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ABSTRACT 

 

Topographically complex alpine terrains create a mosaic of diverse microclimates over short 

distances. This study investigated the extent of small-scale variation in temperature and soil 

moisture using dense arrays of temperature loggers and moisture measurements, and how 

this microclimatic variation influenced vascular-plant species richness and intra-specific trait 

variation across five pairs of 40x40 m landscape plots of contrasting complexity in alpine 

tundra at Finse, Norway. Spatial variation in mean temperature within landscape plots was 

in the range of 2-4 °C, similar to what is expected across large altitudinal or latitudinal 

distances, suggesting an important “buffering capacity” of such landscapes in the event of 

climate warming. Rough landscapes contained more species than flatter ones, while patterns 

of within-species phenotypic variation were less clear and differed between species. These 

results suggest that local reshuffling and short-distance migration will be important biotic 

responses to climate change in this system, with assumed associated changes in biotic 

interactions and ecosystem function. The study also highlights the importance of mountains 

as target areas for biodiversity conservation. 

Keywords: Alpine plants, Bistorta vivipara, Climate change, Luzula spicata, Microclimatic 

heterogeneity, Phenotypic plasticity, Soil moisture, Species richness, Temperature, 

Topographic complexity 
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SAMANDRAG 

 

Topografisk komplekse alpine terreng skaper ein mosaikk av ulike mikroklima over korte 

distansar. Dette studiet undersøkte omfanget av variasjon i temperatur og jordvæte, og 

korleis slik mikroklimatisk variasjon påverkar artsrikdom og fenotypisk variasjon hos planter 

innanfor fem par 40x40 m store felt med varierande kompleksitet i alpint terreng ved Finse, 

Noreg. Temperaturvariasjon innanfor felta var i området 2-4 °C, som tilsvarar det ein ventar 

over store avstandar i høgdemeter eller breiddegrad, og indikerer ei ”bufferevne” for slikt 

terreng mot global oppvarming. Komplekse landskap inneheldt fleire artar, medan mønster 

av fenotypisk variasjon var mindre klare. Dette tyder på at lokal omvelting og migrasjon over 

korte distansar vil vere viktige biotiske responsar til klimaendringar i dette systemet, med 

venta endringar i biotiske interaksjonar og økosystemfunksjon knytt til dette. Studiet kastar 

også lys på viktigheita av fjellterreng som målområde for bevaring av biodiversitet. 
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INTRODUCTION 

 

With changing climate, plant species have to cope with new conditions for life. They can 

either migrate to new suitable habitats by shifting their ranges, or stay where they are and 

physiologically adjust or genetically adapt to new conditions. The ability of plants to migrate 

in response to climate change has received considerable attention (e.g. Walther et al. 2005a, 

b; Pearson 2006, Lenoir et al. 2008; 2010, Frei et al. 2010), and plant species have been 

shown to shift their range northwards (Walther et al. 2005b), upslope (Walther et al. 2005a; 

Lenoir et al. 2008) and downslope (Lenoir et al. 2010).  The plastic and adaptive capacities of 

plant populations under the same scenarios are, however, much less well studied. While 

some large-scale species distribution models of plant persistence under climate change have 

predicted tremendous losses of habitat and many local extinctions (e.g. Bakkenes et al. 

2002; Thomas et al. 2004; Thuiller et al. 2005; Gottfried et al. 2012), recent developments 

point towards an important role of local refugia (e.g. Edwards & Armbruster 1989; Luoto & 

Heikkinen 2008; Randin et al. 2009; Willis & Bhagwat 2009; Scherrer & Körner 2011; Ashcroft 

et al. 2012; Lenoir et al. 2013). 

Alpine plants have traditionally been seen as highly specialized to harsh 

environmental conditions (Körner 2003), and therefore especially vulnerable to climate 

change (e.g. Theurillat & Guisan 2001). It is important to remember, however, that 

mountains are usually topographically very complex, creating mosaics of diverse 

microclimates (e.g. surface temperature and soil moisture) over short distances (Armbruster 

et al. 2007; Scherrer & Körner 2011). Topographically complex landscapes will therefore 

make room for a wider range of plant niches, and might be likely locations of climatic 

microrefugia (Ashcroft 2010; Dobrowski 2011). Recent studies using both microloggers and 

thermal imagery (Scherrer & Körner 2010, 2011; Scherrer et al. 2011) confirm that 

topographic variation together with atmospheric decoupling of alpine vegetation creates a 

diverse set of life conditions in such landscapes, giving plants the opportunity to find a new 

suitable habitat just a short distance away, instead of moving long distances up mountain 

sides or towards the poles (Armbruster et al. 2007; Ackerly et al. 2010; Scherrer & Körner 

2011).  Small-scale thermal variation has also been shown to equal or exceed global climate 

warming predictions (Rae et al. 2006; Scherrer & Körner 2011; Graae et al. 2012, Lenoir et al. 
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2013). If we are to predict future changes to alpine plant communities, it is therefore 

important to consider the local variation in the environments of the resident plants, not only 

the mean values of the landscape (Armbruster et al. 2007). Complex landscapes provide 

good natural experiments to study this variation. 

