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Preface

This specialization report is written in culmination of the International Master Program in Reli-

ability, Availability, Maintainability and Safety (MSc. RAMS) within the Production and Quality

Engineering Department (IPK) at the Norwegian University of Science and Technology (NTNU),

Trondheim, Norway. This work has been performed during the Spring of 2016. This report

is based on background of the Modelling Instantaneous Risk for Major Accident Prevention

(MIRMAP) project, financed by the Norwegian Research Council. And Model Uncertainty Anal-

ysis is the central topic of this report. It starts with a overview about uncertainty, then a system-

atic modelling process is described which is used as a start point of model uncertainty analysis

is described. Methods for model uncertainty analysis from relevant fields is reviewed, a method

for model uncertainty sources identification is proposed and applied in MIRMAP model.

The intended reader for this report should have good knowledge in uncertainty. Some knowl-

edge with operational risk analysis in oil and gasoline industry, practical experience with mod-

elling would also be helpful in understanding the report.

The topic of this thesis is based on the practical demand in MIRMAP project.

Trondheim, 2016-06-09

Tiantian Zhu
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Summary and Conclusions

A model is a simplified representation of the real world. Model uncertainty is a common issue

in predictive models, and discussions on this can be found in many subjects. Model uncertainty

is a branch of uncertainty analysis and is widely discussed, but in reality uncertainty analysis

mainly focuses parameter uncertainty.

An overview of uncertainty is established by reviewing different definitions of uncertainty

in various applications, three dimensions, classifications, representations of uncertainty and

relations between uncertainty and risk for decision making. There are different understandings

and definitions regarding uncertainty and model uncertainty in varied fields. Own definitions of

these terms must be clearly stated and be meaningful for the problem at hand. Definitions about

uncertainty and model uncertainty, which apply in this thesis, are given to avoid ambiguity and

limit topic range.

"Model Uncertainty" is sometimes used about "Model Output Uncertainty" which in some

published works are an integrated result from all kinds of uncertainty. Conceptual uncertainty,

model error, model structure uncertainty, modelling uncertainty are used in some papers. Being

cautious is necessary when dealing with these terms. An uniformation of these terms can better

scientific communication and the application of outcomes.

A general and systematic modelling process is described to see how model uncertainty can

be analyzed using a systematic model development process as a starting point. Proposed prob-

abilistic models, relevant modelling techniques, and a modelling process for operational risk

analysis are described. This part contributes to form the main concept of analysing model un-

certainty in this thesis.

Methods to deal with model uncertainty are identified and described by reviewing relevant

application fields, including probabilistic risk analysis used in the Nuclear Power Sector, Envi-

ronmental modelling, and Computational Modelling and Simulation. There are different char-

acterization methods for model uncertainty. Methods about model uncertainty resources iden-

tification, characterization and analytical treatment, and model uncertainty reduction are sim-

ply summarised.

These methods for model uncertainty treatment can be concluded to three groups. "Input-
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Driven", "Output-Driven", and Hybrid. "Input-driven" methods provide a better understanding

of the impact of identified model uncertainty sources. They are mainly qualitative methods.

"Output-driven" methods provide a "closer" result to "truth" of the model outputs.

Besides, a method for systematic model uncertainty sources identification is proposed. This

method is based on the systematic modelling process described in the previous chapter. A fish

bone diagram showing model uncertainty sources, which might occur at each modelling step,

is presented.

Proposed method for model uncertainty identification is applied to identify model uncer-

tainty sources in MIRMAP model. Further applications of the identification information are

also described. Proposed method for model uncertainty sources identification is a systematic,

easy and applicable method and it is verified by its application in MIRMAP model. It is very

suitable for big and hierarchical models, and it do opens for further improvement to be made.

Identified model uncertainty sources in MIRMAP model are mainly in following groups:

Limitation and scope of analysis, ignored dependence, ignored sub-barrier system or compo-

nents, surrogate values are used as model inputs (e.g industrial average values are used for plant

specific values), simplification of system and assumption in model structure from event tree

to BBN, descritization and approximation in numerical solution. Different model uncertainty

sources have varied-degree impact on the model outputs. Characterization methods for these

model uncertainty sources should vary according to the importance, location and cause of these

model uncertainty sources.
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Chapter 1

Introduction

A model is an imperfect representation of the real world or a system using idealizations tailored

to its objective. Model uncertainty is a common issue in predictive models, which reduce our

confidence of the model outputs (e.g. quantities of interest). This is especially the case where

the outputs are used as inputs for decision support. For quantiative models the model output

uncertainty comes usually from two resources; parameters (data) and model. Parameter un-

certainty have been exhaustive studied, while model uncertainty still lacks investigation and

understanding, although mountains of papers and reports from different subjects can be found

describing the latter as well. The Modelling Instantaneous Risk for Major Accident Prevention

(MIRMAP) project is to model instantaneous risk of major accident, which is relative to average

long term risk. A probablistic model is proposed in this project, which model description can be

found at Chapter 5.1. The purpose of this risk model is to provide input information for opera-

tional decisions to control risk. Model uncertainty should be studied, reduced as possible, and

also clearly presented, thereby providing solid information for robust decision making.

1.1 Background

The current work is part of the Modelling Instantaneous Risk for Major Accident Prevention

(MIRMAP) project, which is a joint research project between Safetec, the Norwegian University

of Science and Technology and the Industry. The simplified relation between this master theis

and MIRMAP project is shown in Figure 1.1. Currently, a probabilistic risk model of a "Major

2
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Operational Risk Modelling & Analysis
(MIRMAP)

Uncertainty Analysis

Model Uncertainty
(This Thesis)

Figure 1.1: The relation between this Master Thesis topic and MIRMAP

Accident", referring to marjor hazard risk related to fire and explosion, is proposed and devel-

oped in the MIRMAP project to predict instantaneous risk involving operational activities. The

generic model is a hybrid casual model combining Event tree, Fault tree and Bayesian Belief

Network (BBN).

A new, attractive main feature of the MIRMAP generic model is that it involves activities

which increase major hazard risk, and these activities are carefully identified and integrated at

the model locations (mainly as basic events in the fault tree) where the activity effects become

correctly implemented. The outputs from the model can give support to operational decision

makers during the operational planning phase (e.g. decisions relating to execution of or interval

for testing of process shutdown valve, when experience shows that the testing often causes trips,

which may result in leaks).

Uncertainty is a common issue when it comes to prediction and model-based decisions.

While Uncertainty from model itself might be the main contribution of uncertainty, as said by

Apostolakis (1989) etc. Unavoidably, This is an issue in the proposed model in MIRMAP as well.

This thesis is to start the investigation of model uncertainty in MIRMAP model which has a

potential critical influence in decision making if it is ignored.
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1.1.1 Basic Information about MIRMAP

MIRMAP is a project which intends to provide methods to quantitatively model, present and

visualize instantaneous major hazard risk, and furthermore give support to operational deci-

sion makers to eliminate or control the risk of major accident in the oil and gasoline industry

(MIRMAP, 2013). The overall objective of this project is to explore and define the concept of

instantaneous major hazard risk and how this can be analysed in living risk analysis, as a basis

for providing better decision support in an operational setting. Developing a method/model for

"Operational risk analysis" is the fourth task of this project.

Since the present methods for quantitative risk analysis(QRA) or total risk analysis(TRA)

mainly cover technical aspects of the design with a limited coverage of operational and organi-

zational issues. And usually it is conducted every several years. The results from them are kind

of average risk over a long period (may be several years). It means that the current QRA/TRA

cannot reflect the volatility of risk over short time (instantaneous risk) or provide adequate sup-

port for operational decisions of a specific situation. They are more suitable being treated as

strategic analysis.

New tools for instantaneous risk, referring to "Operational risk analysis", "Living risk anal-

ysis" or "Risk Monitoring", are in high demand and of great necessity for the oil and gas indus-

try. This tool should go to a very detail level for the situation in question and be able to model

the interactive and synthetic effect of equipment failure and design, as well as operational and

organization issues. Several models for this purpose are described in Chapter 3.2.1. Model un-

certainty of these models were not that well discussed or presented. This is perhaps due to the

nature of model uncertainty, which is an issue relevant to the maturity of techniques.

A risk model involving risk impact from activities is one way to go. A graphical demonstra-

tion of how plant risk fluctuate with activities in time axis is showed by Yang and Haugen (2015).

Besides, The quantitative risk framework structured to follow a causal effect relation, while hav-

ing integrated risk influence factors, has shown to be robust (Øien, 2001a; Aven et al., 2006; Røed

et al., 2009; Gran et al., 2012). Specific time-dependent parameter values of these risk influence

factors are going to be used in the model instead of average values to produce dynamic risk

value. These form the concept of MIRMAP generic Model. And by modelling and predicting

instantaneous risk and major hazard risk contribution from these activities, risk is possible to
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be controlled by managing these activities.

1.2 Problem Formulation

Since the existence of model uncertainty is sure. And it is necessary to be well understood and

analysed to give solid information for decision support which relies on the accuracy of model

output. Then following questions come: 1) how model uncertainty is formed, 2)how to system-

atically identify the sources of it, 3) whether there are some analytical treatments of it, 3)how to

present or measure (quantify) and interpret it, 4) how to reduce it, 5) how to cope with it to make

robust decisions.

Some reasons to set up this topic are listed as following:

1) Risk is about the future; what we are modeling is to predict instantaneous risk, uncertainty

is a common discussed problem in risk prediction, we should not ignore this issue;

2) Model-based decision support gets more and more popular. No model is totally right, but

some are more useful than others. A model simplifies a complex reality; however, the cost is

uncertainty related to the simplification. Uncertainty from the model itself (model uncertainty)

should be well studied and analysed to establish confidence in model outputs which will be

used to support decision-making;

3) Model uncertainty is not that well studied or treated as parameter uncertainty even though

researchers have mentioned it for many years;

4) A good understanding of model uncertainty sources and their impacts on the result helps

us refine our model and provides better interpretation of the model outputs also;

5) A good analysis of model uncertainty can benefit both model developers and model users.

1.3 Objectives

The main objective of this Master’s project is to study model uncertainty in MIRMAP model, and

see how can we reduce it, or how to cope with it in decision making if we cannot reduce it. The

main objective can be achieved by achieving following sub-objectives:
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1. Establish an overview of the concept of uncertainty, and how it is understood and formu-

lated in different fields of application.

2. Describe how model uncertainty can be analyzed using a systematic model development

process as a starting point.

3. Identify and describe methods to deal with model uncertainty from relevant fields of ap-

plication.

4. Apply the above to identify and analyze model uncertainty in the MIRMAP model to give

input for model refining and model users (decision makers). Due to time limitation this

is limited to the identification of model uncertainty sources, which is the start of model

uncertainty analysis.

1.4 Limitations

There are several limitations in this thesis, they are:

1. Approach related

Due to time limitation, the proposed method to identify model uncertainty sources is not

fully verified, which means that it can be improved.

The identified model uncertainty sources in MIRMAP is limited by the knowledge of the

analyst.

The identified sources of model uncertainty in MIRMAP is of generic nature, i.e. not for a

specific plant or area. As a consequence other model uncertainty sources may come up for

a specified plant, or area, due to its distinct properties. Such a part of model uncertainty

sources should be examined and characterized before application of model in decision

support.

2. Study scope related

Regarding model uncertainty analysis in MIRMAP model to give input for model refining

and model users (decision makers), the contents of model uncertainty analysis include
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the model uncertainty sources identification, characterization, integration, propagation,

impact assessment and representation. These tasks always cannot be finished within one

master thesis, there are many technical issues within it. So, in this thesis, the content of

model uncertainty analysis is limited to identification of model uncertainty sources.

1.5 Approach

The main approach in this thesis is literature review. For the first objective, a literature reviewing

of different application fields where uncertainty is a important issue.

For the second objective, A systematic model development process will be described. then

it follows a brief description of probabilistic operational risk modelling summarized from pro-

posed probabilistic operational risk modelling in the literature.

For the third objective, literature reviewing of relevant fields where model uncertainty is well

discussed studied and analysed in the practical model. such as probabilistic risk analysis in

nuclear sector, environmental modelling, computerized modelling and simulation etc. The big

subject of model uncertainty analysis will be divided into sub issues to be easier solved.

As for the last objective, a systematical identification approach will be proposed and used to

identify model uncertainty sources in MIRMAP generic model.

1.6 Structure of the Report

The rest of the report is organized as follows:

• Chapter 2 gives an introduction to the concept of uncertainty, including different under-

standing and interpretation in different fields. Definitions of uncertainty, model uncer-

tainty etc. which are applied in this thesis, are given at the end of this chapter.

• Chapter 3 includes two parts. First part provides a general and systematic modelling pro-

cess as a preparation to decompose the formation of model uncertainty. The second part

is about operational risk modelling including other proposed probabilistic operational

risk models, relevant modelling techniques which are used for operational risk modelling

and generic operational risk model outcomes.
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• Chapter 4 is the literature review of model uncertainty analysis in some sectors where

model uncertainty is thoroughly discussed, including probabilistic risk analysis, environ-

mental modelling, computational modelling and simulations etc. A systematic method

for model uncertainty sources identification is proposed.

• Chapter 5 is the chapter about model uncertainty in MIRMAP model. First, the MIRMAP

generic model is described. Then model uncertainty sources in this model are identified

using the proposed method. Further applications of the identification information are

described.

• Chapter 6 summarizes and give the conclusion of the work. Discussion and recommen-

dation for future work are also given in this chapter.

There are 3 appdendix to provide necessary additional information for this thesis. They are:

• Appendix A is a list of abbreviations used in this thesis.

• Appendix B is the information of MIRMAP model, including model construction process,

Barrier function, Fault trees, defined activity list, basic events list, RIFs information for

each activity.

• Appendix C is the detail information about identified model uncertainty sources in MIRMAP

model.



Chapter 2

Uncertainty

This chapter mainly introduce different definitions of uncertainty in the context of application

domains, three dimensions of uncertianty, taxonomy of uncertainty, representations of uncer-

tainty and relation between uncertainty and risk. The main contents in this chapter is from

literature review.

2.1 Different Definitions

Uncertainty has different definitions in different applications and subjects. Here we can have a

look at how uncertainty is defined according to the subjects.

In wikipedia, Uncertainty is understood as ‘’the situation which involves imperfect and /

or unknown information, It applies to predictions of future events, to physical measurements

that are already made, or to the unknown. Uncertainty arises in partially observable and/or

stochastic environments, as well as due to ignorance and/or indolence”(Wik, 2016).

In metrology and chemical analysis, "Uncertainty" generally means doubt; it refers both to

the general concept of uncertainty and to any or all quantitative measures of the concepts when

no adjectives for specific measure is used. The following definition is given to uncertainty of

measurement:

"A parameter associated with the result of a measurement, that characterises the dispersion

of the values that could reasonably be attributed to the measurand".(BIPM et al., 2008; Ellison

and Williams, 2012)

9
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The parameter may be a standard deviation, or a given multiple of it, or width of a confi-

dence interval. Generally, uncertainty of measurement comprises many components. These

components may be evaluated from statistical distributed results of measurement series, and

can be characterised by standard deviations or from assumed probability distributions based

on experience or other information. Furthermore, the result of the measurement is the best

estimate of the measurand value. All components of uncertainty contribute to the dispersion.

This includes components arising from systematic effects, such as those associated with correc-

tions and reference standards. The uncertainty of the result of a measurement reflects the lack

of exact knowledge of the value of the measurand.

Fish bone method is used for identifying model uncertainty causes systematically by exam-

ining measurement equipment and environment, etc.

For a model-based decision situation, Walker et al. (2003) define "uncertainty as being any

deviation from the unachievable ideal of completely deterministic knowledge of the relevant sys-

tem to provide a conceptual basis for the systematic treatment of uncertainty in model-based de-

cision support activities such as policy analysis, integrated assessment and risk assessment".

De Haag and Ale (1999) define uncertainty as a measure of distinction between the model

calculation and the actual situation in Quantitative Risk Assessment (QRA), which is used as a

tool to determine the risk caused by an activity involving dangerous substances.

NASA give following definition to uncertainty for NASA probabilistic risk and reliability anal-

ysis(Dezfuli et al., 2009): "Uncertainty is a state of knowledge, and it is measured by probability

and represented by aleatory and epistemic elements".

NASA probabilistic risk and reliability analysis focus more on the parameter uncertainty

(numerical value of the parameter) of the given model than model uncertainty (validity of the

model), because they think that the risk model used(simplification and approximation) is rea-

sonably complete. Verifying that the model actually satisfy the requirement is problematic

and it constitute completeness uncertainty. Bayesian inference are used for parameter uncer-

tainty propagation. WinBUGs which is developed for Monte Carlo simulation is the software

used for Bayesian inference. The issue of model uncertainty is usually handled by a sensitivity

study(Stamatelatos et al., 2011).

Bedford and Cooke (2001) in the book Probabilistic Risk Analysis: Foundations and Methods
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declare that:

"Uncertainty is a state of mind about a proposition (e.g. existence of characteristics of a state,

event, process, or phenomenon) that disappears when the condition of truth for that propo-

sition exists (i.e., observed). A mathematical representation of uncertainty comprises three

things:(1) axioms, specifying properties of uncertainty; (2)interpretations, connecting axioms

with observables;(3) measurement procedure, describing methods for interpreting axioms."

Probability is one of several ways to express uncertainty. And ambiguity which exists linguis-

tically due to our inability to express a meaningfully declarative sentence should be removed in

order to discuss uncertainty properly. This concept of uncertainty is adapted by Modarres (2006)

in his book Risk Analysis in Engineering: Techniques, Tools and Trends.

The definition of Uncertainty in Intergovernmental Panel on Climate Change (IPCC) is(Pachauri

et al., 2014):

"A state of incomplete knowledge that can result from a lack of information or from dis-

agreement about what is known or even knowable. It may have many types of sources, from

imprecision in the data to ambiguously defined concepts or terminology, or uncertain projec-

tions of human behaviour. Uncertainty can therefore be represented by quantitative measures

(e.g., a probability density function) or by qualitative statements (e.g., reflecting the judgment

of a team of experts)."

IPCS (2004) define uncertainty as "Imperfect knowledge concerning the present or future

state of an organism, system, or (sub)population under consideration".

It might be difficult to get a consistent definition about uncertainty, which is the similar situ-

ation in giving one definition to risk. But we still can find some agreements, uncertainty is about

something we don’t know and whether we can know it depends on the degree of perfection of

our information (a state of mind). It can be understood as a deviation from the future "truth";

however, this is not that helpful in the practical sense, since we may never know the "truth" until

it becomes past. Maybe it is not necessary to look for one definition, since practitioners can give

theirs own definition to to uncertainty according their applications. And the definition should

be is meaningful to solve the problem.
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2.2 Three Dimensions of Uncertainty

There are three dimensions of uncertainty that are recommended to differentiate; location, level

and nature of uncertainty (Walker et al., 2003).

1) Location: where the uncertainty manifests itself within the whole model complex; it is

identified by the logic of the model formulation. The locations of uncertainty includes a con-

text, a model (model for structure uncertainty and model for technical uncertainty), inputs,

parameters, and a model outcome.

2) Level: where the uncertainty manifests itself along the spectrum between determinis-

tic knowledge and total ignorance; Four terminologies are adopted to distinguish between the

different levels of uncertainty: determinism, statistical uncertainty, scenario uncertainty, recog-

nised ignorance, and total ignorance. There is a progressive transition between determinism

and total ignorance. Determinism is the extreme and ideal situation that we know everything

precisely, it is the opposite of total ignorance which is the deepest level of uncertainty. Statistical

uncertainty can be described properly in statistical terms (formulated by statistical expressions,

e.g. probability density functions), and it may exist in any location in the model if a deviation

from the true value can be defined statistically. Measurement uncertainty (uncertainty of mea-

surement) is an obvious example of statistical uncertainty. Scenario uncertainty is the level be-

yond statistical uncertainty, it means that there is a range of possible outcomes and we cannot

formulate the probability of the occurrence of any specific outcome since we still cannot well

understand the mechanisms that lead to those outcomes. Recognised ignorance is a further

deep level of uncertainty, and associated with the case when we don’t know functional relation-

ships or statistical properties or scientific basis for developing scenarios is weak. It is treated as a

fundamental uncertainty about the mechanisms and functional relationships. Total ignorance

is uncertainty to the extent where we even do not know that we do not know.

3) Nature: whether the uncertainty is due to the imperfection of our knowledge or is due

to the inherent variability of the phenomena being described. Epistemic uncertainty is the un-

certainty due to the imperfection of our knowledge. It may be related to limited and inaccu-

rate data, measurement error, incomplete knowledge, limited understanding, imperfect mod-

els, subjective judgment, ambiguities and so on. Epistemic uncertainty may be reduced by more
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research and empirical efforts, but new information can either decrease or increase uncertainty.

While variability uncertainty (term ontic, ontological, or aleatory uncertainty might be used in

other literatures) is the uncertainty due to inherent variability or randomness introduced by

variation associated with external input data, input functions, parameters, and certain model

structures. Variability uncertainty sources includes following aspects: inherent randomness of

nature, human behaviour, societal variability (social, economic, and cultural dynamics), and

technological surprise. It is especially applicable in human and natural systems and concerning

social, economic, and technological developments.

2.3 Taxonomy of Uncertainty

Uncertainty can be categorised into different types.

2.3.1 Epistemic Uncertainty vs Aleatory Uncertainty

Both in Nuclear industry and NASA probabilistic risk and reliability analysis, Uncertainty are di-

vided into two types according to causes that Uncertainty mainly stems from. They are aleatory

uncertainty and epistemic uncertainty (Parry, 1996; Drouin et al., 2009).

Aleatory Uncertainty: Aleatory uncertainty is a natural variation, it is related to physical

variability, inherent, natural randomness of the system or process, and this kind of uncertainty

is irreducible. Aleatory uncertainty is also called natural uncertainty and variability. The PRA

model is an explicit model of the random processes which means that it is a model of aleatory

uncertainty.

Epistemic Uncertainty: Epistemic uncertainty relate to the degree of belief in the model

(State of mind), and it arises due to lack of knowledge about the system or process being mod-

elled. This kind of uncertainty can be reduced if knowledge or information increases by using,

for example, a combination of calibration, inference from experimental observations and im-

provement of the physical models. In the PRA model, Then it means ‘’ How well the PRA model

reflects the design and operation of the plant, how well it predicts the response of the plant to

postulated accidents”.

Epistemic Uncertainty is categorised into three types according to the uncertainty sources:
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Completeness Uncertainty, Model Uncertainty and Parameter Uncertainty (Drouin et al., 2009;

Jin et al., 2012).

2.3.2 Parameter Uncertainty vs Model Uncertainty

Parameter Uncertainty: Parameter Uncertainty is the uncertainty related to model parameter

values. Monte Carlo simulation, Bayesian network etc. are the methods to propagate the uncer-

tainty from parameters to output values. For empirical quantities, uncertainty sources of these

quantities include statistical variation, subjective judgement, linguistic imprecision, variability,

inherent randomness, disagreement, approximation (Morgan et al., 1992).

Model Uncertainty: Model Uncertainty arises from the fact that any model, conceptual or

mathematical, is a simplified reality of system or process. Model uncertainty can be evaluated

by comparing different models. Choosing a better model can reduce the model uncertainty even

though sometimes it is difficult to judge which model it better because of variations in judgment

criteria.

Completeness Uncertainty: Completeness uncertainty is about factors that are not properly

included in the analysis. And it can be distinguished between 1) Known completeness uncer-

tainty due to factors that are known but ignored and not included by purpose, the causes include

simplifications and assumptions and 2) Unknown completeness uncertainty due to factors that

are still not identified or without any information.

Model uncertainty overlaps with known completeness uncertainty such as uncertainty from

simplifications and assumptions etc. In this thesis, completeness uncertainty is considered as

part of model uncertainty.

2.3.3 Reducible Uncertainty vs Irreducible Uncertainty

For practical purpose, uncertainty can also be distinguished according to reducibility. Usually,

aleatory uncertainty are considered as unreducible, while epistemic uncertainty are reducible

by increasing knowledge. A detailed explicitness of these two types of uncertainty is identified

in practical applications by de Rocquigny et al. (2008, chapter 14, page 202).

Nevertheless, pointed out by de Rocquigny et al., reducible uncertainty is not equal to the
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epistemic nature of the uncertainty. Reducibility also involves some industrial or practical con-

straints, or even a cost-benifit perspective.

2.3.4 Type A vs Type B Uncertainty in Metrology

In meteorology, there are two types of uncertainty evaluation named type A and type B, and the

uncertainty obtained from these two evaluation approaches are called type A or type B uncer-

tainty. Both of them are based on probability distributions.

Type A uncertainty is the uncertainty calculated from series of repeated observations and is

the familiar statistically estimated variance using available knowledge (a pool of comparatively

reliable information).

Type B uncertainty is obtained from subjective probability or an assumed probability density

function from a certain degree of belief that an event will occur.

2.4 Representations of Uncertainty

There are different approaches to represent uncertainty in context of diffrent application do-

mains, including classical set theory, probability theory, fuzzy set theory, fuzzy measure the-

ory, and rough set theory (Isukapalli, 1999). In risk modelling, probabilistic approach, interval

representation, probability bounds approach, fuzzy respresentation are ways used to represent

uncertainty regarding variables(Marcus, 2002).

In risk analysis, probability distribution is used the most to represent uncertainty regarding

a quantity. If uncertainty is represented by probability, then usually, percentage of error or vari-

ablity (e.g. coefficient of variation), expected value and variance, confidence interval, quantiles,

probability of exceedance, ranges or simply the maximal value are can be used to measure un-

certainty (Modarres, 2006; de Rocquigny et al., 2008). If uncertainty of a quantity is represented

by interval but no further information to obtain a distribution, then the distance between upper

bound and lower bound may be used as measure of uncertainty.

But also pointed out by Apostolakis (1989), it may not be enough to measure uncertainty by

the sole use of probabilities. The potential usage of two dimensions representation of uncer-

tainty might be worth to explore, e.g. probability and necessity.
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In some practical applications, uncertainty is described by semi-quantitative description

or qualitative statement, which can be seen as a thought of "level of confidence". Examples

include uncertainty representation in climate change study (Pachauri et al., 2014), and Danish

guidelines for quantitative risk analysis (COWI, 1996).

2.5 Relation between Uncertainty, Risk, and Decision-making

The definitions of uncertainty and risk, and their association, have been extensively argued and

discussed. How we define and treat them is an important issue in decision-making. Samson

et al. (2009) had a review of different perspectives on uncertainty and risk, where the review goes

back to 1901 and covers 34 bibliographical sources in several different fields including opera-

tional research, economics and finance, and engineering. Different groups of opinion regarding

the relationships between risk and uncertainty identified from literature study are summarised

in a diagram by the authors, shown here by Figure 2.1.

Figure 2.1: Relation between uncertianty and risk from Samson et al. (2009)

There are basically two main groups of opinions regarding the relation between uncertainty

and risk: 1. uncertainty is risk, 2. uncertainty and risk are different concepts.

