cartesian,
consists of 27× 27 cells, and is divided into 9 equally large blocks. It is shown in
Figure 3.1a, where the union boundary cells are outlined in red, and the cell-centers
of the blocks are colored green. We take a look at how the basis function belonging
to the middle block develops. It is initialized as the characteristic function, as
shown in Figure 3.1b. Here, the inner black line is the boarder of the block, and
the outer black line is the boarder of the support region to the basis function. How
the basis function develops during the first six steps is shown in Figures 3.1c-3.1h.
Observe that it grows towards the support boundary, one cell-width at each step.
After four steps it has reached the support boundary, and in the fifth iteration it
would continue to grow outside of it, was it not for that the cells outside of the
support region are set to zero. Figure 3.1i shows the converged basis function.

That the basis function grows one cell-width at each step has to do with the
nature of the Jacobi update. Considering a cell of zero value, the only way it can
turn non-zero is if it is connected to a cell that was nonzero in the previous step.
This is exactly the same feature that makes the Jacobi smoother property 2 hold.

39

Chapter 3. Improving Construction of the Prolongation Operator

(a) (b) Initial. (c) Step 1.

(d) Step 2. (e) Step 3. (f) Step 4.

(g) Step 5. (h) Step 6. (i) Converged.

Figure 3.1: (a) Example-grid with union boundary and block centers highlighted, and
(b-i) development of a basis function for a homogeneous permeability field. The grey line
highlights the frontier of the basis function.

3.3 Gauss-Seidel as Smoother

Wishing to decrease the computational cost needed to create the prolongation oper-
ator, it is natural to consider changing Algorithm 2 to use a Gauss-Seidel smoother
instead of Jacobi. By applying this change, the hope is that the residuals ||AP j ||1
are reduced faster, so that fewer steps are needed to reach a certain quality of the
prolongation operator. Assume that this change is carried out, so that Line 1 of
Algorithm 2 reads

40

3.3 Gauss-Seidel as Smoother

1. Compute the non-modified updated values,

ĝij = pkij −
ω

aii

(i−1∑
l=1

ailĝlj +
n∑
l=i

ailp
k
lj

)
, i ∈ F, j ∈ [1, 2, . . . ,m].

(3.3)

Here we have stated the slightly more general SOR method. Choosing ω = 1
would result in the forward Gauss-Seidel method. It is straightforward to prove
that partition of unity is preserved after Line 1 has been applied, as it is for Jacobi.
However, when looking into the consequences of the change a bit further, we will
realize that it has a prominent disadvantage over Jacobi.

The disadvantage results from that Jacobi smoother property 2 does not hold
in general for the GS smoother. Therefore, if the above change is applied to the
original algorithm with no other modification, partition of unity would not be guar-
anteed to be preserved. To correct for this one would have to force partition of unity
on more cells than the ones on the union boundary.

To illustrate what happens, consider the same test-case as we did in the pre-
vious section. Figure 3.2a shows the same grid where the support regions of the
bottom left and top right basis functions are highlighted in grey, and their bound-
ary cells are colored red. As we discussed in Chapter 2, the GS method depends
on the order in which the elements are updated. In this example we update the
cells from left to right, top to bottom. That is, the first cell to be updated is the
one in the south-west corner and the last one is in the north-east corner of the grid.
This is the ordering that appears naturally from applying forward GS to the way
the cells are numbered by the program that was used. We take a look at the result
of applying a sweep of Equation (3.3) to the initial basis functions, in particular
the bottom left and the upper right ones. The results are shown in Figure 3.2b and
3.2c, respectively. Here, we see that the bottom left basis function has grown to
be nonzero on the entire grid. When preserving locality we must therefore adjust
every cell outside of its support region to be zero, which removes the partition of
unity requirement on the same cells. This leads to Lines 4 and 5 of Algorithm 2
having to be applied to all cells outside of the support region of the same basis
function. The upper right basis function, however, has only grown one cell-width,
just like for the Jacobi smoother.

Why this happens results from the fact that the GS smoother uses the most
recently updated values. Consider a situation where the value of a cell belonging
to B1

j is updated after the value of a connected cell on B0
j . Now the cell on B1

j is
no longer ensured to remain zero, since its computation is based on a connected
cell which can be nonzero. This effect can again propagate further away from the

41

Chapter 3. Improving Construction of the Prolongation Operator

(a) (b) (c)

Figure 3.2: Example-grid with (a) support regions and boundaries for the bottom-left and
top-right basis functions highlighted, and (b,c) resulting basis functions after one sweep
of Gauss-Seidel.

support region, and will in some cases, such as illustrated in Figure 3.2b, propagate
throughout the entire grid. The asymmetric development of the two basis functions
is a result of the order in which we apply the updates. If we had updated the cells
from right to left, top to bottom, we would see the developments of the two basis
functions switched.

The disadvantage of a direct change to Gauss-Seidel should now be clear. It
results in a higher computational cost in order to preserve partition of unity. To
minimize or remove this disadvantage, we will consider applying the Gauss-Seidel
smoother in a different order, which is the topic of the next three sections.

We end this section by mentioning another disadvantage of the Gauss-Seidel
smoother which was discovered during the numerical investigation. When using
the same ordering as above, it was discovered that even when the extra computa-
tional cost was used to ensure partition of unity, the basis functions did not con-
verge to the same solutions as the original algorithm. In fact, it did not reduce
||AP j ||1 as much as Jacobi. We will not discuss this further, but it is believed to
be an effect of the asymmetrical development of the basis functions illustrated by
Figure 3.2b and 3.2c.

3.4 Red-black Gauss-Seidel Smoother

We will now consider the application of a red-black Gauss-Seidel sweep as smoother,
and see that this approach reduces the problem discussed in the previous section.
But it still does not meet the Jacobi smoother property 2 entirely.

We look at the same test problem as earlier, although now with 15 × 15 cells.

42

3.4 Red-black Gauss-Seidel Smoother

Figure 3.3a shows the grid in red-black coloring, where the support region of the
middle block is highlighted by the white line. Figure 3.3b shows B0

j and B1
j

colored in dark and light green, respectively, and the support region is colored
grey.

Consider applying the GS smoother to the basis function belonging to the high-
lighted support region, ordered so that all black cells are updated before all red
cells. After the black cells have been updated, zero value is no longer ensured on
half the cells on B0

j . These are the black cells outside of the support region in
Figure 3.3c. When continuing by updating the red cells, zero value will no longer
be ensured on the remaining half of the cells on B0

j . In addition, zero value is no
longer ensured on cells belonging to B1

j that are connected to a black cell on B0
j .

These are the red cells belonging to B1
j in Figure 3.3c. However, zero value is

ensured on all remaining cells that do not belong to the support region.

The result is that when applying this smoother, partition of unity must be en-
forced on a subset of U1 in addition to the whole of U , where U1 is defined as the
union of cells on the second boundary,

U1 = B1
1 ∪B1

2 ∪ · · · ∪B1
m.

While this is a substantial improvement of the ordering considered in the previous
section, we are still able to do better.

Consider if Lines 2 − 5 of Algorithm 2 are applied after the black cells have
been updated, and yet again after the red cells have been updated. By doing this,
zero value on B1

j would always be preserved, and the cells on U are the only
ones that require modification to preserve partition of unity. Also, the number of
operations required to preserve partition of unity would not increase, since Lines 3

(a) (b) (c)

Figure 3.3: Example-grid (a) in red-black coloring, (b) with a support region and support
boundariesB0

j andB1
j highlighted, and (c) nonzero updated values colored red and black.

43

Chapter 3. Improving Construction of the Prolongation Operator

and 4 of the original algorithm would only have to be applied to half the cells on U
in each normalization operation. Still, when it comes to computational cost it can
be a disadvantage to apply a partition of unity operation twice in every iteration,
rather than once as for the original algorithm. In the next section we therefore
introduce another approach.

3.5 Partially Red-black Gauss-Seidel Algorithm

We will now present an alternative procedure which is a compromise between the
Jacobi smoother and the red-black Gauss-Seidel smoother. We name the new ap-
proach the partially red-black Gauss-Seldel algorithm. Like the original algorithm,
this method requires partition of unity to be enforced only on U , and during a sin-
gle operation in each step. Like the red-black ordered Gauss-Seidel smoother, it
uses coloring of the cell, which will be explained next.

Start by coloring all cells on U red. Then iterate through the remaining cells
and color them in the following way. If the cell is not connected to any black cells,
color it black. Otherwise, color it red. The result of applying this coloring to our
previous example is shown in Figure 3.4b. Figure 3.4a shows the corresponding
union boundary.

Let R and K be the set of all red and black cells, respectively. In the same
way as for the red-black ordered Gauss-Seidel method, all black cells will be up-
dated before all red cells. Each cell-value will be incremented using relaxed Jacobi
update. The partially red-black Gauss-Seldel is stated in Algorithm 3.

After Line 1 in Algorithm 3 has been executed, requirement (2.13) and (2.14)

(a) Union boundary (b) Coloring

Figure 3.4: Example-grid with partially red-black coloring.

44

3.6 Boundary Last Gauss-Seidel Algorithm

Algorithm 3. Partially red-black Gauss-Seidel

1. Compute the non-modified updated values to all black cells,

ĝ
1/2
ij =

{
pkij − ω

aii

∑n
l=1 ailp

k
lj if i ∈ K,

pkij if i ∈ R,
i ∈ F, j ∈ [1, 2, . . . ,m].

2. Compute the non-modified updated values to all red cells,

ĝij =

{
ĝ

1/2
ij if i ∈ K,
ĝ

1/2
ij −

ω
aii

∑n
l=1 ailĝ

1/2
lj if i ∈ R,

i ∈ F, j ∈ [1, 2, . . . ,m].

3. Continue by performing Lines 2− 6 as written in Algorithm 2.

are preserved. This follows from the fact that the Jacobi updates preserves partition
of unity, and that no cells on the union boundary have been updated yet. After Line
2 has been executed, requirement (2.14) is yet again preserved. But in the same
way as the original procedure, elements on the support boundary of each basis
function are no longer ensured to be zero. Lines 2−6 in Algorithm 2 are therefore
still needed to ensure that this requirement holds.

Note that the partially red-black ordered GS algorithm applies exactly the same
arithmetic operations as the original. The only differences are the order in which
the values are updated and, in the case of Line 2, what latest updates are used.
Regarding memory usage, the new algorithm suffers no disadvantage from the
original one. Rather, a slight amount of memory can be saved in the buffer where
updated elements are stored. The algorithm requires an additional setup computa-
tion to find the coloring of the grid. This operation is straightforward and can be
computed by a single sweep through the grid, where it colors the cells by the rules
stated above. The coloring procedure can be applied to any type of grid since it
only uses topology information.

3.6 Boundary Last Gauss-Seidel Algorithm

A simpler approach than the one presented above was found, which also fixes the
problem of the straightforward Gauss-Seidel smoother. The approach is explained
by the following. First apply the GS update to all cells that do not belong to U .
Then apply the Jacobi update to the cells that do belong to U . We call the new

45

Chapter 3. Improving Construction of the Prolongation Operator

approach the boundary last Gauss-Seidel algorithm. It is stated in Algorithm 4.

Algorithm 4. Boundary last Gauss-Seidel

1. Compute the non-modified updated values by applying the Gauss-
Seidel smoother to all cells that do not belong to U ,

ĝ
1/2
ij =

pkij − ω
aii

(∑i−1
l=1 ailĝ

1/2
lj +

∑n
l=i ailp

k
lj

)
, if i ∈ U{,

pkij if i ∈ U,
i ∈ F, j ∈ [1, 2, . . . ,m].

2. Compute the non-modified updated values by applying the Jacobi
smoother to all cells that do belong to U ,

ĝij =

{
ĝ

1/2
ij if i /∈ U,
ĝ

1/2
ij −

ω
aii

∑n
l=1 ailĝ

1/2
lj if i ∈ U,

i ∈ F, j ∈ [1, 2, . . . ,m].

