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Problem description 
The work to be done in this master thesis is a continuation of the specialization project completed in 
December 2015 at the Norwegian University of Science and Technology in Trondheim, titled Investigation 
of a Magnetic Gear in Marine Propulsion Drives. A numerical model, based on finite element analysis was 
developed in the project, and shall in the master thesis, titled Developing a Numerical Model for 
Optimization of a Coaxial Magnetic Gear, be further advanced into a complete design tool with 
optimization. The entire optimization tool shall be modelled in COMSOL Multiphysics, along with an 
optimization module available in the software. 

In order to have the necessary functionality, the design tool should be able to: 
x Take on various objective functions, including cost, efficiency, volume etc., either as a single 

objective, or in multi-objective optimization. 
x Satisfy user defined constraints, such as torque ripple, losses, radius etc. 
x Consider relevant design parameters as control variables to be used in the optimization procedure. 
x Estimate losses and efficiency of the magnetic gear with satisfying accuracy. 

The student is expected to properly evaluate which control variables, constraints and objectives are 
suitable for the design tool. Further, it is required that the process is properly documented in the report. 
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Summary 
Magnetic gears have in recent years attracted a lot of interest as a potential replacement for mechanical 
gears in applications requiring high torque and low speed. Since the two shafts are not in direct contact 
undesirable side effects such as friction, noise and vibration are eliminated.  

This paper concerns the optimization of a coaxial magnetic gear. The problem is solved using a numerical 
tool, COMSOL Multiphysics, which utilizes finite element analysis to solve the physical model. An 
optimization toolbox is available in the software, which has been used for the synthesis of the problem. 
Effort is made to model the entire problem, including losses and optimization, without the use of an 
external programming software. 

The resulting model offers a large variety of objectives and constraints, making it useful in a wide range of 
applications. Losses in iron are estimated using a Fourier transform to obtain all harmonic contributions. 
However, due to a clear mismatch between the Fourier transformed signal and the original time signal, the 
validity of the iron loss calculations has been drawn into question. Eddy current losses in permanent 
magnets are calculated numerically, and show that temperature rise in the magnets pose a serious threat 
if no action is taken to reduce these losses.  
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Samandrag 
Magnetiske gir har dei siste åra synt seg som eit lovande alternativ til konvensjonelle mekaniske gir. Sidan 
dei to akslingane ikkje er i direkte kontakt med kvarandre unngår ein ulemper vanligvis forbunde med 
bruken av girbokser, slik som friksjon, støy og vibrasjoner. 

Denne masteroppgåva tar for seg optimering av eit magnetisk koaksialgir. Problemet er løyst ved hjelp av 
eit numerisk dataverktøy, COMSOL Multiphysics, som brukar den såkalla Elementmetoden (Finite element 
method) for å løyse den fysiske analysen av modellen. Til syntesen av problemet har ein optimeringsmodul 
tilgjengelig i dataverktøyet  blitt brukt. Det er forsøkt å implementere den komplette modellen i COMSOl, 
utan bruk av eksterne programmeringsverktøy, som for eksempel MATLAB. 

Den ferdige modellen tibyr eit vidt utvalg av objektivfunksjoner og begrensinger, som gjer den brukande i 
mange forskjellige bruksområder. Jerntapa har blitt estimert ved hjelp av Fourieranalyse for å identifisere 
dei eksisterande harmoniske bidraga. På grunn av uovereinstemming mellom det Fourier transformerte 
signalet, og det orginale tidssignalet, er det knytta stor usikkerheit til estimeringa. Virvelstraumstapa  i 
permanent magnetane er berekna numerisk ved hjelp av innebygde funksjoner i COMSOL. Resultata viser 
at magnettapa er kritisk høge, og at giret bør konstruerast på ein måte som minsker desse tapa. 
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Abstract—Magnetic gears have in recent years at-
tracted a lot of interest as a potential replacement for
mechanical gears in applications requiring high torque
and low speed. Since the two shafts are not in direct
contact undesirable side e�ects such as friction, noise
and vibration are eliminated.

This paper concerns the optimization of a coaxial
magnetic gear. The problem is solved using a nu-
merical tool, COMSOL Multiphysics, which utilizes
finite element analysis to solve the physical model.
An optimization toolbox is available in the software,
which has been used for the synthesis of the problem.
E�ort is made to model the entire problem, including
losses and optimization, without the use of an external
programming software.

The resulting model o�ers a large variety of objec-
tives and constraints, making it useful in a wide range
of applications. Losses in iron are estimated using a
Fourier transform to obtain all harmonic contributions.
However, due to a clear mismatch between the Fourier
transformed signal and the original time signal, the
validity of the iron loss calculations has been drawn into
question. Eddy current losses in permanent magnets
are calculated numerically, and show that temperature
rise in the magnets pose a serious threat if no action is
taken to reduce the circulating currents.

Index Terms—Coaxial magnetic gear, COMSOL
Multiphysics, finite element analysis, high-torque ap-
plications, loss estimation, magnetic gear, optimization,
permanent magnet losses.

Nomenclature
BOBYQA Bound optimization by quadratic approx-

imation
CMG Coaxial magnetic gear
COBYLA Constrained optimization by linear approx-

imation
FEA Finite element analysis
FFT Fast Fourier transform
HSR High speed rotor
LSR Low speed rotor
PM Permanent magnet
PP Pole pieces

K. Bergset is with the Department of Electric Power Engineering,
under the Faculty of Informations Technology, Mathematics and
Elecritcal Engineering at the Norwegian University of Science and
Technology, Norway. email: kristiib@stud.ntnu.no

I. Introduction
As a promising alternative to traditional mechanical

gears, the magnetic gear has generated substantial interest
in recent years. Some of the advantages magnetic gears
hold over mechanical gears are [1]:

• Significant reduction in vibration and noise.
• Reduced friction losses.
• Increased reliability and less maintenance needed.
• Inherent overload protection.
• Complete isolation between shafts makes it possible

to avoid contamination in certain applications.
As development of rare-earth materials has given better
permanent magnet capabilities, the magnetic gear tech-
nology is becoming more and more relevant, as torque
densities become comparable to that of their mechanical
counterpart. Depending on each specific case, the optimal
magnetic gear design will vary according to the demand
of the application. Weight or volume of the gear could
be critical, or maximum e�ciency could be required. A
complete optimization tool, which can identify the optimal
design for any application is therefore desirable.

This master thesis is a continuation of a specialization
project conducted at the Norwegian University of Science
and Technology in 2015 [2]. The project investigated sev-
eral magnetic gear topologies available, and found that the
so-called coaxial magnetic gear (CMG) yields the highest
torque densities. Thus, the optimization tool in this thesis
will only consider this topology. A 2-dimensional numerical
model of the CMG was established using COMSOL Mul-
tiphysics, which will be further developed into a complete
optimization tool in this thesis.