1. "Uncertainty is risk" is supported by the following understanding:
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In principle, risk is the uncertainty of a loss or the occurrence uncertainty of an unfavorable

contingency, or the uncertainty of outcomes. The degree of risk is measured by the probable

variation of actual experience from expected experience, or by the worst expected loss over a

given horizon under normal market conditions at a given confidence level (value at risk). The

assumption of these definitions is that uncertainty is quantifiable or follows a distribution to

be specifically. Therefore, it is argued that these definitions are not proper when uncertainty is

not quantifiable (do not follow any specific distribution) and defined by an interval with lower

bound and upper bound in some decision problems.

2. "Uncertainty and risk are different concepts" group contains different relations between

uncertainty and risk. They include three sub groups: "uncertainty and risk are independent",

"uncertainty depends on risk", and "risk depends on uncertainty".

"Uncertainty and risk are independent" is supported by following pairs of definitions about

uncertainty and risk:

There is a classification of certainty-risk-uncertainty made by Luce and Raiffa (2012, Chapter

2) explained by a case that "a choice has to be made (decision-making) between two actions

under

(a) Certainty if each action is known to lead invariably to a specific outcome (the words

prospect, stimulus, alternative, etc., are also used).

(b) Risk if each action leads to one of a set of possible specific outcomes, each outcome

occurring with a known probability.

(c) Uncertainty if either action or both has its consequence a set of possible specific out-

comes, but where the probabilities of these outcomes are completely unknown or are not even

meaningful."

Knight (2012) differentiates risk and uncertainty basically by concluding that risk is quantifi-

able and uncertainty is non-quantifiable.

Pfeffer (1956) gives a other pair of definitions to uncertainty and risk: " Risk is a state of world

and is measured by objective probability; Uncertainty is a state of mind which is a subjective

degree of belief. They are counterparts of each other."

"Uncertainty depends on risk" is only supported by the conclusion " the concepts of risk is

an objective phenomenon, and uncertainty is a state of mind, but risk often gives rise to uncer-
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tainty" from Crowe and Horn (1967).

"Risk depends on uncertainty" is supported by many suggested definitions from scholars

and application cases within the reviewed scope. Uncertainty gives rise to risk and is vital for

decision-making.

Based on "Risk depends on uncertainty", Samson et al. (2009) proposed a conceptual 2-

step modelling approach for uncertainty and risk for decision-making. In this approach, uncer-

tainty is the independent variable and risk is the dependent variable. Uncertainty is the non-

quantifiable randomness represented by a interval with lower bound and upper bound from

observations. "Non-quantifiable" simply means that there is not enough information to assume

any distribution for uncertainty. Risk is modelled as the quantifiable randomness represented

by the distributions of a random function’s values at each point of the uncertainty.

For decision makers, they need to choose a preferred option from the small set of all efficient

options bases on their knowledge, experience and preferences. In this case, they have freedom

to arrive at a decision influenced by their knowledge and experience.

In the NASA Continuous Risk Management (CRM) concept in project (Stamatelatos et al.,

2011, Chapter 2), risk depends on the uncertainty and risk tolerance level (blue area), see Figure

2.2. Reducing the uncertainty is an way to reduce risk. As the program/project evolves over time,

design and procedural changes are implemented in an attempt to mitigate risk, therefore, as risk

concerns are lowered or retired and the state of knowledge about the performance measures

improves, uncertainty should decrease, with an attendant lowering residual risk.

Figure 2.2: Decreasing Uncertainty and Risk over Time from Stamatelatos et al. (2011)

For decision makers, when comparing the assessed risk with requirement to support de-
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cision support, it is not enough if only comparing the mean value, the uncertainty should be

included as well. This is also addressed in Probabilistic Risk Assessment (PRA) in nuclear sector

(Wheeler, 2010).

2.6 Definitions Applied in Thesis

As can be seen in Section 2.1 and 2.5, there are different definitions on uncertainty in different

application fields, and different understanding towards the uncertainty and risk with the rela-

tion between them. It is necessary to clarify here that in this report, uncertainty analysis is part

of the risk analysis, and it is a sub activity among risk modelling.

Z Quantity of interest: Quantity of interest is the quantity that we are intended to measure by

real data measurement or by modelling. It can be a vector, a value or a distribution.

Z Uncertainty: uncertainty, in this context, is the "state-of-art" variation of the quantity of

interest, stemming from both aleatory and epistemic property. The "state-of-art" variation of

the quantity of interest represent the "state-of-art" knowledge about the quantity of interest, it

can be obtained from the most advanced model with the least restrictions from its assumptions

and so on, or can obtained from observations.

The reason to have "state-of-art" variation is that the "true" value is impossible to obtain

since we do not have a "true" model of nature or the observed fact which occurs in the future.

However, a "state-of-art" model, or historical system response data, is possible to obtain which

makes this definition practical.

Z Model Uncertainty: the uncertainty of the model output stem from the model itself instead

of due to the uncertainty of model parameters or in the data. One possible measure of model

uncertainty is the distance to "state-of-art" model independent of the uncertainty from param-

eters.

Completeness uncertainty is included in this definition of model uncertainty. Similar terms

including structural model uncertainty, model form uncertainty, conceptual model uncertainty
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and modeling uncertainty are also used by some researchers.

Z Model Uncertainty Analysis: model uncertainty analysis is the whole process of treating

model uncertainty that is defined above for this thesis. It includes model uncertainty sources

identification, characterization, integration, propagation, impact assessment and representa-

tion.



Chapter 3

Generic Modelling Process

Since model uncertainty mainly forms during the modelling process or analysis process phase,

instead of the model application phase, a description of the model process can help us under-

stand model uncertainty better. Such a description can also further help us to identify model

uncertainty sources, integrate them, and analyze model uncertainty in a systematic way. This

chapter introduce the systematic modelling process in general as a start, and then describe the

operational risk modelling. Most of the content is from a literature review.

Similar ideas of analyzing model uncertainty from the model development process can be

seen from De Haag and Ale (1999); Isukapalli (1999); Oberkampf et al. (2002); Refsgaard et al.

(2006, 2007); Roy and Oberkampf (2011); Stamatelatos et al. (2011); Riley et al. (2011) etc. Never-

theless, how wrong the model results becomes or how far the model results deviate away from

truth (or potential truth) is depended on the data, the model itself, and the application of the

model.

For most quantitative risk analysis, also the case in MIRMAP, a risk model would be built ac-

cording to the characteristics and philosophy of the system under analyzing. Such a risk model

is usually of mathematical nature, having built-in risk concepts. Computer algorithm may pro-

vide numerical simulation and solution to the model. The outputs or results (risk measure or

quantity of interest) of the risk model are used to support decision-making. This model-based

and risk-informed decision-making procedure can be simplified as Figure 3.1.

For large-scale or complex systems, multiple models, which might be mathematical or con-

ceptual, are likely needed. Each of them may represent a specific aspect of the system, and

21
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Figure 3.1: model-based and risk-informed decision-making

connected these models become integrated to display an effective representation of the sys-

tem(Haimes, 2012).

For extreme events, generic term "expected risk" or "average risk" is not that suitable. In-

stead modelling expected catastrophic or unacceptable risk becomes more valuable(Haimes,

2008b, Chapter 8: Risk of Extreme Events and the Fallacy of Expected Value). This kind of event

usually has a very low probability in long term which leads to ignorance sometimes.

We also need to bear in mind that we should take a pragmatic view of models in practical

terms. Therefore, whether a model is acceptable should be guided by "usefulness for the given

problem" instead of "truth" (Ljung, 1999).

3.1 A Systematic Modelling Process

By adapting "Systems thinking", we seek approaches which are more holistic than the scientific

(and other) methodologies that concentrate attention on a relatively narrow set of predefined
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variables. Although aspired to holism, we also admit that it is impossible for human thought to

be all encompassing, which refer to the meta-uncertainty of the analysis as well.

3.1.1 Real World/System Under Modelling

According to the definition in Webster’s Third New International Disctionary, a system can be:

"a complex unity formed of many often diverse parts subject to a common plan or serving a

common purpose; an aggregation or assemblage of objects joined in regular interaction or inter-

dependence; a set of units combines by nature or art to form an integral, organic, or organiza-

tional whole"

A system under modelling is in the present work a predefined system which exist before the

modelling process. The system can be industrial, environmental, meteorological, etc. Since

the predefined system exist before the modelling process, it is part of the real world with well-

specified physical boundaries, inputs, outputs and events or phenomena taking place within it.

From the point of system complexity, the system is generally considered a constitute of many

subsystems. It is impossible to fully understand the system. This is also the source of epistemic

uncertainty. And no model can clearly capture the multiple dimensions and perspectives of

the system and many submodels would be built in some cases. This is the reason why defined

model uncertainty always exists.

From the point of risk analysis, the system considered generally includes an industrial facil-

ity or an environmental asset where undesired consequences may take place.

Before modelling, it is also usually necessary to clarify the boundaries of the system mod-

elling, collected data, phenomena, events, and states of the real world/system.

3.1.2 Model Characteristics

A model is a simplified representation of a real system in terms of its important properties for

the intended application, which can be a conceptual, graphical, mathematical, computational.

The model should describe or reflect somehow the properties of the real system in the aspect of

modelling goal with reduced complexity. Therefore, it is never identical to the real system.

For quantitative risk analysis, the mathematical model will be developed, or at least, used
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to be able to use data and mathematical and statistical methods to estimate reliability, safety,

or risk parameters, based on the system undergoing analysis, to support decision-making. For

such models, the following characteristics apply (Rausand and Høyland, 2004; Cameron and

Hangos, 2001):

1) The model should be sufficiently simple to be handled by available mathematical and

statistical methods.

2) The model should be sufficiently "realistic” such that the deducted results are of practical

relevance.

3) The results that we derive from the model are only valid for the model, and are only "cor-

rect” to the extent that the model is realistic.

4) Models can be developed in hierarchies, where we can have several models for different

tasks or models with varying complexity in terms of their structure and application area.

5) Models cause us to think about our system and force us to consider the key issues.

6) Model are developed at a cost in terms of money and effort. These need to be considered

in any application.

7) Models may be difficult or impossible to adequately validate.

For models used for risk analysis of complex engineering system such as transportation and

energy system, the following should apply (Modarres, 2006):

1) Consistent with the primary characteristics of the complex engineering systems. These

primary characteristics are: evolving, integrated, dynamic.

2) Having provisions for internal and external feedback, allowing for opportunistic and in-

cremental improvement.

3) Uncertainty and ambiguity associated with the characteristics and properties of the var-

ious elements and their relationships in complex systems should also be incorporated, even

meta-uncertainty or uncertainty to estimate the uncertainty itself.

4) Allowing for representation of system element couplings and integration, and specifica-

tion and updating of relationships between system elements (connections), while also being

able to recognize uncertain, nonlinear, and counter-intuitive relationships.

5) Being able to capture the continuous feedback along time (dynamic characteristic) in the

system, and allowing for incorporation and integration of diverse but related subsystems (sub-
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structures, subfunctions, and intermediate goals) without imposing constraints to the size. It

means that the model would be large as an effect.

6) Exhibiting abilities to capture systems’ properties such as self-organization and learning.

From a practical point of view, these criteria from Modarres (2006)are quite difficult to achieve

due to cost-benefit considerations, people’s perspective of risk, limitation of techniques that are

required to build the model, etc. These criteria are better treated as guide for future risk model

development.

There are several ways of classify mathematical models. Each model type has its own fea-

tures and fitness to application areas and solution techniques. Therefore, some model types

may be suitable under certain circumstances while being inappropriate and causing problems

under other ones. Models can be mechanistic or empirical, stochastic or deterministic, param-

eter lumped or distributed, linear or nonlinear, continuous or discrete or hybrid. Details about

these model types and applications are described in (Caldwell and Ng, 2006; Caldwell and Ram,

2013).

Mechanistic models are also called phenomenological models because they are derived from

system phenomena or mechanisms. Empirical models are the result of experiment and obser-

vation. Stochastic models apply to the cases which contain elements with natural random varia-

tions typically described my probability distributions. In these cases, cause-effect relationships

between variables are not that clear, but can be described by probabilities or likelihoods. Deter-

ministic models are the opposite of stochastic model. There are clear cause-effect relationships

in the phenomena or system variables.

In addition, there is a trade-off between the parameters(input data availability, quality) and

complexity or level to details of the model structure from an uncertainty point of view. It has

limited value to establish a very detailed model of the system if we cannot find the required

input data. Some studies from other subject fields also expressed the same opinion, for exam-

ple in life cycle assessment modelling(van Zelm and Huijbregts, 2013), and modelling in water

resources planning and management(Loucks et al., 2005). It is better to get an optimal model

complexity instead of a very exhaustive, large and detailed model, or even a full model. Besides,

a risk analysis of a system will always be based on a wide range of assumptions and boundary

conditions. We need to bear in mind that the results are conditionally precise, accurate, and
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useful.

3.1.3 Model Building Process

A model is an imitation of reality and a mathematical model is a particular form of represen-

tation which provide us tractable results and solutions. The overall and simplified framework

from understanding the real system to apply results in the real system is represented schemat-

ically in figure 3.1. In each joint of framework, specific issues should be raised and carefully

treated in order to build the optimal model. A general model schematic is displayed in figure 3.2

System Model OutputsInputs

Figure 3.2: General model schematic from Cameron and Hangos (2001)

Systemic Modelling Procedure

The actual procedure of modeling is application dependent, and often it has its root in the tra-

dition and specific techniques of the application area at hand. Here, a systemic seven step mod-

elling procedure described by Cameron and Hangos (2001) is adopted, which is applicable in

most mathematical modelling cases, as shown in figure 3.3:

The figure give the description of each modelling step, but we should also bear in mind that

model development is never a one pass process in real cases, it requires iteration quite much.

In the case of a problem the modellers usually go back to an former step and repeat it.

Step 1. Problem definition

This step should define the specification of the system to be modelled and the modelling

goal. Other details relevant to the modelling should also be decided, like, inputs and outputs,

hierarchy levels relevant to the model, or hierarchy levels of the models, spatial characteristic
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Figure 3.3: 7 steps modelling procedure modified from Cameron and Hangos (2001)

(parameter distributed or lumped), time characteristics (static or dynamic), and validation cri-

teria.

Step 2. Identify the controlling factors or mechanisms

This step is to investigate and understand the phenomena, events, mechanisms, character-

istics, and causal-effect relationships within the system, which are relevant to the modelling

goal. In this step, we may end up ignoring some system characteristics intentionally or unin-

tentionally because it is impossible to fully understand the system and fully identify essential

characteristics, which are carefully treated in the mode, and some non-essential characteristics,

which may lead to unnecessary complexity, model order or model size. We may also misun-

derstand some parts of the system which may lead to incorrect modelling structure. A figure of

these characteristics is showed in Figure 3.4

Step 3. Evaluate the data for the problem

In this step, we evaluate the available data, and together with their uncertainty or accuracy.

Both directly measured data and estimated parameter values are possibly used in the model. If

there is no suitable data available in the literature or measured data to estimate required param-

eter values, then we need to go back to step 1 and step 2 and reconsider our decisions there.

Step 4. Construct the model

This step is to find out the proper mathematical equations, expressions between inputs and

outputs, or internal variables, states if necessary according to the identified and screened con-
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Figure 3.4: Characteristics of system and model modified from Cameron and Hangos (2001)

trolling factors or mechanisms of the system. Sub-steps may be required to be carried out se-

quentially. These sub-steps includes defining system and subsystem boundaries, defining char-

acterizing variables, stabilizing equations, algorithms, etc., and specifying relations, controls

constraints and modelling assumptions. These assumptions may apply to a specific part or po-

sition of the system in order to characterize variables, establish equations, classify system events

and states, and specify relations and so on. And assumptions are usually built up incrementally

during the whole model construction process. A good modelling behavior is to identify and

locate assumptions in the model for modelling validation convenience.

Step 5. Find and implement a solution procedure

This step is to find or implement a solution procedure to make sure that the model is mathe-
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matical tractable to get the intended results. Lack of solution techniques may lead to additional

simplifying assumptions in order to obtain a solvable or easier model. It may also prevent mod-

ellers using a particular type of modelling techniques or methods.

Step 6. Verify the model solution

After having a solution, it is necessary to verify or check whether the model behaves cor-

rectly. This includes carefully checking whether we get intended results, whether there are mis-

takes or errors in the computational code, and whether the model is implemented correctly. For

large-scale models, it is important to have structured programming using "top-down" algorithm

design, and to use modular code which can be tested thoroughly.

Step 7. Validate the model

After setting up the model, it is important to validate it. This step is to check the model

against reality or quality of the resultant model which is different from the former step. This

step might become quite difficult because it requires a deep understanding of the system, mod-

elling and data acquisition etc. And it is almost impossible to validate risk models. In some

practical cases only a partial validation might be possible to carry out. The results of model val-

idation usually point out the inadequate areas in the model development, and how to improve

the model. A sound and holistic validation can reduce model uncertainty.

Following are some ways to validate a model, but one is not necessarily limited to them. They

are: verifying assumptions and simplifications, comparing the model behavior with the system

behavior, developing analytical models for simplified cases and comparing the behaviour, com-

paring other models using a common problem, comparing the model outputs and intermediate

outputs with observations.

3.1.4 Model Elements

A model is an integral of a lot of information, and is presented by a model structure with key

elements or ingredients. These model elements includes variables, assumptions and simplifi-

cations, boundary conditions, mathematical formulas, data sources, and computer code if ap-

plicable.

Assumptions and simplifications: assumptions and simplifications may relate to, but are

not limited to, time and spatial characteristics, controlling mechanisms or factors, neglected
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dependencies, required ranges of states, and associated accuracy and so on. It is recommended

to assign each assumption with a unique identifier and a referred location of the model. Some

assumptions are legitimate sources for degree of belief and how are a matter of choice because

of convenience or cost. It worth paying attention to disentangle these assumptions (Devooght,

1998).

Initial and boundary Conditions: Initial conditions should be specified in dynamic models

in applicable. Boundary conditions must be specified for the models in spatially distributed or

applicable area distributed models.

Mathematical Formulas (Modelling techniques) / form / structure: it includes all kinds of

formulas, equations and relations governed by system characteristics relevant to modelling goal.

For some issues or problem, a certain kind of modelling techniques or methods would be ap-

plied. Then the kind of formulas or equations which might be used for problem solving are

already predecided from the modelling techniques or methods. The resultant model formulas,

structure still varies from case to case.

Variables: variables which characterize the system include input variables, output variables,

internal variables. In hierarchical models, some output variables of one sub-model may become

the input variables of the other sub-model.

Data Sources: this element specifies the data sources of model variables and refers to step 3

in the 7 steps modelling procedure.

Computer Code: for some models, computer coding might be required to give the numerical

solution. It is also part of the whole model.

3.1.5 Increments of Sub-models and Model Integration

Model development is an iterative job, and model construction of sub-procedures is iterative as

well. Model equations and structure are built up incrementally repeating the sub-steps in model

construction. When building up sub-models, assumptions applying to the sub-models may be

introduced at the same time for modelling convenience. The overall model is an integration of

sub-models. This is especially the case for hierarchical models.

Introduced by Cameron and Hangos (2001), there are three types of model hierarchy driven

force. A model hierarchy can by driven by level of details, or by characteristic sizes, or character-
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istic time, see Figure 3.5. For model with hierarchy levels driven by level of details, the number

Figure 3.5: Model hierarchy dimensions modified from Cameron and Hangos (2001)

of model levels varies according to the complexity of the system and modelling purpose. If one

perform a system analysis in a top-down approach, then the sequence of models in this hierar-

chy is naturally developed. The more details taken into account, the more levels will be in the

model.

For model with hierarchy levels driven by sizes, the more we zoom in on the original macro

level model the lower the level of model we obtain. We will arrange the models in this hierarchy

if a bottom-up modelling approach is used for the system. It can be understood it from the dif-

ference between “ top-down” (level of detail) and “bottom-up” (characteristic sizes) approaches.

An example of hierarchy driven by level of details is fault tree, we build it from the failure of bar-

rier function and then decompose it’s intermediate causes to a certain necessary level of details

( to root causes in the end), Example of hierarchy driven by sizes can be seen from, fire area to

analysis area until the whole plant in MIRMAP, first we build a model for fire area, then we wider

the model for whole analysis area.

For model with hierarchy levels driven by characteristic time, it models the dynamic prop-

erty of the system in different degree. Full timescale models are detailed dynamic models which
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describe the dynamic behavior of the whole system. Fast timescale models only describe the

fast modeled dynamic response of a system and neglect every phenomenon which is "slow" or

have slow time variation or is close to constant. Models describing a steady state of the system

can be seen as slow timescale models. "Slow" and "fast" are here relative.

For any hierarchical model, the structure of the model can be built according to the hierarchy

of driving-forces, i.e. level of detail, time usage, size etc.

3.2 Proposed Probabilistic Model in Operational Risk Analysis

Operational risk analysis, which is also called living risk analysis, or risk monitor in the nuclear

sector, or dynamic risk analysis by some researchers(Paltrinieri et al., 2014), has been an im-

portant topic for many researchers and institutes mainly in the nuclear sector, oil and gasoline

industry, chemical industry, air traffic (Groth et al., 2010) etc. The main purpose of these stud-

ies is trying to control risk by monitoring or predicting risk continuously. The model applied

in these analysis should be able to capture the transient changes in risk level. The outputs of

the model are used to support operational decision making to control risk. And uncertainty is a

common issue in all these predictive models.

3.2.1 Operational Risk Models and Their Uncertainty Expression

There are different models which are proposed or developed for the operational risk analysis, in-

cluding probabilistic, deterministic(Knegtering and Pasman, 2013) and deterministic-probabilistic

models. Even though no comparison is made to say which one is better than the other, what is

sure is that each model has its own properties, advantages and disadvantages.

In the nuclear sector, the concept of living risk analysis or risk monitoring began in the 1980s.

The method has become very well developed, and has been put into practical usage for a long

time. Living PRA or PRA (probabilistic safety analysis) or risk monitoring are modelled by fault

tree and event tree by online updating the risk assessment with actual and dynamic plant con-

figuration (including equipment availability), operating regimes, environmental conditions etc.

(Johanson and Holmberg, 1994; IAEA, 1999; Coble et al., 2013). An enhanced risk monitor can
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incorporate equipment condition into a more accurate estimate of the probability of compo-

nent failure.

Uncertainty in PRA modeling arises from a number of sources, including parameter uncer-

tainty of failure, probability and accident sequences (event and fault trees) developed according

to our knowledge about accident.Component failure and event data are gathered to support

propagation of parametric uncertainty. Much of the nuclear industry’s component failure data

uncertainty is expressed as a lognormal (or normal) probability distribution with specified er-

rors factors (EFs) that define the 10th and 90th percentile of the probability distribution. Pa-

rameter uncertainty propagation is performed through a sampling strategy (e.g., Monte Carlo

sampling) over some number of observations.

In process industry, a hybrid structure of event tree and fault tree is not used to conduct

quantitative risk analysis (QRA), which makes monitoring risk by updating QRA impractical.

But monitoring and predicting risk levels may be achieved by monitoring major accident in-

dicators (Haugen et al., 2011). A lot of research about risk indicators are conducted by Haugen

et al.; Vinnem; Vinnem et al.; Øien. Risk frameworks linking the risk level measure and RIFs(Risk

influence factors) or risk indicators, which are measurable representations of the RIFs, were pro-

posed; see ORIM (Øien, 2001b,a), BORA(Aven et al., 2006), HCL method(Røed et al., 2009)and

RISK_OMT project(Gran et al., 2012). Continuously updating risk indicators can predict and

monitor the risk level. Operational and organizational factors are included.

In these studies, uncertainty analysis haven’t been addressed in detail. What is sure is that

uncertainty stems from input indicator values (parameter uncertainty) and the risk framework

linking risk level and RIFs or risk indicators (model uncertainty). Indicators are usually pre-

sented by qualitative or semi-quantitative states. Uncertainty of these indicator states can be

described qualitatively or quantitatively. How uncertainty is propagated depends on the model

techniques and uncertainty representation methods.

SHIPP methodology(System hazard identification, prediction and prevention) presents the

process accident model with predictive and continue monitoring capabilities(Rathnayaka et al.,

2011a,b). This model mainly include three parts: Fault tree, Event tree, and an Bayesian updat-

ing mechanism. The event tree is built according to a accident sequence and relevant barriers.

The prior failure probability of each barrier is calculated from fault tree before observing new
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information about abnormal events. The basic event probabilities given in point value form in

fault tree calculation are from reliability databases, literature and expert judgement. Bayesian

updating mechanism is used to update failure probability of each barrier by recalculating like-

lihood using real plant abnormal events. In this way, the posterior probability of barriers are

obtained and used in the Event tree to estimated updated accident occurrence probability in

different severity levels. To achieve the predictive capability, Bayesian analysis is used for esti-

mates of probability of the number of abnormal events occurring in the next time interval, given

current abnormal event data of the observed plant. This model needs to collect process history

and accident precursor information.

Uncertainty about the risk measure is not addressed that much in this model. The only as-

pect of uncertainty which is mentioned is about using real plant abnormal events information

to update failure probability of each safety barriers, which are initially calculated using infor-

mation from reliability databases, literature and expert judgement. These initially calculated

values have high uncertainty or an property of inhabiting inaccuracy.

Safety barometer(Knegtering and Pasman, 2013) is proposed to measure and control the dy-

namic behavior of process safety. It uses the Bow-tie model by feeding risk factors into both

sides of the Bow-tie. The effect of risk factors on the failure probabilities has to be further for-

mulated, where the effect is not necessary to be linear. Risk factors include for instance welding

activities, delayed inspections, maintenance not on schedule, and corrosion problems etc. They

are classified into long-term, mid-term, short-term by their impacts on the risk level. Bayesian

belief network is used to do the inference of factors to obtain the present(predicted) hazard po-

tential, and to update risk figure. This model mainly focus on the achievement of the dynamic

risk level measuring function, and describes the conceptual method to achieve it. As for the un-

certainty concerned in this thesis will be quite relevant to the practical building of this model.

From the models presented above, we can see that there are some common features between

them or some of them.

• To capture the dynamic feature of risk and achieve predictive, monitoring risk level func-

tion.

• Involve technical, design, human and organizational factors and dependence between
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them.

• Causal-consequence relationship are modelled by different tools. Event tree, fault tree,

bow-tie, accident sequence analysis and BBN, or a combination of them etc. are used to

construct the risk framework.

• Uncertainty should be expressed.

• These models go to a certain level of detail or complexity in order to catch the dynamic

nature of the system.

• "Validity" is one of the challenges these models are faced with.

3.2.2 Main Modelling Techniques

Probabilistic risk modelling, different modelling techniques or combination of several mod-

elling techniques might be applied from case to case (Rausand, 2013). To build the accident

model, accident sequence analysis might be applied to understand the phenomena or casual-

effect relationship of the accident occurrence. Event Tree, Fault Tree, Influence Diagram (Bayesian

Belief Network), Bow-tie Model etc. are methods for calculation of the failure probability or oc-

currence frequency/ probability. To estimate the failure probability from actually observed data

or experiment data, statistic models are required. In order to incorporate risk contribution from

activities, human, operational and organizational factors, fault tree, Bayesian belief network,

regression-based techniques or weighting techniques etc. are common methods to use. In some

cases, physical models about the system features are necessary to be included as well, like fire

models and leakage models in nuclear power sector. Some other non-probabilistic techniques

including Risk index method and risk matrics(CCPS, 2010; Knegtering and Pasman, 2013) which

are applied to measure the safety performance of a plant or a system are excluded. Even though

if uncertainty exists in their input variables, the uncertainty can still be propagated to model

outcome using sampling method or other analytical treatment.