Local topographic variation implies that plant communities are subjected to more 

climatic variation than those in a more homogeneous environment (Körner 2003). It can 

therefore be assumed that such rough landscapes generate higher variation both in species 

composition and within-species phenotypic traits. The relationship between environmental 

heterogeneity and plant species diversity has been studied for a wide range of environments 

and measures of heterogeneity, including topography. Lundholm (2009) reviewed studies on 

this topic up to 2007, and found that 34 out of 41 observational studies that measured some 

aspect of heterogeneity and the corresponding species richness found a positive relationship 

between environmental heterogeneity and species diversity.  The same pattern has also 

been found in experimental studies including manipulation of micro-topography (e.g. Vivian-

Smith 1997).     

One interesting question is whether migration or local adaptation will dominate as 

the biotic response to a warming climate. Although much historical (including 

palaeoecological) evidence point towards migration and community assembly processes 

being most important, the potential for adaptive evolution cannot be overlooked (Ackerly 

2003). Phenotypic trait variation across a landscape, for example within-species variation in 

plant height, leaf area or propagule number, should reflect responses to local differences in 

life conditions, maximizing the fitness of an individual in a particular environment (Ackerly 

2003).  Rough landscapes can in this way be seen as producing a “geographic selection 

mosaic”, with different phenotypes of a given species being favoured at different, yet nearby 

places (Thompson 2005).  

It must be noted that phenotypic variation across a landscape might arise from non-

heritable phenotypic plasticity or heritable genetic differentiation (“ecotypic differentiation”, 

Turesson 1925), or some combination of the two. In landscapes where the scale of 

environmental variation is small relative to typical dispersal distances of its plant species, 

adaptive phenotypic plasticity is expected (Alpert & Simms 2002; Sultan & Spencer 2002; 
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Baythavong 2011). Also on a somewhat larger scale, plasticity is expected to be adaptive as 

long as some gene flow occurs between sub-populations (Sultan & Spencer 2002). 

Armbruster and co-workers (2007) suggest that with high microclimatic heterogeneity, small 

changes in species composition would indicate local adaptation as an important factor, while 

large changes would indicate local replacement of species. Before an attempt can be made 

to disentangle the possible causes of phenotypic variation, however, the extent of 

phenotypic variation across landscapes of contrasting topographic complexity must first be 

established.   

The aim of this study is to investigate if plant communities are more diverse and plant 

phenotypes are more variable within species in topographically heterogeneous mountain 

landscapes than in more homogeneous ones, and how this variation is related to 

microclimatic variation.  Both patterns would then point in the direction of higher adaptive 

capacity in mountainous areas, thereby improving the resilience of such communities to 

climate change. If this is true, it will be important knowledge for both basic climate change 

research, and not least for future conservation efforts. Specifically, it is predicted that rough 

landscapes (1) show higher microclimatic variation (temperature and moisture), (2) contain 

more plant species and (3) contain plants that show higher within-species phenotypic 

variation in selected traits than flatter landscapes. 
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METHODS 

Field site 

The study was conducted at a site near Finse at the Hardangervidda plateau in alpine 

southern Norway (N 60° 36.23', E 7° 33.40'). The site is situated in the low to middle alpine 

zone (centre around 1430 meters above sea level), well above the climatic treeline at about 

1000 m.a.s.l. at Finse (Dahl 1986). The total area of the site encompassing the plots is about 

3 x 105 m2. The vegetation is low-growing alpine tundra in between rocky outcrops, 

dominated by lichens, dwarf shrubs (e.g. Empetrum nigrum, Salix herbacea), forbs (e.g. 

Bistorta vivipara, Silene acaulis) and graminoids (e.g. Luzula spicata, Juncus trifidus, Carex 

bigelowii). Mean summer (June-August) temperature and precipitation for Finse was 6.3 °C 

and 89 mm, respectively, during the normal period 1961-1990 (Norwegian Meteorological 

Institute 2012). 

Study design 

In July 2012 five landscape pairs, each consisting of one “rough” and one “flat” landscape, 

were subjectively placed in the terrain at the site. The landscape pairs were chosen so that 

the two landscapes were as similar as possible in macro-exposure, altitude and general 

community type, and the intra-pair distance was lower than the inter-pair distance (Fig. 1). 

The landscapes were all early melt-off sites (snow-free in early July), and mostly south-

facing. Each landscape plot measured 40x40 m, was parted into 16 quadrants and within 

each quadrant a 0.25 m2 sample plot was placed, following a stratified random distribution 

(Fig. 1).  
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In the south corner of each sample plot, a temperature logger (iButtons, Maxim 

Integrated Products, Sunnyvale, CA, USA) wrapped in matte green duct tape 

(http://www.greenducttape.com) was placed at the soil surface. The loggers were left in the 

plots for three weeks (11th of July to 2nd of August), taking one temperature measurement 

per hour for a total of 505 measurements per logger. The resolution of the data is 0.5 °C, and 

includes mean, maximum and minimum temperature for each logger. For each landscape, 

spatial temperature range (ΔTmean) is defined as the difference between the on average 

warmest and coldest sample mean (i.e. logger mean) within each landscape.  All 

temperature data are given in degrees Celsius (°C).  

Soil moisture was measured in all sample plots on the 10th of August, a humid day 

following some light drizzle in the morning. Moisture was measured using a soil moisture 

sensor (TRIME-PICO, IMKO GmbH, Ettlingen, Germany). Moisture data are treated the same 

way as temperature, and given as moisture percent in the soil.  

Fig. 1. Map of the study site at Finse. Each square shows the position of a landscape plot at the site, 
with numbers inside squares denoting the landscape pair number. The upper left insert shows the 
location of Finse, and the lower right insert shows the sampling design for one landscape plot, with 
sample plots placed within landscape plots following a stratified random distribution.  

