@ NTNU

Det skapende universitet

Parallell partikkeltransport
Implementert | Python med MPI

Simen Mikkelsen

Master i fysikk og matematikk

Innlevert: februar 2017
Hovedveileder: Jon Andreas Stgvneng, IFY
Medveileder: Tor Nordam, IFY

Norges teknisk-naturvitenskapelige universitet
Institutt for fysikk

TFY4900 — MASTER THESIS IN PHYSICS

Parallel Particle Transport in Python
Using Message Passing Interface

SIMEN MIKKELSEN

SUPERVISORS

JON ANDREAS ST@VNENG
TOR NORDAM

February 2017

DEPARTMENT OF PHYSICS
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

@NTNU

Norwegian University of
Science and Technology

Abstract

A high performance computing program for calculating particle transport in par-
allel has been written in Python using the SciPy-stack and mpidpy. The 4th order
Runge-Kutta method was used as the numerical integrator for calculating particle
transport in a velocity field given by an analytical expression, and the movement
of each particle was assumed to be independent of other particles. This is a com-
mon assumption when considering for example transport of a dissolved chemical
in water.

The program was run in parallel on several computers, including the super-
computer Vilje at NTNU and the execution time for different number of processes
was measured and compared to each other. The performance was found to be
quite well. The speed-up was measured, and performance was found to scale quite
well, with super-linear scaling at 8 to 16 ranks for a high number of particles.
When using more than one node, the extra execution time because of latency in
the communication between nodes outweighed the performance gain in dividing
the work on even more processes, for the system sizes tested in this thesis.

In conclusion, it has been demonstrated that the combination of Python and
MPI can be used to write scientific source code for parallel simulation of the
particle transport problem. The resulting code is quite compact and readable,
compared to a similar code in Fortran. A tentative comparison suggests that the
performance of the code written in the high-level programming language Python
is not significantly worse than the performance of a code written in Fortran.

Sammendrag

Det er skrevet et program i Python for a beregne parallell partikkeltransport.
Som numerisk integrator ble fjerdeordens Runge-Kutta-metode brukt for a beregne
partikkeltransporten i et hastighetsfelt gitt ved et analytisk uttrykk. Bevegelsen
av hver partikkel er antatt a veere uavhengig av de andre, en vanlig antagelse ved
transport av lgste partikler i vann.

Programmet er kjort i parallell pa flere datamaskiner, inkludert superdatama-
skinen Vilje ved NTNU. Kjgretiden for ulikt antall av parallelle prosesser ble malt
og sammenlignet. Ytelsen ble funnet til a veere meget bra. Hastighetsgkningen var
bedre enn lineser skalering ved bruk av mellom 8 og 16 parallelle prosesser. Ved
kjoring pa flere enn 16 prosesser ble imidlertid ytelsen ikke bedre. Dette kommer
av at programmet det da ma kommuniseres mellom noder, som er tregere enn a
kommunisere innad i en node.

Det er demonstrert at kombinasjonen av Python og Message Passing Interface
kan bli brukt til a skrive vitenskapelig kildekode for parallelle simuleringer av
partikkeltransport. Koden er sveert kompakt og lesbar, sammenlignet med lignende
kode i Fortran. En tentativ sammenligning viser at ytelsen til det mer hgyniva
programmeringsspraket Python ikke er signifikant darligere enn til en tilsvarende
kode skrevet i Fortran.

Preface

This project is the product of my work in TFY4900, the master project in physics
in the last semester of the integrated, five year Master of Technology programme
Physics and Mathematics at The Norwegian University of Science and Technology
(NTNU). The work was carried out during the autumn semester of 2016 and the
first seven weeks of 2017.

Originally I planned to write my original master thesis in the Spring semester
of 2014, but a period of illness delayed my work. I have been full time employed
at Sopra Steria since August 2014. In the Summer of 2016 I got a new supervisor
and started with a new thesis. And I have done the project work during a study
leave and in the evenings and weekends during my full time job. Therefore the
final deadline have been postponed, I am truly grateful for the understanding from
the Department of Physics and their cooperation for making my Master Thesis a
reality.

Trondheim, Monday 20" February, 2017

Simen Mikkelsen

Acknowledgment

I would really like to thank my supervisor, Tor Nordam, Associate Professor at
Department of Physics, for his encouraging guidance and superb help throughout
the period. And I owe my fiancée, Beate Sildnes, and my parents, Berit and Arne
Mikkelsen a big thank you for all their support which helped me keep my spirit
and always backing me up during my work with this project.

S.M.

i

Contents

Preface. e
Acknowledgment

1 Introduction

2 Theory
2.1 Fluid mechanics L L Lo
2.1.1 Navier-Stokes equations
2.1.2 Advection and diffusion L.
2.2 Numerical integration L oL
2.3 Velocity field
2.4 Parallel computing Lo
2.4.1 Load balancing,
2.5 Measuring parallel computing performance
2.5.1 Amdahl'slaw oL
2.5.2 Gustafson’slaw Lo
2.5.3 Karp-Flatt metric,
3 Method
3.1 Implementation
3.1.1 Communication array
3.1.2 Communication of particles
3.2 Parallel computing L oL
3.2.1 Dividing work on processes
3.3 Python.
3.4 Performance testing L oo

4 Results and discussion
4.1 Calculate Metrics
4.2 Load balancing L oo

5 Conclusion

5.1 Suggestions for further work

Source code

111

14
14
16
17
19
19
19
20

22
31
31

36
36

38

List of Figures

1

0 3 O U i~ W N

11
12
13

14
15
16

17

18

The velocity field Eq. (11a) is given a so called double gyre: two
counter-rotating vortices with their centres oscillating horizontally.
Here vector plots at two different times are shown; (a) at t = 0 s
and (b)at t=2s.

CPU utilisation from 0 s to 60 s while executing the program with
2 and 8 ranks respectively using a desktop computer with 4 cores,
running Windows 10. The computer does not really use only one
processor for each rank, like a truly parallel computation, but divide
the work on all available processors.
Karp Flatt metric shown for different ranks.
Load balance for 107 particles and 16 ranks and different number of
cells. Shown for each time when data was written to disk. A value
of 1 is perfect, larger values indicate poor load balance. The load
balance follows the same trend for all number of cells, and is better
for a higher number of cells. This is expected because a higher
number of cells increases the probability of particles being evenly
distributed on ranks.o L oo
Load balance for 107 particles and 128 ranks and different number
of cells. Shown for each time when data was written to disk. A
value of 1 is perfect, larger values indicate poor load balance. The
load balance follows the same trend for all number of cells, and
is better for a higher number of cells. This is expected because a
higher number of cells increases the probability of particles being
evenly distributed on ranks. o 0o L.

v

List of Tables

1

Measured execution time t in seconds for a given number of parti-
cles, Nparticles; CeHS; Nce1157 Ncommunications and I'&IlkS, p- Tmax 18 kept
constant. Run on a desktop computer. We see that the execution
time shrinks when p increases from 1 to 6 and then increases when
p is larger than 7. A cause can be that the problem is not easily di-
vided on 7 ranks and for each extra rank used more work is done on
communication between ranks and this outweighs the benefit gained
from the fact that each ranks has less work to do in the transport
part of the problem.,
Load balancing averaged over all communications for different num-
ber of cells for 16, 32 and 128 ranks. It seems like a higher number
of cells compared to ranks gives a better load balancing.

1 Introduction

Particle transport in gases and liquids is a well-known problem with a wide range
of applications in physics including passive flow tracers, diffusion and advection.
Calculating the movement of particles can be a labour-intensive task if the num-
ber of particles is huge. But if the movement of all particles in a given system is
independent of each other, the trajectory of each particle can be calculated with-
out taking the other particles into consideration. Parallel computing is a perfect
candidate to use for solving problems like this, because the calculation time can
be drastically reduced.

We are interested to look into efficient ways to calculate particle transport and
concentration in a system. Because particle concentration is a spatial attribute,
information about the spatial distribution of particles needs to be determined at
a local level equal to the area of interest for the concentration. Calculation of
the concentration can be done for several areas at once, as long as the particle
distribution is known. The transport of particles can be simplified to a problem
where each particle’s trajectory is independent of the other particles, so each path
can be calculated individually and in parallel. Therefore parallel computing can
be used to speed up the calculation of both the concentration and the transport
of particles.

In parallel computing a problem is divided into parts and distributed on several
processes on a computing system. Each process can work on it’s own part of
the problem at the same time as the others. This accomplishes shorter execution
time for solving the problem, but an increased cost on hardware and writing code
that can be parallelised. Also it must be possible to divide a part of the problem
into independent parts. There is also an extra cost used to communicate between
processes, which needs to be done for solving the part of the problem where for
example knowledge of the whole system is required.

For problems involving particle transport two main methods of dividing the prob-
lem to separate processes exist. Either each process can be assigned to specific
particles, or a process can be assigned to all particles in given areas. These two
methods have different impact on the transportation part and the calculation of
the concentration part of the problem. In the first method particles are never sent
from one process to another in the transport step. I.e. there is no communication
of information about particles between processes. But communication is necessary
when computing the concentration if the particles in the area of interest belong
to different processes. In the last method a process needs to send a particle to
another process when the particle moves to an area belonging to another process.

So there may be need for communication work in the transport step. But it is
faster to calculate the concentration, because communication between processes is
only necessary when calculating the concentration near the border between areas
belonging to different processes.

Supercomputers refer to a computer-system with high level of computational ca-
pacity. Computer power is aggregated over several nodes, usually each node have
multiple processors which often have several cores. Supercomputers deliver much
higher performance than ordinary computers, so it is called High Performance
Computing (HPC). To benefit from the supercomputers’ high capacity, the prob-
lem solving should be done in parallel. In practice all computing in HPC are done
in parallell.

Traditionally low-level compiler programming languages, such as Fortran or C,
are the dominant programming languages used in HPC, due to their superior ad-
vantages in speed and memory usage. But interpreted languages, like Python, is
popular due to reduced development time, faster prototyping and less complex
code. The SciPy-stack', including NumPy, SciPy, Matplotlib et cetera, makes
precompiled high performance libraries, like MKL (Intel Math Kernel Library)?
and LAPACK (Linear Algebra PACKage)®, available in Python. Lately, approx-
imately in the last five years, Python for HPC has received more attention. At
the world largest HPC-conference Supercomputing*, they have hold a Python HPC
workshop each year since 2011°. An example of the use of Python in HPC can
be seen in [1], where a computational fluid dynamics (CFD) solver was written
in Python, using mpidpy and Numpy, and achieved comparable performance to a
similar solver in a compiled language.

To compute the transport of particles affected by a velocity field a numerical
iterative method have to be used, however, we will not focus on the numerical
methods in this thesis. In the present project we shall implement a parallel particle
transport algorithm in Python using mpi4py® for parallelisation and the 4th order
Runge-Kutta method to calculate the transportation of particles. We shall divide
particles on processes, called ranks in mpi4py, like method two described above,
i.e. each rank are given specific areas and a particle belongs to a process based
on the area it reside in. We will examine the performance of this algorithm with
different parameters, including number of particles and how areas are assigned to

1Www.scipy.org/stackspec.html

’https://software.intel.com/en-us/intel-mkl
3www.netlib.org/lapack/
“http://sc16.supercomputing.org/
Swww.dlr.de/sc/pyhpc2016
Shttp://pythonhosted.org/mpidpy/

www.scipy.org/stackspec.html
https://software.intel.com/en-us/intel-mkl
www.netlib.org/lapack/
http://sc16.supercomputing.org/
www.dlr.de/sc/pyhpc2016
http://pythonhosted.org/mpi4py/

processes. We will also compare the execution time between a desktop computer
and a supercomputer.

