
Design of ground station receiver for
Kongsberg Satellite Services based on
Software Defined Radio

André Løfaldli

Master of Science in Electronics

Supervisor: Torbjørn Ekman, IET
Co-supervisor: Kristian Jenssen, Kongsberg Satellite Service

Roger Birkeland, IET

Department of Electronics and Telecommunications

Submission date: June 2016

Norwegian University of Science and Technology

i

Preface

The work described in this report is a Master’s Thesis, concluding the 5 year long
Master’s programme in Electronics at the Norwegian University of Science and
Technology (NTNU). It was written under supervision from Professor Torbjörn
Ekman at the Department of Electronics and Telecommunications and in collabo-
ration with Kongsberg Satellite Services (KSAT).

I would like to thank my supervisor, and Roger Birkeland, for fruitful discussions
and guidance, and also Kristian Jenssen and the whole KSAT team for the oppor-
tunity to work with them.

All source code is freely available in the Github repository lofaldli/gr-ccsds,
under the GNU GPLv3 license [1].

André Løfaldli

Trondheim,
16. June 2016

https://github.com/lofaldli/gr-ccsds

ii

iii

Problem Statement

KSAT would like to initiate a relationship with the next generation engineers
through a project where we study the use of Software Defined Radio (SDR) to
communicate with operating satellites.

The project is foreseen based on Ettus based SDR platform (or similar) and open-
source GNU radio, where the focus will be on developing a SDR for two-way
communication with in-orbit satellites. The student will have access to KSATs
operating antennas and real satellite data.

Examples of topics to cover:

• Developing a system (based on Ettus and GNU radio) for two-way commu-
nication towards satellites. The system should consider various modulation
schemes, frequencies, codings, recording data, satellite tracking, etc.

– Study of GNU radio, its capabilities and limitations

– Study of the Ettus SDR platform, including reception of 70 MHz IF
signal from antennas; capabilities, limitations, necessary extensions/ad-
dons

• Configuring and testing the system towards a specific satellite

• Presentation of results and recommendation for future work at KSAT.

KSAT will allocate a budget to provide the necessary hardware, and it can also be
possible to visit/work from KSATs site in Tromsø/Svalbard.

iv

v

Abstract

As the space industry keeps growing, the need for low cost solutions increases. This
applies not only to the launch vehicles and space segments, but also to the ground
station systems. In this report, a software defined radio (SDR) ground station
receiver implemented. It features an Ettus Research USRP SDR which converts
an analog signal to a digital baseband representation. The baseband signal, is sent
to a host computer, which runs an application that demodulates and decodes the
incoming signal to extract the transmitted data.

The software component is built with GNU Radio, an open source toolkit with a
rich set of signal processing features. It is designed to use a CCSDS frame format,
with forward error correction, and demodulate the signal using binary phase-shift
keying (BPSK). To synchronize to the symbol timing and carrier frequency of the
incoming signal, a clock recovery algorithm is used in addition to a Costas Loop.
This accounts for frequency offsets between transmitter and receiver, including
those from Doppler shifts.

The proposed system has been tested in two ways. First at short range, between
two SDR units, communicating in the VHF band using omnidirectional antennas.
Here, another application for uplink communication is implemented, also to be
used with an SDR, representing the satellite. The second test was done using
the SDR to receive downlink data from a satellite in low earth orbit. The satellite
communicates on the S-band with a data rate of 2 Mbit/s. Before the signal reaches
the SDR it is processed by RF equipment and mixed down to an intermediate
frequency of 70 MHz.

The results show that downlink reception from the space segment is possible. Only
a few of the received data frames had too many errors for the Reed Solomon
decoder to be able to correct them. Simulations show that the SDR would still be
able to perform satisfactory at a lower SNR. This could potentially allow for a cost
reduction in the RF equipment.

vi

vii

Sammendrag

Med en romindustri i vekst, øker etterspørselen etter lavkotnadsløsninger. Dette
gjelder b̊ade for oppskytningsfartøy og satellitter, men ogs̊a for kommunikasjon-
sutstyret p̊a bakken. I denne rapporten er det implementert en mottaker for
bakkestasjon med Software-definert radio (SDR). Det brukes en USRP SDR, pro-
dusert av Ettus Research, som konverterer analoge radiosignaler til digitale ba-
sisbandrepresentasjoner. Basisbandsignalet sendes videre til en PC, som kjører et
program som demodulerer og dekoder det mottatte signalet, og henter ut data.

Software-delen er implementert i GNU Radio, et åpen kildekode-prosjekt med et
stort antall signalbehandlingsverktøy. Den er designet for et CCSDS rammeformat
med innebygd feilh̊andtering, og demodulerer signalet som er binær faseskift-nøklet
(BPSK). For å synkronisere symbol-tidspunkt og frekvensfeil brukes en klokkegjen-
nvinningsalgoritme og en Costas Loop. Med dette blir frekvensvariasjoner mellom
sender og mottaker tatt høyde for, inkludert de som kommer fra Doppler-effekten.

Systemet er testet p̊a to forskjellige m̊ater. Først en ende-til-ende test, der to SDR
enheter brukes, med kommunikasjon p̊a VHF b̊andet med rundstr̊alende antenner.
Her brukes ogs̊a et program for sending, med den ene SDRen som representerer
satellitten. Den andre testen ble utført ved å motta data fra en satellitt i LEO-
bane. Satellitten sender et signal p̊a S-b̊andet med en datarate p̊a 2 Mbit/s. Før
signalet n̊ar inngangen p̊a SDRen, blir det behandlet av RF-utstyr og mikset ned
til en mellomfrekvens p̊a 70 MHz.