Here, we are not going to introduce these modelling techniques comprehensively, examples

are their features which are relevant to uncertainty will be described briefly instead.

• Event Tree
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Event tree analysis is a graphical and probabilistic method for modeling and accident sce-

nario analysis. It is a inductive method and it follows a forward logic. In a event tree, the

start point is the initial events, and then pivot events are following in sequence. The acci-

dent scenarios are developed when end events are reached. Pivot events may be functions

or failures of barriers, other states or events. For each pivot event, the probability that the

event is "True"(on demand) is a conditional probability given the initial event and the spe-

cific event sequence leading up to the pivotal event. If pivot event is analyzed by fault tree,

the top event probability is the probability that the split goes to "Failure". Usually, event

tree have binary splitted into two branches: "Success" or "Failure". It is also possible to

construct event tree with more than two branches.

Pivot events needs to be modelled corresponding to the time and occurrence of events

in the accident scenario. Misplace pivot events will result in a wrong tree. In other words,

the sequence of pivot events should be foreseen, and each pivot event must be understood

conditional on the occurrence of its precursor events. The probability (frequency) of each

pivot event must be conditional. Therefore, dependency between different pivot events,

pivot event and initial event needs to be carefully handled. In addition, when to stop

developing the event tree is a problematic question; for example, an end event can be that

a major explosion occurs, or that people get injured which is the following consequence

of an explosion affecting exposed people. When to stop an event tree should be decided as

part of the objectives or risk concepts and the scope of the risk analysis. Since the binary

splitting, defined end events must be mutually exclusive and cannot occur at the same

time, the sum of all end events probabilities (frequencies) is 1 (frequency of initial event).

• Fault Tree

A fault tree is a top-down logic diagram that displays the interrelationships between a

potential critical event in a system and the causes of this event using Boolean logic to

combine a series of lower-level events. Fault tree analysis is a deductive method. It starts

from a defined top event and reason backward in the casual sequence until a suitable level

of details is reached. All events from the top event down to basic events are binary: failure

or success, which is the same as in the standard event tree. There are two main kinds
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of logic gates: "Or-gate" representing parallel relationship and "And-gate" representing

serial relationship.

This modelling technique has limitations when it comes to events which cannot exclu-

sively described as binary events or when the relations between events cannot meet a

Boolean logical relation (either parallel or serial). Assumptions and simplification may be

introduced to construct the fault tree. Some failure causes which are ignored or unidenti-

fied result in incompleteness and therefore reduce the accuracy of top event probability.

For big fault trees, top event probability may be calculated using approximation. This also

leads to uncertainty of top event failure probability.

To fulfill dynamic functionality of some model requirement, the point value of basic event

can be updated in a required updating frequency. If uncertainty exists in failure or oc-

currence probability of basic event, a sampling method (e.g. Monte Carlo simulation) are

usually used to propagate the uncertainty from the basic event to the top event. The qual-

ity of propagated uncertainty of top event failure probability depends on the number of

samples.

3.2.3 Operational Risk Modelling Process

For a probabilistic risk model, before the modelling process, it is necessary to define the risk and

risk measures which are among the output variables of the risk model. Jonkman et al. (2003) did

a overview of quantitative risk measures of loss of life and economic damage. It provides some

good suggestions.

As mentioned in 2.6, in this report, uncertainty analysis is defined as a sub activity of risk

modelling. Quantitative or qualitative uncertainty representation is trying to provide confi-

dence about the uncertainty of risk measures from a model, when these are an integrated result

from parameter uncertainty and model uncertainty.

The procedure of operational risk model generally follows the systemic modelling process

described in Section 3.1, even though there might be some minor deviations.

To model the risk, objectives, governing risk concepts, scope of the analysis, system bound-

aries, depth or complexity of model (level of details) etc., should be specified. The level of detail
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with which a model describe a system should be consistent with the modelling objective. Mod-

ellers should have a good knowledge about the system under modelling, modelling techniques,

relevant and available data. Specific risk measures which are the output should be decided.

To identify system controlling factors and mechanism, important system features, risk con-

tributors and dependence should be exhaustively identified.

To model dynamic feature of operational risk, different time interval for calculating hazard

event probability, failure probability or frequency, and therefore also risk measures for different

purposes, should be decided. Other timing features should be modelled well.

To express uncertainty regarding risk measure, certain ways to represent uncertainty is nec-

essary. A propagation method of parameter uncertainty should be known and used. Specific

methods to analysis uncertainty from model should be discovered and used if available.

3.2.4 Model Outputs and Uncertainty

Usually, the model outputs have more than one quantity. What the model outputs are should be

stated in the objectives of the operational risk modelling. There might be some derived quanti-

ties too. To decide what the outputs from the model are, the following questions can be asked:

What is the operational risk? What are the operational risk measures?

What kind of decisions are we faced with?

What information is required to support decision making from risk modelling?

One formulation of the overall objective for operational risk analysis from Vinnem and Hau-

gen (2012) is to provide input to relevant decisions relating to planning and execution of main-

tenance and operational issues in order to control risk. And there are two main situations of

decisions: Planing of long term and short term maintenance and modifications, Day to day

management of maintenance, inspections and modifications.

For operational risk modelling, examples of model outputs are:

• Potential loss of life during a certain relative short period of time (e.g. per day) and asso-

ciated uncertainty of it;

• Probability of accident during a certain relative short period of time and associated un-

certainty of it;
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• Potential risk increasing from a certain planned activity and associated uncertainty of it;

• Risk increasing in rank among planned activities and associated uncertainty of it.

• etc.

Besides the model outputs listed above, other information including description of the risk

model, model scope, limitation, assumptions, model uncertainty sources, potential impact from

these model uncertainty sources etc are other kinds of model outputs information which also

should be presented as a part of input information for decision-making.

When making the decision, we also need to bear in mind that the decision made is based

on the information from the model outputs which also depends on the knowledge, experience.

understanding of decision makers. How the model results are interpreted is decision maker

dependent. In addition, the right decision at a certain point in time does not necessarily mean

the outcomes from decision is good.



Chapter 4

Model Uncertainty Analysis

This chapter mainly review studies related to model uncertainty analysis in some industries, in-

cluding probabilistic risk analysis in the nuclear, aerospace, and oil and gas sectors, in addition

to environmental impact analysis, computerized modelling and simulation etc. Probabilistic

risk analysis is the major focus of this review. The main elements in model uncertainty analy-

sis are model uncertainty identification, characterization and treatment of model uncertainty

sources, impact assessing, model uncertainty integration and propagation, and model uncer-

tainty reducement etc. The result from uncertainty analysis are used for decision support to

make robust decision.

In the end of this chapter, frameworks of model uncertainty analysis, a proposed system-

atic approach for model uncertainty sources identification, and summary of model uncertainty

treatment methods are presented.

4.1 Model Uncertainty in Probabilistic Risk Analysis

As defined by Hanseth and Monteiro (1994), Model is an abstract representation of reality used

to simulate a process, understand a situation, predict an outcome or analyse a problem. Then

model uncertainty can be called the degree to which a model is an accurate representation of

the real world (Modarres, 2006). Uncertainty analysis is the process of determining to which

degree a model is an accurate representation of the real world. As pointed out by Modarres

(2006), there is meta-uncertainty in the analysis process itself.

40
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It is agreed that all models contain simplification and approximation. Different approaches

may exist to present certain aspects of the same process or system but none is clearly more

correct than others. Assumptions and simplifications are usually different.

The model difference may due to our knowledge limits in understanding the process or sys-

tem, or be limited by our knowledge in modelling techniques. The methods to handle model

uncertainty and completeness uncertainty are different from parameter uncertainty. They may

be not able to be characterized by a probability distribution. In some field, the issue of model

uncertainty more or less associated with the validity of the model or approach. A gradually im-

provement of the approach (increase knowledge and degree of belief) and verification or stan-

dardization might be the way to reduce model uncertainty.

Pointed out by Apostolakis (1989), in Probabilistic Safety Analysis (PSA), a major source of

uncertainty could be the model itself. Examples include model assumptions, models for com-

mon cause failures and human reliability analysis, expert judgement. It also comes from the ap-

plication of probability theory in PSA itself, since not every event can be precisely defined. Also,

in probability theory, probabilities of mutually exclusive and exhaustive events are required to

be normalized to 1, while new possible events may be identified, and then the model has to be

reconstructed and recalculated in reality. He also pointed that the sole use of probabilities may

not be enough to measure uncertainty. The potential usage of two dimensions representation

of uncertainty might be worth to explore, e.g. probability and necessity.

Ramana (2011) conclude that the probabilistic risk assessment method applied for nuclear

reactors theoretically suffers from several problems:

a. Model completeness. ‘’Conceptually impossible to be complete in a mathematical sense

in the construction of event-trees and fault-trees . . . This inherent limitation means that

any calculation using this methodology is always subject to revision and to doubt as to

its completeness”. In the case of many accidents, probabilistic risk assessment models do

not account for unexpected failure modes.

b. The difficulty of modeling common-cause or common-mode failures. The probabilistic

risk assessment method does a poor job of anticipating accidents in which a single event,

such as a tsunami, causes failures in multiple safety systems.
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Both of these shortcomings are related to the model uncertainty of this method.

4.1.1 Different Understanding of Model Uncertainty

One opinion on model uncertainty, given by Reinert and Apostolakis (2006), is that model un-

certainty is uncertainty of the model output, which is introduced by uncertainty in accuracy of

the model. Uncertainties which come from input values and structure errors are included in the

model uncertainty. This definition of model uncertainty can be found in some other articles and

books. This is also termed "Model Output Uncertainty" by some other researchers, the same in

this report.

While, Droguett and Mosleh (2008) have different statement, they think that parameters and

structures are the two characters of a predictive model. Therefore, parameter uncertainties of

the model stem from uncertainties in the input values assumed by the model parameters, and

model uncertainties are uncertainties and errors associated with the structure of the model.

Similar terms including structural model uncertainty, model form uncertainty and conceptual

model uncertainty are also used by some researchers. "Model Uncertainty" in this report is in

this side of opinion.

4.1.2 Model Uncertainty Sources Identification

Uncertainty sources or model uncertainty sources have been discussed broadly by many schol-

ars. Different classification of them have been made. Here the main focus wil be on model

uncertainty sources.

De Haag and Ale (1999) classified uncertainty sources in Quantitative Risk Assessment (QRA)

calculation according to the level in the calculation: starting points, models, parameter values

and the use of the model. Uncertainty sources from starting points and models are within the

study scope of this report.

Clear start points which demonstrate the purpose of calculation define the scope of mod-

elling and specific approaches forwards. One illustrative example is "if the QRA is meant to esti-

mated the actual risk of the activity, the probability that the flammable cloud will ignite should

be calculated using the location of ignition sources around the activity. On the other hand, if the
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QRA is meant to calculate an individual risk independent of the surroundings of the activity, the

ignition sources around the activity should be ignored and agreements will have to be made on

the ignition of flammable clouds". A list of start points is provided to minimise the uncertainty

from this.

It is also noted that models used in QRA is not strictly established. They vary in complexity

and accuracy. Model uncertainty sources for QRA include:

• Potentially important processes which should be included in the model are ignored or

overlooked. Examples are tank-roof collapse, atmospheric deposition processes and chem-

ical reactions in the dispersing cloud;

• The applied model is not valid for the specific local situation. For example, the dispersion

models used are only valid for a flat terrain in the absence of large obstacles, whereas

numerous obstacles can be present in and around industrial sites;

• Simplifications done to the modelled processes. For instance, a uniform wind speed is

used, which ignores the variation in wind speed with height;

• Natural variability is ignored. For instance, all humans are assumed to react similarly to an

exposure to toxic substances. However, people considered impaired to the circumstances

are probably more vulnerable and thus at greater risk;

• Models are sometimes used outside the range of applicability;

• Numerical approximations in the computer code.

Modarres (2006) adopted categorization of model uncertainty sources from Isukapalli (1999),

which is based on environmental risk analysis; see Section 4.2.2. These are: model structure,

level of detail, resolution, boundaries.

Haimes (2008a, Chapter 6: Defining Uncertainty and Sensitivity Analysis) made a classifi-

cation of major model uncertainty sources of risk modelling of systems in general. There are 6

major model uncertainty sources. They are surrogate variables, excluded variables, abnormal

situations, approximation uncertainty, incorrect form and disagreement.
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Surrogate variables are quantities used to replace the actual quantities of concern which are

too difficult or too expensive to assess. Surrogate variables are assumed to be close substitutes

that are easier to be dealt with and therefore are resource-saving. For example, using results

from drug testing on rodents to determine a drug’s effect on humans. Surrogate variables should

be used with caution since they are approximations of real values and may increase the uncer-

tainty of the results specially when the relation between the surrogate estimate and real value is

not completely understood and well analysed.

Excluded variables are those factors or quantities that has important influence on the result

but are overlooked during the modelling process because the modellers deem them unimpor-

tant. The removal of this kind of variables in the model may introduce large uncertainty to the

model output. And we may not know them until evidence has been found, which makes it diffi-

cult to account for this kind of variables.

Abnormal situations are those anomalies which make the model non-suitable because they

exist outside of the model’s design. Even though the model is applicable in almost all similar

cases, there might still some abnormal ones that the model cannot represent. Failure to recog-

nize or foresee the limits of a model to a specific abnormal situation within the process increases

error and uncertainty in the conclusion drawn from the model.

Approximation uncertainty covers the approximation approach used in the model develop-

ment. An example of this is the case when a discrete probability distribution is used to represent

a continuous real-world process, or in the limitation of finite runs used in Monte Carlo analysis.

Incorrect form category mainly concerns the validity, or accuracy or the basic model which

is used to represent the real world.

Disagreement represents the uncertainty sources from conflicting expert opinion or data in-

terpretation because of difference in beliefs about the fundamental processes.

In nuclear sector, both model uncertainty and completeness uncertainty are included by the

defined model uncertainty in this thesis.

NUREG-1855 (Drouin et al., 2009) focuses on identification and evaluation of sources of

model uncertainty, especially those key uncertainty sources of the PRA model that would in-

fluence the decision. Then efforts and resources can be used to reanalyze these key uncertainty

sources which have a significant influence on the output instead of spreading to the whole input
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set.

The treatment of model uncertainty sources also depends on the application of base PRA

model. To get a list of the sources of model uncertainty, and the related assumptions of PRA

model for a certainty application, the first step is to identify sources of model uncertainties,

related assumptions of base PRA model, and model uncertainty sources arising from plant-

specific features (Base PRA is the PRA which is developed to support the various applications,

and it is independent of an application). The second step is then to identify sources of model

uncertainties and related assumptions relevant to a certain application (e.g. to evaluate vari-

ous design options or to determine the baseline risk profile as part of a license application for a

new plant).

EPRI (2008) provide a generic list of potential model uncertainty sources by examining the

ASME/ANS PRA standard 2008 and avilable industry/NRC PRAs. Both root causes of epistemic

uncertainty from literature study and ASME/ANS PRA standards high-level requirements are ex-

amined to provide a structure and cross checking. The list are shared by NUREG-1855. Examine

plant-specific features and modeling approaches covers the model uncertainty sources which

are not incorporated into the generic list.

The model uncertainty concerned by NRC NUREG include the approach or the model itself

and its constituent parts. Examples are 1) How to address a common cause of failure in the PRA

model, 2) The approach to identify and quantify operator error (human reliability model), 3)

Unclear failure mechanism, logic gate etc.

In addition, for each model uncertainty source, indication is provided for what typical parts

of the model that are affected (e.g. change of logic, change of accident sequence, and introduc-

tion of a new event). The parts are affected by the model uncertainty itself and the representative

sample approaches.

Completeness uncertainty sources are risk contributors which are not included and that may

be ignored due to simplifications and assumptions. The risk contributors are not significant

after assessing known uncertainties; furthermore, they can be totally ignored when we have no

knowledge about them (unknown uncertainties). Examples of known uncertainties sources are

some initiating events, hazards, or the model of operations which are not included in the scope

of PRA, and phenomena, failure mechanisms, or other factors which are omitted in the level of
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analysis because their relative contribution is believed to be negligible. Examples of unknown

uncertainties are phenomena, failure mechanisms, or other factors which are omitted in the

analysis because we do not know of their existences, and of certain related effects (aging or

organizational factors etc.) where no agreement exits on addressment by the PRA.

4.1.3 Characterization and Analytical Treatment of Model Uncertainties

After we know that model uncertainty sources exist, which means that the direct outputs of

model are not as trustable as we thought before. We may have further questions: What are the

"true" results we can use as inputs for decision support? How do these uncertainty sources

influence the output or how do these they make the outputs deviate from "true" results? Will

these identified uncertainty sources change the decisions?

In order to get a result closer to the "true" result, expert judgement and Bayesian inference

are approaches for this purpose. These kinds of methods can be called "output-driven" meth-

ods. Assessment of impact from model uncertainties and importance measures are ways to see

how these uncertainty sources influence the output. This kind of method can be called a "input-

driven" method. A combination of "input-driven" and "out-put-driven" methods are also pos-

sible to apply, which is called a hybrid method. The distinction of "Output-Driven" method,

"Input-Driven" and "Hybrid" method is extended from Pourgol-Mohammad (2009).

The "Input-Driven" method is a "white-box" decomposition approach. It goes to the details

of the model (treat it as a while box). In the end, both uncertainty sources in parameters and

models are propagated through the overall model structure to the resultant model outcome,

which may be represented by distributions or ranges. The "Output-Driven" method, model

uncertainty is characterized by comparing measured and calculated output if applicable or by

correcting model output which only consider parameter uncertainty.

There exist some analytical treatment approaches of model uncertainty. Some of them are

mentioned by Apostolakis (1989). Approach 1) to 5) are "Output-Driven" methods. Approach 6)

is "Input-Driven" method.

1) Introduce Uncertainty Factor (Adjustment Factor)

The uncertainty factor is some sort of representation of the confidence in the prediction of
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the model. The quantity of interest is the multiplication of the uncertainty factor and the

prediction result incorporating parameter uncertainty; see Formula 4.1. The uncertainty

factor distribution is based on expert judgment concerning both qualitative information

about the uncertainty sources of the model, and rough comparison of predicted values

with published values (Siu and Apostolakis, 1982).

τG = EττG ,DRM (4.1)

τG is the outcome probability distribution considering both model uncertainty and pa-

rameter uncertainty;

τG ,DRM is the model output distribution only concerning parameter uncertainty;

DRM means deterministic reference model, which is used to represent the name of the

physical model of cable tray fire;

Eτ is the model uncertainty factor. A lognormal distribution with characteristics: µ =
0.582,σ = 0.489, mean= 2.0, Eτ,0.95 = 4.0,Eτ,0.05 = 0.8 is assigned to it in the case in Siu

and Apostolakis (1982).

The probability distribution τG is gained by combining both the model uncertainty factor

Eτ and the DRM prediction, after discretizing the distribution for Eτ using the discrete

probability distribution arithmetic described by Kaplan (1981).

The Eτ in formula 4.1 is called multiplicative adjustment factor. Additive adjustment fac-

tor can also be applied according to Reinert and Apostolakis (2006), see formula 4.2.

ya = y∗+E∗
a (4.2)

In the formula above, ya is the adjusted prediction, y∗ is the direct output from model, E∗
a

is the additive adjustment factor or uncertainty factor. Both the multiplicative adjustment

factor and additive adjustment factor can be applied at same time if necessary.

2) Introduce Uncertainty Factor according to uncertainty source classes

The Danish guidelines (COWI, 1996) for QRA uses uncertainty factors to determine the
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Table 4.1: Suggestions of the model uncertainty factor according to assessment result of sub-
classes

Small uncertainty Moderate uncertainty Large uncertainty
1<UF<2 2<UF<10 10<UF

Relevance High Medium Low
Validity High Medium Low
Variability Low Medium High

uncertainty from QRA mathematical models. A model uncertainty class constitutes three

sub-classes, which are relevance, validity and variability. Relevance means to what extent

the model used covers the specific situation. Validity represents how well the model has

been validated. Variability is the natural variability of the modelled phenomenon. These

three sub-classes are assessed separately by expert judgement and then aggregated to one

model uncertainty factor by formula 4.3. This approach is easy to operate and force the

analyst to consider model uncertainty in the analysis instead of only considering param-

eter uncertainty. One obvious drawback is that the quantification is somehow arbitrary.

U F = exp

( n∑
i=1

(InU Fi )2
)1/2

(4.3)

The semi-quantitative assessment is performed for these three sub-classes using tables in

the guidelines. A qualitative description of the three sub-classes is also required besides

uncertainty factor numbers. Suggestions for decision of model uncertainty factors are

presented in Table 4.1.

Besides the model uncertainty class, there are three other classes of uncertainty; thereby,

four classes constitute the result uncertainty of the QRA. The other three classes of un-

certainty are: Uncertainty in prevailing analysis conditions or environments (e.g. experi-

ence and competence of analyst team, available time and resources); Uncertainty due to

assumptions in scenario generation; Uncertainty in input data. There is an uncertainty

factor for each class of uncertainty, and the total uncertainty factor of result from QRA is

calculated in the same manner as presented in formula 4.1. The input data uncertainty

factor is assessed according the output distribution which is propagated from input data

uncertainty by sampling method. The treatment of the other two class of uncertainty is
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similar to that of model uncertainty described above. This concept assume that the dif-

ferent classes of uncertainty are independent to ensure that no part of uncertainty is ac-

counted for more than once.

3) Introduce Uncertainty Factors at intermediate level

To use this approach, uncertainty analysis is performed at an intermediate level. The

quantity of interest is calculated from a number of different sub-models, and accounts

for the uncertainty arising from model-to-model variability by multiplying the quantity

of sub-model with an uncertainty factor. The distribution for the uncertainty factor is

assessed subjectively, using the different predictions of the various models to indicate

the possible range of variation. The resulting model uncertainty is propagated in the

same manner that parameter uncertainties are treated, for example, Monte Carlo sam-

pling (Chu and Apostolakis, 1984).

4) Introduce Subjective Model Probabilities

For the case of a finite number of alternative models, one opinion regarding model uncer-

tainty is that the issue of model uncertainty can be treated by creating a parameter whose

value is dependent on the model used. Combining results from alternative models by in-

troducing subjective model probability for each model can be a method for dealing with

model uncertainty. Such a method is called model set expansion(Zio and Apostolakis,

1996). Model probability represents the correctness of the model.

Subjective model probabilities are generated by different ways in practical cases, includ-

ing mixture (Apostolakis, 1994), the NUREG-1150 approach (Commission et al., 1991; Keeney

and Von Winterfeldt, 1991), the joint US/Commission of European Communities’(EC)

Probabilistic Accident Consequence Uncertainty Analysis (PACUA) approach (Cooke and

Harper, 1997). If experiment data is available, model probability can be updated accord-

ing to Bayesian theorem from original subjective model probability by incorporating ex-

periment data(Park et al., 2010).

In the mixture approach, a set of plausible models is obtained from experts. Then these

experts agree on the model probability (weighting factor) of each model. In the end, these
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models are combined linearly with their weighting factors. In this case, the result is a

weighted average of probability distributions from each model.

There is another approach used in the report NUREG-1150 in which multiple experts

are used. Each experts produce his or her own model probability distribution of multi-

models. Then, the final model probability distribution is obtained by combining individ-

ual result linearly with equal weight on each expert. However, there was a great deal of

debate around it since an extensive use of expert opinions in this report.

The PACUA approach gives different weights to experts instead of equal weights in NUREG-

1150. The weights of each experts represent the confidence in each expert. First, the ex-

perts are asked to produce distributions from seed variables, for which data is known.

Then, their distributions are compared to the distributions from known data. Experts with

better performance in estimating see variable distribution are given higher weights.

5) Bayesian Inference

Bayesian inference is the approach mentioned and applied by many scholars not only in

probabilistic models but also deterministic models to treat model uncertainty. Details can

be found at (Link and Barker, 2006; Droguett and Mosleh, 2008; Kazemi and Mosleh, 2012;

López Droguett and Mosleh, 2014) etc.

Baye’s Theorem are used in different ways to treat model uncertainty. When experiment

data is available, it can be used to update the predicted model outcomes considering pa-

rameter uncertainty. It is a way to check the model accuracy by system response (Pourgol-

Mohamad et al., 2010). It can be used to construct a meta-model from a set of plausible

models(Winkler, 1994). It can be used to update subjective model probability described

in Approach 4) (Park et al., 2010). It also can be used to assess model uncertainty using

historical model performance data paired by true quantity values(Droguett and Mosleh,

2008).

In addition, López Droguett and Mosleh (2014) extended the Bayesian methodology from

(Droguett and Mosleh, 2008) to incorporate subjective information in terms of model

credibility and applicability when the model is outside its intended domain of application.

There are two approaches described by López Droguett and Mosleh (2014) to improve the
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accuracy of model prediction in the overall Bayesian methodology. One is Bayesian Model

Output Adjustment Approach, the other one is Weighted Likelihood Approach.

6) Sensitivity analysis

After sources of model uncertainty are identifies, sensitivity analysis is implemented to

get a list of key uncertainty sources. When model uncertainty sources impact decision-

making (e.g. the risk metric), through the result of a sensitivity analysis, these become

defined as key uncertainty sources.The result of the sensitivity studies and characteriza-

tion of these key uncertainty sources are given to decision-makers for decision-making

support.

With completeness uncertainty sources (for those which are known) screening and a con-

servative or bounding analysis can be used to demonstrate that risk contributors, which

have not been included in he scope of the PRA or the level of detail of the PRA, are non-

significant in affecting decision outcome. Otherwise the PRA should be upgraded to in-

clude the missing pieces. When is come to unknown uncertainties, since they are truly

unknown, screening is not applicable anymore and other methods should if available be

used to address this type completeness uncertainty(Drouin et al., 2009).

Sensitivity analysis is often based on the concept of sensitivity derivatives, the gradient

of the output of interest with respect to input variables. The overall sensitivity is then

evaluated using a Taylor series expansion, which, for the first order would be equivalent

to a linear relationship between inputs and outputs.

Sensitivity analysis does not require input data uncertainty characterization from a real

device; it can be conducted purely based on the mathematical form of the model. As a

conclusion large output sensitivities (identified using SA) do not necessarily translate in

important uncertainties because the input uncertainty might be very small in a device of

interest.

Sensitivity analysis is a quantitative examination of how the outputs from the analysis

varies with the changing of (Rausand, 2013):

– The input parameters (e.g., failure rates, probabilities, repair times)
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– The assumptions of the analysis (e.g., related to operation, maintenance, indepen-

dence)

– The structure of the model (e.g., structure of a fault tree)

Traditional sensitivity analysis is conducted by changing one uncertain input at a time

and showing how the results of a model change over the range of possible values of that

one input. Two-way sensitivity analysis is also common (varying two inputs at the time

and plotting the results in a two-dimensional space).

