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Abstract. We study the crossed product C∗-algebra associated to injective endomor-
phisms, which turns out to be equivalent to study the crossed product by the dilated
autormorphism. We prove that the dilation of the Bernoulli p-shift endomorphism is
topologically free. As a consequence, we have a way to twist any endomorphism of a
D-absorbing C∗-algebra into one whose dilated automorphism is essentially free and
have the same K-theory map than the original one. This allows us to construct purely
infinite crossed products C∗-algebras with diverse ideal structures.

Introduction

The study of group actions on C∗-algebras has been largely developed by several
authors during the last years. To this end, a key strategy is to characterize properties
of the crossed product C∗-algebra by looking at the dynamical properties of the action.
This is very intuitive in the commutative case, but becomes more subtle when the C∗-
algebra is non-commutative. An intensive work on that area was done by Olesen and
Pedersen in [14], where they explored a certain subset of the dual group Γ of G, called the
Connes’ Spectrum, which measured the obstruction of the automorphism to be inner. In
this way, they were able to characterize when certain crossed products C∗-algebra were
simple. An associated problem is to examine conditions on the group action so that the
ideals in the crossed product are separated by the base algebra; this allows us to have
control on the ideal structure of the crossed product. Renault [19] stated implicitly that
essential freeness of a group G acting on a C∗-algebra A might be enough to guarantee
that A separates the ideals of the reduced crossed product A or G. Sierakowski [21]
studied this problem and presented another way of ensuring this separation property on
A or G. For, he defined a generalized version of the Rokhlin property, which he called
the residual Rokhlin* property. Hence, he showed that A separates the ideals in AorG
provided that the action of G on A is exact and satisfy the residual Rokhlin* property.

In [6], Cuntz defined the fundamental Cuntz algebras On. He also represented these
algebras as crossed products of a UHF-algebra by an endomorphism, and he used this
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representation to prove the simplicity of these algebras. He saw this construction as a
full corner of an ordinary crossed product. Later, Paschke [15] gave an elegant gener-
alization of Cuntz’s results, and described the crossed product of a unital C∗-algebra
by an endomorphism α : A → A, written A ×α N, as the C∗-algebra generated by A
and an isometry V , such that V aV ∗ = α(a). Endomorphisms of C∗-algebras appeared
elsewhere, and this led Stacey to give a modern description of their crossed products in
terms of covariant representations and universal properties [22]. As noticed by Cuntz,
when the endomorphism is injective, it is possible to transform it into automorphism
and the isometries into unitaries via a direct limit construction. So, the crossed product
by an endomorphism can be seen as a full corner of a crossed product by an automor-
phism. This allows to import results from the well-developed theory of crossed products
by groups. That fact can be extended to actions by cancellative semigroups; for a more
general exposition look at [13] and the references therein.

Along his work, Cuntz defined purely infinite simple C∗-algebras, and he proved that
the Cuntz algebras On are among those C∗-algebras. Purely infinite simple Cuntz-
Krieger algebras (a generalization of Cuntz algebras introduced in [7]) where classified
by using K-Theoretical invariants [18]. However, the most spectacular result about
purely C∗-algebras came from works of E. Kirchberg and N.C. Phillips [11, 17], who
proved that separable, unital purely infinite simple C∗-algebras in the bootstrap class
are classified (up to isomorphism) by their K-theory. There were some definitions that
generalize the notion of purely infinite C∗-algebras to the non-simple case. The most
accepted, and useful, was due to Kirchberg and Rørdam [12]. In [11] Kirchberg gave
also some nice classification results for non-simple purely infinite C∗-algebras through
bivariant KK-theory.

Our main goals in this paper are to give conditions on an endomorphism α ∈ End(A)
to guarantee that: (1) A separates ideals of A×α N; (2) A×α N is purely infinite. Our
fundamental technique is seeing A×α N as a full corner of a crossed product of Ā×ᾱ Z,
where Ā is the dilation of A by α. After reducing the situation of a crossed product by an
automorphism, we will use results of Sierakowski [21], and of Pasnicu and Rørdam [16].
We will also give a concrete example of endomorphism satisfying the residual Rokhlin*
property: it is the so called shift endomorphism, that was constructed by Cuntz [6] and
later studied by Dykema and Rørdam [8].

