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Abstract

Accurate numerical electrochemical impedance spectra at channel electrodes are
obtained using commercial finite element method software. These agree with
experimental measurements on the hexaammineruthenium(II/III) reversible re-
dox couple. The numerical solutions are used as a benchmark to test the validity
of some common analytical approximations for the mass-transport impedance.
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Introduction

Improved microfluidic fabrication methods have led to a resurgence of inter-
est in channel flow electrodes. Electrochemical impedance spectroscopy is well
known as a powerful method for studying electrode processes, but the convective
diffusion problem under a.c. conditions must be properly understood in order
to make progress. Even for the much-studied rotating disk electrode (RDE),
the convective diffusion impedance is typically modeled by approximate analyt-
ical solutions, sometimes with different expressions for high and low frequency
regions [1–6], and comparison of these with numerical solutions is available,
e.g., [7, 8]. Channel electrodes do not have uniform accessibility, which makes
them mathematically more difficult, but there are some approximate analytical
treatments [9–12]. These make one or both of the two common assumptions
for channel electrodes: (1) axial diffusion (in the channel direction) can be ne-
glected, and (ii) the Lévêque approximation applies, i.e., the velocity profile
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Figure 1: Diagram of the cell. Channel and outlet reservoir shown in blue, with arrows showing
the fluid flow direction. IRE and ext RE are the internal and external reference electrodes.

is assumed to be linear. These are adequate only for sufficiently high channels
and high flow rates. Alternatively, convection has been neglected altogether [13].
Comparisons of these approximate treatments with experiment have typically
been restricted to the regimes where the approximations are valid. Experiments
and theory are lacking in some important parameter regimes, in particular for
low flow rates and low-height channels.

There is therefore the need for accurate numerical solutions for channel elec-
trodes. These can be directly compared with experiment, or can be used to
establish the validity of various approximate analytical methods. Both of these
objectives are achieved here, where we compare numerical solutions from finite
element method (FEM) software (Comsol Multiphysics R⃝) with experiment and
literature approximations, for the simple redox reaction, Eq. (1).

R 
 P + ne− (1)

The experiments used the RuII/RuIII hexammine redox couple with n = 1. Only
a few FEM simulations of impedance have been reported before, e.g., [14, 15],
none of which treat channel electrodes.

1. Methods

1.1. Microfluidics

The microfluidic flow cells, Fig. 1, were made in the NorFab facilities (Trond-
heim, Norway). The electrodes were prepared on clean glass slabs by a photore-
sist method using ma-405 photoresist and ma-D331/s developer (Micro Resist
Technology GmbH). Titanium (10 nm) and platinum (190 nm) were evaporated
onto the developed glass slides (Pfeiffer Vacuum Classic 500) and excess metal
was removed with mr-REM 600 (Micro Resist Technology GmbH).

The PDMS channels were made from a channel master on a Si slide. The
master was fabricated by applying photoresists SU8-5 and SU8-2100 (both Mi-
croChem Corp.), developing the pattern, and removing excess material with Mr-
DEV 600 (Micro Resist Technology GmbH). The wafer was then hard baked.
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The PDMS was made by mixing base (Lindberg and Lund AS) and curing
agent (Dow Corning S.A). The mixture was degassed and poured on top of the
Si master. The finished PDMS channel was assembled by making inlet and
outlet holes, activating the surface using a plasma cleaner, and then mounting
on the electrode glass slide.

Wires were connected by soldering, and a reservoir for collecting the elec-
trolyte and holding the external reference electrode was added, see Fig. 1. The
cells produced had 100 µm wide electrodes in a 100 µm high channel with a
depth of 1 mm.

1.2. Electrochemistry

To avoid oxygen, the microfluidic cell was mounted in a chamber that was
purged with argon (Praxair Ultra High Purity 5.0). The absence of oxygen
was confirmed by cycling the electrode between oxygen evolution and hydrogen
evolution in 0.5 M H2SO4 (Seastar Chemicals, Baseline grade). Solutions were
made up with Millipore Milli-Q water. All electrochemistry was performed with
a Gamry Ref. 600 potentiostat. The external reference electrode used during
electrochemistry in 0.5 M H2SO4 was a reversible hydrogen electrode mounted
in the outlet reservoir, which consisted of a Pt wire sealed in glass and exposed
to the solution and a trapped hydrogen bubble.

