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We consider waves radiated by a disturbance of oscillating strength moving at constant
velocity along the free surface of a shear flow which, when undisturbed, has uniform vor-
ticity S. When no current is present the problem is a classical one and much studied, and
in deep water a resonance is known to occur when τ = |V |ω0/g equals the critical value
1/4 (V : velocity of disturbance, ω0: oscillation frequency, g: gravitational acceleration).
We show that the presence of the sub-surface shear current can change this picture radi-
cally. Not only does the resonant value of τ depend strongly on the angle between V and
the current’s direction and the “shear-Froude number” Frs = |V |S/g; when Frs > 1/3,
multiple resonant values — as many as 4 — can occur for some directions of motion. At
sufficiently large values of Frs, the smallest resonance frequency tends to zero, represent-
ing the phenomenon of critical velocity for ship waves. We provide a detailed analysis of
the dispersion relation for the moving, oscillating disturbance, in both finite and infinite
water depth, including for the latter case an overview of the different far-field waves
which exist in different sectors of wave vector space under different conditions. Owing to
the large number of parameters, a detailed discussion of the structure of resonances is
provided for infinite depth only, where analytical results are available.

1. Introduction

The problem of a wave source which is at one time oscillating and moving with re-
spect to the free surface is a classical one, and a considerable literature exists when no
shear current is assumed. A key motivation for studying such a periodic travelling wave
maker is its close mathematical relation to the classical problem of ship seakeeping in
regular waves. The travelling oscillating source problem was first solved to linear order
assuming purely oscillatory motion by Haskind (1946) and extended by Brard (1948),
Eggers (1957), Havelock (1958) and others, when the perturbation is assumed to be from
a submerged oscillating source; see also the review in §13 of Wehausen & Laitone (1960).
When the water depth is finite, the analysis is richer, and was given by Becker (1958).
The submerged source model is particularly useful since it doubles as a Green’s function
which may be used to describe the motion of floating vessels in waves (Newman 1959).
Tayler & van den Driessche (1974) used the ray method to study the linearised finite
depth problem, allowing also a constant acceleration. The corresponding two-dimensional
problem of a moving, oscillating line source was considered by Haskind (1954) and ex-
tended to finite water depth by Becker (1956).
A much considered alternative model for a moving wave-maker is that of a pressure

distribution at the fluid surface. A pressure distribution of static shape and uniform
motion was used by Havelock (1908) to study ship waves, and various cases of a pressure
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distribution in rectilinear motion which is simultaneously oscillating in strength were
considered to linear order in two dimensions by Wu (1957); Kaplan (1957); Debnath &
Rosenblat (1969), and in three dimensions by Lunde (1951); Debnath (1969), and by
Doctors (1978) who applied it to wave resistance calculations for an air cushion vehicle.
General considerations with a variety of applications were given by Lighthill (1970).
When the focus is on the dispersive properties of waves (rather than, say, wave-body

interactions), the surface pressure model has the virtue of acting at the surface only, in-
troducing no singular flow features in the interior of the liquid phase. When one assumes,
as we do herein, that a shear current is present beneath the free surface, this benefit be-
comes particularly simplifying, because it was recently shown by Ellingsen & Tyvand
(2016a,b) that a submerged oscillating source in a rotational flow will generate a down-
stream series of vertical flow structures akin to a critical layer, with an accompanying
“critical wave”. We shall show herein that the introduction of a shear current increases
the richness of the dispersion problem greatly, and eschewing additional complications
from critical layer-like flow was deemed wise.
A particular feature of the oscillating and moving wave-maker is that a critical frequency-

velocity combination exists at which resonance occurs, and wave amplitudes as predicted
by inviscid linearised theory can become unbounded. For water gravity waves on deep,
still waters the resonance is known to occur at τ = 1/4, where

τ =
ω0V

g
, (1.1)

ω0 is the angular frequency of the source, V is its velocity relative to the surface, and
g is the gravitational acceleration. The resonance is explained by noting that the group
velocity of waves emitted in the forward direction tends to zero relative to the moving
source, hence wave energy is unable to propagate away. The resonant value is determined
by the dispersion relation only, independently of the size, shape and nature of the model
wave maker, and is found (e.g., Tayler & van den Driessche 1974) to be the same in 2D and
3D. It was shown by Dagan & Miloh (1980) that for the surface pressure source the wave
amplitude diverges as (τ−1/4)−1/2 in 2D, and as ln(τ−1/4) in 3D, for linearised, inviscid
flow. The amplitudes become bounded once higher order terms are considered (Dagan &
Miloh 1980, 1982), being cancelled by 3rd order terms. For an extended submerged two-
dimensional cylinder undergoing small oscillations, Grue & Palm (1985) find radiated
amplitudes to remain finite as τ → 1/4, even though the Green’s function (describing
waves from a point source) is known to diverge. Liu & Yue (1993) showed that linearised
wave amplitudes from extended bodies undergoing small oscillations in fact have a finite
value at τ = 1/4 for all fully submerged bodies, whether 2D or 3D, as long as the body
has a non-zero volume. Using a Rankine panel method, Kring (1998) came to the same
conclusion for a floating vessel.
We show herein that when a sub-surface shear current is present, the resonant value of