2 Theory

In this chapter theory central to this project is presented. This includes mathemat-
ical and physical foundations, numerical analysis and high performance computing.

2.1 Fluid mechanics
2.1.1 Navier-Stokes equations

The Navier-Stokes equations govern the motion of viscous fluids and gases. In the
case of a compressible Newtonian fluid, i the equation reads

p(aa—Z+V~VV>:—Vp+V-T+f. (1)

Here v is the advection, also referred to as fluid velocity or drift, p is the fluid
pressure, p is the fluid density, T is the deviatoric stress tensor, which has order
two, and f represents an external force acting on the continuum, for example
gravity, an electric field acceleration and so on.

Equation (1) represents the conservation of momentum, while the continuity equa-
tion represents the conservation of mass. With no sources or sinks in the area of
interest the continuity equation reads

dp

a—l—V{pv):O. (2)

2.1.2 Advection and diffusion

Particle transport can be modelled by tracking matter as numerical particles mov-
ing through a velocity field, frequently pre-calculated by some external source.
Such a particle has a number of properties, including position and mass. Possibly
the simplest model is to use the point particle, this method has an advantage of
greatly simplifying the calculations, and at the same time it is an accurate model
if the number of particles is sufficiently large.

For non-interacting particles transport by advection can be computed individually
for each particle, the problem is trivially parallelisable because the movement of
one particle is independent of all other particles, so there does not need to be

4

any communication between the processes when calculating the movement of the
particles.

The advection-diffusion equation reads

dc
azV.(DVc)—V-(vc), (3)

where ¢(x,t) is the concentration, D(x,t) is the diffusion coefficient and v(x,?)
is the advection. For constant diffusivity Eq. (3) is equivalent to an ensemble of
random walkers [2] with step lengths 0z and 0t given by

(0)?
20t

and with a drift, given by v(x,t), in the limit
(0x)* = 0,0t — 0,

taken such that D is finite.

Xpi1 = X, + VOt + 0x€, (4)

where £ is a vector with length 1, and random orientation. In this project we look
at advection without diffusion, so D = 0 and v # 0. Hence, we consider particles
moving in a velocity field with no random walk contribution.

2.2 Numerical integration

The problem of particles moving with a velocity field, v(x,t) amounts to solving
the ordinary differential equation (ODE)

x = v(x,t). (5)

To solve numerically, introduce discrete time
tn = to -+ nh, (6)

where h is called time step and for convenient notation

The Euler method is a first-order numerical procedure for solving ODEs with given
initial values. It is given by

Xp+1 = Xp + hka X(tO) = Xp. (8)
Where k = f(t,,x,) and x(ty) = X is the initial value.

The Euler method is the simplest example of a class of methods known as Runge-
Kutta methods (see p. 128 in [1]) and it is a first-order method where the global
error, the total accumulated error, is proportional to the time step size, h.

The 4th order Runge-Kutta method is the most known member of the Runge-
Kutta methods, as in a 4th order method the global error is in the order of O(h*).

The 4th order Runge-Kutta method is given by

Xnt1 = Xy + 2 (ki + 2ko + 2ks + ky) tnp1 = tn + h, (9)
where
kl - (t 7Xn)a
h h
ko = f(t, + 2,xn+§k1),
h h (10)
k f(t ‘l’ 2 Xn_l_ §k2)7

k4 = f(tn + h, X, + hk3)

The advantages of the 4th order Runge-Kutta method include the possibility of
taking longer steps, so the total calculation work can be lowered, reducing the
execution time, even if it requires more function evaluations per step.

The step size can be dynamic, so it is smaller when accuracy is required and larger
elsewhere, to decrease the amount of steps, and thus execution time. But this is
not a focus in this project.

2.3 Velocity field

In a particle transport application, the velocity field, v in Eq. (1), can frequently
come from some external source, e.g. from an ocean circulation model, from (CDF)
or from measurements. In all cases the assumption is that the presence of the
particles does not affect the velocity field.

6

The velocity field used in this project is a double gyre model consisting of two
counter-rotating vortices with a harmonically oscillating line in between [7]. This
system represents a rotating fluid, and the velocity field gives the velocity of an
infinitesimal fluid element at a given time and position. Movement of point par-
ticles in this system satisfy the non-autonomous dynamical system defined by the
velocity field in the zy-plane, defined in the region x € [0,2],y € [0, 1], given by:

v, = —mAsin(nf(x,t)) cos(my)
Of (1) (11a)
or

v, = mAcos(mf(x,t)) sin(my)

where

f(z,t) = a(t)x® + b(t)x
a(t) = esin(wt) (11b)
b(t) =1 — 2esin(wt).

The parameters A, € and w are chosen to fit to the properties of the system. In
this project the values of the parameters are A = 0.1, ¢ = 0.25 and w = 1. One
property of the velocity field is that all values of v,(t) and v,(t) equal zero at the
boundaries of the region.

This system represents an incompressible fluid, completely filling the 2D box given
by 0 <z <2, 0<y < 1. For this system, a—f =0,and V-v =0, so Eq. (2) is
satisfied.

2.4 Parallel computing

A common method used in parallelisation of scientific computations is Single
Instruction, Multiple Data (SIMD), also called Single Program, Multiple Data
(SPMD). The concept can be described by executing equal instructions on dif-
ferent data in parallel. In our case the algorithm for transport of particles in the
velocity field is the same everywhere, but particles on which the algorithm are
used are split in two or more groups based on position.

For parallelisation of scientific source code, two widely used methods are Shared
Memory Parallelisation and Message Passing. Shared Memory Parallelisation
benefits from being easy and fast to implement, e.g. a for-loop can be parallelised
with minimal changes in the source code if each iteration of the loop is independent

of the others. But a drawback is that shared memory is required, all processors
must have access to the shared memory, which means that it only works on one
single machine, or node with shared memory, at a time, without communication
to other nodes without shared memory. OpenMP is an example of software used
for Shared Memory Parallelisation.

An example” of OpenMP used in Python in conjunction with Cython. Here you
can see the small changes needed in the source code starting at line 10, including
allocating memory for the for-loop at line 15.

from cython.parallel import prange, parallel
cimport openmp

def testpar(int n):
cdef int i ,numthreads
cdef int * squared
cdef int x tripled
cdef size_t size = 10

with nogil ,parallel (num_threads=4):
numthreads = openmp.omp_get_num _threads ()
squared = malloc(sizeof(int) * n)
tripled = malloc(sizeof(int) * n)

for i in prange(n,schedule="dynamic’):
squared [i] = ixi
tripled [i]= i%i%i 4+ squared|[i]

free (squared)
free(tripled)

For more complicated scientific source code, Message Passing is more frequently
used because of the important advantage gained from the possibility to communi-
cate with other nodes through a network or interconnect with very high throughput
and very low latency, e.g. InfiniBand®. Disadvantages of Message Passing include
longer development time, because it requires larger modification in the source
code which leads to more complicated code, and explicit memory management
and communication.

7https://goparallel.sourceforge.net/paralle1—processing—with—pytho
8http://www.infinibandta.org/

https://goparallel.sourceforge.net/parallel-processing-with-pytho
http://www.infinibandta.org/

2.4.1 Load balancing

When parallelising a task there is little gain in total performance if the work load is
not distributed equally so that one process does most of the work. Load balancing
aims to optimize resource use, maximize throughput, minimize response time,
and avoid overload of any single resource. Good load balancing means that all
processors do approximately the same amount of work. Otherwise the algorithm
can be slower than necessary if several processors are idle while waiting for the
one with the most work to finish.

In this case of particle transport, we can assume that the amount of work per
particle per time step is constant. Then, the ideal case with perfect load balancing
would be if all processors have the same number of particles when calculating the
transport of particles. In our case the physical area of the problem is divided
into several cells and each cell is assigned to a processor. The shape of these
cells does affect the load balancing because it determines whether the particles are
distributed evenly.

In order to investigate load balancing, we define the following metric:

N,
P — Pmax 1 2
Lp =~ (12)

p

is the maximum number of particles assigned to

N,

p
number of ranks

where for a given time, t,, NV,

pm,aac

a single rank and N, is the average, simply

2.5 Measuring parallel computing performance

When examining how much benefit parallelisation of a problem yields, we must
separate the part of the problem which can be divided into independent parts and
solved in parallel, and the part which can not be divided and must be solved se-
quentially in serial. In general, the greater the ratio between the parallelisable part
and the serial part is, the larger the benefit gain achieved by using parallel com-
puting is. The advantages of parallel computing, including faster execution time,
allowing larger problems to be solved or get more exact solution, often outweigh the
disadvantages. Disadvantages include increased hardware cost and longer devel-
opment time, because writing and executing parallel programs are more complex
than serial programs. The increased time and cost of development is not discussed
in detail in this thesis.

There are several ways to measure the performance of parallel computing. The
most basic one is the price/performance ratio, which come into consideration when
deciding the hardware needed for a task. It is usually measured by dividing the
cost of the parallelisation, with respect to increased development time and higher
hardware cost, on the elapsed run time after parallelisation. For scientific purposes
the speed-up and efficiency are a more qualitative measure. The speed-up of a
program, S, can be measured by comparing the execution time when running the
program in parallel to the execution time on a system which run the program in
serial. It is given by dividing the original execution time, 7(1), on one processor,
by the execution time using p processors, T'(p), as

S = m (13)

T(p)

Usually only one version of the parallel algorithm is written and then being run
using one processor to measure T(1) and p processors to measure T'(p). Ideally a
separate serial algorithm should be used when measuring 7'(1), because the serial
algorithm usually have a slightly better performance, but this is in general not
important.

Efficiency, €, is related to the price-performance ratio. It can be defined as
€= ——~ = —, (14)

where p is the number of processors. An efficiency close to unity means that
the parallel computing scales well and the hardware are used effectively, a low
efficiency means the resources are not used to their fullest potential. The speed-up
is discussed in the next sections, where also a different, and more useful, metric is
presented.

2.5.1 Amdahl’s law

Amdahl’s law [5] describes the maximum theoretical speed-up a given task can
achieve if a system that is solving a problem with fixed size is given improved
resources, usually by increasing the number of processors. Such a task will have
a sequential part that does not benefit from the improved resources and therefore
must be run in serial, with execution time 7§, and a part that benefits from the
improvements and can be run in parallel, a parallelisable part using time 7,(p),
dependent on the number of processes. Amdahl’s law does not take into account
that real world problems usually have serial overhead, including increased workload

10

when they are solved on several processors because of communication between
processes also take time, hence it gives a maximum speed-up. The execution time
for the whole task before the improvement of resources is denoted 7' and is given
by

T=T01)=Ts+T,(1). (15)

The fraction of work done in the parallelisable part is given by f = T,(1)/T and
the speed-up of the parallelisable part, given the improved resources, is given by
the factor s(p) = T),(1)/7,(p). The theoretical execution time of the whole task is
given by

T(p) =To+ Ty(p) + 5= (1—)T + %T k, (16)

where x is the parallelization overhead, which we will assume to be negligible. In
the case of a problem with fixed size W, the theoretical speed-up can be expressed

W 1
S6) = T = T (17)

s(p)

This equation is Amdahl’s law. It is limited to problems with fixed size.