Finse 

40 m 

10 m 

0.25 m
2 

http://www.greenducttape.com/
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Field data 

Field sampling was carried out between the 1st and 10th of August 2012. For each sample 

plot, all vascular plant species were recorded. A supplementary species list for each 

landscape was also compiled, by noting any additional species observed within each of the 

16 10x10 m quadrants of each landscape. Species richness of the landscapes was calculated 

at two different scales, namely for sample plots (cumulative species richness of the sample 

plots, “sample richness”) and for the entire landscape (based on supplementary species lists, 

“landscape richness”). Nomenclature for vascular plants follows Elven (2005). 

To investigate the phenotypic variation of plants in the landscapes, the forb Bistorta 

vivipara (L.) Delarbre (Polygonaceae) and the graminoid Luzula spicata (L.) DC. (Juncaceae) 

were chosen as target species based on local abundance. For these species the traits (1) 

plant height, (2) length and width of the longest leaf and (3) propagule number (bulbils for 

Bistorta and capsules for Luzula) were recorded. For each sample plot, the shoot of each 

species closest to the center of the plot were chosen, but not necessarily within the sample 

plot. Plant height was measured in the field using a meter stick. The plant was then collected, 

stored in a plastic bag and taken back to the lab. Leaf length and width was measured using a 

digital caliper, and leaf length x leaf width was calculated as a measure of leaf area.  
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STATISTICAL ANALYSES 

Paired comparisons between landscape types were done using paired t-tests. Due to the 

relatively low number of comparisons, however, p-values from these tests should be 

interpreted with care, and focus should be on effect sizes and biological significance (Yoccoz 

1991). 

Diversity 

The relationship between microclimatic variables and species richness was modeled both 

within (at sample plot level) and between (at landscape plot level) landscapes. At the within-

landscape level, a mixed-effects Poisson regression model (Generalized Linear Mixed-Effects 

Model with Poisson distributed errors, package lme4 [Bates et al. 2012]) was fitted with 

species richness of the sample plots as the dependent variable, and microclimatic variables 

as possible explanatory variables (Table 1). To account for the structure of the data 

(landscapes nested within landscape pairs), landscape and landscape pair was entered as 

random factors. Model simplification was done by stepwise removal of non-significant terms 

until the minimum adequate model was reached (Crawley 2007).  

 

 

Table 1. Microclimatic variables measured within 40x40 m landscape plots and fitted as possible 
explanatory variables in statistical models of trait responses and species richness within and 
between landscapes. sp = sample plot 
Variable   Description 

Within landscapes (sample plot level) 

Mean temperature T(sp) Logger mean temperature 
Min temperature Tmin(sp) Logger minimum temperature 
Max temperature Tmax(sp) Logger maximum temperature 
Moisture M(sp) Moisture sensor measurement 

Between landscapes (landscape level) 

Mean temperature T Mean of logger means within each landscape 
Min temperate Tmin Lowest logger minimum within each landscape 
Max temperature Tmax Highest logger maximum within each landscape 
Temperature range ΔTmean Difference between highest and lowest logger mean 
Mean T variance var (T) Variance of logger means within each landscape 
Max T variance var (Tmax) Variance of logger maxima within each landscape 
Moisture M Mean of moisture measurements within each landscape 
Moisture range ΔM Difference between wettest and driest sample 

Moisture variance var (M) Variance of moisture measurements within each landscape 
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At the between-landscape level similar models were fitted, but with different 

microclimatic variables (Table 1). Separate models were fitted for total landscape richness 

and sample richness. The effect of landscape pair was considered and found to have no 

significant effect at this level, and was therefore not included in the final models. Model 

comparison were based on AICc, the finite-sample corrected Akaike Information Criterion, 

due to low sample size (n=9) at this scale (Burnham & Anderson 2002). 

To investigate correlations between explanatory variables, path analyses (Shipley 

2000; see Lloyd et al. 1994; Rae et al. 2006 for some applications to ecological data) were 

conducted with variables chosen from the models above. All explanatory variables were 

standardized to unit variance (SD=1), to be able to compare effects. In contrast to traditional 

path analysis/structural equation modeling, non-linear relationships between variables and 

non-normal errors were allowed.  Hence, the response variable (SR, which is a count) was 

not standardized, as this allowed fitting Poisson models as above. 

 

Phenotypic traits 

To be able to compare the variation of traits when the means differed, two approaches were 

taken. For each trait/landscape the coefficient of variation (CV, SD(x)/x ) was calculated, to 

produce a relative measure of variation. To test for significant differences in variance, trait 

data were log-transformed before applying Fishers F-Test of homogeneity of variances.  

Relationships between microclimatic parameters and traits were tested using linear 

mixed-effects models (package nlme [Pinheiro et al. 2012]), where landscape nested within 

pair was entered as random effects, and microclimatic variables (Table 1) were entered as 

possible explanatory variables. Model simplifications were done as for models of species 

richness. 

All statistical analyses were performed in the statistical software R, version 2.15.2 (R 

Core Team 2013). 
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RESULTS 

Due to heavy disturbance caused by sheep, through trampling, breaking marking sticks and 

moving temperature loggers, all data from the flat landscape belonging to the first pair (F1) 

are excluded from all analyses. The following results are therefore based upon the four 

remaining landscape pairs, while the data from the rough landscape from the first pair are 

included in statistical models. 

