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Abstract 

The scope of this master thesis is to design a surge tank throttle based on literature values, and 

compare the expected head loss factor with the results from a 3D numerical simulation, and a 

physical model test. A literature review on throttle effects and the state-of-the-art throttle 

design will also be carried out as a part of the thesis. As a supplement to the thesis scope, the 

hydraulic effects of installing the throttle in the physical model will be discussed.  

The literature review reveal that a throttle has a high influence on the dampening of mass 

oscillations in a hydropower plant. In addition, a properly designed throttle lowers the volume 

demand of the surge tank, improves the governing stability for the machines, and reduce the 

maximum pressure in front of the turbine.  

The 1D numerical program LVTrans is used to calculate the hydraulic transients in the whole 

system and the 3D numerical program STAR-CCM+ is used to calculate the throttle head 

loss. The physical model used in this work is a 1:65 scale model of Torpa hydropower plant 

constructed at the Norwegian University of Science and Technology (NTNU). 

The load case for the experiments is a multiple closing and opening case to get resonance and 

bring the system to the maximum possible state of oscillations, which is a method used in 

Austria since the 1960s. The throttle design tested in this work is an asymmetric throttle with 

a relatively simple design, to reduce construction time and cost. The main parameter for the 

throttle design was found to be the smallest diameter. Two surge tank throttles with different 

diameters were made and used to compare the different methods.  

The literature values underestimate the head loss coefficient in both directions compared to 

the physical model test. The literature values show acceptable correlation to the physical 

model test in the upward direction, which is the direction with the simplest hydraulic 

conditions. The conditions in the downward direction are more complicated, and this is also 

reflected in the results, where the difference is larger.  

The 3D numerical simulations give results that are lower than the physical model test for 

downward flow, and higher for upward flow. The numerical simulations give the highest ratio 

between head loss in the upward and downward directions.  

The findings also shows a significant impact on the pressure development and dampening of 

mass oscillations by inserting a surge tank throttle, as was found in the literature review. The 

two throttles tested in the physical model reduced the maximum pressure by 5.2% and 3.9% 

for the smallest and largest throttle diameter respectively. This was with the use of the scaled 

maximum discharge from the prototype.  
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Sammendrag 

Formålet med denne masteroppgaven er å designe en strupning i et svingekammer, og deretter 

sammenligne de forventede falltapsfaktorene med resultater fra tredimensjonale numeriske 

simuleringer og fysiske modellforsøk. En litteraturstudie på strupningseffekter og rådende 

forskning innen strupningsdesign er også en del av oppgaven. I tillegg diskuteres effekten 

som oppnås ved å installere en strupning i den fysiske modellen. 

Litteraturstudien viser at strupninger har stor innvirkning på demping av massesvingninger i 

vannkraftanlegg. I tillegg vil en riktig designet strupning senke volumbehovet for 

svingekammeret, bedre reguleringsstabiliteten til maskineriet og redusere det maksimale 

trykket foran turbinen.  

Det endimensjonale numeriske programmet LVTrans benyttes til å beregne hydrauliske 

transienter i hele systemet, og det tredimensjonale programmet STAR-CCM+ benyttes til å 

beregne falltapet i strupningene. Den fysiske modellen som blir benyttet er en 1:65 modell av 

Torpa kraftverk. Modellen er bygd på Norges teknisk- naturvitenskaplige universitet (NTNU). 

Forsøkene gjennomføres med gjentatt lukkung og åpning av turbinen (resonansavslag) for å 

oppnå størst mulige massesvingninger, en metode benyttet i Østerrike siden 1960-tallet. 

Strupningen blir designet som en asymmetrisk strupning med et forholdsvis enkelt design, 

dette for å redusere byggetiden og kostnadene. Den viktigste parameteren ble funnet å være 

den minste diameteren. Det ble designet og laget to strupninger med ulike diametere for å 

sammenligne de ulike metodene.  

For vannstrømning oppover ga litteraturverdiene akseptable verdier sammenlignet med de 

fysiske modellforsøkene, og det er denne retningen som har de enkleste hydrauliske 

forholdene. For vannstrømning nedover er forholdene mer kompliserte og forskjellene større. 

I begge tilfeller ga litteraturverdiene lavere falltapskoeffisienter enn de fysiske 

modellforsøkene. 

De numeriske simuleringene ga lavere resultater enn den fysiske modellen for vannstrømning 

nedover, og høyere for vannstrømning oppover. De numeriske simuleringene ga dermed de 

høyeste forholdstallene mellom falltapskoeffisientene opp og ned.  

Resultatene viser også en klar innvirkning på trykkutviklingen og dempingen av 

massesvingningene når en strupning blir satt inn i modellen. Dette bekrefter funnene fra 

litteraturstudien. De to strupningene som ble testet reduserte det maksimale trykket med 5.2% 

og 3.9%, henholdsvis for den minste og største diameteren. Dette med den skalerte maksimale 

vannføringen fra prototypen.   
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1 Introduction 

The scope of this master thesis is to design and build a surge tank throttle based on literature 

values, test this throttle in a physical model and compare the results with numerical 

simulations. A literature review on the throttle effects and the state-of-the-art throttle design 

should also be carried out as a part of the thesis. The load case for the experiments is a 

multiple closing and opening case to get resonance and bring the system to the maximum 

possible state of oscillations, which is a method used in Austria since the 1960s. The 1D 

numerical program LVTrans will be used to calculate the hydraulic transients in the whole 

system and the 3D numerical program STAR-CCM+ will be used to calculate the throttle 

head loss. In addition, the effects of installing a throttle in the physical model will be 

discussed. The physical model used in this work is a 1:65 scale model of Torpa hydropower 

plant constructed at the Norwegian University of Science and Technology (NTNU). This 

introduction chapter will describe the background for the thesis and the use of surge tanks in 

hydropower systems. 

1.1 Background 

Surge tanks are applied in hydropower plants for dampening of water hammer and to ensure 

regulation stability. In order to improve these properties, a throttle can be constructed in the 

connection between the headrace and the surge tank. Surge tank throttles have not been used 

much in Norwegian hydropower plants, but they are widely used for example in Austria.  

Massive construction of wind and solar power in Europe provides increasing needs for large 

energy storage facilities that can utilize the unregulated power production in periods with 

overproduction. Hydropower pumped storage plants (PSP) are effective for storing large 

amount of energy, and many new PSP projects are currently under development in Austria, 

Switzerland and Germany.  

PSPs are able to shift rapidly between pumping mode and turbine mode, which results in large 

hydraulic transients. Especially in PSPs with surge tanks, throttles are often applied to reduce 

the mass oscillations and enhance the regulation stability of the power plant.  The design of 

the throttles is a complex process, and the throttles are designed individually for each power 

plant to get the best results. Due to the high development rate of new PSPs and to gain better 

understanding of the throttle effects, research is needed in order to further develop this 

technology.  



1 Introduction  

2 

 

1.2 Surge tanks 

When the discharge in a hydropower system changes due to regulations of turbines, valves or 

pumps, elastic shock waves occur in the system. This shock wave will propagate to the 

nearest free water surface, and then be reflected back, and give a large interior pressure in the 

water conduit. To avoid damage on the system and oversizing of valves, gates, turbines and 

pipes, this pressure must be limited. This is done by establish a free water surface closer to the 

turbine (Guttormsen, 2006), either with an open surge shaft or an closed air cushion surge 

chamber. The introduction of a surge shaft or a surge chamber solves the problem with the 

water hammer, but it introduces the new problem of mass oscillations between the surge shaft 

and the reservoir. The mass oscillations will occur both when the discharge increases and 

decreases, and it will continue until the oscillations are dampened out by friction and local 

losses in the tunnel. The water hammer and the mass oscillations will be described in more 

detail in the theory chapter in this thesis.  

Figure 1-1 shows the traditionally hydropower design in Norway, and the state-of-the-art 

design in Norway and Austria. The traditionally Norwegian layout is a low head tunnel from 

the reservoir and almost to a point directly above the power station, and then a pressure shaft 

down to the turbine and a surge shaft up to open air. The state-of-the-art design in Norway is 

to construct an air cushion surge chamber and a direct pressure tunnel from the power station 

to the inlet reservoir (Vereide et al., 2015). An air cushion surge chamber is constructed as an 

excavated underground rock cavern, which is filled with compressed air. The first air cushion 

surge chamber in Norway was built in Driva power plant, and was put into operation in 1973 

(Goodall et al., 1988). Since then nine more are built in Norway, two in China and one in the 

USA (Hu et al., 2007).  

The state-of-the-art design in Austria is a low head tunnel, and a vertical pressure shaft down 

to the power station. The surge tank is constructed as a throttled chamber surge tank 

connected to open air. The throttled chamber surge tank consists of a lower and a upper 

chamber, and a shaft between these two (Vereide et al., 2015). The surge tank throttle is 

usually situated at the transition from the lower camber to the shaft, and the upper surge 

chamber includes an aeration structure.  This surge tank type has been the state-of-the-art 

design in Austria since the construction of the Kaunertal hydropower plant in 1964 (Vereide 

et al., 2015). 
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Figure 1-1: Hydropower surge tank design, modified after Vereide et al. (2015). 

The different layouts have different advantages and disadvantages, and the surge tank system 

must be design individually for each project. For projects with problematic topography like a 

very high or very low overburden, the air cushion surge chamber layout is beneficial. This 

layout also improves the regulation stability due to a free water surface closer to the turbine. 

The air cushion surge chamber has more challenges with the geological conditions, and the 

risk of air escaping into the headrace to cause mayor blow-outs (Goodall et al., 1988). In 

addition, the compressors in the existing power plants have been under-dimensioned for 

today’s requirement to minimize the down-time during inspections and work in the tunnels. 

For instance, the largest power plant in Norway, Kvilldal, uses 45 days to fill the air cushion 

after inspection (Vereide et al., 2014). The traditional Norwegian design and the Austrian 

state-of-the-art layout have less operational challenges, and as long as the benefits for an air 

cushion surge chamber is not high, these designs should be selected (Vereide et al., 2015). 
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2 Literature review 

This chapter presents a literature review of the throttle effect and the state-of-the-art throttle 

design. Most of the articles found on the topic are from Austria, since surge tank throttles 

have been used in many Austrian power plants since the 1960s. In Norway, surge tank 

throttles are not common and little research is done on the topic. This chapter presents the 

findings from the literature review of surge tank throttles.   

2.1 Surge tank throttles 

Surge tank throttles are usually situated at the transition from the lower camber to the shaft or 

in the connection between the headrace and the surge tank. The surge tank throttle is 

constructed to increase the dampening of mass oscillations in the water power system. The 

throttle introduces a singular loss when water is flowing in or out from the surge tank and 

should give a large dampening effect already in the first period of oscillations (Steyrer, 1999). 

The goal is to achieve a new equilibrium state as fast as possible after a change in the flow 

regime (Gabl et al., 2011). Especially for hydropower pumped storage plants (PSP) the 

implementation of a throttle is beneficial due to the massive hydraulic transients occurring in 

the systems. Besides giving a dampening effect, the throttle will also lower the volume 

demand of the surge tank and it will ensure stable and smooth operations for the machines 

(Richter et al., 2012b). In the Austrian layout the introduction of the surge tank throttle will 

decrease the volume demand for both the upper and lower chamber significantly depending 

on the throttle design (Steyrer, 1999). A throttle will also give a higher minimum water 

surface, which can be beneficial if an existing power plant has trouble with too low water 

surface in the surge tank. In the same way the maximum upsurge in the surge tank will be 

lowered. The maximum pressure in front of the turbine can also be reduced with a throttle.  

2.2 Throttle types 

Different design of the throttle will have different effects on the dampening of the mass 

oscillations. A throttle can mainly be designed in three different ways, which have different 

potentials for the ratios between upsurge and downsurge head losses. These throttletypes and 

the possible loss ratios are (Richter et al., 2012a): 

 Symmetric throttle: 1:1 

 Asymmetric throttle: 1:4 

 Reverse flow throttle: 1:50 
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A symmetric throttle has the simplest design and it gives the same singular loss both ways, 

figure 2-1 shows a simple example. The asymmetric throttle is designed to give a higher loss 

when the water is flowing out from the surge tank, figure 2-1 shows an example of an 

asymmetric throttle. The reverse flow throttle (also called vortex throttle) consists of a steel 

torus similar to a spiral casing of a Francis turbine, shown in figure 2-1, and produces a vortex 

flow when water is flowing down. The water is forced to exit the torus through a small 

connection pipe rectangular to the plane of the vortex flow and is then flowing in to the lower 

chamber. This results in a very high pressure loss (Steyrer, 1999). These kinds of reverse flow 

throttles have earlier been used in several high head power plants in Austria, but today only 

the more simple asymmetric throttle is used. This is due to severe dynamic vibrations caused 

by the massive dissipation of energy in the reverse flow throttles (Richter et al., 2015). 

 

 

 

 

 
 

 
Figure 2-1: A symmetric throttle to left, an asymmetric throttle in the middle and a reverse flow throttle (Steyrer, 

1999) to the right. 