3. Continue by performing Lines 2− 6 as written in Algorithm 2.

The idea behind this algorithm is the same as with the partially red-black algo-
rithm. After Line 1 has been executed, requirement (2.13) and (2.14) are preserved.
After Line 2 has been executed, Lines 2-6 of Algorithm 2 must be carried out to
again preserve the two conditions. Note that the GS smoother applied in Line 1
can be executed in any order. The only restriction is that it must not update any
cells on U .

Algorithms 3 and 4 both have their own advantage. The advantage of Algo-
rithm 4 is that it allows the use of a larger fraction of recently updated values in
the computation of consecutive updates. However, a disadvantage is that Line 1
must be computed sequentially, making it less suitable for parallelism. Algorithm
3 does not suffer from this drawback, where both Lines 1 and 2 can be computed
in parallel. In addition, Algorithm 3 produces a more symmetric development of
the basis functions, which possibly makes it more numerically stable.

Before presenting numerical results, we briefly comment on another approach
that was investigated. It was named the varying ordered Gauss-Seidel algorithm,
and explained briefly, it is based on applying the Gauss-Seidel method to the entire
grid, but let each basis function update its values in its own order. The ordering
is chosen to prevent the basis functions to grow past U . However, for partition of

46

3.7 Numerical Results

unity to be preserved it is required in general that the Gauss-Seidel method must
be applied in the same order to all basis functions. Hence, the approach would
require partition of unity to be enforced on the entire grid. For this reason, it was
discarded.

3.7 Numerical Results

We end the chapter by presenting numerical results of the new algorithms we have
presented. Section 3.7.1 presents numerical evidence showing that the algorithm
that constructs the prolongation operator presented in Section 3.1 leads to a more
numerically stable implementation than the original formulation. In Section 3.7.2
we compare the different smoothing procedures, and show that the procedures
presented in this chapter offers an improvement over the original relaxed Jacobi
smoother.

3.7.1 Comparison of Construction Algorithms

We will now compare the original algorithm used to construct the prolongation
operator [38] stated in Section 2.5 to the new formulation presented in Section
3.1, refereed to by Algorithms 1 and 2, respectively. Although the differences
between the two might seem insignificant, numerical experiments suggest that an
implementation based on Algorithm 2 is less prone to round-off errors introduced
by floating point operations.

To investigate their numerical stability, we consider three different programs
that construct the prolongation operator. The first is implemented in Matlab as part
of the MRST toolbox, which explicitly enforces partition of unity on the entire
grid in every step. It makes no attempt to optimize efficiency, and is mainly used
to explore the method. The second one is implemented in C++ and is based on
Algorithm 1. It was created by Olav Møyner during the fall of 2015. Because
of the introduction of round-off errors, this program performs a partition of unity
operation of the entire grid regularly. If this operation is not performed frequently
enough, the prolongation operator diverges. In the tests presented here, this oper-
ation is performed at every 100th step, and comes in addition to the computations
contained in the algorithm as stated in Section 2.5. The third program is originally
presented in this thesis, and will be outlined in Chapter 4. It is implemented in
C++ and is based on Algorithm 2. Unlike the second program, it does not perform
any additional operation to preserve partition of unity than what is stated in the
algorithm.

47

Chapter 3. Improving Construction of the Prolongation Operator

To keep it brief, we show results only for a single test-case, but note that the
same main result was confirmed in several other numerical tests. The test case is
Layer 35 of the SPE 10 dataset, consisting of 60×220 cells and divided into 6×11
blocks, giving an upscaling factor of 200. The extra normalization performed by
the second program is initially turned off. After each step in the construction, the
distance from the converged prolongation operator is computed. This distance is
measured in the following norms,

||P k − P ∗||∞ =
maxij |P k

ij − P
∗
ij |

maxij |P 0
ij − P

∗
ij |
, ||P k − P ∗||2 =

√√√√∑m
j=1

∑n
i=1 |P

k
ij − P

∗
ij |2∑m

j=1

∑n
i=1 |P

0
ij − P

∗
ij |2

.

Here, k is the number of steps and P ∗ is the approximate converged prolongation
operator computed numerically. Figure 3.5 shows the distance as a function of the
number of steps for the two programs. Observe that the two algorithms steadily
approach convergence in the beginning of the iteration. After around 400 and 600
iterations, however, the distance of Algorithm 1 rapidly blows up and diverges.
Meanwhile, Algorithm 2 continues to approach convergence steadily.

Next, we will show that the round-off errors introduced by Algorithm 1 are
present even when the extra normalization procedure is performed every 100th
step. To show this, we look at the discrepancy between the prolongation oper-
ator as computed by the Matlab program and the two C++ programs after 100,
1,000, 10,000 and 20,000 steps. Since the Matlab program explicitly normalizes
the entire grid in every step, it will not suffer from any propagation in round-off
errors associated with preserving the normality condition. Table 3.1 shows the re-

0 200 400 600 800 1000
Iterations

0.2

0.4

0.6

0.8

1

E
rr

or

Algorithm 1
Algorithm 2

(a) Infinity-norm.

0 200 400 600 800 1000
Iterations

0.2

0.4

0.6

0.8

1

E
rr

or

Algorithm 1
Algorithm 2

(b) Two-norm.

Figure 3.5: Error measure between diverged prolongation operator and the prolongation
operator produced by Algorithms 1 and 2 as a function of smoothing steps.

48

3.7 Numerical Results

sults. Here, the discrepancy between the prolongation operators is measured in the
scaled L∞ norm. The discrepancy of Algorithm 1 starts off relatively large, but
decreases as the number of iterations grows, and converges to the same solution as
the MRST program within machine precision. The discrepancy of Algorithm 2 is
significantly lower than that of Algorithm 1 in the beginning, and remains lower
also after 10,000 iterations. Further, it remains stable, although slightly increasing.
After 20,000 iterations the discrepancy of Algorithm 2 is larger than that of Algo-
rithm 1. This is expected, since the prolongation operator produced by Algorithm
2 will deviate slightly from the partition of unity condition as it has never been
explicitly enforced on any cells but the ones on the union boundary. To preserve
partition of unity it might therefore be expedient to end the iteration by enforcing
partition of unity on all cells.

The reason why Algorithm 2 is more numerically stable than Algorithm 1 can
be explained by the difference in how they preserve partition of unity. First, con-
sider Algorithm 1. It is well known that subtracting two numbers of approximately
the same value is highly prone to round-off errors. This is exactly what happens
in Line 4, when performing the subtraction hij − uipkij . When approaching con-
vergence, this value approaches zero, and the algorithm ends up subtracting sev-
eral approximately equal numbers in each iteration. This introduces a significant
round-off error, which results in a deviation from preserving the normality condi-
tions on the union boundary. Further, a single step preserves the normality condi-
tion on the union boundary only if it was preserved at the last step. This causes
the deviation to propagate, and will increase in every iteration caused by further
round-off error. When using Algorithm 2, on the other hand, both of these issues
are resolved. The subtraction of two approximately equal numbers is removed,
and the partition of unity requirement is enforced on the union boundary in a way
that does not require it to hold in the last step. The last point prevents round-off
errors associated with this operation to propagate. It is also worth noticing that

Table 3.1: Discrepancy in the prolongation operator resulting from implementations of
Algorithm 1 and 2, with respect to the Matlab program, measured in the scaled L∞ norm.

Iterations
Discrepancy

Algorithm 1 Algorithm 2

100 1.4832 · 10−3 1.5261 · 10−7

1000 8.0641 · 10−4 2.5573 · 10−7

10000 3.4710 · 10−6 2.7195 · 10−7

20000 3.3250 · 10−8 2.7196 · 10−7

49

Chapter 3. Improving Construction of the Prolongation Operator

Algorithm 2 performs fewer arithmetic operations in order to preserver partition
of unity. This can be observed in Line 4 of the two algorithms. Where Algo-
rithm 1 performs four operations to each value belonging to the union boundary,
Algorithm 2 performs only one. This saves the latter a bit of computational work.

3.7.2 Changing the Smoother

We will now show results from numerical experiments where the different smooth-
ing procedures are compared, by studying the rate of which they reduce the resid-
uals ||AP j ||. To evaluate the quality of the prolongation operator, we use

τk =

∑m
j=1 ||AP

k
j ||1∑m

j=1 ||AP
0
j ||1

,

where k is the number of iterations. Here, a smaller τ indicates a higher quality
than a larger one. As mentioned earlier, this value does not converge to zero.
Therefore, we measure the distance from convergence by

λk =
τk − τ∗

τ0 − τ∗
,

where τ∗ is the approximately converged value computed numerically. The relax-
ation factor used by the Jacobi smoother was originally set to ω = 2/3, but in the
report [22] we suggested that ω = 0.95 is a better choice. We therefore consider
both of these values and compare them with the non-relaxed versions of Algorithm
3 and 4, which have been implemented in Matlab. The iterations are interrupted
when either of the following conditions are true,

|τk − τk−1| < 10−8, or τk−1 < τk.

That is, the iterations are stopped when the change in the quality of the prolonga-
tion operator is sufficiently small, or when the quality decreases. In the test cases,
τk was strictly decreasing, so the right stopping criteria was never true. We are
interested in finding by how much we can reduce the number of iterations when
switching from the Jacobi smoother to one of the new ones, while achieving the
same quality of the prolongation operator. Therefore, in addition to show plots of
λk, we include plots of the following. Let τ J

k and τRB
k be the quality measure ob-

tained by Jacobi and the partially red-black smoother, respectively, after k number
of iterations. Here, the Jacobi smoother uses the relaxation factor ω = 0.95. For
each k, we find

s(k) = min
[
k̃
∣∣τRB
k̃

< τ J
k

]
,

50

3.7 Numerical Results

and will show the additional plot s(k)
k as a function of k. The same plot is shown

for the BLGS smoother.

The different smoothers were initially tested on several homogeneous rocks on
two-dimensional Cartesian grids of various sizes and upscaling factors. In addi-
tion, they were tested on different parts of the SPE 10 dataset. We will now present
the results of three cases. Note that the other test cases gave similar results. The
first case is the rock presented in the example from Section 2.6, which uses a strati-
graphic grid and has upscaling factor 600. The second case is Layers 20-29 of the
SPE 10 dataset, consisting of 60 × 220 × 10 cells and is divided into 6 × 11 × 2
blocks, giving an upscaling factor of 1,000. The third case is Layer 85 of the SPE
10 dataset, consisting of 60 × 220 cells and is divided into 6 × 11 blocks, giving
an upscaling factor of 200.

Table 3.2 shows τ∗ computed in the three test cases, and the number of itera-
tions required by the different smoothers to reach the stop criteria. Note that, since
we consider smoothers, we are mainly interested in the initial reduction in τ , and
not the asymptotic convergence rates. Normally, performing 100 iterations would
be enough to obtain a good quality prolongation operator. Here, a high amount of
iterations were executed to ensure that the algorithms converge to the same solu-
tion, and to get a good approximation of the quality measure τ∗ for the converged
prolongation operator. Figure 3.6 shows plots of λ(k) and s(k).

In all cases, the Jacobi smoother converge faster with ω = 0.95 than with
ω = 2/3. However, on some highly heterogeneous parts of the SPE 10 dataset,
ω = 2/3 reduces λ faster during the very start of the iteration. On Layer 85, for
example, choosing ω = 2/3 achieves a higher quality measure during the first 17
iterations. After that, ω = 0.95 provided best results of the two. This suggest that
it can be beneficial to apply the relaxation factor in a dynamic manner.

In all cases considered, the BLGS smoother reaches the stopping criteria fastest,
and achieves the best asymptotic convergence rate. However, the difference be-
tween BLGS and the partially red-black GS smoother is small. During the first
few iterations, the partially red-black GS smoother reduces λ fastest of all, except

Table 3.2: Number of iterations required to reach tolerance for three test-cases, and the
converged quality measures τ∗.