Resultatene viser at nedlastning av data fra en satellitt i bane er mulig med dette
systemet. Kun et f̊atall av de mottatte rammene hadde for mange feil til at Reed
Solomon algoritmen kunne rette de opp. Simuleringer viser at SDRen ville kunne
yte p̊a samme niv̊a med enda lavere SNR. Dette åpner for muligheten til å redusere
kostnaden til RF-utstyret.

viii

Contents

Preface i

Problem Statement iii

Abstract v

Sammendrag vii

Table of Contents ix

1 Introduction 1

2 Specification 3
2.1 Signal specification . 3
2.2 Frame format . 3

3 Hardware Requirements 7
3.1 Software Defined Radio . 7
3.2 Host Computer . 8
3.3 RF chain . 9

4 Implementation 11
4.1 Custom GNU Radio blocks . 11
4.2 GNU Radio flowgraphs . 13

5 Verification 17
5.1 Reed Solomon . 17
5.2 Loopback simulation . 18

6 Testing 19
6.1 Channel Simulation . 19
6.2 End-to-end between two software-defined radios 21
6.3 Downlink from space segment . 21

7 Results and Discussion 23

ix

x CONTENTS

7.1 Through the flowgraph . 23
7.2 Statistical analysis . 25

8 Conclusion 29

9 Future Work 31

A Reed Solomon verification (C) 33

B Statistical analysis (Python) 35

C GNU Radio Types 37

List of Abbreviations 39

List of Figures 41

List of Tables 43

References 45

Chapter 1

Introduction

With the growing space industry, the barriers of entry are decreasing, both in cost
and in effort. The CubeSat standard allows students at universities to be part of
projects where they build satellites from scratch. These projects give students a
taste of what its like to work in the space industry, as well as giving experience in
teamwork. I addition, the increasing number of private companies make launching
of satellites into orbit more affordable. This all means that universities and smaller
companies with a tight budget can afford to launch their own satellites.

To fit with the low cost of these projects, new solutions for the ground segments
are also needed. Traditional hardware for space communication is very expensive
and new solutions are being developed. By using a software defined radio (SDR),
the hardware complexity is reduced significantly. Typically, an SDR performs basic
passband processing before sampling the signal and digitally converting to base-
band signals. For baseband processing a host computer is required. It uses software
implementations of traditional signal processing components, such as filters, PLLs
and demodulators.

In this report, a baseband processing application has been implemented. It is based
on GNU Radio, an open source software toolkit with a rich set of signal process-
ing features. The implemented design use the CCSDS frame format with forward
error correction and binary phase-shift keying (BPSK). The downlink application
features a Costas Loop, which accounts for any frequency offset between the trans-
mitter and receiver. An uplink application was also implemented for end-to-end
testing.

In Chapter 2 the signal specifications will be described along with the properties of
the frame format. Then the hardware requirements will be discussed in Chapter 3,
both for the SDR and the host computer, and briefly for the RF chain.

1

2 CHAPTER 1. INTRODUCTION

The implementation details will be covered in Chapter 4. First the custom C++
GNU Radio blocks for encoding and decoding data frames, and then the flowgraphs
making up the applications. Chapter 5 describes how the behavior of the imple-
mented modules can be verified to work in the intended way. This includes using
the Reed Solomon decoder to count the number of errors in the received data.

Chapter 6 describes the methods used for testing the performance of the system.
Both simulating the communication channel with various signal to noise ratios, and
using the system with real hardware receiving from a satellite in orbit.

In Chapter 7 the results of these tests will be discussed, and in Chapter 8 a final
judgement is made. Finally, Chapter 9 covers some more topics for future work.

Chapter 2

Specification

Because this system will work with an already operational space segment, the
properties of transmitted signal is already set. In this chapter the specifics of the
physical and data link layer of the communication system will be described.

2.1 Signal specification

The communication between the space and ground segments take place in the S-
band, with a carrier frequency of 2215 MHz. This signal is mixed down to an
intermediate frequency IF at 70 MHz before further processing by the ground sta-
tion.

The data is modulated using differential binary phase-shift keying (DBPSK). This
is achieved by using a regular BPSK modulation where the data bits are differ-
entially encoded. Differential encoding is equivalent to the pulse code modulation
(PCM) called non-return zero mark (NRZ-M).

Two different data rates are used by the communication system. The high rate
RH = 2 Mbit/s and the low rate RL = 32 kbit/s. However, only RH is used by the
space segment.

2.2 Frame format

The frame format used by the communication system is based on a standard from
the Consultative Committee for Space Data Systems (CCSDS). Its structure and

3

4 CHAPTER 2. SPECIFICATION

parameters are defined in the CCSDS Recommended Standard for TM Synchro-
nization and Channel Coding [2].

A single frame is of length 1279 B, which is equivalent to 10 232 bit. In addition
to the data to be transferred, it consists of an attached sync marker (ASM) and
forward error correction (FEC) data. Each frame contain 1115 B of data, which is
divided into I = 5 subframes of length K = 223.

Figure 2.1: CCSDS frame structure

The frames are transmitted in a tailbiting manner. This means that the first symbol
of a frame is preceded by the last symbol of the prevoius one.

The FEC method used is Reed Solomon (RS), a systematic non-binary code with
symbol size M = 8 bit. By encoding each subframe separately they get a total
length of N = 255, where the number of check symbols are N−K = 32. According
to Lin and Costello [3], t errors may be corrected in a codeword with 2t check
symbols. In this case the maximum number of errors in a subframe is tmax =
32/2 = 16. With the 4 B long ASM, the total frame length becomes 4 + I ×N =
1279. This gives a code rate of 1115/1279 ≈ 0.87. Figure 2.1 shows the structure
of a single frame.

To make the data more robust to burst errors, the subframes are interleaved symbol
wise. This can be seen as as forming a matrix (2.1) from column vectors containing
the subframes, and reading row-by-row. When deinterleaving the codewords, the
matrix is instead read column-by-column.

x0,0 x0,1 x0,2 x0,3 x0,4
x1,0 x1,1 x1,2 x1,3 x1,4
x2,0 x2,1 x2,2 x2,3 x2,4

...
...

...
...

...
x254,0 x254,1 x254,2 x254,3 x254,4

 (2.1)

By using this method, a total of I × tmax = 80 consecutive errors is correctable,
assuming the frame is otherwise error free. This is because the interleaving makes
sure the errors are evenly distributed into each subframe.

Another procedure used is randomization, or scrambling, of the data. This is a
technique which aims to remove long sequences of 1’s and 0’s by using a pseudo-

2.2. FRAME FORMAT 5

random number (PRN). The PRN is generated by using a shift register, for which
the generator polynome is given in (2.2) [2].

h(x) = x8 + x7 + x5 + x3 + 1 (2.2)

6 CHAPTER 2. SPECIFICATION

Chapter 3

Hardware Requirements

In this chapter, the properties and requirements for the hardware in the ground
station system will be discussed. First, a description of an SDR in general, with
the details of the specific unit used in the experiments. Then the requirements
of the host computer will be discussed, followed by a brief description of the RF
chain.

3.1 Software Defined Radio

The purpose of an SDR is to sample an analog passband signal, and then convert it
to a digital baseband representation. To achieve this, there are several important
requirements to meet.