τ can change radically and in a non-trivial way. Indeed multiple resonant values of τ can
occur, whose values depend on the direction of motion relative to the shear current, and
on the non-dimensional “shear-Froude number” Frs = V S/g, where S is the constant
vorticity of the undisturbed shear current.
Although of finite amplitude in realistic situations, the computations of Kring (1998),

validated by experiments by Maruo &Matsunaga (1983), show that wave loads on a vessel
in regular waves can increase sharply near the Doppler resonance, potentially affecting
seakeeping and wave resistance significantly. A similar behaviour was reported for a
submerged ellipsoidal cylinder by Grue (1986). For this reason, knowledge of the structure
of resonant frequencies on shear currents is of practical as well as theoretical interest.
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Several situations exist where the effect of shear is likely to have practical consequences.
For example, velocity profiles measured in the delta of Columbia river (Kilcher & Nash
2010) show strong shear in the top few meters of the water column, quite enough to affect
resonance frequencies significantly; the data set was used for surface wave dispersion
analysis by Dong & Kirby (2012). Strongly sheared currents near the surface were also
measured by Haines & Sallenger (1994) in a barred surf zone.
For example, the data from Kilcher & Nash (2010) show approximately linear shear of

about 0.4s−1 for the top 3m of the water column. For a small ship moving at 20 knots,
say, the resonant frequency of encounter from incoming waves can be roughly estimated
to be increased by about a factor 2 for motion in the most shear assisted direction (β = π
in figure 1) and reduced by about a factor 1/3 in shear inhibited direction (β = 0). Even
in much weaker shear currents the effect can be significant. A ship running at a preferred
velocity so that τ > 1/4 might be surprised to suddenly hit resonant conditions when
encountering such a shear current, but might avoid this by changing course, thereby
changing the resonant frequency.
Other scenarios where shear will affect wave properties include shallow rivers, on which

wavelengths long enough to be affected by the entire water column will notice the strongly
sheared bottom boundary layer (Peregrine 1976, §IV). The results herein could equally
well apply to wave loads on fixed or moored objects in rapid streams, where local shear
can be very strong.
Of course, naturally occurring shear currents are not generally linear functions of depth

as assumed herein. This assumption is made for simplicity. allowing one to analyse more
clearly the effect of vorticity upon resonance frequencies, in our view a necessary step
before embarking on more complicated realistic scenarios.
A phenomenon closely related with the Doppler resonance is waves generated by a

ship near the critical velocity where its transverse waves vanish; it was shown that such
a critical velocity, well known for shallow water waves, exists also in deep waters when a
shear current is introduced (Ellingsen 2014b), and in the presence of both shear current
and finite water depth the critical situation depends on both factors (Li & Ellingsen 2016).
Nonlinear wave phenomena become important at the critical velocity, where solitons may
be produced (e.g., Ertekin et al. 1986). We show herein that this critical velocity occurs
when, for Frs greater than a critical value, the smallest of the resonant values of τ drops
to zero.
We shall be concerned primarily with how the presence of a shear current modifies the

resonant value(s) of τ , and work to linear order in wave amplitude. We show that wave
amplitudes diverge as ln(τ − τRes) for τ approaching a resonant value τRes, in agreement
with Dagan & Miloh (1980) except when τRes = 0. The question of the finiteness or
otherwise of wave amplitudes at resonance when a shear current is present, is a question
for a later occasion.

2. Formulation and general solutions

We consider a three-dimensional wave-current system, incompressible and of negligible
viscosity and surface tension. Our coordinate system is chosen so that surface velocity
is zero, and the subsurface current is assumed to be aligned with the x axis and vary
linearly with depth according to the expression U(z) = Sz where S is the uniform
vorticity. Without loss of generality we assume S > 0. The water has constant depth h.
The free surface is disturbed by an applied external pressure distribution which moves
with constant speed V in a direction which makes an angle β with the x axis, and
oscillates in strength around 0 at a single frequency ω0. The disturbance from the pressure
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Figure 1. Geometry: a surface pressure distribution of oscillating strength travels with velocity
V , making an angle β with the x axis. A depth dependent shear current U(z) = Sz, parallel to
the x axis, is present beneath the surface.

distribution is assumed to be sufficiently small that all equations of motion as well as
boundary conditions may be solved to linear order in perturbation quantities. A sketch
of the system is shown in Fig. 1.

For our model, the velocity and pressure distribution are v = (U(z) + û, v̂, ŵ) and
P = p̂ − ρgz in which P is the total pressure, and p̂ is the dynamic perturbation
pressure; all hatted quantities are small perturbations due to existence of waves.

The solution of the linearised Euler equation proceeds in a similar fashion to that of
Ellingsen (2014a,b); Li & Ellingsen (2016) with the difference that we seek solutions
which are purely oscillating in a co-ordinate system where the moving pressure source is
at rest; derivation details are therefore skipped in the following and the reader may refer
to these references.

We may make the ansatz that all perturbation quantities will depend on time and space
only through the Galilei transformed coordinate vector ξ = x− V t (where x = (x, y) is
the horizontal position in the fixed coordinate system where the undisturbed surface is at
rest) and an overall oscillating factor exp(−iω0t). We perform a Fourier transformation
in the ξ plane according to

[û, v̂, ŵ, p̂](ξ, z, t) =

∫
d2k

(2π)2
ei(k·ξ−ω0t)[u, v, w, p](k, z). (2.1)

in which k = (kx, ky) = (k cos θ, k sin θ) is the wave vector in the horizontal plane. We
let k = |k| be the wave number.

We will refer to wave or source motion along directions |β|, |θ| < π/2 in Fig. 1 as “shear
inhibited”, being countered by the shear current compared to the case when no shear is
present. Directions |β|, |θ| > π/2 we term “shear assisted”. This avoids the ambiguous
terms “upstream” and “downstream” used the literature previously.

We then follow the same steps as in Ellingsen (2014b) and Li & Ellingsen (2015),
finding general solutions to the linearised continuity and Euler Equations under the
bottom condition w(k,−h) = 0, and compute undetermined coefficients by insertion
into the kinematic and dynamic boundary conditions at the free surface in order to
express the surface elevation in Fourier form.

