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Abstract

Riemannian metric tensors of color difference formulas are derived
from the line elements in a color space. The shortest curve between two
points in a color space can be calculated from the metric tensors. This
shortest curve is called a geodesic. In this paper, the authors present
computed geodesic curves and corresponding contours of the CIELAB
(∆E∗

ab), the CIELUV (∆E∗
uv), the OSA-UCS (∆EE) and an infinitesimal

approximation of the CIEDE2000 (∆E00) color difference metrics in the
CIELAB color space. At a fixed value of lightness L∗, geodesic curves ori-
ginating from the achromatic point and their corresponding contours of
the above four formulas in the CIELAB color space can be described as hue
geodesics and chroma contours. The Munsell chromas and hue circles at
the Munsell values 3, 5 and 7 are compared with computed hue geodesics
and chroma contours of these formulas at three different fixed lightness
values. It is found that the Munsell chromas and hue circles do not the
match the computed hue geodesics and chroma contours of above men-
tioned formulas at different Munsell values. The results also show that the
distribution of color stimuli predicted by the infinitesimal approximation
of CIEDE2000 (∆E00) and the OSA-UCS (∆EE) in the CIELAB color
space are in general not better than the conventional CIELAB (∆E∗

ab)
and CIELUV (∆E∗

uv) formulas.

Introduction

In a color space, color differences are described as the distance between two
color points. This distance gives us a quantitative value which in general should
agree with perceptual color differences. We can describe such distances from
different geometrical points of view. For example, the CIELAB color space is
isometric to the Euclidean geometry and the distance is described by the length
of a straight line because it has zero curvature everywhere. The distance is no
longer the length of a straight line, if we model a color space as a Riemannian
space having nonzero curvature. In such a space, the curve having the shortest
length or distance between any two points is called a geodesic. The aim of
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a color space and a color difference formula is to give a quantitative measure
(∆E) of the perceived color difference correctly. The development of many
color spaces and color difference formulas are outcomes of a number of studies
of visual color differences based upon the distribution of color matches about
a color center [1–5]. Many research works in the past have been continuing to
relate theoretical models of color differences with experimental results.

Helmholtz [6] was the first to derive a line element for a color space as a
Riemannian space. Schrödinger [7] modified Helmholtz’s line element stating
that the additivity of brightness is essential for the formulation of the line ele-
ment. He further argued that surfaces of constant brightness can be derived
from the line element in the following way: Suppose that p1 and p2 repres-
ent the coordinates of two color stimuli in a tristimulus space, p1 moves away
from the origin along a straight line in that space, and p2 remains fixed. When
the geodesic distance between p1 and p2 is at minimum, the two given color
stimuli are said to be equally bright (which in modern parlance means they
are equally luminous). The geodesic between the final p1 and p2 is called a
constant-brightness geodesic.

Muth et al. [8] used Schrödinger’s theoretical conjecture to compute constant
brightness color surfaces in the xyY space for FMC1 and FMC2 color difference
formulas. The shape of this computed constant brightness surface is consist-
ent with experimental results. Jain [9] determined color distance between two
arbitrary colors in the xyY space by computing the geodesics. He also found
that geodesics and the constant brightness contours are in agreement with the
experimental results of Sanders and Wyszecki [10]. A thorough review of color
metrics described with the line element can be found in [11–14].

Wyszecki and Stiles [14] hypothesized that all colors along a geodesic curve
originating from a point representing an achromatic stimulus on a surface of con-
stant brightness share the same hue. They further hypothesized that contours
of constant chroma can be determined from these geodesics (henceforth called
hue geodesics) by taking each point on a chroma contour as the terminus of a
hue geodesic such that all the hue geodesics terminate on that chroma contour
at the same geodesic distance. This construct has also been used to compute
the curvature of color spaces by Lenz at el. [15]. Many other researchers have
also pointed out that hue geodesics play a vital role in various color-imaging
applications such as color difference preserving maps for uniform color spaces,
color-weak correction and color reproduction [15–18].