Microclimatic variation 

In addition to the disturbed loggers in the excluded flat landscape, 12 other loggers were 

classified as disturbed and 10 loggers were not found when returning to the field site, 

leaving data from 122 loggers for the following analyses (Table 2).  

The overall mean temperature of the study site was 9.37 °C (SD=0.96, range=7.17-

11.54 °C). The spatial range of the two 

microclimatic parameters was higher in 

the rough landscape in most cases (Fig. 

2), though not statistically significant 

(Paired T-test, P=0.24 for temperature 

range and P=0.18 for moisture range). 

The pattern of within-pair contrasts was 

quite similar for the two variables (Fig. 2), 

indicating similar responses to roughness. 

Additional microclimatic data are 

given in table 2. Variation in temperature 

and moisture was generally higher in the 

rough landscapes than in the 

corresponding flat ones, while mean 

values were more similar across 

landscapes. Maximum temperatures also 

tended to be higher in rough landscapes. 

Fig. 2. Spatial range of (a) mean temperature and (b) 
soil moisture within four flat and four rough 
landscapes. Spatial range is defined as the difference 
between the on average highest and on average 
lowest sample mean of the microclimatic parameters 
within each landscape. 
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Table 2. Microclimatic data from four flat (F) and four rough (R) 40x40 m landscape plots at Finse. 
Sample size (n) is the number of undisturbed temperature loggers in each landscape. The bottom 
row contains p-values from paired t-tests between flat and rough landscapes.  

Landscape n 
Temperature 

 
Soil moisture 

Mean (°C) Min (°C) Max (°C) Var (mean) Var (max) 
 

Mean (%) Var 

2F 13 9.25 0.50 37.50 0.48 18.35 
 

28.67 29.64 

2R 16 8.95 0.50 44.50 1.53 64.07 
 

29.33 40.57 

3F 13 8.33 -0.50 36.00 0.42 23.32 
 

32.99 72.65 
3R 16 9.27 0.50 40.00 0.43 24.63 

 
28.65 121.34 

4F 15 9.58 -1.50 43.50 0.71 30.67 
 

32.45 42.65 
4R 13 9.64 0.50 41.50 0.56 38.90 

 
29.96 62.21 

5F 11 10.40 0.00 43.00 0.36 22.70 
 

35.79 119.80 
5R 15 9.65 -2.00 48.50 0.83 50.78 

 
37.36 238.72 

F vs R 
 

0.97 0.79 0.16 0.29 0.13 
 

0.46 0.14 

 

Species diversity 

A total of 85 species of vascular plants were found in the landscapes (see Appendix A for a 

full species list). The different landscape pairs differed in general richness and species 

composition. Overall, the expected 

higher landscape richness of the rough 

landscapes compared to the flat ones 

was confirmed in all pairs (Fig. 3a), with 

the rough landscapes containing 15-55% 

more species than the paired flat 

landscape. This difference was also 

statistically significant (Paired T-test, 

P=0.04). 

For sample richness, the pattern 

was less clear (Fig. 3b). In pair 2 and 3 

the species richness was clearly higher in 

the rough landscapes, while there were 

small differences in pair 4 and 5, leading 

to a non-significant overall difference 

(Paired T-test, P=0.22).  

Fig. 3. Vascular-plant species richness at (a) total 
landscape scale and (b) cumulative sample richness 
for four rough and four flat 40x40 m landscape plots.  
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Species diversity and microclimatic variation 

Within landscapes, there was a significant 

positive direct effect of logger mean 

temperature on the corresponding sample 

plot richness (GLMM, P<0.01, Fig. 4). 

Maximum temperature had a strong 

indirect effect, through its correlation 

with mean temperature. 

At the between-landscape level, 

for sample richness, the minimum 

adequate model (GLM, Pseudo r2=0.95, 

AICc=56.77) included mean temperature 

(P<0.001) and spatial temperature range 

(P<0.001). Alternative models considered 

had AICc values more than 2 units higher 

than the highest ranked model (Appendix 

B; Table B1).  Path analysis (Fig. 5a) 

indicated an indirect effect of maximum temperature, through positive correlations with 

mean temperature and temperature range.    

For total landscape richness, the minimum adequate model (GLM, Pseudo r2=0.93, 

AICc=61.12), included positive effects of both mean temperature of the landscape (P=0.044) 

and variance in logger maxima within the landscape (P<0.001). Another candidate model, 

containing only absolute maximum temperature within landscapes (GLM, Pseudo r2=0.76, 

P<0.001, AICc=60.37), however, had a slightly lower AICc value (ΔAICc=0.75). Alternative 

models had more than 2 units higher AICc than the highest ranked model (Appendix B; Table 

B2).  Hence, neither of these two models could be excluded. Path analysis (Fig. 5b) revealed 

that spatial variance in maximum temperature had the strongest positive direct effect on 

landscape richness. Again, the effect of maximum temperature appeared to be indirect, 

through its strong correlation with its variance. 