Let all lengths be scaled by the characteristic length of the moving source, b, and
all times be scaled by

√
b/g. The surface elevation may be written in terms of non-
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Figure 2. Definition of angles. θ is the angle of the wave vector in the xy coordinate system, γ
is relative to the sources direction of motion. ϕβ is the angle between V and spatial position ξ
in the coordinate system where the disturbance is at rest.

dimensional quantities as

ζ(R, T )/b = e−iΩ0T

∫ π

−π

dγ

∫ ∞

0

dK
Pext(K)K2 tanhKH

Ω+Ω−
eiK·R. (2.2)

The dimensionless quantities which appear are, explicitly,

Ω0 = ω0

√
b/g, K = bk, T = t

√
g/b, H = h/b, Fr = V/

√
gb;

Frs = V S/g, R = ξ/b, Pext(K) = pext(k)/(ρgb
3), (2.3)

where Fr is the Froude number based on a length b and Frs is the “shear Froude number”
based on the “shear length” g/S2. Definitions of the different angles involved, including
θ, β, γ and ϕ, are shown in Fig.2. pext(k) is the Fourier transformed external pressure
distribution. The non-dimensional physical quantities Ω± are defined as

Ω±(K) = ω±

√
b

g
= Ω0 +KFr cos γ − Σ±(K, γ), (2.4a)

Σ±(K) = σ±

√
b

g
= ±

√
K tanhKH + ( 12Frsb cos θ tanhKH)2 − 1

2Frsb cos θ tanhKH

(2.4b)

where we have introduced the “intrinsic shear Froude number”

Frsb = S
√
b/g = Frs/Fr. (2.5)

Σ±(K) are the non-dimensional intrinsic frequencies for a wave K.

We have neglected viscous damping on the basis that this plays a very minor role for
linear gravity waves in the absence of shear. Quite to what extent this holds also in the
presence of vorticity, where dissipation could be stronger, is an open question. In the
present context viscosity would prevent the occurrence of infinite wave amplitudes in a
linearised theory, although for water waves at resonance viscous damping would likely
be a weak effect compared to nonlinear corrections, which render wave amplitudes finite
in any case.
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3. Dispersion relation analysis

In order to be a nontrivial solution of the linearised Euler equations, plane wave com-
ponents of wave vector k must satisfy an eigenvalue condition posed by the boundary
conditions, the dispersion relation. When the oscillation frequency is fixed to a value ω0

as here, there may be zero, one or two solutions (“waves”) of different k for each phase
propagation angle θ. The wave field far from the oscillating pressure source is well known
to consist only of the waves satisfying the dispersion relation; see e.g. §4.9 of Lighthill
(1978) or Lighthill (1970).
The dispersion relation for the 3D system in the presence of a shear flow of uniform

vorticity might first have been derived by Charland et al. (2012). It follows from the free
surface boundary conditions and coincides with the position of poles of the integrand in
Eq.2 (2.2), that is, Ω+Ω− = 0, which may be written

ω0 + k·V = ±
√
gk tanh kh+ ( 12S cos θ tanh kh)2 − 1

2S cos θ tanh kh = σ±(k). (3.1)

In our discussion we will mainly use the nondimensional form of the dispersion relation,

Ω0 +KFr cos γ = Σ±(K). (3.2)

3.1. Intrinsic group and phase velocity

In the following we will discuss in detail solutions of the dispersion relation in different
directions of plane wave propagation. The discussion follows the same lines as that in
§3.7.1 of Mei et al. (2005).
The intrinsic group velocity of a plane wave of wave vector k is given by the vectorial

quantity

cg(k) = ∇kσ±(k) (3.3)

where ∇k = (∂/∂kx, ∂/∂ky) is the gradient operator in the k plane, and σ± is defined
in (2.4b). In particular, ∂σ±(k)/∂k is the component of cg along direction k, which we
term the radial component. The intrinsic frequencies and velocities are independent of
the motion of the source and are velocities measured in the “lab” frame of reference, i.e.,
where the fluid surface is at rest. Relative velocities are measured relative to the moving
source. The relative group velocity is

cRg (k) = cg(k)− V = ∇k(σ± − k · V ). (3.4)

Likewise, the intrinsic phase velocities are σ±(k)/k, one of which positive, the other
negative. A negative intrinsic phase velocity for a wave component k means that wave
phase is transported in direction −k. On the other hand the relative phase velocity of a
wave k is σ±(k)/k−V cos γ which, by virtue of the dispersion relation (3.1), equals ω0/k
and is necessarily positive, hence the relative phase velocity is always directed along k.
The relative group velocity, however, can have a negative component along direction k.
In non-dimensional terms, the intrinsic and relative group velocities are

Cg(K, γ) = ∇KΣ±(K); CR
g (K, γ) = ∇K(Σ±(K)−KFr cos γ). (3.5)

Especially the radial component, ∂KΣ±, will be important in the following discussions.

3.2. Dispersion relation in finite water depth

In the following we consider graphical solutions of the dispersion relation Ω±(K) = 0. In
our theory, physical quantities are given by Fourier integrals over the whole k plane, such
as Eq. (2.2), and far from the source only the waves satisfying the dispersion relation will

Page 6 of 21



Moving, oscillating surface disturbance on a shear current 7

θ = ±

θ = ±0.875

θ = ±0.75

θ = ±0.625

θ = ±0.5

θ = ±0.375

θ = 0

K
O

K0min

Ω0

Σ+min
( )

Σ+ma
x
( )

0max

Figure 3. Graphical solutions of Eq. (3.2) when V = 0.

be present (cf., e.g., Lighthill 1978). A shear current introduces a richness of solutions
which we find it necessary to discuss carefully and in some detail.
We shall first consider the case of finite depth which, despite being formally a little

more cumbersome, is more straightforward in principle than the deep water case.
In each case we proceed by solving the dispersion relation (3.2) graphically by con-

sidering intersections between the straight lines Ω0 + Fr cos γ and the curves Σ±(K, γ)
in different circumstances. Each intersection corresponds to a possible far-field wave,
and the graphs in Figs. 3 to 5 afford some immediate physical insights: Considering an
intersection P (say) for one particular propagation direction γ, the (non-dimensional)
intrinsic phase velocity of the corresponding far-field wave is the slope of the straight
line connecting P to the origin, the radial component of the intrinsic group velocity is
the slope of the tangent of the curve Σ± at point P , and the velocity of source motion
projected onto direction k is the slope of the straight line connecting P to the point
(0,Ω0).