The contents of this paper can be summarized as follows: In Section 1, we introduce
basic notation, and we construct the dilation of an injective endomorphism. We then
review results on actions by a single automorphism, i.e. actions of Z, and we show
equivalent conditions for this action being topological and essentially free. We finally
recall the residual Rokhlin* property defined by Sierakowski. In Section 2, we prove
that the dilation of the shift endomorphism is topologically free. In particular, given a
strongly self-absorbing C∗-algebra with a non-trivial projection D, the shift endomor-
phism is topologically free. Even more, this allows us to twist any endomorphism on
a D-absorbing C∗-algebra into one that is essentially free and that induces the same
K-theory map. In Section 3, we give conditions for a crossed product by a single endo-
morphism being (non-simple) purely infinite. Finally, in Section 4, we construct various
interesting examples of simple and non-simple purely infinite C∗-algebras. In particular,
in an easy way, we construct purely infinite C∗-algebras with torsion in their K1 groups.
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Throughout the article we will denote by N the subsemigroup of Z given by {1, 2, . . .}
and Z+ the monoid N ∪ {0}.

1. N and Z actions on C∗-algebras

Every injective endomorhism α of a C∗-algebra A can be canonically dilated to an
automorphism ᾱ into a bigger C∗-algebra Ā, and therefore one has an intuitive way
to extend the spectral theory of automorphisms to endomorphisms. We will see later
that this is the correct one since the associated crossed products are strongly Morita
equivalent. Given an endomorphism α : A −→ A, we define the inductive system
{Ai, γi}i∈N given by Ai := A and γi = α for every i ∈ N. Let Ā := lim−→{A,α} the dilation
of A by α. For any i ∈ N, αi,∞ : A −→ Ā denotes the canonical map. The diagram

A

α
��

α // A

α
��

α // A

α
��

α // · · · // Ā

ᾱ
��

A α
// A α

// A α
// · · · // Ā

gives rise to an automorphism ᾱ : Ā −→ Ā, that is called the dilation of α. Recall
that given an automorphism α ∈ Aut (A) we can define the spectrum of α, denoted by
Spec (α), as the Gelfand spectrum of α viewed as the element of the Banach algebra
B(A), bounded linear operators of A, and the Connes’ spectrum of α is defined as

T(α) :=
⋂

B∈Hα(A)
Spec (α|B)

where Hα(A) is the set of all the hereditary and α-invariant sub-C∗-algebras B, i.e.,
α(B) = B. Given a C∗-algebra A we define by I(A) the set of the closed two-sided
ideals of A, and given an endomorphism α ∈ End (A) we denote by Iα(A) the set of all
α-invariant ideals I of A, i.e., α−1(I) := {x ∈ A : α(x) ∈ I} = I.

The following equivalent statements follows from Olesen and Pedersen [14, Theorem
10.4] and Sierakowski [21]. These authors studied actions of more general groups G, but
in the situation that G = Z all simplifies in the following way: Given an automorphism
α ∈ Aut (A) the following statements are equivalent:

(1) T(α) = T,
(2) αn is properly outer [9] for every n ∈ N, i.e., ‖αn|I − Ad U‖ = 2 for every α-

invariant ideal I of A and U a unitary in M(I),
(3) the induced action Z y Â on the space of equivalence classes of irreducible

representations of A is topologically free, i.e., {[π] ∈ Â : [π◦αn] = [π] then n = 0}
is dense in Â,

(4) A has the intersection property, i.e., given any non-zero ideal J of A ×α Z we
have that J ∩ A 6= 0,

(5) α satisfies the Rokhlin* property [21] (defined below).
Moreover, if A is α-simple, i.e., α(I) = I implies that I = 0, A, then (1) − (5) are
equivalent to

(6) αn is multiplier outer for every n ∈ Z \ 0, i.e., αn 6= Ad U for every unitary U in
the multiplier algebra M(A).
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The Rokhlin* property was defined by Sierakowski [21] for more general groups G.
It is weaker that G y Â being topologically free [21, Theorem 2.11], and both are
equivalent when A is commutative. However, if G is discrete (e.g. G = Z) then α
having the Rokhlin* property implies that α is properly outer [21, Theorem 2.19].