II. Coaxial Magnetic Gear Theory
The topology shown in Fig. 1 was first suggested in [3] as

a high performance magnetic gear. There are three main
components of the gear: the innermost and outermost
permanent magnet structures and the so called pole pieces
situated in the air gap between the magnets. In principle
any of these structures could be either the high- or low-
speed rotor. Furthermore, the third component could be
either a stator in a fixed gear ratio, or a controllable rotor
in order to achieve a continuously variable transmission,
i.e. a gear with variable gear ratio. For simplicity, this
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Fig. 1: Topology of the coaxial magnetic gear.

thesis will only consider the case where the innermost PM
structure is defined as the high-speed rotor (HSR), the
pole pieces as low-speed rotor (LSR), and the outermost
PM structure as the stator.

The key feature of the design is the ferromagnetic
pole pieces situated between the two permanent magnet
structures, which creates large harmonics in the air gap.
When considering only one set of permanent magnets, i.e.
only the PMs on either the high-speed rotor or stator, the
largest harmonic created is given by the relation

p

m,k

=| mp + kn

s

|
m = 1, 3, 5, ..., Œ (1)

k = 0, ±1, ±2, ±3, ..., ±Œ

where p

m,k

is the number of magnetic flux density pole
pairs in the air gap associated with the m, k harmonic,
p is the pole pairs of permanent magnets and n

s

is the
number of ferromagnetic pole pieces in the air gap. If the
pole number on opposite set of PMs is chosen equal to the
pole number of a harmonic, then the magnetic fields are
able to interact to create torque. The largest harmonic is
obtained for m = 1, k = ≠1. Thus, the relation between
inner and outer pole numbers that produce the highest
torque density is given as

P

o

=| P

i

≠ n

s

| (2)

where P

o

are the number of outermost pole pairs, P

i

the
number of innermost pole pairs. With the rotor arrange-
ment described above, the gear ratio will be

GR = n

s

P

i

(3)

Notice that all pole numbers are referred to in pole pairs
in this thesis, making the total number of magnetic poles
two times the number of pairs.

III. Loss Mechanisms

Even though friction losses between the di�erent ro-
tating components are avoided due to the torque being
transferred through the magnetic field, rotational losses
are still present in the bearings of the two shafts. Fur-
thermore, eddy currents are induced in both the back iron
and in the permanent magnets themselves due to the time
varying magnetic field. These rotating currents will give
rise to resistive losses in the materials. Finally, the back
iron will su�er from the hysteresis e�ect, causing heating
of the iron and adding to the total magnetic core losses.

Bearing losses will be neglected in this paper, as they are
assumed to be una�ected by the electromagnetic design
investigated in this thesis.

A. Eddy current losses
Eddy currents are currents induced in a conductive ma-

terial due to a time varying magnetic field. In traditional
electric machinery, the problem arises mainly in the iron
due to the rotating magnetic field from the stator and
rotor currents, or rotor permanent magnets in the case
of a permanent magnet machine. This issue is normally
resolved by laminating the iron cores of the machine.
A widely used estimation [4]–[7] for eddy current losses
induced per volume of the laminated iron is formulated as

P

ecl

= K

e

f

2
B

2 (4)

where P

ecl

is the eddy current losses per volume of the
ferromagnetic core, K

e

is the eddy current coe�cient, f

is the frequency of the time varying field and B is the
amplitude of the magnetic flux density . The eddy current
coe�cient is dependent on the material and shape of the
lamination.

In permanent magnet machines the magnets normally
rotate with the same frequency as the magnetic field,
and experiences no time varying magnetic field. Thus,
no eddy currents of significance are induced in the per-
manent magnets [8]. However, recent advances in electric
machinery have been made, which come with the side
e�ect of magnetic field harmonics. One example is the
increased use of power electronics which su�er from high
frequency switching harmonics. Furthermore, fractional
slot machines improve performance in terms of power
density and cogging torque, but also introduces large
harmonics in the machine [8], [9]. Similarly, the magnetic
gear concept is based on the presence of such harmonics,
which rotate at a frequency other than the fundamental
frequency of the permanent magnets. All harmonics with
k ”= 0 will contribute to a time varying magnetic field.
Thus, eddy currents will be present in the permanent
magnets as well. The losses associated with this e�ect
can cause a substantial temperature rise in the PMs.
In worst case scenarios, high temperatures can cause
complete demagnetization of the magnets. In the case
of NdFeB magnets, such demagnetization might occur at
approximately 120¶C [10].
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B. Hysteresis losses
Hysteresis losses appear due to the spontaneous mag-

netization of the iron. Applying a magnetic field to a
ferromagnetic material will cause the microscopic mag-
netic domains to align according to the magnetic field
applied. When the external magnetic field is removed, not
all domains return to their original direction, causing the
material to be slightly self-magnetized. In order to neu-
tralize the magnetization of the material, some external
field of opposite direction is needed. In materials exposed
to an alternating magnetic field, losses will therefore be
induced for each cycle.

The hysteresis loss of a laminated core is widely esti-
mated [4]–[7] using

P

hys

= K

h

fB

1.6 (5)

where K

h

is known as the hysteresis constant. The value
of this constant depends on the material used. The total
core losses in the laminated core of an electrical machine
will then be the sum of the two loss components calculated
by eqs. (4) and (5).

Whether or not hysteresis losses also have a signif-
icant contribution to losses in the permanent magnets
has occasionally been suggested in literature, but also
been disputed [11]. Such losses are normally regarded as
insignificant and consequently, hysteresis losses in perma-
nent magnets will be neglected in this thesis.

IV. Optimization Theory
Basic optimization theory, along with an introduction

to the solvers used in this thesis will be presented in this
section.

A. The Optimization Problem
Optimization is a mathematical formulation which aims

to determine the best, or the best possible solution [12].
In engineering, typical aims of the optimization process
is to minimize cost, weight and volume, or to maximize
technical performance such as torque output or e�ciency.
Generally, the optimization problem can be written as

min f(x), x œ Rn (6)

subject to constraints

G

i

(x) = 0
G

i

(x) > 0

where f(x) is the objective function to be minimized,
G

i

(x) is a set of equality and inequality constraints which
must be satisfied, x are the control variables of the physical
model and n is the number of control variables.