The RF frontend must be able to tune to the center frequency of the incoming
signal. For the purpose of this system, it must be able to tune to 70 MHz which is
the IF This is within the range of many popular SDRs and daughterboards [4, 5, 6].

It must also have a filter with a wide enough bandwidth to have a sample rate
which satisfies the Nyquist theorem [7]. Because the system will operate in real
time the communication interface between the SDR and host computer must be
able to handle the data rate. In this system, the signal bandwidth is not known
exactly, but it can be approximated from the data rate or estimated from an FFT
plot. As will be discussed in Chapter 7, a sample rate of 10 MSample/s giving and
OSF of 5 is sufficient. Using either Gigabit ethernet or USB 3 for communication
with the host, the system is able to operate in real time [8].

The SDR used in this system is the Universal Software Radio Peripheral (USRP).
It is a family of software defined radios designed and sold by Ettus Research.

7

8 CHAPTER 3. HARDWARE REQUIREMENTS

The various configurations typically consists of a motherboard and a modular RF-
frontend, referred to as a daughterboard.

The USRP N210 has a motherboard featuring a Xilinx Spartan FPGA and com-
municates with the host computer through Gigabit Ethernet. It has an analog-to-
digital converter (ADC) with a 14 bit resolution and a sample rate of 100 MSample/s,
and a digital-to-analog converter (DAC) with 16 bit resolution and sample rate
400 MSample/s [9].

The WBX daughterboard has a 40 MHz bandwidth and is capable of operating
between 50 MHz and 2.2 GHz [4].

After converting the signal to digital representations they are transferred to the
host computer. The Universal Hardware Driver (UHD), timestamps all samples
to make sure the host computer receives them in the correct order and without
dropping samples.

3.2 Host Computer

The host computer connected to the SDR performs all remaining signal processing
in a GNU Radio application. Most of the necessary features are already built
in, but the CCSDS frame functionality has been added as an out-of-tree module
(OOT). Interaction with the SDR is done using the UHD module, which uses a
32 bit complex floating point number data type.

The rate at which the UHD module is producing item is determined by the Sample
Rate parameter. This rate also determines the rate at which the blocks downstream
from the UHD: USRP Source [10] receives items. It is important that the blocks are
able to perform their operations at least as fast as their input buffers receive items.
If the CPU of the host computer has insufficient calculating power, overflows might
occur and negatively affect the performance of the application. For the purpose of
the data rates in this system, it appears that a quad-core CPU is sufficient.

If the UHD produce more items than the flowgraph is able to handle, it will drop
samples when input buffers are full. This makes communication impossible, and
must be sorted out by increasing power or reducing data rates.

It is possible to write the sampled data to a file for later processing, using the
File Sink block [10]. This block can be connected to the output port of any other
block, for inspecting the signal as it goes through the flowgraph. At data rates
as high as in this system, the required harddisk space quickly becomes very large.
The file size may be calculated from the duration t, sample rate Rs and the size of
the complex data type which is 2 × 32 bit = 64 bit = 8 B. Equation 3.1 shows the
expression for the resulting file size.

3.3. RF CHAIN 9

t×Rs × 8 B (3.1)

For Rs = 10 MHz this gives a file ”growth rate” of 80 MB/s.

3.3 RF chain

Before the signal is fed to this input port of the SDR it is mixed down from the S-
band to an intermediate frequency (IF) signal. This is done by a chain of hardware
illustrated in Figure 3.1.

The S-band signal is received by a parabolic antenna with 3 m diameter, that sits
inside a radome. To fully utilize the high directivity, the antenna tracks the satellite
across the sky during a pass. Before mixing, the signal is filtered to remove out-of-
band noise and amplified in an LNA. A local oscillator is used to convert the signal
to be centered at 70 MHz After mixing, the IF signal is filtered again to remove
out-of-band noise and harmonics.

The resulting signal is the one connected to the input port of the SDR.

Figure 3.1: Simplified block diagram of the downlink chain

10 CHAPTER 3. HARDWARE REQUIREMENTS

Chapter 4

Implementation

This chapter will cover the implementation details of the application running on
the host computer. It is implemented as an out-of-tree module for GNU Radio,
which means it will be possible to use along with its default modules [11].

GNU Radio is an open source project with a large community of active users [12].
It is implemented in C++, with a glue layer of Python for flexible application
development and rapid prototyping [13]. A typical application consists of several
modules, or blocks, each performing a specific task. These blocks communicate run
in independent threads and communicate mainly using circular buffers. A built in
scheduler makes sure the application runs smoothly and avoids buffer overflows
[13].

To implement an application meeting the requirements discussed in Chapters 2 and
3, custom blocks were implemented. Together with the native blocks they form a
flowgraph capable of demodulating and decoding the received signal.

4.1 Custom GNU Radio blocks

In order to support the CCSDS frame format within a GNU Radio application,
as described in Section 2.2, a new module has been implemented. It contains two
blocks, one for encoding and one for decoding, both are written in C++ [1]. The
decoder detects the ASM at the beginning of each frame and then a starts to decode
the RS codeword. If the decoding is successful, the data contained in the frame
will be sent to the output port of the block. The encoder block receive data and
produce frames that are compatible with the decoder, and is used for the uplink
application.

11

12 CHAPTER 4. IMPLEMENTATION

To generate Reed Solomon codewords and correct errors, KA9Q’s fec-3.0.1 open
source library [14] is used. It is a collection of C functions for various FEC schemes,
like Viterbi and Polar codes, but only the RS functions are used in this system.

The parameters required for the RS functions are specified in [2]. The codeword
length is N = 255, with K = 223 data symbols. Making the number of parity
symbols the remaining N −K = 32

To decouple the design of the frame encoder and decoder blocks, the RS function-
ality is contained to its own class. This class has to has two public functions and
acts as a wrapper the respective RS functions in fec-3.0.1. encode() makes a call
to encode_rs_ccsds() which generates the check symbols. decode() makes a call to
decode_rs_ccsds() which checks for any errors and corrects them if possible.

The CCSDS Encoder [1] block converts data into CCSDS frames encoded with
RS data and the ASM. Its input port accepts asynchronous messages containing
1115 B of data.