To further minimize the effect of oxygen, an iodine monolayer was deposited
on the electrodes by holding at 0.4 V vs RHE for 6 minutes in 0.5 M H2SO4

+ 4 mM KI (≥ 98.5 % Caledon) electrolyte.The quality of the iodine layer was
checked using cyclic voltammetry (CV) in H2SO4, by comparing the magnitude
of the capacitive current between 0.3 and 0.7 V vs RHE. The layer was deemed
sufficient if the capacitive current had dropped to below 0.01 mA cm−2 for a
scan rate of 200 mV s−1.

The data reported in this paper used the reversible RuII/RuIII hexaam-
mine redox couple. The aqueous solution was prepared from nominally 5 mM
RuII(NH3)6Cl2 (≥ 98 % Sigma-Aldrich) and 5 mM RuIII(NH3)6Cl3 (≥ 99.9 %
Sigma-Aldrich) in 0.1 M K2SO4 electrolyte (≥ 99.5 % AnalaR). The ruthenium
hexaammine complexes degrade if there is oxygen present in the solution, and
so argon was purged for 10 minutes before the complexes were introduced, and
then purged again after introduction. The electrolyte was always made fresh on
the day of the experiments and properly stored to avoid oxygen introduction.
Despite this, slight degradation of ruthenium hexaammine did occur, and the
actual concentrations were estimated as 4.0 mM by adjusting the COMSOL
modeled results to give a satisfactory fit for all flow rates.

The RuII/RuIII hexaammine redox couple was used as an internal reference
electrode (IRE, about 0.45 V vs SHE). It was the first (most upstream) electrode
in the microfluidic channel. Potentiostatic impedance spectra were collected at
the RuII/RuIII reversible potential as determined from the average of the anodic
and cathodic peak positions in CVs. This potential was slightly offset from 0.0 V
vs IRE (see Fig. 3). The ac amplitude was 5 mV (rms), and the frequency range
was from 100 kHz to ca. 0.1 Hz at 20 points per decade. The lower frequency
limit was chosen by noting when the impedance was not significantly changed
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Figure 2: Geometry of the channel electrode in 2-D. Flow is from left to right, with one
electrode (bold) in the bottom of the channel. The parabolic velocity profile is also shown,
with the relationship between the average and maximum velocities.

on decreasing the frequency. The flow rate was varied between 1 µL min−1 and
300 µL min−1 using a syringe pump (Harvard Apparatus PHD 2000).

1.3. Modeling

The geometry modeled is shown in Fig. 2, introducing the two dimensionless
parameters, A (= 6vavh/D), which is a Péclet number, and B (= w/h), which
is a geometric parameter. Here, vav is the average velocity in the channel, h is
the channel height, D is a diffusion coefficient, and w is the electrode width.
To model diffusional impedance on a channel electrode, one has to solve the
convective-diffusion equation for a 2-D channel, Eq. (2), which assumes laminar
flow with a parabolic (Poiseuille) velocity profile.

∂ci(x, y, t)

∂t
= Di

∂2ci(x, y, t)

∂x2
+Di

∂2ci(x, y, t)

∂y2
− 6vav

h2
y(h− y)

∂ci(x, y, t)

∂x
(2)

Here, ci is the concentration of reactant or product species i = R,P, and Di

is the diffusivity of species i. In the presence of the ac perturbation of angular
frequency ω, the concentration will have the form of Eq. (3).

ci(x, y, t) = ci,ss(x, y) + c̃i(x, y)exp(iωt) (3)