 

Fig. 4. Path diagram showing estimated direct 
(single-headed arrows) and indirect effects of 
microclimatic variables on vascular-plant species 
richness of 0.25 m2 sample plots (n=122) within nine 
landscapes. Correlations between variables are 
shown as double-headed arrows. Microclimatic 
variables are standardized to SD=1. Path coefficients 
are estimated from a GLMM with Poisson-
distributed errors and with landscape and landscape 
pair entered as random effects. ***P<0.001, 
**P<0.01 
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Fig. 5. Path diagrams showing estimated direct (single-
headed arrows) and indirect effects of microclimatic 
variables on (a) cumulative sample richness and (b) 
total landscape richness of 40x40 m landscape plots 
(n=9). Correlations between variables are shown as 
double-headed arrows. Microclimatic variables are 
standardized to SD=1. Path coefficients are estimated 
from a GLM with Poisson-distributed errors. 
***P<0.001, **P<0.01, *P<0.05, ’P<0.1 



18 

 

Intraspecific trait variation 

Results from linear mixed-effects models of trait responses to microclimatic variables within 

landscapes are reported in table 3. While all three traits measured on Bistorta responded 

significantly to microclimatic variation, only plant height did so for Luzula.  

Coefficients of variation for Bistorta and Luzula are presented in tables 4 and 5, 

respectively. For Bistorta there was higher relative variation in plant height in the rough 

landscape in three out of four landscape pairs, while relative variation in leaf area and bulbil 

number was higher in the rough landscapes in all four pairs. The differences were 

statistically significant only for plant height and leaf area in the third pair (Table 4). Relative 

variation in Luzula plant height and leaf area was highest in the rough landscape in three out 

of four pairs, and significantly so for height in the second pair. For propagule number there 

did not seem to be any consistent difference between the landscape types (Table 5). 

 A meta-analysis across traits and landscape pairs revealed that relative 

variation was overall higher in the rough landscapes for Bistorta (Mann-Whitney U-Test, 

P=0.009), but not for Luzula (Mann-Whitney U-Test, P=0.31). 

 

 

Table 3. Results from linear mixed-effects models of trait responses to microclimatic variables. All 
models are fitted with landscape nested within landscape pair as random factors. The minimum 
adequate model is presented for each species/trait.  

Species Trait 
Best model 

Variable Estimate ± SE DF t-value P-value 

Bistorta vivipara 

Height (mm) 

Intercept 107.33 ± 25.72 110 4.17 <0.001 *** 

T(sp) -9.93 ± 3.92 110 -2.54 0.013 * 

Tmin(sp) 6.07 ± 2.65 110 2.29 0.023 * 

Tmax(sp) 1.92 ± 0.57 110 3.37 0.001 ** 

Leaf area (mm2) 

Intercept 586.53 ± 135.76 107 4.28 <0.001 *** 

T(sp) -34.78 ± 13.92 107 -2.50 0.014 * 

Tmin(sp) 24.61 ± 12.99 107 1.89 0.061 ’ 

# Bulbils  
Intercept 23.09 ± 3.00 132 7.70 <0.001 *** 

M(sp) 0.15 ± 0.09 132 1.78 0.077 ’ 
      

    
  

Luzula spicata 

Height (mm) 
Intercept 88.22 ± 17.76 112 4.97 <0.001 *** 

Tmax(sp) 1.26 ± 0.51 112 2.48 0.014 * 

Leaf area (mm2) Intercept 65.99 ± 3.31 135 19.96 <0.001 *** 

# Capsules Intercept 22.72 ± 1.16 135 19.56 <0.001 *** 

***P<0.001, **P<0.01, *P<0.05, ’P<0.1 
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Table 4. Coefficient of variation (CV) values for traits of Bistorta 
vivipara from eight landscapes. F-Tests were performed on 
variances of log-transformed data. 

  Pair Trait Flat   Rough     F15,15 F-test P 

2 

Height 0.19 < 0.27 0.56 0.27 

Leaf area 0.37 < 0.45 0.56 0.27 

# Bulbils 0.36 < 0.38 0.77 0.63 

3 

Height 0.20 < 0.49 0.19 0.002** 

Leaf area 0.33 < 0.66 0.35 0.052' 

# Bulbils 0.27 < 0.51 0.48 0.17 

4 

Height 0.32 < 0.33 1.93 0.21 

Leaf area 0.43 < 0.45 1.09 0.87 

# Bulbils 0.30 < 0.36 0.56 0.27 

5 

Height 0.23 > 0.20 1.56 0.40 

Leaf area 0.45 < 0.50 0.67 0.44 

# Bulbils 0.25 < 0.26 0.85 0.76 

       

       
Table 5. Coefficient of variation (CV) values for traits of Luzula 
spicata from eight landscapes.  F-Tests were performed on 
variances of log-transformed data. 

  Pair Trait Flat   Rough F15,15 F-test P 

2 

Height 0.21 < 0.39 0.22 0.006** 

Leaf area 0.46 < 0.53 0.76 0.61 

# Capsules 0.41 < 0.45 0.83 0.72 

3 

Height 0.23 < 0.35 0.44 0.12 

Leaf area 0.54 > 0.36 2.10 0.16 

# Capsules 0.54 > 0.39 1.24 0.68 

4 

Height 0.24 > 0.20 1.54 0.41 

Leaf area 0.36 < 0.44 1.13 0.82 

# Capsules 0.30 > 0.26 1.21 0.71 

5 
Height 0.19 < 0.23 0.75 0.58 

Leaf area 0.32 < 0.54 0.54 0.24 
# Capsules 0.27 = 0.27 0.93 0.89 
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DISCUSSION 

As expected, spatial variation in microclimatic variables (temperature and moisture) were 

higher in topographically complex landscapes than in flatter ones. This variation was 

associated with, and may have contributed to, higher species richness in rough landscapes, 

although the differences were most pronounced at the larger scale (1600m2) of 

investigation. Patterns of intra-specific trait variation in the two landscape types were less 

clear; there was a trend towards higher variation in rough landscapes for one species but not 

for the other. 