The data is first divided into I = 5 arrays representing the subframes, before
generating the RS parity data. These are then interleaved and inserted into the
frame, as shown by the following code snippets.

for (i=0; i<I; i++) {

for (n=0; n<N; n++) {

frame[i + (I*n)] = subframe_i[n];

}

}

After the subframes are interleaved to form a complete frame, the content is scram-
bled by xor’ing with the PRN generated from the polynome (2.2).

for (i=0; i<I*N; i++) {

frame[i] ^= PRN[i%255];

}

Finally the ASM is inserted in front of the frame and it is sent from the output
port as a stream of packed bytes.

The CCSDS Decoder [1] reverses the process from the encoder. Its input port takes
a stream of unpacked bytes, which it searches for frames to decode.

It is implemented as a finite state machine (FSM) with two states; SYNC and DECODE.
In the SYNC state it will shift one bit at a time into a 32 bit long register data_reg.
By xor’ing with the ASM stored in sync_word the result will have 1’s where they are
different. The hamming distance is then calculated by counting the number of 1’s
using a function from the VOLK library [15].

data_reg = (data_reg << 1) | (in[i++] & 0x01);

wrong_bits = data_reg ^ sync_word;

volk_32u_popcnt (&nwrong , wrong_bits);

4.2. GNU RADIO FLOWGRAPHS 13

If the number in nwrong is less than a given threshold, the FSM enters the DECODE

state. It starts by shifting in enough bits to match the length of a full frame (minus
the ASM), given in (4.1), into an array of bytes.

1275 B× 8 bit/B = 10 200 bit (4.1)

To descramble the frame, the symbols are xor’ed with the same PRN as in the
encoder, giving back their original value. The subframes are then deinterleaved by
changing the order of the for-loops before the RS data is checked. This is the same
as changing from reading a matrix row-by-row to column-by-column.

If the number of errors t in a codeword is 0 < t < 16 they will be corrected, and
the data in the subframe extracted. In cases where t > 16 the RS algorithm is
unable to correct the frame, and the data is lost.

4.2 GNU Radio flowgraphs

A set of GNU Radio flowgraphs have been implemented to act as the baseband
processing application. Figure 4.1 shows a block diagram representation of the
GNU Radio and SDR system combined. In the blocks in the GNU Radio box
represent the application running on the host computer. While the blocks in the
USRP box represents the FPGA and RF hardware. They are connected using the
UHD interfaces found in both the host computer and the SDR.

Figure 4.1: Block diagram of the SDR transceiver

4.2.1 Downlink

Figure 4.2 shows the downlink flowgraph as it is represented in the graphical design
tool; GNU Radio Companion [12]. The colors on the input and output ports
indicate the data types and an overview is included in Appendix C

14 CHAPTER 4. IMPLEMENTATION

Figure 4.2: Downlink

The UHD: USRP Source [10] is used to generate a stream of complex samples in
the downlink flowgraph. This is the digital representation of the signals received
by the SDR hardware. By setting the parameters Center Freq, Gain and Antenna
the SDR hardware may be controlled by the application.

To reduce the out-of-band noise of the received signal, the block Frequeny Xlating
FIR Filter [10] is used. It is a finite impulse response (FIR) filter with a transfer
function defined by assigning a list of numbers to the Taps parameter.

To generate the taps for a low pass filter the GNU Radio utility function firdes.

low_pass() [10] is used. It takes the bandwidth and roll-off factor as arguments and
calculates coefficients for the taps. Optionally, a window function may be passed as
a parameter to make a matched filter. The default window function is a Hamming
Window, which is optimized to minimize the power of the first side lobe [16].

In case of frequency mismatch in the received signal, the parameter Center Fre-
quency may be used to translate the signal in the frequency domain, acting as a
manual tuner.

The next block in the chain is the AGC2 [10], which normalizes the signal power
to the value of the Refecence parameter. Its operating behaviour is controlled
by the other parameters, and may be appropriately adjusted during runtime. By
normalizing the signal power the performance of the next blocks in the chain are
improved.

To synchronize the symbol timing of the receiver, the Clock Recovery MM [10]

4.2. GNU RADIO FLOWGRAPHS 15

selects the optimal sample for every symbol. It is based on an optimized version [17]
of the Mueller and Müller algorithm for Timing Recovery in Synchronous Digital
Receivers [18]. By selecting the optimal sample it effectively decimates the signal
by a factor set by parameter Omega. This value must be equal to the over sampling
factor (OSF) of the received signal such that the condition (4.2) is true.

sample rate×OSF = symbol rate (4.2)

After the signal is decimated the Costas Loop [10] keeps track of the difference
in carrier frequency ∆f between the local oscillator and the received signal. This
phenomenon arises partially from the fact that the transmitter and receiver have
an uncertainty in their exact clock frequency. The dominating factor is however
the Doppler frequency shift which appears when there is a relative velocity ∆v
between transmitter and receiver. A simplified expression of ∆f is therefore given
as in Equation 4.3.

∆f =
fcarrier

c
×∆v (4.3)

Phase coherence between consecutive samples is required for correct demodulation.
This is because the Constellation Decoder [10] makes a hard decision based on the
sign of the real part of each sample. Its behaviour is defined by the Constellation
parameter.

The Differential Decoder [10] converts the data into its original values, before the
frames are decoded in the CCSDS Decoder [1]. After decoding the data is passed
on as asynchronous messages.

4.2.2 Uplink

Figure 4.3 shows an example uplink flowgraph, where a Socket PDU [10] block
delivers the data to the flowgraph. This allows other applications to interact with
the GNU Radio process using UDP or TCP.

Figure 4.3: Uplink

16 CHAPTER 4. IMPLEMENTATION

The uplink chain takes in data as a series of asynchronous messages, which are en-
coded and modulated before they are sent to the SDR. As described in Section 4.1,
the CCSDS Encoder produce a stream of packed bytes containing the encoded
data.

This stream is sent to the Constellation Modulator [10] block which performs
generic passband modulation. To determine the modulation type, the Constel-
lation parameter must be assigned a Python object. By using a BPSK object, and
setting the parameter Differential to True, it will perform a DBPSK modulation. It
uses a root-raised cosine filter for pulse shaping, with a length defined by the Sam-
ples per Symbol parameter. The rolloff factor of the filter is set by the parameter
Excess BW.

The UHD: USRP Sink [10] acts as the interface to the USRP hardware, and re-
ceived the complex stream containing the modulated signal. It is controlled by the
same parameters as the source in the downlink flowgraph.