Optimization methods can either be exact or heuristic.
The latter means that the method searches for a good
solution, but it can not guarantee that it is the best
solution [12]. Also, more than one objective function can
be implemented at the same time in a multi-objective
optimization. This requires some sort of weighing of the

Fig. 2: Visualisation of a multi-objective optimization
problem with frontier of possible solutions.

di�erent objectives, either mathematically or manually be
the user. Mathematically, it can be achieved by trans-
forming all objectives into an equivalent cost. A complete
understanding of the cost mechanisms is then required. In
the latter option, a range or frontier of possible optimal
solutions are provided graphically, and the user can make
an evaluation based on the specific application. Fig. 2
shows an example of such a visualization of a optimization
problem with two objectives, e.g. e�ciency and cost. All
solutions situated on the line are optimal solutions. It is
up to the user to evaluate a good trade-o� point between
the two objectives, based on the graphic.

B. Gradient-based and Gradient-free Solvers
Gradient-based solvers utilize partial derivatives of the

objective function with respect to each of the variables. An
example of method is the steepest decent method, where
the gradient of the objective function in a point is used to
find direction and length of the next iteration step [13].

In many cases, one or more derivatives of the objective
function are unknown. This is true in cases with integer or
discrete variables, such as the pole numbers in the mag-
netic gear. Gradient-free solvers are optimization methods
that do not require derivatives. The optimization module
in COMSOL o�ers five gradient-free solvers, presented
below:

1) Nelder-Mead: A well-established and robust opti-
mization technique, Nelder-Mead operates by the principle
of a moving simplex. With n variables, a n+1 simplex is
created. The solver evaluates the objective function at each
of the vertices of the simplex. The vertex with the worst
solution is reflected around a centroid and the solution is
updated [14]. Following certain rules, the simplex will also
expand or contract. When the simplex is su�ciently small,
the method is terminated.
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According to Optimization Module User’s Guide [15],
the implementation in COMSOL includes a restart proce-
dure in case the simplex collapses. Also, variable bounds
are respected by limiting the reflection step length.

2) Monte Carlo Method: Named after the casinos of
Monte Carlo, this optimization technique operates by
”throwing dices”, and is therefore known as a stochastic
method. By generating random sets of the control vari-
ables, the best solution of the sets is not likely the best
solution available. However, with a large enough number of
random guesses, the solution will be su�ciently accurate
[16].

A downside of the method is that it can be very time
consuming. On the other hand, it does not get stuck in
local minima and it always explores the entire control
variable space [15].

3) Coordinate search: One of the simplest direct-search
methods, the coordinate search starts in a specified initial
point. The method then evaluates the solution in a certain
direction from that point. If the new point is better,
the solver moves in the direction in question. If neither
direction gives a better solution, step size is reduced. The
algorithm is terminated when the step size is below a
certain threshold level [17], [18].

4) BOBYQA: Bound Optimization BY Quadratic Ap-
proximation or BOBYQA [19] considers the objective
function, f(x), to be a black box. The solver approximates
the objective by a quadratic function which is valid in
the immediate closeness of the iteration point, known
as the trust region. The solver minimizes the quadratic
function to find a new iteration point, and a new quadratic
approximation is made for each iteration of the procedure.

5) COBYLA: Constrained Optimization BY Linear
Approximation [15], [20] or COBYLA works in principle
in a similar manner as the BOBYQA solver. It makes
linear approximations to both the objective function and
the constraints of the problem. Calculated values at the
vertices of a simplex are used as the basis of the linear
approximations. The problem can then be solved as a
linear programming problem within the trust region of
each iteration.

V. Modelling in COMSOL
An in-depth explanation of how modelling is done in

COMSOL is given in this section. The software is built
as a tree structure. Fig. 3 shows a screen shot from the
computer program, illustrating the top-level branches of
the tree. The root has four main types of branches, or
nodes:

1) Global definitions, where parameters, materials and
variables that are available throughout the entire
model are defined.

2) Component, where the geometry and physics are set
up for the component in question. More than one
component node can be added, for instance if more
than one topology is being studied. In Fig. 3 this
node is called Magnetic gear (comp1).

Fig. 3: Screen shot of the model tree in COMSOL.

3) Study, where the study steps and settings of solvers
are defined. More than one study can be added also,
in case of di�erent study types, load cases etc.

4) Results, where post processing can be done as well
as accessing and exporting the solution of the model.

A. Component
The component branch includes everything needed for

the physical analysis of the model. As shown in Fig.
3, it has six subnodes: Definitions, geometry, materials,
physics, optimization and mesh. The physics node is in
this case called Rotating Machinery, Magnetic (rmm).
Definitions contains all the locally available variables,
probes, integration surfaces, component couplings, etc.
The objective- and constraint equations, as well as other
solution dependent equations are added as variables. The
probes monitor a physical quantity over time for instance
the net current flowing through one permanent magnet.

The Geometry node is a set of build commands, made
up of circles, or angular portions of circles of di�erent
radii, determined by the values of the globally defined pa-
rameters, such as outer radius, pole numbers, etc. Union,
di�erence and split commands are used to add together
or separate the circles into the desired geometry of the
magnetic gear. Selections are also defined in the process,
making it easy to apply physics or materials to certain
areas, such as permanent magnets, high speed rotor and
pole pieces. In order to have di�erent parts of the geometry
rotate with respect to one another, each rotating section
needs to be unified into a single object, before the final
Form assembly command. This will create identity pairs on
the borderline between each rotating part of the geometry,
where the parts will be able to slide along each other.
The identity pair settings are found under the Definitions
sub node. One side of the boundary is set to be the
source, and the other to be the destination. For improved
convergence, the concave side is set as source, and convex
as the destination.

Properties for all materials available in the component
are defined in the Materials sub node. Silicone steel and
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Fig. 4: A portion of the mesh, along the high speed–/low
speed rotor boundary.

air are chosen from the built-in material library. Perma-
nent magnets are added as a blank material, where the
properties are entered manually. Using the selections made
in the Geometry sub node, materials are applied to their
respective domains of the geometry.

Rotating Machinery, Magnetic (rmm) is added as the
Physics node. This node contains all relevant physical con-
ditions for rotating machinery, including ampere’s law and
initial– and boundary conditions. Prescribed rotations, as
well as torque calculations are added to the high and low
speed rotor.

The remanent flux density is added to the north– and
south pointing magnets separately, and a single turn coil-
condition with 0 A is applied to all magnets to avoid
shorting at the ends. Finally, a continuity condition needs
to be applied to the identity pairs between rotating parts,
to ensure continuity across the boundary. This constraint
can be very though to uphold for the software. The weak
constraint box is therefore checked, to make the sliding
contact less numerically noisy.

All constraints and objectives are added in the Opti-
mization sub node. Since all of the objective and con-
straints evaluations are defined under the variables of
the component, they are defined as global objectives. Al-
ternatively, each objective/constraint could be calculated
directly in this sub node, using the integral– or probe
options.