Topographic complexity and microclimatic variation 

While mean temperatures were quite similar across landscapes of contrasting complexity, 

spatial variation in mean and maximum temperatures were comparatively higher in the 

40x40 m landscape plots chosen so as to be micro-climatically heterogeneous than in the 

more homogeneous ones. Moisture variation was also highest in the rough landscape in all 

four pairs, while mean moisture stayed more or less constant. Soil moisture has been 

suggested to respond more strongly to topographic variation than temperature, and to have 

buffering effects on both minimum and maximum temperatures (Fridley 2009, Dobrowski 

2011). There was, however, no correlation between moisture and any temperature variable 

in the present data, indicating that soil moisture plays a more limited role in controlling the 

heat balance in this system. Alternatively soil surface temperature, as measured in this 

study, might be less buffered by moisture than soil temperature below the surface.   

The spatial range of mean temperatures within landscapes were generally highest in 

the rough landscapes, and was in the range of 2-4°C, comparing well to IPCC global warming 

scenarios for the next century (IPCC 2007), as well as results from other field- and modelling 

studies (Scherrer & Körner 2011, Graae et al. 2012, Lenoir et al. 2013). This means that there 

are life conditions within landscape plots similar to what is expected over an elevational 

range of approximately 350-700m (using a standard lapse rate of 5.5 K per kilometer [Körner 

2007]), and a latitudinal range of approximately 2.7-5.5 degrees or 308-616 km (using a lapse 

rate of 0.73°C per degree latitude [de Frenne et al. 2013]). 

These results confirm the importance of landscape-scale studies assessing local 

variation in microclimatic conditions, and calls for caution when interpreting models based 
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on mean values (Armbruster et al. 2007, Lenoir et al. 2013). It is also important to note that 

even the least variable landscape plots in this area contained substantial microclimatic 

variation. Furthermore, the Finse study site is located at moderately high latitude (60°N), 

where microclimatic variation is expected to be especially high due to low solar angles 

(Armbruster et al. 2007). This implies that, at least at intermediate to high latitudes, even 

subjectively flat mountain terrain might provide some spatial buffering effect against future 

warming, with the effect increasing with increasing topographic heterogeneity. This result 

adds strength to the conclusion reached from studies across larger scales (Graae et al. 2012, 

Lenoir et al. 2013).  

Species diversity and environmental drivers 

When considering all species found in the landscape plots, rough landscapes were indeed 

more species rich than flatter ones in this area. This pattern is common in the literature and 

consistent across various measures of heterogeneity (Lundholm 2009).  On the smaller 

sample scale, the pattern was less clear. It must be noted that the rough landscapes often 

contained “rare” species (for instance Draba ssp., Saxifraga tenuis and Arabis alpina), 

typically found growing in small crevices, rocky outcrops or shady north-facing spots, and 

therefore seldom included in the sample plots. Hence, such species therefore contribute to 

the higher total species richness observed in all rough landscapes, while seldom contributing 

to the richness of the sample plots.  

There is various evidence pointing towards the importance of sampling scale in 

studies of species richness in heterogeneous environments. In his review of heterogeneity-

diversity studies, Lundholm (2009) found that the spatial scale of investigation influenced 

the strength of heterogeneity effects, with the effect being strongest (most positive) on 

intermediate sampling scales. The importance of sampling scale has also been emphasized in 

studies utilizing hierarchical sampling design (Dufour et al. 2006), and it has been shown that 

species-area curves have higher slopes on intermediate sampling scales such as the 40x40m 

landscape plots surveyed here (Crawley & Herral 2001). In summary, it seems that 

heterogeneity effects on species richness increases with sampling scale, as within-plot 

heterogeneity increases, at least until a certain plot size is reached. 
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Mean temperature of the sample plots emerges as a good predictor of sample plot 

species richness in this system, with a linear increase in species richness with increasing 

mean temperature. This probably reflect an increase in available energy as a result of an 

increased radiation load, as species richness has been shown to increase with available 

energy in low-productive tundra vegetation (Virtanen et al. 2012).  Path analysis revealed 

that, not surprisingly, mean and maximum temperatures are strongly correlated. The 

analysis also suggested that the effect of maximum temperature was indirect, while mean 

temperature had a positive direct effect on species richness.  

Across landscape plots within the study area, both mean temperature of the 

landscapes and spatial temperature range explained significant amounts of variation in 

cumulative sample richness. There might therefore be both an energy effect, with higher 

temperatures being an effect of higher radiation load, and a heterogeneity effect caused by 

variation in radiation load. Again, path analysis suggested that the effect of maximum 

temperature was indirect.  At the largest scale, total landscape richness responded to both 

mean temperature of the landscape and variation in maximum temperature, again indicating 

an effect of heterogeneity. In fact, at this scale, variation in maximum temperature had the 

strongest direct effect in the path analysis. However, the relationship between landscape 

richness and microclimatic variables was generally weaker than for cumulative sample 

richness. This might reflect the fact that for sample richness microclimatic variables were 

measured in the sample plots, where species were sampled. In the case of landscape 

richness, the same microclimatic measurements were assumed to be a random sample of all 

microclimates within the landscape. Therefore the measurements may be more tightly 

coupled in the former case, leading to stronger relationships.  