Chapter 5

Verification

The purpose of this chapter is to verify the correctness of the system behavior. As
the data transmitted from the space segment is not known, other approaches has
to be used. Because the RS decoder algorithm reports if the frames are decodable,
this can be used as a way of counting frame loss.

5.1 Reed Solomon

Since the data is encoded with Reed Solomon parity data, it is possible to detect
any errors in transmission. Each codeword has a total of N = 255 symbols, where
K = 223 symbols are data. The remaining N − K = 32 symbols are the check
symbols [2].

Lin and Costello [3] states that t errors can be corrected in a codeword containing
2t check symbols. If there are more than t errors the codeword can not be decoded.

KA9Q’s FEC library [14] is used to encode and decode Reed Solomon codewords. It
is written in C and use a number of look-up tables (LUTs) for efficient calculation.

The data is encoded using the function encode_rs_ccsds(). It takes two arrays as
argument, one containing the data symbols and one to write the check symbols in.
The third argument indicates the padding size, for use with shorter codewords, and
is set to 0 in this case. The following code shows the process of encoding a string
containing known data in the form of ASCII characters.

uint8_t data [223] = "Lorem ipsum dolor sit amet ...";

uint8_t parity [32];

encode_rs_ccsds(data , parity , 0);

17

18 CHAPTER 5. VERIFICATION

The codeword is made up of the data, followed by the check symbols.

uint8_t codeword [255];

memcpy(codeword , data , 223);

memcpy (& codeword [223], parity , 32);

To insert an error in the codeword means changing the value of one or more of the
bits in a symbol. A symbol is treated as an error if any number of bits are different,
this number does not effect the correction ability.

codeword [42] = 0;

codeword [69] ^= 0xff;

After inserting a number of errors, the function decode_rs_ccsds() is used. It takes
the codeword as the first argument which will be corrected if possible. The three
remaining arguments are not used in this case and are set to 0. The return value
indicates the number of errors corrected. If correction is not possible the return
value will be -1.

int8_t nerrors = decode_rs_ccsds(codeword , 0, 0, 0);

By ensuring the number of errors is not equal to -1 as well as comparing the
corrected codeword to the original, it can be confirmed that the Reed Solomon
codes work as expected. A complete C-implementation is found in Appendix A

5.2 Loopback simulation

Figure 5.1 shows the CCSDS Encoder and Decoder blocks in a GRC flowgraph. The
encoder periodically receives a message containing random data, which it wraps in
a CCSDS frame and outputs as a packed byte stream. Because the decoder expects
an unpacked byte stream, the Unpack K Bits block is used with K = 8.

By setting the parameter Verbose to True for the decoder, the result of the Reed
Solomon check may be inspected. To compare the original data with the decoded,
the parameter Print Packets may be set to True on both blocks. This setup confirms
that the encoder and decoder blocks are compatible with each other.

Figure 5.1: Loopback

Chapter 6

Testing

In this chapter the methods of testing the ground station receiver is described.
This to get an idea of the capabilities and limitations of the system.

First, a description of a simulation which measures the performance of the receiver
under various levels of SNR. This is all done within GNU Radio and assumes a
channel with a complex Gaussian noise distribution.

Then, a simple end-to-end test which demonstrates communication between two
SDR units with different clock phases. For this to be possible, the receiver must
synchronize to the timing of the transmitter using a clock recovery algorithm.

Finally, the setup for the downlink from the space segment, which is the most
important test. This because it shows how the system performs in its intended
environment.

6.1 Channel Simulation

A GNU Radio flowgraph was used to test the system’s performance under various
levels of signal-to-noise ratio (SNR). It consists of a transmitter (TX) and a receiver
(RX) with an additive white Gaussian noise (AWGN) channel connecting them.
Figure 6.1 shows a block diagram representation of the communication system.

The encoder produces a set number of CCSDS frames of length 1279 B which are
modulated and sent through the noisy channel. After the receiver has filtered
and synchronized the incoming signal, the decoder tries to decode it It counts the
number of ASM’s it detects as well as the number of successfully decoded frames
and subframes.

19

20 CHAPTER 6. TESTING

Figure 6.1: Block diagram of communication system

The channel is simulated by adding a zero-mean complex Gaussian noise signal
CN (0, σ2) to the data signal. To generate the noise signal, the Noise Source [10]
block is used. Its parameter Amplitude is used to set the noise voltage amplitude
N0. The noise is added to the signal using the Adder [10] block.

Table 6.1 shows the how the SNR effects the frame loss of the communication
system. The first column shows the value of the amplitude parameter set in the
noise source. Keeping the amplitude of the data signal constant, the resulting SNR
is shown in the second column. Column three shows the percentege of ASM’s not
detected by the decoder, if a frame is not detected it may not be decoded either.

The two rightmost columns shows the percentage of subframes and total frames,
respectively, that the decoder where not able to decode. For a frame to be labeled
as decodable, all five subframes must be decodable. In this experiment N = 10000
frames are sent through the channel, and repeated for all levels of N0. This should
give a rough number on the frame success rate, although higher numbers is pre-
ferrable be used to get a more accurate result.

N0 SNR [dB] SYNC [%] SUB [%] DEC [%]
0.1 26 0.0 0.0 0.0
0.2 20 0.0 0.0 0.0
0.3 16 0.0 0.0 0.0
0.4 14 0.0 0.0 0.0
0.5 12 0.0 0.0 0.0
0.6 10 0.0 0.0 0.0
0.7 9 0.2 0.2 0.2
0.8 8 1.0 1.0 1.0
0.9 7 3.5 4.2 4.2
1.0 6 7.8 10.8 10.9
1.1 5 16.4 39.4 30.4
1.2 4 26.6 83.2 100

Table 6.1: Packet Loss for various SNR

It appears that for SNR > 10 dB, there is a very low frame loss rate, and as we
will see in Section 6.3, this is well below the measured SNR.

6.2. END-TO-END BETWEEN TWO SOFTWARE-DEFINED RADIOS 21

6.2 End-to-end between two software-defined ra-
dios

A basic end-to-end test were performed using two SDR devices. One of which acts
as the satellite and the other as the ground station. The SDRs in question is the
USRP E310 [19] and USRP21 equipped with omnidirectional antennas.

The carrier frequency was set to 144.5 MHz, which is in the 2 m amateur radio
band. This was chosen because it is within the tuning range of both SDRs. A
data rate of 32 kbit/s was chosen because to fit the maximum sampling rate of the
USRP2.