3.2.1. Stationary source, V = 0

We begin by regarding the dispersion relation (3.2) when the wave source is at rest with
respect to the surface. Although the nature of the wave source is different, the dispersion
properties will be identical to the propagating waves from the stationary submerged
oscillating source considered by Ellingsen & Tyvand (2016b).
When Fr = 0, Eq. (3.2) reduces to Ω0 = Σ+(K, θ). Graphical solutions are sketched in

Fig. 3 where Σ+(K, θ) is plotted as a function of K for different angles θ. In the finite
water case there is always a single far-field wave in all directions. For angles θ = ±π/2 the
intrinsic phase velocity is unaffected by the shear. The maximal solution, K = K0,max,
is for θ = 0 (wavelength shortened compared to no shear) and the minimum K = K0,min

(wavelength elongated by shear) is found at θ = ±π. Since the curve Σ+ is everywhere
concave down, intrinsic group velocity is always smaller than intrinsic phase velocity.

3.2.2. Moving source, V > 0

A far richer situation ensues once the source is in motion relative to the water surface,
Fr > 0. The situation is sketched in Fig. 4a. Which far-field waves now exist for different
propagation angles can vary strongly as a function of propagation direction γ. The figure
is to be understood in a qualitative sense since the curves Σ±(K, θ) also depend on γ
when the direction of motion, β, is fixed, but since the sign of the curvature of these
graphs remains the same for all θ (see Fig. 3), the sketch is sufficient to visualise in a
qualitative way the possible cases that occur.
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Figure 4. a: Graphical solutions of Eq. (3.2) in different situations. See text for discussion and
details. b: Behaviour of Σ+(K) as H tends to infinity, when cos θ < 0 is assumed (Frsb cos θ = −2
in the figure). Values of H shown as numbers on respective graphs.

Situation 1: Orthogonal waves (cos γ = 0). The source velocity projected onto k is now
zero, and the situation is as for V = 0. There is always a single solution to the dispersion
relation, point A in Fig. 4a.
Situation 2: Sternward waves (cos γ < 0). Since k·V < 0, we denote this situation

somewhat roughly as having “rearward pointing” wave vectors. There are two solu-
tions corresponding to the points B and C in Fig. 4a. When comparing to situation
1 (Fr cos γ = 0 at point A), the wave represented by B is lengthened since KB < KA,
and intrinsic phase and group velocities are increased, and a second solution C also oc-
curs with short wavelength and smaller (absolute) velocity. The slope of the straight line
intersecting B and C is negative, indicating that source velocity V has a negative com-
ponent along direction k. Wave B thus travels rapidly in rearward directions. The wave
corresponding to point C has negative intrinsic phase and group velocities meaning that
although it is emitted in a rearward direction by the source, it is seen in the lab system to
propagate in a forward direction. A C-wave of wave vector k has intrinsic phase velocity
along direction −k.
Situation 3: Forward waves (cos γ > 0). This situation corresponds to “forward di-

rected” wave vectors, and is the most complicated situation. The pertinent solutions are
Σ0+ = Ω0, and there are now three different sub-cases as illustrated in Fig.4a. When
Fr cos γ is sufficiently large, no waves exist (Case 1 in Fig. 4). This situation can occur
provided the non-dimensional frequency parameter τ = Ω0Fr, defined in Eq. (1.1), ex-
ceeds a critical value τRes,min, the smallest Doppler resonant frequency, to be discussed
in section 4.5.1. At a critical value of Fr cos γ only a single wave F of wave number KF

exists (Case 2), corresponding to a double root. The critical values γ = γexcl where this
occurs can be found by noting that radial group velocity equals projected source velocity
at this point:

∂Σ+

∂K
(KF , γexcl) = Fr cos γexcl (3.6)

where the notation means the derivative is evaluated at point (KF , γexcl). For supercrit-
ical values of τ there exists at least one sector γ−

excl < γ < γ+
excl where Case 1 occurs,

although as we shall detail in the case of deep water, as much as three such exclusion
sectors may exist, depending on β and Frs.
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Figure 5. Graphical solutions of dispersion relation (3.2) in infinite water depth. Intrinsic
frequencies Σ±(K, γ) are the curved lines, KFr cos γ are the straight lines. Intersections of the
two are wave solutions, marked with circles. The point (0,−Frsb cos θ) is marked with a triangle.
The panels show situations 0 < −Frsb cos θ < Ω0 (a), −Frsb cos θ < 0 (b), 0 < Ω0 < −Frsb cos θ
(c).

For cos γ smaller than the critical value there are two possible solutions corresponding
to points D and E, denoted Case 3 in Fig. 4. When τ < τRes,min this is the only possible
case for cos γ > 0. Point D corresponds to the faster and longer of the two waves, and
since its radial group velocity is greater than the source velocity projected onto the same
direction, k, this wave is the only one which might be found in front of the moving source.
Wave E has shorter wavelength and moves more slowly, and though propagating in a
forward direction, is left behind by the moving source.
In Fig. 4b we illustrate the behaviour of the intrinsic frequency Σ+ as the water depth

H increases; in the figure Σ+(K, θ) is plotted as a function of K, presuming cos θ < 0 (for
cos θ > 0 the situation is mirrored about the abscissa). As H → ∞, the graph of Σ+(K)
obtains the shape of a straight vertical line from the origin to the point −Frsb cos θ ,
thence following a curved shape concave towards the abscissa. This behaviour, leading
to the phenomenon of cutoff as discussed in Tyvand & Lepperød (2015); Ellingsen &
Tyvand (2016a,b), becomes important when next considering the deep water case.

3.3. Dispersion relation in infinite water depth

When assuming water depth to be infinite, the situation becomes at one time both
simpler, in that explicit solutions to the dispersion relation may now be found, and more
complicated. Concerning the graphical solutions of the dispersion relation, Eq. (3.2), the
curve of Σ+ or Σ− obtains a vertical section from the origin to value −Frsb cos θ as
illustrated in Fig. 4b. The graphical solution situation for infinite water depth is shown
schematically in Fig. 5. We will distinguish between what we term weak and strong shear
situations.
Weak shear. When Ω0 > Frsb, or equivalently, ω0 > S, the discussion of which far-field

waves occur is qualitatively identical to that for finite water depth given above. Only the
situations shown in Fig 5a and 5b can occur in this case.
Strong shear. When ω0 < S, however, the appearance of the vertical section of the

graph of Σ+ (along which K = 0) when cos θ < 0 means that a new situation will arise,
not found in finite water depth. In this, strong shear case, a sector of angles θ exists
centred at θ = π, within which waves of type A,B and D all have wave number K → 0
as H → ∞. The situation within this sector is depicted in Fig 5c. This is the phenomenon
of “cut-off” discussed for the 2D case in Tyvand & Lepperød (2014, 2015); Ellingsen &
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Tyvand (2016a) and briefly in 3D with V = 0 in Ellingsen & Tyvand (2016b). It is shown
in Ellingsen & Tyvand (2016a) that these K = 0 modes carry no energy and may simply
be disregarded in the far-field, and we will not consider them to be solutions. Cut-off of
A,B and D waves occurs in a sector π − θ0 < θ < π + θ0, where