2.5.2 Gustafson’s law

In practice better resources will often be used to solve a larger problem or solve a
problem more accurately in the same time as the original, instead of solving it faster
with the same accuracy. Gustafson’s law gives a measure for this. Gustafson’s law
gives the expected speed-up for a system which is given improved resources

S(s)=1—f+sf, (18)
where S is the theoretical speed-up of the execution of the whole task, s is the
speed-up of the execution of the part that benefits from the improvement of re-

sources, the parallelisable part, and f is the ratio of workload of the parallelisable
part.

11

2.5.3 Karp—Flatt metric

In 1990 Karp and Flatt [0] introduced a new, improved metric for measuring the
performance of parallel algorithms. It does take into account serial overhead.
Amdahl’s law in it simplest form can be written as

Tp
T(p) =T+ s (19)

Let e be the fraction of the serial part of the whole problem, e = T, /T(1) = T,/T.

Then
T@=E+Z%;i (20)

and from the definition of speed-up from Eq. (13),

1 Tp) (1—e¢)
Sl="2= : 21
T e+ » (21)
Solved for e gives the new metric
11
e:i_f. (22)
p

Use of this new metric is useful, because Eq. (19) is incomplete, e.g, it assumes no
serial overhead, including perfectly load balanced work, i.e., that the workload is
distributed evenly on all processors and thus all processors compute for the same
amount of time and the parallelisation overhead is neglected.

The Karp-Flatt metric is used to experimentally determine e, the serial fraction
of the parallel computation, and it can detect sources of inefficiency when solving
a problem on several processors, e.g. limited parallelism or increase in algorithmic
or architectural overhead.

12

10[-

SEiAA e R A N
1S JJJM\\\\\ N VY Py x////M\\\
0814 A A TSN NN ANV f f g R R R
’ PR A A A A e o N XNNNNN\ Ny e~ NNR XN
L1777 70 s L X NNNNNN N Ao XXM
P777777 0 L o22NNN\) N B RN L L
1177400, D220333N\\) N N A AR L L B
0.6 fff14,.‘;f:::§§\~~'i léfﬁéi:,,::v\kxk A
1 . : Loy A
SE SRR ERRRRR | Pt
Fhaa, AR : yyYvr s it d
\\\\\“ Py yreys vtdlfff
04 LARNRN NN u T T A2 Fp S BRI TP D B 0 o
AXNX NN~ 222 NN T At
AR S s s NN NN Al
! ANt A A A 1y AN S LA f

02 AT e S ST
AR R RRRS SRz VA S S e 4
! \W/[/,,, YRR 2R TR Y \\\\\‘WI///ld |
:‘““‘ e A A AR BN NN NN A

oo~ ‘ et M iy ‘ T
0.0 0.5 1.0 15 2.0

(a)

- , —— , S
3'7777'—7—7 B A A T S Al dd——————— T . % ¥ Y
%4:«77:—71—7 3““"””"*""“\\:;:‘
B s e L e

0.8 bk d oA A A AT e e NIRRT RVEPR D s ~>NNN

Tl Seseattt NN R E T I sren N
L4444 /

VA4 A
Ladqd

0.6 4444
PAA
LAt
FAA AR
LA

0.4 -y x kK
WY
W
WY

02LAM)

TSN
RGN
0.0

Figure 1: The velocity field Eq. (11a) is given a so called double gyre: two counter-
rotating vortices with their centres oscillating horizontally. Here vector plots at
two different times are shown; (a) at t =0 s and (b) at t = 2 s.

13

3 Method

The source code for implementation of the problem presented in this thesis is
written as part of my work for this thesis. The code is included in Appendix A.

3.1 Implementation

In this chapter the term rank refers to a single thread (also called process) in
the parallel computing system. The total number of processes is limited by the
computing system and determined as a parameter when running the program. In
the following implementation the program runs in parallel with one copy on each
rank. The problem is given by:

We consider the 2D box given by

0<z<2 0<y<l1 (23)

The velocity field is given by Eq. (11a).

N, particles at initial positions in a evenly spaced grid given by 0.95 <z <
1.05, 0.45 <y < 0.55.

Particles are transported (advected) for a given time, T},4.-

At given time intervals particles are checked if they belong to another rank
given by their position. If they do, they are communicated to the new rank.

The particles properties are written to disk at these time intervals.

The box is divided into several cells which are distributed as even as possible
among ranks. All particles are first assigned to their corresponding cell based on
the particle’s initial position. Then transport of particles is done in parallel by
applying the velocity field Eq. (11a) and calculating the trajectories using the
4th order Runge-Kutta method Eq. (9) with a given time step, h. After a given
amount of time the transportation algorithm pauses. Now the algorithm checks
for each rank if some of it’s particles have been transported to a position belonging
to a cell in another rank, and if so is the case these particles are moved from their
old ranks to the new ranks. In other words each rank which have to send or receive
particles need to communicate with other ranks, and the program execution at a

14

rank can not continue before it has sent and received all particles in question. Data
is then written to disk and the transport algorithm continues. This communication
procedure is described in detail in Ch. 3.1.1.

Each rank save the properties of all its particles in parallel. At this step calculations
like particle concentration are carried out. It is an advantage to have all particles
in proximity at the same rank, so less communication is needed when calculating
a spatial property. When one cycle as described here is completed, a new cycle of
transportation and communication of particles follows.

In Fig. 2 some particles that originally belonged to a rank have been transported
to a cell belonging to another rank after a transportation cycle. So they now have
to be sent to another rank before the next transportation cycle.

1 2 1 2 1 2
3 4 3 4 3 4
1 2 | z I 3
3 3 3 : 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4

Figure 2: A 2D-system of particles divided into quadratic cells using a pencil
decomposition and distributed among four ranks. Here a subset of particles is
shown after particle transport. All these 11 particles initially resided in a cell in
the middle of the figure, which belongs to rank 1. Now four of them have moved
to cells belonging to other ranks and thus need to be sent to a new rank. This
2D decomposition can be applied in 3D as shown in Fig. 5. The four ranks are
divided in a given way resulting in a periodicity like 121212 and 343434, but it
could also be divided in other ways.

15

3.1.1 Communication array

Let us say we have 2D-system of particles divided into cells as a 2D version of the
pencil decomposition distributed among four ranks, as shown in Fig. 2. After a
given transportation time all particles have to be moved to the correct rank based
on its new position before a potential calculation of concentration and/or similar
aggregate spatial properties can be done.

First the number of particles that now resides in a cell belonging to a different
rank needs to be determined so we know "how much communication we need to
do” and how much memory to allocate for effective memory management. This is
done using a so called Communication Array. An example of this array is show in
Fig. 3.

The routine for filling out the Communication Array is as follows.

e For each particle, check which rank it belongs to, i.e. which rank the cell at
the particle positions reside to.

e If the particle is still in a cell owned by the same rank as before, i.e the
current running rank, do nothing.

e The particles in a new cell not owned by the running rank must be sent to
a new rank.

e Count the total number of particles which need to be sent to each of the
other ranks.

Each rank now knows how many particles it will send to other ranks, but a rank
has no knowledge of how many particles it will receive from other ranks. But this
information can be received from the other ranks. To exchange this knowledge the
following strategy is applied.

e Initialize a quadratic array with data type integer with size number of ranks
times number of ranks, filled with zeros.

e Rows in this array represent the total number of particles to be sent.

e Columns represent the total number of particles to be received, this infor-
mation needs to be gathered from the other ranks.

16

e Note: This array is usually not diagonal symmetric.

e E.g. row number 2 tells how many particles to be sent from rank 2 to each
of the other ranks.

e At this time, each rank have enough information to fill its own row. Do this.

e Call the MPI communicator function Allreduce with the sum operator
MPI.SUM.

e Each rank does now have a complete copy of the Communication Array, and
thus know how many particles it should recieve.

0 1

01 ()

b3
laa

Mumber of |1:|rlu'h'-'-. sent h:.' rank 2

=

o
S| L

; 0

T Mumber of particles received by rank 2

Figure 3: The global Communication Array showing V;;, where IN;; is the number
of particles to be sent from rank j to rank i. Note that the elements along the
diagonal is always 0, because no rank sends or receives particles to itself. Each
rank fills out its own row, and the values are communicated to other rows via the
MPI-function Allreduce using the MPI.SUM operator.

3.1.2 Communication of particles

Now the actual transmission of particles can be done. To do this one or more
temporary arrays to hold particles to be sent, and one or more temporary arrays
to hold particles to be received, must be made. There is at least two ways to do
this, the simplest one is to make an array with size equal to the number of ranks
times max number of particles to be sent from a rank, and vice versa for particles
to be received to a rank. The other is to make a list of arrays, where each array

17

keeps particles to be sent to a given rank and its length equals the number of
particles to be sent to the given rank, and similar for particles to be received to a
rank.

The first method has an advantage in its simplicity, but a disadvantage in a pos-
sible huge memory required. So we choose to implement the second method. To
send a particle to a new rank each relevant property of a particle needs to be
communicated, e.g. the coordinates for each applicable dimension. Mass, size and
other properties can be communicated if necessary, either all information can be
stored in the same array, or it can be divided into on array for each property. Each
rank must make a lists of arrays for the particles they are sending, if they send
any particles at all, and vice versa if they shall receive some particles. The lists of
arrays can be implemented as shown here:

e For each other rank initialize an array with length equal to the number of
elements which will be sent to that rank.

e For each other rank initialize an array with length equal to the number of
elements which will be received from that rank.

e Iterate over all (local) particles, if the particle should be sent to a rank, copy
the particle’s properties to the corresponding elements in send-list-of-arrays,
(then iterate the counter of send-list-of-arrays).

e Set the local particle as non-active.

Then the communication procedure follows:

e Set up a non-blocking receive function to accept particles from all other ranks
to the receive-lists-of-arrays.

e Set up an non-blocking send function to transfer particles to all other ranks
from the send-list-of-arrays.

e Use the MPI function wait with reference to all send and receive functions,
so the process wait for all communication to be finished.

Now all ranks have sent and received their particles and the following data man-
agement has to be done.

18

e Move all active particles to the front of the local array.

e Expand or shrink the local array with respect to the number of incoming
particles.

e Add any incoming particles to the local array and mark them as active.

The communication of particles is now done and a new transport of particles can
be done and a new communication occurs.

3.2 Parallel computing
3.2.1 Dividing work on processes

How a problem is divided in parts in order to solve using parallel computing,
influences the performance. In this project the area of interest, the 2D box given
by Eq. (23), is divided along the x-dimension in different number of equally wide
cells. Other ways to do this can also be done, but we focus on how the number of
cells, and thus the width of each cell, influence the execution time with respect to
the number of ranks.