Observe that given any ideal J of A×αZ we have that the ideal J ∩A is a α-invariant
ideal of A, and therefore the map Φ : I(A×α Z) −→ Iα(A) defined by J 7−→ J ∩A is a
surjective map. In general this map is not injective, but a necessary condition for this
map being injective can be given. First observe that given any α-ideal I of A we have
the following short exact sequence,

0 −→ I ×α Z −→ A×α Z −→ (A/I)×α Z −→ 0 ,
and therefore the following statements are equivalent:

(1) T(αA/I) = T for every α-invariant ideal I of A,
(2) the induced action Z y Â is essentially free, i.e., the induced action Z y X in

any α-invariant closed subset X of Â is topologically free,
(3) A separates ideals of A×α Z, i.e., Φ is injective and hence bijective,
(4) every ideal J of A×α Z is of the form I ×α Z for some α-invariant ideal I,
(5) α satisfies the residual Rokhlin* property.
We recall the definition of the Rokhlin* property given by Sierakowski: Given a C∗-

algebra A, set A∞ := l∞(A)/c0(A), where l∞(A) is the C∗-algebra of all bounded func-
tions from N into A, and c0(A) is the ideal of l∞(A) consisting of all sequences (an) such
that ‖an‖ −→ 0. There is a natural inclusion A ⊆ A∞. Moreover, given an automor-
phism α ∈ Aut (A), there is a natural extension to an automorphism α ∈ Aut ((A∞)∗∗).

An automorphism α ∈ Aut (A) of a separable C∗-algebra A has the Rokhlin* property
provided that there exists a projection p = (pn) ∈ (A∞)∗∗ ∩A′, that we will call Rokhlin
projection, such that:

(1) Given any k ∈ Z \ {0}, we have that αk(p)p = 0,
(2) Given any a ∈ A \ {0} there exists k ∈ Z such that aαk(p) 6= 0.

If given any α-invariant ideal I of A the induced automorphism αA/I ∈ Aut (A/I) has
the Rokhlin* property, then we say that has the residual Rokhlin* property.
Definition 1.1. Let A be separable C∗-algebra. Given an endomorphism α ∈ End (A)
we say that α satisfies the (residual) Rokhlin* property if its dilation ᾱ does.

2. The Rokhlin Property and the p-shift endomorphism

Given an endomorphism α ∈ End (A), we will fix conditions on a sequence (an) ∈ A∞
to construct a Rokhlin projection for the dilated endomorphism ᾱ ∈ Aut (Ā), and hence
to guarantee that α has the Rokhlin* property.
Lemma 2.1. Let A be a separable C∗-algebra and let α : A −→ A be an injective
endomorphism. Given a sequence x = (xn) ∈ A∞, define the sequence y = (αn,∞(xn)) ∈
Ā∞, where Ā is the dilation of A by α. Then:

(1) If for every k ∈ N we have that ‖xnαk(xn)‖ −→ 0 when n→∞, then yᾱk(y) = 0
for every k ∈ Z.

(2) If for every l ∈ N and a ∈ A we have that ‖[αn(a), xl+n]‖ −→ 0 when n → ∞,
then [b, y] = 0 for every b ∈ Ā.
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(3) If for every l ∈ N and a ∈ A we have that ‖αn(a)xl+n‖ −→ ‖a‖ when n → ∞,
then ‖by‖ = ‖b‖ for every b ∈ Ā.

Proof. (1) Suppose there exists a sequence x = (xn) ∈ A∞ satisfying ‖xnαk(xn)‖ −→ 0
for every k ∈ N when n→∞. Now observe that, given k, n ∈ N, we have that
ᾱk(yn) = ᾱk(αn,∞(xn)) = αn,∞(αk(xn)) and ᾱ−k(yn) = ᾱ−k(αn,∞(xn)) = αn+k,∞(xn) .
So, given k ∈ N it follows that

‖ᾱk(yn)yn‖ = ‖αn,∞(αk(xn)xn)‖ = ‖αk(xn)xn‖ −→ 0
when n→∞, and

‖ᾱ−k(yn)yn‖ = ‖αn+k,∞(xnαk(xn))‖ = ‖xnαk(xn)‖ −→ 0
when n → ∞. Thus, y and ᾱk(y) are pairwise orthogonal elements of Ā∞ for every
k ∈ Z \ {0}, as we wanted.