Hue geodesics and chroma contours of color difference formulas are useful
to study the perceptual attributes hue, chroma and lightness predicted by the
color difference metric theoretically. A color order system like the Munsell is
described in terms of hue, chroma and value to represent scales of constant hue,
chroma and lightness. This is analogous to the Riemannian coordinate system.
This analogy provides us to compare hue geodesics and chroma contours of a
color difference formula in a color space with respect to the Munsell chromas
and hues circles computed at a fixed value of lightness which should correspond
to the Munsell value. In this sense, in the CIELAB color space, hue geodesics
starting from the origin of a∗, b∗ at a fixed value of lightness L∗ are corresponding
to the curves of increasing or decreasing Munsell chroma starting from the same
origin at constant hue. In a similar way, chroma contours are closed curves with
a constant hue geodesic distance from the achromatic origin. They are also
corresponding to changing Munsell hue circles from the origin at the constant
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chroma.
The CIELAB and the CIELUV [19] color difference formulas are defined

by Euclidean metrics in their own color spaces. The CIEDE2000 [20] is an
improved non-Euclidean formula based on the CIELAB color space. The ∆EE
proposed by Oleari [21] is a recent Euclidean color difference formula based on
the OSA-UCS color space. However, all these color spaces do not have sufficient
perceptual uniformity to fit visual color difference data [22–28]. This leads to
difficulty in determining the maximum performance of color difference formulas
for measuring visual color differences. Computing hue geodesics and chroma
contours of these formulas in a color space help to evaluate their perceptual
uniformity theoretically. Similarly, hue geodesics have to be calculated to study
distribution of the color stimuli of a color difference formula in a color space. To
calculate large color differences, hue geodesics have to calculated [14, 29]. This
is even crucial for formulas like the CIEDE2000 because they are developed to
measure small color differences, 0–5 ∆E∗ab [20].

In this paper, the authors test the hypothesis described in the fourth para-
graph by computing the hue geodesics and chroma contours of four color dif-
ference formulas, the CIELAB, the CIELUV, the Riemannian approximation of
CIEDE2000 [30] and the OSA-UCS based ∆EE in the CIELAB color space, and
comparing the results to the Munsell color order system. The mathematical con-
struct to compute these hue geodesics and chroma contours using Riemannian
metric tensors of each formula are given in the section ”The geodesic equation”.
They are computed at a fixed value of lightness L∗, starting from the origin
of the a∗, b∗ plane. For the first three color difference metrics above, constant
L∗ correspond to the constant brightness surface according to Schrödinger’s
criterion. For the OSA-UCS based ∆EE it does not correspond to constant
brightness due to the definition of the OSA-UCS space. Different hue geodesics
and chroma contours of the above four formulas are computed taking three dif-
ferent fixed values of lightness, L∗, corresponding to the Munsell values 3, 5 and
7. The Munsell chromas and hue circles are also plotted in the CIELAB color
space at the Munsell values 3, 5 and 7. They are compared with the computed
hue geodesics and chromas contours of above mentioned four formulas.

Method

Riemannian Metric

In a Riemannian space, a positive definite symmetric metric tensor gik is a
function that is used to compute the infinitesimal distance between any two
points. So, the length of an infinitesimal curve between two points is expressed
by a quadratic differential form as given below:

ds2 = g11dx
2 + 2g12dxdy + g22dy

2. (1)

The matrix form of Equation (8) is

ds2 =
[
dx dy

] [g11 g12

g12 g22

] [
dx
dy

]
, (2)

and

gik =

[
g11 g12

g21 g22

]
(3)
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where ds is the distance between two points, dx and dy are differentials of the
coordinates x and y and g11, g12 and g22 are the coefficients of the metric tensor
gik. Here, the coefficient g12 is equal to the coefficient g21 due to symmetry.

In a two dimensional color space, the metric gik gives the intrinsic properties
of the color space. Specifically, the metric represents chromaticity differences of
any two colors measured along any curve of the surface. Riemannian metrics
of the CIELAB, the CIELUV, and the OSA-UCS ∆EE can be derived in a
similar way because they are simply identity metrics in their respective color
spaces. The Riemannian approximation of CIEDE2000 on the other hand is a
non-Euclidean metric, so its Riemannian metric constitute weighting functions,
parametric functions and rotation term. The detailed explanation about this as
well as the derivation of Riemannian metrics of above color difference formulas
can be found in the authors’ previous article [30].