Case Iterations
τ∗Jacobi (2/3) Jacobi (0.95) Red-black BLGS

Stratigraphic grid 4798 3586 2494 2322 6.44 · 10−2

SPE 10 Layers 20-29 7950 6037 3858 3742 1.53 · 10−2

SPE 10 Layer 85 10210 8299 5395 5293 1.51 · 10−2

51

Chapter 3. Improving Construction of the Prolongation Operator

for a single problem on the SPE 10 dataset, where it was beaten by Jacobi with
ω = 2/3 in the first 10 iterations.

The results are evidence that one can reduce the number of iterations by 30-
50% by switching from the relaxed Jacobi smoother to either the BLGS or partially
red-black GS smoother, and expect to achieve the same quality of the prolongation
operator on many problems. But we conclude this chapter with a warning. The
relaxation factor can be interpreted as the step length taken at each iteration. In
numerical analysis it is well known that increasing the step length often results
in a less stable approach. Considering this, it is likely that the Jacobi smoother
with ω = 2/3 is more stable than the others, which might lead it to converge in
cases where the other smoothers diverge. In particular, this situation might occur
for very heterogeneous rocks. However, the smoothers were tested on the SPE
10 Layer 85, which is considered to have a very challenging heterogeneity. Also
here the new smoothers proved to be stable, and provided a faster improvement in
the quality measure of the prolongation operator. But we recommend to carry out
more tests on a wider variety of rock models. In particular, the newly proposed
procedures should be tested on unstructured and highly complex grids, and their
stability should be investigated on more rock-models with challenging permeabil-
ity fields. It is also worth investigating if relaxed versions of the new smoothers
can improve them further.

52

3.7 Numerical Results

10 0 10 1 10 2 10 3

Iterations

10 -4

10 -3

10 -2

10 -1

10 0
6

Jacobi, 2/3
Jacobi, 0.95
Red-black
BLGS

(a) λ, stratigraphic grid.

10 0 10 1 10 2 10 3

Iterations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

s

Red-black
BLGS

(b) s, stratigraphic grid.

10 0 10 1 10 2 10 3

Iterations

10 -4

10 -3

10 -2

10 -1

10 0

6

Jacobi, 2/3
Jacobi, 0.95
Red-black
BLGS

(c) λ, SPE 10 Layer 20-29.

10 0 10 1 10 2 10 3

Iterations

0.5

0.55

0.6

0.65

0.7

0.75

s
Red-black
BLGS

(d) s, SPE 10 Layer 20-29.

10 0 10 1 10 2 10 3

Iterations

10 -4

10 -3

10 -2

10 -1

10 0

6

Jacobi, 2/3
Jacobi, 0.95
Red-black
BLGS

(e) λ, SPE 10 Layer 85.

10 0 10 1 10 2 10 3

Iterations

0.3

0.35

0.4

0.45

0.5

0.55

s

Red-black
BLGS

(f) s, SPE 10 Layer 85.

Figure 3.6: The left figures show the quality measure of the prolongation operator, λ, as a
function of the number of steps by the four smoothers. The right figures show the fraction
of number of iterations required for the BLGS and partially red-black GS smoothers to
reach equally high quality, s, as the Jacobi smoother, as a function of number of steps
applied with the Jacobi smoother and ω = 0.95 .

53

Chapter 3. Improving Construction of the Prolongation Operator

54

Chapter 4
Constructing Prolongation Operator
on Distributed Memory Systems

In the fall of 2015, a program that constructs the prolongation operator used by the
MsRSB method was created by Olav Møyner, a Ph.D. candidate working for the
Department of Applied Mathematics at SINTEF. The program is written in C++
and uses the OpenMP language extension to realize parallel computation on shared
memory machines. It is included in MRST, where it has been made available
through the use of MEX files [1]. The C++ program we present in this chapter
has been based on Olav’s implementation, but extends it by applying the Message
Passing Interface (MPI) to achieve parallel computation on distributed memory
systems.

While the main revision from the shared memory program is the expansion to
message-passing, additional improvements were made during the development of
the program we present. These have in part been discussed in Chapter 3.7.1, where
it was shown that the message-passing program is based on a more numerically
stable algorithm.

The chapter is organized as follows. Section 4.1 starts by making a couple
of points about the union boundary, U , which will be important when analyzing
the performance of the message-passing program. In Section 4.2 we present two
sparse data formats that the program use, before presenting the sequential version
of the program in Section 4.3. Section 4.4 starts by describing the distribution of
computational work and how the message-passing is performed, before presenting
the message-passing program. In Section 4.6 we present test results, and at the

55

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

end a modification of the underlying algorithm that aims to reduce communication
cost. The chapter concludes by a discussion of the results and ideas to improve the
message-passing program, which is the topic of Section 4.6.

(a) 2D, Upscaling factor 900, η = 0.066. (b) 3D, Upscaling factor 1000, η = 0.27.

(c) 2D, Upscaling factor 100, η = 0.19. (d) 2D, Upscaling factor 125, η = 0.49.

Figure 4.1: Union boundary cells, U , for square fine and coarse grids, in two and three
dimensions.

4.1 The Union Boundary

The union boundary has been an important topic of discussion in the previous
chapter, and we will see that it is just as important in this one. In particular, the
fraction of cells that belong to the union boundary will be essential when analyzing
the performance of the message-passing program. We therefore define this fraction
by η,

η =
|U |
|F |

.

In this section, we make two points; η increases when the upscaling factor de-
creases (i.e when adding more blocks), and η is significantly larger on a three-
dimensional grid than on a two-dimensional one, if the upscaling factor is the

56

4.2 Sparse Data Formats

same. The first point is pretty self explanatory, but the second one might not be as
obvious.

In general, η will also depend on the details of the fine grid and how it is parti-
tioned into blocks, so for simplicity we will consider the following case; a square
Cartesian grid distributed into equally large, square blocks. Figure 4.1 shows the
union boundary for grids of this type in both the two- and three-dimensional case.
By merely a visual comparison of the grids in two and three dimensions that have
approximately equal upscaling factor, it is clear that η is significantly higher for the
three-dimensional grid. Their precise values can be seen in the figure. Denote r to
be the upscaling factor. For the particular types of grids of we consider, η(r) can
be computed analytically, and in fact η is r1/6 times larger in the three-dimensional
case, for a constant r. Figure 4.2 shows η(r) for both dimensions.

10 0 10 2 10 4

Upscaling factor

10 -2

10 -1

10 0

R
at

io

2D
3D

Figure 4.2: Ratio of cells that belong to the union boundary, η, as a function of the
upscaling factor for square fine and coarse grids, in two and three dimensions.

4.2 Sparse Data Formats

The message-passing program uses two sparse data formats which we will here
describe. The first is used to represent matrices, and the second to represent graphs.
Zero-based indexing is used in both cases.

Recall that the primary operation carried out to construct the prolongation op-
erator is the Jacobi sweep,

P k+1 = P k − ωD−1AP k = P k − ωMP k. (4.1)

Among the input parameters used by the message-passing program is the matrix
M = D−1A, which is computed by MRST routines in Matlab and written to text
file in a sparse format. This format is inspired by the Compressed sparse row /
column (CSR/ CSC) format, but is not quite the same.

57

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

Firstly, the diagonal elements of M are not stored as they all equal unity.
Define the maximum number of nonzero entries in any row of M , excluding the
diagonal, to be r,

r = max
i∈F

n∑
j=1, j 6=i

κ(mij), κ(x) =

{
1 if x 6= 0,

0 if x = 0.

The matrix is stored in two arrays that we name a and b, both of length r × n.
Each array has r entries reserved for every row inM , so that entries in the interval
[i × r, i × r + r − 1] hold data about row number i of the matrix. The array
a holds the column-indices where nonzero entries in the corresponding row are
stored, and b holds the belonging matrix-entries. Let k be the number of nonzero
entries on the off-diagonal in a specific row i. If k < r, the array a will hold the
number −1 in the entries within the interval [i× r+ k, i× r+ r− 1], expressing
that the reserved space is not needed. That is, obtaining the number −1 from a
when iterating over M means that we have reached the end of the current row.
The corresponding entries of b will be 0.

The format allows for efficient iterations over the rows, making it suitable
when computing (4.1). It also grants fast lookup of a row from its number, which
is an advantage when it is computed in parallel. In terms of memory usage, the
storage format is suitable when the average number of nonzero entries in the rows
ofM is close to r. That is, when

r − 1

n

n∑
i=1

(n∑
j=1, j 6=i

κ(mij)
)

is small. This is the typical case for system matrices obtained from the discretiza-
tion derived in Section 2.1. On a Cartesian grid in particular, the redundant storage
allocated by the format results solely from global boundary cells with fewer con-
nections than the interiors.

Example. Example: Let the matrix be

M =

1 −1 0 0 0
−0.2 1 −0.8 0 0
−0.6 0 1 0 −0.4

0 −1 0 1 0
0 0 −0.7 −0.3 1

 .

Here, n = 5 and r = 2, so 10 elements will be preserved for each of the two
arrays. The matrix will be defined by n, r and the two arrays

a =
(
1 −1 0 2 0 4 1 −1 2 3

)
,

58

4.2 Sparse Data Formats

b =
(
−1 0 −0.2 −0.8 −0.6 −0.4 −1 0 −0.7 −0.3

)
.

We will see that the message-passing program relies on an effective division
of computational work among the processing units. This division is determined
by partitioning of a graph that represents partially dependent computations. The
graph is stored using the compressed storage format (CSR), which is a commonly
used format to store sparse graphs. It is described in the following.

Let y be the number of vertexes and z the number of edges in the graph. The
adjacency structure will be stored using two arrays, y of length y + 1 and z of
length 2z. The list of vertexes that vertex number i is connected to are found
within the interval

[
y(i), y(i + 1) − 1

]
of z. In other words, z stores the edges

of all vertexes ordered from vertex number 0 to vertex number y − 1, and y holds
the information of where in z one vertex ends and another begins.

Example. Figure 4.3 shows an example of a graph with 8 vertexes and 14 edges.

0

1

2

34

5

6

7

Figure 4.3: Example of a graph.

Below are the two arrays y and z for the above graph.

y =
[
0 4 7 11 13 18 20 25 28

]
.

z =
[
1 4 5 6 0 2 6 1 3 6 7 2 4 0 3 5 6 7

0 4 0 1 2 4 7 2 4 6
]
.

Notice that in the above example, the list of vertexes that each vertex is con-
nected to is stored in sorted order. This is not a requirement by the CSR format,
but has computational benefits when performing search through the graph. For this
reason, the sorted ordering of z is used in the implementation implementation of
the message-passing program.

59

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

4.3 Sequential Program

In the next section we present the message-passing program. But before we get this
far, it is constructive to consider the program when executed on a single processor,
where operations related to distribution and sending of data are not required. It is
stated in Program 1, where mil are entries of the matrix M , and Hi is defined as
the set of support regions of which cell i belongs to,

Hi = {j| i ∈ Ij}.

For brevity, the stopping criterion is omitted from Program 1.

Program 1. Constructing prolongation operator - Single process

1. Read problem data from text files.

2. Create data structures used in the iteration procedure.

3. Until convergence, do,

(a) Compute the non-modified increments,

gij = pij +
∑

l∈Qi∩Ij

milplj , i ∈ Ij , j ∈ [1, 2, . . . ,m].

(b) Update basis functions,

pij := pij − ωgij , i ∈ Ij , j ∈ [1, 2, . . . ,m].

(c) For each cell on the union boundary, compute the sum of all
values belonging to the cell,

si =
∑
l∈Hi

pil, i ∈ U.

(d) Modify the updated values to preserve partition of unity,

pij :=

{
pij
si
, if i ∈ Ij ∩ U,

pij Otherwise,
i ∈ Ij , j ∈ [1, 2, . . . ,m].

4. Write the basis functions to text file.

60

4.4 Message-Passing Program

The main change from Algorithm 2 to Program 1 is that redundant work has
been removed. In particular, notice that the program utilizes the matrix sparsity and
the limited support of the basis functions. Because cells outside of each support
region are never updated, Line 2 of Algorithm 2 is not needed in Program 1.