A high loss ratio can be beneficial and will give a better dampening effect. Higher throttling 

in upsurge direction results in an increase of the pressure head on the tunnel, but it would 

decrease the necessary volume of the surge tank (Richter et al., 2012a). A high loss 

coefficient for downward flow will give an improved dampening effect, and also a higher loss 

ratio. Figure 2-2 shows how the different throttle types influences on the water level and 

pressure in the state-of-the-art Austrian surge tank design. The figure shows how the 

asymmetric throttle gives a little better dampening effect than the symmetric, and the highly 

improved dampening effect of the reverse flow throttle.  
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Figure 2-2: Different throttles and dampening effect (Steyrer, 1999) 

The pressure in the asymmetric and reverse flow cases is controlled by the water level in the 

aeration shaft, which drops fast because it empties unhindered into the lower chamber. The 

aeration shaft is to prevent column separation in case of under pressure, which can result in 

damages on the main pressure tunnel (Richter et al., 2012a). More simple throttles like the 

symmetric and asymmetric throttles with lower ratios can be constructed without an aeration 

shaft. The aeration shaft should be at least one meter in diameter due to maintenance purposes 

(Richter et al., 2012a).   

2.3 Throttle design process 

The design of surge tank surge throttles are, as mentioned earlier, a complex process and the 

throttles are design individually for each power plant. There is three different methods to find 

the local loss coefficients (Gabl et al., 2014): 

 Literature values 

 Numerical simulations  

 Physical model tests 
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A combination of all three is often used in the design process. Literature values are often used 

as a start, but optimization can hardly be made using only tabular values. They are normally 

just used as a first step before doing 3D simulations and physical model tests (Gabl et al., 

2011).  CFD simulations can then be used to predesign the throttle as they give the possibility 

of testing a large range of geometries for optimization of the throttle. Based on the numerical 

simulations a physical model is often constructed to test the most promising designs to verify 

and compare the loss coefficients. The numerical models have the advantages of flexibility,  

low costs (Gabl et al., 2011), and complete 3D simulations of the entire surge tank in 

prototype scale. However the calculations are time consuming and validation is needed 

(Vereide et al., 2015). The physical models on the other hand will have the advantages of less 

uncertainty, representation of 3D phenomena, visualization of hydraulic behavior, proving 

safety against outflow from aeration structures and measuring of the throttle loss. The 

disadvantages are no similitude for air behavior, time consumption and cost. When the loss 

coefficients are verified, they are applied in 1D numerical simulations to calculate the mass 

oscillations and water hammer behavior of the complete hydraulic system (Richter et al., 

2012a). 

The design load case is the worst multiple switching case, a method used in Austria since the 

1960s (Richter et al., 2015). The 1D simulations are used to bring the system into the 

maximum possible state of oscillation, where the turbines is opened or closed near the flow 

amplitudes. For pumped storage plants, the mode is switched directly from turbine to 

pumping.  

2.4 Asymmetric throttle design 

In this thesis, an asymmetric throttle will be designed and tested, therefore the design 

parameters for this type of throttle will be presented in more detail. The asymmetric throttle is 

chosen because this is the one used in state-of-the-art design in Austria, and it can easily be 

inserted in to the physical model. As described in the method chapter later, the design is 

relatively simple, in order to be able to build it in short time and at low cost. 

The upsurge loss coefficient is determined by the tolerable pressure in the conduit system 

(Richter et al., 2012b). The optimal throttle design gives the lowest pressure in front of the 

turbine, i.e. when the water hammer pressure is equal to the mass oscillation pressure. Figure 

2-3 shows the pressure in front of the turbine in a single shut down situation with an optimal 

throttle, a too much throttled situation and an unthrottled system. The first steep peak comes 

from the water hammer and the seconds wider from the mass oscillations. The optimal throttle 

gives a lower maximum pressure rise and appears to give an improved dampening effect, 

while the situation with too much throttling gives a higher pressure rise from the water 

hammer. The effect of the throttle on the pressure in front of the turbine and on the air 

pressure in the air cushion surge chamber will be further discussed in the discussion chapter.  
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Figure 2-3: Pressure in front of turbine. 

To maximize the ratio between the upsurge and downsurge loss,  the throttle is design as a 

smooth contraction for water flowing up, and as a sudden contraction for water flowing down 

(Richter et al., 2012b). The optimum diameter of the contraction is the one that gives a perfect 

pressure development in front of the turbine. If the diameter is too small this will result in a 

pressure peak in front of the turbine caused by the water hammer, and if the diameter is too 

large this will result in a higher pressure from the mass oscillations, as seen in figure 2-3. The 

loss coefficient for downsurge flow is increased additionally by prolonging the contraction to 

make a sharp crest as seen in figure 2-4. This figure shows some of the design parameters of 

an asymmetric throttle design. The most important parameter is the smallest diameter for flow 

in both directions (Gabl et al., 2011).  

 

Figure 2-4: Asymmetric throttle parameters. 
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In the case of downward flow the length and thickness of the protruding pipe are very 

important for the loss coefficient, but for upward flow these parameters have little influence. 

When the pipe is prolonged into the shaft above, the volume of the dead space around it 

provides room for turbulence and cross flows during downward flow. The length of this pipe 

element is important to get the best effect. Idelchik (1986) gives that a length of 0.5 times the 

smallest diameter of the throttle is enough to get the maximum loss coefficient, and that a 

longer pipe element will not increase the coefficient. In Gabl et al. (2011) the maximum 

required dead zone length is found to be 0.4 m for a throttle with a smallest diameter of 3.0 m. 

Therefore, there is a little uncertainty of the required length, but no source found give any 

longer required length than 0.5 times the smallest diameter. In case of upward flow it has been 

found that the local loss coefficient is almost independent of the dead storage size (Gabl et al., 

2011). 

The shape of the end of the protruding pipe also has influence on the loss coefficient.  There is 

found that by chamfering the edge at an angle of 45 degrees on the outside, the loss factor will 

increase with about 15 % (Richter et al., 2012b), see figure 2-5. When water flows out of the 

surge tank a great part of the water will have to find the exit through the orifice circulating 

along the wall. This circulation forces a contraction of the flow in combination with high 

water velocity at the center of the orifice. Instead of chamfering the edge an even thinner 

protruding pipe could be used and give the same results, but a minimum of steel thickness is 

necessary. The relation between thickness of the edge and the smallest diameter is also 

described by Idelchik (1986) to have a great impact on the local loss coefficient. A relatively 

small increase in the thickness of the edge of the protruding pipe will give a lower loss 

coefficient.  

The converging angle of the throttle will effect the coefficients in both directions. Within the 

normal limits for an asymmetric throttle the losses in case of upward flow is relatively small, 

and in case of downward flow they are relatively high. The different losses will be described 

in more detail in the theory chapter. 

 

Figure 2-5: Variation in throttle design, based on Richter et al. (2012b). 
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Figure 2-5 shows an asymmetric throttle in the transition between the lower chamber and the 

shaft in a state-of-the-art Austrian layout. There has been found that there is a negligible 

different in the loss coefficient by considering flow through the aeration shaft or not.  But as 

mentioned earlier, an aeration shaft is required in case of large loss ratios to prevent column 

separation and damages on the system. Different positions of the throttle have also been tested 

and no significant influence on the loss coefficient was found (Richter et al., 2012b). The 

reason for testing this is because the aeration shaft is often a part of the main shaft in the surge 

tank, and in case of upward flow a jet will be created and this can give high dynamic forces 

along the concrete and steel lining. Therefore it is beneficial to place the throttle in a way that 

do not give high dynamic forces directly on the aeration shaft. 
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3 Theory 

This chapter presents the theory behind hydraulic transients in hydropower systems. The basic 

equations to calculate transients in hydropower systems, and the characteristic method used to 

solve these equations are outlined. The different methods used to calculate the head loss in the 

asymmetric throttle, and the theory behind the computational fluid dynamics (CFD) modeling 

is also presented.  

3.1 Hydraulic transients 

Non-stationary flow conditions occur when the flow in a system changes over time, as for 

example due to regulation of the turbine. Under such conditions hydraulic transients like 

water hammer and mass oscillations will occur. In some cases the compressibility of the fluid 

will effect the pressure conditions, and in some cases the compressibility will be negligible. 

The two main types of transient flow problems in hydropower are (Guttormsen, 2006):  

 Water hammer, which are elastic shock waves with a short period of a few 

seconds, resulting in a pressure rise in front of the turbine. Compressibility is taken 

into consideration.   

 Mass oscillations, which are waves with a much longer period than the elastic 

shock waves. Compressibility is often neglected, and the fluid is considered to be 

incompressible.  

3.1.1 Water hammer 

Water hammer is an elastic shock wave that occurs in closed water systems when the 

discharge changes due to regulations of a turbine, valve or pump. The pressure wave will 

propagate in the waterway, and will be reflected back when it reaches the nearest free water 

surface (Guttormsen, 2006). This gives a large interior pressure in the water conduit. The 

largest water hammer will occur during the worst multiple switching case. Especially long 

water systems are exposed to high pressure water hammers (Guttormsen, 2006).  

Figure 3-1 shows the development of the pressure wave after a complete shutdown in a simple 

hydropower system. The friction and singular losses are neglected, and an instantaneous valve 

closing is considered.  The velocity in the pipe is v, and the discharge is Q. In the end of the 

pipe there is a valve that is closed at the time t=0 and the length from the valve to the 

reservoir is L. When the valve closes the water velocity just upstream the valve will be zero, 

and the kinetic energy will go over to potential energy in form of the pressure rise dp. This 

pressure wave will propagate against the reservoir with the speed c, which is the speed of 
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sound in water. Because of the elasticity in the water, water from the reservoir will continue 

to flow into the pipe.   

At the time 𝑡 =
𝐿

𝑐
 the pressure wave has reached the reservoir, and it will be reflected back 

against the valve. At the same time the water in the pipe will run back to the reservoir due to 

the stored strain energy in the pipeline cannot be sustained.  

At the time 𝑡 =
2𝐿

𝑐
  the pressure wave has reached back to the valve, and in this moment the 

pressure in the pipe is the same as before the shutdown. The water will still run back to the 

reservoir, and it will develop an under pressure wave travelling from the valve to the reservoir 

with the speed c.  

At the time 𝑡 =
3𝐿

𝑐
 the water velocity in the system is zero and the negative pressure wave will 

be reflected back to the valve. 

When 𝑡 =
4𝐿

𝑐
 the cycle is completed, and this wave oscillations will continue until the energy 

is dissipated by friction, which is not been considered in this simplification.  

To avoid damage on the system and oversizing of valves, gates, turbine and pipes, this 

pressure must be limited. This can practically be done in two ways: 

 slower regulation of the systems 

 make the distance to the nearest free water surface shorter 

To regulate the system very slow will usually be unacceptable because of requirements in the 

regulation of the systems, and due to loss of water. Then the only acceptable solution is to 

establish a free water surface closer to the turbine (Guttormsen, 2006). This can be done in 

two ways:  

 an open surge shaft 

 an air cushion surge chamber 

The open surge shaft has been the traditionally way of dealing with the water hammer in 

Norway. This is an open shaft from the headrace tunnel and up to the surface. The air cushion 

surge chamber is the state-of-the-art design in Norway, and consists of a closed chamber with 

compressed air. The air cushion surge chamber works in the same way as a surge shaft, but 

with no connection to the surface. Figure 1-1 in the introduction shows the two different 

types.  
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Figure 3-1: Development of water hammer, based on Guttormsen (2006) 
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3.1.2 Mass oscillations 

The introduction of a surge shaft or an air cushion surge chamber solves the problem with the 

water hammer, but introduces the new problem of mass oscillations between the surge shaft or 

air cushion surge chamber and the reservoir. The mass oscillations will occur both when the 

discharge increase and decrease. The period of the water hammer is much shorter than the 

period for the mass oscillations, and it will be dampened out already when the mass 

oscillations are in the beginning of its development. This allows these two problems to be 

solved separately (Guttormsen, 2006).  

Fig 3-2 shows the principle of mass oscillations for a simple power plant with a surge shaft, 

where the graph to the right shows the water level development in the surge shaft over time.  

When the turbine is open and the discharge is stable in situation A), the water level in the 

surge shaft will be stable at a level z0 under the water level in the reservoir, and the system is 

in equilibrium. The distance z0 is due to the head loss in the in the tunnel between the 

reservoir and the surge shaft caused by friction and local losses (head loss will be described in 

more detail in chapter 3.4). 

When the discharge changes, the system is no longer in equilibrium, because the head loss is 

no longer the same as z0, and mass oscillations will occur. The maximum impact comes from 

the worst multiple switching case. The maximum water level amplitude in the surge shaft 

follows a closure, while the maximum downsurge will follow an opening. This example 

shows a single shut down situation form full discharge.  

When the turbine is shut down from situation A) and if the water is considered to be 

incompressible, the pressure shaft is essentially plugged, and the incoming water from the 

reservoir will then be forced to flow up in the surge shaft. The water will rise until the 

pressure is high enough to stop the water masses. Situation B) shows the system at the point 

of maximum upsurge. The water level in the surge shaft is in this situation above the water 

level in the reservoir, and the water will then start to accelerate back to the reservoir.  

The water level in the surge shaft has in situation C) decreased to a level below the reservoir, 

and the water will then flow from the reservoir and back to the shaft like in B). This will 

continue until the oscillations are dampened out by the friction and local losses in the tunnel. 
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Figure 3-2: Mass oscillations in power plant with a surge shaft. 

The development of mass oscillations is here shown in a system with a surge shaft, but the 

principle will be the same in a system with an air cushion surge chamber. When the water 

flows from the tunnel and in to the air cushion surge chamber like in situation B), the water 

level will rise until the pressure in the air cushion is high enough to stop the water masses. 

The water will then oscillate back and forth like described for the surge shaft.     