Here, the ac concentration c̃i(x, y) is complex. The linearity of Eq. (2) allows
the steady-state and ac problems to be separated. To force reversibility, Butler-
Volmer kinetics were used with an exchange current density of 1015 A m−2.
Reversibility was verified by comparing steady-state solutions with the Nernst
equation solutions at the surface. At channel walls other than the electrode, the
flux was set to zero. The inlet concentration was fixed at the bulk value, and
the outlet boundary condition was that the concentration gradient was zero.
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The finite-element method (FEM) software Comsol Multiphysics r[16] was
used for the numerical 2-D solution of the dc and ac equations. The 2-D solution
may be scaled with the electrode depth d (normal to x and y) to compare
with the experimental results. Edge effects in the z direction are small for an
experimental ratio of d/h = 10 [17]. The channel length (x-direction) was set
to 20 times the electrode width to ensure that the inlet and outlet conditions
did not influence the solution. The electrode started at the midpoint of the
channel. A strict meshing criteria was set based on the criteria of maximum

diffusion length, xmax =
√
Dπ−1f−1

max, where fmax is the maximum frequency
of the modeled impedance spectrum, here 10 kHz. The electrode mesh size at
the surface was set to xmax/10, while in the electrolyte volume, the mesh was
allowed to grow to 10xmax at a growth rate of maximum 5% per mesh point.
The problem was solved using the PARDISO solver including a nested dissection
multi-threaded pre-ordering algorithm.

For the chosen reaction kinetics at the electrode, Comsol’s impedance mode
automates the solution of the ac concentrations profiles c̃R(x, y) and c̃P(x, y).
A harmonic perturbation of the potential with an amplitude set to 5 mV was
used, for frequencies between 10−3 to 104 Hz. The steady-state potential was
set to the reversible potential so the steady-state current is zero. The dimen-
sionless convective-diffusion impedance Z/Z0 was calculated for each frequency
by numerical integration of Eq. (4), c.f. Jacobsen and West [18].

Z

Z0
=

1

w

w∫
0

(
−c̃P(x, 0)

h (∂c̃P(x, y)/∂y)y=0

+
−DPc̃R(x, 0)

hDR (∂c̃R(x, y)/∂y)y=0

)
dx (4)

This impedance may be derived using the procedure given by Orazem and Tri-
bollet [19] (their Eq. (11.52) and following). For Butler-Volmer kinetics, Z0 is
given by Eq. (5).

Z0 = 2RTh/n2F 2DPd(c
∞
R + c∞P ) (5)

Here F is the Faraday constant, c∞i is the bulk concentration of species i, R is
the gas constant, and T is the temperature.

2. Results and Discussion

2.1. Comparison between modeled and experimental data

Cyclic voltammograms for solutions with equimolar amounts of RuII and
RuIII show shapes expected for a reversible couple, Fig. 3. For first cycle scans,
the peak potential was independent of scan rate and the peak currents were
proportional to the square root of the scan rate. The difference between anodic
and cathodic peak currents in the cyclic voltammogram is due to the difference
in diffusion coefficients: DRuII = 8.8× 10−10 m2 s−1, DRuIII = 5.71× 10−10 m2

s−1 [20]. The reversible potential was taken to be the average of the anodic and
cathodic peak potentials, which was slightly shifted from 0.0 V vs IRE.
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Figure 3: Steady-state cyclic voltammogram. Sweep rate 200 mV s−1. No flow.

Experimental impedance spectra at the reversible potential together with
numerical fits with Comsol are shown in Fig. 4 as a function of flow rate. At
the highest measured frequency of 100 kHz, the impedance is essentially only
real and independent of flow rate. This value represents the solution resistance.
The absence of distinguishable high frequency semicircle associated with the
charge transfer resistance is expected for fast reversible reaction. The observed
convective diffusion impedance spectra have some features that are similar for
all the flow rates. Firstly, at high frequencies (low Z values), the impedance is
linear with equal values of the real and imaginary impedance. This is a well-
known feature of the Warburg impedance for semiinfinite planar diffusion to
the electrode. At these frequencies, the ac diffusion length is small compared to
the electrode width and channel height, and senses only the stagnant layer near
the electrode surface. Therefore the impedance is not influenced by convection,
electrode edge effects or channel height. At lower frequencies, the impedance
deviates from the linear trend and the deviation occurs at lower Z-values for
higher flow rates or lower diffusivities (higher A-values), as convection becomes
more important. As the ac diffusion length becomes comparable to the electrode
or channel dimensions, axial diffusion and the channel height can influence the
impedance. At the lowest frequencies, the concentrations and current can keep
up with the sinusoidal potential changes and the impedance becomes real.