6.3 Downlink from space segment

Several tests have been made where the SDR was used to receive a signal coming
from one of the satellites in the constellation. The test system consisted of the RF
chain, which was discussed in Section 3.3, and a USRP N210 with a host computer
connected.

The RF chain converts the S-band signal to IF, which is sampled by the SDR at
a rate RS = 10 MHz. With the data rate RD = 2 Mbit/s, this equates to an over
sample factor OSF = RS

RD
= 5 Sample/bit These parameters are set by running the

downlink flowgraph application as described in Section 4.2.1.

Other parameters that are set is the bandwidth BW at 1.4 MHz and transition
width (TW) at 1.1 MHz. This removes most of the out-of-band noise still present
in the sampled signal.

By using the graphical sinks native to GNU Radio, one can inspect the signal at
various points in the flowgraph. This is achieved by connecting them to the output
ports of the blocks in the chain.

It is also possible to store the received signal in a file by using the File Sink [10]
block. Then this file may be used as the signal source, using the File Source [10]
block, to analyze the signal after the pass is complete.

1The USRP2 is no longer available and has been repaced by the N210 [9]

22 CHAPTER 6. TESTING

Chapter 7

Results and Discussion

The experiment described in Section 6.3 was performed several times on different
satellite passes. Because the satellite makes different paths across the sky each
time, the receiver will see a different channel each time. The channel will also
be change during a single pass, as the signal path through the atmosphere also
changes.

7.1 Through the flowgraph

Figure 7.1 shows the frequency domain spectrum of the sampled signal. Because it
is sampled at an OSF = 5 Sample/bit there will be some out-of-band noise which
may be filtered out.

Figure 7.1: Spectrum

The raw spectrum is shown in light blue and the filtered in dark blue. Using a

23

24 CHAPTER 7. RESULTS AND DISCUSSION

low pass filter with a Hamming window function and a filter bandwidth1 of about
4.5 MHz, the out-of-band noise is reduced significantly.

By inspecting the constellation after the signal goes through each of the blocks
after the filter, one may see their effects on the signal.

(a) (b)

(c) (d)

Figure 7.2: Constellation plots from various points on the flowgraph

Figure 7.2a shows the signal directly after the filter, and it is clear that the power
is very low. This is confirmed by the spectrum in Figure 7.1, where the maximum
power of the signal is less than −60 dB/Hz In Figure 7.2b, the signal is normalized
to have values between -1 and 1, by passing it through the AGC [10] block. Here,
the samples are apparently distributed randomly inside the unit circle. This effect
is due the fact that the signal is oversampled and there is an offset in frequency.

After passing through the Clock Recovery MM [10] block, the signal is decimated
to have a sample rate equal to the symbol rate. It now only contains the samples
with highest power and are therefore distributed on the unit circle, as shown in
Figure 7.2c.

Using the Costas Loop [10], the error in center frequency is calculated and ac-
counted for. By removing the constant phase offset between consecutive samples,
the symbols are now located near the expected constellation points [7]. Figure 7.2d
shows samples located near -1 and 1 on the real axis. It is clear that there is still a

1Here defined as the width of the main lobe

7.2. STATISTICAL ANALYSIS 25

noise component present in the signal. The properties of this will be investigated
in Section 7.2

Figure 7.3 shows the waveforms in the time domain before and after demodulation
in the Constellation Decoder [10]. In Figure 7.3a the signal is NRZ, while in
Figure 7.3b the demodulated bits are shown.

(a) (b)

Figure 7.3: Waveforms of time domain signals

7.2 Statistical analysis

With File Sink block connected to the output port of the UHD: USRP Source raw
IQ samples are written to a file. This is useful for processing the sampled signals
at a later time.

A total of 199 MB was recorded, after the synchronisation stage, which contains
approximately 25 × 106 samples. They were processed using the Python script in
Appendix B, to find the statistical properties of the signal. It uses the statisitics
module of the SciPy library [20] for analysis and the Matplotlib library [21] for
plotting.

Figure 7.4 shows a heatmap of the samples in the complex plane, with the I compo-
nent in the x-direction and the Q component in the y-direction. The two non-blue
areas indicate that all samples are gathered near the expected constellation points
−1 and 1.

By analyzing the I and Q components as independent stochastic variables, the
probability distribution of the channel noise may be estimated. Figure 7.5 shows
histograms of the received samples with bell-curves drawn over for comparison.

For the I component, the samples were also divided into two categories x > 0 and
x < 0. This allows each of them to be treated as two independent variables, with
different µ values. The Q component was also treated as a separate stochastic vari-

26 CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.4: Heatmap of I/Q samples

(a) (b)

Figure 7.5: Histograms of I and Q components separately

7.2. STATISTICAL ANALYSIS 27

able, independent from the other two. If the noise is truly Gaussian, the variance
σ2 of the two I signals, as well as the Q signal, should be the same.

signal µ σ2

I|x < 0 -1.1433 0.0227
I|x > 0 1.1674 0.0223
Q -0.0063 0.0221

Table 7.1: Statistical properties of the received signal

Table 7.1 shows the estimated statistics of the three variables, which are used to
draw the fitted curves in Figure 7.5. These results shows a slight difference in σ2,
as well as in the µ values of the two I components. The µ value of Q is also not
equal to 0. However, the figures show that the distribution is nearly identical to
the true Gaussian fitted line.

The differences may be caused by the fact that the signal is processed by the low-
pass filter, clock recovery and Costas loop before it is sampled, possibly having an
effect on the distribution.

28 CHAPTER 7. RESULTS AND DISCUSSION

Chapter 8

Conclusion

As discussed in the previous chapter, the proposed system has been tested in two
ways. The short range tests has shown that end-to-end communication is possible
using two SDR units. Using omnidirectional antennas it was possible to send and
receive signals on the VHF band. It was shown using the same modulation and
frame format as the system is intended for, albeit at a lower bitrate of 32 kbit/s.

Utilizing the capabilities of the KSAT ground station site in Tromsø, the system
was also proven capable of receiving data from a satellite in low earth orbit. The
satellite communicates on the S-band with a data rate of 2 Mbit/s. Before the
signal reaches the SDR it is processed by RF equipment and mixed down to an
intermediate frequency of 70 MHz.

The results demonstrate that downlink reception from the space segment is pos-
sible, with a low number of undecodable frames. Simulations show that the SDR
should still be able to perform satisfactory at a lower SNR. This suggests that there
are possibilities for reducing the cost of the system as a whole even further, while
still having acceptable performance.