3.1.3 Air cushion surge chambers  

When calculating water levels in an air cushion surge chambers the assumption that the air 

mass in the surge tank  responds adiabatically is used,  and the response is then following 

equation 3.1 (Nielsen, 1990).  

 ℎ𝑝𝑉𝜅 = ℎ𝑝0𝑉0
𝜅 (3.1) 
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This equation can then be derived with respect to V. It then gives an expression of how the air 

pressure in the air cushion surge chamber changes when the volume change:  

 
𝑑ℎ𝑝

𝑑𝑉
=

−𝜅ℎ𝑝0

𝑉0
 (3.2) 

 

Theoretical and laboratory analyses of the thermodynamics of air cushion surge chambers 

have concluded that the air masses would response adiabatically for typical air cushion 

geometries and surge periods. The adiabatic constant κ can then be set to 1,4 (Goodall et al., 

1988). 

3.2 Basic differential equations 

The equation of motion and the continuity equation are two partial differential equation used 

to describe the transient flow in systems. The derivations of these two equations are found in 

Wylie et al. (1993). 

3.2.1 Equation of motion 

The equation of motion is derived from a control volume shown in figure 3-3. 

 

Figure 3-3: Control volume for derivation of the equation of motion. (Wylie et al., 1993) 

The tube is at all times filled with liquid fluid with mass density ρ. Average pressure and 

velocity in the cross section are assumed. The derivation looks at equilibrium in pressure on a 

controll section with length δx, diameter D and a cross section A. The cross section is a 
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function of x. The tube has a small incline with a angle α agains the horisontal line. After 

some manipulation and simplification this gives the simplified hydraulic-grade-line form of 

the equation of motion only valid for less compressible fluids that flow with low velocity: 

 𝑔
𝜕𝐻

𝜕𝑥
+

𝜕𝑣

𝜕𝑡
+

𝑓𝑣|𝑣|

2𝐷
= 0 (3.3) 

3.2.2 Continuity equation 

The continuity equation is derived from a control volume shown in figure 3-4.  

 

Figure 3-4: Control volume for derivation of the continuity equation. (Wylie et al., 1993) 

The control volume has the length δx, and it moves and stretch only like the inside surface of 

the pipe moves and stretches. The mass law provides that the rate of mass inflow into the 

control volume is equal to the accumulated mass plus the mass flow out. This can be written 

like: 

 −
𝜕

𝜕𝑥
(𝜌𝐴(𝑣 − 𝑢))𝛿𝑥 =

𝑑

𝑑𝑡
(𝜌𝐴𝛿𝑥) (3.4) 

 

After some manipulation and simplification this gives a simplified continuity equation valid 

for low Mach number unsteady flow, and with the pressure replaced by the head using that 
𝜕𝑝

𝜕𝑡
= 𝜌𝑔

𝜕𝐻

𝜕𝑡
 the equation becomes: 

 
𝑐2

𝑔

𝜕𝑣

𝜕𝑥
+

𝜕𝐻

𝜕𝑡
= 0 (3.5) 
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The speed of sound comes in to the equation due to the elasticity in the water and the pipe. 

3.3 The method of characteristics 

There is no general solution of the partial differential equations that describes transient flow 

in systems. But by using the characteristic method this equations can be transformed into 

particular total differential equations that can be integrated. This gives finite difference 

equations, which can be solved numerically. The full derivation of the characteristic method is 

described in Wylie et al. (1993). 

The simplified equation of motion (3.3) and continuity equation (3.5) are defined as L1 and L2: 

 𝐿1 =  𝑔
𝜕𝐻

𝜕𝑥
+

𝜕𝑣

𝜕𝑡
+

𝑓𝑣|𝑣|

2𝐷
= 0 (3.6) 

 

 𝐿2 =
𝑐2

𝑔

𝜕𝑣

𝜕𝑥
+

𝜕𝐻

𝜕𝑡
= 0 (3.7) 

 

By introducing an unknown multiplier λ equation (3.6) and (3.7) are combined to: 

 𝐿 = 𝐿1 + 𝐿2 = 𝜆 (
𝜕𝐻

𝜕𝑥

𝑔

𝜆
+

𝜕𝐻

𝜕𝑡
) + (

𝜕𝑣

𝜕𝑥
 𝜆

𝑐2

𝑔
+

𝜕𝑣

𝜕𝑡
) +

𝑓𝑣|𝑣|

2𝐷
= 0 (3.8) 

 

By substitution and rewriting this gives two pairs of equations, one for the positive value of c, 

and one for the negative value: 

   

 𝐶+: {

𝑔

𝑐

𝑑𝐻

𝑑𝑡
+

𝑑𝑣

𝑑𝑡
+

𝑓𝑣|𝑣|

2𝐷
= 0

𝑑𝑥

𝑑𝑡
= +𝑐

 

(3.9) 

 

(3.10) 

 

 𝐶−: {
−

𝑔

𝑐

𝑑𝐻

𝑑𝑡
+

𝑑𝑣

𝑑𝑡
+

𝑓𝑣|𝑣|

2𝐷
= 0

𝑑𝑥

𝑑𝑡
= −𝑐

 

(3.11) 

 

(3.12) 

 

The two original partial differential equations has been converted to two total differential 

equation with the use of two real values of λ. C
+
 holds when the pressure wave propagating 

with the flow, and C
-
 when its propagating against the flow (Nielsen 1990). The solution can 

be visualized as it develops on the xt-plane. Equation (3.10) and (3.12) plots as two straight 
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lines as shown in figure 3-5. These two straight lines are the “characteristic lines” along 

which equation (3.9) and (3.11) are valid.  

A pipeline is divided in an even number of parts, each with a length of Δx. If the variables v 

and H are known in A, then equation (3.9) can be integrated from A to P along the C
+
 line. 

The same can be done with equation (3.11) along the C
-
 line when the variables are known in 

B. This is resulting in two equations with the same unknown variables in the point P.  

 

Figure 3-5: xt-network for solving the problem in simple pipes (Wylie et al., 1993). 

The C
+
 and C

-
 equations are integrated along the characteristic lines, and gives basic algebraic 

relations that can describe the transient propagation of head and flow in a pipeline. These 

equations are solved for Hp and can then be written like:  

 𝐶+: 𝐻𝑃 = 𝐻𝐴 − 𝐵(𝑄𝑃 − 𝑄𝐴) − 𝑅𝑄𝑃|𝑄𝐴| (3.13) 

 

 𝐶−: 𝐻𝑃 = 𝐻𝐵 − 𝐵(𝑄𝑃 − 𝑄𝐵) − 𝑅𝑄𝑃|𝑄𝐵| (3.14) 

 

where B is called the pipeline characteristic impedance, and is a function of the physical 

properties of the fluid and the pipeline: 

 𝐵 =
𝑐

𝑔𝐴
 (3.15) 

 

𝑅𝑄𝑃|𝑄𝐴| and 𝑅𝑄𝑃|𝑄𝐵|gives the friction loss over the reach Δx. R is the pipelines resistance 

coefficient: 
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 𝑅 =
𝑓∆𝑥

2𝑔𝐷𝐴2
 (3.16) 

 

The head and discharge in every iteration step can then be found by some simplification and 

manipulation of equation (3.13) and (3.14) as: 

 𝐻𝑖 =
𝐶𝑃𝐵𝑀 + 𝐶𝑀𝐵𝑃

𝐵𝑃 + 𝐵𝑀
 (3.17) 

 

 𝑄𝑖 =
𝐶𝑃−𝐶𝑀

𝐵𝑃 + 𝐵𝑀
 (3.18) 

 

The subscript notation used in the equations is shown in figure 3-5. i refers to any grid 

intersection in the x direction, and subscripted values of H and Q at each section is either 

given as initial conditions, or available from the preceding time step. Figure 3-5 shows that 

for every other time step the endpoints are used to find the solution, it is therefore important 

to use appropriate boundary conditions. Literature about boundary conditions can be found in 

Wylie et al. (1993).  

3.4 Head loss 

Head loss, or pressure loss, is loss of energy due friction and local disturbances of the water 

flow. In hydropower plants the local losses are usual very small compared to the friction loss, 

and they are therefore often neglected in more simplified estimations (Guttormsen, 2006). 

3.4.1 Friction loss 

Friction loss is caused by friction between the water and the pipe along the entire length of the 

pipe. The friction loss along a straight pipe with a constant cross section is calculated from the 

Darcy-Weisbach equation (Crowe et al., 2009): 

 ∆𝑝 = 𝑓
𝐿

𝐷

𝜌𝑣2

2
 (3.19) 

 

The friction factor f can be found with the Moody diagram (Moody and Princeton, 1944). 

Equation (3.19) can be written in terms of head loss in mWC by substituting ∆𝑝 = 𝜌𝑔ℎ𝑓: 

 ℎ𝑓 = 𝑓
𝐿

𝐷

𝑣2

2𝑔
 (3.20) 
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3.4.2 Local loss 

Local pressure losses are caused by changes in the pipe geometry, for example expansion, 

contraction, bending and valves. The local losses can be expressed with the following 

equation (Idelchik, 1986): 

 ∆𝑝 = 𝜉
𝜌𝑣2

2
 (3.21) 

 

Or as head loss and mWC: 

 ℎ𝑓 = 𝜉
𝑣2

2𝑔
 (3.22) 

 

ξ is a pressure loss coefficient, and values for different local loss conditions can be found in 

literature, for example from Idelchik (1986).  

3.5 Local loss coefficients 

The local loss coefficient for the most important processes in the asymmetric throttle design 

will be presented in this chapter.  

3.5.1 Smooth contraction 

Transition from a larger section to a smaller section through a smoothly converging nozzle 

gives irreversible loss from the total pressure. The loss coefficient depends on the converging 

angle and the area ratio. At large angles (α > 10°) and area ratios (n0 < 0.3) the water will 

separate from the walls after the contracting section, and this is the main source of the local 

losses. The losses will increase all the way up to an angel of 180°, which will give a sudden 

contraction in the cross section. The local loss coefficient of a converging nozzle is given in 

equation (3.23) (Idelchik, 1986): 

 
𝜉𝑙𝑜𝑐 = (−0.0125𝑛0

4 + 0.0224𝑛0
3 − 0.00723𝑛0

2 + 0.00444𝑛0 − 0.00745) 

 (𝛼𝑝
3 − 2𝜋𝛼𝑝

2 − 10𝛼𝑝) 
(3.23) 

  

where: 

 𝑛0 =
𝐴𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒

𝐴𝑝𝑖𝑝𝑒
 (3.24) 

 

 𝛼𝑝 = 0,01745𝛼 𝑟𝑎𝑑 (𝛼 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠) (3.25) 
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Within the limits 10 < α < 40° is the resistance coefficient at a minimum, and is practically 

constant and equal to ξ = 0.05 (Idelchik, 1986).  

3.5.2 Sudden contraction 

The flow at the entrance into a protruding pipe is depending on two relationships:  

 
𝑇ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠: 

𝛿1

𝐷ℎ
=

𝑃𝑖𝑝𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 

 

(3.26) 

 

 𝑇ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 
𝑏

𝐷ℎ
=

𝑃𝑖𝑝𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 (3.27) 

 

δ1 is the thickness of the edge of the protruding pipe. The loss coefficient is at a maximum 

when the wall is very sharp and thin and when the pipe is at an infinite distance from the wall 

(in theory 0.5 times the smallest diameter). When the flow enters the pipe it separates by 

inertia from the inner surface close behind the entrance. The separation of the flow and the 

inducted formation of eddies is the major source of the pressure loss. The pipe length b gives 

a dead storage around the protruding pipe that provides room for turbulences and cross flows 

which also contributes to the loss coefficient.  

 

Figure 3-6: Schematic diagram of flow with a sudden contraction (Idelchik, 1986). 

The local loss coefficient with a sudden contraction from a large to a small cross section is 

given with (Idelchik, 1986):  

 𝜉 = 𝜉′ (1 −
𝐴2

𝐴1
)

𝑚

 (3.28) 

 

𝜉′ is a coefficient which depends on the relative thickness and distance, and is the loss 

coefficient used for an inlet from a much larger area (reservoir). This coefficient can be found 

in Idelchik (1986). The exponent m is depending on the inlet conditions and can be assumed 

equal to 1.0 for b/dh > 0.01.  
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3.5.3 Smooth expansion  

The local loss coefficient for a smooth expansion can be calculated with equation (3.29) 

(Idelchik, 1986) when the converging angle is less than 40°. The local losses for converging 

angles higher than 40° can be found in diagram 5-2 in Idelchik (1986). 

 𝜉𝑒𝑥𝑝 = 3.2 tan (
𝛼

2
) (tan

𝛼

2
)

1
4

(1 −
1

𝑛1
)

2

 (3.29) 

 

where: 

 𝑛1 =
𝐴𝑝𝑖𝑝𝑒

𝐴𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒
 (3.30) 

 

With converging angles up to 40 - 50° the loss coefficient is smaller than for a sudden 

expansion, but when the  converging angles is 50 - 90° the loss coefficient will be larger than 

a sudden expansion. From 90° the loss coefficient will drop and become close to the sudden 

expansion loss. Therefore there is no point to use converging angles higher than 40 - 50° if a 

minimum loss is required. For a downward flow there is beneficial to have a converging angle 

between 50-90°, to get the highest loss coefficient.   