Now, given any b ∈ Ā and ε > 0, there exist a ∈ A and l ∈ N such that ‖b−αl,∞(a)‖ <
ε/3.

(2) By hypothesis, there exists Na ∈ N such that ‖αn(a)xl+n − xl+nαn(a)‖ < ε/3 for
every n ≥ Na. So, we have that

‖αl,∞(a)yn − ynαl,∞(a)‖ = ‖αn,∞(αn−l(a)xn)− αn,∞(xnαn−l(a))‖
= ‖αn−l(a)xn − xnαn−l(a)‖ < ε/3

for every n ≥ l +Na. Therefore, we have that
‖byn − ynb‖ ≤ ‖byn − αl,∞(a)yn‖+ ‖αl,∞(a)yn − ynαl,∞(a)‖+ ‖ynαl,∞(a)− ynb‖

< ε/3 + ε/3 + ε/3 = ε

for every n ≥ l +Na. Thus, we have that yb = by for every b ∈ Ā.
(3) By hypothesis there exists Na ∈ N, such that ‖αn(a)xl+n‖ ≥ ‖a‖ − ε/3 for every

n ≥ Na. So we have that
‖αl,∞(a)yn‖ = ‖αn,∞(αn−l(a)xn)‖ = ‖αn−l(a)xn‖ ≥ ‖a‖ − ε/3 ,

for every n ≥ l +Na. Therefore, we have that
‖αl,∞(a)yn‖ ≤ ‖αl,∞(a)yn − byn‖+ ‖byn‖ < ε/3 + ‖byn‖,

for every n ≥ l +Na, and thus
‖αl,∞(a)‖ − ε < ‖αl,∞(a)‖ − ε/3− ε/3 ≤ ‖αl,∞(a)yn‖ − ε/3 < ‖byn‖

for every n ≥ l +Na. But since ‖b‖ − ε ≤ ‖a‖ = ‖αl,∞(a)‖, it follows that
‖b‖ − 2ε ≤ ‖byn‖

for every n ≥ l +Na. As ε is arbitrary, we have that ‖b‖ = ‖by‖, as desired. �

Observe that, given a projection x = (xn) ∈ A∞ satisfying the hypothesis (1) − (3)
of the above Lemma, the sequence p = (αn,∞(xn)) ∈ Ā∞ is a Rokhlin projection for
the automorphism ᾱ. Observe that then α satisfies even a stronger property than the
Rokhlin* property, because ‖pb‖ = ‖b‖ for every b ∈ Ā.

Given a unital simple C∗-algebra A with a non-trivial projection p, Dykema and
Rørdam defined in [8] the so called Bernoulli p-shift endomorphism ∆p : A⊗∞ −→ A⊗∞
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by x 7−→ p ⊗ x for every x ∈ A⊗∞. Choosing ⊗ = ⊗max or ⊗min we have that ∆p is
injective. They proved that any power of the dilation automorphism ∆̄p is multiplier
outer. Hence, since A⊗∞ is simple, ∆̄p must be properly outer. We will prove a more
general result.

Proposition 2.2. Let A be a nuclear unital C∗-algebra with a non-trivial projection p,
and let ∆p : A⊗∞ −→ A⊗∞ be the p-shift endomorphism. Then, ∆p satisfies the Rokhlin*
property.

Proof. To simplify notation set B := A⊗∞ and α := ∆p. Given n ∈ N, we define the
projection

qn := 1⊗ · · ·(2n) · · · ⊗ 1⊗ (1− p)⊗ p⊗ · · ·(2n) · · · ⊗ p⊗ 1A⊗∞ ∈ B .

Observe that q = (qn) ∈ B∞ is a projection, and then by Lemma 2.1 it is enough to
check the following:

(1) ‖qnαk(qn)‖ −→ 0 when n→∞, for every k ∈ N,
(2) ‖[αn(b), ql+n]‖ −→ 0 when n→∞, for every l ∈ N and b ∈ B,
(3) ‖αn(b)ql+n‖ −→ ‖b‖ when n→∞, for every l ∈ N and b ∈ B,

to prove that q′ = (αn,∞(qn)) ∈ B̄∞ is a Rokhlin projection for ᾱ.
First, we have that qn and αk(qn) are orthogonal projections for every k ∈ N, so (1)

holds.
Now given any b ∈ B and ε > 0, there exists j ∈ N and a ∈ A⊗j such that ‖b − a ⊗

1A⊗∞‖ < ε/2. Therefore, given any l, n ∈ N we have that
αn(a⊗ 1A⊗∞) = p⊗ · · ·(n) · · · ⊗ p⊗ a⊗ 1A⊗∞ ,

and
ql+n = 1⊗ · · ·(2(l+n)) · · · ⊗ 1⊗ (1− p)⊗ p⊗ · · ·(2(l+n)) · · · ⊗ p⊗ 1A⊗∞ ∈ B .