Sensitivity analysis is used as an important approach for Uncertainty analysis. In proba-

bilistic risk analysis, sensitivity analysis is applicable for the uncertainty due to the input

values to check how much the top event probability changes when one or more input pa-

rameters are changed, example parameters are failure rate, test interval etc. Monte Carlo

simulation is a way to do it as well. Most fault tree programmes have the module of doing

this kind of sensitivity analysis or uncertainty/error propagation (Rausand, 2014, Chapter

5, sensitivity analysis).

Before this "input-driven", "output-driven" distinction, Zio and Apostolakis (1996); Reinert and

Apostolakis (2006) concluded on the methods dealing with model uncertainty by addressing

them as two kinds: prediction expansion and model set expansion. All of them are "Output-

Driven" methods in this classification. For prediction expansion, a single model is chosen as

the best one to present the system. Uncertainty factors or adjustment factors can be applied

to get a more accurate prediction. For model set expansion, a meta-model of the system can

be constructed from alternative models. There are several methods which have been proposed

to construct this meta-model, including Mixture (Apostolakis, 1994), Bayesian updating (Win-

kler, 1994), the NUREG-1150 approach (Commission et al., 1991; Keeney and Von Winterfeldt,

1991), the joint US/Commission of EuropeanCommunities’(EC) Probabilistic Accident Conse-

quence Uncertainty Analysis (PACUA) approach (Cooke and Harper, 1997), and the Technical

Facilitator-Integrator approach (Committee et al., 1997). Expert judgement is applied in all of

these methods for model set expansion.

While, Modarres (2006) classifies model uncertainty characterization methods according to

the number of plausible models available for the question at hand. There are usually two pos-
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Table 4.2: Criteria on Model Uncertainty from Modarres (2006)
Criteria on Model Uncertainty
Decision Criteria Options
Source of data and information Multi sources Same sources
Assumptions Different assumptions Same assumptions
Model form/Structure Multiple-model form/structure Single-model form/structure
Model extrapolation Yes No
Model Output Multiple output Single output

sible situations of model prediction of a property of interest: single model or multiple models

(different structural forms). If there are multiple models exist, then following cases may be en-

countered:

a. Multiple models using the same assumptions, data and information

b. Multiple models using different assumptions, but the same data and information

c. Multiple models using different assumptions, data and information

A subset of criteria to decide the model uncertainty characterization methods are made for

these situations, see Table 4.2:

For the case of single model, one option of characterisation approach is to assign a sub-

jective conditional probability interval to the predicted model output. An adjunct option is to

Bayesian update the predicted model output, when some evidence in form of actual observation

exist from experiments, events or similar. For such single model, the output is conditionally val-

idated with respect to model assumptions. Sensitivity studies can be performed to investigate

assumptions that are suspected of having a potentially significant impact on the model output,

which in turn may lead to wrong decisions.

In the case when multiple models exist to estimate the same property of interest (where the

structure form of the models are different, but still developed from the same underlying knowl-

edge, information, data and assumptions), A weighted average of various model outputs can

represent an aggregate estimation of the quantity of interest. The weights can be subjectively

assigned or equally assigned. Bayesian updating can still be used to refine the averaged uncer-

tainty of the quantity of interest if evidence show up.

Consider a situation where multiple models with different assumptions exist to be used on

the same case, even though the data and information are the same. If the estimates generated
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by the models become considerably different, because the models rely on exclusively differ-

ent underlying theories (different assumptions), then the averaged model output is physically

meaningless to calculate. Characterization of epistemic uncertainty of the models can only be

done separately for each model as in the single-model case. As a consequence only qualita-

tive (or semi-quantitative) explanations are realistic in the comparison of the goodness of each

model. One such an example is estimating structural failure caused by fatigue due to a random

load applied to the structure. Both linear elastic fracture mechanics and elastic-plastic theory of

fatigue may be used to estimate the service life. The former assumes no plastic deformation at

vulnerable location, the latter model allows some plasticity at the tip of the crack. The assump-

tions of these two model are fundamentally different in that they refer to different phenomena

of crack growth due to fatigues, and both models may satisfy the same data and information

available. However, the life estimation models for the structure are quite different, then there is

no meaning to combine the result from both models. In this case, It becomes the final decision

maker’s partiality (e.g. risk manager’s decision as to which of the model output he/she prefers

to use).

4.1.4 Uncertainty Integration and Propagation

Uncertainty integration and propagation is a typical issues if model uncertainty sources exist,

especially for hierarchical models. This issue is pointed out by Pourgol-Mohammad (2009);

Sankararaman (2012); Sankararaman and Mahadevan (2015).

The "Output-Driven" methods are trying to get the "true" uncertainty of the quantity of in-

terest, which is already an integrated result from model uncertainty and parameter uncertainty.

This provides direct resultant input for decision-making, while the "Input-Driven" methods are

trying to assess the impact from single model uncertainty sources or coupled pairs of model

uncertainty sources. In this case, decision makers get the result of the quantity of interest with

its resultant uncertainty from input parameters and a list of possible variations from a certain

model uncertainty source or two. If there are many uncertainty sources, the total impact from

them cannot be seen from the many separated and single uncertainty sources. For hierarchical

model, the overall model is a integrated result from many sub-models at different levels. The

influence from model uncertainty sources, which are located at different levels, also varies, and
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an integrated uncertainty of the quantity of interest might also help in decision making in this

regard.

4.1.5 Model Uncertainty Reducing

There are several ways to reduce or control model uncertainty, including but not limited to:

1) Choose an appropriate model according to application.

2) Bayesian updating of model output if evidence (observation) exist; Bayesian Network, in-

corporating different models; or using weighted result from different models.

3) Using a consensus model that has publicly available published basis and has been peer

reviewed and widely adopted.

4) Apply standardized modelling process.

5) Apply a sound and holistic model validation procedure.

6) Increase the knowledge about real world or system and modelling techniques.

The best reduction of model uncertainty is to reduce the overall uncertainty to parameter un-

certainty for which the combined use of statistics theory and expert opinion collection is an

adequate treatment(Devooght, 1998).

4.2 Model Uncertainty Analysis in Environmental Modelling

Environmental modelling is a wide issue, both deterministic, probabilistic, integrated models

are used in different sub fields and environmental issues.

A ten iterative steps in environmental model development and evaluation was proposed by

Jakeman et al. (2006). This ten iterative steps process is also adapted in book Models in Environ-

mental Regulatory Decision Making (National Research Council (US). Committee on Models in

the Regulatory Decision Process, 2007). Quantification of uncertainty is the ninth step in this

process. The authors also mentioned: "few approaches explicitly consider model uncertainty...
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And it is hard to take this kind of uncertainty into account, because it is an issue about devel-

opers’ preferences and capability, fashion within technical communities, shortage of time and

resources, availability of software tools, etc... But the positive side is that, uncertainty is widely

recognised and increasing resources are being devoted to it".

Hession and Storm (2000) demonstrated a method for incorporating uncertainty analysis in

watershed-level modelling. Three uncertainty sources were examined. They are parameter er-

rors, parameter stochasticity and lumping error. Probability density function of output resulted

from each uncertainty sources and all three uncertainty sources are compared. The compari-

son shows that parameter errors is the greatese contributor to the total output uncertainty. As

argued by the author, lumping error is difficult to be classified into specific category of uncer-

tainty. It can be understood as model uncertainty since it presents a simplification of the real

world required by the model. It also can be seen as a parameter uncertainty since it result in a

estimate of parameter presenting our lack of knowledge of the real value. Or it can be reviewed

as a spatial variability according to the authors’ classification of uncertainty.

Refsgaard et al. (2006) classifies strategies for assessing structural uncertainties in environ-

mental models into two categories after reviewing a range of existing strategies. One is " inter-

polation" for those field data is available for the predicted variable of interest. The other is "ex-

trapolation" for those field data is not available. A framework for the situation of "extrapolation"

is presented in this paper. This framework involves multiple conceptual models, assessment of

tenability and completeness of conceptual models.

Refsgaard et al. (2007) briefly review 14 different methods that are commonly used in un-

certainty assessment and characterization. They are: data uncertainty engine (DUE), error

propagation equations, expert elicitation, extended peer view, inverse modelling (parameter

estimation), inverse modelling (predictive uncertainty), Monte Carlo analysis, multiple model

simulation, NUSAP, quality assurance, scenario analysis, sensitivity analysis, stakeholder in-

volvement and uncertainty matrix (Jeroen P. van der Sluijs and Huijs, 2003; Walker et al., 2003).

NUSAP(numeral, unit, spread, assessment, and pedigree) is for multidimensional uncertainty

assessment to provide an analysis and diagnosis of uncertainty in science for policy (Funtow-

icz and Ravetz, 1990; Van Der Sluijs et al., 2005). This system can integrate qualitative uncer-

tainty and quantitative uncertainty but the scoring of pedigree criteria is based on subjective
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judgement. The author mapped these methods according to their applicability into purpose

of application, stage of modelling process and source and type of uncertainty addressed. The

role of uncertainty assessment is presented together with the modelling process and with its in-

teraction with broader water management process. It concluded that uncertainty assessment

should not just be added after the completion of the modelling work but be seen as a red thread

throughout the modelling study. It also concluded that the identification and characterization

of all uncertainty sources should be performed jointly by the modeller, the water manager and

the stakeholders.

Uusitalo et al. (2015) review various methods that have been or could be applied to evalu-

ate the uncertainty related to deterministic models’ output for environmental model. Expert

judgment, model emulation, model sensitivity analysis, temporal and spatial variability in the

deterministic models, applying multiple models and data-based approaches are covered in this

review. The authors doesn’t not conclude which method is better than the other but conclude

that the best way to evaluate the uncertainty depends on the definitions of the source models

and the amount and quality of available information. One difference between deterministic

models and non-deterministic (probabilistic) models is that the causal-effect relationship be-

tween model variables is very clear in deterministic models while causal-effect relationship is

not clear in non-deterministic models. But the method to characterizing model uncertainty may

be similar in some aspects. Both of these two kind of models are a simplified representation of

the real world.

As for uncertainty in integrated environmental models, it was discussed by Van Asselt and

Rotmans (2002) and Matott et al. (2009) did a review of concepts and tools for this topic.

In water resource management, uncertainty has been discussed quite intensively. Relevant

literature for model uncertainty can be find from Beck (1987); Butts et al. (2004); Gourley and

Vieux (2006); Ajami et al. (2007); Blumensaat et al. (2014). One important feature for model ap-

plied in this subject is that observed data or measurement of quantity of interest can be obtained

from field observations. In this way, model uncertainty can be evaluated or quantified by field

data. Model calibration is an important support to reduce model uncertainty and obtain a more

accurate model output.

Model evaluation defined by EPA’s Committee on Regulatory Environmental Models is the
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term that has a similar function as model uncertainty analysis defined in this thesis. The defini-

tion of model (or data) evaluation is:

"The process for generating information over the life cycle of the project that helps to deter-

mine whether a model and its analytical results are of a quality sufficient to serve as the basis for

a decision. Model quality is an attribute that is meaningful only within the context of a specific

model application. In simple terms, model evaluation provides information to help assess the

following factors: (a) How have the principles of sound science been addressed during model

development? (b) How is the choice of model supported by the quantity and quality of avail-

able data? (c) How closely does the model approximate the real system of interest? (d) How well

does the model perform the specified task while meeting the objectives set by quality assurance

project planning?"

In the context of model evaluation from EPA, uncertainty analysis contribute to the model

evaluation and is part of evaluation process(National Research Council (US). Committee on

Models in the Regulatory Decision Process, 2007; Council for Regulatory Environmental Model-

ing, 2009).

Since environmental modelling is a wide and multidisciplinary issue and uncertainty is a

very critical problem for them. But due to time limitation, it is impossible have comprehen-

sive literature reviews in all these fields. Therefore mainly examples from climate change study,

transport-transformation models, exposure assessment, which all can provide us more detailed

information and good understanding, are studied.

4.2.1 Model Uncertainty in Climate Change

In reports from IPCC, uncertainty is expressed by probability (quantified measure) or by sub-

jective description (an assigned level of confidence) (Mastrandrea et al., 2010). A level of confi-

dence is expressed using five qualifiers: “very low,” “low,” “medium,” “high,” and “very high.”

Some sights about model uncertainty can be see from following definitions(Pachauri et al.,

2014): Climate models are applied as a research tool to study and simulate the climate and for

operational purposes, including monthly, seasonal and inter-annual climate predictions, A cli-

mate model is a numerical representation of the climate system based on the physical, chemical

and biological properties of its components, their interactions and feedback processes and ac-
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counting for some of its known properties. The climate system can be represented by models

of varying complexity; that is, for any one component or combination of components a spec-

trum or hierarchy of models can be identified, differing in such aspects as the number of spa-

tial dimensions, the extent to which physical, chemical or biological processes are explicitly

represented, or the level at which empirical parametrizations are involved. Coupled Atmo-

sphere–Ocean General Circulation Models (AOGCMs) provide a representation of the climate

system that is near or at the most comprehensive end of the spectrum currently available. There

is an evolution towards more complex models with interactive chemistry and biology.

Ensemble is defined as "a collection of model simulations characterizing a climate predic-

tion or projection. Differences in initial conditions and model formulation result in different

evolutions of the modelled system, may give information on uncertainty. For climate forecasts

this uncertainty is associated with model error and error in initial conditions, while for climate

projections it is associated with model error and with internally generated climate variability."

Results from multi models are used to improve the accuracy of prediction. Why model com-

bining works is presented by Makridakis (1989); Armstrong (1989); Clemen (1989).

4.2.2 Model Uncertainty In "Transport-Transformation" Models

Isukapalli (1999) studied the treatment of uncertainty in transport-transformation models of

environmental and biological systems. These models describe the fate and transport of a chem-

ical species that originates from a source, travels through a medium (“transport”), undergoes

changes due to chemical or radioactive processes (“transformation”), and eventually comes in

contact with a receptor (e.g., a human, or specifically an organ, or a tissue). These transport-

transformation models are based on the continuity equation, and on a mass-balance of chem-

ical or radioactive species in a control volume. Even though the complexity of these models

varies significantly, they are categorized together because the underlying physical and chemical

processes, and the mathematical equations describing these systems, are similar.

Model Uncertainty sources

Isukapalli (1999) defines 4 types of model uncertainty sources of this kind of transport-transformation

models. They are:
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Structure/form: Uncertainty arises when there are assumptions for developing a model. In

such cases, if the results from alternative models (using other data, information, and knowledge)

yield the same answer to a problem, then one can be more confident that the results obtained

from the model are realistic in the face of uncertainty. If, however, alternative models yield dif-

ferent conclusions, further model evaluation might be required. One evaluation may involve

verifying model estimation with the actual data observed or obtained from experiments. Some-

times the uncertainty associated with the risk model assumptions is characterized with sensi-

tivity analysis.

Level of detail: Often, models are simplified for purposes of tractability. An example of this

is converting a complex nonlinear model to a simple linear model to trace calculations. Uncer-

tainty in the predictions of simplified models can sometimes be characterized by comparison of

their predictions to those of more detailed, inclusive models. Also, certain aspects of a process,

phenomena, event or system may not be considered in a model, because the modellers may be-

lieve that they are unimportant in comparison to other aspects of the model. Often this aspect

of model uncertainty is referred to a completeness uncertainty

Extrapolation: Models that are validated for one portion of input space may be completely

inappropriate for making predictions by extrapolating the model into other interesting regions

of space. For example, a dose-response model based on high-dose, short-term animal tests may

involve significant errors when applied to study low-dose, long-term human exposures. Simi-

larly, models that are evaluated only for application in a unique set of conditions may involve

enormous uncertainties when they are employed to study significantly different conditions.

Resolution: In the application of mathematical or logical models, selection of a spatial or

temporal grid or lattice size often involve uncertainty. On one hand, there is a trade-off between

the computation time (hence cost) and prediction accuracy. On the other hand, there is a trade-

off between resolution and the validity of the governing equations of the model at such scales.

Very often, a coarse grid resolution introduces approximations and uncertainties into model

results since certain phenomena, events, or processes may be bypassed or neglected altogether

sometimes, a finer grid resolution need not necessarily result in more accurate predictions, for

example, when a fine-grid produce incorrect results because the governing equation may be

insensitive the fine changes.
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Table 4.3: Classification of uncertainty sources from Modarres (2006)
A classification of the Sources of Uncertainty
Uncertainty in model formulation Uncertainty in Model application
(Structural Uncertainty) (Data/Parametric Uncertainty)
Conceptual Parameter selection
Simplifications Input Data
Development / Selection
Completeness Source Information
Level of Details
Initial and boundary conditions
Mathematical formulation
Simplifications in mathematical formulation Operational model evaluation
Physics-type hypotheses Uncertainty in model estimates
Idealizations in formulation Uncertainty in observations
Independence hypotheses Nonexistence of observations
Spatial averaging
Temporal averaging Response interpretation
Process decoupling
Lumping of parameters
Numerical solution
Discretization
Numerical algorithm/operator splitting
Approximations in computer coding
Representation of results
Precision
Bias

Boundaries: Any model may have limited boundaries in terms of time, space, number of

input variables, and so on. The selection of a model boundary may be a type of simplification.

Within the boundary, the model may be an accurate representation. But other overlooked phe-

nomena not included in the model may play key roles.

Modarres (2006) summarized the classes of sources of uncertainty based on the classifica-

tion of Isukapalli (1999) with some modifications, see Table 4.3.

Model Uncertainty Characterization

To study the uncertainties associated with model formulation, construct of a hierarchy of mod-

els with increasing detail and compare outputs from these models, is recommended by Isuka-

palli (1999) . The comparison of the model results can provide insight into what level of detail
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is sufficient to produce results similar to more detailed models. Such knowledge is very useful

in building an “optimal model”, one that produces outputs similar to more detailed models, but

requires much less detailed inputs and much fewer computational resources. Further, results

from models with varying detail provide an estimate of the range of model calculations, thus

helping in characterizing the uncertainty associated with model formulation and detail.

To characterize model uncertainty of transport-transformation models. Photochemical air

quality modeling applications are used as example and case study of transport-transformation

models. Two versions of Reactive Plume Model(RPM) are used to describes the evolution of

a photochemical plume and estimate pollutant concentrations in the atmosphere from "point

sources " of emissions such as the stacks of refineries and of power plants in the model uncer-

tainty study. Reactive Plume Model(RPM) is an EPA (Environmental Protection Agency) regula-

tory atmospheric photochemical trajectory model. The RPM-IV version is two-dimensional. It

lacks vertical resolution, since uniform mixing in the vertical direction is assumed. RPM-3D is

developed from RPM-IV by incorporating vertical resolution. It is a three-dimensional version.

There are two aspects of the model studied in the case: (a) the model uncertainty as a result

of the choice of horizontal resolution. (b) the model uncertainty as a result of the assumption

of uniform vertical concentration profile. To study the model uncertainty associated with hori-

zontal resolution, the results from the RPM-IV at varying horizontal resolutions are compared.

To study the model uncertainty associated with assumption of uniform vertical concentration,

results from RPM-IV and RPM-3D are compared.

The drawback of this approach is that it is quite costly and requires time to build a hierar-

chy of models. It does not give a "true model" but gives an "optimal model", which is a bal-

ance between cost and accuracy, by comparing the output from a hierarchy of model ranging

from simplified to more detailed. It also helps to screen out the unimportant model uncertainty

sources.

4.2.3 Model Uncertainty Analysis in "Exposure Assessment"

"Exposure assessment is the process of estimating or measuring the magnitude, frequency and

duration of exposure to an agent along with the number and characteristics of the population

exposed"(IPCS, 2004). Assessing the dose within the body after the agent enters the body via in-
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gestion, inhalation or dermal absorption is also included in the term "exposure assessment" in

some health studies. Exposure is the contact between an agent (chemical) and a target (e.g chil-

dren, adults or sensitive subgroups), where contact takes place on an exposure surface (external

human boundaries, e.g. skin, or internal organs, e.g. lung surface) over an exposure period (e.g.

minutes to a lifetime). The health effect of exposure may be acute, intermittent or chronic.

Quantification of the magnitude and timing of personal exposures to agents of concern re-

quires the identification of sources and media of concern, key exposure microenvironments,

and routes and pathways of exposure that contribute most to an individual’s exposure. But

the information needed to estimate emissions, concentrations, exposures and doses associated

with each of these steps is sometimes completely lacking, frequently incomplete, not represen-

tative or uncertain.

The first step of an exposure analysis is to establish a conceptual model. This conceptual

model maps out a framework designed to reflect the links between the pollutant source and the

contact for human exposure and its processes. The conceptual model helps to define the phys-

ical, chemical and behavioural information and exposure algorithms by which resulting math-

ematical/statistical model captures actual scenarios. The conceptual model must address the

scenario definition. The scenario definition includes specification of the pollutant source, envi-

ronmental transport and transformation, exposure pathways, exposure routes and the amount

of chemical, attributable to specific pathways and sources, that are taken up through various

routes. According to the conceptual scenario, a model can be simple or complex. An exposure

model is “a conceptual or mathematical representation of the exposure process” (IPCS, 2004).

Exposure models can be developed to estimate exposures and doses of individuals, defined pop-

ulation groups or entire populations (IPCS, 2005). Exposure may be estimated as a continuous

variable or integrated over time ranging from minutes to a lifetime. The modelled outputs may

include mean or median values, distribution parameters (standard deviations, quartiles, ranges)

or complete probability density distributions. Consequently, exposure models vary widely in

complexity, approach, inputs and outputs.

In exposure assessment, uncertainty pertains to different steps and approaches in the as-

sessment. In WHO IPCS(2008) guideline (IPCS, 2008) , a tiered approach is used for uncertainty

analysis in exposure assessment. There are four steps in this hierarchical method: screening
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(Tier 0), Qualitative (Tier 1), Quantitative (Tier 2) and probabilistic (Tier 3) uncertainty analysis.

The uncertainty analysis is an integral part of the exposure assessment. The advantage of this

tiered approach is its efficiency. It starts by considering all uncertainties qualitatively (Tier 1).

If the outcome is clear enough for decision-makers to reach a decision, then Tier 1 is sufficient.

Otherwise, the uncertainties that appear critical to the outcome may be analysed deterministi-

cally (Tier 2) or probabilistically (Tier 3).

In exposure assessment, uncertainty is classified into three broad categories:

• Scenario uncertainty: Uncertainty in specifying the exposure scenario that is consistent

with the scope and purpose of the assessment.

Exposure scenario is defined as a set of conditions or assumptions about sources, expo-

sure pathways, amounts or concentrations of agent(s) involved, and exposed organism,

system, or (sub)population (i.e., numbers, characteristics, habits) used to aid in the eval-

uation and quantification of exposure(s) in a given situation (IPCS, 2004).

Scenario is built based on the scope and purpose of each exposure assessment, and it

includes the "facts, assumptions and inferences" that are considered and used. So it is

not an actual representative of the scope and purpose of the assessment. Exposure mod-

els are selected or built based on the defined scenarios. Models include conceptual and

mathematical description of the exposure process. Computer programs which are used to

calculate exposure are also included.

Scenario uncertainty includes 1) descriptive errors about information which lead to wrong

or incomplete information, 2) aggregation errors from approximation, for instance of vol-

ume and time, 3) errors of assessment from choosing wrong model etc. and 4) errors of

incomplete analysis, for example, missing an important exposure pathway.

Examples of scenario uncertainty are: 1) Coffee is not considered as an important source

of acrylamide exposure due to lack of knowledge; 2) Air exchange is not considered when

characterizing room air concentration.

• Model uncertainty: Uncertainty due to gaps in scientific knowledge that hamper an ade-

quate capture of the correct causal relations between exposure factors.
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• Parameter uncertainty: Uncertainty involved in the specification of numerical values (be

they point values or distribution of values) for the factors that determine the exposure.

Nevertheless, it is also stated that the classification is not as strict as it may seem. Uncertainties

arise in overlapping areas in practice. It is difficult to decide which category the uncertainty be-

longs to. Identification of the sources of scenario uncertainty is a matter of interpretation and

depends on the clarity of the scope and purpose of the assessment at hand. Scenario uncer-

tainty can be seen as part of model uncertainty defined in this thesis because it is about how we

understand the real world/system, and it is part of the modelling process introduce in Chapter

3. However, it is more like a model application issue since it applies to a given situation. For

one; subjective issues counts more than scientific issues. Secondly, the way of characterization

might be different. Therefore, temporarily in this thesis, it feels natural to exclude it out of the

model uncertainty definition.

Model Uncertainty Sources Identification

In exposure assessment, model uncertainty is principally from modelling errors and relation

(dependency) errors. Non-consideration of certain parameters can be an example of modelling

errors. Drawing incorrect conclusions from correlations can be a example of relation errors.

IPCS (2008) lists following model uncertainty sources:

• Exposure estimator: definition of the target variable

• Model boundaries: Representation of the adopted scenario

• Conceptual errors and wrong assumptions in the translation of the scenario into a set of

model equations

• Dependency errors: assuming interdependence of the input variables

• Model assumptions

• Model Detail: e.g. simple and complex model

• Extrapolation
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• Implementation of tools and software

Gerhard Heinemeyer (2015) points out that typical exposure model uncertainty sources include:

• Failures to take account of the influencing factors

• Incorrect aggregation

• Assumptions of incorrect non-associations or oversimplification of the relationships be-

tween exposure factors (input variable)

• Extrapolation errors if transferring validated models to new application areas

There is no specific model uncertainty identification methods addressed in (IPCS, 2008) or (Ger-

hard Heinemeyer, 2015), and model uncertainty sources mentioned above are not strictly cate-

gorised.

In the qualitative uncertainty analysis characterization method used by (IPCS, 2008), the first

step is to specify uncertainty sources. Three basic uncertainty sources; "Scenario", "Model" and

"Parameter" should be separately specified, and can be further detailed. Model uncertainty can

be divided into conceptual model and mathematical model. It can also be detailed into model

assumption, model dependency, model structure, equation, model extrapolation and model

implementation etc.

Model Uncertainty Characterization

The methods to characterize uncertainty in IPCS (2008) are classified into two broad types: qual-

itative, quantitative. They provide contrasting ways of characterizing the relative importance of

the uncertainties affecting an assessment and of characterizing the overall uncertainty of the

assessment output (more stemming from parameter uncertainty than scenario and model un-

certainty). All of them provide an essential input for decision-making.

A "Three-dimensional" qualitative characterization method is proposed by IPCS (2008); the

dimensions being: "level of uncertainty", "appraisal of the knowledge base", and "subjective of

choices". There are three scales to characterize each dimension: "Low", "Medium", "High". This
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qualitative uncertainty characterization method applies to any kind of uncertainty: Scenario,

Model, and Parameter. The evaluation of each uncertainty source is separated.

The "level of uncertainty" express the degree of severity of the uncertainty from the asses-

sors’ perspective. The whole scale of it ranges from determinism to ignorance in theory. The

"appraisal of knowledge base" is the adequacy of the available knowledge base for the expo-

sure assessment. There are several criteria for evaluating the uncertainty of knowledge base.

The "Subjective of choices" evaluates the choice process of exposure assessors when they make

assumptions and especially focuses on the value-ladenness of assumptions. There are several

criteria for evaluating it too.