3.5.4 Sudden expansion 

A sudden expansion of a pipe cross section area gives rise to shock waves. In an abruptly 

expanded section a jet is formed which is separated from the remaining medium by a 

boundary surface that disintegrated into strong vortices. The vortices will develop and 

gradually disappear while the flow will spread over the cross section in a length of 8 to 12d2. 

The velocity distribution upstream of an abrupt expansion is never uniform, and this 

substantially contributes to the losses (Idelchik, 1986).  

 

Figure 3-7: Schematic diagram of flow at a sudden expansion (Idelchik, 1986). 

The local loss coefficient due to an sudden expansion can be calculated with equation (3.31) 

(Idelchik, 1986). 
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 𝜉𝑙𝑜𝑐 =
1

𝑛2
+ 𝑁 −

2𝑀

𝑛
 (3.31) 

 

where: 

 𝑛 =
𝐴2

𝐴1
 (3.32) 

 

The values of N and M can be calculated with equation (3.33) and (3.34).  

 𝑁 =
(2𝑚 + 1)3(𝑚 + 1)3

4𝑚4(2𝑚 + 3)(𝑚 + 3)
 (3.33) 

 

 𝑀 =
(2𝑚 + 1)2(𝑚 + 1)

4𝑚2(𝑚 + 2)
  (3.34) 

 

The factor m can vary from 1 to ∞, and is determined by the velocity profile over the cross 

section just upstream the expansion. At m = 1, the velocity profile has the shape of a triangle, 

and already from m = 10 the shape is almost like a rectangle.  

3.6 CFD modelling 

Computational fluid dynamics (CFD) uses numerical methods to solve problems involving 

fluid flow. CFD modeling of hydraulic problems is based on solving the Navier-Stokes 

equations, and there are a number of different CFD programs, both commercial and free. The 

program used in this thesis is STAR-CCM +.  

3.6.1 Turbulent flow 

In most of the practical situations with pipe flow the flow is turbulent, which means that the 

flow is unpredictable with vortices, eddies and wakes. Turbulent flow occurs when the 

Reynold number increases, i.e. a velocity increase if the pipe is unchanged. The flow is 

usually (but not necessary) turbulent when the Reynolds number is larger than 4000, and 

when the Reynolds number is lower it is usually laminar. The Reynold number for pipe flow 

is given by:  

 𝑅𝑒 =
𝑣𝐷ℎ

𝜈
 (3.35) 
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3.6.2 The Navier-Stokes equations 

The Navier-Stokes equations describes water velocity, and the equations are derived on the 

basis of equilibrium of forces on a small volume of water in laminar flow (Olsen, 2012): 

 
𝜕𝑈𝑖

𝜕𝑡
+ 𝑈𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
=

1

𝜌

𝜕

𝜕𝑥𝑗
(−𝑃𝛿𝑖𝑗 + 𝜌𝜈 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
)) (3.36) 

 

It is common to use Reynolds Averaged Navier-Stokes equations (RANS) for turbulent flow, 

which is Reynolds averaged versions of the equations. Figure 3-8 shows a time series of the 

velocity at a given location in turbulent flow.  

 

Figure 3-8: Time series of water velocity (Olsen, 2012). 

The velocity is divided into an average value U and a fluctuating value u. These two variables 

are inserted into equation (3.36), and after some manipulation and simplification this gives the 

Navier-Stokes equations for turbulent flow (Olsen, 2012):   

 
𝜕𝑈𝑖

𝜕𝑡
+ 𝑈𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
=

1

𝜌

𝜕

𝜕𝑥𝑗
(−𝑃𝛿𝑖𝑗 − 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅) (3.37) 

 

𝛿𝑖𝑗 is the Kronecker delta, which is 1 if i=j and 0 otherwise. The last term is the Reynolds 

stress term, and there are two basic approaches in STAR-CCM+ to solve this: 

 Eddy viscosity models 

 Reynolds stress transport models 

The Eddy viscosity models use the concept of turbulent viscosity to model Reynolds stress 

tensor as a function of the mean flow quantities (CD-adapco, 2015). The most used model is 

known as the Boussinesq approximation (Olsen, 2012): 

 −𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ =  𝜌𝜈𝑇 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+ 𝑈𝑗

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

3

2
𝜌𝑘𝛿𝑖𝑗 (3.38) 
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𝜈𝑇 is the turbulent eddy viscosity, which can be solved by several other sub models like k-

epsilon, k-omega and Spallart Allmras. The k-epsilon model will be used in the simulations in 

this thesis. This model solves two partial differential equations, one for the turbulent kinetic 

energy k and one for the dissipation rate ε (CD-adapco, 2015). The main advantage of the 

model is the almost universal constants, and it can therefore be used on a number of various 

flow situations without calibration (Olsen, 2012). The model is also a good compromise 

between accuracy and computational demands. Various forms of the model have been used 

for several decades, and it has been the most widely used model for industrial applications 

(CD-adapco, 2015). 

Reynolds stress transport models solve the transport equations for all components of the 

specific Reynolds stress tensor. These models requires additional memory and computational 

time to be solved compared to the Eddy viscosity models, and they also require a higher 

number of iterations to obtain convergence (CD-adapco, 2015). 

3.6.3 Grid 

A basic concept of CFD modelling is to divide the fluid geometry into a set of finite cells 

called a grid or a mesh. The Navier-Stokes equations are then solved in each cell or at the 

intersection between them. Grids can be classified according to characteristics like for 

example the structure, shape and orthogonality.  

A grid can be structured or unstructured. In structured grids there is possible to identify the 

grids by an index, but in an unstructured this is not possible. The main advantages of an 

unstructured grid are that is much easier to fit the grid to the geometry, and the disadvantage 

is that a more complex code must be added to the solver to identify the neighboring cells.  

Different cell shapes can be used when creating a grid. In a 3D grid with varying geometry it 

is most common to use tetrahedral, polyhedral or trimmed grid cells. Tetrahedral meshes 

provide an efficient solution, and are the fastest and use the least amount of memory for a 

given number of cells. However, there is need of approximately 5-8 times the number of cells 

to produce the same accuracy as with polyhedral or trimmed cells (CD-adapco, 2015). The 

polyhedral mesh is relative easy to fit and efficient to build, and it provides a balanced 

solution for complex mesh generation problems. The trimmed mesh contains of trimmed 

hexahedral cells that provides a robust and efficient method of producing grids for both 

simple and complex problems (CD-adapco, 2015). Figure 3-9 shows examples of the different 

shapes of cells. 
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Figure 3-9: Polyhedral (left), tetrahedral (middle) and trimmed (right) meshes. 

The orthogonality of a grid is determined by the angle between crossing grid lines, and if all 

angles are 90 degrees the grid is called orthogonal. If some crossing lines are different from 

90 degrees, the grid is non-orthogonal. If the angles are below 45 degrees or over 135 degrees, 

the grid is said to be very non-orthogonal. High orthogonality leads to more rapid 

convergence and in some case better accuracy (Olsen, 2012). 

Other characteristics used to define the quality of grids are the aspect and expansion ratio of 

the grid. The aspect ratio is the ratio between the cells lengths in x, y and z direction, while 

the expansion ratio is the size difference between neighboring cells. Neither the aspect ratio or 

the expansion ratio should be too great, in order to avoid convergence problems and 

inaccuracies (Olsen, 2012).  

3.6.4 Discretization 

Discretization is to transform a partial differential equation into a new equation where the 

variables in one cell are a function of the variables in the neighbor cells. The new function can 

be thought of as a weighted average of the neighboring cells (Olsen, 2012).  Discretization 

can be illustrated with a two dimensional situation, where the concentration in the middle cell 

should be found.  

 

Figure 3-10: Two dimensional discretization molecule. 

The formula for the concentration in the middle cell becomes (Olsen, 2012): 

 𝑐𝑝 =
𝑎𝑤𝑐𝑤+𝑎𝑒𝑐𝑒 + 𝑎𝑛𝑐𝑛 + 𝑎𝑠𝑐𝑠

𝑎𝑝
 (3.39) 
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The notation refers to the directions north, south, east and west, the a-factors are weighting 

factors for the different cells and c is the concentration in each cell. The weighing factor for 

the middle cell is the sum of the neighboring weighing factors (ap=ae+aw+an+as). There are a 

number of different discretization methods, for example the first order upstream scheme and 

the second order upstream scheme (Olsen, 2012).  

3.6.5 Boundary conditions 

Boundaries are surfaces that completely surround and define a region. It is necessary to set 

some boundary conditions to get a closed set of equations that can be solved from the Navier-

Stokes equations (Olsen, 2012). Examples of boundaries are: 

 Inflow boundary 

 Outflow boundary 

 Wall boundary 

There is also possible to split the fluid geometry in half and define a symmetry plane. This 

represents an imaginary plane of symmetry in the simulation, which can be beneficial to use 

to save computational power and make the simulations go faster.  

3.6.6 Convergence 

The solution method of the RANS equations is an iterative process. The principle is to guess a 

starting value for the variables and then iterate to find the solution. To decide if the solution 

has converged a criteria is selected, usually based on the residuals. The residuals are a 

measure of the difference between the correct values and the values in the current iteration. 

Low residuals indicates that the solution is converging (Olsen, 2012). 
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4 Method 

This chapter describes the models and the methods used in the thesis. It includes a description 

of the physical model and how it is used, a description of the setup and calibration of a 1D 

numerical model of the system and the 3D numerical modeling of the surge tank throttle 

effect.  

4.1 Physical model 

The physical model used in this thesis is a 1:65 scale model of Torpa hydropower plant 

constructed at NTNU.  

4.1.1 About the physical model 

The physical model is a part of a research program at NTNU, which has been initiated to gain 

better understanding of the physical properties of air cushion surge chambers, and to further 

develop the design of these constructions. The general layout of the model is presented in 

figure 4-1. 

 

Figure 4-1: Physical model layout. 

The water conduit is constructed of stainless steel pipes and the air cushion is constructed in 

plexiglass. The turbine is simulated with a needle valve, and in the connection pipe between 

the headrace and the air cushion it is possible to mount a throttle. The main dimensions of the 

model are presented in table 4-1. 
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Table 4-1: Physical model parameters. 

Part Dimension Unit 

Scaled discharge from prototype 0.001 m
3
/s 

Headrace length 148.0 m 

Headrace diameter 0.10 m 

Surge chamber volume(total) 0.065 m
3
 

Air pressure, absolute 6.51 mWC 

Turbine closing time  1.25 s 

Upper reservoir level 6.88 m 

Lower reservoir level 0.10 m 

As can be seen in figure 4-1, the air cushion surge chamber is placed at a higher elevation 

than the inlet reservoir. This is to obtain the correct relation between pressure and water level. 

This results in incorrect pressures for major parts of the model compared with the prototype, 

but the pressure in vital points, like the air cushion and in front of the turbine, is confirmed to 

be correct (Vereide et al., 2014). In these vital points there are mounted pressure gauges. 

There are mounted pressure gauges five places, where three are directly used in the thesis. 

These are the pressure gauges in the air cushion surge chamber, in the top of the shaft and in 

front of the turbine. The gauge in top of the shaft is located 1.15 meters under center of the 

highest part of the headrace tunnel, while the gauge in front of the turbine is located 0.43 

meters above the turbine (valve). In addition, there are also two gauges in the headrace tunnel. 

The water system of the model is shown in the sketch in figure 4-2.  

 

Figure 4-2: The physical model water system. 
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The water is flowing into the outlet reservoir of the model from the public water system. From 

the outlet reservoir the water flows over a weir to a pumping chamber, where water is pumped 

up to the inlet reservoir. Overflow water from the pumping chamber is collected in a third 

chamber where the water flows out of the model and back to the public system. The inlet 

reservoir also has the possibility of overflowing, which happens when the water amount 

pumped up to the reservoir is larger than the amount used in the system, or the valve is closed. 

This water will also flow back to the public system. From the inlet the water flows through 

the system and down to the outlet reservoir. During operation the water amount in the system 

is usually smaller than the amount pumped into the inlet reservoir to keep constant pressure, 

but in shorter time periods the discharge in the system is increased above the pumping 

discharge. This is done to flush out air before experiments, or to run model tests with higher 

discharge for a limited time.  

4.1.2 About the model tests 

After the model has been drained it is important to run the model for a long time before 

starting experiments, in order to flush air trapped in the model. The model is run for a couple 

of working days after draining, most of the time with approximately 1.0 l/s, but for periods 

with higher discharge to drag out even more air.  

Before conduction an experiment in the physical model after it has not been used for some 

time, it is important that the model runs for some time to ensure that the water and pipes gets 

the same temperature, as the temperature may affect the pressure gauges. The necessary time 

is controlled with the help of the two pressure gauges in the headrace. Shortly after starting 

the model the pressure in these two gauges will not be parallel and linear during stable 

conditions, but after some time these will be parallel and linear and experiments can then be 

conducted.  

The load case for the experiments is a multiple closing and opening case to get resonance and 

bring the system to the maximum possible state of oscillations. Experience in Austria has 

shown that three switching (closed-open) operations are enough to get convergence, so this is 

used in the thesis. It is important to perform the switching at the correct time, to maximize the 

resonance. In the physical model the timing is controlled by watching the pressure 

development in front of the turbine, and open/close the turbine with the experience from the 

1D simulations. After an experiment the discharge in the connection pipe between the 

headrace and the air cushion surge chamber is calculated to check if the closing and opening 

of the turbine was done with correct timing.  

The discharge in the connection pipe between the air cushion and the headrace is not 

measured in the model, so this must be calculated by the pressure change in the air cushion. 