Thus, whenever n ≥ j − 2l, it follows that
(∗) ql+nα

n(a⊗1A⊗∞) = αn(a⊗1A⊗∞)ql+n = αn(a⊗1A⊗∞)ql+n = p⊗· · ·(n) · · ·⊗p⊗a⊗zl,n
where zl,n is a projection of A⊗∞. Therefore, we have that

‖αn(b)ql+n − ql+nαn(b)‖ ≤ ‖αn(b)ql+n − αn(a⊗ 1A⊗∞)ql+n‖
+ ‖αn(a⊗ 1A⊗∞)ql+n − ql+nαn(a⊗ 1A⊗∞)‖
+ ‖ql+nαn(a⊗ 1A⊗∞)− ql+nαn(b)‖
< ε/2 + 0 + ε/2 = ε

for every n ≥ j − 2l. Then ‖[αn(b), ql+n]‖ −→ 0 when n→∞, so (2) holds.
Finally, observe that using the canonical isomorphism C⊗∞ ∼= C⊗n⊗C⊗j⊗C⊗∞, and

applying (∗) and the nuclearity of A it follows that
‖αn(a⊗ 1A⊗∞)ql+n‖ = ‖a‖

for every n ≥ j − 2l. So, we have that
‖αn(b)‖ − ε < ‖αn(a⊗ 1A⊗∞)‖ − ε/2 = ‖αn(a⊗ 1A⊗∞)ql+n‖ − ε/2 < ‖αn(b)ql+n‖

for every n ≥ j − 2l. Then, q′ = (qn) also satisfies (3).
Thus, by Lemma 2.1 p = (αn,∞(qn)) ∈ B̄∞ is a Rokhlin projection for ∆p. �
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Example 2.3. Given any n ∈ N we set p := e1,1 ∈ Mn(C). Then, the p-shift endo-
morphism ∆p defined on the UHF-algebra Mn∞ := ⊗∞

i=1Mn(C) is the Cuntz’s endomor-
phism. By Proposition 2.2, the automorphism ∆̄p : Mn∞ ⊗K −→Mn∞ ⊗K satisfies the
Rokhlin* property.

Example 2.4. Let A = C ⊕ C and let p := (1, 0). Then we have that A⊗∞ ∼= C(X),
where X = {0, 1}N is the Cantor set. In this case, the p-shift endomorphism ∆p :
C(X) −→ C(X) is defined as ∆p(f) = f ◦ δ for every f ∈ C(X), where δ(x) = (0,x)
for every x ∈ X. By Proposition 2.2, ∆̄p is properly outer. Let us consider the ideal
I = {f ∈ C(X) : f(0) = 0}, that is a ∆p-invariant ideal. Then C(X)/I ∼= C and
(∆p)C(X)/I = (∆p)C(X)/I = Id, so it is not properly outer.

Now, we will study the p-shift endomorphism on an interesting class of C∗-algebras.
Let D be a unital and separable strongly self-absorbing C∗-algebra [23]. Then, D ∼=
D⊗n ∼= D⊗∞ for every n ∈ N. Also, D has an approximately inner flip, i.e. the
homomorphism σ : D ⊗ D −→ D ⊗D defined by σ(a⊗ b) = b⊗ a for every a, b ∈ D is
approximately unitary equivalent to the identity map. Recall also that every strongly
self-absorbing C∗-algebra is nuclear.