When evaluating model uncertainty sources, "level of uncertainty" is the first dimension to

evaluate, then you get a screened list of model uncertainty sources which are marked "High" or

"non-applicable" in the "level of uncertainty". These screened model uncertainty sources are

major sources. "Appraisal of the knowledge base" is the second dimension to evaluate for these

major sources. From this dimension, a further reduced number of model uncertainty sources

will be obtained, which are called controversial sources of uncertainty. "Subjectivity of choices"

is the last dimension to evaluate for these controversial sources. If the evaluated result is high for

a certain model uncertainty source, a new cycle of evaluation of this uncertainty source should

be executed. After all these steps, a map of qualitative values for the model uncertainty sources

will be obtained and tabulated. A subjective integration can be made to get the overall degree of

uncertainty from all three dimensions of uncertainty; nevertheless, it is important to document

the reasoning so others can evaluate the reached conclusions.

Similar qualitative characterization methods are also used for chemical safety exposure as-

sessment (ECHA, 2011) and food safety dietary exposure assessment (EFSA, 2006; EFSA Scien-

tific Committee, 2016).

Gerhard Heinemeyer (2015) is a guidance (draft) designed for the application fields at the

Federal Institute for Risk Assessment (BfR). For the model uncertainty part, it compiled a ques-

tion list regarding 7 increased criteria based on the "three-dimensional" qualitative characteri-

zation method. These 7 criteria are:

• Estimation of exposure: definition of the target variable
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• Concept and assumptions for the transfer of the scenario into a mathematical model;

• Connections/Correlations;

• Model structure, e.g. stratification;

• Choice of model equation;

• Extrapolations of the model;

• Risk management measures.

4.3 Model Uncertainty Analysis in Computerized Modelling and

Simulation

The key words which are very close to the context of model uncertainty analysis defined in the

field of computerized Modelling and simulation is "Model Verification, Validation and Uncer-

tainty Quantification". Verification is the process to determine that the model is accurately im-

plemented and represents the developer’s conceptual description of the model and the solution

to the model. Validation is the process to determine the degree that the model is an accurate

representation of the real world from the perspective of intended model usage. Model quan-

tification is the process that mathematically is characterizing unknown/random features and

variables in the target application and predicting their influence on a quantity of interest (Hu

et al., 2015).

Model uncertainty sources include initial conditions, level of fidelity (e.g. three-dimensional

geometries are simplified to two-, or one-dimensional numerical representation), numerical ac-

curacy (e.g. inadequate algorithms, inadequate resolution, and code bugs), choose a cutoff scale

in modelling multi-scale phenomena, parametric settings (about the correct values to assign to

the parameters in the correct physics models) (National Research Council, 2012). Besides these,

one large model uncertainty source is "the unknown unknowns" (Trucano, 1998).

Oberkampf et al. (2002) proposed a framework for modelling and simulation which can help

identifying error and uncertainty in computational simulations that deal with the numerical

solution of a set of partial differential equations.
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Roy and Oberkampf (2011) presented a comprehensive framework to estimate the uncer-

tainty of the quantity of interest from predictive models for scientific computing applications.

It incorporate uncertainty due to the mathematical form of the model. Model uncertainty is es-

timated by the process of model validation and then it is incorporated to the computed model

output in which only parameter uncertainty is propagated. But experiment data is required for

the model uncertainty estimation.

4.4 Methods Summary

4.4.1 Uncertainty analysis

Uncertainty Matrix

Walker et al. (2003) proposed an uncertainty matrix, see Figure 4.1, to get a systematic and

graphical overview of the essential uncertainty features of the models used for decision support

activities. The tool inspires both model developers and model users to make an explicit effort to

identify, estimate, assess and prioritise all important uncertainty contributions associated with

the model outcomes. Each identified uncertainty contributor identified from the framework of

policymaking are located in a particular location category of the matrix and typified in terms of

uncertainty level and nature.

The matrix can be applied for different purposes at different phases of the decision support

activity. For example, it can function as a heuristic during the preparatory pre-analysis phase,

or as a checklist during the analysis phase, or as a quality control checklist which used in peer

review or for self-evaluation.

This uncertainty matrix is mainly applied in uncertainty analysis in exposure assessment as

a qualitative uncertainty analysis approach.

A methodological framework of quantitative uncertainty assessment

A common methodological framework of quantitative uncertainty assessment is presented by

de Rocquigny et al. (2008). This framework include four steps and feedback process afterwards:
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Figure 4.1: Uncertainty matrix from Walker et al. (2003)

Step 1. To specify quantities of interest and corresponding measure of uncertainty for each quan-

tity;

Step 2. To undertake uncertainty modelling;

Step 3. To launch uncertainty propagation;

Step 4. To launch sensitivity analysis.

In this framework, a feedback process after one step or another should be followed.

But this framework mainly focuses on parameter uncertainty. Roy and Oberkampf (2011)

proposed a similar framework, but incoporating estimated model uncertainty to the propagated

model output from parameter uncertainty to estimate the uncertainty of the quantity of interest

from predictive models for scientific computing applications.

NUREG-1855 framework

NUREG-1855 framework (Drouin et al., 2009), for uncertainty treatment in PRA, separates the

characterization of parameter uncertainty and model uncertainty. Parameter uncertianty is rep-

resented by probability theory and propagated to model output by sampling techniques. Model

uncertainty sources identification is the first step for model uncertainty characterization. In this

framework, Model uncertainty is treated by sensitivity analysis. Key model uncertainty sources
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are screened by assessing the impact on model output. Information from sensitivity analy-

sis and parameter uncertainty propagation are all provided to decision-makers for decision-

support.

Tiered approach

A tiered approach is used for uncertainty analysis in exposure assessment (IPCS, 2008) . There

are four steps in this hierarchical method: screening (Tier 0), Qualitative (Tier 1), Quantita-

tive (Tier 2) and probabilistic (Tier 3) uncertainty analysis. The uncertainty analysis is an inte-

gral part of the exposure assessment. The advantage of this tiered approach is its efficiency. It

starts by considering all uncertainties qualitatively (Tier 1). If the outcome is clear enough for

decision-makers to reach a decision, then Tier 1 is sufficient. Otherwise, the uncertainties that

appear critical to the outcome may be analysed deterministically (Tier 2) or probabilistically

(Tier 3). Uncertainty sources may be treated by different tiers.

4.4.2 Model Uncertainty Sources Identification

Model Uncertainty Sources are classified into different groups in a simple or detail way. For ex-

ample, in the uncertainty matrix proposed by Walker et al. (2003), model uncertainty is model

structure and Technical model. In the extended application of this uncertainty matrix in expo-

sure assessment, model uncertainty contains two sources, one is the conceptual model and the

other is the mathematical model. Some exposure assessment may go further detail. A most de-

tailed classification of model uncertainty is from Isukapalli (1999) for "transport-transformation

models". And Modarres (2006) further modified Isukapalli (1999)’s classification of model un-

certainty sources into three big groups: conceptual, mathematical formulation and numerical

solution.

In nuclear power sector, EPRI (2008) provide a generic list of potential model uncertainty

sources by examining the ASME/ANS PRA standard 2008 and avilable industry/NRC PRAs. Both

root causes of epistemic uncertainty from literature study and ASME/ANS PRA standards high-

level requirements are examined to provide a structure and cross checking. To covers the model

uncertainty sources which are not incorporated into the generic list, plant-specific features and

modeling approaches are examined. As for model uncertainty sources due to incompleteness,



CHAPTER 4. MODEL UNCERTAINTY ANALYSIS 72

level of details and the scope of analysis, conservative analysis applied in the model is further

screened qualitatively. These form a very comprehensive and detailed list of model uncertainty

sources. And at the time of identification, part of model affected and possible approaches for

characterization are specified. This information can be used further for characterization.

But PRA in nuclear sector is very well developed and applied. Standards are developed as

well. While for operational risk analysis in oil and gasoline industry, it is still new and under

development. This means that we cannot generally follow the way of model uncertainty identi-

fication in nuclear sector.

In Meteorology, fish bone method is used for identifying model uncertainty causes systemat-

ically. This identification including examine the measurement equipment, environment etc.(Ellison

and Williams, 2012)

4.4.3 Model Uncertainty Characterization and Analytical Treatment

The methods for model uncertainty characterization vary quite much according to system being

modelled, the feature of model uncertainty, information or data available etc.

These methods including but not limited to:

• Sensitivity analysis;

• Introduce uncertainty factor (or adjustment factor);

• Introduce subjective model probabilities if multi-model involves;

• Bayesian inference;

• NUSAP(numeral, unit, spread, assessment, and pedigree);

• Uncertainty matrix;

• Construct of a hierarchy of models with increasing detail and compare outputs from these

models;

• "Three-dimension" qualitative characterization method;
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• Estimate model uncertainty from model validation process by comparing with model out-

put and experiment data.

• Etc.

These methods can be classified into three groups "input-driven" methods, "output-driven"

method, hybrid methods which is a combination of "input-driven" and "out-put-driven" meth-

ods.

The "input-driven" method is a "white-box" decomposition approach. It identifies model

uncertainty sources first, and then assess the impact of each model uncertainty source to model

output. Sensitivity analysis, NUSAP(numeral, unit, spread, assessment, and pedigree), uncer-

tainty matrix, construct of a hierarchy of models with increasing detail and compare outputs

from these model, "three-dimension" qualitative characterization method, are in this category.

"Ouput-driven" methods are used to get a result closer to the "truth" . The uncertainty of

model calculations is characterized by correcting model output (from model output only incor-

porating parameter uncertainty) by expert judgement, Bayesian inference, using experiment

data or observations. Introduce uncertainty factor (or adjustment factor); Introduce subjective

model probabilities if multi-model involves, Bayesian inference, estimate model uncertainty

from model validation process by comparing with model output and experiment data belong to

this category.

A further comparison of these methods according to their application fields, resource re-

quirements etc. would be very beneficial and valuable.

4.4.4 Model Uncertainty Reduction

In principle, model uncertainty can be reduced by increasing knowledge about the real world/system

and developing more advance modelling techniques in long term. This means, some model un-

certainty sources exist today will not be a issue in the future.

But in short term, model uncertainty can also be reduced in following ways:

• Choose an appropriate model according to application.
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• Using a consensus model that has publicly available published basis and has been peer

reviewed and widely adopted.

• Bayesian Network, incorporating different models; or using weighted result from different

models.

• Bayesian updating of model output if evidence (observation) or well structured qualitative

information about model applicability exist.

• Model calibration.

• Apply standardized modelling process.

• Apply a sound and holistic model validation procedure.

• Etc.

4.5 Systematic Model Uncertainty Sources Identification– A Pro-

posed Method

As described above, there are different classifications of model uncertainty sources. These clas-

sifications help us identify model uncertainty sources in a certain model. To figure out the issue

regarding model uncertainty, going back to the modelling process to see where model uncer-

tainty contributors are and how they are formed is a solution worth trying. In addition, the track

of such an effort can be seen from some researches.

Here, a method to systematically identify model uncertainty by examining modelling pro-

cess is proposed. Identified model uncertainty sources with an identical identifier can be lo-

cated to resultant model elements with noted potential impact and reasons (legitimate sources

for degree of belief or a matter of choice for convenience/cost), see Table 4.4. Location means

a detailed description about where it is among the model elements. Model structure might be

where most model uncertainty sources locate. It is necessary to document which level (if the

model is hierarchical) or which place the model uncertainty sources locate in the model struc-

ture. If the model has hierarchical levels, then many of these model uncertainty sources can be
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located to different levels of the hierarchical model since the model is a simplified representa-

tion of the system after the whole modelling process. As for the first potential impact of these

can be stated at the same time of identification, which could contribute to the characterization

of these model uncertainty sources. The reason to classify reasons of the occurrence of these

model uncertainty sources is that we can investigate further whether it is possible to reduce

their impact and what effort can be done to achieve it.

For hierarchical models, model uncertainty sources identification can follow the model hi-

erarchy from top level to bottom level. If there are more than one driving-force deciding the

model hierarchies, see Figure 3.5, it is necessary to go through every hierarchy.

First, a fish-bone diagram is used to exam possible reasons which lead to model uncertainty

is presented in Figure 4.2. Please note that fish-bone is just a graphical presentation of the ex-

amination, and it is not the only way of presentation.
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Figure 4.2: Identifying model uncertainty sources from modelling process



CHAPTER 4. MODEL UNCERTAINTY ANALYSIS 77

Description of model uncertainty sources from each modelling steps is:

• Problem defining

Model uncertainty sources in this step are mostly related to the limitation of the model.

They also occur when it comes to specify initial and boundary conditions, and required

level of detail/complexity of model for the given problem.

• Identification of system control factors and mechanism

Model uncertainty sources from this step include three groups: 1. ignored (but identi-

fied) essential system characteristics, 2. incorrectly identified system characteristics, and

3. unknown essential system characteristics, as shown in Figure 3.4. During model uncer-

tainty identification, we would identify all ignored system characteristics, part of them are

essential which should be included in the model but not in reality, part of them are real

unessential for the given problem. Unknown essential system characteristics cannot be

identified, since we do not know their existence. This can be seen as the meta-uncertainty

of analysis. Disagreement among modellers or experts regarding fundamental process

features also lead to model uncertainty.

• Data evaluation

Model uncertainty may come from surrogate input variables due to resource-saving since

we do not have what is meant to be used in the model to present the system feature. This

is a model issue, but it also can be seen as a parameter uncertainty issue. Excluding some

variables may happen in this step but then these end up as ignored essential system char-

acteristics and can be identified above. A conservative analysis might be used to elicit the

required value of some input variables which leads to uncertainty.

• Model construction

Model uncertainty sources from this steps include assumptions, simplifications and mis-

takes which lead to undesired incorrect form, model extrapolation which is not intended

for the issue at hand but developed for other issues and issues related to level of de-

tails/complexity. Issue relating to level of details/complexity of modelling can be iden-
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tified when identifying model uncertainty sources from problem defining, but it is easier

to address some detailed issues here.

• Find and implement solution procedure

Model uncertainty sources from this step are main relevant to numerical solution used to

get the output or intermediate outputs, e.g. approximation, sampling.

• verify solution

Issue in this step which may lead to model uncertainty is carefulness in verifying job. If

all model uncertainty sources are identified from steps above, then model uncertainty

sources from this step are unexpectations.

• validate the model

Issues relevant to model uncertainty in this step exist if only partial validation, or no val-

idation is executed, when it should have been done. It is also relevant to models that are

impossible to validate, such as a risk model which is to model a one-time experiment (ac-

cident).

Then, we can get the resultant table of model uncertainty sources, shown as Table 4.4. But

here is one issue with the unknown essentials of the system (excluded in the table). It means

that we do not know of their existence, which have an important influence on the modelling

target. Then we are also unable to identify them. This is one of the more serious shortcomings

of this identification.

The method itself is simple. But it is tedious work, and requires the analyst to have good

knowledge and experience about the system and risk modelling. It is better that people from

process engineers, modellers and decision makers (model users) join it. Actually, this process

should be seen as part of the modelling process. And every model uncertainty sources can be

identified and documented at the same time of modelling.

Table 4.4: Location of model uncertainty sources
Model uncertainty Source Location Potential impact Reasons Reference & Com-

ments
S 1 Issue description



Chapter 5

Model Uncertainty Analysis in MIRMAP

This chapter includes two parts. The first part is to describe the presently developed generic

model in MIRMAP and general uncertainty concerns of the current model. The second part

is to identify model uncertainty sources of the current generic model by using the proposed

method in Section 4.5 and further possible application of the identification information. Due to

time limitation, the whole process of model uncertainty analysis cannot be done, which is not

the purpose of this master thesis either. Still, the qualitative outcome of identified uncertainty

sources is the first step to get to know and understand what issues exist influencing the model

output accuracy and resultant decisions. Effort on characterization and quantification can be

done later if specific methods are available and have been decided to use.

5.1 MIRMAP

The basic information of MIRMAP have been described at the Introduction Chapter of this

thesis–subsection 1.1.1. Here the following will give a description regarding the model and some

related issues.

5.1.1 Model Description

The model is developed to rank activities, work permits and work orders according to their con-

tribution to risk of a major accident and associated uncertainty. The model gives support for

79
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operational decisions, about the operational work, with aim to achieve the objective of manag-

ing day to day risk. Probability of Major Accident (PMA) and Potential loss of life (PLL) within

associated working period are used as risk measures, which are used further to calculate the risk

contribution from activities, work permit, work order and their ranks.

The core part of the model is a probabilistic hybrid causal model combining Event tree, Fault

tree and BBN to model a defined major accident in one fire section to calculate risk measures.

The simplified graphical presentation is showed in Figure 5.2. The event tree is developed ac-

cording to the accident sequence of delayed ignition, see Figure 5.1. There are 5 barrier func-

tions in this accident sequence. BF5 is not included in the event tree, it means that BF5 is ex-

cluded in the scope of this model. BF2 is divided into three sub barrier functions: Gas detection,

Isolation and Depressurizing, in order to limit the size of the fault tree. Following each end event

of the event tree there is a simplified consequence model only considering human risk to calcu-

late the expected fatality number of each scenario. The expected fatality number is a product of

fatality probability of given scenario and exposed manning.

Figure 5.1: Delayed ignition accident sequence used to build event tree in MIRMAP

Each barrier function is a pivot event in the event tree and is developed using fault tree,

where detailed fault trees are presented in Appendix B. The top event of these fault trees are the

failure of the corresponding barrier function. Basic events of these fault trees are related design

failure, technical failure or activity caused of barrier elements. A list of basic event is presented

in Appendix B.

Activity caused failure probability is modelled by Influence Diagram (BBN) incorporating

human and organizational factors, or using simplified reliability assessment. An example of

BBN diagram is shown in Figure 5.3.

To achieve the dynamic and predictive function of the model, The basic events should be

updated to the predictive period (e.g. a certain day). An activity usually last for few hours. A work

permit usually contains several defined activities and last for 1 day. A work order contains many

work permits and the period varies from several days to several months. Many work permits
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Figure 5.2: Hybrid Casual Model in MIRMAP

including different work orders may have to be executed at the same day.

A hierarchical structure driven by level of details and time of the model with variables is pre-

sented in Figure 5.4. Another hierarchy driven force is the spatial size from fire area to analysis

area (or plant). An analysis area usually contains many fire area.

The outputs of this model include probability of major accidents per day per fire area with

associated uncertainty, potential loss of life per day per fire area with associated uncertainty,

PMA and PLL contribution per activity per day and ranks, PMA and PLL contribution per work

permit and ranks, PMA and PLL contribution per work order over expected execution period

and ranks for fire area and for analysis area, etc.
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Figure 5.3: Influence diagram (BBN) of activity "work on HC system introduces leak" from
MIRMAP method handbook (draft)

5.1.2 Probability as A Degree of Belief

Two levels of probability

In this context, We have two level of probability. Level 1 is the probability of occurrence of a

certain event, which basically means chance. Level 1 can be obtained by combining observed

data and subjective information. It is a Bayesian’s view of probability instead of a Frequentist’s

view of probability.

As said by Bruno de Finetti in the preface of The Theory of Probability, "Probability does not

exist". However, observations are real or of potentially real existence.

In this report, these probabilities are interpreted as degree of belief. The probabilities of ba-

sic events are estimated subjectively or are combining subjective information and observations.

Others are computed according to the causal logic through the fault tree and event tree. Since

probability present uncertainty of occurrence, the uncertainty of probability becomes uncer-

tainty of an uncertainty. Critics rightfully ask: "why not uncertainties of uncertainties of uncer-

tainties?", and so on. A doubt concerning the approach can easily arise when trying to perceive

such a perspective; however, it will be misleading and it deviates focus from the more important

concerns of this topic. The reason is simply that information on the uncertainty of uncertainty

becomes extremely difficult to obtain after just one step, and one will easily get lost or loose

track of what one is dealing with. "Uncertainty concerns possible observations. Therefore we can

be uncertain about a probability only if this probability can be identified with results of possi-

ble observations"(Bedford and Cooke, 2001). In this understanding, we are uncertain about the

chance of occurrence of the defined event, and the uncertainty is presented by probability.
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Figure 5.4: Hierarchical structure of the model with variables

The level 2 probability is called uncertainty, or, uncertainty which is represented by proba-

bility.
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5.1.3 Model Uncertainty Concerns in MIRMAP

There are following concerns regarding model uncertainty in MIRMAP:

1. Approach for uncertainty presentation: qualitative description, semi-qualitative measure,

or probability etc.?

2. Model uncertainty sources related: model uncertainty sources from accident model, ac-

tivity model, logic, excluded risk-increasing factors, common causes, unknown unknowns.

Effort should be devoted from qualitative description to quantification (if possible) of

them.

It is necessary to make sure whether uncertainty would make a significant impact on de-

cisions, to try to find what uncertainty sources would have the major contribution and

to improve our confidence in the model. Uncertainty importance measure might can be

used to find out those uncertainty sources that contribute to output uncertainty or risk

the most.

3. Model uncertainty characterization

4. Uncertainty integration and propagation

5. Uncertainty visualization

6. How to reduce model uncertainty? For those residual model uncertainty sources which

cannot be relieved, then how to cope with it in decision making?

5.2 Model Uncertainty Sources Identification

The proposed method for model uncertainty sources identification described in section 4.5 is

used to identify the model uncertainty sources in MIRMAP model.

The method itself is simple as already mentioned, just examine all issues leading to the

model uncertainty through the whole model building process. But it requires the analysts have

a good knowledge about both the system being modelled and the constructed model. It is better

that modellers, process engineers, decision-makers join.
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When a model uncertainty source is found, give it a unique identifier, and identify loca-

tion, closest potential impact, and reasons (why it ends up a model uncertainty source?) at the

same time. Location means a detailed description about where it is among the model elements.

Model structure might be where most model uncertainty sources locate. It is necessary to docu-

ment which level (if the model is hierarchical) or which place of the model structure uncertainty

sources are located. Closest potential impact means how it is going to influence the model . For

example, introduce a new variable, make a approximation of a certain variable, or change the

logic. Since any model uncertainty sources will have a final impact on the output (more or less),

final impact on the output is not what should be stated in the potential impact here. Instead, the

closest potential impact can be identified and is meaningful for the uncertainty sources charac-

terization.

There are two routes for the identification, one is the modelling process, the other is the

model structure hierarchies. Since there are three model hierarchy driven force: level of details,

time, size. Every hierarchy should be examined.

The identified model uncertainty sources are described and tabulated in Appendix C. Sum-

mary of this identification result is presented in this chapter section.

Identified model uncertainty sources in MIRMAP model are mainly in following groups:

Limitation and scope of analysis, ignored dependence, ignored sub-barrier system or compo-

nents, surrogate values are used as model inputs (e.g industrial average values are used for plant

specific values), simplification of system and assumption in model structure from event tree to

BBN, descritization and approximation in numerical solution.

• Step 1: problem defining associated model uncertainty sources are:

S1.1 The definition of "major accident" which may lead to a ambiguous output value;

S1.2 To model the instantaneous risk for major accident prevention including activities,

only the risk contributors to the occurrence of major accident is included;

S1.3 Emergency plan and evacuation is not considered;

S1.4 One fire area is the spatial boundary of analysing, but how large the fire area is not

clear defined and there are other options;
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S1.5 The validation period of the model is during normal production, instead of process

starting or shutdown;

S1.6 Only fire/explosion from delayed ignition is considered.

Some of these model uncertainty sources are related to the scope of analysis and mod-

elling purpose, some of them lead to limitation of the application of this model.

• Step 2: system controlling factor and mechanism identification associated model uncer-

tainty sources mainly are those important system characteristic which should be included

in the model but ignored because the modellers think they are not important for the quan-

tity of interest. But the total identified ignorance include two groups: those are truly im-

portant which will lead to uncertainty in modelled quantity of interest, and those are not

truly important which are not model uncertainty sources.

A list of model uncertainty sources associated with this step is:

S2.1 Cold vent does not give credit;

S2.2 Failure of PSD control unit is ignored;

S2.3 ESD push-button may initiate gas detection and fire detection at the same time. We

ignore the the fact the fire detection will be activated;

S2.4 PSVs are not credited as a mean of preventing escalation;

S2.5 Depressurisation are not credited to lower the failure probability of escalation of fire

to other equipment and segments;

S2.6 The possibility of a gas leak from one fire area to another is not considered;

S2.7 Common utility failure is not considered;

S2.8 Ignored (but known to reduce the number of RIFs and burden of data collection) RIFs

in influence diagram (BBN);

S2.9 RIFs: competence of lifting guider, working environment (lighting, lifting routine

etc.), weight of lifting object are not included,etc.

S2.10 Control Unit of Fire detection, ESD, PSD is reliable, failure of them is not taken into

account;
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S2.11 Dropped Object may also cause immediate ignition, which means that this part of

statistic data should be excluded to calculate average leakage probability due to this activ-

ity;

S2.12 ESD signal from center control room is ignored, only field control is taken into ac-

count;

S2.13 Ignore the fact that many activities just last for few hours instead of the whole day;

S2.14 (Ignored dependence) Time dependence between sub-barrier systems among the

same barrier function is not considered;

S2.15 (Ignored dependence) system dependence among time sequence is ignored when

model risk profile and risk contribution from work orders.

In this case the ignorance can be concluded into several groups: 1) Ignored dependence

between sub-barrier functions; 2) Ignored uncritical sub-barrier systems or sub-barrier

system components for some certain barrier functions; 3) Ignored RIFs in BBN model for

activities; 4) Ignored dependence of system among different days; 5) Ignored time depen-

dence between different sub-barrier system in the same barrier function; 6) Ignore the

fact that many activities just last for few hours instead of the whole day.

• Step 3: data evaluation associated with model uncertainty sources are:

S3.1 (Surrogate variable is used to calculate average leakage probability from activities) To

calculate the average leakage probability from activities, "industrial average value is used

as a parameter for the calculation instead of plant specific average value;

S3.2 (Surrogate variable is used to calculate average ignition(introduce ignition source)

probability from activities). To calculate the average ignition probability from activities,

"industrial average value is used as a parameter for the calculation instead of plant specific

average value;

S3.3 (Simplification) Default value of fatality probability is used;

S3.4 (Simplification) Default value of fatality probability is relevant to fire size (usually

related to leakage size);
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S3.5 PSV/PSD (Process safety valve/Process Shutdown) demand is a dynamic process fea-

ture, in this model, but a average constant value is used in the model instead.

These issues are all relevant to the parameter settings for resources saving. Industrial aver-

age values plant specific features; Default values are used for event specific features; Static

value is used for dynamic feature.

• Step 4: model construction associated

There are 41 identified model uncertainty sources which are associated with the model

construction. The identification work was done according to the hierarchy following the

hierarchy driven direction (from event tree to BBN, from short term to long term, from

fire area to analysis area). Model uncertainty sources are located at different place of the

model. Since the MIRMAP model is a hierarchical model, the output of lower level (sub-

models) is the input of the upper level, the closest potential impact of the model uncer-

tainty source in lower level is the resultant uncertainty of input variable in upper level.

Examples of model uncertainty sources are:

S4.3 (Event Tree)(Simplification) Failure influence of barrier function due to the event

development variability is presented by introducing a basic event. This basic event is a

thought of failure probability of barrier function even the hardware barrier function suc-

cess.