This can be done with equation (3.2) from the theory chapter. The area of the water surface in 

the air cushion is known and is constant since the air cushion is a rectangular box, and the 

adiabatic constant is set to 1.4.  Then the change in air volume is calculated for every time 

step, and then also the discharge in and out from the air cushion can be found.   
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4.2 1D simulations of the system 

The 1D numerical model used in this thesis is performed with the simulation software 

LVTrans. In this part LVTrans will be briefly presented, and then the model will be presented 

in more detail.  

4.2.1 LVTrans 

LVTrans (Lab View Transient Pipe Analysis) is a 1D simulation software for flow in pipe 

systems. It is especially designed for water power systems and most of the elements are 

design for this purpose. The characteristics method, which is described in the theory chapter, 

is used to solve the partial differential equations that describe transient flow in systems. These 

partial differential equations were also described earlier (the equation of motion and the 

continuity equation). This gives an approximately analytical exact solution and the method is 

very quick (Svingen, 2007). 

LVTrans uses LabVIEW (Laboratory Virtual Instrument Engineering Workbench) as 

graphical interface and it is object based. Different elements represents different parts of the 

power plant, such as constant water levels upstream and downstream, pipes, turbines etc. The 

elements are described separately and then connected together. Every element that is not a 

pipe must be connected to a pipe element. The elements are then given input parameters, such 

as diameter, lengths, friction factors, loss coefficients etc.  

The source code of LVTrans is open and editable, so it is possible to change and create new 

elements. But for a general hydropower power plant there is no need for this, since all the 

elements are already made (Svingen, 2007). It is possible to make changes in the system all 

the time while the simulation is running.  The simulation results can be seen as graphs for 

each element, and it is possible to log the desired one.  

4.2.2 Model overview  

The layout of the numerical model used in this project is shown in figure 4-3, with a total of 

12 elements. The inputs for the different elements are described in more detail later in this 

chapter.  
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Figure 4-3: 1D numerical model overview. 

4.2.3 Model input 

Many of the elements require input parameters for total pressure H0 and the discharge Q0 

under stable conditions. These values are used as starting values in the simulations, and they 

have only impact on how long time the system needs to stabilize. The system will adjust to 

the input data for the other elements like the inlet reservoir, outlet reservoir and turbine. 

The factor Cv is used in LVTrans for local losses, and it is often mentioned as Cvp and Cvm. 

Where Cvp is flow in normal direction and Cvm is flow against normal direction. The equation 

for Cv is (Svingen, 2007): 

 𝐶𝑣 =
𝑄0

2

2𝐻0
=

𝐴2𝑔

𝜉
 (4.1) 

 

Where ξ is the same friction factor mentioned in the theory and can be found in literature or 

by calibration to known data. 

Some of the local losses are included in the friction loss in the pipes and the friction factor in 

the pipes is therefore a little bit larges than in reality. The friction factor is also the same as 

described in the theory. 

Reservoirs 

The water levels in the inlet and outlet reservoir are given in table 4-1 in the physical model 

chapter. The loss coefficients are kept unchanged and the head loss is included in the friction 

loss in the pipes.  

Pipes  

All the pipes are made of stainless steel with an inner diameter of 0.1 m. The properties for 

the different pipes are shown in table 4-2, and figure 4-3 shows where they are located in the 
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model. Z0 is the starting elevation of the pipe above datum, and Z1 is the end elevation above 

datum. Datum is placed in the center of the turbine. 

Table 4-2: Properties for the different pipe elements 

Pipe element L (m) Z0 (m) Z1 (m) 

Headrace 147.00 6.50 9.65 

Pipe_to_turbine 9.93 9.65 0.00 

Pipe_from_turbine 7.12 0.00 -0.50 

Connection_1 0.21 9.65 9.86 

Connection_2 0.67 9.86 10.53 

Air cushion surge chamber  

The air cushion surge chamber in the physical model is a rectangular box made of plexiglass, 

where the inside dimensions are 1.00m x 0.43m x 0.15m. The initial air pressure in the air 

cushion is found from the physical model experiments, but the water level in the air cushion 

surge chamber must be calculated. This is done with the following relationship:  

 𝑧𝑖𝑛𝑙𝑒𝑡 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 + 𝑃𝑖𝑛𝑙𝑒𝑡 = 𝑧𝑎𝑖𝑟 𝑐𝑢𝑠ℎ𝑖𝑜𝑛 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 + 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑖𝑟 𝑐𝑢𝑠ℎ𝑖𝑜𝑛 (4.2) 

 

The outside air pressure is also very important to change in the numerical model before every 

experiment when comparing the physical and numerical model. This is measured at the same 

time as the physical model experiments for each experiment. The adiabatic constant must also 

be specified in the air cushion surge chamber parameters, and this is set to 1.4 as mentioned 

earlier. The main parameters of the air cushion surge chamber used for the calibration are 

presented in table 4-3. 

Table 4-3: Main parameters for air cushion surge chamber 

Parameter Value Unit 

Initial water level 10.57 m above datum 

Initial air pressure 6.52 mWC 

Outside air pressure 10.21 mWC 

Initial air volume 0.045 m
3
 

 

Turbine and PID 

The PID unit is connected to the turbine and this is the regulator that regulates the turbine. 

The most important input for the turbine is the design head and discharge, and for the PID 

unit this it is the closing time. These values are the same as for the physical model, and the 

values used for the calibration are shown in table 4-4. The rest of the input parameters are 

found with a excel sheet that comes with the program, but they are not presented here. This 

because they have no significance other than gets the model to run stable, because there is no 

turbine, just a valve. 
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Table 4-4: Main parameters for turbine and PID elements. 

 Value Unit 

Discharge  0.00125 m
3
/s 

Design head 6.78 mWC 

Closing time 1.4 s 

 

The scaled closing time from the prototype gives the closing time to be 1.25 seconds in the 

physical model, with a discharge of 1.0 l/s. In the physical experiments different discharge is 

used by changing the valve opening. This means that the closing time is not always 1.25 

seconds. The closing time used in the numerical model with varying discharges is shown in 

equation (4.3).  

 𝑡𝑐𝑙𝑜𝑠𝑖𝑛𝑔 =
1,25 × 𝑣𝑎𝑙𝑣𝑒 𝑜𝑝𝑒𝑛𝑖𝑛𝑔

45
 (4.3) 

 

This is because 1,0 l/s gives a valve opening of 45%.  

T-connection 

The headrace and the connection pipe to the air cushion surge chamber are connected with a 

T-connection, as shown in figure 4-3. It has one loss coefficient for each part, but these are all 

kept unchanged, and the loss is included in the friction loss of the pipes.  

Throttle 

The throttle element has one local loss coefficient for upward flow and one for downward 

flow. These values are set to the default settings in the calibration, where there is no throttle in 

the model, and are later changed to find the throttle loss coefficients.   

4.2.4 Calibration  

When the model is set up with all the initial values and information as described, it has to be 

calibrated. This is done by comparing the numerical model with a physical model experiment 

with no throttling and a single full shutdown situation.  

The friction coefficient in the pipes is found by trial and error and is kept the same for all pipe 

elements. The pressure in the air cushion and in front of the turbine during steady state is used 

to calibrate the model. The friction factor is found to be 0.11. The high friction factor is 

because there are high singular losses in the pipes due to bends and valves. Figure 4-4 shows 

the pressure development in the air cushion after a single full shutdown, and the pressure 

development in front of the turbine is shown in figure 4-5.  
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Figure 4-4: Pressure in the air cushion surge chamber. 

 

Figure 4-5: Pressure in front of the turbine. 

It is important for the calibration of the model to notice that the gauge in front of the turbine is 

located 0.43 m above the valve that simulates the turbine, and take this in to the calculations 

of the pressure in front of the turbine.   

As can be seen, the physical model has higher dampening than the numerical model. This is 

most probably caused by the non-stationary friction losses which are not properly represented 

due to the friction model in the equation of motion. In the equation of motion the friction 

losses are calculated with Darcy-Weisbach equation with the speed expressed like: 

 𝑣2 = 𝑣|𝑣| (4.4) 

 

The simplifications assume the friction loss under unstable conditions to be the same as the 

friction loss under steady conditions with the same discharge, and the absolute sign gives the 

friction force to always be in the opposite direction than the water velocity. Figure 4-6 A) 
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shows how this simplification looks like in principle when the flow turns from one direction 

to the other. The velocity profile is in reality more like in 4-6 B) when the flow turns from one 

direction to the other. The figure shows that the numerical model will have too little 

dampening effect compared to the physical model (Nielsen, 1990). 

 

Figure 4-6: Velocity profiles in pipes when the flow turns around (Nielsen, 1990).  

The period is also a little bit different, and it has been found that the period in the numerical 

model is constant with 20 seconds, while the period in the physical model varies between 21 

and 23 seconds. This can possible be explained by the conditions in the inlet reservoir in the 

physical model. This is pretty small and has the opportunity of overflowing, which is shown 

in figure 4-2. When the water oscillates in to the inlet reservoir, the water level will rise a 

little and it will flow over. This may give some errors in the period, and also give a higher 

dampening effect. If this water level rise is scaled up it is too large compared to the prototype. 

The water level is usually assumed to be constant in calculations due to the size of the 

reservoirs. Another factor that can affect the period is the possibility of air in the physical 

model. This could give reduced cross sections that influence the period, and the dampening in 

the model. Air in the model may also cause significant head loss and capacity reduction. This 

explains why there is so important to run the model for a long time prior to experiments to 

flush air. 

4.2.5 About the simulations 

The load case for the simulations is a multiple switching case, as for the physical model 

experiments. In LVTrans it is possible to monitor the elements, and this is done with the pipe 

element between the headrace and the air cushion surge chamber in order to open and close 

the turbine in the right time. There is also possible to pause the simulations. This makes it 

much easier to get correct timing in the numerical simulations than for the physical model 

tests. The time step is set to 0.001 seconds for both the calculation and the logging. This is to 

ensure all details to be captured in both the calculations and the logs.    

The most important elements are monitored and logged, and afterwards the data is exported to 

Excel for post-processing. These include the turbine, the connecting pipe, the headrace and 

the air cushion surge chamber. The log from the connection pipe is used to determine the 
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timing of the opening and closing and to find the water flow in this pipe for use in the 3D 

numerical simulations of the throttle effects. The headrace log is used to verify the discharge 

and the air cushion surge chamber gives the air pressure in this place.   

4.3 Physical modelling of the surge tank throttle 

The 1D numerical model of the whole system was used to find the loss coefficients for the 

throttle that gave the optimal turbine pressure. These values were then compared with 

literature values. The factors Cvp and Cvm are used to describe the losses in LVTrans, and 

equation (4.1) shows the relationship with the factor ξ which is found in literature. The 

throttle is made of plexiglass and then tested in the physical model. Due to an error in the first 

LVTrans calculation, the first throttle was designed with a too large discharge. The results 

from these experiments were used in the design of the second throttle, and to compare the 

literature values with the numerical and physical model tests. The error caused the throttling 

to be designed with a larger diameter than what was optimal for the model.  

4.3.1 Throttle parameters 

The throttle design is an asymmetric throttle and the geometry is kept relatively simple, so it 

would be possible to construct it without practical problems. The main parameter for the 

throttle design was found to be the smallest diameter (d) of the throttle. In the design process 

this was kept on a millimeter precision to make it possible to create as designed. The other 

parameters that were found to have impact on the throttling and were used in the design, were 

the converging angle (α), the protruding pipe length (b) and the protruding pipe shape (tp and 

edge shape). These parameters are shown in figure 4-7. 

 

 

Figure 4-7: Throttle parameters 
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The local loss coefficient for the throttle was divided into two parameters in each flow 

direction. In the upward flow the local loss was divided into a smooth contraction followed by 

a sudden expansion. For upward flow a simplification was made by not considering the 

volume of the dead space around the protruding pipe. This simplification is believed to have 

minimal impact, and it has been found that the local loss coefficient for upward flow is almost 

independent from the size of the dead zone. For the downward flow the actual geometry of the 

throttle was used to determine the local loss coefficient, and the loss coefficient was divided 

into a sudden contraction followed by a smooth expansion. Figure 4-8 shows the simplified 

geometry and the actual geometry used to find the local loss coefficients.  

 

Figure 4-8: Simplified and actual throttle geometry. 

The equations and theory used to calculate the different losses are described in the theory 

chapter, but some choices were made: 

 The length of the protruding pipe (b) could according to literature be set to 0.5d, and 

any increasing of the length would not influence on the sudden contraction loss. This 

length was set to 20 mm for both throttles that where made just to ensure the dead 

storage to be large enough since a little increment should not have any negative impact 

on the loss coefficients. This choice also made the throttle easier to build.  

 The value m in the sudden expansion calculation was set to 10. This corresponds to an 

almost rectangular velocity distribution at the sudden expansion section. At the inlet 

through a smooth entry or collector, the water velocity profile would be uniform 

(Idelchik, 1986) and therefore a value of 10 is used, since this indicated an almost 

uniform velocity profile. This parameter is most important when the value is small, 

which is typical for laminar flow, but already from about 8-10 this indicated an almost 

rectangular velocity profile, and the solution would be approximated constant.  
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 A converging angle of 50° was used. According to the theory this should be a good 

compromise between minimum loss in upward direction and maximum loss in 

downward direction, to get a high ratio between downsurge and upsurge losses. 