The impedance spectra were modeled as described in the Section 1.3 using
the literature diffusivities quoted above, the experimental temperature of 294
K and bulk concentrations of 4 mM. The model (solid lines in Fig. 4) shows
excellent agreement with the experimental results, indicating that the process
is well described with the convective-diffusion equation, Eq. (2). This demon-
strates the possibility of using a FE method to calculate impedance and use it
as a tool to confirm the geometry or flow rate of a microfluidic flow cell.
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Figure 4: Potentiostatic impedance data at different flow rates. Flows in µL min−1 are given
in the order 1 (blue), 3 (brown), 10 (green), 30 (purple), 100 (orange), 300 (red). Experimental
values are the open squares. Solid lines show the Comsol results offset by the experimental
solution resistance.

2.2. Comparison between numerical and analytical solutions

Analytical approximations have the advantage of simplicity over numerical
simulations, but they also more easily predict parameter dependences, such as
dependence of limiting currents on flow rate. Therefore the Comsol simulations
were compared with two common approximations in the literature, with pa-
rameter sets chosen to match two experimental data sets with distinct A and B
values. The two literature approximations for channel electrode were described
in the papers by Compton and co-workers [9–11, 13]. The first method [10]
simplifies the convective diffusion equation, Eq. (2), so that axial diffusion is
neglected (term 2) and so that the flow is simplified as Lévêque flow (term 4),
i.e., the velocity is proportional to y. The second method [13] simplifies Eq. (2)
so that the convection term is neglected (term 4). Both methods assume that
the diffusivities are the same for both species.

The first set of parameters is to match the above experiments, at the lowest
flow rate (1 µL min−1). Fig. 5 compares the experimental data (black squares)
with expressions for the two approximations (evaluated in Matlabr[21]), as
presented by Compton and Winkler [13]. The geometric mean of the literature
diffusivities was used as the common one required by the approximations, D =
7.089 × 10−10 m2 s−1; other parameters are as for the experiments, leading to
A = 141.4, B = 1.0. The no-convection solution (blue triangles) is far from
experiment, except in the high-frequency range where the Warburg impedance
for semiinfinite 1-D diffusion to a planar electrode suffices. The no-convection
solution at low frequencies will only be a reasonable solution at flow rates much
lower than those achieved under controlled conditions with a syringe pump. The
Lévêque and no-axial diffusion approximation (green triangles) comes within the
experimental error and is close to the numerical solutions. This approximation
is expected to be better at higher flow rates, and so the case shown here is
the most stringent test among the experimental data; higher flow rates did
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Figure 5: Potentiostatic electrochemical impedance spectroscopy modeled at a flow rate of 1
µL min−1. The experimental values are shown as red squares, the Comsol model is the full
line (red), the method described by Compton et al [10] assuming no axial diffusion and the
Lévêque approximation for the flow is shown as the green triangles, and the solution assuming
no convection is shown as blue triangles.

show better agreement between this approximation and the numerical solution.
This confirms the conclusion from Compton and Winkler’s work [13], that the
Lévêque and no-axial diffusion approximate solution is useful for a wide range
of flow conditions.

A second comparative data set is that given by Compton and Winkler [13]
in their Fig. 4f, shown here as black squares in Fig. 6. Under the conditions
modeled here (A = 1234, B = 0.01625), the no-convection solution (blue trian-
gles) is not very accurate, but it is a better approximation than previously. The
narrow electrodes make the Lévêque and no-axial diffusion solution (green tri-
angles) worse than before, and so neither solution is a good approximation. Our
calculated values for these approximations agree with those given by Compton
and Winkler. The Comsol numerical solution of the the full convective-diffusive
equation (red line) gives a result that fits well with the experimental values.
Hence, for some flow conditions and geometries, it is necessary to use the full
numerical solution to get a satisfactorily fit to the experimental data.