The message-passing program we present in the next section can also realize
parallel computation solely by the use of OpenMP threads, if executed in a shared
memory environment. By doing this, it is executed as stated in Program 1, where
parallel computations of each line is realized by OpenMP’s pragma-calls. This
brings us to an important important topic; the use of MPI and OpenMP can be
combined in a hybrid approach when executed on a cluster of shared-memory
computer units, or nodes, such as the supercomputer Vilje, which is used to test the
program in Section 4.5. We will explain this approach based on the circumstances
on Vilje.

Vilje has a large amount of nodes, each of which has 16 processing units,
or cores, that have access to the same memory. If multiple nodes are used in an
application, OpenMP can still be used to manage cores belonging to the same node,
but MPI must be used to handle message-passing between the nodes. Recall that
MPI realizes parallel computation by spawning a separate instance of the program
on each core, or more generally, on each subset of shared memory cores. Here,
each instance of the program is called a process. For example, assume that we
wish to run our program on 4 nodes, i.e, 64 cores. One viable approach is to open
one MPI process on each node, and let each of them manage 16 OpenMP threads
to utilize all the cores on their respective node. Other viable approaches to utilize
all the cores in this particular case are to open 2, 4 or 8 MPI processes on each
node with respective 8, 4 or 2 OpenMP threads on each process. If we open 16
MPI processes on each node, each core is managed by its own process, which is
the pure MPI approach.

4.4 Message-Passing Program

A primary question that arises when expanding the program to distributed memory
is how to divide the computational work among the MPI processes. Recall that to
efficiently take use of the available computer power, the work must be distributed
so that the processing units are load balanced at the same time as the communica-
tion cost is kept as small as possible. An effective way to enable such a division
can be realized if we are able to divide the work into a large number of parts that to
a high degree can be computed independently. Creating the prolongation operator
allows a division of this type, because the majority of the work applied to each

61

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

basis function can be computed separately. We have therefore chosen the natu-
ral approach to distribute the work performed on each basis functions among the
processes.

A remaining task is to find an effective distribution of the basis functions
among the processes. As the first step to accomplish this we create a graph to
represent the computational work of each basis function, and the computational
dependence between each two of them. This graph is described in Section 4.4.1.
The distribution of basis functions is then determined from a partitioning of this
graph, that aims to achieve a good load balance and low communication cost. This
is the topic of Section 4.4.2. How the communication between the processes is
carried out is then described in Section 4.4.3, before the message-passing program
is presented.

4.4.1 Graph Representing Computational Work

In the graph that describes the computational work and dependence of the basis
functions, a weighted vertex represents the work related to a specific basis func-
tion, and a weighted edge represents the dependence between two of them. We
will now describe how these weights are determined.

If we consider a singe iteration step of Program 1, there are three main factors
that determine the amount of computational work performed on a basis function;
how many cells there are in its support region, how many nonzero elements there
are in the corresponding rows ofM , and how many of its cells belong to the union
boundary (additional work is carried out to normalize these cells). When evalu-
ating the work associated with a basis function, we ignore the two latter factors
and consider only the first. That is, the weight µj of the vertex representing basis
function number j is set equal to the number of cells in its support region, which
we denote |Ij |,

µj = |Ij |.

To determine the computational dependence between two basis functions, con-
sider updating one specific basis function by Program 1, and observe that it can be
computed independently except when finding the sums in line 3c,

si =
∑
l∈Hi

pil, i ∈ U,

which are used in the next line to normalize the cell-values on its union boundary.
To compute a specific si, the required data is all (possibly) nonzero values belong-
ing to the cell, which are found in the collection of basis functions that have the

62

4.4 Message-Passing Program

particular cell in their support regions,

{pil| l ∈ Hi}.

In other words, the factor that determines the computational dependence between
two basis functions is the number of union boundary cells contained in both of
their support regions. We therefore define

γjk = |Ij ∩ Ik ∩ U |,

to be the weight of the edge between basis function j and k.

The graph resulting from a small Cartesian grid is shown in the following
example.

Example. We consider a grid that consists of 28 × 20 cells and is partitioned
into 7× 4 equally large blocks. The grid is shown in Figure 4.4c, where the union
boundary cells are colored red, and the cell centers of the blocks are colored green.
As you can see, the center of the exterior blocks have been moved from the block
centroid to the global boundary. To understand the purpose of this, remember
how we defined the support regions in Section 2.3. When we move the center of
these blocks to the global boundary, we at the same time expand the surrounding
support regions to contain the cells close to the global boundary. These cells would
otherwise be contained within fewer support regions than the ones in the interior
of the grid. This is exemplified by Figure 4.4a and 4.4b, where you see a closeup of
the south-west corner of the grid with a highlighted support region before and after
the change. Figure 4.5 shows the resulting graph that represents the computation
work and dependence of the basis functions.

4.4.2 Graph Partitioning

After having created the graph described above, the next task is to find a parti-
tioning that meets the two objectives stated in the beginning of this section in the
best possible way. This is a standard graph partitioning problem found in many
applications, and several algorithms exist that are able to find good partitions. The
problem can be formulated as follows. Distribute the vertexes into k partitions so
that the sum of the vertex weights within the partitions are approximately equal. At
the same time, minimize the total communication cost resulting from the partition.
Here, k is the number of processes to which the computations are distributed.

The message-passing program uses the software package METIS [2, 23] to
find a good partitioning. METIS can partition graphs using either the multilevel

63

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

(a) Before

(b) After (c)

Figure 4.4: (a,b) A support region highlighted in grey before and after the center of
exterior blocks are moved, and (c) the example grid.

35 49494956

7755

7755

49

7788

7788

49 4956

77

35

77

66666

44 444

3 334

3 334

66666

3 334

3 334

42

66

63

99

99

63

66

42

6 6

44

3 5

3 5

6 6

3 5

3 5

Figure 4.5: Graph resulting from the grid in Figure 4.4c with vertex weights µj and edge
weights γjk. Vertexes with the same weights have been highlighted with the same color.

recursive bisection (MLRB) algorithm [24] or the multilevel k-way partitioning
(MLkP) algorithm [25]. Both of these are able to provide high-quality partitions,
but MLkP offers more options such as minimizing alternative objective functions,
enforcing contiguous partitions, etc. METIS also allows the user to chose between
two partitioning objectives; minimizing the edgecut or minimizing the total com-
munication volume.

64

4.4 Message-Passing Program

The current implementation of the message-passing program uses the multi-
level recursive bisection algorithm with minimizing the edgecut as the objective
function.

In general, the total communication cost depends on three factors; the total
communication volume, the maximum volume of data any particular processor
has to send and receive, and the number of messages a processor has to send and
receive [23, 16]. Minimizing the edgecut is the traditional objective used by graph
partitioning algorithms, and can be stated as follows; minimize the sum of edge
weights connecting vertexes in different partitions. In general, the edge-cut objec-
tive does not provide the true minimization of the total communication cost [16],
but will often provide a good approximation. The alternative objective function to
explicitly minimizing the total communication volume [23, p 24] is often able to
create better partitions of graphs with high variation of edges connecting each ver-
tex, called vertex degrees. However, on many problems the two objective functions
are comparable, and minimizing the edgecut is the cheapest to compute.

For the message-passing program, a brief comparison of MLRB and MLkP
was carried out, but neither of them proved to outperform the other in terms of
providing a partitioning that reduces the runtime of the iterative procedure. MLRB
was therefore chosen because it is cheaper to compute. The alternative objective
function of minimizing the total communication volume has not yet been tested,
and is worth investigating. However, grids with relatively uniform coarsening as
the ones considered in this thesis result in graphs with low variation of vertex
degrees, which suggests that there might not be much to gain from applying this
change. Figures 4.6 and 4.7 show some resulting partitions of the example-grid
considered in Section 4.4.1 and of the SPE 10 dataset, respectively.

4.4.3 Message-Passing

To express the message-passing performed by the program between MPI processes
during the iteration procedure, we will define some additional variables.

Let Xc be the set of basis functions that belong to MPI process c, and Dc the
set of cells that are located on the same process,

Dc = {i ∈ Ij | j ∈ Xc}.

Define Ec to be the subset of the union boundary cells that are found solely on
process c,

Ec = {i ∈ U ∩Dc| Hi ⊂ Xc}.

65

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

(a) 4 partitions (b) 7 partitions

(c) 9 partitions (d) 12 partitions

Figure 4.6: Partitions of the example-grid considered in Section 4.4.1 resulting from the
multilevel recursive bisection algorithm.

(a) 4 partitions. (b) 9 partitions.

(c) 20 partitions.

Figure 4.7: Partitions of the SPE 10 dataset with 6 × 11 × 17 coarse blocks, resulting
from the multilevel recursive bisection algorithm.

66

4.4 Message-Passing Program

Further, defineFc to be the subset of union boundary cells that are found on process
c, but also on at least one other process,

Fc = U ∩Dc ∩ E{
c .

Figure 4.8 illustrates the sets Xc, Dc, Ec and Fc for a process that has been dis-
tributed eight basis functions.

For the process to complete the update of its basis functions, it must obtain the
sums si belonging to its union boundary cells, that is, the cells in Ec ∪ Fc. The
sums that belong to Ec can be completed locally, but to find the complete sums of
cells belonging to Fc, it must acquire data from the other processes that hold these
cells. For process c, let Yc be the set of these processes,

Yc = {k| Fc ∩ Fk 6= ∅, k 6= c}.

We can now describe how each process obtains the full sums {si| i ∈ Ec ∪ Fc}.
Each process computes the part of its sums si that are available locally. We denote
these sums by s̃i,

s̃i =
∑

l∈Hi∩Xc

pil, i ∈ Ec ∪ Fc.

The process then sends the incomplete sums {si| i ∈ Fc} to all processes in Yc,
and receives data from the same processes. After the message-passing has been

a b

c d e

f g h

(a) (b)

Figure 4.8: (a) Highlighted blocks distributed to a process, giving
Xc = {a, b, c, d, e, f, g, h}. (b) Highlighted cells belonging to Dc, Ec and Fc. Here, cells
in Ec are blue, cells in Fc are red, and Dc are cells in both Ec and Fc, and the grey ones.
Neighboring block-centers are colored green.

67

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

completed, each process has the required information to complete the sums and
normalize their cells.

The above approach results in a higher communication volume than what is
actually required to complete the computations. The reason is that each processes
sends the same package of data {si| i ∈ Fc} to all its dependent processes, whereas
each of the receiving ones only require a subset of these values. There is nothing
that prevents the program to be revised to reduce the communication volume to
the minimum of what the computations needs. However, this would require each
process to send custom-made data packages to each of the receiving processes.
Note that there is a mismatch between the communication volume resulting from
the above approach and the objective used to distribute the basis functions. The
partitioning of the graph discussed in Section 4.4.1 by the objective discussed in
Section 4.4.2 aims to (approximately) minimize the number of cells in U that be-
long to each pair of processes, which we denote Tv,

Tv =
∑
c6=e
|Dc ∩De ∩ U |. (4.2)

However, the communication volume of the above approach is determined from

T̃v =
∑
c

|Fc|. (4.3)

A distribution that minimizes (4.2) and (4.3) is generally not the same, and the
partitioning is therefore determined by the wrong criteria. However, if the program
is revised to decrease the communication volume to the minimum requirement as
discussed above, equation (4.2) is the correct objective to minimize.

The sending and receiving of {si| i ∈ Fc} is carried out by the MPI func-
tions MPI_Isend() and MPI_Irecv(), which are non-blocking one-to-one
communications. In message-passing, blocking communication calls are functions
that do not return before the communication has been completed. Non-blocking
communication calls, on the other hand, return immediately after the request has
been executed, even if the communication is not finished. This allows the pro-
gram to continue performing its tasks while the message-passing is carried out.
In our case, non-blocking communications were chosen to avoid the program to
deadlock, which occurs when a process waits for a message to be sent or received
from another one, but this never happens. For example, if blocking communication
calls are used for communication among two processes, and each of them starts by
sending a message to the other, both of them will stop and wait for the other pro-
cess to receive the message, but it never does. Now we are ready to present the
message-passing program, which is stated in Program 2.

