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Abstract

English
This thesis presents a validation study based on data analysis aimed at identifying
the cause of atypical behavior observed in a microgrid’s data. The data of a stand-
alone PV microgrid in Bhutan is analyzed. The analysis of the voltage waveform
distortions found in the data is utilizing the Hilbert-Huang Transform (HHT) and
periodograms. The Hilbert-Huang Transform shows an oscillating frequency with
fluctuations of 10 ms, while the fundamental frequency component’s period is 20
ms. As we couldn’t attribute this distortion to a nonlinear load, we first argue that
the most probable cause of the distortion is a 100 Hz oscillation commonly known
to exist on the dc bus.

The Periodogram shows a dominance of odd harmonics, with particular emphasis
on 50 and 150 Hz. The analysis reveals that the dominance of the third harmonic
can be explained by multiplication in the microgrid’s controller. There are two in-
terpretations for the other odd harmonics. The pulse-width modulation and unideal
low pass filtering cause odd harmonics on the ac side of the inverter. The same
does a harmonic feedback from the ac bus to the dc via the inverter. The harmonic
feedback creates a positive feedback loop through the controller resulting in odd
harmonics on the ac side and even harmonics on the dc side.

The thesis will also compare the voltage data measured on a physical grid with a
mathematical model of the system and a simulation to test the hypothesis of the
distortion’s origin. This test goes far in confirming the hypothesis of the source of
the distortions.
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Samandrag

Nynorsk
Denne avhandlinga presenterer eit validitetsstudium der bølgjeformer frå elektriske
spenningar blir analyserte for å identifisere atypiske forvrengingar i spenningsfor-
syninga i eit mikroenergiverk. Dataa som er brukte i analysen kjem frå eit fritt-
ståande solcellebasert mikroenergiverk i Bhutan. Dei elektriske bølgjeformene blir
analyserte ved hjelp av Hilbert Huang-transformasjonen (HHT) og periodogramm.
Hilbert Huang-transformasjonen viste ein varierande frekvens med svingingar som
hadde 10 ms-periodar på monokomponenten til grunnfrekvensen, som også hadde
ein grunnperiode på 20 ms. Den mest sannsynlege forklaringa for dette fenome-
net er ein 100 Hz svinging som ofte er observert på dc-sida av slike energiverk.
Grunnfrekvensen hadde også aperiodiske svingingar, men dei blei ikkje vidare
studert i denne avhandlinga. Periodogrammet var dominert av oddetalharmoniske,
der 50 Hz og 150 Hz hadde høgast effekt. Ein systemanalyse viste at den høge
effekten rundt 150 Hz er eit resultat av ein multiplikasjon av to sinusforma bøl-
gjer i mikroenergiverket si kontrolleining. Det er to forklaringar på dei andre
oddetalharmoniske. Pulsviddemodulasjon og ikkje-ideel lågpassfiltrering gener-
erer oddetalharmoniske på ac-sida av mikrokraftverket. Det gjer også ei harmonisk
tilbakekopling frå ac-sida til dc-sida av invertaren. Avhandlinga vil også saman-
likne spenningsmålingane med ein matematisk modell av systemet og ei simuler-
ing for å teste hypotesane om årsakene til forvrengingane. Testane stadfestar i stor
grad at forvrengingane på ac-sida kan sporast tilbake dc-sida.
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Sammendrag

Bokmål
Denne avhandlingen presenterer et validitetsstudie der bølgeformer fra elektriske
spenninger blir analysert for å identifisere atypiske forvrengninger i spennings-
forsyningen i et mikroenergiverk. Dataene som er brukt i analysen kommer fra
et frittstående solcellebasert mikroenergiverk i Bhutan. De elektriske bølgefor-
mene analyseres ved hjelp av Hilbert-Huang transformasjon (HHT) og Periodo-
gramm. Hilbert-Huang transformasjonen viste en varierende frekvens med sv-
ingninger som hadde 10 ms perioder på grunnfrekvensen sin monokomponent,
som også hadde grunnperiode på 20 ms. Den mest sannsynlige forklaringen for
dette fenomenet er en 100 Hz svingning som ofte er observert på dc-siden av
slike energiverk. Grunnfrekvensen hadde også aperiodiske svingninger, men de
ble ikke videre studert i denne avhandlingen. Periodogrammet var dominert av
oddetalls harmoniske, der 50 Hz og 150 Hz hadde høyest effekt. En systeman-
alyse viste at den høye effekten rundt 150 Hz er et resultat av en multiplikasjon
av to sinusformede bølger i mikroenergiverkets kontrollenhet. Det er to fork-
laringer på de andre odde harmoniske. Pulsviddemodulasjon og ikke ideell lav-
pass filtrering generer odde harmoniske på ac-siden av mikrokraftverket. Det gjør
også en harmonisk tilbakekobling fra ac-siden til dc-siden av inverteren. Den har-
moniske tilbakekoblingen lager en tilbakekoblingssløyfe via kontrolleren. Dette
resulterer i odde harmoniske på ac-siden og likeharmoniske på dc-siden av in-
verteren. Avhandlingen vil også sammenligne spenningsmålingene med en matem-
atisk modell av systemet og en simulering for å teste hypotesene om forvrengin-
gene sine årsaker. Testene bekrefter i stor grad at forvrengingene på ac-siden kan
spores tilbake til dc-siden.
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Chapter 1

Motivation

Universal access to affordable modern power services is one of the United Na-
tions sustainable development goals [1]. Electrical power is the foundation of
modern business, medicine, education, agriculture, infrastructure, and communic-
ations. Lack of access to electricity is, therefore, a severe impediment to economic
growth, yet, this is the case for 1.2 billion people worldwide. Of these 1.2 billion
without electricity access, 80 % live in rural areas; 95 % in sub-Saharan Africa or
in developing Asia [2]. Applying islanded, i.e. not grid connected, microgrids with
free renewable energy sources is an alternative for providing electricity to isolated
communities where extending the main grid is too expensive. Microgrids are elec-
trical systems that locally generate, store and provide power to a small area, such
as a village. Traditionally, these grids have often been utilizing diesel aggregates,
but due to the recent fall in prices for photovoltaic (PV) cells, PV based microgrids
have become a conspicuous substitute that can provide cleaner and cheaper elec-
tricity.

Because of the nature of the location for where the islanded microgrids are de-
sirable, the microgrids needs to be near maintenance free and have a supervisory
control system that can handle any faults that might occur. Due to the stochastic
nature of PV sources and the nonlinearities of modern power electronic equipment
that are essential microgrid components, the need for accurate monitoring and dia-
gnosis devices based on measurement of instantaneous values of fundamental elec-
trical parameters rather than average values has become apparent. This initiative is
part of a greater partnership with the Royal University of Bhutan (RUB)’s College
of Science and Technology (CST) which aim at developing reliable and affordable
solutions for easy diagnosis and correction of potential problems of microgrids in
rural areas. The partnership has been the foundation for several master’s theses
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2 Motivation

and projects at NTNU [3, 4, 5]. The distortions on the ac bus are traditionally as-
sociated with nonlinear loads. In a previous contribution, the author of this thesis
presented, together with supervisors, a method for decomposing and analyzing
electrical voltage and current waveforms to estimate the instantaneous frequency
[6] by applying the Hilbert-Huang Transform [7]. We then suggested that the elec-
trical waveforms were a fluctuating frequency with 10 ms repetitions, and made a
hypothesis that this might be the result of the controller, and not the load.

This thesis is based on and will elaborate a validation study where we tested the
hypothesis by investigating the underlying system behind the microgrid [8]. The
validation procedure consists of comparing results observed in the field data with
an analytical model of the distortion, supported by simulation data from a detailed
Matlab model which then are used to discuss the hypothesis. The results from the
analytical model and the simulation model exhibit seemingly non-periodic prop-
erties of the instantaneous frequencies when compared with the measured wave-
forms obtained at RUB CST’s stand-alone microgrid. The expected grid frequency
in such systems should be a stationary 50 Hz, while the observed frequencies in
this investigation show a distorted oscillatory frequency with cycles of 10 ms on
the grid frequency.

By better understanding the cause of the phenomena behind the distortions on the
microgrid, we gain better knowledge on how to design and tune the inverters to
easier suit the environment where they will be applied. The author hopes this can
help to lay a foundation of a methodology to diagnose microgrids so that we can
contribute to providing more reliable and less maintenance demanding electricity
access to rural areas in the developing world.