We will first compute which map induces ∆p at the level of K-theory. Recall that
a strongly self-absorbing C∗-algebra D satisfying the Universal Coefficients Theorem
(UCT) has trivial K1 group [23, Proposition 5.1] and torsion-free K0 group. Therefore,
the Künneth formulas say that we have an isomorphism K0(D⊗∞) = K0(D ⊗ D⊗∞) ∼=
K0(D) ⊗ K0(D⊗∞) induced by the map [a] ⊗ [b] 7−→ [a ⊗ b] for projections a ∈ D,
b ∈ D⊗∞. Thus, if we define [p] · x := [p] ⊗ x for every x ∈ K0(D⊗∞), the following
Lemma comes straightforward.

Lemma 2.5. Let D be a strongly self-absorbing C∗-algebra satisfying the UCT with a
non-trivial projection p. Then K0(∆p) = [p] · IdK0(D⊗∞).

We will prove some results about ideal structure for suitable tensor products of C∗-
algebras. We thank Nate Brown for the proof of the following result.

Lemma 2.6. Let A be an exact simple C∗-algebra, and let B be any C∗-algebra. If
I � A⊗B, then there exists J �B such that I = A⊗ J .

Proof. By [4, Corollary 9.4.6],
I = span{A� IB : IB �B,A� IB ⊆ I}.

Consider
J := span{IB �B : A� IB ⊆ I},

which is clearly an ideal of B. Now, pick
X := A� (span{IB : IB �B,A� IB ⊆ I}) ,

which is a dense linear subspace of A � J . We will show that X is also a dense linear
subspace of I. For, notice that

span{A� IB : IB �B,A� IB ⊆ I} = A� (span{IB : IB �B,A� IB ⊆ I}) .
Since closures are unique, we conclude that I = A⊗ J , as desired. �
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As a consequence, we have the following C∗-algebra version of Azumaya-Nakayama’s
Theorem.

Proposition 2.7. If A is an exact simple C∗-algebra and B is any C∗-algebra, then the
map I 7→ A⊗ I defines a bijection between ideals of B and ideals of A⊗B

Proof. Clearly, it is a well-defined map. By Lemma 2.6, it is a surjective map. In order
to prove injectivity of the map, notice that any ideal can be seen as a linear subspace of
A⊗B via the identification I = C⊗ I = C� I.

By [5, Proposition 4.7.3], if I �B, then
(A� I) ∩B = (A� I) ∩ (C� I) = C� I = I.

Thus, taking closures we have
(A⊗ I) ∩B = (A⊗ I) ∩ (C⊗ I) = C⊗ I = I,

whence the above defined map is injective. So we are done. �

We say that a C∗-algebra A absorbs D if A ∼= A⊗D.

Theorem 2.8. Let D be a strongly self-absorbing C∗-algebra with a non-trivial projection
p, and let A be a separable unital C∗-algebra that absorbs D. Then, given any injective
endomorphism α ∈ End (A), the endomorphism α ⊗ ∆p ∈ End (A ⊗ D⊗∞) satisfies
the residual Rokhlin* property. Moreover, if D satisfies the UCT then K∗(α ⊗ ∆p) =
[p] ·K∗(α).

Proof. Let α ∈ End (A) be an injective endomorphism and let ∆p : D⊗∞ −→ D⊗∞ be
the p-shift endomorphism. By Proposition 2.7, all the ideals of A⊗D⊗∞ are of the form
I⊗D⊗∞ for ideals I of A. Hence, an ideal I⊗D⊗∞ is α⊗∆p-invariant ideal if and only
if I is an α-invariant ideal of A.

Given any α-invariant ideal I of A, let us consider the quotient B := (A⊗D⊗∞)/(I⊗
D⊗∞). Observe that we can identify B with (A/I)⊗D⊗∞, as a⊗ x 7−→ a⊗ x for every
a ∈ A and x ∈ D⊗∞. Moreover, with this identification, we have that (α ⊗ ∆p)B =
αA/I ⊗∆p, and to simplify notation set β := αA/I ⊗∆p.

Let us consider the projection q = (qn) ∈ (D⊗∞)∞ defined in the proof of Proposition
2.2. If 1A is the unit of A, then we define the non-zero projection q′ = (βn,∞(1A⊗ qn)) ∈
B̄∞, where B̄ is the dilation of B with respect to β. We claim that q′ is a Rokhlin
projection for β̄. For this it is enough to check conditions (1)− (3) of Lemma 2.1. Since
βk(1A ⊗ qn) = α(1A)⊗∆k

p(qn) for every k, n ∈ N, it follows that

βk(1A ⊗ qn) · (1A ⊗ qn) = α(1A)⊗ (∆k
p(qn) · qn) = 0,

since ∆k
p(qn) · qn = 0 for every k ∈ N. Thus, (1) is checked.