θ0 = arccos(ω0/S). (3.7)

The dispersion relation at infinite water depth may be found by taking KH → ∞ in
(3.2),

Ω0 +KFr cos γ = ±
√
K + ( 12Frsb cos θ)

2 − 1
2Frsb cos θ (3.8)

which is valid forK strictly greater than 0. Unlike for finite depth, this dispersion relation
permits the analytical solutions

KC,E =
1− Frs cos θ cos γ − 2τ cos γ +

√
∆

2Fr2 cos2 γ
, (3.9a)

KB,D =
1− Frs cos θ cos γ − 2τ cos γ −

√
∆

2Fr2 cos2 γ
, (3.9b)

with discriminant

∆ = (1− Frs cos γ cos θ)
2 − 4τ cos γ, (3.10)

which agree with Wehausen & Laitone (1960); Dagan & Miloh (1982) without shear
current. Subscripts B,C,D and E refer to labels on graphical solutions in Fig. 5; waves
B,C are obtained if cos γ < 0, waves D,E if cos γ > 0. We shall make use of these
solutions towards analysing Doppler resonances in section 4.
In summary, which and how many far-field waves are found when propagation angle

γ (or θ) is varied between −π and π is now determined by two criteria: Whether or
not τ exceeds the smallest Doppler resonance frequency τRes,min, and whether or not ω0

exceeds S. With reference to Fig. 5 we show some examples in Fig. 6 of which far-field
waves appear in which sectors of the k plane when γ is varied through a full circle. In
Fig. 6a-c we assume ω0 < S and τ < τRes,min, so there is a cut-off sector symmetrical
about θ = π. In Fig. 6d-f we assume ω0 > S and τ > τRes,min. Now there is no cut-off,
but a sector γ−

excl < γ < γ+
excl appears within which no propagating wave solutions exist

since ∆ < 0 in Eq. (3.9).

4. Doppler resonance in deep water

4.1. Excluded sectors

Before studying the phenomenon of Doppler resonance, we will regard sectors of prop-
agation directions γ in which D and E waves become evanescent and do not appear in
the far-field. In deep water it is clear to see from the explicit solutions (3.9) that this
situation is characterised by ∆ < 0, that is,

τ >
[1− Frs cos(γ + β) cos γ]2

4 cos γ
≡ Φ(γ). (4.1)

The phenomenon is well known also without shear, in which case exclusion of a single
sector |γ| < arccos(1/4τ) occurs whenever τ > 1/4. In the presence of shear, however,
there can be as much as three separate excluded sectors. Fig. 7a shows the no-shear case
with a single excluded sector. For moderate values of Frs, two excluded regions can occur,
as illustrated in Fig. 7b. Note that the excluded sectors do not include γ = 0, so although

Page 10 of 21



Moving, oscillating surface disturbance on a shear current 11

cosγ>0

cosθ<0

θ0

θ0

θ0

θ0

cosγ<0

cosθ>0

B2

C2

E3

D1 E1

D1 E1

cosγ>0

θ0
θ0

cosθ<0

cosθ>0

cosγ<0

B2

E3

D1 E1

V

cosγ>0

cosθ>0

cosγ<0

cosθ<0

C3

B1 C1 C3

D2

E2

B1 C1 D2 E2

B1 C1

C2

a

β=0.5π β=πβ=0

b c

d e f

cosγ>0

cosθ<0

cosγ<0

cosθ>0

B2

C2

D1 E1

D1 E1

cosγ>0

cosθ<0

cosθ>0

cosγ<0

B2

D1 E1

cosγ>0

cosθ>0

γ+excl

F2

F
2

A1A2

A1A2

A1A2

A1

A2

A1A2

A1A2

A1A2

A2

A1A2

A1A2

cosγ<0

cosθ<0

D2 E2

B1 C1

C2

β=0 β=0.5π β=π

B1 C1

F 1

D2 E2

D2 E2

F 1

F
1

F
2

V V

V V V

γ+excl
γ+excl

γ -excl

γ -excl

γ -excl

Figure 6. Examples showing different far-field waves occurring in different sectors of the γ
plane for β = 0 (a,d), β = π/2 (b,e) and β = π (c,f). Above (a-c): τ < τRes,min and ω0 < S.
A cutoff sector of total angle 2θ0 appears within which there are no A,B or D waves. Below
(d-f): τ > τRes,min and ω0 > S. For τ above the Doppler resonance, no waves exist within a
sector of forward directions. In all figures the source’s direction of motion, γ = 0, is towards the
right. Labels within each sector refer to graphical solutions of the dispersion relation as shown
in Fig. 5
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12 Y. Li and S. Å. Ellingsen

τ > τRes,min, the source still has a wave travelling ahead of it. For large values of Frs it
is even possible for a third sector to appear, as shown in Fig. 7c. The values of Frs and
τ involved are so large that this case is of doubtful practical significance.

4.2. Criterion of the Doppler Resonance

Physically, a Doppler resonance refers to the case where wave energy is held stationary
in space from the perspective of the moving source, i.e. zero relative group velocity. We
obtain CR

g in a polar k-coordinate system from Eq. (3.5) as

CR
g =

[
± 1

2 (K + Fr2sb cos
2 θ/4)−1/2 − Fr cos γ

]
ek

+

[
Fr sin γ +

Frsb sin θ

2K
∓ 1

8K
Fr2sb(K + Fr2sb cos

2 θ/4)−1/2 sin 2θ

]
eθ (4.2)

The Doppler resonance occurs when CR
g = 0 which, after eliminating K may be written

Φ′(γ) =
(1− Frs cos γ cos θ)[(1− Frs cos γ cos θ) tan γ + 2Frs sin(γ + θ)]

4 cos2 γ
= 0 (4.3)

where −π/2 < γ < π/2 is assumed. For each γ solving Eq. (4.3) there exists a resonant
(not necessarily distinct) value of τRes. We will see that this criterion is identical to the
condition for infinite amplitudes to be possible, namely that ∆(γ) = ∆′(γ) = 0.