Chapter 2

Description of the microgrid
system

Systems to generate electrical energy does traditionally rely on converting mech-
anical or thermal energy into electrical energy directly, where a large mass with
considerable momentum and inertia rotate. This natural inertia helps to maintain
a stable frequency. Many of the underlying assumptions of the electrical systems
originate in this kind of systems. As modern electrical power production more
frequently relies on steady-state power electronics, we cannot expect to have the
same innate inertia in the future.

Cooperation between Royal Univeristy of Bhutan’s college of science and techno-
logy and NTNU led us to conduct experiments on their microgrids where we meas-
ured voltage and current waveforms. Their single-bridge (one phase) microgrids
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Figure 2.1: Schematics of the microgrid at RUB College of Science and Technology.
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4 Description of the microgrid system
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Figure 2.2: The measured vac,m(t) compared with a pure sinusoid.

aim to mimic microgrids with the same type of load, climate, and electrical setup as
a microgrid in an isolated community. Figure 2.1 depict a model of the microgrid.
It has a photovoltaic source. A boost controller is used to maintain a stable dc
voltage vd(t). The dc voltage is converted to ac by a steady-state dc/ac inverter
based on pulse-width modulation (pwm). The pwm voltage vpwm is filtered using
a low-pass filter to achieve a smooth ac voltage waveform vac(t) to the load. The
inverter’s controller keeps the grid frequency stable on the ac voltage vac(t) by
using the ac current iac(t), the dc voltage vd(t), and the reference frequency ωo as
a reference. The load is mostly linear, according to the employees at the college.
The output voltage should ideally be given by

vac(t) = Vac · cos(ωot). (2.1)

Vac is the desired amplitude of vac(t) and is 230
√

2 Volt in Bhutan. The angle
frequency is given by

ωo = 2πfo (2.2)

fo is the grid-frequency. The grid-frequency in Bhutan is fo = 50 Hz.

We had the opportunity to measure vac,m(t) and iac,m(t) when performing the
experiments. The letter m is added in subscript to indicate that the waveform is
measured. The voltage waveform vac,m(t) of the stand-alone microgrid is shown in
figure 2.2. The red-dotted line shows ideal conditions as given by (2.1). vac,m(t) is
considerably more distorted compared with the main grid in Bhutan [6]. The unit
is in per-unit (pu) instead of Volt [9]. The per-unit system allows expressions with



5

large absolute values to be expressed as a fraction in the form given by

vpu(t) =
vvolt(t)

Vbase
(2.3)

where Vbase is an arbitrarily chosen base value unit. The motivation for using the
per-unit system is to simplify calculations and enable easy comparison between
signals with a large difference in absolute value, such as ac voltages on the output
of the inverter and internal signals in the controller. The per-unit system is used
for power, voltage, current, impedance, and admittance, and is widely used by
manufacturers in the power electronic community. Conversion from the per-unit
system requires knowledge about the base unit.

The voltage waveform vac,m(t) is distorted compared with a perfect sinusoid. It
has some harmonic distortions giving it local extrema and a general curving to-
wards the left.



6 Description of the microgrid system



Chapter 3

Analysis of electrical signals from
the microgrid

It is useful to have systematic and statistical tools when analyzing distortions. We
will, therefore, apply the traditional power spectrum and the more recent Hilbert-
Huang transform when analyzing the voltage waveform vac,m(t) measured at the
stand-alone microgrid as discussed in the previous chapter. The power spectrum
is optimized for periodic behavior and has a solid mathematical foundation. The
Hilbert-Huang transform was invented by Norden Huang around 20 years ago and
is optimized to analyze aperiodic signals, nonlinear processes, and time-varying
distortions. The Hilbert-Huang transform applied in analyses of modern power
electronic systems has, as far as the author knows, not previously been explored.
The subsequent sections will present the two methods and conduct an extensive
analysis of the electrical waveform. The chapter will conclude with proposing
a hypothesis of the origin of the distortions observed on the measured voltage
waveform vac,m(t).

3.1 Power spectrum
The power spectrum shows the spectral characteristics of a signal by converting
it from the time-domain to the frequency domain. The periodogram is a way to
estimate the power spectrum. It has a long history and has been widely used since
Schuster first introduced it in 1898.

The discrete Fourier transform can be used to define a periodogram of a time
series expressing the power of each frequency component. The periodogram of

7
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Figure 3.1: Power spectrum of vac,m(t). The spectrum is calculated using (3.1) where
N = 178 and Fs = 8.9 KHz.

a sampled version of vac(t) is

Pac(ω) =
1

N

∣∣∣∣∣
N−1∑
n=0

vac(nTs)e
−jω·nTs

∣∣∣∣∣
2

(3.1)

where ω is the angular frequency variable, Ts is the sampling period, n is the
discrete time variable, and N is the total number of samples [10, pp 960-1046].

In figure 3.1 we have the power spectrum of vac,m(t). The power spectrum has
a fundamental frequency ωo, with odd harmonics of considerable amplitude. The
power spectrum shows what harmonics are dominating. To gain a better under-
standing of the attributes of the signal, it will also be analyzed by using the Hilbert-
Huang transform.

3.2 Hilbert-Huang transform
The notion of instantaneous frequency is new in power electronics [6]. We wanted
to explore it on electrical systems to try to gain a better understanding of the cause
of the distortions on the microgrid’s voltage.

The instantaneous frequency concept has been applied in communication engin-
eering for transmission of radio signals for about a century. However, it has been
controversial as a tool to analyze physical processes. The definition’s arbitrary
phase-amplitude coupling is the primary reason for the controversy of its useful-
ness. Definitions and methods for an unambiguous understanding of instantaneous
frequency for monocomponent signals, i.e. signals with only one local extremum
for each zero crossing, have been discussed [11]. However, there has been few
methods to define it for a multicomponent signal.
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The relatively new Hilbert-Huang transform (HHT) aims at resolving these issues
by providing a method to decompose any signal in monocomponents, and defin-
ing the instantaneous amplitude and frequency for these signals. For a general
multicomponent signal v(t) the HHT uses a method called the Empirical Mode
Decomposition (EMD) to obtain the fewest monocomponents possible to describe
it. These monocomponents are called intrinsic mode functions (IMFs). An IMF
is defined as a function with one zero crossing between each local extrema. A
flowchart of the Empirical Mode Decomposition algorithm is shown in figure 3.2.
We can decompose voltage waveform v(t) to a sum of IMFs on the form given in
(3.2) by using the EMD algorithm.

v(t) = vr(t) +

Nimf∑
i=1

vi(t) (3.2)

where vi(t) is IMF number i that v(t) consist of, and vr(t) is the residue. The
residue vr(t) is a monotonic function. The EMD uses a process called sifting
to obtain monocomponents. One advantage of the EMD is the small amount of
monocomponent it needs to describe a signal. Nimf is the total number of intrinsic
mode functions and Nimf is restricted by (3.3) for most cases, according to Wu et.
al. [12].

Nimf ≤ log2N (3.3)

The naive implementation of the Empirical Mode Decomposition sets Nimf =
log2N [7, 13]. Our implementation is different. We look at the difference between
the sum of intrinsic mode function obtained during the sifting process and the ori-
ginal input signal v(t). If the difference is a monotonic function or a monocom-
ponent, the program will stop sifting. A general monocomponent can be written in
the form

vi(t) = Vi(t) · cos
(
θi(t)

)
(3.4)

The main controversy of the instantaneous frequency has been that vi(t) can be
described with many different functions for Vi(t) and θi(t). There exist several
methods for defining and estimating the instantaneous amplitude Vi(t) and phase
θi(t) so they are unambiguous for the given method [14]. The two most prominent
are described below.

3.2.1 Hilbert transform and the Bedrosian theorem

Early implementations of the Hilbert-Huang transform used the Hilbert transform
to estimate the instantaneous amplitude and phase, hence the name Hilbert in
Hilbert-Huang transform. The Hilbert transform of a given signal vi(t) is for all
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Identify maxima 
and minima in r(t)

Calculate 
lower 

envelope

Calculate 
upper 

envelope

n := 1

Calculate 
mean 

envelope
m(t)

h(t) := r(t) - m(t)

Is h(t) IMF?

r(t) := h(t)

vn(t)  := h(t)

r(t)    := r(t) - vn(t)

n        := n + 1

Is r(t) 
monotonic?