29

30 CHAPTER 8. CONCLUSION

Chapter 9

Future Work

To further improve the usefulness of the system there are a few more topics to be
investigated.

An application for transmitting data has been implemented, and is meant to be
used for sending commands to the space segment. It was has been tested on short
range, but a real test with a satellite in orbit is required to verify its performance.

Another thing to investigate is the SDRs ability to handle higher data rates, on
the order of 100 Mbit/s area. This would require higher order modulation schemes,
such as OQPSK and 8-PSK. These are already featured in GNU Radio, and should
be interchangeable with the already present BPSK blocks. Higher order modulation
will also require other synchronization techniques.

To get a better picture of the computational requirements of the GNU Radio ap-
plications it would be useful to do runtime profiling of the software running on the
host computer. This may allow for some optimization and removal of bottlenecks,
which is critical when dealing with higher data rates.

As a final task, it would be preferable to have the whole application bundled in
a single package. This would allow quick installation and setup for users. It is
also desirable to have a graphical frontend for displaying key figures, like Eb/No,
Doppler shift and frame loss, as well as options for tuning certain parameters, like
filter bandwidth.

31

32 CHAPTER 9. FUTURE WORK

Appendix A

Reed Solomon verification
(C)

#include "string.h"

#include "stdio.h"

#include "stdint.h"

#include "fec.h"

#include "ccsds_tables.h"

void print_data(uint8_t*, size_t);

int main() {

// encode data

uint8_t data [223] = "Lorem ipsum dolor sit amet , consectetur

adipiscing elit. Fusce varius convallis sapien. Cras eu eleifend

quam. Ut nulla dolor , blandit eu nisl sed , vulputate pellentesque

leo. Nam dignissim quam tortor , nec mollis sem amet.";

uint8_t parity [32];

encode_rs_ccsds(data , parity , 0);

// make codeword

uint8_t codeword [255];

memcpy(codeword , data , sizeof(data));

memcpy (& codeword[sizeof(data)], parity , sizeof(parity));

// insert errors

memset (& codeword [55], 0, 10);

printf("data with errors :\n");

print_data(codeword , sizeof(codeword));

printf("\n");

// decode data

int nerrors = decode_rs_ccsds(codeword , 0,0,0);

if (nerrors != -1) printf("decoded with %i errors\n", nerrors);

33

34 APPENDIX A. REED SOLOMON VERIFICATION (C)

else printf("could not decode\n");

printf("data with errors corrected :\n");

print_data(codeword , sizeof(codeword));

}

void print_data(uint8_t * data , size_t N) {

for (int i=0; i<N; i+=10) {

for (int j=0; j<10; j++) {

if (i+j<N) printf("%x%x ", (data[i+j] >> 4 & 0x0f), data[i

+j] & 0x0f);

else printf(" ");

}

printf(" ");

for (int j=0; j<10 && i+j<N; j++) {

if (data[i+j] > 31 && data[i+j] < 127) printf("%c", data[i

+j]);

else printf(".");

}

printf("\n");

}

}

Appendix B

Statistical analysis (Python)

import numpy as np

from scipy import stats

from gnuradio import gr, blocks

import matplotlib.pyplot as plot

def read_file(filename ,N=None):

src = blocks.file_source(gr.sizeof_gr_complex , filename)

snk = blocks.vector_sink_c ()

tb = gr.top_block ()

tb.connect(src ,snk)

tb.run()

data = snk.data()

if N and N < len(data):

N = int(N)

data = data[:N]

return np.array(data)

def print_stats(data ,label=None):

if label:

print label

for k,v in get_stats(data).items():

print k,v

print ’’

def get_stats(data , exp_mean =0.0):

stat = {}

(stat[’N’], (stat[’min’],stat[’max’]), stat[’mean’], stat[’var’],

stat[’skew’], stat[’kurt’]) = stats.describe(data)

return stat

def gauss(mean , var , N, label):

x = np.linspace(stats.norm.ppf (0.01) , stats.norm.ppf (0.99) ,N)

plot.plot(x, stats.norm.pdf(x,loc=mean ,scale=var **0.5) , color=’r’,

linewidth=2, label=label)

35

36 APPENDIX B. STATISTICAL ANALYSIS (PYTHON)

def histogram(data , label=None):

plot.hist(data ,color=’b’,

bins =200,

histtype=’stepfilled ’,

linewidth=1,

normed=True ,

stacked=True ,

alpha =0.5,

label=’data’)

plot.xlabel(’x’)

plot.ylabel(’f(x)’)

s = get_stats(data)

gauss(s[’mean’],s[’var’],s[’N’],’fitted ’)

def scatter(real , imag , label=None):

plot.hist2d(real , imag ,

bins =300,

normed=True ,

range =[[-2.0 ,2.0] ,[-1.5 ,1.5]] ,

label=label)

plot.xlabel(’I’)

plot.ylabel(’Q’)

def main():

data = read_file(’./ samples.dat’,1e7)

print ’N = ’ +str(len(data))

real = data.real

imag = data.imag

print_stats(real[real <0],’re|x<0’)

print_stats(real[real >0],’re|x>0’)

print_stats(imag ,’im’)

plot.subplot (2,2,1)

histogram(real[real <0])

plot.legend ()

histogram(real[real >0])

plot.subplot (2,2,2)

histogram(imag)

plot.legend ()

plot.subplot (2,2,3)

scatter(real , imag)

plot.colorbar ()

plot.show()

if __name__ ==’__main__ ’:

main()