The relative roles of available energy (mean supply of limiting resources) and 

heterogeneity (variation in limiting resources) as drivers of species richness has been 

extensively debated (Grace 1999; Stevens & Carson 2002; Lundholm 2009). Since maximum 

temperature and its variation are tightly coupled, it is hard to separate the effect of the two. 

Both variables explained significant amounts of variance in species richness, so both are 

probably contributing to species richness in this system. 
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While moisture variance was consistently higher in the rough landscapes, there was 

no detectable effect of moisture or moisture variation on species richness in this study. This 

is in contrast to other studies, which have suggested a strong effect of moisture on species 

diversity (Moeslund et al. 2013). It has, however, been suggested that moisture shortage is 

less of a limitation to alpine plants than in lowland systems (Körner 2003), consistent with 

the lack of moisture effects observed in this study.   

Intraspecific trait variation 

While all traits of Bistorta responded significantly to one or more microclimatic variables, 

only height did so for Luzula. This also appeared to influence the patterns of relative 

variation between rough and flat landscapes, since relative variation in traits of Bistorta 

were higher in the rough landscapes compared to the paired flat ones in nearly all cases. 

However, with a few exceptions, there was a general lack of statistically significant 

differences in relative variation between landscape types for both species. This might have 

several possible explanations. First, observed phenotypic variation might be low even 

though potential phenotypic plasticity is high, due to for example passive responses to 

environmental stress or resource limitation (van Kleunen & Fischer 2005; Valladares et al. 

2007). Second, it might be that gene flow between landscapes (i.e. subpopulations) has 

weakened the pattern of higher variation in the rough landscapes, and that plasticity is 

actually favoured over the whole study site (Sultan & Spencer 2002). Third, the number of 

plants sampled (i.e. the sample size) were simply too low to detect a statistical difference for 

individual pairs.  

Under the (maybe overly) simple assumption of independence across traits and pairs, 

a meta-analysis showed a significant trend towards higher phenotypic variation within rough 

landscapes for Bistorta. This species reproduces mostly asexually by bulbils, suggesting that 

dispersal distances, and hence gene flow between subpopulations, should be lower than for 

Luzula, which reproduces sexually and is wind-pollinated. This suggests that in rough 

landscapes, where typical dispersal distances might still be larger than the grain of 

heterogeneity, the observed pattern might indicate selection for plasticity (Alpert & Simms 

2002; Baythavong 2011). Even though genetic variation has been demonstrated repeatedly 

in populations of Bistorta (Bauert 2006; Vik et al. 2012), heterogeneous habitats such as 

rough landscapes should select for plasticity over local differentiation. Indeed, a common 
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garden experiment on Bistorta from the same landscapes found that plasticity tended to be 

higher in plants originating from rough landscapes (Gardiner 2013). Still, data on more 

different species with contrasting dispersal and reproductive ecologies (e.g. “mostly clonal” 

vs. obligate out-crossing species) would be needed to conclusively answer such questions. 

Conclusions: Species replacement, plasticity or adaptive evolution? 

In summary, small-scale variation in environmental conditions might provide substantial 

buffering of climate warming in mountain landscapes. Even subjectively “flat” mountain 

terrain contained microclimatic variation similar to what is expected over large altitudinal or 

latitudinal ranges, and this variation was associated with variation in species richness. While 

intra-specific adaptive and/or plastic responses cannot be ruled out based on these results, 

it appears like the faster process of short distance migration and changes in species 

abundances will dominate as the biotic response to climate warming in this system. This is 

similar to the conclusion reached from a study at the arctic archipelago of Svalbard (see 

Armbruster et al. 2007). Short distance migration should not be limited by dispersal, as it 

might be over long altitudinal or latitudinal distances. Furthermore, the spatial range of 

mean temperatures over short distances was equal to or larger than the temperature 

increases obtained in climate manipulation experiments showing clear effect on plant 

communities (e.g. Klanderud & Totland 2005; Walker et al. 2006). Local changes in plant 

communities could also lead to changes in biotic interactions such as competition and 

facilitation, and have consequences for invertebrate communities (Rae et al. 2006) and 

ecosystem function (Wookey et al. 2009). By and large, this supports the prediction of local 

community rearrangement as an important biotic response to climate change. Even under 

the most extreme warming scenarios, mountain landscapes will still contain suitable habitats 

for many species predicted to lose all suitable habitat based on large-scale models. It 

therefore seems like mountains can come to serve as a “safe haven”, making them good 

target areas for biodiversity conservation in the future.  
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APPENDIX A 

 

Table A1. List of vascular plant species found within nine 40x40m landscape plots at Finse.                                         
S = species found in sample plots, L = species found within landscape. 

  1R 2F 2R 3F 3R 4F 4R 5F 5R 

  S L S L S L S L S L S L S L S L S L 

Alchemilla alpina L.     
 

  
 

x 
 

  
 

x 
 

x 
 

  
 

x 
 

x 
Alchemilla spp. L.     