Yes

No

Sifting

r(t)  := v(t)

Input: v(t)

Output: v1(t),…, vn(t), 

and vr(t)

Yes

No

Empirical Mode
Decomposition

vr(t)  := r(t)

Figure 3.2: UML activity diagram of the Empirical Mode Decomposition (EMD) al-
gorithm. The algorithm uses the input signal v(t) and returns the fewest intrinsic mode
functions (IMF) possible to describe it, v1(t), ..., vNimf

(t), and a monotonic function vr(t).
The upper envelope is defined by interpolating all local maxima using cubic spline inter-
polation. The same process is used on the local minima to get the lower envelope. The
notation is intentionally different from the rest of the thesis to emphasize that this is in-
ternal signals in an algorithm.
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practical use given by

H
(
vi(t)

)
=

1

π

∫ ∞
τ=−∞

vi(τ)

t− τ
dτ (3.5)

vi(t) is used to define an analytic signal zi(t) [15] on the form given by

zi(t) = vi(t) + j ·H
(
vi(t)

)
= V̌i(t)e

jθ̌i(t) (3.6)

where V̌i(t) is the amplitude and θ̌i(t) is the phase of vi(t) estimated using the
analytic signal. Ideally, we want

V̌i(t) = Vi(t) (3.7)

and
θ̌i(t) = θi(t). (3.8)

There are mainly two limitations to this approach. The first is that the implement-
ation of the Hilbert transform is not trivial as one needs an infinite integral. There
are ways to estimate the Hilbert transform as one cannot get the real Hilbert trans-
form of a physical signal, but these have restrictions. The second limitation is
the Bedrosian Theorem that limits the situations where the instantaneous phase is
meaningful in our application [16]. The Bedrosian theorem state that

H
(
V̌i(t) cos

(
θ̌i(t)

))
= V̌i(t)H

(
cos
(
θ̌i(t)

))
(3.9)

only if the power spectrum of V̌i(t) and cos
(
θ̌i(t)

)
is disjoint, meaning that the

power spectra of V̌i(t) and cos
(
θ̌i(t)

)
do not overlap1. We will use the normalized

quadrature method due to these restrictions2.

3.2.2 Normalized Quadrature method

There are several limitations to using the discrete Hilbert transform, as mentioned
in the previous section. We therefore used Normalized Quadrature Method [17] to
define and estimate instantaneous amplitude Vi(t) and phase θi(t) of any mono-
component vi(t).

The first step of the Normalized Quadrature method is the normalization to define
the amplitude. As an example, consider a given monocomponent v(t) in the form

v(t) =
(1

2
cos(t) + 1

)
· cos(5t) (3.10)

It is shown in figure 3.3(a).
1Appendix A shows an example where these limitations are apparent.
2The Wu and Hue approach is also recommended for interested readers [17].
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Figure 3.3: Example for figures for the Normalized Quadrature method.
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The first step is to identify the local maxima of the absolute value of the signal,
|v(t)|. The amplitude is defined by interpolating through these maxima. There are
many different choices in interpolation methods for the amplitude. The most com-
mon used in this approach is Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) [18]. The advantage of PCHIP in this application is that it can handle
immediate changes in amplitude well. Figure 3.3(b) shows an example of the dif-
ference between PCHIP and cubic spline interpolation for a given dataset. The
process of estimating the instantaneous frequency of the example waveform v(t)
is shown in figure 3.3(c).

Once the ampltidue V (t) is defined, we define a new normalized signal

v̂(t) =
v(t)

V (t)
= cos

(
θ(t)

)
(3.11)

Figure 3.3(d) shows the normalized signal v̂(t). Note that −1 ≤ v̂(t) ≤ 1 and
that all local extrema are ±1. The signal v̂(t)’s phase can be obtained using the
quadrature method. From the mathematical equivalent

sin2
(
θ(t)

)
+ cos2

(
θ(t)

)
= 1 (3.12)

we get that

sin
(
θ(t)

)
= k ·

√
1− cos2

(
θ(t)

)
, k =

{
−1 for dv̂(t)

dt > 0

+1 otherwise
. (3.13)

This means that we can calculate the phase

θ(t) = arctan
k ·
√

1− v̂2

v̂
(3.14)

The phase θ(t) is used to obtain the frequency.

3.2.3 Instantaneous frequency

Once the phase θ(t) is obtained, the instantaneous angle frequency is defined as

ω(t) =
dθ(t)

dt
(3.15)

where the instantaneous frequency is given by

f(t) =
1

2π
· ω(t) (3.16)
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The Hilbert Spectrum is a way to visualize the instantaneous frequency and amp-
litude as a function of time for all intrinsic mode functions of a signal [7]. For a
given monocomponent on the form in (3.4), the Hilbert Spectrum is defined as

Hi(ω, t) =

{
Vi(t) for ω = ωi(t)

0 otherwise
(3.17)

For a general multicomponent signal, the Hilbert Spectrum is defined as the sum
of Hilbert Spectra of all the intrinsic mode functions obtained using the Empirical
Mode Decomposition, as shown in (3.18).

H(ω, t) =

Nimf∑
i=1

Hi(ω, t) (3.18)

3.2.4 Demonstration of the Hilbert-Huang transform

As an example of the HHT, we will consider a synthetic voltage v(t) given by

v(t) = cos(ωot) + 0.03 cos(15ωot) (3.19)

It has a fundamental frequency ωo and one harmonic 15ωo and is shown in figure
3.4(a). By applying the Empirical Mode Decomposition on v(t), it is decomposed
into the two monocomponents v1(t) and v2(t) so that

v(t) = v1(t) + v2(t). (3.20)

v(t)’s IMFs are shown in figure 3.4(b). The Hilbert Spectrum of v(t) is shown in
figure 3.5. The blue line at the top of the Hilbert Spectrum depicts v2(t) and the
dark red v1(t). The Hilbert Spectrum has some end effects. If the end-effects are
discarded, then the blue line at the top v2(t) of the Hilbert spectrum will have a
constant frequency and amplitude at f2(t) = 750.00 Hz and a2(t) = −30.73 db =
0.02907. v1(t) will also have constant frequency and amplitude if the end-effects
are discarded. The frequency of v1(t) is f1(t) = 50 Hz and the amplitude is
a1(t) = −0.25 dB = 0.97.

3.2.5 Hilbert-Huang transform of measured voltage waveform

The Hilbert-Huang transform of vac,m(t), shown in figure 2.2, is used to gain a
better understanding of the origin of the distortions in the inverter discussed in
the beginning of this chapter. The voltage waveform vac,m(t) is decomposed into
two intrinsic mode functions, vac,md(t) and vac,mg(t), using the Empirical Mode
Decomposition so that
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Figure 3.4: Example of a signal and its decomposition using Empirical Mode Decompos-
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Figure 3.5: Hilbert spectrum of v(t).

vac,m(t) = vac,md(t) + vac,mg(t) (3.21)

The subscript d stand for distortions and g for the grid. The intrinsic mode func-
tions are shown in figure 3.6(a). The first intrinsic mode function, vac,md(t) is
shown as the green and blue part in the Hilbert spectrum and is centered mostly
between 500 Hz and 1500 Hz. The red line at the bottom corresponds to the grid
component vac,mg(t). There is a severe limitation on the accuracy of the instant-
aneous frequency of vac,md(t) due to discrete differentiation. As shown in (3.15),
the instantaneous frequency is defined as

ω(t) =
dθ(t)

dt
= lim

∆t→0

θ(t+ ∆t)− θ(t)
∆t

(3.22)

We use Forward Euler (FE) [19] when calculating the derivative of phase θ(t) to
obtain the instantanious frequency ω(t). The method Forward Euler approximate
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Figure 3.6: Hilbert-Huang transform of vac,m(t).

that ∆t ≈ Ts as well as using discrete time where t = n · Ts. This means that we
can approximate the instantanious frequency as

ω(t) = ω(n · Ts) ≈ Fs
(
θ
(
(n+ 1) · Ts

)
− θ(n · Ts)

)
(3.23)

This is true as long as the instantaneous frequency is

ω(t)� 2πFs (3.24)

t0 t0 + Ts

Time

P
h
a
se

Ts

θ(t)
Actual
FE-estimate

Figure 3.7: Example of the effects on the estimate of the instantaneous frequency when
experiencing high frequency to sampling rate ratio. The blue line depicts the tangent for
the actual instantaneous frequency in t = t0. The red is an estimate of the instantaneous
frequency when using Forward Euler without sufficiently high sampling rate Fs.
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Figure 3.8: Hilbert spectrum of vac,mg(t).

where Fs is the sampling frequency and is given by Fs = 1
Ts

. Simulations of
cases shows good results as long as ω(t) < 0.02 · 2πFs. This is satisfied for
vac,mg(t). For vac,md(t) this is not the case. Figure 3.7 shows an example of the
effect when the assumption in (3.24) does not hold. From the difference between
the blue tangent and the red line in the figure, it is clear that the Forward-Euler
estimated instantaneous frequency is far from the actual instantaneous frequency.
It is possible to overcome this problem [20], but these solutions have not been
implemented during this project. The monocomponent vac,md(t) containing the
high-frequency distortions will therefore not be analyzed further.