Jacobian Transformation

The quantity ds2 in Equation (1) is called the first fundamental form and it
gives the metric properties of a surface. Now, suppose that x and y are related
to another pair of coordinates u and v. The metric tensor gik can be expressed
in terms of the new coordinates as g′ik. In analogy with Equation (3), it is
written as:

g′ik =

[
g′11 g′12

g′21 g′22

]
. (4)

Now, the new metric tensor g′ik is related to gik via the matrix equation as
follows: [

g′11 g′12

g′21 g′22

]
=

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]T [
g11 g12

g21 g22

] [
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
, (5)

where the superscript T denotes the matrix transpose, and the matrix

J =
∂(x, y)

∂(u, v)
=

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
(6)

is the Jacobian matrix for the coordinate transformation, or, simply, the Jac-
obian. Applying the Jacobian method, one can transform color vectors and
metric tensors from one color space to another space easily. For example, the
CIELUV metric tensor can be transformed into the CIELAB color space by
computing the following Jacobians:

g∆E∗
uv

=
∂(X,Y, Z)

∂(L∗, a∗, b∗)

T
∂(L∗, u∗, v∗)

∂(X,Y, Z)

T

I
∂(L∗, u∗, v∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(L∗, a∗, b∗)
(7)

where ∂(X,Y, Z)/∂(L∗, a∗, b∗) and ∂(L∗, u∗, v∗)/∂(X,Y, Z) are the Jacobian
metrics and I is an identity matrix in Equation (7). For a detailed derivation
of the Jacobians involved, it is referred to the authors’previous paper [30].

The Geodesic Equation

The line element is often written as:

ds2 = gikdx
idxk. (8)
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Here, Einstein’s summation convention which indicates summation over re-
peated indices, aibi =

∑
i a
ibi is used. If we consider two points p1 and p2,

the distance between the two points along a given path is given by the line
integral:

s =

∫ p2

p1

ds =

∫ p2

p1

(gikdx
idxk)

1
2 . (9)

The shortest distance between p1 and p2 can be obtained by minimizing s with
respect to the path. This path is called the geodesic. Using variational calculus
approach and introducing the Lagrangian L[dxi/dλ, xi] =

√
gik dxi/dλ dxk/dλ,

Equation (9) in terms of the variation of distance s with path is

δs =

∫ p2

p1

δL dλ. (10)

where λ is a variable that parametrizes the path. The distance s will be min-
imum when δs = 0. From Equation (10) with the criteria of minima, we can
obtain the Euler-Lagrange equation in the following form (the detail mathem-
atical derivations can be found in Cohen’s text [31]):

∂L

∂xi
− d

dλ

(
∂L

∂(dxi/dλ)

)
= 0 (11)

From Equation (11), the geodesic equation is derived and is expressed as
below:

d2xi

ds2
+ Γijk

dxj

ds

dxk

ds
= 0. (12)

where Γijk are called Christoffel symbols and are defined in terms of the metric
tensor as follows:

Γijk =
1

2
giν
[
∂gjν
∂xk

+
∂gkν
∂xj

− ∂gjk
∂xν

]
. (13)

Here, giν is the inverse of the metric giν satisfying giνgkν = δik. Here, δik is
the Kronecker delta which vanishes for i 6= k. Equation (12) can be written in
terms of the first order ordinary differential equations as follows:

dxi

ds
= ui

dui

ds
= −Γijku

juk
(14)

In two dimensions, for Γijk(i, j, k = 1, 2), Equation (14) is expressed as:

dx1

ds
= u1

dx2

ds
= u2

du1

ds
= −Γ1

11(u1 )2 − 2Γ1
12u

1u2 − Γ1
22(u2 )2

du2

ds
= −Γ2

11(u1 )2 − 2Γ2
12u

1u2 − Γ2
22(u2 )2

(15)

where, the superscript in italics are indices.
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The Geodesic Grid Construction

Differential equations as given in Equation (15) need to be solved to compute
the hue geodesics as well as the chroma contours of the CIELAB, the CIELUV,
the Riemannized ∆E00 and the ∆EE color difference formulas in the CIELAB
color space. Analytical solutions for these equations are complex due to their
nonlinear nature. The authors use the Runge-Kutta numerical method for com-
puting the hue geodesics and chroma contours of above color difference formulas
in the CIELAB color space. This method gives a solution to increase the ac-
curacy of the integration. The step size is taken 10−4 to balance a trade off
between rounding error and truncation error. Centered difference formulas are
used to calculate the partial derivatives of the metric tensors in the expression
for the Christoffel symbols in Equation (14).