Obviously the number of cells must be equal to or greater than the number of
processes, or else some processes will not have any particles at all. Usually smaller
cells give a better load balancing, but this is a trade-off, because if a particle has
to be communicated to another rank more often because of small cell size, the
effeciency can go down.

Dynamic scaling of cells is an advanced method to use to ensure better load bal-
ancing, but this will naturally introduce more work to be done in the algorithm,
so it is another trade-off.

3.3 Python

In addition to using the mpidpy package for Python bindings to the Message
Passing Interface library, the program was implemented with standard Python
libraries, such as OS, and libraries from the Scientific Computing Tools for Python,
the so called SciPy-stack”. SciPy includes packages such as NumPy for powerful

https://www.scipy.org/

19

https://www.scipy.org/

CPUO
CPU 1
CPU2

&y CPU3

Figure 4: An example of a decomposition of a 3D volume by dividing along one
dimension, called a slab decomposition. The volume is divided into ranks along
only one axis in this case with 4 processors. This is a simple form of mesh gener-
ation with an important limitation: Given a cubic mesh of size N3 the number of
processors N, must be less or equal to N. Figure copied from [1].

N-dimensional array objects used in this project to store properties of the particles,
including the coordinates, and computations in the transport part of the problem
are done directly on these objects. NumPy arrays are well suited for scientific
computation on large arrays because it is fast and have better memory management
then standard Python arrays as discussed in Ref. [3].

After each communication step each rank saves four NumPy arrays with the prop-
erties of the particles as binary files in the .npy format. Matplotlib is used for
plotting.

3.4 Performance testing

The program has been tested with Python 2.7 on Vilje!", a supercomputer at
NTNU running SUSE Linux Enterprise Server 11 with SGI MPT! as the MPI
library. Vilje has a total of 1404 Intel Xeon E5-2670 Sandy Bridge nodes, on 19.5
racks, with 2 8-core processors at 2.6 GHz per node. Each 8 core share 10 MB of
L3 cache. And it has 2 GB DDR3 1600 MHz-SDRAM memory per core and the
interconnect between nodes is Infiniband.

Ohttps://www.hpc.ntnu.no/display/hpc/Vilje
"https://www.nas.nasa.gov/hecc/support/kb/sgi-mpt_89.html

20

https://www.hpc.ntnu.no/display/hpc/Vilje
https://www.nas.nasa.gov/hecc/support/kb/sgi-mpt_89.html

Figure 5: An example of a decomposition of a 3D volume by dividing along two
dimensions, also known as a pencil decomposition. The volume is divided along
two axes. The decomposition shown uses 4 processors, two along each decomposed
axis. The maximum number of processes for a cubic mesh of size N2 is N2. Figure
copied from [1].

The application has been run with particle numbers in the range of 103 to 5 - 107
on up to 128 processors on 8 nodes where the area of interest has been divided into
128 to 8192 cells. The time step in the 4th order Runge-Kutta integrator was 0.005
s. At the start of the algorithm and after each 100th time step communication
between ranks occurred. T},,, had values chosen between 9.5 s and 9999.5 s, the
number of communications was between 20 and 20 000.

The program was also tested on a desktop computer with Intel i7 CPU, 2 sockets
each with 4 cores at 2.7 GHz, 64 GB of memory. In addition simulation was run
on a desktop computer with 1 socket with 4 cores, Intel i7 CPU 2.7 GHz, 32 GB

of memory.

21

4 Results and discussion

Simulations where run on several systems with different hardware specifications.
Parameters, including number of particles, number of cells, number of ranks (pro-
cessor used), was varied and the results compared for different number of ranks
and other parameters.

Fig. 6 shows the execution time for the program vs. number of ranks used, run
on a desktop computer with 8 cores with a Linux operating system. The number
of particles, cells and number of communication was varied. Some of the data is
shown in Tab. 1.

We see that the program scales well for up to 4 ranks. Since the computer has 8
cores we would expect that it would scale well for up to 8 ranks. For more than 8
ranks there is no true parallelism, the increase in execution time here is expected.
The execution time for 7 communications is just slightly longer than for 4. Thus
we can conclude that the transportation of particles requires a major part of the
total computational capacity, and the communication of particles and writing to
disk only requires a fraction of the work load.

Figs. 7, 8, 9, 10, 11, 12 show similar graphs for execution on the supercomputer
Vilje.

Fig. 14 shows similar graph for execution on a desktop computer with 4 cores.

22

Nparticles: 19881, Ncells: 210, Ncomm 4
Nparticles: 99856, Ncells: 210, Ncomm 4
Nparticles: 19881, Ncells: 20, Ncomm 4
Nparticles: 99856, Ncells: 20, Ncomm 4
Nparticles: 19881, Ncells: 210, Ncomm 7
Nparticles: 99856, Ncells: 210, Ncomm 7 _
Nparticles: 19881, Ncells: 20, Ncomm 7
Nparticles: 99856, Ncells: 20, Ncomm 7

Time

Figure 6: Execution time ¢/s vs. number of ranks p for different values of Nparticles,
Neens and Neommunications- 1 he number of integrator time steps is the same, but
communication between ranks have occurred more often where Neommunications = 7-

The dashed black line indicates the slope of perfect scaling with respect to 1 rank.
(N 1/Nranks)-

100

10° -

time /s

10" - —s— Nparticles: 961, Ncells: 32, Ncomm: 201

Nparticles: 961, Ncells: 128, Ncomm: 201 Seeel
[—e— Nparticles: 961, Ncells: 512, Ncomm: 201 e
Nparticles: 961, Ncells: 2048, Ncomm: 201 R
. —e— Nparticles: 961, Ncells: 8192, Ncomm: 201 s
Nparticles: 961, Ncells: 32, Ncomm: 2000 Rt
T —e— Nparticles: 961, Ncells: 128, Ncomm: 2000 Rt
Nparticles: 961, Ncells: 512, Ncomm: 2000 Teeel
100 - =8— Nparticles: 961, Ncells: 2048, Ncomm: 2000 b}
£ Nparticles: 961, Ncells: 8192, Ncomm: 2000
1 2 4 10 20 40 100
number of ranks

Figure 7: Execution time ¢/s vs. number of ranks p for different values of Nparticles,
Neens and Neommunications- 1 he dashed black line indicates the slope of perfect
scaling with respect to 1 rank. (~ 1/Nanks)-

23

Table 1: Measured execution time ¢ in seconds for a given number of particles,
Nparticles, cells, Neetis; Neommunications ad ranks, p. Tyax is kept constant. Run on a
desktop computer. We see that the execution time shrinks when p increases from
1 to 6 and then increases when p is larger than 7. A cause can be that the problem
is not easily divided on 7 ranks and for each extra rank used more work is done
on communication between ranks and this outweighs the benefit gained from the
fact that each ranks has less work to do in the transport part of the problem.

N, particles N, cells P N, communications Tmax dt t / S
19881 20 1 4 3 0.005 6.742
19881 20 1 7 3 0.005 6.946
19881 2100 1 4 3 0.005 6.689
19881 210 1 7 3 0.005 6.858
19881 20 4 4 3 0.005 4.072
19881 20 4 7 3 0.005 4.191
19881 210 4 4 3 0.005 3.208
19881 210 4 7 3 0.005 3.144
19881 20 8§ 4 3 0.005 4.583
19881 20 8§ 7 3 0.005 4.724
19881 2100 8 4 3 0.005 2.962
19881 2100 8 7 3 0.005 2.947
19881 20 12 4 3 0.005 6.012
19881 20 127 3 0.005 6.223
19881 210 12 4 3 0.005 3.355
19881 210 12 7 3 0.005 3.487
99856 20 1 4 3 0.005 29.978
99856 20 1 7 3 0.005 30.699
99856 210 1 4 3 0.005 29.889
99856 210 1 7 3 0.005 30.849
99856 20 4 4 3 0.005 15.074
99856 20 4 7 3 0.005 15.554
99856 2100 4 4 3 0.005 9.353
99856 210 4 7 3 0.005 9.935
99856 20 8§ 4 3 0.005 16.494
99856 20 8 7 3 0.005 17.431
99856 2100 8 4 3 0.005 6.574
99856 2100 8 7 3 0.005 7.207
99856 20 12 4 3 0.005 20.634
99856 20 127 3 0.005 21.796
99856 210 12 4 3 0.005 7.547
99856 210 12 7 3 0.005 7.733

24

[—e— Nparticles: 10000, Ncells: 32, Ncomm: 201
Nparticles: 10000, Neells: 128, Ncomm: 201
. —e— Nparticles: 10000, Ncells: 512, Ncomm: 201

| Nparticles: 10000, Ncells: 2048, Ncomm: 201

—e— Nparticles: 10000, Ncells: 8192, Ncomm: 201

L Nparticles: 10000, Ncells: 32, Ncomm: 20001

—e— Nparticles: 10000, Ncells: 128, Ncomm: 20001
Nparticles: 10000, Ncells: 512, Ncomm: 20001

107 - —®— Nparticles: 10000, Ncells: 2048, Ncomm: 20001
[Nparticles: 10000, Neells: 8192, Ncomm: 20001

10 -

10 40
number of ranks

Figure 8: Execution time ¢/s vs. number of ranks p for different values of Nparticles,
Ncells and Ncommunications-

The dashed black line indicates the slope of perfect
scaling with respect to 1 rank. (~ 1/Nanks)-

—e— Nparticles: 99856, Ncells: 512, Ncomm: 201
Nparticles: 99856, Ncells: 2048, Ncomm: 201

10° -

time /s

10 100
number of ranks

Figure 9: Execution time /s vs. number of ranks p for different values of Nparticies,
N, cells and N, communications-

The dashed black line indicates the slope of perfect
scaling with respect to 1 rank. (~ 1/Nanks)-

25

—e— Nparticles: 1000000, Ncells: 512, Ncomm: 201

RN Nparticles: 1000000, Ncells: 2048, Ncomm: 201
hay ~e— Nparticles: 1000000, Ncells: 128, Ncomm: 201

e Nparticles: 1000000, Ncells: 8192, Ncomm: 201
S ~e— Nparticles: 1000000, Ncells: 512, Ncomm: 20

Sl Nparticles: 1000000, Ncells: 2048, Ncomm: 20

~. —e— Nparticles: 1000000, Ncells: 128, Ncomm: 20

S Nparticles: 1000000, Ncells: 8192, Ncomm: 20

time /s

100 -

2 4 10 20
number of ranks

Figure 10: Execution time ¢/s vs. number of ranks p for different values of Nparticles,
Neents and Neommunications- L he dashed black line indicates the slope of perfect scaling

with respect to 1 rank. (~ 1/Nanks)-

—e— Nparticles: 9998244, Ncells: 128, Ncomm: 20

s Nparticles: 9998244, Ncells: 512, Ncomm: 20
Sso e~ Nparticles: 9998244, Ncells: 2048, Ncomm: 20
Nparticles: 9998244, Ncells: 8192, Ncomm: 20

100 -

time /s

2 4 10 20
number of ranks

Figure 11: Execution time ¢/s vs. number of ranks p for different values of Nparticies,
Neenis and Neommunications- 1 he dashed black line indicates the slope of perfect scaling

with respect to 1 rank. (~ 1/Nuanks)-

26

—e— Nparticles: 49999041, Ncells: 512, Ncomm: 20

time /s

1 2
number of ranks

Figure 12: Execution time ¢/s vs. number of ranks p for different values of Nparictes,
Neents and Neommunications. L he dashed black line indicates the slope of perfect scaling

with respect to 3 ranks. (~ 1/Nianks))

27

We observe in the Figs. 7, 8, 9, 10, 11, 12 that the execution time generally
decreases from 1 to 16 ranks, and then increases for more than 16 ranks. The
reason for this is that each node at the supercomputer have 16 cores and when using
more than 16 cores communication has to be done between nodes. Communication
between nodes is handled by the Infiniband interconnect, while quite fast, this is
still slower than communication internally on one node.