At low flow, high diffusivities, or low w/h ratios (B-values) it is expected
that axial diffusion can no longer be neglected. Furthermore, the Lévêque ap-
proximation is expected to be inaccurate for wide electrodes (high B-values)
or low flow rates (low A-values) as it is assumed that the top of the channel
does not influence the resulting impedance. In addition, it has a high-frequency
limit of applicability as derived by Compton and Sealy [10], which is normally
about 50 Hz for our dimensions. This high-frequency limit is not a serious draw-
back, as the semiinfinite diffusion solution is a good approximation at higher
frequencies.

The numerical solution clearly has advantages in the flexibility it offers for
problems with all ranges of geometries and flow. Its key assumption is simply
that the flow is laminar with a parabolic profile, an assumption that is well
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Figure 6: Model comparisons of experiment and theory. Adapted with permission from Figure
4f in Ref. [13], Copyright (1995) American Chemical Society. Experiment (red squares),
Lévêque and no axial diffusion approximation (green triangles), no-convection approximation
(blue triangles), Comsol numerical solution (red line).

validated in microfluidic systems some distance away from the channel inlet.
The flow should not be so slow that the inlet or outlet conditions influence the
result at the electrode surface, and for the numerical solution this means that
at low frequencies the inlet and outlet lengths should be much longer than the
ac diffusion length.

2.3. Validity of the no-axial diffusion and Lévêque approximations

Here, the solution with the Lévêque approximation and no axial diffusion
is compared to the Comsol result. Assuming that Comsol gives an accurate
result for all flows and geometries, the validity region for the no axial diffu-
sion and Lévêque approximation can be determined. A matrix of values for A
(= 6vavh/D), and B (= w/h) was simulated, and agreement between the accu-
rate and approximate solutions was quantified based on the error at the lowest
frequency. The results are color coded in Fig. 7, together with experimental
values from this work (with good fit at B = 1, blue crosses), and from Compton
and Winkler [13] (B = 0.1 and lower, brown crosses). Based on these results,
linear zone boundaries were assigned, showing the limits of validity for the two
approximations: the Lévêque approximation (dotted line, B−1A1/2 = 1) and
the neglect of axial diffusion (solid line, BA1/2 = 3). That is, axial diffusion
may be neglected for BA1/2 ≥ 3 (faster flow and wider electrodes/lower chan-
nels) and the Lévêque approximation holds for B−1A1/2 ≥ 1 (faster flow and
narrower electrodes/higher channels). These conditions are given in terms of
the original variables in Eqs. (6) and (7), and the analytical solution for no-
axial diffusion and the Lévêque approximation holds when both conditions hold.
If one has a geometry or flow not satisfying these conditions, a full numerical
solution is necessary.
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Figure 7: Validity analysis of the no axial diffusion and Lévêque approximation. Error at the
lowest frequency is color coded: < 10% (green), 10− 25% (yellow), > 25% (red). Blue crosses
are the experimental values from this work (at B = 1), and brown crosses are the values from
Compton and Winkler’s work [13] (at B = 0.1 and lower). The lines are the zone boundaries
described in the text.

BA1/2 =

(
6w2vav
hD

)1/2

≥ 3 (6)

B−1A1/2 =

(
6h3vav
w2D

)1/2

≥ 1 (7)

3. Conclusions

The FE method software (Comsol Multiphysics R⃝) reproduces the experi-
mental impedance spectra for a reversible redox couple, over more than two
orders of magitude in flow rates. It can be used to investigate the validity of
analytical methods described in the literature, namely one neglecting axial dif-
fusion and using the Lévêque approximation for the flow, and one where the
convection was neglected. Although useful for many flow regimes, the assump-
tions used in the derivations of these solutions are not valid for all flows and
electrode sizes and the non-universal validity of these methods is demonstrated.
Estimates are given for when axial diffusion can be neglected and when the
Lévêque approximation holds.

The FE method can be applied for a wide set of conditions, such as flow
regimes, varying diffusivities for different species, varying electrode sizes and
varying kinetics. In particular, the low-frequency intercept is well determined.
It has the principal drawback of numerical methods that the spectra are solved
for a single set of parameters at a time, but it is promising as a guide to find
more accurate analytical approximations.
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