4.3. Wave amplitude of F -type wave

We will now consider the wave amplitude due to waves of type D or E (see Fig. 5) when
these flow together in a single point F at some value γ = γexcl.
The surface elevation (2.2) is in the form of an integral over k. As is typical of wave

descriptions with periodic or stationary time dependence, this integral is not well defined
until a radiation condition has been applied. Using the procedure of, e.g., §4.9 of Lighthill
(1978), we replace Ω0 → Ω0+iϵ where ϵ = 0+, i.e., Ω0 is given a small positive imaginary
part, so that

e−iΩ0T −→ e−iΩ0T+ϵT . (4.4)

The procedure is closely related to that for ship waves in Li & Ellingsen (2016), where
more detailed discussion may be found. The introduction of the small quantity ϵ now
moves the poles where Ω± = 0 slightly into the complex K plane, and the integral is well
defined.
Henceforth, let us assume infinite water depth to allow more explicit analysis. Using

partial fractions (2.2) may be written in the form

ζ(R, T )/b =e−iΩ0T

∫ π

−π

dγ[I+(γ)− I−(γ)], (4.5a)

I±(γ) = lim
ϵ→0

∞∫
0

dK
f(K)eiK·R

Ω±(K, γ) + iϵ
, (4.5b)

f(K) =
Pext(K)K2

2
√

K + ( 12Frsb cos θ)
2
. (4.5c)

The external pressure distribution is not specified, but we assume it is well localised so
that the integral over K converges.
It is well established (e.g., Lighthill (1978); Li & Ellingsen (2016)) that the leading

order contribution to ζ far from the source comes from the contribution to the K integral
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Moving, oscillating surface disturbance on a shear current 13

from the poles where Ω±(K, γ) = 0. We call this contribution the far-field, and it consists
of the waves of type A to E as shown in Fig. 5 for deep water.
We assume τ > τRes,min, and consider γ close to (but just outside) a sector wherein

∆ < 0, as illustrated in Fig. 7. For simplicity we assume that there is a single such sector
delimited by γ±

excl. In this sector, waves of type D and E become evanescent and do not
contribute to the far-field. Since γ is close to some γexcl, far-field waves of type D and E in
Fig. 5 have almost, but not exactly, the same wave number, and the quantity ∆(γ) from
Eq. (3.10) is small, but positive. We want the leading order contributions to the far-field
integrals as γ approaches γexcl from the side where D,E waves exist. D and E-waves are
forward-propagating (cos γ > 0) so far-field waves are solutions of Ω+(K, γ) = 0. Since
wave D has group velocity greater than V cos γ, this wave is found in the far-field in
front of the source, K ·R > 0, while the E wave is found behind, so for a single position
R in the far-field only one of these waves can ever contribute, and the two waves do not
interfere with each other [mathematically, the poles corresponding to D and E waves lie
on opposite sides of the real K axis].
We consider a D-wave (wave number KD) for definiteness. The far field D-wave surface

elevation is now found as

ζDf.f./b = e−iΩ0T

[∫ γ−
excl

γ0

+

∫ γ1

γ+
excl

]
dγID+ (γ) (4.6)

where ID+ is now approximated by the contribution from the pole near K = KD only.
The limits γ0 and γ1 are non-singular and can give a finite contribution only.
Assume that the pole is simple so that

Res
K=KD

f(K)eiK·R

Ω+(K, γ)
=

f [KD(γ), γ]eiKD(γ)R cos(γ−ϕβ)

Ω′
+[KD(γ), γ]

(4.7)

where ϕβ is the angle between R and V and a prime denotes ∂/∂K. Define KF (γ) as
the value of K so that Ω′(KF , γ) = 0, found by assuming ∆ = 0 in (3.9),

KF (γ) =
1− (Frs cos γ cos θ)

2

4Fr2 cos2 γ
(4.8)

which also solves Ω+ = 0 if γ = γexcl. Then Ω′
+(KD, γ) ≈ (KD − KF )Ω

′′
+(KF , γ), and

evaluating the contribution from the residue of the pole at K = KD we obtain

ID+ (γ) ≈ 2πi
f(KF )e

KFR cos(γ−ϕβ)

(KD −KF )Ω′′
+(KF , γ)

(4.9)

when γ is close to γexcl.
From Eqs. (3.9) and (3.10) we find

KD −KF = −
√
∆− 1

2∆

2Fr2 cos2 γ
≈ −

√
∆

2Fr2 cos2 γ
(4.10)

since ∆ tends to zero as γ → γexcl. From Ω′
+(KF , γ) = 0 we obtain Ω′′

+(KF , γ) =
2(Fr cos γ)3, yielding

ID+ (γ) ≈ −2πif(KF )e
KFR cos(γ−ϕβ)

Fr cos γ
√
∆(γ)

for γ → γexcl. (4.11)

We know that ∆(γexcl) = 0. Provided the root of ∆ at γ = γexcl is single, the singularity
at γ = γexcl is of order (γ−γexcl)

−1/2 and is integrable. The wave amplitude thus remains
finite as long as ∆ has a simple root at γexcl.
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14 Y. Li and S. Å. Ellingsen

Infinite amplitudes are possible when ∆(γexcl) = ∆′(γexcl) = 0, which is to say that ∆
has a double root at γexcl. A little algebra reveals that this exactly matches the criterion
(4.3) for a Doppler resonance to exist. This situation occurs for some value of γ when
τ = τRes,min, yet in the presence of shear, other Doppler resonances can occur as well.