Finally, the Mesh sub node contains all settings for mesh
of points at which the FEA is applied. A finer mesh will
give increased accuracy of the solution, but it will be more
time demanding to compute as well. Improved convergence
is achieved by selecting a finer mesh on the destination
boundary of the identity pairs. This means that the low
speed rotor side will have a finer mesh than the high
speed rotor side of the boundary between them. Similarly,
the stator side will have the finer mesh on the boundary
between low speed rotor and stator. A portion of the mesh
applied to the model is illustrated in Fig. 4. Indicated with
a blue line, the boundary between the high speed and low
speed rotors is shown. The convex destination side of the

Fig. 5: Screen shot of a study node in COMSOL.

line has more nodes than the source side, giving a finer
mesh as argued.

B. Study
The Study node contains the study steps in successive

order, as well as all necessary settings for the solvers used
in the study. Fig. 5 shows an example of a Study node
with sub nodes. The optimization study step is always
added at the top of the study step order. This step
contains an interactive user interface, where objectives and
constraints from the component optimization node can
be activated/deactivated as needed. Which optimization
solver to use is also chosen here, along with all relevant
settings for the solver. Finally, all control variables solved
for are chosen from the parameter list defined under global
definitions.

After the optimization study step, any required study
step can be added, including, but not limited to, sta-
tionary, time dependent or a frequency transformation.
The software automatically adds the required solvers with
default settings. Issues in convergence often arises in the
time dependent solver. Adjusting some of the settings from
the default greatly improves the problem. Under Time
stepping the steps taken by the solver is chosen to be strict.
Further, the error estimation is set to exclude algebraic.
Finally, the Jacobian is set to update on every iteration
under Method and termination.

More than one study with its own set of study steps
can be added. In optimization this can often be required,
as the various objectives/constraints applied simultane-
ously might require di�erent study steps or orders to
be calculated. The di�erent studies are then added to
the optimization study as study references, instead of
study steps. Which study the optimization uses to solve
for an objective/constraint is defined in the optimization
interface.

VI. Analysis
The optimization process can be divided into the anal-

ysis and the synthesis of the problem. The analysis is the
solving of the physical model for given values of the control
variable. Synthesis, on the other hand, is the process of
changing the control variables in order to find the best
feasible solution. For each iteration of the synthesis, the
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Fig. 6: Complete optimization process implemented in
model.

analysis functions will be called to obtain a solution. Fig.
6 shows the steps of the optimization process, where the
synthesis part is marked in green, and analysis in blue.
This section highlights some of the more complex modeling
parts of the analysis.

Firstly, losses need to be satisfyingly accounted for.
Estimating the e�ciency is important for both evaluating
the technical performance of the gear and for correctly
evaluating the cost of the gear. Furthermore, cogging
torque in the magnetic gear could be substantial, espe-
cially for certain pole pair combinations [1]. This ripple in
output torque should be limited, and is therefore needed
as a constraint for the optimization model.

Fig. 7 shows a quarter section of the geometry built in
COMSOL. In order to save computational time, symmetry
is often utilized in order to only simulate a portion of the
gear. Finding an exact periodicity of the gear is then nec-
essary. Such a periodicity could be the greatest common

Fig. 7: A quarter of the gear model geometry. Materials
are indicated by colour.

TABLE I: Values of material properties used in model.

Property Symbol Iron NdFeB
Cost C 7.0 EUR/kg 44.2 EUR/kg
Density fl 7500 kg/m3 7650 kg/m3

Conductivity ‡ 10 S/m 0.714 MS/m

Fig. 8: The development of torque over time during a time
dependent study.

divisor of the inner– and outer pole pairs and pole pieces.
Since the pole numbers are changed for each iteration of
the optimization, symmetry is not implemented in this
model.

Laminated silicone steel, NdFeB permanent magnets
and air are the materials used in model, applied as de-
scribed by Fig. 7. Table I shows some of the material
properties added to the model. All other material prop-
erties are as defined in the built-in material library in
COMSOL. Because the silicone steel/iron is laminated,
the conductivity can be set to essentially zero in the axial
direction of the gear. However, this causes convergence
issues in the solving of the model, and the conductivity
is therefore set to a slightly higher value.
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A. Cogging torque calculations
Both torque ripple and electromagnetic losses are time

dependent. Thus, a time dependent study is added to the
optimization process in Fig. 6. This adds steps to be made
by the solver, and will dramatically increase the computa-
tional time. In order to limit this increase, it is necessary
to evaluate how long the time dependent study should
simulate. Fig. 8 shows the torque over time during start-
up of a time dependent study for a gear with P

i

= 8 and
P

o

= 40. How long it takes the solver to reach steady-state
conditions is heavily dependent on the pole numbers of the
magnetic gear. Calculations for torque ripple and losses
should be made after the simulation has stabilized. This
requires a suitable start time for calculations. Further, the
calculations should take into consideration a su�ciently
long time period, in order to properly evaluate maximum,
minimum and average values. Thus, an end time, which is
suitably higher than the start time is needed. Below are
proposed limits for start– and end times, used in the model
developed in this thesis:

t1 = 3
2

T

P

i

(7)

t2 = 2 T

P

i

where t1 is the start time, t2 is the end time and T is how
long it takes the high speed rotor to rotate one round, i.e.
the mechanical time period of the input rotor. Times to
be solved for by the time dependent solver is then [0, t2].

Cogging torque is calculated quite simply as the per-
centage torque variation relative to average torque:

�· = max(t1, t2, ·) ≠ min(t1, t2, ·)
avg(t1, t2, ·) ◊ 100% (8)

where · is torque and t1, t2 are the limits of the stable time
period, i.e. the range of time values considered in the cal-
culation. The equations are entered in COMSOL as vari-
ables, using the built-in operators timeavg(), timemin()
and timemax().

B. Loss calculations
Included in the losses accounted for in the model, are

hysteresis losses of the iron core, and eddy current losses
in both permanent magnets and iron, as argued in Section
III. Permanent magnets are not considered laminated, and
losses can therefore be directly calculated by COMSOL as
the resistive losses resulting from induced currents in the
material. A single-turn coil condition is utilized on the
permanent magnets, which forces the net current of each
magnet to be zero. Thus, making sure that the software
will not allow the current to flow from one permanent
magnet to another.

The ferromagnetic material of the core needs to be
laminated in order to keep eddy current losses at an
acceptable level. COMSOL considers the iron to be a solid
block during calculations, causing eddy currents to be over
sized if the default conductivity is used. An analytical

Fig. 9: Overivew of the iron loss estimation process.

estimation of the losses in iron will therefore be used
instead, based on Equations (4) and (5). Obviously, this
estimation assumes a sinusoidal variation of the magnetic
field, which is a decent assumption in some classical
electrical machinery cases. However, in the case of the
magnetic gear, several harmonics exist, as well as the
added complexity of two air gaps and three components,
all rotating with respect to one another. One strategy
[21]–[23] is to use Fourier analysis to separate the various
contributions, and then use super positioning to obtain
the total iron losses. The forward Fourier transform is
therefore applied to the solution of the time dependent
study, as shown in Fig. 6.