Figure 3.8 shows vac,mg(t)’s Hilbert Spectrum in greater detail. Its frequency has a
semi-periodic behavior with repetition every 10 ms. The grid-component also has
some interesting non-periodic behavior. The magnitude of the frequency variations
is also relatively large, varying from 30 Hz to 80 Hz, with a mean frequency of 50
Hz.

3.3 Suggested hypothesis for the root of distortions
To find a semiperiodic repetition on the grid frequency’s monocomponent vac,mg(t)
with frequency fluctuations of 10 ms (100 Hz) was unexpected for the author. It
led the author to suspect that the distortion originates in the dc current id(t). By
following the model in figure 2.1 and assuming that no energy is stored in the
filters and a linear load Rload we get that the instantaneous power input Pd(t) is
equal to the instantaneous ac power output Pac(t) so that

Pd(t) = Pac(t) (3.25)

We also assume an almost pure sinusoidal output voltage so that

vac(t) ≈ Vac sin(ωot) (3.26)
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Since the load is assumed to be linear the current will be

iac(t) ≈ Iac sin(ωot) (3.27)

By following the argumentation of Mohan at. al [21, p. 214] we get that under the
assumption that no energy is stored in the filters, we have

Pd(t) = vac(t) · iac(t) = VacIac sin(ωot− φi) sin(ωot) (3.28)

therefore
id(t) =

VacIac

Vd
cosφi −

VacIac

Vd
cos(2ωot− φi) (3.29)

This can be rewritten as

id(t) = Id + ĩd(t)

= Id + Ĩd cos(2ωot)
(3.30)

Equation (3.29) assumes that Vd � ṽd(t). Figure 3.9 shows a Thévenin equivalent
of the dc power supply seen from the output of the boost controller in figure 2.1.
The dc voltage supply vd(t) will be described by

vd(t) = Vs − id(t) ·Rs
= Vs −Rs · Id +RsĨd cos(2ωot)

= Vd + Ṽd cos(2ωot)

(3.31)

where Vs is the constant dc power supply, Rs is the power supply’s internal resist-
ance, Vd = Vs −Rs · Is, and Ṽd = Rs · Ĩd.

This led us to suggest that the distortions in vac,m(t) originated from the dc voltage
vd(t), because of the 2ωo component in (3.31), and not from nonlinear loads.

Following the principle of falsifiability, this hypothesis will be discarded if a 100
Hz oscillation on the dc bus does not result in a 10 ms oscillation on the instant-
aneous frequency of the 50 Hz grid component in the simulation or analytic mod-
els described in the next sections [22]. We aim to minimize a positive bias that
researchers (and students) often experience towards confirming instead of challen-
ging initial hypothesis by explicitly stating an apparent condition for falsifiability
[23].
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Chapter 4

Modeling and analytical
investigation of the hypothesis

In the previous chapter, we presented some voltage measurements and ways to
interpret them. We will use these interpretations in this section to examine the
system behind the microgrid. We suspected that the origin of the distortions ori-
ginated from the dc bus vd(t) amplified by the controller, as mentioned in section
3.3. To test this hypothesis, a model of the system is necessary. We have not
been able to get a detailed model from the manufacturer, so we assumed a typ-
ical microgrid setup and controller. Therefore, the inverter controller used in this
thesis is based on a standard PV inverter controller [24, 25]. The frequency and
phase-shift synchronization are not accounted for in this report as the microgrid is
islanded. The controller’s task is to monitor and correct the output voltage vac(t).
The controller’s main blocks are a proportional-integral (PI) controller and a Res-
onant Controller (RC). A detailed model of the microgrid is shown in figure 4.1.

The dc voltage vd(t) is converted to ac, vac(t), by using a dc/ac inverter. The
inverter is a steady-state single bridge inverter based on pulse-width modulation
(pwm) [21] with a low-pass filter. The inverter has a controller that uses ωo, vd(t)
and iac(t) to control vac(t) so that ideally, the ac output voltage should always
be given on the form in (2.1). vac(t) is adjusted by vcontrol(t). By assuming an
optimal dc/ac inverter and filters, vac(t) will be

vac(t) ∝ vcontrol(t). (4.1)

A previous study lead us to believe that the distortions originate in an oscillation
on the dc bus [6] as discussed in section 3.3. By following the argumentation in

21
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Figure 4.1: High level model of the microgrid investigated in this thesis.

section 3.3; if the load is a resistance, the dc voltage can be modelled as

vd(t) = Vd + ṽd(t) = Vd + Ṽd cos(2ωot). (4.2)

In the controller, the dc voltage, vd(t) is compared with a predefined reference dc
voltage Vr and results in a correction signal

ve(t) = Vr − vd(t). (4.3)

As mentioned, the controller has two main components. The purpose of the proportional-
integral controller (PI) is to maintain a stable output amplitude of vac(t) while there
are slow-varying changes in the dc voltage vd(t).

We assume a stable boost controller so that the correction signal Vr is equal to
Vd. The proportional-integral controller (PI) uses the correction signal ve(t) as an
input. Since the PI controller is a linear operation, it will only alter the amplitudes
and phases and not any frequency value of vd(t), resulting in an output of the PI
controller

vpi(t) = A cos(2ωot− φ) (4.4)

where A and φ are the resulting amplitude and phase after the PI controller. The
resulting signal vpi(t) out of the PI controller vpi(t) is multiplied with a sinusoidal
signal. It is then compared with a the ac current iac(t) so that

vin,rc(t) = Rkiac(t)− vpi(t) · cos(ωot) (4.5)

Rk is a constant to scale iac(t). The optimal condition for the PI controller is
when vpi(t) is constant or slow varying. vin,rc(t) is used as the input to a Resonant
Controller (RC). The Resonant Controller is a band-amplifier and is used to ensure
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a stable grid-frequency. As mentioned at the beginning of section 3, we assume a
resistive load. This gives us that

vac(t) = Rload · iac(t). (4.6)

This assumption, together with the expression for output of the RC controller vpi(t)
given by (4.4) and the input to the resonant controller vin,rc(t) in (4.5) we get that

vin,rc(t) = −A cos(2ωot− φ) · cos(ωot) +B′ · vac

= −A
2

(
cos(ωot− φ) + cos(3ωot− φ)

)
+B′ · vac(t)

(4.7)

where B′ is a constant to scale vac(t). The Resonant Controller is a linear band
amplifier that let all frequencies pass, but amplifies the grid frequency ωo. Its
purpose is to maintain a stable grid-frequency. Because the RC controller only
changes amplitudes and phases we get a control voltage vcontrol(t) given by

vcontrol(t) = C ′1 cos
(
ωot− φ′1

)
+ C ′2 cos

(
3ωot− φ′2

)
+B · vac(t)

(4.8)

where C ′1, C ′2, B, φ′1, and φ′2 are constants determined by vin,rc(t) through the RC
controller. By assuming that the fundamental frequency component of vac(t) has
much larger amplitude than its harmonics, we can approximate that the effect of
the feedback from the ac side B · vac(t) through the RC controller will be given by

vfeedback(t) = vac(t) ∗ hrc(t) ≈ Cac cos(ωot+ φac) (4.9)

where hrc(t) is the impulse response of the RC controller, and Cac and φac are
constant determined by B · vac(t) through the RC controller. We can put (4.9) into
(4.8) so that

vcontrol(t) = C ′1 cos
(
ωot− φ′1

)
+ C ′2 cos

(
3ωot− φ′2

)
+ Cac cos(ωot+ φac).