4.4. Diverging amplitude at resonance

Let us consider the leading order contribution to the wave amplitude from (as an example)
a wave of type D when τ is very a very small but nonzero distance from τRes. When
τ = τRes, ∆ has a double root at γ = γ̃excl. At the actual value τ , ∆ has a simple pole at
γ = γexcl, and we consider τ → τRes and hence γexcl → γ̃excl.
Considering ∆ as a function of γ and τ we may Taylor expand,

∆(γ, τ) = δτ ∆τ (γ̃excl, τRes) +
1
2 (δγ)

2 ∆′′(γ̃excl, τRes) + ... (4.12)

where δγ = γ− γ̃excl, δτ = τ − τRes, and we used that ∆(γ̃excl, τRes) = ∆′(γ̃excl, τRes) = 0
and neglected sub-leading orders. A prime denotes differentiation with respect to γ, a
subscript τ differentiation with respect to τ . Inserting this into (4.6) and (4.11) gives the
leading order contribution to the far-field wave as

ζDf.f.
b

∝
∫ γexcl dγ√

(γ − γexcl)2 + 2 ∆τ (γ̃excl,τRes)
∆′′(γ̃excl,τRes))

δτ
∝ ln(δτ) + ... (4.13)

We have shown that the Doppler resonance gives a logarithmically diverging wave
amplitude, which is in agreement with the findings of Dagan & Miloh (1980, 1982).

4.4.1. Exception: finite resonance amplitude when τRes,min = 0

We find in the following that for certain velocity directions β the smallest resonant
value of τ can become identically zero. This only occurs for Frs > 1, so τ = τRes = 0 can
be achieved by letting ω0 = 0, not V = 0, which would imply Frs = 0 as well.
Regarding the graphical dispersion relation solutions in Fig. 5, it is clear that if a wave

solution of type F exists when Ω0 = 0, this must imply KF = 0. Now notice that the
function f(K) in (4.5c) tends to zero asK → 0, which cancels the logarithmic divergence.
This is in agreement with studies of ship waves (i.e., the case ω0 = 0) where no diverging
amplitude is observed at the critical velocity (Ellingsen 2014b; Li & Ellingsen 2016); quite
the opposite, the amplitude of the transverse waves which become excluded tends to zero
as velocity approaches critical. Note that this is not the case in two dimensions, where
the waves made by a time-constant moving pressure distribution travelling at critical
velocity gives rise to waves whose amplitude appears infinite until higher order terms
are accounted for (Akylas 1984). Waves generated by a ship (or model of such) near
critical velocity is a much studied problem, and upstream solitons are known to appear
for transcritical velocities (see, e.g., Ertekin et al. 1986; Katsis & Akylas 1987; Lee et al.
1989) particularly when the spanwise wave number is discretised by the presence of a
channel of finite width.

4.5. Position of resonance frequencies

In the following we determine the resonant values of τ for different values of β and Frs.

4.5.1. The minimal resonance τRes,min

The smallest non-dimensional resonance frequency τRes,min is the smallest value of τ
so that τ = Φ(γ) (see Eq. (4.1)) has a solution, i.e.,

τRes,min = min
γ

{Φ(γ)} . (4.14)
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Figure 8. Smallest dimensionless resonance frequency τRes,min as a function of Frs and β, (a)
3D plot and (b) contour plot. The shaded region satisfies Eq. (4.18), and here τRes,min = 0.

The notation denotes that the minimum value is found with respect to γ in the sector
(−π/2, π/2).
We shall see in the following that while τRes,min is the smallest value at which infinite

wave amplitudes may occur, it is not necessarily the only value. When shear current
is not present, the well-known resonance found in the classical literature (Wehausen &
Laitone 1960) is obtained, i.e. τRes,min = 1/4, which is then the only resonance.
Based on Eq. (4.14), Fig.8 presents the smallest resonance frequency τRes,min for various

Frs and β. The resonance frequency reaches its peak value at β = ±π for given Frs, and its
minimum for β = 0. Moreover, the shear vorticity represented by Frs tends to decrease the
resonance frequency for −π/2 < β < π/2. Notably, τRes,min tends to zero for increasing
Frs when −π/2 < β < π/2, an observation which could well have implications for the
heave and pitch of marine vessels in the presence of shear current, since resonance (often
corresponding to sudden increase in wave loads) could occur at a much lower frequency
than on still water or uniform current.
Resonance conditions in 2D were worked out by Tyvand & Lepperød (2015) for shear

assisted motion (corresponding to β = π in 3D), in which case they obtain

τRes,min = (1 + Frs)
2/4. (4.15)

The 2D geometry with the source travelling in the shear inhibited direction (β = 0 in
3D) is not considered by Tyvand & Lepperød (2015).
We find that the 2D result (4.15) is also a resonance of a 3D source moving in direction

β = π, but it is not necessarily the smallest one. An explicit expression for τRes,min in
3D is not available in general, but may be found from (4.14) when β = 0,±π:

τRes,min(β = ±π) =

{
1
4 (1 + Frs)

2; 0 6 Frs 6 1
3

4
3

√
1
3Frs; Frs >

1
3

, (4.16a)

τRes,min(β = 0) =

{
1
4 (1− Frs)

2; 0 6 Frs 6 1
0; Frs > 1

. (4.16b)

The smallest resonance frequency for β = ±π is smaller than the 2D result Eq. (4.15)
when Frs > 1/3. The reason is that for β = ±π,Frs > 1/3, the resonance condition ∆ = 0
is first satisfied for a partial wave in directions

γRes = ± arctan
√

3Frs − 1 (4.17)
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rather than γ = 0, as illustrated in Fig. 7b.
We plot the resonance frequencies as a function of Frs for different values of β in Fig.