Since the direction of the magnetic field varies greatly
over time in the iron, as opposed to the radial field
distribution of the air gaps, some sort of signal processing
is necessary. Available from the solution of the time depen-
dent study are the x- and y- components of the magnetic
flux density. One approach [23] is to decompose the field
distribution over time into the ”most common direction”
of the vector [B

x

, B

y

]. However, the loss estimation used
in the calculations does not require the direction to be
known. Thus, in this model, the absolute value is used,
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which is calculated simply by the use of Pythagoras’
equation:

B

xy

=
Ò

B

2
x

+ B

2
y

(9)

where B

xy

is the absolute value of the B-field, and B

x

and B

y

are respectively the x- and y- components of
the B-field. The frequency spectrum of this component
is evaluated at each node of the iron domains of the
model. Both hysteresis and eddy current losses are then
estimated and integrated over the area of iron. Finally,
it is multiplied by the length of the gear in order to
obtain total iron losses. The Fourier coe�cients are scaled
automatically by the FFT solver by a factor of dt. In
order to obtain the correct amplitude for loss calculations,
the coe�cient should be multiplied with the sampling
frequency: F

s

= 1/t2. Fig. 9 gives an overview of this part
of the optimization process. How the variables are entered
in COMSOL can be found in Appendix A.

VII. Synthesis
The synthesis of the problem will be solved using one of

the gradient-free solvers described in section IV. Which
solver is most suited for the simulation model will be
evaluated further using a simple optimization problem in
the next section of this report.

The user should be able to choose or specify a variety of
objective functions, constraints and variables in order to
obtain the optimal design for many di�erent applications.
Table II summarizes a set of parameters that combined
form an explicit, unambiguous gear design, i.e. it is only
possible to make a single design with the specified pa-
rameters. All of these parameters are added to the global
parameters in COMSOL. Either one of these parameters,
from a single one to all of them, can be chosen as a control
variable in the optimization interface. Initial-, minimum-
and maximum values for all control variables are easily set
in the interface. Air gap length is assumed to only a�ect
performance in terms of ”the smaller, the better”. Thus, it
can be set to a minimum value, based on what is physically
possible to construct. In this model it is assumed to be 3
mm, and not used as a control variable in the simulations.

Further, Table II shows a set of constraints and objec-
tives, which have all been implemented in the software,
and are possible to activate/deactivate as needed, depend-
ing on the application. More than one objective can be
active at the same time, but because the solver simply
minimizes the sum of all objectives, it is not recommended
to use built -in objectives with di�erent units, as they
compare poorly. However, it is possible to directly enter
any objective expression, in case a weighting function
between for instance the e�ciency and cost of the gear
is known.

One of the downsides of running the optimization in
COMSOL is that the software always tries to build the
geometry before checking constraints specified by the user.
If the sum of all thicknesses, of permanent magnets, air
gap, back iron and pole pieces, exceeds the outer radius

TABLE II: Parameters, objectives and contraints available
in the model.

Parameter Symbol Unit
Pole pairs inner P

i

-
Pole pairs outer P

o

-
Outer radius of gear R

tot

m
Pole piece thickness th

P P

m
Inner back iron thickness th

BI,i

m
Outer back iron thickness th

BI,o

m
Inner PM thickness th

P M,i

m
Outer PM thickness th

P M,o

m
Pole pair ratio P P

ratio

-
Inner permanent magnet ratio P M

ratio,i

-
Outer permanent magnet ratio P M

ratio,o

-
Air gap length l

AG

m
Objective/constraint Symbol Unit
E�ciency ÷ %
Cost of permanent magnets C

P M

Euro
Cost of laminations C

F e

Euro
Total volume of gear V

tot

m3

Total weight of gear m

tot

kg
Length of gear L m
Steady-state cogging torque �· %
Gear ratio (constraint only) GR -

of the gear, the geometry will be given an input of a
negative radius. Since this is impossible to construct, the
simulation is aborted, and no solution is reached. Ideally,
the software should check a ”real machine constraint”
before building the model in order to avoid the control
variable combinations which give unphysical designs. In
this model, the problem is solved simply by specifying
maximum values of all control variables, so that they
can never exceed the total radius. However, this greatly
reduces the solution space of the model, and increases risk
of ignoring more optimal designs.

Another issue, is that only the current solution is au-
tomatically available to the optimization study step. In
practice this means that if the frequency study step is
the final step, only the frequency spectrum is available for
calculating the objectives and constraints. Other solutions
can be accessed by using the withsol()-operator, when
entering the equations. However, this operator only gives
access to a single time value from the time dependent solu-
tion, meaning that calculating average, max and minimum
values for the cogging torque becomes by any practical
means impossible. The easiest way of resolving this is
adding more than one study, and then use study references.
A detailed explanation of how this is set up in COMSOL
can be found in Appendix B.

VIII. Simulation and Results
Evaluations of the model performance will be presented

in this section, both in terms of the analysis and the
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(a)

(b)

Fig. 10: a) Net current flowing through permanent mag-
nets. b) Voltage across a randomly selected permanent
magnet.

synthesis of the model. Running a complete case with op-
timization has not been done, due to the time demanding
nature of the model. Implementing parallel processing, so
that a so-called supercomputer could be used would be
necessary. The time limit of the thesis has not allowed this
to be done. However, the simulation has been run for a few
iterations of the synthesis with success, indicating that the
model functions as intended, but it had to be manually
aborted long before any solution could be reached.

A. Evaluation of loss calculations
In order to evaluate the reliability of the analysis, some

simulation results will be presented and discussed. The
discussion below is based on the results of a typical gear
design with P

i

= 9, P

o

= 40, and a rating of approximately
4 MW.

Because the magnets are isolated from each other, no net
current should be allowed to flow in the axial direction of
each magnet. This constraint was applied to each of the
permanent magnets as the single turn coil condition. One
of the control measures that can be done, is to check if the
net current flowing through each magnet is in fact zero.
Fig. 10a) shows the net current in some randomly selected
permanent magnets on both the stator and high speed
rotor, as well as the total current through all permanent
magnets. Overall, the condition is very well upheld, as
even the largest spike is only a few tens of nanoamperes.
The non-smooth nature of the curves is due to the varying
convergence of each time step of the solution.