(4.10)

Because vcontrol(t) is proportional to vac(t) as stated in (4.1), we get that

vac(t) = C1 cos(ωot− φ1) + C2 cos(3ωot− φ2) (4.11)

where C1, C2, φ1, and φ2 are constants determined by vcontrol(t) through the dc/ac
inverter. Note that the distortions in (4.11) is a sum of two frequency components,
but is caused by a multiplication operator in the controller.
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Figure 4.2: vac,a(t) from (4.11) against an ideal ac voltage waveform as in (2.1).

4.1 Analytical investigation of the hypothesis
In the previous chapters, we have examined measured voltage data vac,m(t) and
made a mathematical model to describe the microgrid system. In this section, we
will look at the mathematical equations describing the model, test some of the
assumptions, and relate them to the measured data to test the hypothesis that the
origin of the distortion comes from the dc bus, as presented in section 3.3. Because
we now have a mathematical expression of the system describing the microgrid in
figure 4.1, we may compare the results from the analytical model with the data
measured on the microgrid in Bhutan. A detailed expression of vac(t) on the form
in (4.11) is used to get the values for C1, C2, φ1, and φ2 based on the controller’s
tuning. Reasonable values of the constant in the controller is chosen based on
discussions with, and a model provided by, Dr. Jon Are Suul in Department of
Electric Power Engineering. The subscript a is added to vac(t) to show that it is
analytical. Table 4.1 shows the values chosen. The resulting waveform is shown
as the black line in figure 4.2. It is compared with an ideal voltage waveform on
the from given by (2.1), shown in red.

4.1.1 Power spectrum and pulse-width modulation

The power spectrum of vac(t) on the form given in (4.11) is given by

Pac,a(ω) = |C1|2δ(ω − ωo) + |C2|2δ(ω − 3ωo) (4.12)

where δ is the Dirac delta function [26, p. 242]. Pac,a(ω) is shown in figure 4.3.
The power spectrum has a fundamental frequency ωo, and one harmonic at 3ωo.
The power spectrum of the measured voltage waveform vac,m(t) in figure 3.1’s two
most powerful frequency components were also at ωo and 3ωo, but vac,m(t) also
contained a notable harmonic at 5ωo. A possible explanation of the 5ωo frequency
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Table 4.1: Microgrid model parameters.

DC power supply
Line Impedance Rs 0.1 Ω
Voltage Vd 400 V
Current Id 22 A
AC power consumption
Load Impedance Rload 7 Ω
Voltage Vac 230 Vrms

Proportional-integral controller
Proportional coefficient Kp 2
Integral coefficient Ki 20
Proportional-resonant controller
Proportional coefficient Cp 1
Resonant coefficient Ci 5

component in the measured voltage’s vac,m(t) power spectrum is effects caused by
the pulse-width modulation. This explanation can be strengthened further by the
fact that the pulse-width modulation mainly consists of odd harmonics.

We will, therefore, temporarily disregard the assumption stated in (4.1) that states
that the ac voltage vac(t) is proportional to the control signal vcontrol(t) to test the
statement above. A numerical Matlab model of a pulse-width modulated signal
based Mohan et. al [21, pp. 212–215] is designed so we could generate vpwm(t)
numerically based on the expression of vcontrol(t) in (4.8). The calculations for
a detailed expression of vcontrol(t) is shown in appendix B. The parameters were
estimated using table 4.1, but we sat B = 0 in this analysis as we focus on the
oscillations from the dc voltage through the controller.
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Figure 4.3: Power spectrum of vac,a(t).
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Figure 4.4: Numerical estimation of the pwm effect on vac,a(t).

The pwm voltage vpwm(t) is created by comparing vcontrol(t) with a synthetic
triangular signal vtri(t). vtri(t) has a fundamental frequency of 5 KHz in our
Matlab model. The pwm voltage from the inverter vpwm(t) is given by

vpwm(t) =
1

2

{
+Vd, if vcontrol(t) > vtri(t)

−Vd, if vcontrol(t) ≤ vtri(t)
(4.13)

and is shown in figure 4.4. The pwm voltage vpwm(t) is then filtered using an
inductor-based first order low-pass filter as shown in figure 4.5. The filter was
simulated with a digital low pass filter with a transfer function

Hlp(s) =
ωc

s+ ωc
(4.14)

We can now express the pwm corrected ac voltage

vac,n(t) = vpwm(t) ∗ hlp(t) (4.15)

where hlp(t) is the impulse response of the filter in (4.14). The subscript n is added
to vac to show that it is numerical corrected for pwm and filter effects. Figure 4.6
shows the power spectrum of vac,n(t). All odd harmonics of ωo has a considerable
amplitude, and the shape is similar to that of Pac,m(ω) as shown in figure 3.1.

vcontrol(t) Numeric pwm Hlp(s) vac,n(t)
vpwm(t)

Figure 4.5: Pulse-width modulated voltage vpwm(t) generated by comparing a generated
triangular signal vtri(t) with vcontrol(t).
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Figure 4.6: Power spectrum of vac,n(t). The spectrum is calculated using (3.1) where
N = 2000 and Fs = 100 KHz.

4.1.2 Hilbert spectrum

In figure 3.8, the Hilbert spectrum of vac,mg(t) shows a 10 ms oscillation in the
instantaneous grid frequency of vac,m(t). It is therefore expected to find the same
10 ms oscillation in the instantaneous frequency of the analytical expression.

The analytical expression of vac(t) given by (4.11) satisfies the requirements for an
intrinsic mode function for all reasonable variables for tuning of the controller, so
the Empirical Mode Decomposition is not needed. This means that we can write
vac(t) on the form

vac(t) = Vac(t) · cos
(
θac(t)

)
(4.16)

where vac(t) only has one zero-crossing per local extrema.

The Hilbert spectrum of vac(t) using the same tuning as the previous chapter is
shown in figure 4.7. From the figure it is clear that the frequency changes over time.
The instantaneous frequency should ideally be ωac(t) = ωo. We approximated
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Figure 4.7: Hilbert spectrum of vac,a(t).
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Figure 4.8: The intrinsic mode functions describing vac,n(t).

ωac(t) to
ωac(t) ≈ ωo + ε cos(2ωot) (4.17)

with an error of less than 11.7 %. The constant ε corresponds to the magnitude of
the oscillating frequency. The same periodic behaviour on ωac(t) with the 10 ms
cycles is also found in vac,m(t)’s Hilbert spectra, as discussed in section 3.2.5.

This means that the analytical expression shows both the 10 ms oscillation on
the instantaneous frequency in the Hilbert Spectrum, and the most powerful fre-
quency components in the Power spectrum found on the measured voltage wave-
form vac,m(t) in section 3.1. This indicates that the hypothesis in section 3.3 may
describe the distortions observed on vac,m(t).

The analytical model has several simplifications and assumptions. We will there-
fore make a Hilbert spectrum of the electrical waveform vac,n(t) when compens-
ating from pwm and filtering.

Hilbert spectrum corrected for pwm effects

We will now use the Hilbert spectrum to analyze the numerically estimated voltage
waveform vac,n(t) discussed in section 4.1.1 to verify that the 10 ms oscillation still
occurs when the voltage waveform is affected by pwm and filtering. The waveform
vac,n(t) is decomposed into two intrinsic mode functions (IMF) as shown in section
3.2.5 so that

vac,n(t) = vac,nd(t) + vac,ng(t) (4.18)

Figure 4.8 shows the two IMFs. The Hilbert spectrum of vac,n(t) is shown in figure
4.9(a). The monocomponent vac,nd’s frequency struggles with a high frequency to
sampling frequency ratio as discussed in section 3.2.5. We will, therefore, discard
vac,nd(t) from any further analysis. Figure 4.9(b) shows vac,ng(t)’s Hilbert spec-
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(a) Hilbert spectrum of vac,n(t).
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(b) Hilbert spectrum of vac,ng(t).