S4.5 (Consequence Model)(Simplification) Exposed Number of People for uncontrolled

fire /explosion is estimated as 2/4 times of people within the area.

S4.7 (BF2.1)(Assumption) Leakage can be manually detected as long as there is operator

in area.

S4.16 (BF3)(Simplification) Gas cloud formulation simplified as part of failure of dispers-

ing gas function (intermediate event) .

S4.33 (BBN) Assumption 1 for conditional probability elicitation(If BBN is used): The

longer distance between parent node state and child node state, the less probable that

the child node will stay at that state for the given parent node state.

S4.40 (Assumption) There is no HC from neighbouring fire area that would provide fuel.
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S4.41 Knockout drum is shared by several area, the activity on knockout drum is a com-

mon cause failure, but not well explained in this model.

• Step 5: numerical solution associated model uncertainty sources are:

S5.1 (approximation) The failure probability of top event is calculated using approxima-

tion formula not accurate computation: using Upper Bound Approximation (based on the

fault tree’s minimal cut sets;

S5.2 Discretization of failure probability of basic event type A;

S5.3 Ignored parameter uncertainty of basic event type B and type C;

S5.4 Discretization of RIFs which have a continuous property.

5.3 Application of the Identification Information

The identification information can be used for further model uncertainty characterization. It

can contribute to following further work:

1. Screen important model uncertainty sources. Not every model uncertainty source has

critical contribution to the model output or would influence the decision. The impor-

tance of model uncertainty sources is eventually depended on how much it will influence

the model output. The influence can be evaluated from two criteria: the importance of the

location (or closest impacted variable) of model uncertainty sources for the model output

and the how great the model uncertainty source will change location (or closest impacted

variable). If the location is not important for the model output, then the importance of

this model uncertainty source will obviously be decreased. Screen important model un-

certainty sources will help to allocate the resources of model uncertainty reduction and

also give input information to decision making.

2. Refine the model where possible which can reduce model uncertainty and uncertainty

of model output. Location and reason of each model uncertainty source is described. It

helps to screen what can be reduced and what cannot. And what effort should be devoted
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for future development. As said by Devooght (1998), the choice of a predictive model is a

decision tied to a loss function and a cost of using the model.

3. Look for characterization method for each model uncertainty source, since the location

and closest potential impact are described for each model uncertainty source where pos-

sible.

4. Model uncertainty quantification and propagation. Even though the accident especially

major accident is one-time experiment. And the risk model almost cannot be validated

by observations or experiment data. But many model uncertainty are located at a very

lower level of the hierarchical model (e.g. BBN, and fault tree). Observations of these

lower levels (or called sub-models) have the chance being available. This can help the

quantification of the low level located model uncertainty sources. For model uncertainty

propagation, as can be seen that MIRMAP model is a hierarchical model and output from

lower level is the input of upper level, then the impact of each model uncertainty source

which is located at lower level can be treated as parameter uncertainty of upper level. In

this way, model uncertainty can be transferred to parameter uncertainty and propagated

combining original parameter uncertainty to the final model output.

5. Understand the limitation of model application;

6. Understand the possible discrepancy of model output with real observation due to limited

scope of modelling (e.g.predicted PLL value and observed PLL value if a major accident

happens).



Chapter 6

Summary and Recommendations for

Further Work

This chapter will first sum up the work done in this thesis, before presenting the concluding

result. This is then followed by a discussion of the findings and limitations of this thesis work.

The last part is recommendations for future work on model uncertainty analysis.

6.1 Summary and Conclusions

A model is a simplified representation of the real world. Model uncertainty is a common issue

in predictive models, discussions can be found in many subjects. Model uncertainty is a branch

of uncertainty analysis, but in reality uncertainty analysis mainly focuses on parameter uncer-

tainty. To meet the objective of analysing model uncertainty in operational risk analysis, where

MIRMAP is the background project of this topic, the following has been done in this thesis:

First, an overview of uncertainty is established by reviewing different definitions of uncer-

tainty in various applications, three dimensions, classifications, representations of uncertainty

and relations between uncertainty and risk for decision making. Definitions of uncertainty

and model uncertainty which apply in this thesis are given to avoid ambiguity and limit topic

range. This part of work is described in chapter 2. Then, a general and systematic modelling

process is described to see how model uncertainty can be analyzed using a systematic model

development process as a starting point. Proposed probabilistic models and relevant mod-

91
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elling techniques, and modelling process for operational risk analysis are described in chap-

ter 3. This part contributes to form the main concept of analysing model uncertainty in this

thesis. Afterwards, in chapter 4, methods to deal with model uncertainty are identified and

described by reviewing relevant application fields, including probabilistic risk analysis used in

the Nuclear Power Sector, Environmental modelling, and Computational Modelling and Sim-

ulation. Methods about model uncertainty resources identification, characterization and ana-

lytical treatment, and model uncertainty reduction are simply summarised. Besides, A method

for model uncertainty sources identification is proposed at the end of Chapter 4. A fish bone

diagram showing model uncertainty sources which might occur at each modelling step is pre-

sented. This method is based on the systematic modelling process described in Chapter 3. Re-

sultantly chapter 5 is about applying methods of model uncertainty analysis in the MIRMAP

model. A proposed method for model uncertainty identification is applied to identify model

uncertainty sources in the MIRMAP model. Further applications of the identification informa-

tion are also described.

Main conclusions are made at the conceptual, methodological and application levels:

• At conceptual level

There are different understandings and definitions regarding uncertainty and model un-

certainty in various fields. Own definitions of these terms must be clearly stated and

meaningful for the problem at hand.

"Model Uncertainty" is sometimes also used about "Model Output Uncertainty" which in

some published works is an integrated result from all kinds of uncertainty. Conceptual

uncertainty, model error, model structure uncertainty, modelling uncertainty are used in

some papers. Being cautious is necessary when dealing with these terms. A uniformation

of these terms can improve scientific communication and the application of outcomes.

• At methodological level

There are different characterization methods for model uncertainty. The methods have

been divided into three groups in this thesis; "Input-Driven", "Output-Driven", and Hy-

brid. "Input-driven" methods provide a better understanding of the impact of identified
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model uncertainty sources. They are mainly qualitative methods. "Output-driven" meth-

ods provide a "closer" result to "truth" of the model outputs.

Model uncertainty analysis from a systematic model development process is a practical

concept since the formulation of model uncertainty is mainly relevant during model de-

velopment.

Model uncertainty can also be reduced by applying a standardized modelling process and

a sound and holistic model validation procedure.

The proposed method for model uncertainty sources identification is a systematic, easy

and applicable method and it is verified by application in MIRMAP model. It is a mod-

elling process-based approach. Model uncertainty sources can be identified by going

through the standardized modelling process from problem defining to validation and model

hierarchies (if the model is a hierarchical model). This approach also locates model un-

certainty sources at the model elements and structure. This information can further be

used in model uncertainty source impact assessment, uncertainty integration and propa-

gation. Causes of model uncertainty issue also identified, which can contribute to model

refining. It is very suitable for big and hierarchical models and further improvement can

be made.

• At application level regarding MIRMAP

Identified model uncertainty sources in MIRMAP model are mainly in following groups:

Limitation and scope of analysis, ignored dependence, ignored sub-barrier system or com-

ponents, surrogate values are used as model inputs (e.g industrial average values are used

for plant specific values), simplification of system and assumption in model structure

from event tree to BBN, descritization and approximation in numerical solution.

Different model uncertainty sources have varied-degree impact on the model outputs.

Characterization methods for these model uncertainty sources should vary according to

the importance, location and cause of these model uncertainty sources.
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6.2 Discussion

Uncertainty is defined as a "state-of-art" variation of the quantity of interest, stemming from

both aleatory and epistemic property, in the context of this thesis. Whether this definition

stands was not systematically examined. Argument should be made regarding this definition.

Scenario uncertainty in exposure assessment is excluded in the scope of model uncertainty

in this thesis since it is treated as an application issue. This can be reviewed.

Regarding the application of the proposed method of model uncertainty identification, there

might be that some model uncertainty sources are ignored or unidentified, due to the limitation

of experience and knowledge of the analyst.

"Unknown unknowns" cannot be identified by the proposed method. The identification of

"unknown unknowns" may mainly rely on the development of techniques, collection of data,

and by increasing information about the system and accident occurrence.

The identified sources of model uncertainty in MIRMAP are of generic nature, i.e. not for a

specific plant or area. As a consequence, other model uncertainty sources may come up for a

specified plant, or area, due to its distinct properties. Such a part of model uncertainty sources

should be examined and characterized before application of model in decision support.

Only the model uncertainty resources identification phase is conducted, regarding the model

uncertainty analysis in MIRMAP, due to the time limitation. Further model uncertainty sources

screening, characterization and model uncertainty reduction need to be done later.

6.3 Recommendations for Further Work

The recommendations for future work are classified into conceptual level, methodological level

and application level:

• At conceptual level

1) Establish operational definitions about uncertainty and model uncertainty.

2) Compare uncertainty representation approaches according to their availability, appli-

cability and limitations etc.

3) Analyse how uncertainty should be used in decision-making?
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• At methodological level

1) Develop systematic uncertainty analysis approach which can provide comprehensive

understanding and support for decision makers. 2) Compare of qualitative uncertainty

analysis and quantitative uncertainty analysis.

3) A further comparison of these methods according to their application fields, resource

requirements etc. would be very beneficial and valuable. 4) Develop method for identifi-

cation, description, prediction of the effects of model uncertainty on the analysis outputs.

5) Integrate those significant sources of model uncertainty into probabilistic modelling

exercise.

6) How to quantify model uncertainty sources if no field data are available.

7) How to reduce model uncertainty?

8) Develop method to identify the relative magnitudes of the uncertainties associated with

data and model formulation. Such a comparison is useful in focusing resources where it

is most appropriate (e.g., filling data gaps versus refining a model).

9) Develop method to assess the magnitude of the different sources of uncertainty while

different representation approaches are used. For example, if qualitative representation

is used for model uncertainty, while quantitative representation is used for parameter un-

certainty, how can we compare them?

10) Establish method to quantify and balance the uncertainty trade-off between param-

eter uncertainty (input) and model structure uncertainty (complexity of model) to get an

optimal model.

11) Establish practical and systematical procedure to build comprehensive hierarchical

models for the systematic evaluation of the simplified models.

12) Improve the current methods for model uncertainty treatment to make them credible

and universally accepted.

13) If the model contains sub-models at different level, then how integrate model uncer-

tainty from different levels (parts) of model to the overall output?
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14) It is a challenge to use various subjective information and experimental data (with

different credibility and applicability) to assess the uncertainty about the internal models’

performance (sub-models and correlations).

15) How to account for model uncertainty from "unknown unknowns"?

• At application level regarding MIRMAP

1) Involve more experienced modellers, stakeholders, and process engineering to review

identified model uncertainty sources.

2) Screen important model uncertainty sources.

3) Refine the model where possible which can reduce model uncertainty and uncertainty

of model output.

4) Look for characterization method for each model uncertainty source.

5) Model uncertainty quantification and propagation at lower level of the hierarchical

model(e.g. BBN, and fault tree).

6) Investigate how model uncertainty information can be used in ranking work orders?

7) Compare different uncertainty representation method to see which is the best for model

uncertainty representation.



Appendix A

Acronyms

BBN Bayesian Belief Network

BF Barrier Function

ESD Emergency Shutdown

FTA Fault tree analysis

MIRMAP "Modelling Instantaneous Risk for Major Accident Prevention" Project

QRA Quantitative risk assessment

PRA Probabilistic Risk Analysis

PSA Probabilistic Safety Analysis

IPCC Intergovernmental Panel on Climate Change

PMA Probability of Major Accident according to defined "Major Accident" in MIRMAP

PLL Potential Loss of Life

PSD Process Shutdown

RIF Risk Influence Factor
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Appendix B

MIRMAP Model Information

This is an example of an Appendix. You can write an Appendix in the same way as a chapter,

with sections, subsections, and so on.

B.1 MIRMAP generic model construction framework

Figure B.1 illustrates the MIRMAP generic model construction, this corresponds step 4: Model

construction in the systematic model developing process.

Figure B.1: MIRMAP generic model construction framework
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Table B.1: Modelled Barrier Functions in the MIRMAP generic model
Barrier Function Barrier sub-function Barrier System

BF1: Prevent Leakage

Containment (design)
Limit number of leakage points
External protection from falling loads
Technical integrity

Process safety
Process shutdown
Pressure relief protection
Correct operation and maintenance

BF2: Control/ Stop
Leakage

Detect Leak
Gas detection
Inspections

Isolate process
Process shutdown
Emergency shutdown

Depressurize process
Flare and blowdown
Cold venting

BF3: Prevent Ignition

Control of ignition
sources

Ignition source isolation
Area/zone classification
Hot surface temperature control

Control of ongoing
work (external ignition
sources)

Hot work control
Excavation control
Blasting control
Car Traffic control

Prevent gas cloud
build up

Ventilation

BF4: Prevent Escalation

Detect fire Fire detection

Fire fighting
Active fire protection
Passive fire protection

Prevent fire spreading
Fire wall
HVAC (fire dampers)

Control fire duration
Open drain
HVAC (ventilation)

B.2 List of Barrier Functions in MIRMAP Generic Model

A barrier function (BF) is the task or the role of a barrier – specified generally. On the other

hand, barrier system and elements refer to the concrete technical, operational or organizational

measures which together help realize a particular barrier function. “Barrier Functions” provide

protect against uncontrolled progression of the event sequence. Each of the barrier functions

are further broken down into subfunctions and their relevant barrier systems, see Table B.1
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B.3 Fault Trees in MIRMAP Generic Model

Information about Fault Trees is shown by following figures:

Figure B.2 is the Fault Tree of leakage prevention

Figure B.3 is the Fault Tree of gas detection

Figure B.5 is the Fault Tree of leakage prevention and isolation. Detail isolation Fault Tree is

shown in Figure B.4.

Figure B.6 is the Fault Tree of depressurizing

Figure B.7 is the Fault Tree of ignition prevention (A)

Figure B.8 is the Fault Tree of ignition prevention (B)

Figure B.9 is the Fault Tree of ignition prevention (C)

Figure B.10 is the Fault Tree of ignition prevention (D)

Figure B.15 is the Fault Tree of heat load reduction through extinguishing fire. This top event

of this Fault Tree is the intermediate event in Fault Trees for escalation.

Figure B.16 is the Fault Tree of ignition(A) and escalation (A). Detail Fault Tree of escala-

tion(A) is shown in Figure B.11 .

Figure B.17 is the Fault Tree of ignition(B) and escalation (B). Detail Fault Tree of escala-

tion(B) is shown in Figure B.12 .

Figure B.18 is the Fault Tree of ignition(C) and escalation (C). Detail Fault Tree of escala-

tion(C) is shown in Figure B.13 .

Figure B.19 is the Fault Tree of ignition(D) and escalation (D). Detail Fault Tree of escala-

tion(D) is shown in Figure B.14

B.4 List of defined representative activity set in MIRMAP Generic

Model

In daily operations, barrier impairments either exist alongside ongoing work, are caused as a

part of the work or represents the work itself. presents a complete representative activity set for

the barrier functions. These activities either:



APPENDIX B. MIRMAP MODEL INFORMATION 101

I. Represents the introduction of a hazard which can compromise the successful function-

ing of a barrier function, or

II. Directly weaken/ impair a barrier system or element.

Table B.2, B.3, B.4 show representative activity set for an oil and gas facility.

B.5 RIFs and Their Importance for Each Defined Activity

Figure B.20, Figure B.21 are modelled RIFs and example importance for each defined activity.

These RIFs for each activity are modelled by influence diagram (BBN) in a similar way as showed

in Figure 5.3. In the table, for each activity, only RIFs with corresponding numbers (1, or 3, or 5)

are considered in the BBN model. There are three scales of importance:High, Medium, Low. In

the table, 5 means "High", 3 means "Medium", 1 means "Low".
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Table B.2: Representative Type A1 activity set for an oil and gas facility
Ref. Type A1 - Activities that represent a hazard/ involve the introduction of a hazard BF1 BF2 BF3 BF4
1 Work on hydrocarbon

equipment - isolation
Involves leak test isolation, purging, bleeding, verification, approval and
cross check for zero-energy.

X

2 Work on hydrocarbon
equipment - execution

Involves the actual work on the HC segment, installation of bolts, flanges
and respective verification.

X

3 Work on hydrocarbon
equipment - reinstatement

Involves inert gas test, leak test, isolation removal and final reinstate-
ment of the HC process

X

4 Work on hydrocarbon
equipment – normal opera-
tions

Relates to generic work on HC systems. Can directly result in a breach
of containment or introduce a latent error during the work activity. E.g.
Washing of tank, routine maintenance on pumps etc.

X

5 Critical lifts Large lifts may damage the structural integrity of the platform or equip-
ment through either falling or swinging loads.

X

6 Hot Work – Class A Hot work class A includes work with equipment and tools that constitute
an effective ignition source and which, during normal usage, can ignite
an explosive atmosphere and/or solid substances or liquids

X

7 Hot Work – Class B Hot work class B includes work that constitutes a potential ignition
source and which is not defined as hot work class A.

X

8 Excavation Potential external ignition source. X
9 Blasting Potential external ignition source. X
10 Car Traffic Potential external ignition source. X
11 Static electric sparks re-

leased from normal activi-
ties

Activities such as fuelling, filling of tanks, vessels etc., and the use of high
velocity fluids (sprays or jets), shot blasting, steam cleaning etc. can in-
troduce static electricity sparks which can prove as a potential source of
ignition.

X

12 Temporary electrical equip-
ment in the area

Temporary elec. equipment may introduce a potential ignition source.
They must be approved for use in a particular zone and shutdown
philosophies ascertained.

X

13 Other temporary equipment
in area (location etc., e.g.
scaffolding)

Arrangement of equipment (in this case scaffolding) in an area, espe-
cially near ventilation openings can have a major influence on peak
overpressures expected in an area. Equipment must be located so as
to not increase turbulence, block explosion ventilation openings and
thereby increase explosion loads. Further, scaffolding can also block line
detectors and represent an increased explosion load in the area.

X X
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Table B.3: Representative Type A2 activity set for an oil and gas facility
Ref. Type A2 – Activities that represent a deviation/ impairment in a barrier element/system (i.e. work

related to. . . )
BF1 BF2 BF3 BF4

1 Process Shutdown (PSD) –
(transmitters, control logic,
IO-cards)

Process shutdown valves stop the process and are located as close to the
HC vessel as possible so as to limit the number of leak points.

X

2 Process Shutdown (PSD) –
(valves)

As above. X X

3 Pressure Safety Valve (PSV) Pressure safety valves provide pressure release capability for critical pro-
cess vessels/ equipment.

X

4 Fire and gas (F&G) – (control
logic, IO-cards)

Fire detection detects fire by type (jet, flame, heat, smoke etc.) and initi-
ates suitable control actions through the control system. Gas detection
monitors for the presence of flammable gas, alerts personnel and en-
sures auto/manual action to prevent additional release, fire and explo-
sion.

X X

5 Gas Detectors As above. X
6 Emergency Shutdown (ESD)

– (pushbuttons, control
logic, IO-card, valves)

ESD valves isolate and sectionalize the process in a fast and reliable
manner to limit the amount of HC released during a leakage.

X

7 Flare system This includes the flare and flare lines (either for hot venting or cold vent-
ing of HC). Both are performed to prevent ignition and creation of unac-
ceptable gas clouds). It also includes the knock out drums (for storage
of excess HC).

X

8 Knock-out drum As above. X
9 Depressurization – (push-

buttons, control logic, IO-
cards, valves)

Blowdown is used to reduce pressure in process segments and thereby
the risk of rupture and escalation. I.e. reduce the leak rate, avoid leakage
during a process upset and route gases from vent lines safely.

X

10 Ignition source control –
(pushbuttons, control logic,
IO-cards, circuit breakers)

Ignition source isolation ensures fast and proper isolation/shut down of
all electrical equipment

X

12 Ventilation and related
HVAC systems

Ventilation serves the purpose of diluting gas concentration, reducing
the size of flammable gas clouds and preventing the ingress of smoke
and gas etc.

X
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Continue

Table B.4: Representative Type A2 activity set for an oil and gas facility
Ref. Type A2 – Activities that represent a deviation/ impairment in a barrier element/system (i.e. work

related to. . . )
BF1 BF2 BF3 BF4

13 Open Drain Control of spills is achieved through the open drain system. It is a1 mea-
sure for containment and disposal of excess FW - limits the spread of a
spill and routes it away to avoid escalation.

X

14 Fire Detectors (including
manual call points)

As in Item 4. X

16 Passive fire protection (PFP) PFP ensures that relevant structures and equipment have adequate fire
resistance, integrity and insulation properties. Removal of PFP hampers
these properties and requires additional fire water in the case of an ig-
nited leak.

X

17 Fire water system – (Pumps,
Fire water main etc.)

FW supply system supplies FW to the various parts of the facility. It must
have appropriate capacity.

X

18 Fire water – (deluge, water
mist, other release mech.)

These include automatic fire fighting release mechanisms such as del-
uge, water canons, sprinklers, water mist release systems etc.

X

19 Fire water – (hydrants, water
canons)

These include all manual or semi-automatic firefighting equipment. X

20 Fire doors Doors or compartments with fire resistance ratings to reduce the spread
of fire or smoke between areas and to enable safe egress from an area.

X

21 Explosion walls Explosion walls disengage from a structure on explosion. This reduces
the impact of an explosion by relieving internal pressure and thereby
limiting risk of structure collapse and further loss of life.

X

22 Fire dampers – (control
logic, IO-card etc.)

As in Item 12. X
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MIRMAP - QRA based activity FT (1).bool 29.mai.2016 - 12:48:55

Page 1 of 5580

\1 Prevent Release

1 Leak Prevention
U(10h)=?
Uavg=?

Release of HC

C: Release from 
equipment layout 

and design

Evt1
constant 1E-4 0
U(10h)=?
Uavg=?

1

B: Release from 
equipment wearing

 from age

Evt2
constant 1E-4 0
U(10h)=?
Uavg=?

2

And2
U(10h)=?
Uavg=?

Release from 
external stress on 

HC equipment

C: No/weak exo-
skeletal protection 

on equipment

Evt3
constant 1E-4 0
U(10h)=?
Uavg=?

3

xA: Dropped 
objects cause HC 

leak

Evt4
constant 2E-7 0
U(10h)=?
Uavg=?

4

And3
U(10h)=?
Uavg=?

Release from 
breaches of normal

 operating 
evelopes

Or4
U(10h)=?
Uavg=?

PSVs fail to 
operate

Or5
U(10h)=?
Uavg=?

PSD system fail to 
function

A: (PSV) impaired/ 
deviation

Evt5
constant 0 0
U(10h)=?
Uavg=?

5

B: (PSV) technical 
degredation

Evt6
constant 1E-2 0
U(10h)=?
Uavg=?

6

A: (PSD) logic 
solver impairment/ 

deviation

Evt7
constant 0 0
U(10h)=?
Uavg=?

7

Or6
U(10h)=?
Uavg=?

Transmitters fail to 
generate signal

Or7
U(10h)=?
Uavg=?

PSDVs fail to 
shutdown process

A: (PSD 
Transmitters) 
Impairment/ 

deviation

Evt8
constant 0 0
U(10h)=?
Uavg=?

8

B: (PSD 
transmitters) 

Technical 
degradation

Evt9
constant 1E-3 0
U(10h)=?
Uavg=?

9

A: (PSDVs) 
impaired

Evt10
constant 0 0
U(10h)=?
Uavg=?

10

B: (PSDVs) 
technical 

degredation

Evt11
constant 1E-2 0
U(10h)=?
Uavg=?

11

Or8
U(10h)=?
Uavg=?

Release from 
manual 

intervention on HC 
systems

xA: Leak 
introduced during 

intervention

Evt12
constant 0 0
U(10h)=?
Uavg=?

12

xA: Leak 
introduced during 

isolation

Evt13
constant 0 0
U(10h)=?
Uavg=?

13

xA: Leak 
introduced during 
normal operation 
on HC systems

Evt14
constant 3E-5 0
U(10h)=?
Uavg=?

14

xA: Leak 
introduced during 

reinstatement

Evt15
constant 0 0
U(10h)=?
Uavg=?

15

Or9
U(10h)=?
Uavg=?

Leak introduced 
during work on 
pressurized HC 

systems

Or273
U(10h)=?
Uavg=?

PSD control loop 
logic 

B: (PSD) logic 
solver technical 

degradation

Evt92
constant 1E-3 0
U(10h)=?
Uavg=?

92

B: PSD/PSV 
demand

Evt104
constant 1E-2 0
U(10h)=?
Uavg=?

104

B: Migrated gas 
release from 
external area

Evt112
constant 1E-4 0
U(10h)=?
Uavg=?

112

Figure B.2: Leakage Prevention
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MIRMAP - QRA based activity FT (1).bool 29.mai.2016 - 12:48:55

Page 2 of 5580

\2 Gas Detection

Or10
U(10h)=?
Uavg=?

Automatic 
detection fails

Or11
U(10h)=?
Uavg=?

Failure in gas 
detector

B:(Gas detector) 
Technical 

degradation

Evt16
constant 1E-3 0
U(10h)=?
Uavg=?

16

A:(Gas detector) 
Impaired/deviation

Evt17
constant 0 0
U(10h)=?
Uavg=?

17

C:(Gas detector) 
coverage 
deficiency

Evt18
constant 1E-4 0
U(10h)=?
Uavg=?

18

MO(Manual gas 
detection) No 

operator in area

Evt19
constant 5E-1 0
U(10h)=?
Uavg=?

19

2 GasDetection
U(10h)=?
Uavg=?

Failure in gas 
detection

Or13
U(10h)=?
Uavg=?

Manual gas 
detection fails

A: (Gas Detection) 
logic solver 
impairment/ 

deviation

Evt20
constant 0 0
U(10h)=?
Uavg=?

20

This refers to only bypass/blockings etc in control logic/HMI/IO cards. 
I do not envisage this refering to the control unit itself

Or270
U(10h)=?
Uavg=?

Fail to send ESD 
signal through field

 pushbutton

ESD Control system
 deviation

Or63
U(10h)=?
Uavg=?
4 Isolation

A: (ESD PB) 
impairment/ 

deviation

Evt84
constant 0 0
U(10h)=?
Uavg=?

84

B: (ESD PB) 
technical 

degradation

Evt85
constant 1E-3 0
U(10h)=?
Uavg=?

85

Or275
U(10h)=?
Uavg=?

Gas detection 
logic solver loop

B: (Gas Detection) 
logic solver 
technical 

degradation

Evt94
constant 1E-3 0
U(10h)=?
Uavg=?

94

Figure B.3: Gas Detection
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MIRMAP - QRA based activity FT (1).bool 29.mai.2016 - 12:48:55

Page 7 of 5580

\4 Isolation

Do not attribute any consideration to manual activation of isolation
Assumed that the successful gas detection (manual or autoamtic) immediately triggers isolation

3 Isolation
U(10h)=?
Uavg=?

Fail to isolate 
process segment

Or63
U(10h)=?
Uavg=?