(a)

(b)

Fig. 11: Current density in a half-geometry. a) without
the ”no net current”-condition and b) with the ”no net
current”-condition

Fig. 10b) shows the voltage across a randomly selected
magnet situated on the high speed rotor. The voltage is
applied by COMSOL to counteract the currents that are
induced independently of the ”no net current”-condition,
thus ensuring a net current of zero. This explains the
spike of approximately 35 V at the beginning of the
simulation, which is needed to stabilize the initial induced
currents. Because the rotational velocity of the rotors
are not applied as a ramp, the first time step features
a instantaneous jump in velocity from 0 to 1000 rpm.
Obviously, this causes very large time derivatives, large
initial induced currents and consequently a relatively large
voltage to enforce the condition. No spike can be seen in
the total current, indicating that COMSOL handles the
single turn coil condition very well.

In the COMSOL built-in solution variables there are
two available options for current density: current density
and induced current density. Induced current density is
only currents that arise from the variation in magnetic
field distribution, and is una�ected by the single turn coil
condition applied. Fig. 11a) shows the density distribution
of this variable, which is representative of a model where
the condition is not applied. Red colour indicates a positive
current, and blue indicates a negative. Particularly in the
stator, a periodicity of one HSR pole pitch can be seen.
It is slightly lagging the permanent magnets on the HSR.
The current clearly flows between magnets in this case.
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Fig. 12: Surface plot of the flux density in one quarter of
the geometry.

Interestingly, a two pole periodicity can also be seen on
the high speed rotor. This could indicate the presence of
a large subharmonic, with P = 1.

Fig. 11b) shows a surface plot of the current density,
which is the sum of the induced current density from
the time varying magnetic field and the current arising
from the voltage applied to each magnet by COMSOL, i.e.
the resulting current after applying the ”no net current”-
condition. Each current carrying magnet now clearly car-
ries both a negative and positive current contribution. An
interesting point, is that the iron is slightly pink coloured,
meaning that some current flows in the iron as well, as
opposed to none in Fig. 11a).

Fig. 12 shows the flux density distribution in a quarter
of the geometry. Clearly, the pole pieces are experiencing
very high flux densities, ranging up to 2.5 T. At this
point, the iron will be heavily saturated. Particularly the
edges are exposed. Rounding of the edges could be done
to improve this issue. Also, having thicker pole pieces will
lead to a reduction, but this in turn will also increase the
e�ective air gap considerably, and result in lowering the
torque per unit length and thus elongating the gear. Such
an evaluation of the trade-o� is possible to solve with the
optimization tool.

The time course of the flux density is shown in Fig. 13a)
for three random points in the stator, pole pieces and high
speed rotor. Note that the absolute value, which has been
used in the Fourier transform, is what is shown, explaining
why all values are positive. Once again, it is apparent that
the pole pieces experience the highest saturation of the
iron, as well as the highest harmonic content. The point
chosen is a corner point, and therefore indicates the worst
case scenario. Both the stator and the HSR points have
essentially sinusoidal flux variation. Since the points rotate
along with their structure, they see the field emanating

(a)

(b)

Fig. 13: Flux density in iron: a) Variation over time and
b) frequency spectrum.

TABLE III: Losses calculated for a 4 MW gear.

Loss contribution Symbol Value Percentage
Eddy current, PM P

P M

783.9 kW 19.6%
Eddy current, iron P

ecl

1.16 kW 0.028%
Hysteresis, iron P

hys

0.13 W 0%
Total iron losses P

F e

1.16 W 0.028%
Total losses P

loss

784.2 kW 19.7%
E�ciency ÷ N/A 80.3%

from its own structure as a stationary field. Therefore
the stator only experiences a lower frequency field, due
to the low poled magnets on the high speed rotor, and
opposite. This also explains the DC-contribution, set up
by the stationary field of the structure itself, which causes
the field to never reach zero. The results of the Fourier
transform is visualized in Fig. 13b). As expected from just
looking at the shape of the flux density curve, the PP point
shows the highest harmonic content, and the HSR point
the lowest.

All calculations are made for steady-state nominal load
and speed throughout this thesis. Table III summarizes
the losses calculated for a 4 MW gear, with P

i

= 9 and
P

o

= 40. Eddy current losses in the permanent magnets
are as high as 19.6% of the nominal input power. The
result is supported by the fact that the current density
across the PM domains are in the range of 10 A/mm2, as
can be seen from the colour legend in Fig. 11b). Losses
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Fig. 14: Geometry with sectioned permanent magnets.

of this magnitude pose a serious threat, with respect to
heating and thus permanent demagnetization of the mag-
nets. These results strongly suggests that action should be
taken in order to increase the resistance of the material.
An example of such action is to laminate the magnets in a
similar fashion as the iron. Another option is using section-
ing, which in practice is having several smaller consecutive
magnets which face the same direction instead of one large
magnet, as shown in Fig 14. This feature has been added
to the geometry, along with two new parameters: s

i

and
s

o

which are the numbers of sections on inner and outer
permanent magnets respectively. Running an optimization
with these parameters added as control variables, and
an e�ciency objective could reveal whether permanent
magnet losses can be reduced to acceptable levels without
laminating them. Due to the heavy computational power
required by the model, such calculations could not been
done in this thesis.

On the other hand, iron losses are practically negligible.
Eddy current losses dominates the picture, whereas the
hysteresis losses are essentially zero. Though hysteresis
losses can be expected to be far less than the eddy current
losses, this estimation seem overly optimistic. Due to the
novelty of the technology itself, little or no basis for
comparison exists. To the author’s knowledge, no magnetic
gears of industrial size have been built so far. Furthermore,
most parties invested in the technology are keeping their
results away from the public. It is therefore hard to say
anything with certainty regarding the real life accuracy of
the results obtained from the model.

On the other hand, the accuracy of the Fourier trans-
form is easily visualized by comparing the original time sig-
nal to a summation of the various harmonic contributions
obtained. Since the pole piece point contains the largest
harmonic distribution, the flux variation is plotted for such
a point. As seen in Fig. 15, the summation of harmonic
contributions does not compare well to the original time
signal, neither in amplitude, fundamental frequency or
shape. The graph also shows the e�ect of increasing the
input time period, i.e. running the time dependent solver
for longer than t2, as argued in Section VI, and the e�ect
of increasing the maximum frequency. Neither option give
considerably better fits. It could be suspected that the
issue lies with the input signal, and that running the
gear for one complete round of the low speed rotor would

Fig. 15: Comparison of time signal and the Fourier trans-
formed signal.

Fig. 16: Loss contribution for each sampled frequency.

improve the Fourier analysis. However, when exporting
the same time signal to perform the Fourier transform in
MATLAB, the transform works perfectly. This strongly
indicates that the issue is with the FFT solver settings in
COMSOL, not the signal itself.