4.3.2 First throttle design 

The first throttle was designed for a discharge of 1.8 l/s, which was more than intended, but 

an error in LVTrans gave a higher discharge. But the throttle and the throttle effects will still 

be used in the comparison of the different methods, as mentioned in the introduction to this 

chapter. The 1D numerical model of the whole system gave the loss coefficients in table 4-5 

to be optimal for the pressure in front of the turbine. The losses are related to the water 

velocity in the pipe under and above the throttle: 

Table 4-5: First throttle design loss parameters from LVTrans. 

Flow direction Cv ξ 

Upward 2.36x10
-6

 257 

Downward 1.56x10
-6

 389 

 

The throttle was designed with the dimensions shown in table 4-6, where the different 

parameters are shown in figure 4-7.   

Table 4-6: First throttle design parameters. 

Parameter Dimension Unit 

Smallest diameter, d 25 mm 

Converging angle, α 50 ° 
Pipe length, b 20 mm 

Pipe thickness Thin as possible mm 

 

The literature values for the different local losses with the parameters from table 4-6 are 

shown in table 4-7. The loss coefficients are related to the water velocity in the pipe under and 

above the throttle.  

Table 4-7: Local loss coefficients (ξ) for the first throttle design. 

Local loss Upward flow Downward flow 

Contraction 24 163 

Expansion 233 226 

Total 257 389 
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The ratio between the upsurge and downsurge loss coefficient from the literature values was 

1.52. The throttle was built as shown in figure 4-9. The protruding pipe was made with a 

length of 25 mm, which is 5 mm more than intended, but this is supposed to have minimal 

effect on the results. This will just give a little larger dead storage when the water is flowing 

downward. The protruding pipe was made 2 mm thick and approximately 0.6 mm at the edge. 

 

Figure 4-9: First throttle design as built. 

Figure 4-10 shows a photograph of the firs throttle design made with plexiglass. The throttle 

is made out of four pieces of plexiglass, and the division of the throttle is shown in figure 

4-11. Figure 4-12 shows a close up photography of the protruding pipe, and figure 4-13 show 

the throttle when it is mounted in the system. 
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Figure 4-10: Photography of the first throttle design. 

 

 

Figure 4-11: Construction pieces of the throttle. 
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Figure 4-12: Detail photography of the smallest diameter.  

 

 

Figure 4-13: First throttle mounted in the physical model. 

4.3.3 Second throttle design 

The second throttle was designed in the same way as the first throttle, but the experiences 

from the first throttle were used to improve the design. The first throttle design gave a perfect 

pressure development for a discharge of 2.3 l/s in the physical model, and when this was 

recreated with LVTrans the literature values gave to little effect. LVTrans gave a perfect 

pressure in front of the turbine with literature values of a 24 mm throttle with a discharge of 

2.3 l/s. The second throttle was designed for a discharge of 1.0 l/s, and due to the results from 
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the first throttle the second throttle was designed 1 mm larger than the results from LVTrans 

indicated. Table 4-8 shows the upward and downward loss coefficients the throttle was design 

for, where the losses are related to the water velocity in the pipe under and above the throttle. 

Table 4-8: Second throttle design loss parameters from LVTrans. 

Flow direction Cv ξ 

Upward 1.66x10
-6

 364 

Downward 9.76x10
-7

 620 

The dimensions of the throttle are presented in table 4-9, and the parameters are shown in 

figure 4-7.  

Table 4-9: Second throttle design parameters. 

Parameter Dimension Unit 

Smallest diameter, d 23 mm 

Converging angle, α 50 ° 
Pipe length, b 20 mm 

Pipe thickness Thin as possible mm 

The only parameter that is changed from the first throttle design is the smallest diameter, 

which is 2 mm smaller than in the first throttle design. As mentioned before, this parameter is 

the most important for the total loss coefficient in both directions. The literature values for the 

different local losses are shown in table 4-10. The losses are related to the water velocity in 

the pipe under and above the throttle. 

Table 4-10: Local loss coefficients ( ξ) for the second throttle design. 

Local loss Upward flow Downward flow 

Contraction 33 305 

Expansion 331 315 

Total 364 620 

Figure 4-14 shows the second throttle as built. The only difference from the first is the 

smallest diameter, and the throttle is also 3 mm higher due to the decrease in the diameter and 

the same converging angle. The protruding pipe was made 1 mm thin and approximately 0.2 

mm at the edge, so it was both thinner and sharper than the first throttle. The ratio between the 

upsurge and downsurge loss coefficient from the literature values was 1.70 for this throttle. 

The increase is due to the thinner and sharper protruding pipe. 
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Figure 4-14: Second throttle design as built. 

Due to the small changes there are no photos of the second throttle, and the throttle was also 

built in the same way with four pieces of plexigass.   

4.3.4 Local loss coefficient calculations 

The local head loss in the throttle was calculated with the pressure gauge in the air cushion 

and the pressure gauge in top of the pressure shaft down to the valve. The pressure different 

between the two gauges was plotted, and then the pressure different under stable conditions 

were subtracted from the maximum or minimum pressure difference to find the pressure loss 

caused by the throttle. Next, the corresponding water velocity was used to calculate the head 

loss with equation (3.22) from the theory chapter. The water flow was calculated with respect 

to the pressure change in the air cushion as described in the method about the physical model. 

The loss coefficients were calculated at the time with maximum water flow in or out from the 

air cushion surge chamber. The experiments were conducted with a sample frequency of 1000 

Hz, and in order to obtain an acceptable accuracy in the post processing plots the log was set 

to 500 samples per mean, which gives a time step in the plots of 0.5 seconds.  

Each throttle was tested with four different discharges for each method to see if they were 

constant or varied with different discharges in the system. These discharges was the 

maximum scaled discharge from the prototype of 1.0 l/s, the discharges that gave the optimal 

pressure development for the two different throttles, and one in the middle of these two.  The 

first tests of the throttles in the physical model were conducted to find the optimal discharges, 

and then the four discharges were determined, and both throttles were tested for all four. It 

was also conducted experiments with no throttle in the system for all four discharges to 

determine the loss between the two pressure gauges in an unthrottled system.  
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The friction loss is neglected for all calculations, and in case of downward flow the velocity 

height is neglected. Both these simplifications are assumed to have negligible effect on the 

results due to small values.   

4.4 3D simulations of the throttle effects  

The numerical simulations of the throttle are done in STAR-CCM+, and the geometries are 

made in AutoCAD Civil 3D. In this part the methods for the simulations will be presented.  

4.4.1 Geometry 

The fluid geometries are made in the program AutoCAD Civil 3D, which is a commercial 

software application developed and marketed by Autodesk. In both ends of the throttling a 

pipe with length of 15d is added to ensure uniform velocity distribution on the points of 

measuring the pressure loss. In the theory it was found that the vortices developing after a 

sudden expansion will gradually disappear while the flow will spread over the cross section in 

a length of 8 to 12d, which means that 15d will be enough to ensure stable conditions. When 

the geometry is finished it is cut in half to make the computations faster with the help of a 

symmetry plane. When the fluid geometries are finished in Civil 3D, they are exported as 

stereo lithography files (.stl files), that can be imported to STAR-CCM+. This file format only 

describes the surface geometry of a three-dimensional object, without any representation of 

the color texture or other common CAD model attributes (CD-adapco, 2015). 

4.4.2 STAR-CCM+ 

STAR-CCM+ is a commercial CFD program that includes a 3D-cad modeler, meshing tools, 

multiple CFD models and post-processing tools. The program is design to solve problems 

involving flow, heat transfer and stress. It is an object-oriented program, and an object tree is 

provided for each simulation, containing object reports of all data associated with the 

simulation.  

4.4.3 Mesh 

The making of mesh in STAR-CCM+ includes a surface mesh and a volume mesh. To make a 

mesh a 3D file has to be imported or made in the included 3D modeler. STAR-CCM+ has two 

choices for making the surface mesh (CD-adapco, 2015): 

 Surface Remesher 

 Surface Wrapper 

The surface remesher is used to improve and triangulate the overall quality of an existing 

surface and optimize it for the volume mesh models. This is done when the imported surface 
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is closed but composed of bad quality triangles, for i.e. .stl data. Surface wrapper is an option 

that can be used when the imported surface is of poor quality with intersecting surfaces, holes 

or gaps. The result is not necessary of optimal quality, so it usually used with the surface 

remesher to provide a higher quality (CD-adapco, 2015). 

The fluid geometry is imported to STAR-CCM+ as a .stl file, so the imported surface has a 

closed surface, but the quality is not good and suitable for simulations. The surface remesher 

is selected and the base size of the mesh is set to 0.01 m. Figure 4-15 shows an example of a 

surface mesh before and after the surface remesher has been used on an imported .stl file.  

 

Figure 4-15: Imported surface to left and remeshed surface to right. 

The surface mesh is used as a starting point for generating the volume mesh.  The different 

volume mesh models available in STAR-CCM+ are (CD-adapco, 2015): 

 Tetrahedral 

 Polyhedral 

 Trimmed 

 Thin mesh 

The first three are described in the theory, and the last on one is a mesher used to generate a 

prismatic volume mesh for thin regions. The polyhedral volume mesher is chosen in the 

simulations in this work. This mesher is relatively easy and efficient and produces the same 

accuracy as a tetrahedral mesh with approximately five times fewer cells for a given surface 

(CD-adapco, 2015). The base size is the same as was defined for the surface mesh with 0.01 

m.   

In addition to a polyhedral volume mesh a “prism layer mesher” model is chosen. This is a 

model used to generate orthogonal prismatic cells next to wall surfaces or boundaries. This is 

necessary to improve the accuracy of the flow solution. This layer is defined by its thickness, 

number of layers and stretching. The prism layers allow the solver to resolve near wall flow 

accurately such as separation. Depending of the Reynolds number, a turbulent shear layer 
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requires 10-20 cells in the cross-stream direction for accurate resolution of the turbulent flow 

profiles (CD-adapco, 2015). The prism layers also reduce the numerical diffusion near the 

wall. The default setting is used for the thickness and stretching, but the number of prism 

layers are improved to 25. This gave a noticeable improvement of the residual plot. Figure 

4-16 shows a corner in a volume mesh with polyhedral cells and a prism layer with two 

layers.  

 

Figure 4-16: Polyhedral volume mesh with prism layer with two layers. 

There is also possible to specify the mesh density in a specific zone for both the surface and 

the volume mesh with a volumetric control. This makes it possible to make a finer grid in 

critical areas. In these simulations this was done in the zone where the jet from the throttle 

where formed. Figure 4-17 shows the volumetric control boxes that were used for both 

upward and downward flow. The size of the grid cells in the volumetric controls can be set to 

a percentage of the base size, or it can be set to an absolute value. In these simulations it was 

set to 25 percent of the base size, which gives it an absolute size of 0.0025 m. The prism layer 

properties must also be specified, and they are chosen to be the same as for the rest of the 

volume mesh with 25 prism layers and default values on the other parameters.  
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Figure 4-17: Volumetric control boxes for upward and downward flow. 

4.4.4 Physics 

The following choices were made under the physical model selection: 

 Time: Implicit unsteady 

 Material: Liquid 

 Flow: Segregated flow 

 Equation of state: IPAWS-IF97 (water) 

 Energy: Segregated fluid isothermal 

 Viscous regime: Turbulent 

 Turbulence method: RANS equations are automatic selected for turbulent flow 

 Turbulence model: K-epsilon turbulent model 

An implicit method is a method where the dependent variables are defined by coupled sets of 

equations and an iterative method is used to obtain the solution. In CFD the governing 

equations are nonlinear and the number of unknown variables is typical very large, and under 

such conditions implicit formulated equations are almost always solved using iterative 

technics (CD-adapco, 2015). The time step in in the implicit unsteady solver is set to 0.01 

seconds in the simulations.   

The equation of state models are used to compute the density and density derivatives with 

respect to temperature and pressure (CD-adapco, 2015). The IAPWS-IF97 (International 
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Association for the Properties of Water and Steam, Industrial Formulation 1997) allows 

running the simulations with liquid water. These models include calculations of density and 

other thermodynamics properties.  

The segregated flow model solves the flow equations in an uncoupled manner. The model is 

used in constant density flow, but can also handle mildly compressible flow. The segregated 

fluid isothermal model keeps the temperature in the continuum constant, and can be used in 

problems were the temperature variation are small or can be neglected. It would be 

computationally expensive to solve an ordinary transport equation when it would yield a 

nearly constant field of temperature (CD-adapco, 2015). 

The Reynolds number for the flow is calculated with equation (3.35) from the theory. A 

discharge of 1.0 l/s in the system corresponds to a water velocity of 0.13 m/s. The Reynolds 

number is then calculated to be approximately 13 000, which means that the flow is turbulent 

and a turbulent flow viscous regime is chosen.  

The RANS equations are automatic selected when the turbulent flow regime are chosen. The 

“Auto-select recommended physical models” is a function in the physical modeling selection 

that allows the program to select the recommended models. Also when the K-epsilon 

turbulent model is chosen, the program automatic adds two other recommended sub models. 

The RANS equations and the K-epsilon model are both presented in the theory chapter.  

4.4.5 Boundary conditions 

The surface is divided with the “Split part surfaces by angle” function, and then a boundary is 

created for each surface part. Each boundary has a corresponding node in the simulation tree, 

and its own properties. The boundaries used in the simulation and their properties are: 

 Velocity inlet: The velocity is specified as an input value, and this is found from the 

1D simulation in LVTrans.  