Hue geodesics of these color difference formulas start from the origin of a∗, b∗

to different directions in the CIELAB color space with a fixed value of L∗ and
they are spaced from each other at constant intervals. In a similar way, chroma
contours start from the a∗, b∗ origin. They are also evenly spaced along the hue
geodesic distance. The hue geodesics and chroma contours form the geodesic
grids of the above four color difference formulas.

Results and Discussion

Geodesic grids of four color difference formulas, the CIELAB, the CIELUV, the
Riemannized ∆E00 and the ∆EE are computed and drawn in the CIELAB color
space by using the technique described in the previous section. The Munsell
color order system is used to compare these computed hue geodesics and chroma
contours. Figures 1(a)–1(c) show the Munsell chromas and hue circles at the
Munsell value 3, 5 and 7. Figures 2, 3 and 4 show the hue geodesics and chroma
contours of the CIELAB, the CIELUV, the Riemannized ∆E00 and the ∆EE
computed at L = 30/50/70, which correspond to the Munsell value 3, 5 and 7
respectively.

The CIELAB formula is defined as a Euclidean metric in the CIELAB color
space, so its hue geodesics and chroma contours are straight lines and circles.
They are compared with the Munsell chromas and hue circles at different Mun-
sell values as shown in Figures 2(a), 3(a) and 4(a). The computed hue geodesics
intersect the Munsell chromas around yellow, green and blue areas. In the red
region of the CIELAB space, the hue geodesics follow the same directions as
the Munsell chromas. However, the Munsell chromas are curved at high chroma
whereas the hue geodesics of the CIELAB formula are straight in the same re-
gion. The chroma contours also vary from the Munsell hue circles at the Munsell
value 5 and 7, but at the value 3, the chroma contours are closer to the Munsell
hue circles at the a∗, b∗ origin and the central region of the CIELAB color space.

The CIELUV hue geodesics and chroma contours tend to agree more with
the Munsell chromas and hue circles than the ones predicted by the CIELAB
formula. But, the geodesic grids of the CIELUV formula do not cover the
Munsell chromas and hue circles due to integration instability. It can be seen
in Figures 2(b), 3(b) and 4(b). In this case, hue geodesics predicted by the
CIELUV formula intersect the Munsell chromas mostly in the third quadrant of
the CIELAB space. This result indicates that the CIELUV hue geodesics and
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the Munsell chroma differ in the blue-green region of the CIELAB color space.
The CIELUV hue geodesics also follow the curvature pattern of the Munsell
chromas, and their directions in the red and yellow regions of the CIELAB
space are very close to the Munsell chromas. Chroma contours of the CIELUV
formula appear elliptical. They are also similar to the Munsell hue circles at
the a∗, b∗ origin and the central region. However, they do not comply fully in
accordance with the Munsell hue circles in the rest of the CIELAB color space.