Furthermore, it is discovered that the maximum fre-
quency should be limited. Fig. 16 shows the trend in iron
loss contribution for very high frequencies. Because eddy
current losses increase with the frequency squared, the
trend shows an upwards parabola. Spikes, which can be
assumed to be the actual non-zero contributions, are only
visible in the lower end of the frequency spectrum. Ideally,
the FFT should give zero B-field for the higher frequency
contributions, which would mean no loss contribution, but
since they are never exactly zero the frequency dominates
heavily. The quick fix is to set a su�ciently low cut-o�
frequency. However, it is clear from the graph that the
parabola trend is present even in the lower frequencies,
in the points between the actual loss contributions. The
issue could possibly also be resolved if the FFT solver
gave more accurate results. Altogether, serious doubts
have been raised in regards to the validity of the iron
losses. Most likely the issue is related to the FFT solver in
COMSOL. Several tweaks to the solver settings have been
tried, however unsuccessful.
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TABLE IV: Initial values used in preliminary simulations.

Control variable Symbol Initial value Unit
Pole pairs inner P

i

8 -
Pole pairs outer P

o

40 -
Pole piece thickness th

P P

0.03 m
Inner back iron thickness th

BI,i

0.1 m
Outer back iron thickness th

BI,o

0.1 m
Inner PM thickness th

P M,i

0.025 m
Outer PM thickness th

P M,o

0.025 m

TABLE V: Results of preliminary simulations.

Solver Elapsed time Objective value
Nelder-Mead 06 h 55 min 14 s 89,256 EUR
Coordinate search 44 h 30 min 03 s 38,970 EUR
Monte Carlo 18 h 12 min 59 s 59,370 EUR
BOBYQA 07 h 04 min 31 s 49,573 EUR
COBYLA 00 h 53 min 38 s 99,985 EUR

B. Evaluation of optimization solvers
Preliminary simulations have been run to evaluate the

suitability of each of the gradient-free solvers provided
by COMSOL. The objective function has been set to
minimizing the cost of active materials, i.e. permanent
magnets and iron of the magnetic gear. In order to keep the
computational time reasonably low, the simulations are
done without time stepping, and thus without losses and
torque ripple. The outer diameter has been fixed to 1.2 m,
and a nominal torque of 200 kNm is required. The model
is 2-dimensional, meaning that the torque per unit length
will have to be maximized in order to keep the length of
the gear low, which greatly contributes to material volume.
The control variables chosen are pole pair numbers of
rotor and stator, permanent magnet thickness, pole piece
thickness and back iron thickness. All of the solvers have
been given the same initial values, shown in Table IV. The
solvers are then compared against total simulation time
and their solutions.

A summary of the simulation results is given in Table V.
There are very large di�erences in the optimal objective
value found by each of the solvers, which indicates that the
simulations are not robust enough to give reliable results.
Coordinate search found the lowest cost of 38,970 EUR.
In comparison, the solution found by the COBYLA solver
was more than double of that value. On the other hand
the coordinate search method was the most time consum-
ing. Based on the elapsed time during these preliminary
simulations, the COBYLA solver can be run with more
than 40 di�erent starting points for pole numbers before
being as time consuming as the coordinate search.

Both COBYLA and Nelder-Mead found extremely large
objective evaluations, and both seem to get stuck in a
local minimum of the discrete variables, which are the pole
pairs. No matter the starting point, their solutions always
have the same pole numbers as the initial guess, unlike

TABLE VI: E�ect of varying pole number scale factors.

Scale Nelder-M. COBYLA
P

i

/ P
o

Time Objective Time Objective
2 / 10 7 h 89,256 EUR 53 min 99,985 EUR
5 / 20 2 h 48,789 EUR 52 min 38,045 EUR
5 / 40 8 min 69,736 EUR 3 h 37,015 EUR
10 / 40 10 min 63,719 EUR 1h 38,481 EUR

the other solvers. Because they both operate based on a
moving simplex, it is suspected that the initial size of this
simplex might be too small. Most likely, this problem arises
because the solvers do not treat the pole pairs as discrete
variables. The value tested by the solvers at each iteration
is rounded to the nearest integer when the geometry of the
gear is built.

Each variable in COMSOL is given a scale factor, which
is a typical value of the variable, and decides the step
length taken by the solvers in the direction of that variable.
In the preliminary simulations, this scale factor was set
to 2 and 10 respectively for P

i

and P

o

. Using the Nelder-
Mead and COBYLA solvers, simulations with higher scale
factors for these two variables have been run to investigate
whether the solvers will then avoid getting stuck. Table VI
summarizes the results of this investigation. Obviously, the
value of the scale factors has great influence on the overall
performance of the solver, both in time consumption and
in obtaining the optimal solution.

Both solvers have significantly improved performance
when scale factors are increased, but Nelder-Mead is over-
all inferior to the COBYLA solver regarding objective eval-
uations. Even though it is incredibly fast, the solutions are
far from the optimal. As the accuracy of the solution far
outweighs the computational time in terms of importance,
the Nelder-Mead solutions are found to be unacceptably
inaccurate. With scale factors of 5/20 the COBYLA solver
is able to obtain an objective evaluation of 38,045 EUR
in only 52 minutes. Although using scale factors of 5/40
gives a 2.6 % cheaper gear, the solver spends 3 times
longer obtaining it, making 5/20 a good trade-o� between
solution and time consumption.

All of the solvers, except Monte Carlo, proposed a
design where the thickness of the inner back iron and the
inner PMs were thicker than their outermost counterparts.
Naturally, an equal increase in thickness will have a much
greater impact on the cross sectional area at a higher
radius, causing the thickness of the outer components to
be more critical when it comes to volume, weight and cost.
However, the Monte Carlo solver proposed a design where
the thickness of the back iron was thinner innermost. This
is counter intuitive for a design aiming to minimize cost of
active materials, and could be due to the random nature
of the Monte Carlo solver. The proposed solution from
such a solver is heuristic, and because the solution is
quite far from the best solution found by COBYLA, it is
possible that the solver makes too few random selections.
Increasing the number of objective evaluations will result
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in more accurate solutions, but will naturally be more time
demanding as well.

An important note to these simulations is that they do
not account for losses. Almost all of the solvers found
that reducing the back iron thickness close to the mini-
mum value was cost e�cient, but this will lead to heavy
saturation of the iron, and the power e�ciency might
be unacceptable for any practical purposes. However, the
simulations give valuable insight to the strengths and
weaknesses of the solvers before more in-depth analyses of
the gear design. Ultimately, the most important conclusion
to be found from these simulations is that proper tuning of
the solver used is essential to obtain reliable and conclusive
results.