 Pressure outlet: The pressure is specified as an input parameter, and this is found from 

the physical model tests. The pressure was set to the same in both directions. This was 

confirmed to not have any effect on the loss calculations by doing a test with changed 

pressure in the downward direction.  

 Symmetry plane: The geometry is cut in half, and this plane is defined as a symmetry 

plane represents an imaginary plane of symmetry in the simulation. 

 Walls: Represent an impermeable surface. All other boundaries are walls. The default 

setting of the wall surface is smooth. This setting is kept in order to find the pressure 

loss caused by the throttle.    

4.4.6 Post-processing 

STAR-CCM+ has several post-processing tools to monitor and analyze the simulation during 

and after it is done. The following tools were used during and after the simulation: 
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 Residual plot 

 Scalar scenes 

 Vector scenes 

 Pressure drop plot 

The residual plot is created automatically, and is useful to monitor during the simulations to 

see how good the simulations run, and how fast it converge. The scalar and vector scenes 

were used to visualize the simulations.  

It is possible to make reports that provide summaries of solution data. A report of the pressure 

drop between the velocity inlet and the pressure outlet has been created. There is also possible 

to make a plot of the report and then monitor it during the simulation and export it to Excel 

when the simulation is stopped. A pressure loss plot has been used to calculate the loss 

coefficient of the throttle.  

4.4.7 Loss coefficient calculations 

The water velocity used as an input parameter in the simulations is found from the 1D 

numerical model, and the pressure in the outlet boundary are fond from the physical model 

and kept the same for water flow in both directions. Table 4-11 shows the water velocities 

before and after the throttle used in the simulations.  

Table 4-11: Water velocities used in the simulations. 

Discharge 

(l/s) 

23 mm 25 mm Unit 

Upward Downward Upward Downward 

1.0 0.16 0.15 0.17 0.16 m/s 

1.4 0.19 0.18 0.20 0.19 m/s 

1.9 0.22 0.20 0.24 0.22 m/s 

2.3 0.24 0.21 0.26 0.23 m/s 

The pressure at the top and the bottom of the throttle was exported to excel, and the head loss 

was found. The local loss coefficients were calculated with equation (3.22) as for the physical 

model experiments. The stopping criteria for the simulations were set to 1000 iteration steps, 

which give 2.0 seconds in physical time.   
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5 Results 

This chapter presents the results from the physical model experiments and the numerical 

simulation of the throttles. The results are presented with the same four discharges for both 

throttles and both methods. The given discharge is through the turbine, and the water flow 

through the throttle will not be the same. All loss coefficients are related to the water flow in 

the pipe over under the throttle. The results are first presented for the physical model, then the 

numerical model and at last the three methods are presented in the same figures for 

comparison. The two throttle designs are presented individually. Finally some additional 

findings are presented.  

5.1 First throttle design 

The first throttle design was made with a smallest diameter of 25 mm and the protruding pipe 

was 2 mm thick and approximately 0.6 mm thick at the edge. Literature values gave loss a 

coefficient of 257 for upward flow and 389 for downward flow, which give a ratio of 1.51 

between the loss coefficients in upward and downward direction. 

5.1.1 Physical model 

Figure 5-1 shows the results from the physical model tests for the 25 mm throttle for upward 

flow, and figure 5-2 for downward flow. The loss coefficients are presented in a stock chart, 

which shows the minimum, maximum and the average values for the four investigated 

discharges. The reason for variation is discussed in the discussion chapter.   

 

Figure 5-1: Stock chart of the loss coefficients with upward flow for the 25 mm throttle. 
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Figure 5-2: Stock chart of the loss coefficients with downward flow for the 25 mm throttle. 

Table 5-1 shows the average loss coefficients and the loss ratios for the physical experiments 

with the 25 mm throttle.  

Table 5-1: Loss coefficients and loss ratios from the physical experiments with the 25 mm throttle. 

Discharge (l/s) Upward Downward Ratio 

1.0 290 447 1.54 

1.4 307 468 1.52 

1.9 303 482 1.59 

2.3 331 485 1.46 

 

5.1.2 Numerical model 

Table 5-2 shows the results from the 3D numerical model simulations with the 25 mm 

throttle.  

Table 5-2: Loss coefficients and loss ratios from the 3D numerical simulations of the 25 mm throttle. 

Discharge (l/s) Upward Downward Ratio 

1.0 259 570 2.19 

1.4 259 572 2.20 

1.9 259 573 2.21 

2.3 259 575 2.22 

400

450

500

550

0.5 1.0 1.5 2.0 2.5

L
o

ss
 c

o
ef

fi
si

en
t 

Discharge (l/s) 

Average loss

coeffisient



  5 Results 

57 

 

5.1.3 Comparison 

Figure 5-3 shows the loss coefficients for the three different methods with the 25 mm throttle 

for upward flow, and figure 5-4 for downward flow.  

 

 

Figure 5-3: Loss coefficients 25 mm throttle upward flow. 

 

Figure 5-4: Loss coefficients 25 mm throttle downward flow. 
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5.2 Second throttle design 

The second throttle design was made with a smallest diameter of 23 mm, and the protruding 

pipe was 1 m thick and approximately 0.2 mm at the edge. Literature values gave loss a 

coefficient of 364 for upward flow and 620 for downward flow, which give a ratio of 1.70 

between the loss coefficients in upward and downward direction. 

5.2.1 Physical model 

Figure 5-5 shows the results from the physical model tests for the 23 mm throttle for upward 

flow, and figure 5-6 for downward flow. The loss coefficients are presented in a stock chart, 

which shows the range for the minimum, maximum and the average values for the four 

investigated discharges.  

 

Figure 5-5: Stock chart of the loss coefficients with upward flow for the 23 mm throttle. 
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Figure 5-6: Stock chart of the loss coefficients with downward flow for the 23 mm throttle. 

Table 5-3 shows the average loss coefficients and the loss ratios for the physical experiments 

with the 23 mm throttle.  

Table 5-3: Loss coefficients and loss ratios from the physical experiments for the 23 mm throttle. 

Discharge (l/s) Upward Downward Ratio 

1.0 436 778 1.79 

1.4 437 797 1.82 

1.9 456 800 1.75 

2.3 464 812 1.75 

5.2.2 Numerical model 

Table 5-4 shows the results from the 3D numerical model simulations of the 23 mm throttle.  

Table 5-4: Loss coefficients and loss ratios from the 3D numerical simulations of the 23 mm throttle. 

Discharge (l/s) Upward Downward Ratio 

1.0 379 856 1.98 

1.4 379 860 1.98 

1.9 378 863 1.99 

2.3 378 864 1.99 

5.2.3 Comparison 

Figure 5-7 shows the loss coefficients for the 23 mm throttle with upward flow for the three 

different methods, and figure 5-8 shows the loss coefficients for downward flow.  
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Figure 5-7: Loss coefficients 23 mm throttle upward flow. 

 

Figure 5-8: Loss coefficients 23 throttle downward flow. 
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throttle are presented. All results are presented for the four investigated discharges and with 

the worst multiple opening and closing load case.   

5.3.1 First throttle design 

Figure 5-9 shows the air pressure in the air cushion surge chamber with the 25 mm throttle. 

The pressure in front of the turbine with the 25 mm throttle is presented in figure 5-10. 

 

Figure 5-9: Air cushion surge chamber air pressure with the 25 mm throttle. 

 

Figure 5-10: Turbine pressure with the 25 mm throttle. 

5.0

5.5

6.0

6.5

7.0

7.5

0 10 20 30 40 50 60 70

P
re

ss
u

re
 (

m
W

C
) 

Time (s) 

1.0 l/s

1.4 l/s

1.9 l/s

2.3 l/s

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

0 10 20 30 40 50 60 70

P
re

ss
u

re
 (

m
W

C
) 

Time (s) 

1.0 l/s

1.4 l/s

1.9 l/s

2.3 l/s



5 Results  

62 

 

5.3.2 Second throttle design 

Figure 5-11 shows the air pressure in the air cushion surge chamber with the 23 mm throttle. 

The pressure in front of the turbine with the 23 mm throttle is presented in figure 5-12.  

 

Figure 5-11: Air cushion surge chamber air pressure with the 23 mm throttle. 

 

Figure 5-12: Turbine pressure with the 23 mm throttle. 
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5.3.3 No throttle 

Figure 5-13 shows the air pressure in the air cushion surge chamber with no throttle installed. 

The pressure in front of the turbine with no throttling is presented in figure 5-14.  

 

Figure 5-13: Air cushion surge chamber air pressure with no throttle. 

 

Figure 5-14: Turbine pressure with no throttle. 
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6 Discussion 

This chapter discusses the results from the experiments. First the results for the throttle effects 

are discussed, and then possible error sources are discussed and at last the additional findings. 

The additional findings discuss the effect the introduction of a surge tank throttle has on the 

physical model.  

6.1 Throttle effects 

Table 6-1 shows the maximum and minimum differences between the physical and numerical 

model for the two throttles in both directions.  

Table 6-1: Physical vs numerical loss coefficients. 

Physical vs numerical 

Throttle Direction Difference Higher/lower 

23 mm Upward 56-86 Higher 

23 mm Downward 52-78 Lower 

25 mm Upward 30-75 Higher 

25 mm Downward 90-123 Lower 

 

Table 6-2 shows maximum and minimum difference between the physical model and the 

literature values for the two throttles in both directions. 

Table 6-2: Physical vs literature loss coefficients. 

Physical vs literature 

Throttle Direction Difference Higher/lower 

23 mm Upward 72-100 Higher 

23 mm Downward 159-193 Higher 

25 mm Upward 34-75 Higher 

25 mm Downward 63-101 Higher 

Table 6-3 shows the maximum and minimum difference between literature loss coefficients 

and the numerical loss coefficients for the two throttles in both directions. 
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Table 6-3: Literature vs numerical loss coefficients. 

Literature vs numerical 

Throttle Direction Difference Higher/lower 

23 mm Upward 14-15 Lower 

23 mm Downward 237-245 Lower 

25 mm Upward 2-4 Lower 

25 mm Downward 186-193 Lower 

Similarities for both throttles in both directions are that the literature values are the lowest, 

and underestimate the head loss coefficient compared to the physical model tests. The 

physical model value also has a tendency to increase with increasing discharge for all 

situations. This increase may be due to the increased water flow which may cause a stronger 

contraction through the throttle, and therefore also a higher loss. In addition, the model had a 

tendency to drag some air that was accumulated and pushed through the throttle in some cases 

of upward flow when the discharge was increased (although the model was run for a long 

time). This may also cause increased loss in upward direction with increased discharge. The 

deviations between the different methods are smallest for the largest throttle, and highest for 

the smallest throttle for all cases except between the physical and numerical in downward 

flow.  For this case the 25 mm throttle has the largest deviation. The numerical and literature 

loss coefficients are both relative stable for all discharges, with a small increase for the 

numerical simulations.  

The 3D numerical simulations give slightly higher loss coefficients than the literature for 

upward flow, and significantly higher for downward flow. This agrees with the findings in 

Gabl et al. (2011), where numerical simulations of a throttle where compared with different 

literature sources, and the literature values was found to be slightly lower for upward flow and 

much lower for downward flow.  

The results for upward flow are quite similar for both throttles, where the numerical and 

literature values are almost the same, and show acceptable correlation to the physical model 

test. The physical values are higher for both throttles. For downward flow the numerical 

values are highest for both throttles. The numerical and physical are quite similar for 

downward flow for the 23 mm throttle, but for the 25 mm throttle the difference is larger. The 

hydraulic conditions in the downward direction are more complicated, and this is also 

reflected in the results. 

The 25 mm throttle has an average ratio of 1.53 for the physical model, 2.2 for the numerical 

and 1.51 for literature values. While the 23 mm throttle has an average ratio of 1.78 for the 

physical model, 1.9 for the numerical and 1.70 for literature values. The reason for the lower 

ratio for the 25 mm throttle in the physical experiments is the thickness and shape of the 

protruding pipe element. This was made 1 mm tick for the 23 mm throttle and 2 mm tick for 

the 25 mm throttle, and also the edge of the protruding pipe was sharper for the 23 mm 

throttle. The thinner and sharper pipe element results in a higher loss in downward direction 

for the 23 mm throttle, and therefore also a higher ratio. The numerical simulations showed 

that this had no effect with upward flow, as the literature review stated. The ratio between the 
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upward and downward loss coefficients are pretty equal for the physical and the literature 

values, while the numerical simulations gives a much higher ratio, especially for the 25 mm 

throttle. This high ratio is a result of the upward loss coefficient is lower than the physical 

value and the downward is higher.  

As the stock diagrams in the result chapter shows, there is a quite large spread in the results 

from the physical model, for flow in both directions, but the largest spread seems to be with 

downward flow. This is the reason for doing several experiments with each throttle and for 

each discharge and only use the best results to find the average values. 

6.2 Error sources  

The physical model used in this thesis is not optimal for only finding the head loss in a 

throttle due to the large construction and the fact that it is built to investigate the whole system 

and not only the throttle. For this purpose a simpler model would be better, and the numbers 

of error sources could then be reduced. For example a horizontal model where there is a 

straight pipe in both side of a throttle, and a possibility for controlling the exact water flow 

through the model would be better to find the throttle loss. In both sides of the throttle 

pressure gauges must be mounted. The layout would give the loss caused by the throttle with 

more accuracy, and the water flow would not be any error source like in model used in this 

thesis. But in this kind of layout the water flow must be found from a numerical model and 

then used in the physical. This kind of hybrid modelling is often used in Austria when the 

surge tanks are investigated. They often build just the surge tank construction and use 

numerical models to calculate the inflow and outflow. The physical model used in this thesis 

is on the other hand good to investigate the effect a throttle have on the whole hydraulic 

system, like the pressure in the air cushion and in front of the turbine. In addition, the 

dampening effect can be tested, and there is no need to use a numerical model to find the 

water flow through the throttle.  