Now, given a ∈ (A/I)⊗D⊗∞ and ε > 0 there exist r, s ∈ N such that b := ∑r
i=1 ai ⊗

(xi ⊗ 1D⊗∞) for some ai ∈ A and xi ∈ D⊗s and such that ‖a − b‖ < ε/2. Then, as we
see in the proof of Proposition 2.2, given l ∈ N for every n ≥ s− 2l we have that

∆n
p (xi ⊗ 1D⊗∞)ql+n = ql+n∆n

p (xi ⊗ 1D⊗∞) = p⊗ · · ·(n) · · · ⊗ p⊗ xi ⊗ zl,n
for every i = 1, . . . , r and for some projection zl,n ∈ D⊗∞. Therefore, a standard
argument shows that

‖βn(a)(1A ⊗ ql+n)− (1A ⊗ ql+n)βn(a)‖ < ε
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for every n ≥ s − 2l, and then ‖[βn(a), ql+n]‖ −→ 0 when n → ∞. Therefore it follows
(2).

Finally, we have that

‖βn(
r∑
i=1

ai ⊗ (xi ⊗ 1D⊗∞))(1A ⊗ ql+n)‖ = ‖
r∑
i=1

αn(ai)⊗ (∆n
p (xi ⊗ 1D⊗∞)ql+n)‖

= ‖
r∑
i=1

αn(ai)⊗ (p⊗ · · ·(n) · · · ⊗ p⊗ xi ⊗ zl,n)‖ ,

and using the canonical isomorphism A⊗D⊗∞ ∼= A⊗D⊗s⊗D⊗∞ and the nuclearity of
D it follows that

‖
r∑
i=1

αn(ai)⊗ (p⊗ · · ·(n) · · · ⊗ p⊗ xi ⊗ zl,n)‖ = ‖
r∑
i=1

αn(ai)⊗ xi‖‖p⊗ · · ·(n) · · · ⊗ p⊗ zl,n‖

= ‖
r∑
i=1

αn(ai)⊗ xi‖ = ‖
r∑
i=1

ai ⊗ xi‖ ,

for every n ≥ s− 2l. Another standard argument shows us that
‖a‖ − ε = ‖βn(a)‖ − ε < ‖βn(a)ql+n‖ ,

for every n ≥ s− 2l. Thus, ‖βn(a)ql+n‖ −→ ‖a‖ when n → ∞, and then condition (3)
is verified. Therefore q′ is a Rokhlin projection for β̄, and hence β satisfies the Rokhlin*
property. Since B denotes (A ⊗ D⊗∞)/(I ⊗ D⊗∞) for every arbitrary α-invariant ideal
I of A, we have that α⊗∆p satisfies the residual Rokhlin* property.

Finally if D satisfies the UCT then K1(D) = 0 and K0(D) is torsion-free, and hence by
the Künneth formulas we have thatK∗(A⊗D⊗∞) ∼= K∗(A)⊗K∗(D⊗∞) andK∗(α⊗∆p) =
K∗(α)⊗K∗(∆p), so K∗(α⊗∆p) = [p] ·K∗(α) by Lemma 2.5.

�

Notice that if A absorbs D, then by [23, Theorem 2.3] any isomorphism ϕ : A 7−→
A⊗D is approximately unitary equivalent to IdA ⊗ 1D.

Lemma 2.9. If D is a strongly self-absorbing C∗-algebra, A is a C∗-algebra that absorbs
D, and ϕ : A→ A⊗D is an isomorphism, then for any I�A we have that ϕ(I) ⊆ I⊗D.
Moreover, if A has finitely many ideals, then ϕ(I) = I ⊗D.

Proof. By [23, Theorem 2.3], ϕ is approximately unitary equivalent to IdA ⊗ 1D. Now,
as

(IdA ⊗ 1D)(I) ⊆ I ⊗D,
given any unitary u ∈M(A⊗D) we have u(IdA⊗1D)(I)u∗ ⊆ I⊗D. Hence, ϕ(I) ⊆ I⊗D.