 
  

 
  

 
  

 
  

 
  

 
  x x 

 
x 

Antennaria dioica (L.) Gaertn. x x x x x x 
 

x x x x x x x x x x x 
Anthoxanthum odoratum L. x x x x x x 

 
x x x x x x x x x x x 

Arabis alpina L.   x 
 

x 
 

x 
 

  
 

  
 

x 
 

x 
 

  
 

x 
Arctostaphylos uva-ursi (L.) Spreng.   x 

 
  x x 

 
  

 
  

 
  

 
x 

 
  

 
  

Astragalus alpinus L. x x 
 

  
 

  
 

  
 

  
 

  
 

  x x 
 

  
Avenella flexuosa (L.) Dreyer   x 

 
  x x 

 
x 

 
  

 
  

 
  x x x x 

Bartsia alpina L. x x x x x x 
 

  
 

  x x x x x x x x 
Bistorta vivipara (L.) Delarbre x x x x x x x x x x x x x x x x x x 
Campanula rotundifolia L.   x 

 
  x x 

 
  

 
x 

 
  

 
  x x x x 

Cardamine bellidifolia L.     
 

  
 

x 
 

x 
 

x 
 

  
 

  
 

  
 

x 
Carex lachenalii Schkuhr      

 
  

 
  

 
x 

 
x x x 

 
x 

 
  

 
  

Carex saxatilis L.     
 

  
 

  
 

x 
 

  
 

  
 

  
 

  x x 

Carex capillaris L.     
 

  
 

  
 

  
 

  
 

  
 

  x x x x 
Carex atrata L. x x x x 

 
x 

 
  x x x x x x x x x x 

Carex bigelowii Torr. ex Schwein.  x x x x x x x x x x x x x x x x x x 
Carex rupestris All. x x 

 
  x x 

 
  

 
  

 
  

 
  x x x x 

Carex vaginata Tausch     x x 
 

x 
 

x 
 

x x x x x x x x x 
Cerastium alpinum L. x x 

 
x x x 

 
x 

 
x 

 
x 

 
x 

 
x 

 
x 

Chamerion angustifolium (L.) Holub   x 
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  
Deschampsia alpina (L.) Roem. & Schult.     

 
  

 
x 

 
x 

 
x 

 
x 

 
  

 
  

 
x 

Diphasiastrum alpinum (L.)Holub   x x x x x 
 

x 
 

  x x x x x x x x 
Draba nivalis Lilj.   x 

 
  

 
x 

 
x 

 
  

 
  

 
  

 
  

 
  

Draba norwegica Gunnerus     
 

  
 

x 
 

  
 

  
 

  
 

x 
 

  
 

x 
Dryas octopetala L. x x 

 
  x x 

 
  

 
  

 
  x x x x x x 

Empetrum nigrum L. x x x x x x x x x x x x x x x x x x 
Equisetum variegatum  

  x                         x x     
Schleich. ex Weber & Mohr 

Erigeron uniflorus L. x x x x x x 
 

  
 

x 
 

x x x x x x x 
Eriophorum angustifolium Honck.     

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
x 

Euphrasia spp.L. x x x x x x 
 

  
 

x x x x x x x x x 
Festuca ovina L. x x x x x x x x x x x x x x x x x x 
Festuca rubra L.     

 
  

 
  

 
  

 
  

 
  

 
  x x 

 
  

Festuca vivipara (L.) Sm.     
 

  
 

  x x x x 
 

  
 

  
 

  x x 
Gentiana nivalis L.  x x 

 
  x x 

 
  

 
x 

 
x x x 

 
x x x 

Gentianella campestris (L.) Börner   x 
 

  
 

x 
 

  
 

  
 

  
 

x 
 

  x x 

Harrimanella hypnoides (L.) Coville   x x x x x 
 

x 
 

x x x x x x x 
 

x 
Hieracium spp. L. x x x x x x x x x x x x x x x x x x 
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Huperzia selago (L.)  
x x x x x x   x     x x x x   x x x 

Bernh. ex Schrank & Mart. 
Juncus biglumis L.      

 
  

 
  

 
  

 
  x x 

 
  

 
  x x 

Juncus trifidus L. x x x x x x x x x x x x x x x x x x 
Juniperus communis L.   x 

 
x x x 

 
  x x 

 
  

 
  

 
  

 
x 

Kobresia myosuroides (Vill.) Fiori     
 

  x x 
 

  x x 
 

  x x 
 

  
 

  

Leontodon autumnalis var. taraxaci  
        x x         x x     x x     

(L.) Hartm.   
Luzula multiflora ssp. frigida  

      x x x x x   x   x x x x x     
(Buch.) V.I.Krecz.   
Luzula spicata (L.) DC. x x x x x x x x x x x x x x x x x x 
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APPENDIX B 

 

Table B1. Model comparison for generalized linear models of 
cumulative sample plot species richness, fitted with Possion 
distributed errors. 

Model parameters AICc ΔAICc AICc weight 

Tmean+Trange 56.77 0 0.698 
Tmean+var(Tmax) 59.92 3.15 0.144 
Tmean+Trange+var(Tmax) 61.45 4.68 0.067 
Tmean+Trange+Tmax 61.57 4.8 0.063 
Tmean+Tmax 63.88 7.11 0.020 
Tmean 65.91 9.14 0.007 
Tmax 65.96 9.16 0.007 
 

Table B2. Model comparison for generalized linear models of 
total landscape species richness, fitted with Possion distributed 
errors. 

Model parameters AICc ΔAICc AICc weight 

Tmax 60.37 0 0.473 
Tmean+var(Tmax) 61.12 0.75 0.325 

Tmean+Tmax 63.78 3.24 0.086 
Tmean+Trange 64.36 3.99 0.064 
Tmean+Trange+var(Tmax) 65.89 5.52 0.030 
Tmean+Trange+Tmax 67.20 6.83 0.016 
Tmean 69.22 8.85 0.006 

 

 

 

 