The Riemannized ∆E00 hue geodesics and chroma contours begin from near
the a∗, b∗ origin. This is due to the nonexistence of the Riemannian metric at
a∗ = b∗ = 0. The detailed discussion about difficulty for getting Riemannian
metric of the CIEDE2000 can be found in the article of Pant and Farup [30].
Geodesic grids of the Riemannized ∆E00 and their comparison with the Munsell
hue and chromas at the different Munsell values are shown in Figures 2(c), 3(c)
and 4(c). The hue geodesics are more consistent with the Munsell chromas
than the hue geodesics predicted by the CIELAB and the CIELUV metrics.
However, they do not follow the curvature pattern of the Munsell chroma in
the red and yellow regions of the CIELAB color space. In the blue and violet
regions, hue geodesics are sharply curved. They are also changing direction of
curvature on their path for intermediate chromas in the CIELAB color space
(around C∗ ≈ 20). The chroma contours are elliptical in the central region of
the CIELAB color space. Their shapes also diverge from circular to notch on
their path in the blue and violet regions. In general, they do not match the
Munsell hue circles. The authors found that changing direction of hue geodesics
along their path as well as the elliptical shape of chroma contours in the central
region are due to the G parameter in the CIEDE2000 formula [20]. Figure 5
shows the hue geodesic and chroma contours of the Riemannized ∆E00 setting
the value of G = 0. This improves the problems of the changing direction
of the hue geodesics and the elliptical shape of the chroma contours except
in the blue region of the CIELAB space. However, the rotation term of the
CIEDE2000 formula is accountable for the sharply curved hue geodesics as well
as the shifting of chroma contours in the blue region. This finding suggests that
correcting chroma in the blue region of the color space can have a diverse effect
on the whole color space.

The OSA-UCS based ∆EE geodesic grid looks somewhat similar to the
CIELUV geodesic grid. Figures 2(d), 3(d) and 4(d) show the ∆EE hue geodesics
and chroma contours. They are following more closely to the direction of the
Munsell chromas and hue circles. In the blue region, the hue geodesics intersect
the planes of the Munsell chroma. Likewise, the shape of ∆EE chroma contours
are similar to the ones predicted by the CIELUV formula, but they appear to
be more correct. Chroma contours are similar to the Munsell hue circles in the
achromatic region of the CIELAB color space. In this case also, the ∆EE pre-
dicted chroma contours are not matching the Munsell hue circles in the other
parts of the CIELAB color space.

Conclusion

Hue geodesics and chroma contours of color difference metrics can be computed
in any desired color space with the known Riemannian metric tensors. This
technique is successfully shown by computing geodesic grids of the CIELAB,
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(a) Munsell chromas and hues at value 3. (b) Munsell chromas and hues at value 5.

(c) Munsell chromas and hues at value 7.

Figure 1: Munsell chromas and hues at different Munsell values.
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(a) CIELAB geodesic grid. (b) CIELUV geodesic grid.

(c) Riemannized CIEDE00 geodesic grid. (d) OSA-UCS ∆EE geodesic grid.

Figure 2: Computed geodesic grids of CIELAB, CIELUV, Riemannized CIEDE00 and OSA-
UCS ∆EE in the CIELAB space and compared with the Munsell chromas and hues at the
Munsell value 3.
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(a) CIELAB geodesic grid. (b) CIELUV geodesic grid.

(c) Riemannized CIEDE00 geodesic grid. (d) OSA-UCS ∆EE geodesic grid.

Figure 3: Computed geodesic grids of CIELAB, CIELUV, Riemannized CIEDE00 and OSA-
UCS ∆EE in the CIELAB space and compared with the Munsell chromas and hues at the
Munsell value 5.
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(a) CIELAB geodesic grid. (b) CIELUV geodesic grid.

(c) Riemannized CIEDE00 geodesic grid. (d) OSA-UCS ∆EE geodesic grid.

Figure 4: Computed geodesic grids of CIELAB, CIELUV, Riemannized CIEDE00 and OSA-
UCS ∆EE in the CIELAB space and compared with the Munsell chromas and hues at the
Munsell value 7.

Figure 5: Riemannized CIEDE00 geodesic grid with G = 0.
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CIELUV, Riemannized CIEDE00 and OSA-UCS ∆EE color difference formu-
las with the fixed value of lightness L∗ in the CIELAB color space. Comparisons
of the geodesic grids of these formulas with the Munsell hues and chromas at the
Munsell values 3, 5 and 7 show that none of these four formulas can precisely
fit the Munsell data. It is interesting to note that the latest color difference for-
mulas like the OSA-UCS ∆EE and the Riemannized CIEDE2000 do not show
better performance to predict hue geodesics and chroma contours than the con-
ventional CIELAB and CIELUV color difference formulas. These findings also
suggest that the distribution of hue geodesics and chroma contours of the above
four color difference formulas are weak to predict perceptual color attributes in
all over the color space even though their quantitative color difference measures
are good.
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