68

4.4 Message-Passing Program

Program 2. Constructing prolongation operator - Message-passing

1. If c = 0, do

(a) Read the problem data from text files.

(b) Create the graph representing the basis functions computations.

(c) Create the partitioning of the basis functions.

(d) Distribute the problem data to the rest of the processes.

2. Else, do

(a) Receive problem data from process number 0.

3. Create the data structures used in the iteration procedure.

4. Until convergence, do,

(a) Compute the non-modified increments,

gij = pij +
∑

l∈Qi∩Ij

milplj , i ∈ Ij , j ∈ Xc.

(b) Update the basis functions,

pij := pij − ωgij , i ∈ Ij , j ∈ Xc.

(c) Compute the local sums s̃i,

s̃i =
∑

l∈Hi∩Xc

pil, i ∈ Ec ∪ Fc.

(d) Send the sums {s̃i|i ∈ Fc} to the processes in Yc. Receive data
from the same processes.

(e) Complete the sums {s̃i|i ∈ Fc} and set s = s̃.

(f) Modify the updated values to preserve partition of unity,

pij :=

{
pij
si
, if i ∈ Ec ∪ Fc,

pij Otherwise,
i ∈ Ij , j ∈ Xc.

5. Gather the basis functions on a single processing unit and write them
to text file.

69

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

4.5 Testing the Program

The distributed memory program has been tested on Vilje, which is a cluster pro-
duced by NTNU together with met.no and UNINETT Sigma. Table 4.1 summa-
rizes key information about Vilje. For more information, we refer to its web page
[6].

Table 4.1: Information about Vilje.

System architecture and operating environment
Manufacturer SGI
Interconnect Mellanox FDR infiniband, Enhanced Hypercube Topology

Operating System SUSE Linux Enterprise Server 11
Compilers Intel and GNU C and Fortran

MPI library SGI MPT
Number of nodes 1404
Number of cores 22464

Node details
Processors per node 2 eight-core processors

Node Type Intel Xeon E5-2670 (Sandy Bridge)
Processor Speed 2.6 GHz
Cores per Node 16 (dual eight-core)

L3 Cache 20MB / 8 cores
Memory 2GB per core

The wall time used by the program to compute the prolongation operator has
been documented on several test-problems. Various problems were chosen to in-
vestigate the performance for a wide range of grid-sizes and upscaling factors.
The program was initially tested on two-dimensional problems that use a square
Cartesian grid both on the fine and coarse scale, with the number of cells varying
between 10,000 and 16,000,000, and upscaling factor between 100 and 1600. The
program has also been tested on the SPE 10 dataset using a 6 × 11 × 17 coarse
grid. This is one of the models that have been used to assess the performance of
the MsRSB method [38, 39]. Various grid-types have not been a significant topic
in this thesis, but recall that one of the strengths of the MsRSB method is that it
handles unstructured polyhedral grids. The distributed memory program has also
been developed to handle these types if grids, and we have have therefore also
tested the program on unstructured PEBI-grids.

When presenting the results, we separate the times used in the setup procedure
(computations that are carried out before the iteration can start, e.g, creating data

70

4.5 Testing the Program

structures, distributing the problem data) and in the iteration procedure, which
enables us to analyze the two independently. When presenting the iteration times
we will show the time used to perform a single iteration. This is done so that the
times do not depend on the stopping criteria.

To assess the single-processor performance of the message-passing program, it
is compared with the original program created by O. Møyner when executed on a
single core. The results are the topic of Section 4.5.1. In Section 4.5.2 we present
speedup results of the iteration procedure for five different test cases. The first
three use a two-dimensional Cartesian grid of various sizes, the forth is the SPE
10 dataset, and the fifth is an unstructured PEBI-grid. The setup times for the five
cases are presented in Section 4.5.3. In Section 4.5.4 we present a modification
of the algorithm of which the goal is to reduce the communication cost of the
program, and investigate its application on the SPE 10 dataset.

Our primary goal is to asses the computational efficiency of the basis iterations
when the problem is already stored in memory, and no work has been done to the
functions that read and write data to and from text files. Here, the message-passing
program uses the same sequential operations as the original shared memory pro-
gram. We therefore exclude these times when presenting the results, but the time
to read the five test cases is shown in Table 4.2. Here, the fraction of cells belong-
ing to the union boundary, η, is also shown, which play an important role in the
discussion of the iteration performance.

Table 4.2: Time to read problem data and η for the five test cases.

Test Case Time to read (ms) η

1 2D, Small 300 0.19
2 2D, Medium 2700 0.0975
3 2D, Large 66,000 0.049
4 SPE 10 7900 0.32
5 Unstructured 2300 0.70

Note that the times we present are in each case results of a single run. The
runtimes will always vary slightly in consecutive runs, and repeating the tests will
therefore produce slightly different results. However, the difference was observed
to be insignificant with respect to assessing the efficiency of the program.

4.5.1 Single-Processor Runtimes

To efficiently use a multiprocessor environment, the single-processor performance
is essential. A program might achieve high speedup, but if the sequential execution

71

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

is slow it still suggests poor use of computing resources. An impressive speedup
is typically harder to achieve for a program that is already efficient in serial than
one which is not, but what actually matters is the absolute time used. We therefore
compare the single-processor performance of the message-passing program with
the program created by O. Møyner, and refer to the two as the new and the original
program, respectively. The results are shown in Figures 4.9 and 4.10.

The setup times are significantly lower for the new program, especially for the
large problems. In particular, the new program only uses 4.32% of the original
time for the SPE 10 dataset with upscaling factor 1000. Without going into the
details of the setup procedures, we mention that the improvement is a result of

 20 x 20 40 x 40 60 x 60 80 x 80 100 x 100
Number of coarse blocks

0

50

100

150

200

250

300

350

T
im

e
(m

s)

13
.3

53
.7

12
1.

2

21
5.

7 33
4.

8

1.
82 1.

74

1.
73

1.
7

1.
64

Shared
Distributed

(a) 2D, Upscaling factor 100.

 20 x 20 40 x 40 60 x 60 80 x 80 100 x 100
Number of coarse blocks

0

500

1000

1500

2000

2500

T
im

e
(m

s)

98
.2

39
5.

2

88
9.

6

15
87

.5

24
70

.9

3.
23 3.

16 3.
05

2.
91

2.
76

Shared
Distributed

(b) 2D, Upscaling factor 400.

 20 x 20 40 x 40 60 x 60 80 x 80 100 x 100
Number of coarse blocks

0

2000

4000

6000

8000

10000

T
im

e
(m

s)

16
0.

6

63
8.

7

25
54

.2

57
50

.1 10
25

5.
5

5.
58

5.
5 5.

12 4.
86

4.
66

Shared
Distributed

(c) 2D,Upscaling factor 1600.

100 250 1000
Upscaling factor

0

2500

5000

7500

10000

12500

T
im

e
(m

s)

19
77

.5 38
60

.1

12
26

4.
8

2.
77

6.
38

23
.1

3
Shared
Distributed

(d) The SPE 10 dataset.

Figure 4.9: Setup times used by the original (shared memory) program and the new
(distributed memory) program when executed on a single core on Vilje. Numbers over the
red bars are absolute times used by the original program, and numbers over the green bars
are relative speedups of the new program, with respect to the original.

72

4.5 Testing the Program

 20 x 20 40 x 40 60 x 60 80 x 80 100 x 100
Number of coarse blocks

0

20

40

60

T
im

e
(m

s)

2.
13

9.
95

24
.0

5

42
.8

2 66
.5

8

1.
22

1.
27

1.
3

1.
28

1.
26

Shared
Distributed

(a) 2D, Upscaling factor 100.

 20 x 20 40 x 40 60 x 60 80 x 80 100 x 100
Number of coarse blocks

0

50

100

150

200

250

300

T
im

e
(m

s)

10
.8

2 47
.2

9

10
5.

62

18
9.

03 29
5.

61

1.
38 1.

44

1.
43

1.
42

1.
4

Shared
Distributed

(b) 2D, Upscaling factor 400.

 20 x 20 40 x 40 60 x 60 80 x 80 100 x 100
Number of coarse blocks

0

250

500

750

1000

T
im

e
(m

s)

45
.0

1 18
2.

58

41
0.

4

73
4.

55

11
41

.3

1.
4 1.

41

1.
39

1.
41

1.
39

Shared
Distributed

(c) 2D, Upscaling factor 1600.

100 250 1000
Upscaling factor

0

50

100

150

200

T
im

e
(m

s)

15
2.

2

15
8.

4

17
1.

21.
04 1.
05

1.
12

Shared
Distributed

(d) The SPE 10 dataset.

Figure 4.10: Times used to perform a single iteration by the original (shared memory)
program and the new (distributed memory) program when executed on a single core on
Vilje. Numbers over the red bars are absolute times used by the original program, and
numbers over the green bars are relative speedups of the new program, with respect to the
original.

avoiding nested loops by instead applying a mapping technique when creating the
data structures that are used in the iteration.

Regarding the iteration times, the difference is more modest, but the new
program is faster here as well. On the two-dimensional grids the new program
achieves speedups in the range of 1.20− 1.40 relative to the original. On the SPE
10 dataset the difference is smaller, especially for a small upscaling factor.

To explain these results, we must first understand why the new program is
faster than the original. There are three main reasons. Firstly, it performs slightly
fewer floating point operations in each iteration. Secondly, it evades having to

73

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

perform the extra normalization of the entire grid. Both of these reasons are due
to the change in the underlying algorithm, and were discussed in in Chapter 3.7.1.
However, the prime place where the new program performs better lies in how it
normalizes the union boundary cells. While the original program achieves this
by iterating over the entire grid, the new program only iterates over the union
boundary cells, which locations are computed during the setup.

The benefit of the new approach will therefore generally depend on η. In fact,
if η is high enough, the original approach is expected to perform better, because it
avoids a high amount of jumps in the memory when performing the normalization.
This explains why the difference between the two programs is lower for the SPE 10
dataset, and also why it decreases when lowering the upscaling factor; as discussed
in Section 4.1, η is significantly higher for three-dimensional grids, and increases
when lowering the upscaling factor. Table 4.3 shows η for the test problems. Note
that in practice one would typically use an upscaling factor of 1000 rather than 100
on the SPE 10 data set, which is also where the best results are achieved.

It is particularly encouraging that the new program also seems to scale better
with the problem size, since its intended application is on large problems.

Table 4.3: The fraction of cells belonging to the union boundary, η, for the test-grids.

Upscaling factor 100 250 400 1000 1600
η

2D 0.19 0.12 0.098 0.063 0.049
SPE 10 0.52 0.42 - 0.32 -

4.5.2 Iteration Speedup

We will now present speedup results on Vilje for five test cases. The use of solely
MPI processes has been compared with the different hybrid alternatives of 2,4,8
and 16 OpenMP threads per MPI process. The hybrid approach that in most cases
provided the best alternative to pure MPI was the use of 8 OpenMP threads per
MPI process (i.e one process on each processor). Results of this combination is
presented for the four larger test cases. The times are results of applying 1000
iterations, and no convergence test was applied.

Test Case 1: Small two-dimensional grid

The first model we consider uses a square Cartesian grid with 200× 200 cells and
20 × 20 blocks, giving an upscaling factor of 100. The speedup achieved by the

74

4.5 Testing the Program

pure MPI approach is shown in Figure 4.11.

Initially, the speedup is close to perfect, but after reaching a maximum of 41
on 64 cores, it starts to decline. This is not unexpected, because the problem is
relatively small and the workload on each core soon becomes modest compared
with the overhead introduced by the parallel computing. Figure 4.12 is evidence
of this, where you see how the fraction of time used to send and receive data among
MPI processes increases as we add more of them. In particular, almost 50% of the
total time is used for message-passing when 80 cores are used. Note that if we
look at the speedup gain of performing the Jacobi procedure isolated, it is almost
perfect all the way up to 80 cores, which is evidence of good load balance.