Figs. 9, 11, 10 show that the speed-up scaled quite well with super-linear scaling
between 8 and 16 ranks for particle numbers greater than 10000. This may be
explained by the fact that the use of more processors allows faster read and write
speed between the CPU and the memory, because smaller amount of data have to
be in each CPU’s memory, and thus a larger fraction of the data can be kept in
lower level of cache, which is faster than higher level of cache.

For a small number of particles Figs. 7 and 8 show that the execution time decreases
very slightly, if at all, from 1 to 4-5 ranks. This may be caused by the fact that
one node runs the program for 1 to 5 ranks at the same time, to save CPU time
at Vilje. So the shared cache can be used by another instance of the program and
thus the performance per instance goes down. One may wonder why this does not
also happen for a larger number of particles.

Fig. 13 shows the CPU utilisation on a desktop computer running Windows 10.
It is interesting to note that the utilisation is under 50 % for 2 ranks, while for 8
ranks the utilisation is close to 100 %. This effect is reflected in the blue graphs in
Fig. 14, where we observe that the execution time goes up from 1 to 2 ranks, not
as expected. This could be due to Windows 10 does not allow the program to use
all the CPU capacity at lower number of ranks, but when the program runs on a
higher number of ranks it is allowed to utilise all the CPU capacity. It does not
really run in parallel. This shows that not only the computer architecture affects
the performance, but also the operating system and how it delegates the resources.
The difference in increasing execution time for a higher number of ranks than cores
on the Linux system show in Fig. 6 compared to the Windows system shown in
Fig. 13 is interesting, but not investigated further.

28

CPU Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz

% Utilisation over 60 seconds 1008
Utilisation Speed Maximum speed: 2.70 GHz
40% 346GHz = *

Cores: 4

Processes Threads Handles | ogical processors: 8

156 2216 89837 Virtualisation: Enabled

L1 cache: 256 KB
Up time 12 cache: 10MB
1:11:25:19 L3 cache: 6.0 MB

(a) 2 ranks
CPU Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz
% Utilisation over 60 seconds 100%
Lid V 7 \w hi W\[|
[TV | I \W V W Mu Iy

Utilisation Speed Maximum speed: 270 GHz
100% 3.05 GHz ?‘ke‘“: l

Processes Threads Handles Logical processors: 8

169 2309 093548 \:\rtuallsatmn: Enabled

’ 1 cache: 256 KB
Up time 12 cache: 1.0MB
1:11:29:41 13 cache: 6.0 MB

(b) 8 ranks

Figure 13: CPU utilisation from 0 s to 60 s while executing the program with 2
and 8 ranks respectively using a desktop computer with 4 cores, running Windows
10. The computer does not really use only one processor for each rank, like a truly
parallel computation, but divide the work on all available processors.

29

— Nparticles: 99856, Ncells: 20, Ncomm: 51]
Nparticles: 1000000, Ncells: 20, Ncomm: 51 -
Nparticles: 99856, Ncells: 60, Ncomm: 51
Nparticles: 1000000, Ncells: 60, Ncomm: 51 -

—— Nparticles: 99856, Ncells: 210, Ncomm: 51 4
Nparticles: 1000000, Ncells: 210, Ncomm: 51

Time (s)

10! i
10° 10" 10°
Nranks

Figure 14: Execution time ¢/s vs. number of ranks p for different values of Nparticles
and N for a test run on computer with four cores. For some test the execution
time first increases for an increasing number of ranks, then decreases up to about
10 ranks. After monitoring the CPU load it seems like the operating system,
Windows 10, does not utilise the full potential of the CPUs when running at 1
to approximately 4 ranks. So the execution time is not optimal. For a very large
number of ranks the execution time is not increasing. This is because the CPU
does not have to communicate with another CPU on another node, but the code
runs in pseudo parallel at the same computer.

30

4.1 Calculate Metrics

number of ranks.

Figure 15: Karp-Flatt metric shown for different ranks.

In Fig. 15 we see that the serial fraction decreases down to 16 ranks, but then
it increases. This indicates that parallel overhead is a contributing factor to the
poor speed-up for higher than 16 ranks. The extra work need to be done when
communicating between nodes is most probably the main factor for this.

4.2 Load balancing

Load balancing, Ppg, is calculated using Eq. (12). For a given run the load
balancing is calculated for each time when data was written, and the mean load
balancing is the average of each of them.

A load balancing value of 1 is perfect. Load balancing is best at higher number
of cells, especially when the number of cells are high compared to the number of
ranks, as show in Tab. 2 and Figs. 17 and 16. This may be because the probability
for an even particle distribution over different cells is is higher if the number of cell
is higher and thus smaller, then particles are more evenly distributed on ranks.

31

Table 2: Load balancing averaged over all communications for different number of
cells for 16, 32 and 128 ranks. It seems like a higher number of cells compared to

ranks gives a better load balancing.

Nparticles Ncommunications p Ncells PLB
10000000 20 16 128 1.734
10000000 20 16 512 1.091
10000000 20 16 2048 1.014
10000000 20 16 8192 1.002
10000000 20 32 512 1.221
10000000 20 32 8192 1.005
10000000 20 128 128 13.876
10000000 20 128 512 8.729
10000000 20 128 2048 8.113
10000000 20 128 8192 8.015

32

1.20-

Load balancing

Load balancing
I
&

s
=
S

6 8 10 12 14 16 18

°
s
IS

o 2 4 6 8 10 12 14 16 18
Communication number Communication number
(a) 128 cells. (b) 512 cells
1.012 -
1.035 -
1.010 -
1.030 -
1.025- 1.008 -
o o
£ £
] S
= =
1.020 - &
K & 1.006 -
° o
1 <3
S1015- K}
1.004 -
1.010-
1.002 -
1.005 -
1.000 - 1.000 -
0 2 4 6 8 10 12 14 16 18 0 2) 6 8 10 12 14 16 18
Communication number Communication number
(c) 2048 cells (d) 8192 cells

Figure 16: Load balance for 107 particles and 16 ranks and different number of
cells. Shown for each time when data was written to disk. A value of 1 is perfect,
larger values indicate poor load balance. The load balance follows the same trend
for all number of cells, and is better for a higher number of cells. This is expected
because a higher number of cells increases the probability of particles being evenly
distributed on ranks.

33

20.0 -

w

Load balancing

Load balancing
IS

125-

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Communication number Communication number

(a) 128 cells. (b) 512 cells

Load balancing
Load balancing

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Communication number Communication number

(c) 2048 cells (d) 8192 cells

Figure 17: Load balance for 107 particles and 128 ranks and different number of
cells. Shown for each time when data was written to disk. A value of 1 is perfect,
larger values indicate poor load balance. The load balance follows the same trend
for all number of cells, and is better for a higher number of cells. This is expected
because a higher number of cells increases the probability of particles being evenly
distributed on ranks.

One thing to note in our specific case is that we use an initial particle grid centred
at the middle of the area of interest, and at some periods of time the particle grid
can be moved so the shape is vertical, as shown in Fig. 18c. So a division of cells
as a chess board grid could give better load balancing, but it also requires some
more complex source code.

34

- o
. N

o 0
k=0
- -~ e
P k=2
- rank =3
o p o
-
i 1’
06 i w -~
7 ! =
! 7
/
04 04 §
L4 E
02 2}
\
A
N et
00 00 s
() 0s 10 15 20 () 0s 10 15 20

(e)t=20s (f)t=25s

Figure 18: Particles shown at different time in the transport procedure, with a
time step of 0.5 seconds. This example shows 40 cells divided between four ranks.
Particles are coloured according to rank, visualising the division of the area.

35

5 Conclusion

A program for calculating particle transport in parallel on an arbitrary number of
processes was written in Python. The 4th order Runge-Kutta method was used as
the numerical integrator. Calculations were done directly on Numpy-arrays, which
was the data type used for storing the particle’s properties. The program was run
in parallel for 1 to 128 processes on the supercomputer Vilje at NTNU. Different
parameters were varied, including the number of particles and how they were
divided on different processes. The execution time was recorded and compared to
simulations using varying degrees of parallelism and the load balancing, speed-up
and Karp-Flatt metric was measured for some specific selection of the parameters.

The speed-up scaled quite well with super-linear scaling between eight and sixteen
processes at some selection of parameters. This could be because the use of more
processors allows faster read and write speed between the CPU and the memory,
because smaller amount of data have to be in each CPU’s memory, and thus a
larger fraction of the data can be kept in lower level of cache, which is faster than
higher level of cache.

The program demonstrates quite reasonable performance, when compared to re-
sults of [¢] while the systems simulated where not exactly the same. For the results
shown in Fig. 12, the Python program used approximately 24 CPU hours (exe-
cution time times the number of processes used) to simulate 2000 time steps for
5-107 particles. Compare to approx 7680 CPU hours for 10? particles in [3], using
a Fortran code with MPI.

5.1 Suggestions for further work

e To increase the load balancing and thus the performance it may be an idea
to implement the cells, which are divided on ranks, like a chess board grid.

e Code profiling can be run to measure performance and memory usage for
different part of the code. Probably if some bottlenecks will be found, and
one should focus on optimising that part of the code.

e A similar program can be implemented in a low level computer language,
like Fortran, and the performance of the two programs can be compared.

e Diffusion could be added in the transport of particles, and several simulations
with a contribution from a random diffusion could be run to compare the
performance over different transport patterns.

36

e Simulations can be run on Vilje with a number of particles an order of

magnitude higher than done in this project.

e Simulations can be run on other supercomputers to compare it with the

performance at Vilje.

References

1]

Mikael Mortensen, Hans Petter Langtangen. High performance Python for
direct numerical simulations of turbulent flows, Computer Physics Communi-
cations, 203: 53-65, June 2016.

Visser, Andre W. Lagrangian modelling of plankton motion: from deceptively
simple random walks to Fokker-Planck and back again, Journal of Marine
Systems, 70: 287-299, 2008.

T. E. Oliphant. Python for Scientific Computing, Computing in Science En-
gineering, 9: 10-20, 2007.

Ernst Hairer, Syvert P. Ngrsett, Gerhard Wanner. Solving Ordinary Differen-
tial Equations I (2nd Revised. Ed.): Nonstiff Problems. Springer-Verlag New
York, Inc., New York, NY, USA. 1993.

Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities, Proceedings of FIPS Spring Joint Computer
Conference 30, Atlantic City, NJ., 1967.