9 for moderate values of Frs. Some higher-than-minimal values of τRes also appear in
the figure, to be discussed in the next section. Note that the highest branch of resonant
τRes values at β = π (marked with a circle in the figure) is the 2D result from Tyvand
& Lepperød (2015), and that two different resonant values can occur quite close to each
other in this case.
Except for the special case β = ±π, the resonance frequency τRes,min will always drop

to zero for sufficiently high values of Frs, because the numerator of Eq. (4.14) will be
zero for some γ. A bit of algebra shows that this is the case, and τRes,min = 0, provided

Frs > 1/ cos2(β/2). (4.18)

This is exactly the criterion found for critical velocity to occur for ship waves (i.e., ω0 = 0)
in deep water by Ellingsen (2014b). In Fig. 8b this region is shaded. As indicated by the
β = 0 graph in Fig. 9, when τRes,min hits 0 when Frs increases, it stays zero for all higher
values, but a second branch of resonances also appears with increasing τRes as a function
of Frs.
We finally note that for Frs ≪ 1, τRes,min behaves like

τRes,min ∼ 1

4

[
1− 2Frs cosβ +

1

2
Fr2s (3 cos 2β − 1) + ...

]
. (4.19)

Thus the minimal resonance changes linearly as a function of Frs for small shear, except
when V is orthogonal to the shear current (β = ±π/2) when the behaviour is quadratic.

4.5.2. Additional resonances

As found in section 4.2, the criterion for a Doppler resonance to exist is Φ′(γ) = 0 when
|γ| < π/2. In other words, for some value of Frs, there is a resonant (but not necessarily
distinct) value τ = Φ(γ) associated with each local maximum or minimum of Φ(γ); if
Φ(γ) has a local extremum at γ = γRes, then τ = Φ(γRes) is a resonant value. In the

Page 16 of 21



Moving, oscillating surface disturbance on a shear current 17

{0.5 0 0.5

0

2

4

6

8

10

F
r
s

°=¼

{0.5 0 0.5

0

2

4

6

8

10

F
r
s

°=¼

{0.5 0 0.5

0

2

4

6

8

10

F
r
s

°=¼
{0.5 0 0.5

0

2

4

6

8

10

F
r
s

°=¼

{0.5 0 0.5

0

2

4

6

8

10

F
r
s

°=¼
{0.5 0 0.5

0

2

4

6

8

10

F
r
s

°=¼
{0.5 0 0.5

0

2

4

6

8

10

F
r
s

°=¼

{0.5 0 0.5

0

2

4

6

8

10

F
r
s

°=¼
{0.5 0 0.5

0

2

4

6

8

10

F
r
s

°=¼

 ̄ = 0  ̄ = ¼=4

 ̄ = 3¼=8  ̄ = ¼=2  ̄ = 5¼=8

 ̄ = 3¼=4  ̄ = 7¼=8  ̄ = ¼

 ̄ = ¼=8
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necessarily distinct) resonant τ -value, τRes = Φ(γRes), as plotted in Fig. 11.

absence of shear, resonance can only occur at γ = 0. Fig. 10 shows that the introduction
of a shear current results in a much richer resonance situation, where group velocity can
vanish for different γ.

By mapping the zeros of Φ′(γ) onto the τ axis by requiring ∆(γRes, τRes) = 0 we plot
resonance frequencies τRes as a function of Frs for different directions of motion, β, in
Fig. 11 (compare also with Fig. 9). Panels a,b,d,f and h show the structure of resonances
for low to moderate Frs. At larger values of Frs, a more complex picture emerges, as
shown clearly, e.g., in Fig. 11e. For Frs & 4.2, four different resonant values of τ can be
identified (one of which is zero).

Of particular interest is the situation for directions close to β = ±π as shown in Fig. 12.
In Fig. 12 we plot the structure of resonances for directions close to this maximally shear
inhibited direction. As, β → π, the example shown, a pair of higher resonances begin
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to appear at ever lower Frs, the smaller of which eventually merging with the smallest
resonance with the branch point reaching Frs = 1/3.

5. Concluding remarks

We have studied the waves on the free surface atop a shear current which, when
undisturbed, has uniform vorticity. The wave-making perturbation, modelled as a surface
pressure distribution, is at one time oscillating in strength and moving relative to the free
surface with constant velocity making an arbitrary angle β with the sub-surface shear
current. In the absence of vorticity the problem is a classical one, with applications in
the study of ship motion in regular waves.
We provide a detailed analysis of the dispersion relation which must be fulfilled for

far-field waves. Both finite and infinite water depth are considered. Graphical solution
of the dispersion relation reveals a considerably more complex picture than was the
case when no shear current is present. As has long been known for the still water case,
for values of τ = |V |ω0/g less than a critical value [V is disturbance velocity, ω is
disturbance frequency, g is the acceleration of gravity], we find for finite water depth
always four waves, three of which behind the disturbance and one travelling ahead.
Above the smallest resonant value, τRes,min, two of these waves, including the forward
propagating one, vanish from at least one sector of propagation directions.
The situation is far richer than in the absence of shear, however. Firstly, several res-

onance frequencies (as many as 4) can occur for some sets of parameters, and, corre-
spondingly, several sectors of wave propagation directions can exist wherein no far-field
wave solutions exist. Secondly, in deep waters the phenomenon of “cut-off” reported by
Tyvand & Lepperød (2014) occurs if ω0 < S [S is the vorticity of the undisturbed flow],
in which case one of the wave solutions effectively disappears within a sector of shear
assisted propagation directions.
The structure of resonant values of τ is analysed thereafter, revealing a complex picture

where up to 4 different resonant values of τ can exist for any combination of parameters β
and the “shear-Froude number” Frs = V S/g. The situation is particularly notable when
the disturbance motion is close to maximally shear inhibited (β = 0) or shear assisted
(β = ±π). In the former situation, τRes,min decreases rapidly towards zero for increasing
values of Frs and splits into separate branches for Frs > 1, one of which is τRes,min = 0. In
the latter situation, when β is close to, but not exactly, ±π, three resonant values exist
for Frs greater than some critical value 1/3 < Frs . 1. For directions of motion close
to orthogonal with the shear flow, the same richness of resonances exists, but requires
values of Frs well in excess of 1, which may be difficult to achieve in practice.
For all directions of motion that are significantly assisted or inhibited by the shear,

the resonant value of τ changes rapidly, as τRes,min ∼ 1
4 (1− 2Frs cosβ + ...) for Frs ≪ 1.

Thus the presence of a shear current will change the resonant value significantly even for
Frs ∼ O(10−1).
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