10 20 30 40 50 60 70 80
Number of cores

0

10

20

30

40

50

60

S
pe

ed
up

MPI speedup
Perfect speed-up

Figure 4.11: Speedup of the iteration procedure using the pure MPI approach for Test
Case 1.

1 2 4 8 16 32 64 80
Number of cores

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

Message-passing
Normalizing
Smoothing

Figure 4.12: Fraction of time used in different parts of the iteration procedure by the pure
MPI approach for Test Case 1.

75

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

Test Case 2: Medium Two-dimensional Grid

We now consider a Cartesian grid with with 800 × 800 cells and 40 × 40 blocks,
giving an upscaling factor of 400. The speedup for the pure MPI approach and the
hybrid approach is shown in Figure 4.13.

An increasing speedup is achieved for a much higher number of cores than on
Test Case 1, and it is close to perfect up to 160 cores. Here there is no significant
difference between the pure MPI approach and the hybrid approach. After reaching
a maximum speedup of 581 on 960 cores, the MPI speedup starts to decline. For
the hybrid approach, however, the speedup increases further to reach 685 on 1600
cores.

That the speedup benefits from a higher number of cores here than in Test Case
1 is as expected. Because the problem is larger, there is more computational work
to distribute among the cores, and a higher number of cores can be used before
the overhead associated with communication becomes a dominating factor. This
becomes evident in Figure 4.14. Even on 640 cores, the fraction of time spent to
communicate is lower than it is on 80 cores in Test Case 1.

There are two reasons why the hybrid approach performs better on a high num-
ber of cores. Firstly, it exploits the shared memory access inside the nodes, which
reduces the total communication cost by decreasing both the total communication
volume and the number of messages. In particular, message passing is performed
between one eight of the number of processes compared to the pure MPI approach,

1 40 80 120 160
Number of cores

20

40

60

80

100

120

140

160

S
pe

ed
up

Pure MPI
Hybrid
Perfect speedup

(a)

1 250 500 750 1000 1250 1600
Number of cores

1

200

400

600

800

1000

S
pe

ed
up

Pure MPI
Hybrid
Perfect speedup

(b)

Figure 4.13: Speedup of the iteration procedure for the pure MPI approach and the hybrid
approach with 8 OpenMP threads in each MPI processes, for Test Case 2. Figure (a) is a
closeup for a small number of cores.

76

4.5 Testing the Program

1 16 32 64 128 320 640 1280 1600
Number of cores

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

Message-passing
Normalizing
Smoothing

Figure 4.14: Fraction of time used in different parts of the iteration procedure by the pure
MPI approach for Test Case 2.

and the number of union boundary cells that belong to difference processes is
therefore also lower. Secondly, the pure MPI approach relies on distributing the
basis functions among all cores, of which there are no more than 1600. The re-
sult is that it is harder to obtain a good load balance when the number of cores
approaches the number of basis functions. In particular, it is not possible to di-
vide the work between more than 1600 cores, and further, a division among 1600
cores results in a bad load balance since the work performed to each basis function
varies. The hybrid alternative, on the other hand, allows eight cores compute a
single basis function, and can therefore in theory benefit up until 12,800 cores.

Test Case 3: Large Two-dimensional Grid

We will now present results from the largest problem that was tested, which is a
Cartesian grid with 4000 × 4000 cells divided into 100 × 100 blocks, giving an
upscaling factor of 1600. The speedup for the pure MPI and hybrid approach are
shown in Figure 4.15. Here, a solid speedup is achieved all the way up to the
maximum of 1600 processors, where 1440 is reached for the hybrid approach.

The outstanding speedup results for this particular problem has several reasons.
Firstly, the problem is large enough to provide a high workload to a large number
of cores. Secondly, is consist of a high number of basis functions, which makes
it easy to achieve a good load balance for a high number of cores. Thirdly, it
has the smallest η of the test cases, meaning low dependency between the basis
function and as a result, low communication cost. The forth reason we remark is
slightly more intricate. We have not discussed memory usage up until now, but for
a problem of this magnitude the memory access time may play a significant role.

Note that the speedup on a low number of cores is further away from perfect

77

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

here than it is on the previous test cases. In particular, where the smaller cases
achieve a close to perfect speedup on 16 cores, this one achieves no more than
10.4. As you see in Figure 4.16, the communication cost is negligible on 16 nodes,
and can not be the explanation. It is therefore evidence that memory access time is
a limiting factor.

With constant access to fast memory, the speedup gained from adding more
cores will suffer if the system does not fetch data from memory fast enough to
provide them with the required data to perform computations consecutively. This
is a typical bottleneck for large problems. In particular, note that Test Case 1 takes
up 23MB on disk, while this test case takes up 2600MB. A single node on Vilje
has access to 40MB L3 Cache (fast memory), meaning that Test Case 1 can be
stored entirely in the L3 cache, while the present test case must be stored primarily
in the main memory (slow memory). This problem will therefore rely on a high
amount of fetching data from main memory, which was not an issue for Test Case
1. But when we add more nodes, we also add more L3 Cache. In particular, when
using 1600 cores (100 nodes), the access to L3 cache has increased to 4000MB,
which decreases or removes the bottleneck of fetching memory for our test case.
In other words, the gain in speedup is not only a result of gaining more processing
cores, but also from increasing the access to fast memory.

1 2 4 8 16 32
Number of cores

5

10

15

20

25

30

S
pe

ed
up

Pure MPI
Hybrid
Perfect speedup

(a)

1 500 1000 1600
Number of cores

200

400

600

800

1000

1200

1400

1600

S
pe

ed
up

Pure MPI
Hybrid
Perfect speedup

(b)

Figure 4.15: Speedup of the iteration procedure for the pure MPI approach and the hybrid
approach with 8 OpenMP threads in each MPI processes, for Test Case 3. Figure (a) is a
closeup for a small number of cores.

78

4.5 Testing the Program

1 16 32 64 320 640 1280 1600
Number of cores

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

Message-passing
Normalizing
Smoothing

Figure 4.16: Fraction of time used in different parts of the iteration procedure by the pure
MPI approach for Test Case 3.

Test Case 4: SPE 10 Dataset

We will now present results from the SPE 10 dataset, which uses a Cartesian grid
with 60 × 220 × 85 cells and 6 × 11 × 17 blocks, giving an upscaling factor of
1000. The speedup for the pure MPI approach and the hybrid approach is shown
in Figure 4.17.

Here the speedup is far less impressive than it was on the previous example
when a large number of cores are used. Why this is the case is made clear from
Figure 4.18; the fraction of time used in message-passing increases much more

1 8 16 32 48 64
Number of cores

10

20

30

40

50

S
pe

ed
up

Pure MPI
Hybrid
Perfect speedup

(a)

128 320 640 960 1600
Number of cores

100

200

300

400

S
pe

ed
up

Pure MPI
Hybrid
Perfect speedup

(b)

Figure 4.17: Speedup of the iteration procedure for the pure MPI approach and the hybrid
approach with 8 OpenMP threads in each MPI processes, for Test Case 4. Figure (a) is a
closeup for a small number of cores.

79

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

1 16 32 64 128 320 640 960 1600
Number of cores

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

Message-passing
Normalizing
Smoothing

Figure 4.18: Fraction of time used in different parts of the iteration procedure by the pure
MPI approach for Test Case 4.

drastically. The reason has been discussed earlier; the fraction of cells on the
union boundary, η, is significantly larger for three-dimensional problems, which
increases the communication volume. The increased number of connections in
three dimensions also makes the number of messages to be sent higher. In addi-
tion, there are not more than 1122 basis functions to be computed. The pure MPI
approach on 1600 cores therefore results in 478 of them not even being used. These
two points also explain why the benefit of using the hybrid approach is higher here
than on the previous test cases. The hybrid run reached a speedup of 414 on 1600
cores.

Test Case 5: Unstructured Grid

As the last test case we consider an 2.5 PEBI-grid, which is fully unstructured
in the horizontal directions and structured in the vertical direction. The grid has
approximately 100 cells in each horizontal direction and 25 cells in the vertical
direction, with a total of 288,325 cells. It is partitioned according to connection
strengths by the use of METIS into 300 blocks. This gives an upscaling factor of
961. The grid is shown in Figure 4.19a, where the blocks have been highlighted.
In Figure 4.19b you see a smaller grid of the same type, where the cell-structure is
visible.

The speedup for the pure MPI and hybrid approach is shown in Figure 4.20.
Here, the pure MPI approach reaches its maximum speedup of 23 on 64 cores.
The Hybrid approach performs significantly better, and achieves a speedup of 58
on 160 cores.

Why a higher speedup is not reached from the pure MPI approach has the same
reasons as for Test Case 4, but they are now even more prominent. This test case

80

4.5 Testing the Program

(a) (b)

Figure 4.19: (a) Highlighted coarse blocks for Test Case 5, and (b) a small 2.5 PEBI-grid.

1 40 80 120 160
Number of cores

1

20

40

60

S
pe

ed
up

Pure MPI
Hybrid
Perfect speedup

Figure 4.20: Speedup of the iteration procedure for the pure MPI approach and the hybrid
approach with 8 OpenMP threads in each MPI process, for Test Case 5.

1 2 4 8 16 32 64 128 160
Number of cores

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

Message-passing
Normalizing
Smoothing

(a) Pure MPI

8 16 32 64 128 160
Number of cores

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

Message-passing
Normalizing
Smoothing

(b) Hybrid

Figure 4.21: Fraction of time used in different parts of the iteration procedure by the pure
MPI and Hybrid approach for Test Case 5.

81

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

has the highest fraction of union boundary cells, with η = 0.70, which explains
the rapid growth in communication cost in Figure 4.21a. For comparison, Figure
4.21b shows the same results for the hybrid runs. Note also that there are only
300 basis functions to be computed, which again makes it hard to get a good load
balance for more than a relatively low number of cores.

4.5.3 Setup Cost

The times used to perform the setup procedure for the five test cases are shown
in Figure 4.22 and 4.23. For the two-dimensional cases, we see that the setup
times used by the MPI and hybrid runs are for the most parts close to the time used
in serial. Note that when MPI is used, additional computations are performed in
the setup to distribute the basis functions. The two most time-consuming steps are
to create the partitioning of the basis functions, and to distribute the data among
the processes. Both of these are executed by the single MPI process which is
responsible to read the problem data from file. Parts of these computations can
achieve parallel computation from OpenMP threads. But when a high number of
processes are used, the setup time is dominated by distributing the data, and here
OpenMP can not be used.

While distributing the problem data results in an additional overhead which
is hard to avoid, a speedup is gained in the setup-procedures that follow after the
problem has been distributed. These involve creating the data structures that are
used in the iteration. For many cases we see that this compensates for the extra time
to distribute the problem, and results in approximately the same total setup times.
A pure OpenMP run, on the other hand, requires no additional setup computations
relative to a single-processor run. Here, we therefore achieve a modest speedup,
which results from applying OpenMP threads to parts of the setup computations.

On the three-dimensional test cases, the increase in setup time is higher. The
reason has been found to be a large growth in the time it takes to compute the sets
Fc, and is therefore directly linked to the high values of η. This is most likely due
to an inefficient implementation, and is probably easy to improve.

Note that the main focus has been to achieve high efficiency of the basis itera-
tions, and less work has been spent to allow for parallel computation of the setup
procedure. In particular, only a few modifications is required to expand the use of
OpenMP threads.

82

4.5 Testing the Program

1 2 4 8 16 32 64 80
Number of cores

0

5

10

15

20

T
im

e
(m

s)

1

0.
75

0.
83

0.
82

0.
53

0.
74

0.
56

0.
4

1

1.
62

2.
31

2.
72

1.
75

MPI
OpenMP

(a) Test Case 1.

1 8 16 32 64 128 320 640 1600
Number of cores

0

100

200

300

400

T
im

e
(m

s)

1 0.
98

1.
01

0.
98 0.
91

0.
95

0.
77

0.
81

0.
29

3.
96

0.
9

0.
97

0.
95 0.