IX. Conclusion
The aim of this master thesis was to establish an opti-

mization model for a coaxial magnetic gear. A complete
numerical model has been created in COMSOL Multi-
physics, using finite element analysis to solve the physics.
The synthesis of the problem was solved in the optimiza-
tion module available in the software, making it possible
to solve the entire optimization problem without the use
of an external programming software such as MATLAB.
The end product is a tool that includes cogging torque and
losses, as well as a variety of objectives and constraints,
useful in a wide range of applications. COBYLA was found
to be the best performing solver for the problem, with
respects to both time consumption and accuracy.

One of the greatest challenges in electromagnetic ma-
chinery modelling is to accurately account for losses. The
suggested method in this thesis utilizes a well-established
estimation formula, adapted to the high harmonic appli-
cation by means of forward Fourier transform, along with
super positioning of the various frequency contributions to
estimate the iron losses. Due to a clear mismatch between
the Fourier transformed signal and the original time signal,
the validity of the iron loss calculations has been drawn
into question. Eddy current losses in permanent magnets
are calculated numerically by the software, and have been
found to be unacceptably high. Most likely the problem
arises due to the size of the magnets, requiring them to be
either sectioned or laminated in a similar fashion as the
iron.

Suggested further work mainly concerns verification of
the simulation model. Ideally, a test model should be built
to obtain experimental results to compare against the
modelled behaviour of the gear. In particular verification
of loss estimates, either experimentally or by comparison
with other analytical or numerical methods, should be
carried out.

In terms of the model, possibilities for extending the
functionality are nearly limitless. Other topologies could
be added as components to the model tree, making it pos-
sible to optimize topology choice to the application as well.
Recommended topologies include CMG with Halbach-
arrayed PMs, or with pole pieces made of permanent
magnet material instead of ferromagnetic. Furthermore,

several grades of silicone steel and permanent magnets can
be added, implementing the trade-o� which exists between
the quality and price of the materials. Another exciting
possible extension, is the possibility of adding other ro-
tor/stator options, or even implementing a continuously
variable transmission.

Appendices

A. Variables defined in COMSOL

Several variables have been defined in COMSOL in
order to make post-process calculations available to the
synthesis of the problem. Most of them are quite straight
forward, such as volume and cost. Table VII shows how
the loss and ripple calculations have been implemented in
COMSOL. The variable dom5 used to calculate length,
is a domain probe measuring the geometry average of
torque per meter on the pole pieces. T

N

is a parameter
of the specified nominal torque of the gear simulated. The
timeavg()-operator ensures that the value is representative
for the gear operation, i.e. not a spike, minimum of the
ripple, etc. Bx and By are unit divided by Tesla, in order
to make them unit less. If this is not done, issues with non-
matching units will arise when the estimations for eddy
current– and hysteresis losses are calculated. For instance,
in hysteresis losses, COMSOL will get T

1.6 when adding
the units. The constants K

e

and K

h

are defined in the
parameter list with units 1/s

2 and 1/s respectively, so
that the estimations become unit less. Fs is the sampling
frequency, which in COMSOL is the inverse of the input
time period, but it can also be found from the first non-
zero frequency. The total number of frequencies available,
imax can then be found from the parameter f

max

which
is defined in the parameter list and specified in the FFT
solver.

Pecl, Phys and PFe are eddy current–, hysteresis– and
total losses losses in iron. The intopFe()-operator is defined
in the Component couplings node as the integration over
the iron domains. At each point in the iron domains, the
with()-operator will access a certain frequency contribu-
tion determined by the index of the frequency in question.
The sum()-operator sums all frequency contributions, from
the first to imax. Both the eddy current and hysteresis
estimations are unit multiplied with [W/m

3] in order to
get the correct unit.

Eddy current losses in permanent magnets, Ppm, is
calculated by using the built-in variables in COMSOL.
The expression dom7 is a probe which integrates the
resistive losses (rmm.Qrh) over the permanent magnet
domains. Finally, Ploss and e�ciency give the total losses
and total e�ciency of the gear.

The final variables in Table VII are used to calculate rip-
ple, by means of the timemax(), timemin(), and timeavg()
operators. The final input to the operators ’nointerp’ is not
mandatory, but will tell the software not to interpolate
between stored time steps, which saves computational
time.
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TABLE VII: Variables defined in COMSOL.

Name Expression Unit
length T

N

/timeavg(t1, t2, dom5,

Õ
nointerp

Õ) [m] m
Bx abs(rmm.Bx)[1/T ]
By abs(rmm.By)[1/T ]
Bxy sqrt(Bx

2 + By

2)
Fs with(2, freq) Hz
imax f

max

/F s

Pecl intopF e(K
e

ú sum(with(... W
index, Bxy

2 ú freq

2), index, 1, imax)
úlength ú F s[W/m

3]
Phys intopF e(K

h

ú sum(with(... W
index, Bxy

1.6 ú freq), index, 1, imax)
úlength ú F s[W/m

3]
PFe P ecl + P hys W
Ppm timeavg(t1, t2, dom7,

Õ
nointerp

Õ) ú length W
Ploss P F e + P pm W
e�ciency 1 ≠ P loss/P in W
maxPP timemax(t1, t2, dom5,

Õ
nointerp

Õ) W
minPP timemin(t1, t2, dom5,

Õ
nointerp

Õ) W
avgPP timeavg(t1, t2, dom5,

Õ
nointerp

Õ) W
ripple abs(maxP P ≠ minP P )/avgP P ú 100% %

B. Setting up the Study node
In order to be able to calculate both time– and fre-

quency dependent objectives/constraints in the optimiza-
tion problem, the following studies need to be added:

1) Time dependent
2) Fourier transform
3) Optimization study with study references to the two

previous studies.
The time dependent study will feature a stationary and

a time dependent study step. The stationary step is not
strictly necessary, but it serves as an initial starting point
for the time dependent solver, which improves conver-
gence and computational time. Experience has shown that
adding the Fourier transform as a separate study step
by means of the Time to Frequency FFT study creates
problems with using the stored solutions. Accessing the
stored solution for frequencies then shows that all variables
are constant for all frequencies.

Instead, the FFT solver can be added manually to a time
dependent study from the drop down menu of the solution
node, as indicated in Fig. 17. The Compile Equations
and Dependent Variables nodes must be added first so
that they appear before the solver node. In the FFT
solver settings, the solution from the time dependent study
should be selected as the Fourier transform input. Since
the input does not necessarily cover a complete time period
of the flux density signal, the periodic input box should be
cleared. In order to get scaled values, Continuous Fourier
transform should be chosen. If the discrete is chosen, the
Fourier coe�cients will be unscaled and losses should not

Fig. 17: Manually adding a FFT solver, without the use
of a Time to Frequency study step.

Fig. 18: The complete Study node as modelled in this
thesis.

be multiplied with the sampling frequency, Fs as done in
Table VII.

Fig. 18 shows the complete set up of the solver node, as
it is in this thesis, with three studies and study references
pointing to the two di�erent domains.
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