The pressure gauges were last calibrated a year ago, and may therefore not be correct 

calibrated at the time the experiments were conducted. This could introduce a small error in 

the results.  

The water flows used to calculate the velocity in the loss coefficients calculations is not 

measured directly from the physical model, but they are calculated with respect to the 

pressure change in the air cushion surge chamber with equation (3.2) from the theory. An 

adiabatic constant of 1.4 is also assumed. Errors in the water flows would directly affect the 

local loss coefficients found from the physical experiments, and this is one of the most 

important error sources. In further work this should be attempted to be reduced, but it is 

difficult without making a new model.   

The timing of the opening and closing is also important for the results, and this will also affect 

the water flow. For both throttles and each investigated discharge several experiments were 

conducted. After an experiment where conducted the water flow was calculated and the 
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timing was inspected. Only the experiments with good timing were used in further 

calculations. In the numerical simulations it was much easier to get correct timing due to the 

possibility of monitoring the flow in the connection pipe and the possibility of pause the 

simulations. Experiments showed that a little different in the opening and closing did not 

affect the pressure rise and lowering so much, as long as the timing was not too late. In this 

case the water had turned around and it must then change flow direction again. Too late 

timing will have large influence on the maximum and minimum water flow, and the pressure 

development. Figure 6-1 shows the flow in and out from the air cushion surge chamber 

calculated from the pressure in the physical model with a discharge of 1.4 l/s and the 23 mm 

throttle for two different experiments. 

 

Figure 6-1: Water flow in and out from air cushion surge chamber with 1.4 l/s discharge. 

The figure shows an experiment with good timing and one with bad timing for the opening of 

the turbine. This clearly shows the effect on the downward flow, but the upward is almost the 
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shows how small differences in the timing quickly affect the water flow and then also the loss 

coefficients.  

The experiments were conducted with a sample frequency of 1000 Hz, and the log was set to 

500 samples per mean, which was a compromise between accuracy and noise in the 

measurements. As can be seen in figure 6-1, some of the peaks are nice and sharp, but in some 
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cases, and how the water peaks are therefore affecting the loss coefficients. When the peak is 
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results, and calculation would be different. Therefore, 500 samples per mean were chosen as a 

compromise between accuracy and noise. 

The friction is neglected in the calculations of the loss coefficients for all methods, and this 

could be an error source in the physical model since it is not considered but it is still there. 

This simplification is believed to have a very little effect due to the short distance between the 

pressure gauges and due to the smooth surface in the steel pipes. But this may cause the loss 

coefficients from the physical values to be a little too high since this small friction loss is 

included.  

In case of downward flow the velocity height at the lowest pressure gauge is neglected. This 

is assumed to have little impact on the results due to very small values as a result of low water 

velocity in the physical model. In the case of upward flow the pressure shaft is in theory 

plugged, and the velocity is zero, and therefore no velocity height. The other pressure gauge is 

placed in the air cushion, and there is therefore no velocity height here either.   

The center of the T-connection in the physical model is place 12 cm under the bottom of the 

throttle, and this was believed to have influence on the results from the experiments. The 

additional loss was believed to come as a result of the jet flowing right into the pipe wall and 

also some loss due to the change in stream direction. Some numerical simulations with 2.3 l/s 

water flow were conducted to investigate the effect of the T-connection. 2.3 l/s were chosen 

because this would give the highest water velocity in the throttle, and therefore also the 

strongest jet into the pipe wall under the throttle. Figure 6-2 shows a scalar scene from a 

numerical simulation in STAR-CCM+ with 2.3 l/s and the 23 mm throttle. Water is also 

flowing in from the headrace to the right, which is the situation with downsurge flow in the 

multiple switching case.  

 

Figure 6-2: Scalar scene for downward flow with T-connection. 
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The numerical simulations gave a very small increase in the loss coefficient when the T-

connection was included for downward flow in the simulations. This indicates that the loss 

coefficients in the downward direction found from the physical model may be a little larger 

than what is caused just by the throttle. The influence of the T-connection was also 

investigated for the upward flow direction with numerical simulations, and the results gave 

that it had no effect on the loss coefficients.  

The 25 mm throttle was modified due to damage during the first tests. This was a crack in the 

upper flange most probably caused by too hard tightening of the bolts. The lower flange was 

also repaired after a leakage in the transition to the cone part. During the repair a plexiglass 

ring was added on the top of the upper flange for support. The ring had a diameter that was 

just below 0.1 m, and could affect the results. This effect is assumed to be limited due to the 

very small decrease in the diameter. The ring was also much lower than the length of the 

protruding pipe, so in case of downward flow it most probably in the dead storage and will 

not affect the results.  

The European Research Community on Flow, Turbulence and Combustion have published 

Best Practice Guidelines for CFD, where they have classified the errors in CFD in seven 

categories (Olsen, 2012): 

1. Modeling errors when modeling the real world with mathematical equations. 

2. Errors in the numerical approximations due to discretization of the equations. 

3. Errors due to not complete convergence. 

4. Round of errors. 

5. Errors in boundary conditions. 

6. Human errors due to inexperience of the user. 

7. Bugs in the software. 

The possible error sources in the 3D numerical simulations done in this thesis are most likely 

due to human errors due to inexperience of the user. There are a lot of choices to be made, and 

there is easy to make errors or some choices that not are optimal. However the residuals, the 

scalar and the vector plots were satisfactory without any indication of errors. Among the other 

categories, errors in the boundary conditions may be a possible source of error. The velocity is 

found from the 1D numerical simulations and it may therefore not be correct in comparison 

with the physical model. But as the results show the loss coefficient in the numerical 

simulations are pretty constant depending on the discharge, so this is believed to have little 

impact. The pressure is also set to the same in both directions. This was confirmed to not have 

any effect on the loss calculations by doing a test with changed pressure in the downward 

direction.  After all the geometry is pretty simple, and there is not so many uncertainties in the 

boundaries, so the calculations is most probably correct. The other types of error sources 

listed are believed to have little impact on the simulations.  

In the literature values there may be some uncertainties in the formulas and tables found and 

presented, but this will not be discussed in more details. In the choices made in the calculation 

there are most uncertainties connected to the selected value of m. This was set to 10, which 

corresponds to an almost rectangular velocity profile. The m value has the largest impact 
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when it is small, and already from around 8 it has very little impact on the results and the 

solution would be almost constant. But when it is smaller it will quickly affect the results 

much. Small m values correspond to more rectangular velocity profiles, which is typical for 

laminar flow conditions. If a too small value of m is chosen this will give a too high expansion 

loss, and a too high value will give a too low expansion loss. The flow in the physical model 

is clearly turbulent, and the chosen m value should not affect the results much.  

Another uncertainty in the literature value is the thickness of the edge of the protruding pipe. 

This is important for the sudden contraction loss for downward flow, and a small change in 

this will quickly affect the results. The thickness of the protruding pipe and the edge of it was 

measured with a digital caliper, but the edge is still hard to get precisely. A thinner and 

sharper protruding pipe will give a higher loss ratio, and a ticker edge will give a lower loss 

ratio. The other values and coefficients are calculated or found when the rest of the throttle 

parameters are decided, and there are no large uncertainties in these.  

6.3 Additional findings 

In addition to the throttle head loss, the effect the throttle has on the whole system will be 

discussed. In the discussion of the throttle effect the results from the experiments with the 23 

mm throttle is used. This is because this was closest to the optimal for the scaled maximum 

discharge from the prototype, and therefore also had the highest impact with this discharge. 

Figure 6-3 and shows the pressure development in front of the turbine in the physical model 

with no throttle and with the 23 mm throttle. The discharge through the turbine (valve) is 1.4 

l/s, and this gave an almost perfect pressure for this throttle with a multiple switching 

situation.  

 

 

Figure 6-3: Pressure in front of turbine with and without a throttle with 1.4 l/s through the turbine. 
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The figure shows a significant effect by introducing the throttle, where the highest pressure in 

front of the turbine (valve) is 0.5 mWC lower for the throttled experiment. Figure 6-4 shows 

the pressure in front of the turbine with the 23 mm throttle and 1.0 l/s, which is the scaled 

maximum discharge from the prototype.  

 

Figure 6-4: Pressure in front of turbine with and without a throttle with 1.0 l/s through the turbine. 

The pressure in front of the turbine is 0.4 mWC lower at the maximum and 0.2 mWC higher 

for the minimum. The model is a 1:65 scale model of the prototype, which means that the 

maximum pressure decreasing corresponds to 26 mWC in the prototype. The 23 mm throttle 

was close to optimal for a discharge of 1.4 l/s, which means that for 1.0 l/s it could probably 

have a little bit smaller diameter, and the pressure decreasing could be even higher. 

Figure 6-5 shows the pressure development in the air cushion surge chamber for a multiple 

switching situations with and without the 23 mm throttle in the system with a discharge of 1.0 

l/s.  
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Figure 6-5: Pressure in air cushion surge chamber with 1.0 l/s discharge. 

Also for the surge chamber the throttle has a significant impact on the pressure, where the 

maximum air pressure is 0.4 mWC lower with the throttle, and 0.4 mWC higher at the 

minimum. This corresponds to 26 mWC in the prototype. For a power plant with a simple 

surge shaft the maximum and minimum upsurge and downsurge in meters corresponds to the 

pressure in the air cushion for an equivalent cross section. Formulas for the equivalent cross 

section can be found in literature, for example in Nielsen (1990). This means that a similar 

power plant layout with a traditionally Norwegian surge shaft instead of an air cushion surge 

chamber can move the upsurge and downsurge limits with 26 meters if the surge shaft has an 

equivalent cross section to the air cushion surge chamber in the prototype. If the cross section 

is larger this upsurge and downsurge limits will be lower. This can be beneficial if the project 

is on the limits of the topography, and it gives better security against getting free water 

surface in the headrace tunnel. For an existing power plant with such problems, it is clearly an 

option to install a throttle.   

Figure 6-6 shows the water level development in the air cushion surge chamber with and 

without a throttle. The water level is shown in cm above or below the water level during 

steady operation with 1.0 l/s through the turbine.  
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Figure 6-6: Water level in air cushion surge chamber. 

The water level is calculated from the pressure change in the air cushion, and the development 

is therefore the same. The surge tank throttle gives a maximum water level 0.5 cm lower and 

0.6 cm higher for the maximum downsurge. This corresponds to 2.6 and 3.9 meters in the 

prototype. Figure 6-7 shows the pressure development in the air cushion surge chamber after a 
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Figure 6-7: Dampening effect with and without a throttled in the physical model. 
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switching situation. For a single shut down situation the throttle diameter could be even 

smaller, as seen in the first peak in figure 6-3.  

The figures show that the throttle has a significant impact on the pressure development and 

dampening of the whole system. This agrees with the findings in the literature review, where 

the throttle was seen to have impact on the pressure in the air cushion and in front of the 

turbine, better dampening effect on the mass oscillations and lowering of the surge tank 

volume. For later research it could be of interest to see how good the results would be if the 

optimal throttle found in the physical model is scaled up and put into a full scaled power 

plant, in order to find out if it is possible to design a throttle in a model. As a starting point 

this could be done with a 1D numerical model, but it would also be interesting to do research 

on an existing power plant if installation of a surge tank throttle is considered.  
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7 Conclusion 

The three methods give quite similar results with simple hydraulic conditions, but when the 

hydraulic conditions become more complicated they differs more.  

The literature values underestimate the head loss coefficient in both directions compared to 

the physical model test. In upward direction the literature values show acceptable correlation 

to the physical model test, which is the direction with the simplest hydraulic conditions. The 

conditions in the downward direction are more complicated, and this is also reflected in the 

results, where the difference is larger, especially for the smallest throttle. 

The 3D numerical simulations give results that are lower than the physical model test for 

downward flow, and higher for upward flow. The numerical simulations give the highest ratio 

between head loss in the upward and downward directions 

The findings also shows a significant impact on the pressure development and dampening of 

mass oscillations by inserting a surge tank throttle, as was found in the literature review. The 

two throttles tested in the physical model reduced the maximum pressure by 5.2% and 3.9% 

for the smallest and largest throttle diameter respectively. This was with the use of the scaled 

maximum discharge from the prototype.   

7.1 Suggestions for further work 

The physical model used in this thesis is not optimal for only finding the head loss in a 

throttle. In further work it is recommended to build a simpler model to decide the throttle head 

loss and be able to reduce the number of error sources. This may for example be a horizontal 

model where there is a straight pipe in both side of a throttle, and a possibility for controlling 

the exact water flow through the model. In both sides of the throttle pressure gauges must be 

mounted. This layout would probably give the head loss caused by the throttle with more 

accuracy. Such a layout could however not be used to investigate how the throttle affects the 

pressure development in a power plant system, and the optimal throttle loss and discharges 

must be found with numerical simulations.  

It will also be of interest to test how the optimal throttle found from the physical model works 

in a full size power plant, in order to find out if there is possible to design a throttle with the 

help of a physical model. As a start this could be done by upscale the throttle and see how it 

works in a full size 1D numerical model, but if an existing power plant considering to install a 

throttle this would be very useful to do research on.  
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