Alan H. Karp, Horace P. Flatt. Measuring Parallel Processor Performance,
Communications of the ACM, 33, 5: 539-543, May 1990.

K. Onu, F. Huhn, G. Haller. LCS Tool: A computational platform for La-
grangian coherent structures, Journal of Computational Science, 7: 26-36,
2015.

Tor Nordam, Raymond Nepstad, Thomas Janke Memo: Parallel particle
transport, SINTEF Materials and Chemistry, project 102008977: 25th May
2016.

37

0 ~J O U i W N —

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44

A
Source code

main file for Python parallell particle transport
main. py

example to run:

NN

mpiexec —n 4 python main.py

209

where 4 is the number of processes

first , get number of particles from the parameter file
it should be equal particle grid initialised by I0.py
from parameters import nParticles, t_max

nParticles = int(nParticles)

to import the path to the other py—files
import sys

all files are now copied to a new local folder
sys.path.append(’/home/ntnu/simenmi/PyPPT/’)

import mpidpy.MPI as MPI

comm = MPI.COMMWORLD
rank = comm. Get_rank ()
mpi_size = comm. Get_size ()

from time import time
import datetime # for timestamp in timing. txt

wait for all ranks and start the timer
comm. Barrier ()
if rank = 0:

tic = time ()

import os

import numpy as np

import 10

import transport #

#import plot # for plotting directly in main.py, currently commented
out

import matplotlib

matplotlib.use(’agg’)

import communication

VARIABLES start

38

45|# integrator timestep

46| dt = 0.005

47| # number of timesteps between each communication event
48| Ndt = int (0.5/dt)

49

50|# simulation start time

511 t-0 =0

52|# t-max is imported from parameters
53

54| ## VARIABLES end

55

)

56| print (’\nnParticles
57| print (’rank’, rank)
58| print (’total .number_of_ranks’, mpi_size)
59
60|# get initial positions: from file, place at random coordinates or
use another method

, nParticles)

61
62|# initial particle grids must be created from IO.py
63
64| ids , active, XY = I0.load_grid_of_particles_input (rank, time = t_0)
65|# using N as the actual number of particles if nParticles from
parameters.py s inaccurate

66|# nParticles is only used for saving output. N is used when writing
to timing. txt

67| if rank = 0:

68 N = np.sum(active)
69

70| # start at initial time
711t = t_.0

72

73| #H#H#

74| # MAIN LOOP:

75| print ("\ nstart._time_ =%s’ % t)
76
T7|# communicating before first transport, to avoid bad load balancing
at the beginning

78| print (’This.is.rank %s, _communicating_before_mainloop’ % (rank))

79 ids , XY, active = communication.exchange (comm, mpi-size, rank, ids,
XY[0,:], XY[1,:], active)

80
81|# save initial values after particles are exchanged to the correct
rank at start

82| #print (’Saving particles before first transportation ’)

83|10 .save_grid_of_particles_output (nParticles, ids, active, XY, t, rank
, mpi_size)

84|#plot.plot (rank, XY[:, active], t, dt)

85
86| while t + dt <= t_max:

39

87
88
89
90
91

92

93
94
95
96

97

98
99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122

123
124
125
126
127
128

take Ndt timesteps

only take active particles into transport function

non—active particles should be in the end of the arrays,

so if we want we can use the index as XY[: :np.sum(active)]
instead

print (' This_is_rank %s ,_transporting %s_particles’ % (rank, np.
sum(active)))

flush stdout to print all output up to this point

sys.stdout. flush ()

transport and return new t

XY|[:,active], t = transport.transport (XY[:,active], active, t,
Ndt, dt)
#plot.plot(rank, XY[:, active], t, dt, name = ’_after_transport—

before_comm_’)

Then communicate
all variables taken in by exchange() are local wvariables for
the given rank (except mpi_size)
def exchange (communicator,
mpi_size ,
rank ,
particle_n
particle_id ,
particle_z
particle_y
particle_active):

return (particle_id ,

particle_z

particle_y ,

particle_active)
print ('This_is _rank .%s , _ready._for._.communication’ % (rank))
sys.stdout. flush ()
ids , XY, active = communication.exchange (comm, mpi_size , rank,

ids, XY[0,:], XY[1,:], active)

Then calculate concentration or other spatial property here

#print (’Saving particles in while loop)

I0.save_grid_of_particles_output (nParticles , ids, active, XY, t,
rank , mpi_size)

comm. Barrier ()

#plot.plot_from_files (t, mpi_-size, dt)

print ("\nt.="%s’ % t)

saving parameters and execution time to file

40

129
130
131
132
133

134
135
136
137
138
139
140

141
142
143
144

save timing.txt at relative path

current directory

cdir = os.path.dirname(os.path.realpath(__file__))

timefilename = os.path.join(cdir, os.pardir , ’timing_nPart %s.txt’
% nParticles)

comm. Barrier ()
if rank = 0:

toc = time ()
if not os.path.exists(timefilename):
timefile = open(timefilename, ’'w’)

timefile.write ('Npart\tNcells\tNranks\tNcomm\tTmax\tdt\tTime\
tlogTimestamp\n’)

timefile . close ()

with open(timefilename, ’a’) as timefile:

Necomm = 1 + int(t-max / dt / Ndt)

timefile . write ("%s\t%s\t%s\t%s\t%.5 £\t %.5f\t%.5f\t%s\n’ % (N,
communication. cell_x_n , mpi_size, Ncomm, t_.max, dt, toc —
tic, datetime.datetime.now()))

41

script with functions to wuse in main
this script handle the "transport of particles”—part

transport.py

00

def timestep (X, dt, t):
Use double gyre and RKJ to calculate new functions

return X
P

0 ~J O U = W N —

©

10| import numpy as np

12| ## FUNCTIONS start
13
14|# doublegyre wvelocity field

15|# splitted up in z— and y—components for readability
16| def doublegyre(x, y, t, A, e, w):

17 a = e % np.sin(wxt)

18 b =1 — 2%e*np.sin (wkt)

19 f = axx*x%2 4+ bx*x

20 return np.array (|

21 —np. pi*Asnp.sin (np.pixf) % np.cos(np.pixy),
x component of wvelocity

22 np. pi*Asnp.cos(np.pixf) % np.sin(np.pi*xy) * (2xaxx + b)
y component of wvelocity

23 D

24

25|# wrapper function to pass to integrator
26|# XY is a two—component vector [z, y]
27| def (XY, t):

28 # Parameters of the wvelocity field

29 A=0.1

30 e = 0.25 # epsilon

31 w=1 # omega

32 return doublegyre (XY[0,:], XY[1,:], t, A, e, w)

33

34|# 4th order Runge—Kutta integrator. XY is a two—component vector [z,
y/

35/ def rk4 (XY, t, dt, f):

36 k1l = (XY, t)

37 k2 = £(XY + klxdt/2, t + dt/2)

38 k3 = £(XY + k2xdt/2, t + dt/2)

39 k4 = £(XY + k3xdt, t 4+ dt)

40 return XY + dt=(kl + 2xk2 + 2xk3 + k4) / 6

41

42| # function to calculate a trajectory from an initial position XY0 at
t =0,

43| # mowing forward until t = t_-max, using the given timestep and

integrator

42

44
45
46
47
48
49
50
51
52

93
o4
55
56
o7
58
99
60
61
62

63
64
65
66
67
68
69
70

XY is a two—component vector [z, y]
def trajectory (XY, current_time, Ndt, dt, integrator, f):
t = current_time
number of timesteps
#Nt = int (t-maz/dt)
loop over all timesteps
#for i in range (1, Ndt+1):
for i in range(Ndt):

TODO: what’s the difference between the last line and the
over it?
XY = integrator (XY, t, dt, f)
t += dt

return entire trajectory and current time
return XY, t

def transport (XY, particle_active , current_time, Ndt, dt):
only active particles are passed from main
XY is a two—component vector [z, y]
loop over grid and update all positions

line

this is where parallelisation would happen, since each position

is independent of all the others

array to hold all grid points after transport

#XY1 = np.zeros((2, particle.n))

keep only the last position , not the entire trajectory
XY, t = trajectory (XY, current_time, Ndt, dt, rk4, f)
return XY, t

FUNCTIONS end

43

[Nl

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45

script with functions to wuse in main—file

this script handle the "communication of particles between ranks’—
part

communication.py

7002

def exchange (X):
Handle all the communication stuff here
return the updated particle arrays
(which may be of a different length now)
return X

2002

#H## future work:
#implement ’find biggest factor’—function or another dynamical
function to determine number of cells in each direction

import sys
import numpy as np

import mpidpy.MPI as MPI

INITIALISING start

number of cells in each direction (we only divide xz—direction)
from parameters import nCells

cell_x_n = nCells

cell_.y_.n =0

cell_.n = cell_.x_n + cell_y_n

scaling factor when expanding/scrinking local arrays

scaling _factor = 1.25 ## wvariable
shrink_if = 1/(scaling_factor **3)

the particles are defined with its properties in several arrays
one tag for each properties which are communicated to other ranks
tags: id, x—pos, y—pos

other properties: active—status
tag.n = 3
buffer overhead to wuse in memory reservation for mon—blocking

communication

buffer_overhead = 1000
spatial properties
x_start = 0

x_end = 1

y_start =0

y-end = 1

x_len = x_end — x_start

44

46
47
48
49
50
ol
92
53
54
95
56
o7
58
59

60
61
62
63
64

65

66
67
68

69

70

71

72

73
74
7
76
T
78
79
80
81

82

83

y_len = y_end — y_start
INITIALISING end
secondary FUNCTIONS start

function to find the corresponding rank of a cell
this function determines how the cells are distributed to ranks
simple function when dividing only in one direction
def find_rank_from_cell(cell_id , mpi_size):
return int(cell_id % mpi_size)

function to find the corresponding cell of a position

this function determines how the cells are distributed
geometrically

simple function when dividing only in one direction

def find_cell_from_position(x, y):
return int (((x — x_start)/(x_len))*(cell_x_n)) # for 1D

send_n_array: array to show how many particles should be sent from
one rank to the others

filled out locally in each rank, then communicated to all other
ranks

rows represent particles sent FROM rank = row number (0 indexing)

column represent particles sent TO rank = row number (0 indexing)

function to fill out the array showing number of particles need to
be sent from a given rank given thelocal particles there
local particles are the particles who belonged to the rank before
the transport of particles.
some of the particles may have to been moved to a mew rank if they
have been moved to a cell belonging to a new rank
send_to: array to show which rank a local particle needs to be sent
to. or —1 if it should stay in the same rank
def global_communication_array (mpi_size, rank, particle.n, particle_x
, particle_y , particle_active):
#print ('global com.array, particle n:’, particle_n)
reset arrays telling which particles are to be sent
send_to = np.zeros(particle.n, dtype=int) # local
send_to [:] = —1
send_n_array = np.zeros ((mpi-size, mpi_size), dtype=int)
for i in range(particle_n):
only check if the particle is active
if particle_active[i]:
find the rank of the cell of which the particle (its
position) belongs to
particle_.rank = find_rank_from_cell(
find_cell_from_position (particle_x[i], particle_y[i]),
mpi_size)
if the particle’s new rank does mnot equal the current

’