Figure 4.9: Hilbert spectra of vac,n(t).

trum in greater detail. It has a 10 ms repetition similar to figure 4.7, but it is more
distorted. The analytical vac,a(t) and numerical vac,n’s instantaneous frequencies
both show the same 10 ms pattern observed on vac,m(t).

In the next chapter, we will use a Simulink simulation to test the hypothesis further.
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Chapter 5

Validation of the hypothesis with
simulation

In the previous chapters, we have investigated and analyzed the voltage measure-
ments from the microgrid described in section 3 and compared it with a mathem-
atical model from section 4 to test a hypothesis about the origin of the distortion.
A simulation of the microgrid system based on the model in section 4 is used to
verify these findings.

The simulation is implemented using Simulink. The simulation is tailored to show
as real conditions as possible and is simulating non-ideal conditions with consid-
erable line impedance and a resistive load as suspected in the microgrid where we
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(a) Simulated output from an dc/ac in-
verter, vac,s(t) against an ideal cosine.
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(b) 100 Hz oscillations shown on dc bus
vd,s(t), as expected from section 3.3.

Figure 5.1: Simulated vac,s(t) and vd,s(t).
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did the measurements. The parameters for the simulation were the same as used
for the analytical investigations in section 4.1 and can be found in table 4.1. Figure
5.6 shows a Simulink block diagram of the simulation.

The letter s will be added in subscript to variables to mark that they are found
using the simulation. The ac voltage vac,s(t) is shown in figure 5.1(a). vac,s(t) is
distorted compared with a pure sinusoidal waveform with frequency ωo, yet in a
different way than vac in figure 4.2. Unlike the analytical expression of vac, the
ac voltage vac,s(t) curves towards the right compared with a pure sinusoidal signal
(red). It also contains ripples that are most probably caused by the distortions by
the inverter’s pulse-width modulation that is not properly filtered by the low-pass
filter as discussed in the previous chapter. The simulation also found the 100 Hz
oscillation on the dc bus vd,s(t) as shown in figure 5.1(b).

5.1 Power spectrum
The power spectrum of vac,s(t) is given in figure 5.2. The power spectrum of
vac,s(t) is dominated by odd harmonics, like the power spectra of the measured
waveform vac,m and the analytical investigation of vac,a(t) in section 3.1 and 4.1.1.
The 50 Hz and 150 Hz are most prominent in all three investigations.

5.2 Hilbert spectrum
The ripples make vac,s(t) a multicomponent signal, so it is decomposed into two
intrinsic mode functions (IMFs) using EMD with zero residue so that

vac,s(t) = vac,sd(t) + vac,sg(t) (5.1)
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Figure 5.2: Power spectrum of vac,s(t). The spectrum is calculated using (3.1) where
N = 20 K and Fs = 1 MHz.
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Figure 5.3: The simulated vac,s’s intrinsic mode functions.

The first IMF vac,sd(t) contain the high-frequency distortions most probably caused
by non-ideal filtering and the pulse-width modulation as discussed in the previous
chapter. The second IMF vac,sg(t) is the grid component. The IMFs are shown
in figure 5.3. The IMFs’ instantaneous amplitude and frequency were calculated
using the normalized quadrature method, as described in section 3.2.2. They
are shown in the Hilbert spectrum in figure 5.4. The high frequency compon-
ent vac,sd(t) is changing so rapidly that it is experiencing the issues with discrete
differentiation as described in section 3.2.5. This IMF will therefore not be further
analyzed.

The Hilbert spectrum of the grid component vac,sg(t) is shown in greater detail
in figure 5.5. The instantaneous amplitude is constant, and the instantaneous fre-
quency has a 10 ms oscillation and some oscillatory behavior. This 10 ms behavior
did also occur on the analytic model in section 4 and the measured voltage data
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Figure 5.4: Hilbert spectrum of vac,s(t).
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Figure 5.5: Hilbert spectrum of vac,s(t).

vac,m(t)’s Hilbert spectra in section 3.2. The falsification condition of the hypo-
thesis is therefore not fulfilled.
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Chapter 6

Positive feedback cascading effect
as cause of distortion

We have so far examined a hypothesis where we state that the origin of the dis-
tortion on the ac voltage is a 100 Hz oscillation on the dc bus that originates from
feedback from the ac side, as indicated in section 3.3. In this chapter, we will
informally investigate a generalization of the origin of the distortion based on a
harmonic analysis. Let’s consider the microgrid model in figure 4.1.

By grouping the subsystems in h1(t) and h2(t) as shown in figure 6.1, we can
abstract the system to two linear operations h1(t) and h2(t), one multiplication,
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Figure 6.1: High level model of the microgrid investigated in this thesis.
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Figure 6.2: Abstraction of the microgrid model.

and the inverter. An abstraction of figure 6.1 where we again use the assumption in
(4.1) stating that vac(t) ∝ vcontrol(t) is shown in figure 6.2. The linear subsystems
h1(t) and h2(t) is linear systems, so that the amplitude and phase values may
change, but not the frequency value. From appendix C we see that influence from
the ac voltage vac(t) through the inverter on vd(t) is given by

vd(t) = Va · v2
ac(t) + Vd (6.1)

where Va is a constant. Note that this influence from the ac side on the dc side is
opposite of the energy flow. Equation (6.1) states that the oscillatory part of the dc
voltage vd(t) discussed in section 3.3 is generally given by

ṽd(t) ∝ v2
ac(t) (6.2)

The feedback effect form the dc bus vd(t) to the ac voltage vac(t) through the
controller is given by

vac(t) =
(
(vd(t) ∗ h1(t)) · cos(ωot)

)
∗ h2(t) (6.3)

Let us assume a pure sinewave with frequency ωo on the ac voltage vac(t). We will
now demonstrate how ideal conditions will result in odd harmonics on the output
voltage, even if the load is linear. We mark the initial variables with subscript 0.
We will start with

vac,0(t) = Vac,0 cos(ωot) (6.4)

this results in a feedback to the dc voltage

vd,0(t) =
VaV

2
ac

2
cos(2ωot) +

(VaV 2
ac

2
+ Vd

)
= Va,0 cos(2ωot) + Vd,0

(6.5)
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As discussed in the previous chapters, a 2ωo harmonic on the dc voltage vd,0(t)
will give a feedback to the ac side as given by

vac,1(t) =
(
(vd,0(t) ∗ h1(t)) · cos(ωot)

)
∗ h2(t)

=
(
(Ṽd cos(2ωot) ∗ h1(t)) · cos(ωot)

)
∗ h2(t)

= Vac,a1 cos(ωot− φac,a1) + Vac,b1 cos(3ωot− φac,b1)

(6.6)

1 is added in subscript to mark the completion of the first full feedback loop iter-
ation. This positive feedback loop is the same effect as our initial hypothsis from
section 3.3. On the ac side voltage vac,1(t) we have two odd harmonics and one
even on the dc side vd,0(t).

We will now generalize this hypothesis. First, we postulate that on the ac side, we
will have all odd harmonics of ωo, and all even harmonics of ωo on the dc side.
Appendix D shows that if the ac voltage vac(t) only contain odd harmonics, then
the dc voltage will be written by

vd(t) = Vd +

∞∑
i=1

Ṽd,i cos(2i · ωot− φd,i). (6.7)

This means that if we only have odd harmonics on the ac vac(t), we will get even
harmonics on the dc vd(t). In general, if a sum of even harmonics is multiplied
with its fundamental harmonics we get that

cos(ωot) ·
∞∑
i=1

V ′i · cos(2i · ωot) =
∞∑
i=1

V ′i
2
· cos

(
(2i+ 1)ωot

)
+
∞∑
i=1

V ′i
2
· cos

(
(2i− 1)ωot

)
=
∞∑
i=1

Vi · cos
(
(2i+ 1)ωot

)
.

(6.8)

This means that the feedback from the dc bus vd(t) through the controller to the ac
side should result in an ac voltage

vac(t) =
(
(vd(t) ∗ h1(t)) · cos(ωot)

)
∗ h2(t)

=
(( ∞∑

i=1

Ṽd,i cos(2i · ωot− φd,i)
)
∗ h1(t)

)
· cos(ωot)

)
∗ h2(t)

=
∞∑
i=1

Vac,i · cos
(
(2i+ 1)ωot−φac,i

)
.