Appendix C

GNU Radio Types

Figure C.1: GNU Radio Types

37

38 APPENDIX C. GNU RADIO TYPES

List of Abbreviations

ADC Analog-to-Digital Converter. 7

ASCII American Standard Code for Information Interchange. 17

ASM Attached Sync Marker. 4

AWGN Additive White Gaussian Noise. 19

BPSK Binary Phase-Shift Keying. 3

BW Bandwidth. 21

CCSDS Consultative Committee for Space Data Systems. 4

CPU Central Processing Unit. 8

DAC Digital-to-Analog Converter. 7

DBPSK Differential Binary Phase-Shift Keying. 3

FEC Forward Error Correction. 4

FIR Finite Impulse Response. 14

FPGA Field Programmable Gate Array. 7

FSM Finite State Machine. 12

GNU GNU’s Not Unix. 1

IF Intermediate Frequency. 3

IQ In-phase/Quadrature. 23

LUT Look-Up Table. 17

39

40 List of Abbreviations

NRZ-M Non-Return to Zero Mark. 3

OSF Over Sampling Factor. 15

PCM Pulse Code Modulation. 3

PDU Protocol Data Unit. 15

PLL Phase Locked Loop. 1

PRN Pseudorandom Number. 5

RS Reed Solomon. 4

RX Receiver. 19

SDR Software Defined Radio. 1

SNR Signal-to-Noise Radio. 19

TCP Transmission Control Protocol. 14

TW Transition Width. 21

TX Transmitter. 19

UDP User Datagram Protocol. 14

UHD Universal Hardware Driver. 7

USRP Universal Software Radio Peripheral. 7

VOLK Vector Optimized Library of Kernels. 12

List of Figures

2.1 CCSDS frame structure . 4

3.1 Simplified block diagram of the downlink chain 9

4.1 Block diagram of the SDR transceiver 13
4.2 Downlink . 14
4.3 Uplink . 15

5.1 Loopback . 18

6.1 Block diagram of communication system 20

7.1 Spectrum . 23
7.2 Constellation plots from various points on the flowgraph 24
7.3 Waveforms of time domain signals 25
7.4 Heatmap of I/Q samples . 26
7.5 Histograms of I and Q components separately 26

C.1 GNU Radio Types . 37

41

42 LIST OF FIGURES

List of Tables

6.1 Packet Loss for various SNR . 20

7.1 Statistical properties of the received signal 27

43

44 LIST OF TABLES

References

[1] André Løfaldli. gr-ccsds: GitHub repository. https://github.com/

lofaldli/gr-ccsds. (accessed 15.06.16).

[2] TM Synchronisation and Channel Coding. Recommended Standard 131.0-B-2,
CCSDS, 2011.

[3] Shu Lin and Daniel J. Costello Jr. Error Control Coding. Pearson, 2nd edition,
2004.

[4] Ettus Research. WBX Daughterboard product page. https://www.ettus.

com/product/details/WBX. (accessed 12.05.16).

[5] osmocom. RTL-SDR project page. http://sdr.osmocom.org/trac/wiki/

rtl-sdr. (accessed 15.06.16).

[6] Great Scott Gadgets. HackRF product page. http://greatscottgadgets.

com/hackrf/. (accessed 15.06.16).

[7] Simon Haykin. Communication Systems. Wiley, 4th edition, 2000.

[8] SuperSpeed USB. http://www.usb.org/developers/ssusb. (accessed
15.06.16).

[9] Ettus Research. USRP N210 product page. https://www.ettus.com/

product/details/UN210-KIT. (accessed 13.06.16).

[10] GNU Radio Manual and C++ Reference. http://gnuradio.org/doc/

doxygen/index.html. (accessed 16.06.16).

[11] GNU Radio website: Out-of-tree modules. http://gnuradio.org/doc/

doxygen/page_oot_config.html. (accessed 16.06.16).

[12] GNU Radio website. http://gnuradio.org/. (accessed 16.06.16).

[13] GNU Radio website: Flowgraphs. http://gnuradio.org/doc/doxygen/

page_operating_fg.html. (accessed 16.06.16).

[14] Phil Karn (KA9Q). fec-3.0.1 C++ library. http://www.ka9q.net/code/fec/.
(accessed 30.04.16).

45

https://github.com/lofaldli/gr-ccsds
https://github.com/lofaldli/gr-ccsds
https://www.ettus.com/product/details/WBX
https://www.ettus.com/product/details/WBX
http://sdr.osmocom.org/trac/wiki/rtl-sdr
http://sdr.osmocom.org/trac/wiki/rtl-sdr
http://greatscottgadgets.com/hackrf/
http://greatscottgadgets.com/hackrf/
http://www.usb.org/developers/ssusb
https://www.ettus.com/product/details/UN210-KIT
https://www.ettus.com/product/details/UN210-KIT
http://gnuradio.org/doc/doxygen/index.html
http://gnuradio.org/doc/doxygen/index.html
http://gnuradio.org/doc/doxygen/page_oot_config.html
http://gnuradio.org/doc/doxygen/page_oot_config.html
http://gnuradio.org/
http://gnuradio.org/doc/doxygen/page_operating_fg.html
http://gnuradio.org/doc/doxygen/page_operating_fg.html
http://www.ka9q.net/code/fec/

46 REFERENCES

[15] Vector Oprimized Library of Kernels (VOLK library. http://libvolk.org/.
(accessed 12.05.16).

[16] Wikipedia: Hamming Window. https://en.wikipedia.org/wiki/Window_

function#Hamming_window. (accessed 12.05.16).

[17] G.R. Danesfahani and T.G. Jeans. Optimisation of modified Mueller and
Müller algorithm. IEEE Electronic Letters, 31(13), 1995.

[18] Kurt H. Mueller and Markus Müller. Timing Recovery in Digital Synchronous
Data Receivers. IEEE Transactions on Communications, COM-24(5), 1976.

[19] Ettus Research. USRP E310 product page. https://www.ettus.com/

product/details/E310-KIT. (accessed 13.06.16).

[20] SciPy: Statistical functions. https://docs.scipy.org/doc/scipy/

reference/stats.html. (accessed 24.05.16).

[21] Matplotlib: Python plotting library. http://matplotlib.org/. (accessed
24.05.16).

http://libvolk.org/
https://en.wikipedia.org/wiki/Window_function#Hamming_window
https://en.wikipedia.org/wiki/Window_function#Hamming_window
https://www.ettus.com/product/details/E310-KIT
https://www.ettus.com/product/details/E310-KIT
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
http://matplotlib.org/

	Preface
	Problem Statement
	Abstract
	Sammendrag
	Table of Contents
	Introduction
	Specification
	Signal specification
	Frame format

	Hardware Requirements
	Software Defined Radio
	Host Computer
	RF chain

	Implementation
	Custom GNU Radio blocks
	GNU Radio flowgraphs

	Verification
	Reed Solomon
	Loopback simulation

	Testing
	Channel Simulation
	End-to-end between two software-defined radios
	Downlink from space segment

	Results and Discussion
	Through the flowgraph
	Statistical analysis

	Conclusion
	Future Work
	Reed Solomon verification (C)
	Statistical analysis (Python)
	GNU Radio Types
	List of Abbreviations
	List of Figures
	List of Tables
	References