86

0.
87

0.
97 0.
89

Pure MPI
Hybrid

(b) Test Case 2.

1 8 16 32 64 320 640 1600
Number of cores

0

1000

2000

3000

4000

5000

T
im

e
(m

s)

1

1.
11

1.
16

1.
14 1.
1 1.

05 1

0.
76

4.
2

1.
04

1.
1 1.
07

1.
1 1.
07

1.
07

Pure MPI
Hybrid

(c) Test Case 3.

Figure 4.22: Setup times for the pure MPI approach and the pure OpenMP approach for
Test Case 1, and setup times for the pure MPI approach and the hybrid approach for Test
Case 2 and 3. The numbers over the bars are the speedups.

83

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

1 8 16 32 64 128 320 640 1600
Number of cores

0

500

1000

1500

T
im

e
(m

s)

1

0.
37

0.
44

0.
38 0.

43

0.
52

0.
58

0.
6

0.
36

3.
82

0.
78

0.
51

0.
36 0.

42

0.
39

0.
42

0.
54Pure MPI

Hybrid

(a) Test Case 4.

1 4 8 16 32 64 128 160
Number of cores

0

1000

2000

3000

4000

T
im

e
(m

s)

1

0.
11

0.
05

0.
06 0.
06

0.
08

0.
13

0.
15

2.
59

0.
24

0.
11

0.
05

0.
06

0.
05

Pure MPI
Hybrid

(b) Test Case 5.

Figure 4.23: Setup times for the pure MPI approach and the hybrid approach for Test
Case 4 and 5. The numbers over the bars are the speedups.

4.5.4 Modification to Reduce Communication Cost

It is clear that the communication cost of the message-passing program is a bot-
tleneck for achieving high speedup on grids with large η. We therefore introduce
a modified version of Algorithm 2, where the goal is to reduce the amount of
communication needed to reach the convergence criteria. The idea is simple; in
each iteration step, start by performing the Jacobi smoother on all cells that do not
belong to the union boundary a predefined number of times, then continue with
Line 1 of Algorithm 2. It is stated in Algorithm 5. Here, Line 2 preserves partition
of unity, because cell-values on U{ remain untouched. The procedure requires the
same amount of communication in each iteration step step as Algorithm 2, how-
ever, the hope is that the additional smoothing of cells in U{ will lead to fewer
steps to reach tolerance, and therefore reduce the total communication cost. The
distributed memory program has been extended from Algorithm 2 to Algorithm 5,
where Algorithm 2 is retrieved by merely choosing s = 0.

Consider running Test Case 4 (SPE 10) on 640 cores. As was presented in

84

4.5 Testing the Program

Algorithm 5. Constructing the prolongation operator - U{ smoothing

1. Set P̂
0

= P k

2. For t = 1, 2, . . . , s− 1, s, do

p̂t+1
ij = p̂tij −

ω

aii

n∑
l=1

ailp̂
t
lj , i ∈ F ∩ U{, j ∈ [1, 2, . . . ,m].

3. Set P k = P̂
s

and perform line 1 to 5 of Algorithm 2.

4. Define the error as

e = max
ij

(
|pk+1
ij − pk|

)
, i ∈ F ∩ U{, j ∈ [1, 2, . . . ,m].

If e <tol, return P = P k+1, otherwise go to step 1.

Section 4.5.2, a hybrid run with 8 OpenMP threads per MPI process reaches a
speedup of 250, and is significantly faster than pure MPI. But 53% of the time is
still used in message-passing. We have therefore tested if Algorithm 5 offers an
improvement on this particular case. The test was carried out in the following way.
We enable the convergence test for the original procedure (s = 0), and find the
number of iterations needed to reach tolerance. We then find how many iterations
are required by Algorithm 5 with s = 1 to compute a prolongation operator with
equally good quality measure τ ; recall from Section 3.7.2 that

τk =

∑m
j=1 ||AP

k
j ||1∑m

j=1 ||AP
0
j ||1

,

is used to measure the smoothness of the basis functions. The respective runs are
timed, and the result is shown in Table 4.4 for three different tolerances.

Choosing s = 1 has significantly reduced the number of iterations, and achieves
a speedup compared with s = 0 for the particular computation circumstance. The
speedup solely results from the fact that the fraction of time used in message-
passing has decreased from 0.53 for s = 0 to 0.4 for s = 1. Note that if we
exclude the communication cost, s = 0 is faster, which indicates that the original
approach is still the better alternative in serial. The speedup is 246 and 343 for
s = 0 and s = 1, respectively, relative to the single-processor run with s = 0 (that
the speedup for s = 0 has decreased from 250 to 246 is because the convergence

85

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

Table 4.4: Number of iterations to reach tolerance for s = 0, with respective computation
times, and number of iterations to reach tolerance for s = 1, with respective speedups
relative to times for s = 0. The problem is Test Case 4, and the times are results of
applying the hybrid approach with 8 OpenMP threads in each MPI process on 640 cores.

Tolerance
s = 0 s = 1

Iterations Time (s) Iterations Speedup
10−2 90 0.057 55 1.29
10−3 690 0.44 390 1.40
10−4 6890 4.4 4100 1.33

test has been enabled, and requires some extra communication). In general, the
best value of s will depend highly on the communication cost. If the fraction of
time used in message passing is large enough, it might also be beneficial to set
s > 1.

The extra smoothing in Line 2 of Algorithm 5 can be interpreted as iterating
over U{ with fixed boundary conditions determined by the cell-values on U . In the
first steps, however, the values onU are far from the solution, and therefore provide
a poor approximation to the true boundary conditions. But as we apply more steps,
U becomes an increasingly good approximation, and more can be gained from its
use of boundary conditions in the iteration in Line 2. Considering this, an effective
approach might be to determine s in an adaptive manner, with zero value at the
start of the iteration, and increasing it as the cell-values of U becomes increasingly
good approximations. This approach has not yet been investigated.

We end this section with a comment on the convergence criteria,

e = max
ij

(
|pk+1
ij − pk|

)
, i ∈ F ∩ U{.

It was found that this criteria is reached in nearly half the number of iterations for
s = 1 relative to s = 0. However, when comparing the smoothness τ of the two
converged prolongation operator, s = 1 turns out to be less smooth. This can be
understood by looking at the stop criteria; it ignores the change in cell-values on
U . Choosing s = 1 means that we apply the smoother to cell-values on U{ twice
as many times as for those on U . Consequently, the error on U will be larger when
reaching the tolerance for s = 1 relative to s = 0. To produce an equally smooth
prolongation operator, s = 1 therefore requires a lower tolerance. An alternative
is of course to change the convergence criteria to also include the cell-values on
U .

86

4.6 Results Summary and Improvement Ideas

4.6 Results Summary and Improvement Ideas

The message-passing program has shown to provide a considerable speedup in
the iteration procedure for a reasonable range of problems. However, the speedup
highly depends on the computational dependency of the basis functions. In par-
ticular, this limits the speedup on grids with a large number of connections. Here,
the hybrid approach offers an improvement over pure MPI, which is a direct result
of decreasing the communication cost. Results presented in Section 4.5.4 suggest
that the modified approach provided by Algorithm 5 can reduce the total compu-
tational dependence required to reach a given quality of the prolongation operator,
and thereby offers a possible approach to reduce the total computation time when
the communication cost is large. However, the method requires further testing.
In particular, the resulting prolongation operator should be examined further, as it
might not provide the same results when applied to solve the global flow-problem.

Several improvements can be made to increase the speedup from the iteration
procedure. Probably the most considerable one is to reduce the communication
volume to the required minimum, which was noted in Section 4.4.3. This will
especially improve the speedup on highly dependent computations, such as Test
Case 5. It is likely that improvements can be made readily by providing better
division of the computational work. This can be achieved from a revision of the
graph discussed in Section 4.4.1 and from investigating alternative partitioning
routines. In particular, we believe that incorporating the additional computation
cost of union boundary cells into the vertex weights of the graph can improve load
balance.

We have analyzed the so-called strong scalability for the message-passing pro-
gram. In strong scaling, the problem size stays fixed as the number of processing
cores are increased. It would also be of interest to test the programs weak scalabil-
ity. Here, the workload distributed to each core remains fixed, while the problem
size is increased and divided among more cores. Weak scalability is of interest be-
cause it measures the efficiency in which adding more computer power can be used
to solver larger problem. Obtaining large strong scalability is generally the most
challenging of the two, which is why we chose to study it in this thesis. Analysis
of the weak scalability is left for future work.

Note that to investigate the parallel scalability, we used a lot more computer
power than what is typically prescribed for the problems that were considered. For
instance, performing 1000 iterations of Test Case 4 (SPE 10) takes about three
minutes on a single core, but not much more than half a second when 1600 of
them are used. If you have time to wait four more seconds, you are well off with
48 cores.

87

Chapter 4. Constructing Prolongation Operator on Distributed Memory Systems

As we increase the number of cores, the setup time occupies an increasing
amount of the total computation time. Here, no speedup is gained when message-
passing is used, but will rather result in an increased setup time. The easiest way
of improving the setup time is to increase the use of OpenMP threads in this part of
the implementation. However, reducing the cost of distributing the problem data
among MPI processes requires a different approach.

When the volume of the problem data grows, the time to read the problem data
from file soon becomes the most time-consuming step in a parallel application
of the message-passing program. The procedure of reading and writing data is
for now performed sequentially by a single process. Future work could use a
specialized binary format for reading data in parallel. This will in addition reduce
the setup time, since it decreases or eliminates the need to distribute the problem
data.

We end this chapter by a discussion of Amdahl’s law, which says that the
highest theoretical speedup sp a program can achieve from p processing units is
determined from

sp =
1

(1− tp) +
tp
p

,

where tp is the fraction of the sequential runtime that can benefit from multiple
processors. On the other hand, (1− tp) is the fraction which is has to be computed
sequentially. Assume now that we are able to provide parallel computation of the
whole message-passing program, including the setup procedure, except for reading
the problem data from file, which must be done sequentially. Again consider using
the program to perform 1000 iterations of Test Case 4. When executed on a single
processing unit, the fraction of time used to read the problem data from file is 0.05,
meaning that tp = 0.95. Amdahl’s law tells us that the best speedup we can hope
to achieve is

sp =
1

0.05 + 0.95
p

,

meaning that no mater how many processing units we use, we will not obtain
a speedup higher than 20 for the program as a whole. Further, achieving this
speedup assumes no extra overhead resulting from the parallel computation, which
of course is not realistic in practice. This highlights our previous point; to obtain
a better speedup for the message-passing problem as a whole, the most prominent
need of improvement is to allow reading the problem data in parallel.

88

Chapter 5
Concluding Remarks

This thesis has discussed how to enhance construction of the prolongation operator
used by the MsRSB method by exploring two avenues; a change from relaxed
Jacobi to Gauss-Seidel type smoothing, and assessing the parallel efficiency of the
construction algorithm.

During the research, a modified construction algorithm was found that proved
to be more numerically stable and easier to implement compared to the preexisting
one. This algorithm has therefore been used in the program presented here, and
we recommend its use in future implementations. We demonstrated that a direct
change to Gauss-Seidel smoothing in the construction algorithm has a significant
drawback which renders it an inadequate alternative to Jacobi. But by learning
from its failure, we derived two modified Gauss-Seidel smoothing approaches that
have shown considerable promise in numerical tests, which suggests that a 40%
reduction in the number of iterations can be achieved.