(6.9)
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Figure 6.3: Power spectrum of simulated dc bus vd,s(t) and ac voltage vac,s(t). The
spectrum is calculated using (3.1) where N = 20 K and Fs = 1 MHz.

Equation (6.7) and (6.9) shows that odd harmonics on the ac voltage vac(t) causes
even harmonics on the dc bus vd(t), and that even harmonics on vd(t) cause more
odd harmonics on vac(t). The generalized hypothesis is analytically sound because
we initialize with one odd harmonic ωo on vac(t). The power spectra of the sim-
ulated ac voltage vac,s(t) and the dc voltage vd,s(t) using the Simulink simulation
in section 5 is shown in figure 6.3. The power spectrum of the dc bus vd,s(t) only
contains even harmonics. The ac side mainly contains odd harmonics. The even
harmonics can be explained by the vertical asymmetry of pulse-width modulation.

6.1 Discussion
Since the analytical and simulated investigation showed a dominance of odd har-
monics on the ac side, and even harmonics on the dc side, we conclude with a
general hypothesis that a feedback loop mainly causes the distortions seen on v in
chapter 4. The feedback loop originates on the ac side and cascades through the
inverter to the dc side, and back to the ac side via the control unit. The degree of
the distortions will vary depending on the tuning and setup of the controller.



Chapter 7

Reflections on the hypothesis

In the previous chapters, we have presented and tested a hypothesis, and then gen-
eralized it analytically. The generalized hypothesis was validated with a simula-
tion. The first proposal to the origin of the distortion in the microgrid is in section
3.3 and the generalization is in section 6. In this chapter, we will compare the
results from the different approaches to giving a better overview, and summarize
the discussions of previous chapters.

The criterion for falsification stated on page 18 in the initial hypothesis were that
there must be 10 ms cycles on the instantaneous frequency. Figure 7.1 shows the
instantaneous frequency for all approaches. Visual inspection indicates that all
procedures have a 10 ms fundamental period variation of its frequency. These res-
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Figure 7.1: The instantaneous frequency from the grid component of the measured wave-
form fac,mg(t), result of the analytic investigation fac,ag(t) and its numeric version cor-
rected for pwm fac,ng(t), and from the simulation fac,sg(t) shown together.
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Figure 7.2: The power spectra from the grid component of the measured waveform
Pac,m(ω), result of the analytic investigation Pac,a(ω) and its numeric version corrected
for pwm Pac,n(t), and from the simulation Pac,s(ω) shown together.

ults lead us to the conclusion that the hypothesis stated in section 3.3 is a possible
explanation of the cause of the distortion. The author does not, however, have any
explanation of the somewhat unpredictable variations of the instantaneous frequen-
cies1. The instantaneous amplitudes of vac,mg(t), vac,ag(t), vac,ng(t), and vac,sg(t)
has not been discussed previously and are commented in appendix E.

Both the initial and the generalized hypothesis state that odd harmonics should
dominate the power spectrum of the ac voltage vac(t). Figure 7.2 shows the power
spectra of vac,x(t) for the four different approaches discussed in this thesis, where
x in subscript indicates the method used. All power spectra are dominated by the
fundamental frequency and odd harmonics. Even harmonics are also present and
is mainly explained by the vertically asymmetric behavior of vpwm(t).

The main difference between the hypotheses is the origin of the distortions. The
initial hypothesis from section 3.3 attributes the distortions to a single 100 Hz
oscillation on the dc voltage vd(t), amplified by the controller to the ac voltage
vac(t) that was simultaneously affected by the pulse-width modulation of the in-
verter. The general hypothesis presented in section 6 states that the origin comes
from the ac voltage vac(t), resulting in a positive feedback loop that cascades the
harmonics. The initial hypothesis was also found to be a particular case of the
general one.

Due to these findings, the author argues that the probable cause of the distortions
found on the investigated microgrid is a cascading feedback via the microgrid’s

1Reasons of the variable changes in the instantaneous frequency is of particular interest to the
author, and we think it would be interesting to study further using a higher dimension analysis tool
such as the Holo Hilbert Spectrum [27]. Unfortunately, this thesis has a limited scope and time.
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controller. The Hilbert-Huang transform has been particularly helpful for the au-
thor when detecting this distortion, as it showed the 100 Hz oscillation on the
instantaneous frequency, leading us to investigate the dc bus and the controller.
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Chapter 8

Concluding remarks

This thesis outlines an analysis methodology to investigate the origin of distortions
on the voltage waveform vac(t) delivered from an isolated microgrid to a load.
The method was developed to investigate atypical distortions on ac voltage wave-
forms on a microgrid at the Royal University of Bhutan’s College of Science and
Technology. The method uses the traditional Periodogram, and the Hilbert-Huang
transform, which, as known to the author, has not been used previously to examine
electrical power systems. The Hilbert spectrum of the ac voltage vac(t) showed a
10 ms oscillatory behavior on its instantaneous grid frequency. Distortions on the
ac voltage are usually attributed to nonlinear loads, but this could not explain the
distortions observed, as the load on the actual microgrid was mostly linear. From
this, we hypothesized that the distortions could be attributed to the propagation
of the inherent 100 Hz oscillatory power that characterizes single phase electrical
systems. The hypothesis was tested by analytically examining how the intrinsic
oscillatory component of the dc voltage vd(t) propagates through the controller
feedback of the PV inverter system; resulting in an amplitude modulation, accord-
ing to the analysis of the mathematical expression of the output voltage waveform
of the inverter. By assuming that the 100 Hz oscillation caused the distortion, we
managed to explain the distortions using the methodology on the voltage wave-
forms from the analytical model. A Simulink model to simulate the system was
used to validate the findings.

The initial hypothesis was then expanded to a general harmonic analysis of a posit-
ive feedback loop cascading from the ac side and through the inverter to the dc side
and then back to the ac side via the controller. The power spectra of the measured
ac voltage vac,m(t), the analytically calculated vac,a(t), the numerically estimated
ac voltage vac,n(t), and the simulated voltage vac,s(t) were all dominated by odd
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harmonics. The odd harmonics on vac,s(t) is a necessity for the generalized hy-
pothesis, although it could also be explained by non-ideal low pass filtering of the
pulse-width modulation’s effect on the ac voltage vac,s(t). A simulation of the dc
bus voltage vd,s(t) was therefore used. Its power spectrum showed a clear dom-
inance of even harmonics, further strengthening our general hypothesis about the
positive feedback loop. This thesis, therefore, argues that the primary cause of
the distortions found on the microgrid in Bhutan can be attributed to the positive
feedback loop cascading and creating odd harmonics on the ac voltage.
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Appendix A

Example of the Hilbert transform
and Normalized Quadrature
Method

Lets consider two voltage waveforms v1(t) and v2(t). They are given by

v1(t) = cos(2π50t) (A.1)

and
v2(t) = cos(2π50t) ·

(
1 + 7u(t− τ)

)
(A.2)

where u(t− τ) is a step function.

A.1 Hilbert transform
By using the Bedrosian theorem in section 3.2.1 we know that the amplitude
V̌1 = 1 and phase θ̌1(t) = 2π50t of v1(t) is well defined using the Hilbert trans-
form because their power spectra are disjoint. The analytic signal was numerically
calculated using discrete Hilbert transform in Matlab. By using the definition of
instantaneous frequency in (3.15) and the phase θ̌1(t) = 2π50t we calculated the
instantaneous frequency f1(t) of v1(t). Both v1(t) and f1(t) are shown in figure
A.1. We can see that the frequency f1(t) is constant 50 Hz, as expected from (A.1).
For v2(t) we want to estimate

V2(t) = 1 + 7u(t− τ) (A.3)

and
θ2(t) = 2π50t. (A.4)
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Figure A.1: Voltage waveform v1(t) and its instantaneous frequency f1(t) calculated
using discrete Hilbert transform. The Bedrosian theorem is satisfied for v1(t).

The power spectrum of V2(t) and cos(θ1) is shown in figure A.2. The Bedrosian
theorem is not satisfied for v2(t) because the the power spectra overlap as shown
in figure A.2. The voltage waveform v2(t) and its instantaneous frequency f2(t)
is shown in figure A.3(a). The step function is affecting the frequency f2 before
the step, giving it considerable fluctuations. This means that the Hilbert transform
does not calculate the instantaneous frequency correctly for v2(t).