ESD Control system
 deviation

Or64
U(10h)=?
Uavg=?

ESDVs deviation

A: (ESDVs) 
impaired/ deviation

Evt32
constant 0 0
U(10h)=?
Uavg=?

32

B: (ESDVs) 
Technical 

degradation

Evt33
constant 1E-2 0
U(10h)=?
Uavg=?

33

A: (ESD) logic 
solver loop 
impairment/ 

deviation

Evt34
constant 0 0
U(10h)=?
Uavg=?

34

Or263
U(10h)=?
Uavg=?

Failure on ESD

B: (ESD) logic 
solver loop 
technical 

degradation

Evt96
constant 1E-3 0
U(10h)=?
Uavg=?

96

PSDVs fail to 
shutdown process

Or7
U(10h)=?
Uavg=?
1 Prevent Release

PSD control loop 
logic 

Or273
U(10h)=?
Uavg=?
1 Prevent Release

Or281
U(10h)=?
Uavg=?

Failure on PSD
C: Unable to 

completely isolate 
HC segment

Evt110
constant 0 0
U(10h)=?
Uavg=?

110

Figure B.4: Isolation
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MIRMAP - QRA based activity FT (1).bool 29.mai.2016 - 12:48:55

Page 15 of 5580

\99 Leak and Isolation (For Excel calc)

99 Prevent leak and Isolation
U(10h)=6.13E-6
Uavg=6.13E-6

Fail to prevent leak
 and Isolation

Release of HC

1 Leak Prevention
U(10h)=?
Uavg=?
1 Prevent Release

Fail to isolate 
process segment

3 Isolation
U(10h)=?
Uavg=?
4 Isolation

Figure B.5: Leakage Prevention and Isolation
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MIRMAP - QRA based activity FT (1).bool 29.mai.2016 - 12:48:55

Page 8 of 5580

\5 Depressurization

4 Depressurization
U(10h)=1.3E-2
Uavg=1.3E-2

Fail to depressurize 
process segment

Or133
U(10h)=?
Uavg=?

Control system 
deviation

A: (BDVs) impaired/ 
Deviation

Evt35
constant 0 0
U(10h)=?
Uavg=?

35

B: (BDVs) Technical 
degradation

Evt36
constant 1E-2 0
U(10h)=?
Uavg=?

36

Or166
U(10h)=?
Uavg=?

Flare system issues

Or167
U(10h)=?
Uavg=?

Blow Down Valves

Or168
U(10h)=?
Uavg=?

Flare and Flare lines

A: (Flare) 
impairment/deviation

Evt37
constant 0 0
U(10h)=?
Uavg=?

37

B: (Flare) technical 
degradation

Evt38
constant 1E-3 0
U(10h)=?
Uavg=?

38

A: (Depress) logic 
solver impairment/ 

deviation

Evt39
constant 0 0
U(10h)=?
Uavg=?

39

A: (Knockout drum) 
impairment/ 

deviation

Evt87
constant 0 0
U(10h)=?
Uavg=?

87

B: (Depress) logic 
solver technical 

degradation

Evt97
constant 1E-3 0
U(10h)=?
Uavg=?

97

Or285
U(10h)=?
Uavg=?

Knockout drum

B: (Knockout drum) 
technical 

degradation

Evt102
constant 1E-3 0
U(10h)=?
Uavg=?

102

C: Unable to 
completely 

depressurize 
segment

Evt109
constant 0 0
U(10h)=?
Uavg=?

109

Figure B.6: Depressurizing
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Page 3 of 5580

\3 Prevent Ignition (A)

5 Prevent Ign A
U(10h)=7.53E-1
Uavg=7.53E-1

Fail to prevent 
ignition A

A: Electrical 
equipment sparking

 in the area

Evt21
constant 5E-2 0
U(10h)=?
Uavg=?

21

Or15
U(10h)=?
Uavg=?

Ignition source 
active (A)

Or16
U(10h)=?
Uavg=?

Fail to 
dilute/disperse 

leaked HC 

Or17
U(10h)=?
Uavg=?

Deficiency in 
HVAC

Or18
U(10h)=?
Uavg=?

Fire dampers in 
closed poisition

Or19
U(10h)=?
Uavg=?

Ventilation not 
operational/ 

adequate

A: (Dampers) 
impaired/ deviation

Evt22
constant 0 0
U(10h)=?
Uavg=?

22

B: (Dampers) 
technical 

degradation

Evt23
constant 1E-2 0
U(10h)=?
Uavg=?

23

A:  (Ventilation) 
impairment

Evt24
constant 0 0
U(10h)=?
Uavg=?

24

B: (Ventilation) 
technical 

degradation

Evt25
constant 1E-3 0
U(10h)=?
Uavg=?

25

If HC intensive area - set close to 1 as gas detection failed 
and no way to know gas is present

Or60
U(10h)=?
Uavg=?

Activities introduce
 an open ignition 

source

Or61
U(10h)=?
Uavg=?

Electrical 
equipment in the 

area

xA: (Vehicle traffic)
 open ign src

Evt26
constant 1.5E-1 0
U(10h)=?
Uavg=?

26

xA: Mechanically 
generated sparks 
through certain 

activities

Evt27
constant 1E-1 0
U(10h)=?
Uavg=?

27

xA: (Excavation) 
open ign src

Evt28
constant 3E-1 0
U(10h)=?
Uavg=?

28

xA: (Hot Work A) 
open ign src

Evt29
constant 2E-1 0
U(10h)=?
Uavg=?

29

B: 
Unapproved/Old/ 

Degraded 
Electrical 

Evt30
constant 5E-2 0
U(10h)=?
Uavg=?

30

BE probability dependant on type of segment 
(equipment, flanges, joints etc.)

C: Ventilation 
Capability to 

handle leak (A)

Evt31
constant 7.5E-1 0
U(10h)=?
Uavg=?

31

Open drain to be included also?
I have decided to limit our focus on HC gas leaks for now 

(to simplify on model size etc.). We can look how to 
include liquid leaks once this hopefully works ?

Equipment with high surface temperature to be included as ignition source?
Activity: Removal of insulating materials for heat protection

 
NJE - Wasn?t this removed earlier due to the fact of it being not relevant for Kårstø?

Dipersion of HC leak should be a function of three conditions:
- Indoors/outdoors leak

- HVAC capability (given size of leak)
- HVAC function

xA: (Blasting) open 
ign src

Evt86
constant 1 0
U(10h)=?
Uavg=?

86

Or387
U(10h)=?
Uavg=?

Fail to disperse gas

Or388
U(10h)=?
Uavg=?

Fail to disperse 
liquid 

Or389
U(10h)=?
Uavg=?

Deficiency in open
 drain

C: (Open drain) 
capacity 

deficiency (leak)

Evt105
constant 0 0
U(10h)=?
Uavg=?

105

B: (Open drain) 
technical 

degredation

Evt106
constant 0 0
U(10h)=?
Uavg=?

106

A: (Open drain) 
impairment/ 

deviation

Evt107
constant 0 0
U(10h)=?
Uavg=?

107

xA: (Hot Work B) 
open ign src

Evt111
constant 2E-1 0
U(10h)=?
Uavg=?

111

B: Ignition in 
external area

Evt113
constant 1E-4 0
U(10h)=?
Uavg=?

113

Figure B.7: Ignition Prevention (A)
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Page 4 of 5580

\3 Prevent Ignition (B)

5 Prevent Ign B
U(10h)=1.67E-1
Uavg=1.67E-1

Fail to prevent 
ignition B

Or188
U(10h)=?
Uavg=?

Ignition source 
active inspite of 
confirmed gas

A: (IS isolation) 
Pushbutton 

impaired/deviation

Evt53
constant 0 0
U(10h)=?
Uavg=?

53

MO: (IS isolation) 
Pushbutton manual

 operation

Evt54
constant 0 0
U(10h)=?
Uavg=?

54

Or223
U(10h)=?
Uavg=?

Fail to isolate 
ignition sources

MO: Fail to stop 
vehicle traffic

Evt55
constant 1E-1 0
U(10h)=?
Uavg=?

55

MO: Fail to stop 
mechanically 

generated sparks

Evt56
constant 0 0
U(10h)=?
Uavg=?

56

MO: Fail to stop 
excavation

Evt57
constant 5E-2 0
U(10h)=?
Uavg=?

57

MO: Fail to stop 
hot work

Evt58
constant 5E-2 0
U(10h)=?
Uavg=?

58

A: (IS isolation) 
Control loop 

impairment/deviation

Evt59
constant 0 0
U(10h)=?
Uavg=?

59

Fail to 
dilute/disperse 

leaked HC 

Or16
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

Failure to stop inspite of gas alarm

Delayed ignition given successful gas detection but failed isolation

Here too, leak size set same as on 02a because although gas is detected, 
isolation has failed

Manual failure inspite of gas alarm sounding

Electrical 
equipment in the 

area

Or61
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

Not a part of ISI 

Or271
U(10h)=?
Uavg=?

Activity creates 
ignition source 

AND does not stop

MO: Fail to stop 
blasting

Evt95
constant 1E-1 0
U(10h)=?
Uavg=?

95

And276
U(10h)=?
Uavg=?

AND

And277
U(10h)=?
Uavg=?

AND

And278
U(10h)=?
Uavg=?

AND

And279
U(10h)=?
Uavg=?

AND

And280
U(10h)=?
Uavg=?

AND
xA: (Blasting) open 

ign src

8686

Evt86
constant 1 0
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

xA: (Vehicle traffic)
 open ign src

2626

Evt26
constant 1.5E-1 0
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

xA: Mechanically 
generated sparks 
through certain 

activities

2727

Evt27
constant 1E-1 0
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

xA: (Hot Work A) 
open ign src

2929

Evt29
constant 2E-1 0
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

xA: (Excavation) 
open ign src

2828

Evt28
constant 3E-1 0
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

Or282
U(10h)=?
Uavg=?

Failure in control 
loop for IS isolation

B: (IS isolation) 
Control loop 

technical 
degradation

Evt98
constant 1E-3 0
U(10h)=?
Uavg=?

98

Or283
U(10h)=?
Uavg=?

Failure in 
pushbutton for IS 

isolation

B: (IS isolation) 
Pushbutton 
technical 

degradation

Evt99
constant 1E-3 0
U(10h)=?
Uavg=?

99

Or284
U(10h)=?
Uavg=?

Failure in circuit 
breaker

A: (Circuit breaker) 
Impairment/deviation

Evt100
constant 0 0
U(10h)=?
Uavg=?

100

B: (Circuit breaker) 
Technical 

degradation

Evt101
constant 1E-3 0
U(10h)=?
Uavg=?

101

And398
U(10h)=?
Uavg=?

AND

MO: Fail to stop 
hot work

5858

Evt58
constant 5E-2 0
U(10h)=?
Uavg=?
3 Prevent Ignition (B)

xA: (Hot Work B) 
open ign src

111111

Evt111
constant 2E-1 0
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

B: Ignition in 
external area

113113

Evt113
constant 1E-4 0
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

Figure B.8: Ignition Prevention (B)
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\3 Prevent Ignition (C)

5 Prevent Ign C
U(10h)=1.12E-1
Uavg=1.12E-1

Fail to prevent 
ignition C

Or226
U(10h)=?
Uavg=?

Fail to disperse 
leak

Should be smaller than previous value as isolation is successful

C: Ventilation 
Capability to 

handle leak (C)

Evt60
constant 5E-1 0
U(10h)=?
Uavg=?

60

Deficiency in 
HVAC

Or17
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

Ignition source 
active inspite of 
confirmed gas

Or188
U(10h)=?
Uavg=?
3 Prevent Ignition (B)

Fail to disperse 
liquid 

Or388
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

Or390
U(10h)=?
Uavg=?

Fail to disperse gas

Figure B.9: Ignition Prevention (C)
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\3 Prevent Ignition (D)

Or227
U(10h)=?
Uavg=?

Fail to disperse 
leak

C: Ventilation 
Capability to 

handle leak (D)

Evt61
constant 2.5E-1 0
U(10h)=?
Uavg=?

61

Deficiency in 
HVAC

Or17
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

5 Prevent Ign D
U(10h)=5.74E-2
Uavg=5.74E-2

Fail to prevent 
ignition D

Should be smaller than previous value as isolation is successful

Ignition source 
active inspite of 
confirmed gas

Or188
U(10h)=?
Uavg=?
3 Prevent Ignition (B)

Fail to disperse 
liquid 

Or388
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

Or391
U(10h)=?
Uavg=?

Fail to disperse gas

Figure B.10: Ignition Prevention (D)
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\6 Escalation (A)

Or170
U(10h)=?
Uavg=?

Escalation to 
nearby areas (due 

to explosion)

Or171
U(10h)=?
Uavg=?

Escalation to other 
process segments 
(due to fire and/or 

explosion)

Or173
U(10h)=?
Uavg=?

Failure in PFP on 
segment 

equipment

Or174
U(10h)=?
Uavg=?

Equipment 
location deficiency

Or175
U(10h)=?
Uavg=?

Blast walls fail

A: (Equipment 
location) new 

equipment/items 
added to area

Evt40
constant 0 0
U(10h)=?
Uavg=?

40

C:(Equipment 
location) by design

 - design 
deficiency

Evt41
constant 1E-4 0
U(10h)=?
Uavg=?

41

A: (Blast walls) 
removed/impaired/deviation

Evt42
constant 0 0
U(10h)=?
Uavg=?

42

C: (blast walls) 
design deficiency

Evt43
constant 1E-4 0
U(10h)=?
Uavg=?

43

C: Fire resistance 
deficiency in 
equipment

Evt44
constant 1E-4 0
U(10h)=?
Uavg=?

44

A: (PFP)  impaired/
 removed

Evt45
constant 0 0
U(10h)=?
Uavg=?

45

Or176
U(10h)=?
Uavg=?

Escalation to 
nearby areas (due 

to fire)

Or177
U(10h)=?
Uavg=?

Deficiency in 
HVAC (fire 
dampers)

Or178
U(10h)=?
Uavg=?

Deficiency in fire 
walls/ fire doors

A:(Fire dampers) 
logic solver 

impairment/deviation

Evt46
constant 0 0
U(10h)=?
Uavg=?

46
Or182
U(10h)=?
Uavg=?

Failure in fire 
dampers (do not 

close)

A:(Fire dampers) 
Impaired/deviation

Evt47
constant 0 0
U(10h)=?
Uavg=?

47

B:(Fire dampers) 
Technical 

degradation

Evt48
constant 1E-2 0
U(10h)=?
Uavg=?

48

Or185
U(10h)=?
Uavg=?

Normally open 
FW/FD fails

A: (NO Fire Door) 
Impaired/deviation

Evt49
constant 0 0
U(10h)=?
Uavg=?

49

A:(NC Fire Door) 
Impaired/deviation

Evt50
constant 0 0
U(10h)=?
Uavg=?

50

Or186
U(10h)=?
Uavg=?

Normally closed FD
 fails to function

C:(NC FireDoor) 
Design deficiency

Evt51
constant 1E-4 0
U(10h)=?
Uavg=?

51

A: (NO Fire Door) 
logic solver 

impairment/deviation

Evt52
constant 0 0
U(10h)=?
Uavg=?

52

Explosion/ Fire 
severity (AB)

Evt62
constant 9E-1 0
U(10h)=?
Uavg=?

62
Function of segment/ area type and where in event sequence 

6 Escalation A
U(10h)=9.04E-1
Uavg=9.04E-1

Escalation (A)

BF4 Condition
U(10h)=?
Uavg=?

Escalation to 
nearby areas/ other
 segments through 

fire/ explosion

Fail to reduce heat
 load through 

extinguishing fire

Or255
U(10h)=?
Uavg=?
9 Fire extinguishing

Or272
U(10h)=?
Uavg=?

Fail to receive 
signal from fire 

detection

Failure in fire 
detection

And232
U(10h)=?
Uavg=?
9 Fire extinguishing

Failure in fire 
detection

And232
U(10h)=?
Uavg=?
9 Fire extinguishing

B: (Blast walls) 
technical 

degradation

Evt88
constant 1E-4 0
U(10h)=?
Uavg=?

88

B: (PFP) Technical
 degradation

Evt89
constant 1E-4 0
U(10h)=?
Uavg=?

89

B: (NC Fire Door) 
Technical 

degradation

Evt90
constant 1E-2 0
U(10h)=?
Uavg=?

90

B: (NO Fire Door) 
Technical 

degradation

Evt91
constant 1E-2 0
U(10h)=?
Uavg=?

91

Or392
U(10h)=?
Uavg=?

Open drain unable 
to handle fire water

 drainage

B: (Open drain) 
technical 

degredation

106106

Evt106
constant 0 0
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

A: (Open drain) 
impairment/ 

deviation

107107

Evt107
constant 0 0
U(10h)=?
Uavg=?
3 Prevent Ignition (A)

C: Open drain 
capacity 

deficiency fire 
water

Evt108
constant 0 0
U(10h)=?
Uavg=?

108

Figure B.11: Escalation(A)
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\6 Escalation (B)

Escalation to 
nearby areas/ other
 segments through 

fire/ explosion

BF4 Condition
U(10h)=?
Uavg=?
6 Escalation (A)

6 Escalation B
U(10h)=9.04E-1
Uavg=9.04E-1

Escalation (B)

Explosion/ Fire 
severity (AB)

6262

Evt62
constant 9E-1 0
U(10h)=?
Uavg=?
6 Escalation (A)

Figure B.12: Escalation(B)
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\6 Escalation (C)

Explosion/ Fire 
severity (C)

Evt82
constant 5E-1 0
U(10h)=?
Uavg=?

82

Escalation to 
nearby areas/ other
 segments through 

fire/ explosion

BF4 Condition
U(10h)=?
Uavg=?
6 Escalation (A)

6 Escalation C
U(10h)=5.22E-1
Uavg=5.22E-1

Escalation (C)

Figure B.13: Escalation(C)
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\6 Escalation (D)

Explosion/ Fire 
severity(D)

Evt83
constant 3E-1 0
U(10h)=?
Uavg=?

83

Escalation to 
nearby areas/ other
 segments through 

fire/ explosion

BF4 Condition
U(10h)=?
Uavg=?
6 Escalation (A)

6 Escalation D
U(10h)=3.31E-1
Uavg=3.31E-1

Escalation (D)

Figure B.14: Escalation(D)



A
P

P
E

N
D

IX
B

.
M

IR
M

A
P

M
O

D
E

L
IN

F
O

R
M

AT
IO

N
118

MIRMAP - QRA based activity FT (1).bool 29.mai.2016 - 12:48:55

Page 13 of 5580

\9 Fire extinguishing

And232
U(10h)=?
Uavg=?

Failure in fire 
detection

Or233
U(10h)=?
Uavg=?

Manual detection 
fails

Or234
U(10h)=?
Uavg=?

Automatic 
detection fails

MO(Manual Fire 
Detection)No 

operator in area

Evt63
constant 5E-1 0
U(10h)=?
Uavg=?

63
Or235
U(10h)=?
Uavg=?

Initiation fails 
through MCP

A:(Manual call 
point) Control logic

 
impairment/deviation

Evt64
constant 0 0
U(10h)=?
Uavg=?

64

Or236
U(10h)=?
Uavg=?

Failure in fire 
detector

A:(Auto Fire 
detection) logic 

solver impairment/ 
deviation

Evt65
constant 0 0
U(10h)=?
Uavg=?

65

B:(Fire detector) 
Technical 

degradation

Evt66
constant 1E-3 0
U(10h)=?
Uavg=?

66

A:(Fire 
detector)Impaird/deviation

Evt67
constant 0 0
U(10h)=?
Uavg=?

67

C:(Fire detector) 
coverage limitation

Evt68
constant 1E-4 0
U(10h)=?
Uavg=?

68
Or237
U(10h)=?
Uavg=?

Manual call points

B:(Manual call 
point) Technical 

degradation

Evt69
constant 1E-3 0
U(10h)=?
Uavg=?

69

A:(Manual call 
point)Impaired/deviation

Evt70
constant 0 0
U(10h)=?
Uavg=?

70

C:(Manual call 
point) not installed

Evt71
constant 0 0
U(10h)=?
Uavg=?

71

Or255
U(10h)=?
Uavg=?

Fail to reduce heat
 load through 

extinguishing fire

Or257
U(10h)=?
Uavg=?

Failure in manual 
fire fighting

Or258
U(10h)=?
Uavg=?

Failure in 
automatic fire 

fighting

Or259
U(10h)=?
Uavg=?

Failure in fire 
fighting 

mechanisms

Or260
U(10h)=?
Uavg=?

Failure in fire water
 supply system

And261
U(10h)=?
Uavg=?

Failure in release 
mechanism

A: (Fire water 
system) 

impairment/ 
deviation

Evt72
constant 0 0
U(10h)=?
Uavg=?

72

C:(fire water 
system) capacity/ 

distribution 
deficiency

Evt73
constant 1E-4 0
U(10h)=?
Uavg=?

73

B:(fire water 
system) Technical 

degradation

Evt74
constant 5E-3 0
U(10h)=?
Uavg=?

74

includes control system deviations, fire water pumps, fire water distribution etc. 

A: (Hydrants, 
monitors) 
Deviation/ 
Impairment

Evt75
constant 0 0
U(10h)=?
Uavg=?

75

B: (Hydrants, 
monitors)  
technical 

degradation

Evt76
constant 1E-2 0
U(10h)=?
Uavg=?

76

C: (Hydrants, 
monitors) 

effectiveness/ 
design limitation

Evt77
constant 6E-1 0
U(10h)=?
Uavg=?

77

MO: (Hydrants, 
monitors)  no 

manual operation 
possible

Evt78
constant 5E-1 0
U(10h)=?
Uavg=?

78

A: (Automatic 
release 

mechanisms) 
impairment/ 

Evt79
constant 0 0
U(10h)=?
Uavg=?

79

C: (Automatic 
release 

mechanisms) 
coverage/ 

Evt80
constant 1E-4 0
U(10h)=?
Uavg=?

80

B: (Automatic 
release 

mechanisms) 
technical 

Evt81
constant 1E-2 0
U(10h)=?
Uavg=?

81

includes all possible FW release means (e.g. deleuge nozzles, foam, mist etc)

'C Items' to be coded depending on inherent characteristics
of the system as well as where in the event sequence this is

called in

Or274
U(10h)=?
Uavg=?

Fire detection 
logic solver loop

B:(Auto Fire 
detection) logic 
solver technical 

degradation

Evt93
constant 1E-3 0
U(10h)=?
Uavg=?

93
Or286
U(10h)=?
Uavg=?

Manual call point 
control logic

B: (Manual call 
point) Control logic

 technical 
degradation

Evt103
constant 0 0
U(10h)=?
Uavg=?

103

Figure B.15: Heat load reduction through extinguishing fire
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\99 Prevnt Ignition and Prevent Escalation (A)

99 Ign and Esc A
U(10h)=?
Uavg=?

Fail to prevent ign 
and escalation A

Fail to prevent 
ignition A

5 Prevent Ign A
U(10h)=7.53E-1
Uavg=7.53E-1
3 Prevent Ignition (A)

Escalation (A)

6 Escalation A
U(10h)=9.04E-1
Uavg=9.04E-1
6 Escalation (A)

Figure B.16: Ignition(A) and Escalation (A)
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\99 Prevnt Ignition and Prevent Escalation (B)

99 Ign and Esc B
U(10h)=?
Uavg=?

Fail to prevent ign 
and escalation B

Fail to prevent 
ignition B

5 Prevent Ign B
U(10h)=1.67E-1
Uavg=1.67E-1
3 Prevent Ignition (B)

Escalation (B)

6 Escalation B
U(10h)=9.04E-1
Uavg=9.04E-1
6 Escalation (B)

Figure B.17: Ignition(B) and Escalation (B)
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\99 Prevnt Ignition and Prevent Escalation (C)

99 Ign and Esc C
U(10h)=?
Uavg=?

Fail to prevent ign 
and escalation C

Fail to prevent 
ignition C

5 Prevent Ign C
U(10h)=1.12E-1
Uavg=1.12E-1
3 Prevent Ignition (C)

Escalation (C)

6 Escalation C
U(10h)=5.22E-1
Uavg=5.22E-1
6 Escalation (C)

Figure B.18: Ignition(C) and Escalation (C)
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\99 Prevnt Ignition and Prevent Escalation (D)

99 Ign and Esc D
U(10h)=?
Uavg=?

Fail to prevent ign 
and escalation D

Fail to prevent 
ignition D

5 Prevent Ign D
U(10h)=5.74E-2
Uavg=5.74E-2
3 Prevent Ignition (D)

Escalation (D)

6 Escalation D
U(10h)=3.31E-1
Uavg=3.31E-1
6 Escalation (D)

Figure B.19: Ignition(D) and Escalation (D)
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Figure B.20: RIFs and their importance for each defined activity
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Evt4 xA: Dropped objects cause HC leak 3 1 3 5 3

Evt5 A: (PSV) impaired/ deviation 3 3 3

Evt7 A: (PSD) logic solver impairment/ deviation 3 3 3

Evt8 A: (PSD Transmitters) Impairment/ deviation 3 3 3

Evt10 A: (PSDVs) impaired 3 3 3

Evt12 xA: Leak introduced during intervention 5 3 3

Evt13 xA: Leak introduced during isolation 3 5 5

Evt14 xA: Leak introduced during normal operation on HC systems 5 3 1 3

Evt15 xA: Leak introduced during reinstatement 3 3 5 5

Evt17 A:(Gas detector) Impaired/deviation 3

Evt20 A: (Gas Detection) logic solver impairment/ deviation 3 3 3

Evt21 A: Electrical equipment sparking in the area 3 3 3

Evt22 A: (Dampers) impaired/ deviation 3 3 3

Evt24 A: (Ventilation) impairment 3 3 3

Evt26 xA: (Vehicle traffic) open ign src 1 3 3

Evt27 xA: Mechanically generated sparks through certain activities 3 3 3

Evt28 xA: (Excavation) open ign src 3 3 3

Evt29 xA: (Hot Work A) open ign src 3 1 3 5 5 3

Evt32 A: (ESDVs) impaired/ deviation 3 3 3

Evt34 A: (ESD) logic solver loop impairment/ deviation 3 3 3

Evt35 A: (BDVs) impaired/ Deviation 3 3

Evt37 A: (Flare) impairment/deviation 3 3 3

Evt39 A: (Depress) logic solver impairment/ deviation 3 3 3

RIFs and their importance measure
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continue

Figure B.21: RIFs and their importance for each defined activity
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(y
e

s/
n

o
)

Evt40 A: (Equipment location) new equipment/items added to area 3 3 3

Evt42 A: (Blast walls) removed/impaired/deviation 3 3 3

Evt45 A: (PFP) impaired/ removed 3 3 3

Evt46 A:(Fire dampers) logic solver impairment/deviation 3 3 3

Evt47 A:(Fire dampers) Impaired/deviation 3 3 3

Evt49 A: (NO Fire Door) Impaired/deviation 3 3 3

Evt50 A:(NC Fire Door) Impaired/deviation 3 3 3

Evt52 A: (NO Fire Door) logic solver impairment/deviation 3 3 3

Evt53 A: (IS isolation) Pushbutton impaired/deviation 3 3 3

Evt59 A: (IS isolation) Control loop impairment/deviation 3 3 3

Evt64 A:(Manual call point) Control logic impairment/deviation 3 3 3

Evt65 A:(Auto Fire detection) logic solver impairment/ deviation 3 3 3

Evt67 A:(Fire detector)Impaird/deviation 3 3 3

Evt70 A:(Manual call point)Impaired/deviation 3 3 3

Evt72 A: (Fire water system) impairment/ deviation 3 3 3

Evt75 A: (Hydrants, monitors) Deviation/ Impairment 3 3 3

Evt79 A: (Automatic release mechanisms) impairment/ deviation 3 3 3

Evt84 A: (ESD PB) impairment/ deviation 3 3 3

Evt86 xA: (Blasting) open ign src 3 3 3 3

Evt87 A: (Knockout drum) impairment/ deviation 3 3 3

Evt100 A: (Circuit breaker) Impairment/deviation 3 3 3

Evt107 A: (Open drain) impairment/ deviation 3 3 3

Evt111 xA: (Hot Work B) open ign src 3 1 3 5 5 3

RIFs and their importance measure
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B.6 List of basic events of fault trees in MIRMAP Generic Model

Table B.5, B.6, B.7 show the basic event of fault trees in MIRMAP Generic Model.