A program which is able to perform the construction algorithm on distributed-
memory systems was presented. The program allows utilizing hybrid combina-
tions of explicit message-passing by MPI functionality with shared memory mul-
tithreading by the use of OpenMP. Tests performed on the cluster Vilje showed
excellent speedup of the iteration procedure on two-dimensional Cartesian grids.
However, as we move to three dimensions and grids with more connections, the
speedup gain is lessened. This is a consequence from a larger dependency in the
computations, which causes a more rapid growth in communication cost. Here,
the hybrid approach significantly outperforms runs that use solely MPI-processes,
which is a result from a considerable reduce in communication cost. Even for
the most challenging test case, a speedup of 58 was obtained on 160 processing

89

Chapter 5. Concluding Remarks

cores. Taking into account that it still remains a task to reduce the communication
volume to its required minimum, we conclude that the prolongation construction
algorithm is highly suitable for parallel computation, and will certainly not be a
bottleneck in a full parallel application of the MsRSB method. We also presented
an approach to decrease the computational dependence of the iteration procedure.
The method requires more research, but might very possibly be an effective way
to decrease the runtime for parallel applications where a large number of process-
ing nodes are used, and where the computational dependence is high. The current
message-passing program uses the originally relaxed Jacobi method as smoother,
but a switch to one of the proposed Gauss-Seidel type smoothers can be accom-
plished from a quick change in the existing code.

We end this thesis by mentioning two recent developments in parallel multi-
scale solvers. In August of 2016, A. Kozlova et al. from Schlumberger published
their work on a parallel implementation of the whole MsRSB method in a commer-
cially available simulator [26]. The implementation is still under development, but
results are so far promising. However, they conclude that a high speedup is harder
to achieve for complex grids, which is in agreement with results we have presented
here. In 2015, A. M. Manea et al. at Standford University published an aricle about
their work on a parallel implementation of a multiscale solver for structured grids
[35], where a MsFE-based algebraic multiscale method is used [43, 47]. Here, the
parallel scalability of the multiscale solver is compared against the state-of-the-art
algebraic multigrid solver. They conclude that the multiscaler solver shows good
scalability, but memory access time becomes a bottleneck when many cores are
used on shared memory machines.

90

Bibliography

[1] Introducing MEX Files, webpage. https://se.mathworks.com/
help/matlab/matlab_external/introducing-mex-files.
html. Accessed: 26.09.2016.

[2] METIS webpage. http://glaros.dtc.umn.edu/gkhome/
metis/metis/overview. Accessed: 29.08.2016.

[3] MPI, webpage. https://computing.llnl.gov/tutorials/
mpi/. Accessed: 29.08.2016.

[4] MRST, webpage. http://www.sintef.no/projectweb/mrst/.
Accessed: 10.02.2016.

[5] OpenMP, webpage. http://openmp.org/wp/. Accessed: 29.08.2016.

[6] Vilje, webpage. https://www.hpc.ntnu.no/display/hpc/
Vilje. Accessed: 23.08.2016.

[7] J.E. Aarnes. On the use of a mixed multiscale finite element method for
greaterflexibility and increased speed or improved accuracy in reservoir sim-
ulation. Multiscale Modeling & Simulation, 2(3):421–439, 2004.

[8] J.E. Aarnes, V. Kippe, and K.A. Lie. Mixed multiscale finite elements and
streamline methods for reservoir simulation of large geomodels. Advances in
Water Resources, 28(3):257–271, 2005.

[9] J.E. Aarnes, S. Krogstad, and K.A. Lie. A hierarchical multiscale method
for two-phase flow based upon mixed finite elements and nonuniform coarse
grids. Multiscale Modeling & Simulation, 5(2):337–363, 2006.

91

https://se.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html
https://se.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html
https://se.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
http://www.sintef.no/projectweb/mrst/
http://openmp.org/wp/
https://www.hpc.ntnu.no/display/hpc/Vilje
https://www.hpc.ntnu.no/display/hpc/Vilje

BIBLIOGRAPHY

[10] J.E. Aarnes, S. Krogstad, and K.A. Lie. Multiscale mixed/mimetic methods
on corner-point grids. Computational Geosciences, 12(3):297–315, 2008.

[11] F.O. Alpak, M. Pal, K.A Lie, et al. A multiscale adaptive local-global method
for modeling flow in stratigraphically complex reservoirs. SPE Journal,
17(04):1–056, 2012.

[12] Z. Chen and T. Hou. A mixed multiscale finite element method for el-
liptic problems with oscillating coefficients. Mathematics of Computation,
72(242):541–576, 2003.

[13] M.A. Christie, M.J. Blunt, et al. Tenth spe comparative solution project: A
comparison of upscaling techniques. In SPE Reservoir Simulation Sympo-
sium. Society of Petroleum Engineers, 2001.

[14] H. Hajibeygi, G. Bonfigli, M.A. Hesse, and P. Jenny. Iterative multiscale
finite-volume method. Journal of Computational Physics, 227(19):8604–
8621, 2008.

[15] H. Hajibeygi, H.A. Tchelepi, et al. Compositional multiscale finite-volume
formulation. SPE Journal, 19(02):316–326, 2014.

[16] B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor
no clothes? In International Symposium on Solving Irregularly Structured
Problems in Parallel, pages 218–225. Springer, 1998.

[17] T.Y. Hou and X.H. Wu. A multiscale finite element method for elliptic prob-
lems in composite materials and porous media. Journal of computational
physics, 134(1):169–189, 1997.

[18] P. Jenny, S.H. Lee, and H.A. Tchelepi. Multi-scale finite-volume method for
elliptic problems in subsurface flow simulation. Journal of Computational
Physics, 187(1):47–67, 2003.

[19] P. Jenny, S.H. Lee, and H.A. Tchelepi. Adaptive multiscale finite-volume
method for multiphase flow and transport in porous media. Multiscale Mod-
eling & Simulation, 3(1):50–64, 2005.

[20] P. Jenny, S.H. Lee, and H.A. Tchelepi. Adaptive fully implicit multi-scale
finite-volume method for multi-phase flow and transport in heterogeneous
porous media. Journal of Computational Physics, 217(2):627–641, 2006.

[21] P. Jenny and I. Lunati. Modeling complex wells with the multi-scale finite-
volume method. Journal of Computational Physics, 228(3):687–702, 2009.

92

BIBLIOGRAPHY

[22] F. Johannessen. Constructing the prolongation operator to the multiscale
restricted-smoothed basis method on distributed memory machines, 2016.

[23] G. Karypis. A software package for partitioning unstructured graphs, par-
titioning meshes, and computing fill-reducing orderings of sparse matrices.
University of Minnesota, Department of Computer Science and Engineering,
Army HPC Research Center, Minneapolis, MN, 2013.

[24] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-
titioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–
392, 1998.

[25] G. Karypis and V. Kumar. Multilevelk-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed computing, 48(1):96–129, 1998.

[26] A. Kozlova, D. Walsh, S. Chittireddy, Z. Li, J. Natvig, S. Watanabe, and
K. Bratvedt. A hybrid approach to parallel multiscale reservoir simulator. In
ECMOR XIV-15th European Conference on the Mathematics of Oil Recov-
ery, 2016.

[27] S.H. Lee, C. Wolfsteiner, and H.A. Tchelepi. Multiscale finite-volume for-
mulation for multiphase flow in porous media: black oil formulation of
compressible, three-phase flow with gravity. Computational Geosciences,
12(3):351–366, 2008.

[28] K. A. Lie. An introduction to reservoir simulation using MATLAB: User
guide for the Matlab reservoir simulation toolbox (MRST), SINTEF ICT,
2015.

[29] K.A. Lie, O. Møyner, J.R. Natvig, A. Kozlova, K. Bratvedt, S. Watanabe,
and Z. Li. Successful application of multiscale methods in a real reservoir
simulator environment. In ECMOR XIV-15th European Conference on the
Mathematics of Oil Recovery, 2016.

[30] I. Lunati and P. Jenny. Multiscale finite-volume method for compress-
ible multiphase flow in porous media. Journal of Computational Physics,
216(2):616–636, 2006.

[31] I. Lunati and P. Jenny. A multiscale finite-volume method for three-phase
flow influenced by gravity. In Proceedings of XVI international conference
on computational methods in water resources (CMWR XVI), Copenhagen,
Denmark, pages 1–8, 2006.

93

BIBLIOGRAPHY

[32] I. Lunati and P. Jenny. Treating highly anisotropic subsurface flow with
the multiscale finite-volume method. Multiscale Modeling & Simulation,
6(1):308–318, 2007.

[33] I. Lunati and S.H. Lee. An operator formulation of the multiscale finite-
volume method with correction function. Multiscale modeling & simulation,
8(1):96–109, 2009.

[34] I. Lunati, M. Tyagi, and S.H. Lee. An iterative multiscale finite volume al-
gorithm converging to the exact solution. Journal of Computational Physics,
230(5):1849–1864, 2011.

[35] A.M. Manea, J. Sewall, H.A. Tchelepi, et al. Parallel multiscale linear solver
for highly detailed reservoir models. In SPE Reservoir Simulation Sympo-
sium. Society of Petroleum Engineers, 2015.

[36] O Møyner. Construction of multiscale preconditioners on stratigraphic grids.
In ECMOR XIV-14th European Conference on the Mathematics of Oil Re-
covery, 2014.

[37] O. Møyner and K. A. Lie. A multiscale two-point flux-approximation
method. Journal of Computational Physics, 275:273–293, 2014.

[38] O. Møyner and K. A. Lie. A multiscale restriction-smoothed basis method
for high contrast porous media represented on unstructured grids. Journal of
Computational Physics, 304:46–71, 2016.

[39] O. Møyner and K.A Lie. A multiscale restriction-smoothed basis method for
compressible black-oil models. To be appear in SPE J, 2016.

[40] O. Møyner, K.A. Lie, et al. The multiscale finite-volume method on strati-
graphic grids. SPE Journal, 19(05):816–831, 2014.

[41] Y. Saad. Iterative methods for sparse linear systems. Siam, 2003.

[42] K. Stüben. A review of algebraic multigrid. Journal of Computational and
Applied Mathematics, 128(1):281–309, 2001.

[43] Y. Wang, H. Hajibeygi, and H.A. Tchelepi. Algebraic multiscale solver for
flow in heterogeneous porous media. Journal of Computational Physics,
259:284–303, 2014.

[44] Y. Wang, H. Hajibeygi, and H.A. Tchelepi. Monotone multiscale finite vol-
ume method. Computational Geosciences, 20(3):509–524, 2016.

94

BIBLIOGRAPHY

[45] X.H. Wen and J.J. Gómez-Hernández. Upscaling hydraulic conductivities in
heterogeneous media: An overview. Journal of Hydrology, 183(1):ix–xxxii,
1996.

[46] H. Zhou, H.A. Tchelepi, et al. Operator-based multiscale method for com-
pressible flow. SPE Journal, 13(02):267–273, 2008.

[47] H. Zhou, H.A. Tchelepi, et al. Two-stage algebraic multiscale linear solver
for highly heterogeneous reservoir models. SPE Journal, 17(02):523–539,
2012.

95

	Abstract
	Sammendrag
	Preface
	Acknowledgment
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Applications and Challenges for Reservoir Simulation
	Multiscale Methods
	 Restricted-Smoothed Basis Functions
	Parallel Computing
	Matlab Reservoir Simulation Toolbox

	Structure of the Thesis

	Problem Derivation and Method Presentation
	 Flow Model and Discretization
	Flow Model
	Two-Point Flux-Approximation
	SPE 10 Dataset

	Jacobi and Gauss-Seidel Methods
	Red-black Gauss-Seidel

	Coarse Grid
	Multiscale Restricted-Smoothed Basis Formulation
	Constructing the Prolongation Operator
	Multiscale Method Application

	Improving Construction of the Prolongation Operator
	A Change to the Original Construction Algorithm
	Analyzing the Construction Algorithm
	Gauss-Seidel as Smoother
	Red-black Gauss-Seidel Smoother
	Partially Red-black Gauss-Seidel Algorithm
	Boundary Last Gauss-Seidel Algorithm
	Numerical Results
	 Comparison of Construction Algorithms
	Changing the Smoother

	Constructing Prolongation Operator on Distributed Memory Systems
	The Union Boundary
	Sparse Data Formats
	Sequential Program
	Message-Passing Program
	Graph Representing Computational Work
	Graph Partitioning
	Message-Passing

	Testing the Program
	Single-Processor Runtimes
	Iteration Speedup
	Setup Cost
	Modification to Reduce Communication Cost

	Results Summary and Improvement Ideas

	Concluding Remarks
	Bibliography