A.2 Normalized Quadrature method
The limitation stated by the Bedrosian theorem that is shown above is not appar-
ent in the normalized quadrature method (NQM). By using NQM to estimate the
amplitude V2(t) and phase θ2(t) of v2(t) we get the results shown in figure A.3(b).
The instantaneous frequency f2(t) is now constant before and after the transition.
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(a) Voltage waveform v2(t) and its instant-
aneous frequency f2(t) calculated using
discrete Hilbert transform. The Bedrosian
theorem is not satisfied for v2.
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(b) Voltage waveform v2(t) and its instant-
aneous frequency f2(t) calculated using
the normalized quadrature method.

Figure A.3: Voltage waveform v2(t) and its instantaneous frequency f2(t) calculated
using the discrete Hilbert transform and normalized quadrature method.
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Appendix B

Calculation of vcontrol(t)

From (3.31) we have that vd(t) = Vd + Ṽd cos(2ωot). We can set this into (B.1),
and by assuming vr = Vd, we get that

ve(t) = Ṽd cos(2ωot) (B.1)

Equation (4.4) gives us that vpi(t) is given by

vpi(t) = Ṽd
(
Kp · cos(2ωot) +

Ki

2ωo
sin(2ωot)

)
(B.2)

Leading to an input to the RC on the form

vin,rc = Rk · iac + cos(ωot)
(
B1 cos(2ωot) +B2 sin(2ωot)

)
(B.3)

where B1 = Kp · Ṽd, and B2 = Ki
2ωo

Ṽd. Rk is a constant. As

cos(2ωot) · cos(ωot) =
1

2

(
cos(ωot) + cos(3ωot)

)
(B.4)

and
sin(2ωot) · cos(ωot) =

1

2

(
sin(ωot) + sin(3ωot)

)
(B.5)

the resulting vcontrol(t) from the Resonant Controller will be

vcontrol(t) = Cp · vin,rc(t)

+ Ci
(B1

2
cos(ωot) +

B2

2
sin(ωot)

)
+ vac,rc(t)

(B.6)
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where vac,rc(t) = A ·
(
Ciiac(t)∗hrc(t)+Cpiac

)
and hrc(t) is the impulse response

to a band-pass filter with center frequency ωo.

Equation (B.6) can be rewritten on the form

vcontrol(t) = Vg1 cos(ωot) + Vg2 sin(ωot)

+ Vam1 cos(2ωot) cos(ωot)

+ Vam2 sin(2ωot) cos(ωot)

+ vfeedback(t)

(B.7)

where Vg1 = Ci
B1
2 , Vg2 = Ci

B2
2 , Vam1 = B1 · Cp, Vam2 = B2 · Cp, and

vfeedback(t) = Rk · Cpiac(t) + vac,rc(t).

By using the trigonometric identity that

a cos(ωot) + b sin(ωot) = G cos(ωot− φG) (B.8)

where G =
√
a2 + b2 and φG = arctan

(
b
a

)
we get that

vcontrol(t) = Vg cos(ωot− φg)
+ Vam cos(2ωot− φam) cos(ωot)

+ vfeedback(t)

(B.9)

with Vg =
√
V 2

g1 + V 2
g2, Vam =

√
V 2

am1 + V 2
am2,

φg = arctan
(
Vg2
Vg1

)
, and φam = arctan

(
Vam2
Vam1

)
.

We assume vfeedback ≈ 0. This gives us that

vcontrol(t) =
Ci
2
· Ṽd
√
K2
p +

( Ki

2ωo

)2
cos

(
ωot− arctan

Ki

2ωoKp

)
+ Cp · Ṽd

√
K2
p +

( Ki

2ωo

)2
cos

(
2ωot− arctan

ki
2ωoKp

)
cos(ωot)

(B.10)

This can be rewritten on the form

vcontrol(t) =
(Ci

2
+ Cp

)
· Ṽd
√
K2
p +

( Ki

2ωo

)2
cos

(
ωot− arctan

Ki

2ωoKp

)
+ Cp · Ṽd

√
K2
p +

( Ki

2ωo

)2
cos

(
3ωot− arctan

ki
2ωoKp

)
(B.11)
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we define

1 pu = Ṽd

√
K2
p +

( Ki

2ωo

)2 (B.12)

By using the tuning from table 4.1 we get that

vcontrol(t) =
3

2
pu · cos

(
2π50t− arctan

1

100π

)
+ 1 pu · cos

(
2π50t− arctan

1

100π

)
(B.13)

To relate this to expression (4.8) we get that

C ′1 =
3

2
pu, (B.14)

C ′2 = 1 pu, (B.15)

φ′1 = φ′2 = arctan
1

100π
≈ 1.01321 mrad, (B.16)

and
B′ ≈ 0 (B.17)
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Appendix C

The ac voltage’s effect on the dc
bus through the inverter

This appendix shows how to get a general expression of the ac voltage vac(t)’s
impact on the dc bus vd(t). We assume no energy loss in any filters or the inverter.
By also assuming a linear load we get that the ac power is given by

Pac(t) =
v2

ac(t)

Rload
(C.1)

and on the dc side we have that

Pd(t) = vd(t) · id(t). (C.2)

We also know that the dc current can be written as

id(t) =
vd(t)− Vs

Rs
(C.3)

where Vs is the supply voltage and Rs is the line impedance as shown in figure
3.9. By assuming Vd � ṽd(t) and Vs ≈ Vd we get that

Pd(t) =
Vd · vd(t) + V 2

d

Rs
(C.4)

We assume the ac power is assumed equal to the dc power so that

Pd(t) = Pac(t) (C.5)

this gives us that
Vd · vd(t)− V 2

d

Rs
=
v2

ac(t)

Rload
(C.6)
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This means that we can write the dc voltage as

vd(t) =
Rs
Rload

v2
ac(t)

Vd
+ Vd (C.7)

This can be rewritten as

vd(t) = Va · v2
ac(t) + Vd (C.8)

where
Va =

Rs
Rload · Vd

(C.9)



Appendix D

Square of sum containing odd
harmonics

This appendix will concern the square of a sum of odd harmonics and show how it
result in even harmonics. The square of a sum [28] is given by( ∞∑

i=1

vi(t)
)2

=
∞∑
i=1

v2
i (t) + 2

∞∑
i=1,k 6=i

vi(t) · vk(t) (D.1)

We also have that the product of two odd harmonics is given by

cos((2i+ 1)ωot) · cos((2k + 1)ωot) =
1

2
cos
(
2(i− k)ωot

)
+

1

2
cos
(
2(i+ k + 2)ωot

) (D.2)

By assuming vi(t) to be an odd harmonic on the form

vi(t) = Vi cos
(
(2i+ 1)ωot

)
(D.3)

and putting (D.2) into (D.1) we get that( ∞∑
i=1

cos
(
(2n+ 1)ωot

))2
=

1

2

∞∑
i=1

Vi +
1

2

∞∑
i=1

Vi cos
(
4(n+ 1)ωot

)
+

∞∑
i=1,k 6=i

ViVk cos
(
2(i− k)ωot

)
+

∞∑
i=1,k 6=i

ViVk cos
(
2(i+ k + 2)ωot

)
.

(D.4)
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Equation (D.5) covers all even harmonics, so it can be rewritten as

( ∞∑
i=1

cos
(
(2n+ 1)ωot

))2
=

1

2

∞∑
i=1

Vi +
∞∑
i=1

Ve,i cos
(
2i · ωot

)
(D.5)



Appendix E

Comments on amplitude
variations

The instantaneous amplitudes for all approaches previously discussed were estim-
ated using the normalization process. The amplitudes have not been commen-
ted further in the previous chapters. Figure E.1 shows the instantaneous amp-
litudes calculated using the different methods. All amplitudes are close to con-
stant and right below one pu. The amplitude of the grid IMF of the measured
voltage vac,m(t) had the largest fluctuations, with a variation less than ±2.5 %.
The comparison between the instantaneous frequencies of the grid component of
vac,m(t), vac,a(t) , vac,n(t) and vac,s(t) is more trivial when the amplitudes are
close to constant.
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Figure E.1: The instantaneous amplitudes from the grid component of the measured
waveform Vac,mg(t), result of the analytic investigation Vac,ag(t), and from the simula-
tion Vac,sg(t) shown together.
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