45

84
85

86
87

88
89
90

91

92
93

94

95
96
97
98

99
100
101
102
103
104
105
106
107

108
109
110
111

112
113
114
115
116
117
118

119
120

rank (for the given process), it should be moved
if particle_.rank != rank:

send_n_array [int (rank)][int (particle_rank)] =
send_n_array [int (rank) | [int (particle_rank)] + 1
send_to[i] = particle_rank
converted indices to int to not get ’deprecation
warning ’
return send_to, send_n_array
function to reallocate active particles to the front of the local
arrays
active_n = number of active particles after deactivation of

particles sent to amother rank, but before receiving.

aka. particles that stays in its own rank

def move_active_to_front (particle_id , particle_.x , particle_y ,
particle_active , active_n):

#print ("move_active_to_front (), particle_active , active_n:’,
particle_active . dtype, active_n)

particle_id [: active.n] = particle_id [particle_active]

particle_x [:active.n] = particle.x[particle_active]

particle_y [: active_n] = particle_y [particle_active]

set the corresponding first particles to active, the rest to
false

particle_active [: active_n] = True

particle_active[active_n:] = False

return particle_id , particle.x , particle_.y , particle_active
secondary FUNCTIONS end

main FUNCTION start

all variables taken in by exchange() are local wvariables for the
given rank (except mpi_-size)

def exchange(communicator,
mpi_size ,
rank ,
#particle_n , # could also be calculated in function:
particle_.n = np.size(particle_id)

particle_id ,
particle_x ,
particle_y ,
particle_active):

)

#print ("mpi_-size from main module’, mpi_size)

#print ('mpi_size from communication module ’,
mpi_size_communication_module)

#print ('rank from main module’, rank)

#print ('rank from communication module

rank_communication_-module)

46

121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137

138

139
140
141
142
143
144

145

146

147

148
149
150
151
152
153
154
155
156
157
158
159
160
161

compute "global communication array”
with all—to—all communication

length of local particle arrays
particle.n = np.size(particle_id)
note: not necessary equal to number of active particles

send_to, send_n = global_communication_array (mpi_size , rank,
particle_.n , particle_.x , particle.y , particle_active)

all nodes receives results with a collective ’'Allreduce’

mpifpy requires that we pass numpy objects (byte—like objects)
send_n_global = np.zeros ((mpi_size, mpi_size), dtype=int)
communicator. Allreduce (send_.n, send_n_global |, op=MPI.SUM)

each rank communicate with other ranks if it sends or receives
particles from that rank

this information is now given in the "global communication
array”

point—to—point communication of particles

using list of arrays for communication of particle properties

initializing ”“communication arrays”: send_x*¥ and recu_ ¥#x

send_x*x*: list of arrays to hold particles that are to be sent
from a given rank to other ranks,

where row number corresponds to the rank the the particles
are send to

recv_x*x: list of arrays to hold particles that are to be
received from to a given rank from other ranks,

where row number corresponds to the rank the particles are
sent from

send_id = []
send_x = []
send_y = []
recv_id = []
recv_x = []
recv.,y = []

total number of received particles
received_n = np.sum(send_n_global , axis = 0)[rank]

for irank in range(mpi_size):

find number of particles to be received from irank (sent to
current rank)

47

162
163
164
165
166
167
168

169
170
171
172
173
174
175
176
177
178

179
180

181
182

183
184

185

186
187
188
189

190
191
192
193
194

195

196
197
198
199
200

Nrecv = send_-n_global [irank , rank|]

append recv_id with the corresponding number of elements
recv_id .append(np.zeros(Nrecv, dtype = np.int64))
recv_x.append(np.zeros (Nrecv, dtype = np.float64))

recv_y .append(np. zeros (Nrecv, dtype = np.float64))

find number of particles to be sent to irank (from current
rank)

Nsend = send_n_global [rank, irank]

append send_id with the corresponding number of elements

send_id . append (np. zeros (Nsend, dtype = np.int64))

send_x .append (np. zeros (Nsend, dtype = np.float64))

send_y .append (np. zeros (Nsend, dtype = np.float64))

counter to get position in send_xx for a particle to be sent
send_count = np.zeros(mpi_size, dtype=int)

iterate over all local particles to allocate them to send_xx* if
they belong in another rank
for i in range(particle_n):

if particle is active (still a local particle) and should
be sent to a rank (—1 means that the particle already is
in the correct rank)

if (particle_active[i] and send_to[i] != —1):

fill the temporary communication arrays (send_xx) with
particle and it’s properties

send_id [send_to[i]][send_count[send_to[i]]] = i

send_x [send_to[i]][send_count[send_to[i]]] = particle_x[i
]

send_y [send_to[i]][send_count[send_to[i]]] = particle_y[i

]

deactivate sent particle

particle_active[i] = False

increment counter to update position in temporary
communication arrays (send_*x)

send_count [send_to[i]] = send_count[send_to[i]] + 1

actual exchange of particle properties follows

must convert the list of arrays which are to be communicated to
numpy objects (byte—like objects)

this is mnot done before because np.ndarrays does mnot support a
"list of arrays” if the arrays does not have equal dimensions

#send_id_np = np.array(send_id)

#recv_id_np = np.array(recv_id)

#send_x_np = np.array(send_z)

#recv_z_np = np.array(recv_z)

#send_y_np = np.array(send_y)

48

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

238

#recv_y-np = np.array(recv_-y)

requests to be used for non—blocking send and receives

send_request_id = [0] * mpi_size
send_request_-x = [0] % mpi_size
send_request_-y = [0] % mpi_size

recv_request_id = [0] * mpi_size
recv_request_x = [0] % mpi_size
recv_request_y = [0] % mpi_size

sending

for irank in range(mpi_size):
if (irank != rank):
number of particles rank sends to irank
Nsend = send_n_global [rank, irank]
only receive if there is something to recieve
if (Nsend > 0):
#print (’rank:’, rank, ’sending’, Nsend, ’particles to
", dirank)
use tags to separate communication of different
arrays/properties
tag uses I—indexing so there will be mo confusion
with the default tag = 0
send_request_id [irank] = communicator.isend (send_id |
irank][0:Nsend], dest = irank, tag = 1)

send_request_x [irank |
irank][0: Nsend] ,

send_request_y [irank |
irank] [0: Nsend],

= communicator.isend (send_x |
dest = irank, tag = 2)

= communicator.isend (send_y |
dest = irank, tag = 3)

receiving

for irank in range(mpi_size):
if (irank != rank):
number of particles irank sends to rank (number of
particles rank recieves from irank)
Nrecv = send_n_global [irank , rank]
only receive if there is something to recieve
if (Nrecv > 0):

#print (’rank:’, rank, ’‘receiving’, Nrecv, ’'particles
from’, irank)

buf_id = np.zeros(Nrecvt+buffer_overhead , dtype = np.
int64)

buf_x = np.zeros(Nrecv+buffer_overhead , dtype = np.
float64)

buf_y = np.zeros(Nrecvt+buffer_overhead , dtype = np.
float64)

49

239
240

241

242

243

244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

278
279
280

use tags to separate communication of different
arrays/properties

tag uses I—indexing so there will be mo confusion
with the default tag = 0

recv_request_id [irank]| = communicator.irecv (buf
buf_id , source = irank, tag = 1)

recv_request_x [irank] = communicator.irecv (buf
buf_x, source = irank, tag = 2)

recv_request_y [irank] = communicator.irecv (buf
buf.y, source = irank, tag = 3)

obtain data from completed requests
only at this step is the data actually returned.
for irank in range(mpi_size):
if irank != rank:
if there is something to receive
if send_n_global[irank, rank] > 0: # Nrecv > 0

recv_id [irank |[:] = recv_request_id [irank]. wait ()
recv_x [irank |[:] = recv_request_x[irank]. wait ()
recv_y [irank | [:] = recv_request_y [irank |. wait ()

#print ('recv_id_np:’, recv_id_np)
#print ("recv_z_np:”, recv_z_np)
#print ("recv_y_np:”, recv_y_np)

make sure this rank does not exit until sends have completed
for irank in range(mpi_size):
if irank != rank:
if there is something to send
if send_n_global [rank, irank] > 0: # Nsend > 0
send_request_id [irank]. wait ()
send_request_x [irank |. wait ()
send_request_y [irank |. wait ()

total number of received and sent particles
total number of active particles after communication

sent_n = int (np.sum(send_n_global ; axis = 1)[rank])
received_.n = int(np.sum(send_n_global , axis = 0)[rank])
active_n = int (np.sum(particle_active))

move all active particles to front of local arrays
if (active.n > 0):
particle_id , particle_.x, particle.y , particle_active =
move_active_to_front (particle_id , particle_.x , particle_y,
particle_active , active_n)

resize local arrays if needed

20

281
282
283

284
285

286

287
288
289

290
291
292
293
294
295
296

297
298
299
300
301

302
303
304
305
306

307
308
309
310
311
312
313
314
315

316
317
318
319
320
321

current scaling factor = 1.25, set in top of file

check if local arrays have enough free space, if not, allocate
a ’'scaling_factor’ more than mneeded
if (active.n + received.n > particle_n):
new_length = int (np. ceil ((active.n + received_n)=*
scaling_factor))
if new length is not equal old length: resize all local
arrays
if new_length != particle_n:
#print ('extending arrays to new length:’, new_length)
with .resize—method, missing/extra/new entries are
filled with zero (false in particle_active)
TODO: change from resize function to method

particle_active = np.resize (particle_active , new_length)
particle_id = np.resize(particle_.id , new_length)
particle_x = np.resize(particle_.x , new_length)
particle_y = np.resize(particle.y , new_length)

particle_active.resize (new_length, refcheck = False)#
refcheck = True by default

particle_id.resize(new_length, refcheck = False)

particle_x.resize(new_length, refcheck = False)

particle_y.resize(new_length, refcheck = False)

check if local arrays are bigger than mneeded (with a factor:
shrink_if = 1/scaling_factor*x3)

old + new particles < shrink_if+old_size

if they are, shrink them with a scaling_factor

if (active.n + received.n < shrink_ifsparticle_n):

new_length = int (up.ceil (particle_.n/scaling_factor))

if new length is not equal old length: resize all local
arrays

if new_length != particle_n:
#print ('shrinking arrays to new length:’, new_length)
TODO: change from resize function to method
particle_active = np.resize(particle_active , new_length)
particle_id = np.resize(particle_.id , new_length)
particle_x = np.resize(particle_.x , new_length)
particle_y = np.resize (particle_.y , new_length)

particle_active.resize (new_length, refcheck = false)#
refcheck = true by default

particle_id.resize(new_-length, refcheck = false)

particle_x.resize (new_length, refcheck = false)

particle_y.resize (new_length, refcheck = False)

add the received particles to local arrays

51

322

323
324
325

326
327
328
329

330
331
332
333
334
335
336
337
338
339
340

341
342
343
344
345
346
347
348
349
350
351
352

unpack (hstack) the list of arrays, (ravel/flatten can not be
used for dtype=object)

if received_n > 0:

particle_id [active_n:active_n+received_n] = np.hstack(recv_id
)
particle_x [active_n:active_n+received_-n| = np.hstack(recv_x)
particle_y [active_n:active_n+received_n] = np.hstack(recv_y)
set the received particles to active
particle_active[active_n:active_n+received_.n] = np.ones(

received_n , dtype = np.bool)

optional printing for debugging
print values for debugging
#print ("particle_n (old wvalue):’, particle_n)
#print (”old active_n:”, active_n)
#print (”sent-n:”, sent_n)
#print ("received-n:”, received-n)
#print ("new active_n:”, np.sum(particle_active))
#print ('new length of local arrays:’, np.size(particle_id))
#print ("new local particles:”, particle_id)
#print ("new active particles:”, particle_active+1) # x1 to
turn the output into 0 and 1 instead of False and True
else:
print ("\nno._received._particles”)

print global array
if rank = 0:
print(’\nglobal_array:\n’, send_n_global)

return the updated particle arrays
return (particle_id ,
np.array ([particle.x , # z component
particle_y]) ,# = component
particle_active)