Table B.5: List of basic events of fault trees in MIRMAP generic model
ID Basic Event Description
1 Evt1 C: Release from equipment layout and design
2 Evt2 B: Release from equipment wearing from age
3 Evt3 C: No/weak exo-skeletal protection on equipment
4 Evt4 xA: Dropped objects cause HC leak
5 Evt5 A: (PSV) impaired/ deviation
6 Evt6 B: (PSV) technical degredation
7 Evt7 A: (PSD) logic solver impairment/ deviation
8 Evt8 A: (PSD Transmitters) Impairment/ deviation
9 Evt9 B: (PSD transmitters) Technical degradation
10 Evt10 A: (PSDVs) impaired
11 Evt11 B: (PSDVs) technical degredation
12 Evt12 xA: Leak introduced during intervention
13 Evt13 xA: Leak introduced during isolation
14 Evt14 xA: Leak introduced during normal operation on HC systems
15 Evt15 xA: Leak introduced during reinstatement
16 Evt16 B:(Gas detector) Technical degradation
17 Evt17 A:(Gas detector) Impaired/deviation
18 Evt18 C:(Gas detector) coverage deficiency
19 Evt19 MO(Manual gas detection) No operator in area
20 Evt20 A: (Gas Detection) logic solver impairment/ deviation
21 Evt21 A: Electrical equipment sparking in the area
22 Evt22 A: (Dampers) impaired/ deviation
23 Evt23 B: (Dampers) technical degradation
24 Evt24 A: (Ventilation) impairment
25 Evt25 B: (Ventilation) technical degradation
26 Evt26 xA: (Vehicle traffic) open ign src
27 Evt27 xA: Mechanically generated sparks through certain activities
28 Evt28 xA: (Excavation) open ign src
29 Evt29 xA: (Hot Work A) open ign src
30 Evt30 B: Unapproved/Old/ Degraded Electrical equipment
31 Evt31 C: Ventilation Capability to handle leak (A)
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Continue Table B.5

Table B.6: List of basic events of fault trees in MIRMAP generic model
ID Basic Event Description
32 Evt32 A: (ESDVs) impaired/ deviation
33 Evt33 B: (ESDVs) Technical degradation
34 Evt34 A: (ESD) logic solver loop impairment/ deviation
35 Evt35 A: (BDVs) impaired/ Deviation
36 Evt36 B: (BDVs) Technical degradation
37 Evt37 A: (Flare) impairment/deviation
38 Evt38 B: (Flare) technical degradation
39 Evt39 A: (Depress) logic solver impairment/ deviation
40 Evt40 A: (Equipment location) new equipment/items added to area
41 Evt41 C:(Equipment location) by design - design deficiency
42 Evt42 A: (Blast walls) removed/impaired/deviation
43 Evt43 C: (blast walls) design deficiency
44 Evt44 C: Fire resistance deficiency in equipment
45 Evt45 A: (PFP) impaired/ removed
46 Evt46 A:(Fire dampers) logic solver impairment/deviation
47 Evt47 A:(Fire dampers) Impaired/deviation
48 Evt48 B:(Fire dampers) Technical degradation
49 Evt49 A: (NO Fire Door) Impaired/deviation
50 Evt50 A:(NC Fire Door) Impaired/deviation
51 Evt51 C:(NC FireDoor) Design deficiency
52 Evt52 A: (NO Fire Door) logic solver impairment/deviation
53 Evt53 A: (IS isolation) Pushbutton impaired/deviation
54 Evt54 MO: (IS isolation) Pushbutton manual operation
55 Evt55 MO: Fail to stop vehicle traffic
56 Evt56 MO: Fail to stop mechanically generated sparks
57 Evt57 MO: Fail to stop excavation
58 Evt58 MO: Fail to stop hot work
59 Evt59 A: (IS isolation) Control loop impairment/deviation
60 Evt60 C: Ventilation Capability to handle leak (C)
61 Evt61 C: Ventilation Capability to handle leak (D)
62 Evt62 Explosion/ Fire severity (AB)
63 Evt63 MO(Manual Fire Detection)No operator in area
64 Evt64 A:(Manual call point) Control logic impairment/deviation
65 Evt65 A:(Auto Fire detection) logic solver impairment/ deviation
66 Evt66 B:(Fire detector) Technical degradation
67 Evt67 A:(Fire detector)Impaird/deviation
68 Evt68 C:(Fire detector) coverage limitation
69 Evt69 B:(Manual call point) Technical degradation
70 Evt70 A:(Manual call point)Impaired/deviation
71 Evt71 C:(Manual call point) not installed
72 Evt72 A: (Fire water system) impairment/ deviation
73 Evt73 C:(fire water system) capacity/ distribution deficiency
74 Evt74 B:(fire water system) Technical degradation
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Continue Table B.6

Table B.7: List of basic events of fault trees in MIRMAP generic model
ID Basic Event Description
75 Evt75 A: (Hydrants, monitors) Deviation/ Impairment
76 Evt76 B: (Hydrants, monitors) technical degradation
77 Evt77 C: (Hydrants, monitors) effectiveness/ design limitation
78 Evt78 MO: (Hydrants, monitors) no manual operation possible
79 Evt79 A: (Automatic release mechanisms) impairment/ deviation
80 Evt80 C: (Automatic release mechanisms) coverage/ capability limitations
81 Evt81 B: (Automatic release mechanisms) technical degradation
82 Evt82 Explosion/ Fire severity (C)
83 Evt83 Explosion/ Fire severity(D)
84 Evt84 A: (ESD PB) impairment/ deviation
85 Evt85 B: (ESD PB) technical degradation
86 Evt86 xA: (Blasting) open ign src
87 Evt87 A: (Knockout drum) impairment/ deviation
88 Evt88 B: (Blast walls) technical degradation
89 Evt89 B: (PFP) Technical degradation
90 Evt90 B: (NC Fire Door) Technical degradation
91 Evt91 B: (NO Fire Door) Technical degradation
92 Evt92 B: (PSD) logic solver technical degradation
93 Evt93 B:(Auto Fire detection) logic solver technical degradation
94 Evt94 B: (Gas Detection) logic solver technical degradation
95 Evt95 MO: Fail to stop blasting
96 Evt96 B: (ESD) logic solver loop technical degradation
97 Evt97 B: (Depress) logic solver technical degradation
98 Evt98 B: (IS isolation) Control loop technical degradation
99 Evt99 B: (IS isolation) Pushbutton technical degradation
100 Evt100 A: (Circuit breaker) Impairment/deviation
101 Evt101 B: (Circuit breaker) Technical degradation
102 Evt102 B: (Knockout drum) technical degradation
103 Evt103 B: (Manual call point) Control logic technical degradation
104 Evt104 B: PSD/PSV demand
105 Evt105 C: (Open drain) capacity deficiency (leak)
106 Evt106 B: (Open drain) technical degredation
107 Evt107 A: (Open drain) impairment/ deviation
108 Evt108 C: Open drain capacity deficiency fire water
109 Evt109 C: Unable to completely depressurize segment
110 Evt110 C: Unable to completely isolate HC segment
111 Evt111 xA: (Hot Work B) open ign src



Appendix C

Identified Model Uncertainty Sources of

MIRMAP Model

Identified model uncertainty sources are presented in tabular form.

Problem defining associated model uncertainty sources are shown in Figure C.1.

System controlling factor and mechanism identification associated model uncertainty sources

are shown in Figure C.2, C.3, C.4.

Data evaluation associated model uncertainty sources are shown in Figure C.5.

Model construction associated model uncertainty sources are shown in Figure C.6, C.7, C.8,

C.9. C.10, C.11.

Numerical solution associated model uncertainty sources are shown in Figure C.12.
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Figure C.1: Identified model uncertainty sources of MIRMAP model related to step 1: problem defining

ID Model Uncertainty Sources Location Impact Reasons References & Comments

S1.1 Definition of "Major Accident". Objective Ambiguous output value.

To cope with our belief of 

major accident and industry 

fashion.

S1.2

To model the instantaneous risk for Major 

accident prevention including activities, Only the 

risk contributors to the occurence of Major 

accident is included. 

Objective--Scope of 

analysis

Accident sequence stops at 

"Fire/Explosion Escalation".

To narrow the scope and 

exclude necessary work .

S1.3 Emergency plan and evacuation is not considered.
Objective--Scope of 

analysis

Accident sequence stops at 

"Fire/Explosion Escalation".

To narrow the scope and 

exclude necessary work .

S1.4

One fire area is the spatial boundary of analysing, 

but how large the fire area is not clear defined and 

there are other options.

Boundary conditions Validity of the output value.

 For model convenience, it is a 

balance between  hazard area 

size (effectiveness) and 

workload.

S1.5

The validation period of the model is during 

normal production, instead of process starting or 

shutdown.

Objective-Scope of 

analysis

Inapplicable during process 

starting or shutdown period.
For modelling convenience.

S1.6
Only fire/explosion from delayed ignition is 

considered.

Objective-Scope of 

analysis

Major accident from  immediate 

ignition in not included.
For modelling convenience.



A
P

P
E

N
D

IX
C

.
ID

E
N

T
IF

IE
D

M
O

D
E

L
U

N
C

E
R

TA
IN

T
Y

SO
U

R
C

E
S

O
F

M
IR

M
A

P
M

O
D

E
L

130

Figure C.2: Identified model uncertainty sources of MIRMAP model related to step 2: system control factors and mechanism identifi-
cation

ID Model Uncertainty Sources Location Impact Reasons References & Comments

S2.1 Cold vent does not give credit. BF2

S2.2 Failure of PSD control unit is ignored Intermediate event " PSD 

system fail to function"

One contributor to 

failure of PSD system is 

ignored. Probability of 

"PSD system fail to 

function" is 

Ignored due to uncritical (degree 

of belief)

S2.3 ESD pushbutton may initiate gas 

detection and fire detection at the 

same time. We ignore the the fact the 

fire detection will be activated.

Event tree, time sequence of 

BF2, BF3, BF4

S2.4 PSVs are not credited as a mean of 

preventing secalation.

BF4 sub-barrier system is 

ignored

S2.5 Depressurisation are not credited to 

lower the failure probability of 

escalation of fire to other equipment 

and segments.

BF4 sub-barrier system is 

ignored

S2.6 The possibility of a gas leak from one 

fire area to another is not considered.

BF1

S2.7 Common utility failure is not 

considered.

Excluded basic events in 

some barrier function

(Incomplete risk 

contributors) Basic 

events which include 

Risk contribution from 

utility supply failure 

excluded

Utility failure will end up 

production shutdown. Usually, 

plants use uninterrupted 

electricity supply, and they have 

more than one utility supply 

S2.8 Ignored (but known to reduce the 

number of RIFs and burden of data 

collection) RIFs in influence diagram 

(BBN).

BBN model
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Continue Figure C.2

Figure C.3: Identified model uncertainty sources of MIRMAP model related to step 2: system control factors and mechanism identifi-
cation

ID Model Uncertainty Sources Location Impact Reasons References & Comments

S2.9 RIFs: competence of lifting guider, 

working environment (lighting, lifting 

routine etc.), weight of lifting object 

are not included.

Evt 4: Critical lifting Ignored due to uncritical BBN diagram can be more 

complicated, see Figure C-1

S2.10 Control Unit of Fire detection, ESD, 

PSD is reliable, failure of them is not 

taken into account.

BF 2.1 Risk contributor from 

control unit failure is 

ignored

Ignored due to uncritical (degree 

of belief)

S2.11 Dropped Object may also cause 

immediate ignition, which means that 

this part of statistic data should be 

excluded to calculate average leakage 

probability due to this activity.

The average state value of 

basic event representing type 

A1 acitivity: Evt 4

Ignored due to uncritical should check references

S2.12 ESD signal from center control room is 

ignored, only field control is taken into 

account.

BF2.2 sub-barrier system is 

ignored

S2.13 Ignore the fact that many activities just 

last for few hours instead of the whole 

day.

Activities Overestimate 

simultaneous activities

A arguement can be make by 

assume that if there is a major 

accident happen the day 

before, then the system 

behavior most likely will change 

due to the accident, but the 

model still assume that it is the 

same as before.

Timing property related
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Continue Figure C.3

Figure C.4: Identified model uncertainty sources of MIRMAP model related to step 2: system control factors and mechanism identifi-
cation

ID Model Uncertainty Sources Location Impact Reasons References & Comments

S2.14 (Simplification)Time dependence 

between sub-barrier systems among 

the same barrier function is not 

considered

All barrier functions If the dependence 

between them influence 

basic event failure 

probability, then the 

failure probability over 

dependent sub-barrier 

system is 

underestimated or 

overestimated

Model convenience(limtation of 

modelling technique of fault tree)

Check dynamic fault tree

S2.15 (ignored dependence) system 

dependence among time sequence is 

ignored when model risk profile and 

risk contribution from work orders.

Computation of risk profile 

and risk contribution from 

work orders which last for 

more than 1 day
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Figure C.5: Identified model uncertainty sources of MIRMAP model related to step 3: data evaluation

ID Model Uncertainty Sources Location Impact Reasons References & Comments

S3.1 (Surrogate variable is used to calculate 

average leakage probability from acitivities) 

To calculate the average leakage probability 

from activities, "industrial average value is 

used as a parameter for the calculation 

instead of plant specific avarage value.

The average state value 

of basic event 

representing type A1 

acitivity( Evt 4, Evt 12, Evt 

13, Evt 14, Evt 15).

Inaccuracy in estimation of 

average value of basic 

event representing type A1 

acitivity.

Model convenience 

(lack of plant specific 

data).

Plant specific value is more accurate 

(representative).

S3.2 (Surrogate variable is used to calculate 

average ignition(introduce ignition source) 

probability from acitivities). To calculate the 

average ignition probability from activities, 

"industrial average value is used as a 

parameter for the calculation instead of plant 

specific avarage value.

The average state value 

of basic event 

representing type A1 

acitivity which may 

introduce ignition source.

Inaccuracy in estimation of 

average value of basic 

event representing type A1 

acitivity.

Model convenience 

(lack of plant specific 

data).

Plant specific value is more accurate 

(representative).

S3.3 (Simplification) Default value of fatality 

probability is used.

Input variable of 

consequence Model: 

fatality probability.

Fatality probability is 

inaccurate.

Model convenience. Usually, complicated simulation is done 

to calculate fatality probability.

S3.4 (Simplification)Default value of fatality 

probability is relevant to fire size (usually 

related to leakage size).

Input variable of 

consequence Model: 

fatality probability.

Fatality probability is 

inaccurate.

Model convenience. Usually, complicated simulation is done 

to calculate fatality probability.

S3.5 PSV/PSD demand is a dynamic process 

feature, in this model, but a average constant 

value is used in the model instead.

BF1 Basic event "PSD/PSV 

demand".

Doesn't meet the dynamic 

property of the model 

requirement.

Model convenience, 

Ignored due to 

uncritical.

It is possible to build a BBN to predict it.
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Figure C.6: Identified model uncertainty sources of MIRMAP model related to step 4: model construction

ID Model Uncertainty Sources Location Impact Reasons References & Comments

S4.1 Barrier function response time variation due to facility 

features is not considered

Event Tree BF2.1 

\&BF2.2\&BF2.3

Leakage size is varied due to 

response time

Model convenience

S4.2 (Simplification) Depressurization doesn't give credit if 

isolation fails

Event Tree BF2.3 BF2.3 doesn't split into 

succeed\&fail given isolation fails

Ignored due to uncritical

S4.3 (Simplification) Failure influence of barrier function 

due to the event development variability is presented 

by introducing a basic event. This basic event is a 

thought of failure probability of barrier function even 

the hardware barrier function success. 

BF3 and BF4 Inacuracy of top event probability 

in BF3 and BF4

Model convenience

S4.4 (Simplification)Default value of fatality probability is 

related fire size (usually related to leakage size): the 

variablity of fatality probability is the same as end 

event variablity. Variablity is ignored or simplified.

Consequence Model fatality probability is inaccurate Model convenience Usually, complicated 

simulation is done to 

calculate fatality probability

S4.5 (Simplification) Exposed Number of People for 

uncontrolled fire /explosion is estimated as 2/4 times 

of people within the area

Consequence Model Inaccuracy in estimation of 

exposed number of people

Lack of data This is not a real-time 

measure of exposed 

people, A better way is to 

record number of people in 

surround areas

ID Model Uncertainty Sources Location Impact Reasons References & Comments

Hierarchy driven by level of details (BF1)

Hierarchy driven by level of details (Simplified Consequence Model)

Hierarchy driven by level of details (Event Tree)
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Continue Figure C.6

Figure C.7: Identified model uncertainty sources of MIRMAP model related to step 4: model construction

S4.6 (Incorrect form) PSV and PSD  function to prevent 

leakage is modelled in parallel (And gate is used) 

which means both of them have to fail given a 

demand to have a leakage.

Intermediate event  in 

BF1

Change of logic gate Lack of knowledge of  

system

S4.7 (Assumption)Leakage can be manually detected as 

long as there is operator in area

Evt19: MO (Manual gas 

detection) No operation 

in area

Manually detection failure 

probability is underestimated

Lack of data

S4.8 (Assumption) If leakage is comfirmed by automatic 

gas detection, then signal will automatically 

generated and send to ESD 

Intermediate event Underestimated failure 

probability of ESD failure

Model convenience to 

reduce dependence

S4.9 (Assumption)If leakage is comfirmed by automatic gas 

detection, then signal will automatically generated 

and send to PSD 

Intermediate event Underestimated failure 

probability of PSD failure

Model convenience to 

reduce dependence

S4.10 (Incorrect logic) ESD and PSD are in series (any failure 

in any of these two sub-barrier systems will result in 

isolation failure

Top event "Fail to isolate 

process segment"

Change of logic gate  since logic 

gate over ESD and PSD are wrong

Lack of knowledge of  

system

S4.11 (Simplification) Cannot completely isolate even when 

PSDV and ESDV close, this is a issue related to quality 

of PSDV and ESDV. A "or gate" is used to represent 

this phenomeno

Failure causes of Top 

event "Fail to isolate 

process segment"

underestimated failure 

probability of isolation: if this is 

the case, then isolation function 

will fail anyway in that area, the 

probability of failure should be 1 

instead of a value between 0-1. 

Model convenience

Hierarchy driven by level of details (BF2.2)

Hierarchy driven by level of details (BF2.1)
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Continue Figure C.7

Figure C.8: Identified model uncertainty sources of MIRMAP model related to step 4: model construction

ID Model Uncertainty Sources Location Impact Reasons References & Comments

S4.13 The design capability of knockout drum is not 

considered.

Underestimated failure 

probability of knockout drum: 

S4.14 (Simplification) Ignition prevention has two sub failure 

causes : Fail Dilute/Disperse leaked HC and Ignition 

source active, And gate is used for these two sub 

failure causes, which means they are in parallel

Failure causes of Top 

event "Fail to prevent 

ignition A"

BF3 might need to be remodelled, 

HVAC function is overestimated

Model convenience

S4.15 (Simplification) Disperse gas function variable 

(intermediate event) is splitted into "Success" and 

"Failure". The arguement can be made by asking what 

is the success state of gas dispersing? What is failure 

of it? It is not easily observable.

Disperse gas function 

variable (intermediate 

event: Fail to disperse 

gas)

Cannot obtain required data Model convernience What is the success criteria 

of diepersing gas?

S4.16 (Simplification) Gas cloud formulation simpified as 

part of failure of dispersing gas function (intermediate 

event) . 

Fail Dilute/Disperse 

leaked HC

Important risk contributor may 

cannot be captured

Model convernience There are many more 

complicated diserpsing 

model alternatives

S4.17 (Simplification) the failure causes of gas dispersing 

failure are categoried into two: HVAC Ventilation 

capacity to handle enlarged leakage and unexpected 

HVAC system failure 

Intermediate event :gas 

dispersing failure 

Underestimated failure 

probability

Model convernience

S4.18 (Simplification) Ventilation capacity to handle leak of 

HVAC given enlarged leakage: The failure causes of 

ventilation that cannnot disperse gas are quite 

relevant to the leakage size, and the type of material.

Basic event(Evt 31) Model convernience Check literatures, More 

factors of HVAC capability 

should be included.

Hierarchy driven by level of details (BF3)

Hierarchy driven by level of details (BF2.3)
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Continue Figure C.8

Figure C.9: Identified model uncertainty sources of MIRMAP model related to step 4: model construction

ID Model Uncertainty Sources Location Impact Reasons References & Comments

S4.20 The failure criteria of "Fail to disperse liquid through 

open drain" is not clear. 

Intermediate event: Fail 

to disperse liquid

Model convernience

S4.21 What are the factors that will influence the open drain 

capability to disperse liquid?

Model convernience

S4.22 (Simplification) Active ignition source from neibouring 

fire area is expressed by a basic event

Inaccuracy in ignition source 

probability

Model convernience

S4.23 (Assumption) Failure on gas alarm is ignore, assume 

that if gas is detected, gas alarm will be initiated and 

work well.

Intermediate events: 

"Activity creates ignition 

source and does not 

stop" and "Fail to isolate 

Model convernience

S4.24 Only manually Ignition source isolation is taken into 

account. Automatic ignition source isolation does not 

give credit.

Overestimated failure probability Model convernience

S4.25 (Incorrect form) Ignition source isolation shut down 

electricity supply of equipment, then they should stop 

work and are not ignition source anymore.

BF3 B, C, D : 

Intermediate event 

(ignition source from 

equipment) is still in the 

fault tree

It is not intended, just a 

mistake made when 

build fault 

tree(communicated with 

Modeller).

 List it here just being a 

example that this kind of 

mistake can happen.

S4.26 (Assumption) The failure criteria of Passive fire 

protection is "Fire/explosion escalated through it 

within prefined time period (e.g. two hours)

BF4 Overestimated failure probability Model convernience

S4.27 (Assumption) The function of fire extinguishing is 

achieved by reduce heat load. If heat load is reduced  

then fire is controlled.

BF5 Underestimated failure 

probability

Model convernience

S4.28 (Assumption) The leakage amount of HC is great 

enough that fire will not be extinguished due to using 

up all combustable material.

BF6 Overestimated failure probability Model convernience

Hierarchy driven by level of details (BF4)
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Continue Figure C.9

Figure C.10: Identified model uncertainty sources of MIRMAP model related to step 4: model construction

ID Model Uncertainty Sources Location Impact Reasons References & Comments

S4.29 (Assumption) Any failure in passive fire protection or 

active fire protection will lead to fire escalation.

BF7 Overestimated failure probability Model convernience

S4.30 (Assumption)Any failure of fire doors or blast walls 

will lead to fire and blast escalation

BF8 Overestimated failure probability Model convernience

S4.31 (Simplification)The variability between fire and 

explosion is ignored.

BF9 Underestimated failure 

probability

Model convernience

S4.32 No consensual  mode to model activity failure and 

RIFs

Lack of knowledge

S4.33 Assumption 1 for conditional probability elicitation(If 

BBN is used): The longer distance between parent 

node state and child node state, the less probable 

that the child node will stay at that state for the given 

parent node state.

Conditioanl probability 

elicitation

Inaccuracy in conditional 

probability (dependency relation)

Model convenience

S4.34 Assumption 2 for conditional probability elicitation(If 

BBN is used): The more important of parent node, the 

more dependency between parent node and child 

node.

Conditional probability 

elicitation

Inaccuracy in conditional 

probability (dependency relation)

Model convenience

S4.35 Weighting method: (assumption) A certain number of 

experts is enough to provide good result etc.

Different way of expert 

judgement to give weight 

available

S4.36 Structure of BBN BBN Inaccuracy in estimated state 

probability

Hierarchy driven by level of details (Type A2: Influence diagram)

S4.37 (Simplification) The structure of influence diagram is a 

simplified reliability assessment

The reference model is a 

complete (more 

complicated) reliability 

model

Hierarchy driven by level of details (Type A1: Influence diagram)
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Continue Figure C.10

Figure C.11: Identified model uncertainty sources of MIRMAP model related to step 4: model construction

ID Model Uncertainty Sources Location Impact Reasons References & Comments

S4.38 Assume that all planned activity are continuously 

executed in the whole day

Type A basic events Overestimated failure probability Model convenience

S4.39 (Assumption): system is independent among time 

sequence (day to day)

Work order risk measure Underestimated risk measure Model convenience

S4.40 (Assumption) There is no HC from neighbouring fire 

area that would provide fuel.

BF1 Underestimated failure 

probability of BF1

Lack of data

S4.41 Knockout drum is shared by several area, the activity 

on knockout drum is a common cause failure, but not 

well explained in this model

Basic event(Evt 87): 

(Knockout drum) 

impairment/deviation

Activity which may lead to failure 

of knockout drum may be ignored

(issue of modelling 

technique) Only model 

one fire area first. 

Activity which may lead 

to problem for many 

areas but belongs to one 

specific area might be 

ignored in other area.

Hierarchy driven by size

Hierarchy driven by time
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Figure C.12: Identified model uncertainty sources of MIRMAP model related to step 5: find and implement numerical solution

ID Model Uncertainty Sources Location Impact Reasons References & Comments

S5.1 (approximation) The failure probability of top 

event is calculated using approximation 

formula not accurate computation: using Upper 

Bound Approximation (based on the fault tree’s 

minimal cut sets).

All top event from 

fault tree.

Overestimated  failure probability, 

This computational error can 

become large for an AND gate 

containing an OR gate

with a high failure probability basic 

event.

Balance between 

computation 

convenience and critical.

S5.2 Discretization of failure proability of basic event 

type A.

All type A basic events. Inaccuracy in failure probability 

distribution

Computation cost.

S5.3 Ignored parameter uncertainty of basic event 

type B and type C.

All type B and C basic 

events.

Overestimated or underestimated 

failure probability of basic event

Computation cost.

S5.4 Discretization of RIFs which have a continuous 

property.

RIFs which have a 

continuous property.

Extreme small failure probability will 

be ignored.

Limitation of software 

tool
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