52

© 00 ~J O U W N —

#parameters. py

nCells = 8192#2048

nParticles = led#leb

nParticles will be rounded to the mnearest perfect square
#t_max in seconds

t_max = 10000#9.5#100

all the other parameters are set directly in the other files

23

[Nl

w

[

[=)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35

36

37
38
39
40

41
42

script with functions to wuse in main

this script handle the ’saving, loading and initialising of
particle files’

10.py

particle arrays will be initialized in input folder if this script
is run by itself

import numpy as np

import os # for 10—paths

INITIALISING start
file_extension = ’.npy’
input_folder = ’input’
output_folder = ’output’
particle_x_name = ’particle_x’
particle_y_name = ’particle_y’
id_name = ’particle_id’
active_name = ’particle_active’

INITIALISING end
VARIABLES start

relative paths
cdir = os.path.dirname(os.path.realpath(__file__))
IO _path_input = os.path.join(cdir, input_folder)
IO _path_output = os.path.join(cdir, output_folder)
VARIABLES end

FUNCTIONS start
def save_array_binary_file_input (array, name, time, rank):
file_path = os.path.join (IO _path_input, ’time%s %s_rank%s’ % (
time, name, rank))
np.save (file_path , array)

def save_array_binary_file_output (nPart, array, name, time, rank,
mpi_size):
file_path = os.path.join (IO_path_output, ’'nPart%s_time%s_%s_rank%
s _MPIsize%s’ % (nPart, time, name, rank, mpi_size))
np.save (file_path , array)

HHAAAH

this function is not used, the load is done directly in
load_grid_of_particles_input”

def load_array_binary_file_input (name, time, rank):
file_path = os.path.join (IO_path_input, ’time%s_%s_rank%s%s’ % (

”

o4

time , name, rank, file_extension))
43 return np.load(file_path)

44
45| # this function is not used, the load is done directly in
load_grid_of_particles_output”

46| def load_array_binary_file_output (name, time, rank, mpi_size):

”

47 file_path = os.path.join (IO_path_output, ’time%s_%s_-rank%
s_MPIsize%s%s~ % (time, name, rank, mpi_size, file_extension))

48 return np.load(file_path)

49| AAAH

50

51|# when saving in
52| def save_grid_of_particles_input (ids, active, XY, time, rank):

53 # XY is a two—component vector [z, y]

54 save_array_binary_file_input (ids, id_name , time , rank
55 savi,array,binary,file,input(active , active_name , time, rank
56 savzz,array,binary,file,input (XY[0,:], particle_x_.name , time, rank
57 savo)e,array,binary,file,input (XY[1,:], particle.y_name, time, rank

)
58
59| def save_grid_of_particles_output (nPart, ids, active, XY, time, rank,
mpi_size):

60 # XY is a two—component vector [z, y]

61 save_array _binary_file_output (nPart, ids, id_name ,
time, rank, mpi_size)

62 save_array_binary_file_output (nPart, active, active_name,
time, rank, mpi_size)

63 save_array_binary_file_output (nPart, XY[0,:], particle.x_name,
time , rank, mpi_size)

64 save_array_binary_file_output (nPart, XY[1,:], particle.y_name
time, rank, mpi_size)

65

66| def save_empty_grid_input (time, rank):

67 save_array_binary_file_input (np.ndarray (0, dtype=int), id_name
, time, rank)

68 save_array._-binary_file_input (np.ndarray (0, dtype=bool),
active_name , time , rank)

69 save_array_binary_file_input (np.ndarray (0) ,
particle_x_name , time, rank)

70 save_array_binary_file_input (np.ndarray (0)
particle.y_name , time, rank)

71

72| def load_grid_of_particles_input (rank, time):

73 # XY is a two—component vector [z, y]

74 file_path_id = os.path.join (IO_path_input, ’time%s_%s_rank%s%s’ %

(time, id-name, rank, file_extension))

95

()

76

7

78
79
80
81
82
83
84
85

86

87

88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

def

def

file_path_active = os.path.join (IO_path_input, ’time%s_%s_rank%s%
s’ % (time, active_name, rank, file_extension))
file_path_x = os.path.join (IO_path_input, ’time%s_%s_-rank%s%s’ %
(time, particle.x_name , rank, file_extension))
file_path_y = os.path.join (IO_path_input, ’time%s_%s_rank%s%s’ %
(time, particle_y_.name, rank, file_extension))
return (np.load(file_path_id),
np.load (file_path_active),
np.array ([np.load (file_path_x), np.load(file_path_y)])

)

load_grid_of_particles_output (nPart, rank, time, mpi_size):
XY is a two—component vector [z, y]
file_path_id = os.path.join (IO_path_output, ’nPart%s_time%s_%
s_rank%s _MPIsize%s%s’ % (nPart, time, id_name, rank, mpi_size,
file_extension))
file_path_active = os.path.join (IO_path_output, ’'nPart%s_time%s_-%
s_rank%s_MPIsize%s%s’ % (nPart, time, active_name, rank,
mpi-size, file_extension))
file_path_x = os.path.join (IO_path_output, ’nPart%s_time%s_%
s_rank%s MPIsize%s%s’ % (nPart, time, particle.x_name , rank,
mpi_size, file_extension))
file_path_y = os.path.join (IO_path_output, ’'nPart%s_time%s_%
s_rank%s_MPIsize%s%s’ % (nPart, time, particle_.y_name, rank,
mpi_size, file_extension))
return (np.load(file_path_id),
np.load (file_path_active),
np.array ([np.load (file_path_x), np.load(file_path_y)])

create_grid_of_particles (N, w):

create a grid of N evenly spaced particles

N is rounded down to nearest perfect square

N = (int (np.sqrt (N)))**2

print ('Creating._grid_of_particles’)

print ('N: %s,.w: %s’ % (N, w))

covering a square patch of width and height w

centered on the region 0< z< 2, 0< y < 1

ids = np.arange(N)

active = np.ones(N, dtype=bool)

x = np.linspace(1.0—w/2, 1.04w/2, int(np.sqrt(N)))
y = np.linspace(0.5—w/2, 0.5+w/2, int(np.sqrt(N)))
x, y = np.meshgrid(x, y)

return ids, active, np.array ([np.ravel(x), np.ravel(y)])

FUNCTIONS end

if

__name__ =— ’__main__":

from parameters import nParticles
initialize grid

26

113
114
115
116
117
118
119

120
121
122
123
124
125
126
127

n = nParticles

w= 0.1

t =0

total_ranks = 64x%2

i, a, xy = create_grid_of_particles(n, w)

save_grid_of_particles_input (i, a, xy, t, rank=0)

save empty grids for the other ranks, in this case for 64 total

ranks
for i in range(1l, total_ranks):
print (’creating _empty_arrays._for.rank:’, i)

save_empty_grid_input(t, i)
writing information of nParticles
n = (int(np.sqrt(n)))*x2
print ('N_owas_rounded.to:.’, n)
text_file = open(”nPart—%s—was_created.txt” % n,
text_file.close ()

W”)

o7

38
39

40
41
42
43

44
45

script with plot functions to use in main or stand alone
this script handles plotting of particles

plot.py

import os

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns # plot style

import 10

plt.style.use(’bmh’)

INITIALISING start

figsize_.x = 12

figsize_.y = 6

specify z— and y limits
x_min = 0

X_max = 2

y-min = 0

y_max = 1

file extension
file_extension = ’.pdf’

) ’

#file_extension = ’.png
INITIALISING end
FUNCTIONS start

XY is a two—component vector [z, y]
def plot(rank, XY, time, dt, name = ’7):
fig = plt.figure(figsize = (figsize_x , figsize_y))
#plt.scatter(z, y, lw = 0, marker = .7, s = 1)
plt.scatter (XY[0,:], XY[1,:], marker = ’.’, s = 5)#, linewidth
1)# s = size
add text showing time, and set plot limits
plt.text (1.65, 0.9, ’'rank.=%s\n$t.=%s$’ % (rank, time), size
36)
plt.xlim (x_min, x_max)
plt.ylim (y_-min, y_max)
#plt . show ()

plt .savefig(os.path.join(plots’, ’particles_time%s%s_rank%s_dt%s

%s’ % (time, name, rank, dt, file_extension)))

def plot_from _files (nPart, time, mpi_size, dt):

o8

46
47
48
49
50

o1

52
93
o4

55
56
o7
98
99
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
5
76
7
78
79
80
81

fig = plt.figure(figsize = (figsize_x , figsize_.y))
colors = ’breykgmk’
for rank in range (mpi_size):
load particles
id, active, XY = I0.load_grid_of_particles_output (nPart, rank
, time, mpi_size)
plt .scatter (XY[0,active], XY[1,active]|, marker = .7, s = 6,
label = ’'rank.=%s’ % rank, color = colors|[rank])#label =
‘rank = %s’ % rank)#, linewidth = 1)# s = size

#plt. text(iter (['rank 0°, ’rank 1°, ’rank 27, ’rank 37]))

#plt.text (1.65, 0.9, ’rank = %s\nét = %s$’ % (rank, time),
size = 36)

print (’rank’, rank)

print (’z’, XY[0,active])

print(’\n’)

print(’y’, XY[1,active])

plt . xlim (x_min, x_max)

plt.ylim (y_min, y_max)

plt.legend (scatterpoints = 1)

#plt . show ()

plt.savefig(os.path.join(plots’, ’allranks_particles_time%s_dt%s
%s’ % (time, dt, file_extension)))

FUNCTIONS end

if __name_._ = ’__main__":
import 10
from parameters import nParticles
nParticles = int(nParticles)
dt= 0.5
file_extension = ’.png’
t =20
total_ranks = 4
figsize_x = 12
figsize_.y = 6
plot all particles from files and colour each rank
plot_from _files (nParticles, t, total_-ranks, dt)

29

	Preface
	Acknowledgment
	Introduction
	Theory
	Fluid mechanics
	Navier-Stokes equations
	Advection and diffusion

	Numerical integration
	Velocity field
	Parallel computing
	Load balancing

	Measuring parallel computing performance
	Amdahl's law
	Gustafson's law
	Karp–Flatt metric

	Method
	Implementation
	Communication array
	Communication of particles

	Parallel computing
	Dividing work on processes

	Python
	Performance testing

	Results and discussion
	Calculate Metrics
	Load balancing

	Conclusion
	Suggestions for further work

	Source code