For the last statement, notice that by the previous statement and Proposition 2.7, for
each I � A there exists a unique JI � A such that

ϕ(I) = JI ⊗D ⊆ I ⊗D,
and thus JI ⊆ I again by Proposition 2.7. Hence, there is a monotone decreasing
bijection (−)I from the set of ideals of A to itself. Notice that 0 and A are fixed by
(−)I . If (−)I is not the identity map, as the set of ideals is finite, there exists K � A
different from 0 and A maximal for the property KI 6= K. By the above argument there
exists a unique L � A such that LI = K, and notice that K ⊆ L. Assuming K 6= L
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will contradict the maximality of K. So, K = L, but then K = LI = KI ( K, which is
impossible. So we are done. �

Lemma 2.10. Let B,C be C∗-algebras, let β : B −→ B be an injective endomorphism,
and let δ : C −→ B be an isomorphism. If β satisfies the residual Rokhlin* property,
then so does δ−1 ◦ β ◦ δ.

Proof. First define α := δ−1 ◦ β ◦ δ, so it is easy to check that the dilated automorphism
ᾱ = δ−1 ◦ β ◦ δ of C̄ is the composition δ̄−1 ◦ β̄ ◦ δ̄, where δ̄ is the induced isomorphism
between C̄ and B̄. Observe also that Iα(C) = {δ−1(I) : I ∈ Iβ(B)}, and then given
any I ∈ Iβ(B) we have that αA/δ−1(I) = δ−1

C/δ−1(I) ◦ βB/I ◦ δC/δ−1(I)

Finally, let p ∈ (B̄∞)∗∗ ∩ B̄′ be a Rokhlin projection of β, then since δ induces an
isomorphism δ : (C̄∞)∗∗ −→ (B̄∞)∗∗ we have that δ−1(p) is a Rokhlin projection for
α. �

Recall that if D is a strongly self-absorbing C∗-algebra in the UCT class and A is
a C∗-algebra that absorbs D, then the isomorphism ϕ : A −→ A ⊗ D induces the
isomorphism of K-theory K∗(ϕ) : K∗(A) −→ K∗(A) ⊗K0(D) given by x 7−→ x ⊗ [1D]
for every x ∈ K∗(A). We define [q] · x := K∗(ϕ)−1(x⊗ [q]) for every projection q ∈ D.

Corollary 2.11. Let D be a strongly self-absorbing C∗-algebra with a non-trivial pro-
jection p, and let A be a separable unital C∗-algebra with finitely many ideals such that
A absorbs D. Then, given any injective endomorphism α ∈ End (A) there exists an en-
domorphism β ∈ End (A) such that Iα(A) = Iβ(A) and satisfies the residual Rokhlin*
property. Moreover, if D satisfies the UCT then K∗(β) = [p] ·K∗(α).

Proof. We define β := ϕ−1 ◦ (α ⊗∆p) ◦ ϕ where ϕ is any isomorphism A ∼= A ⊗ D⊗∞.
First observe that that by Lemma 2.9 we have that Iβ(A) = {ϕ−1(I ⊗ D⊗∞) : I ∈
Iα(A)} = Iα(A). Now by Theorem 2.8 and Lemma 2.10 we have that β has the residual
Rokhlin* property.

If D satisfies the UCT we have that K∗(β) = K∗(ϕ−1)◦K∗(α⊗∆p)◦K∗(ϕ). Therefore,
K∗(β)(x) = K∗(ϕ−1) ◦K∗(α⊗∆p) ◦K∗(ϕ)(x)

= K∗(ϕ−1) ◦K∗(α⊗∆p)(x⊗ [1D⊗∞ ])
= K∗(ϕ−1)(K∗(α)(x)⊗ [p⊗ 1D⊗∞ ]) = [p⊗ 1D⊗∞ ] ·K∗(α)(x)

for every x ∈ K∗(A). Finally, since the map [q] 7−→ [q ⊗ 1D⊗∞ ] for [q] ∈ K0(D) induces
an isomorphism between K0(D) and K0(D⊗∞) we have that [p ⊗ 1D⊗∞ ] · K∗(α)(x) =
[p] ·K∗(α)(x) for every x ∈ K∗(A). �

3. Purely infinite crossed products

Given a unital C∗-algebra A and an injective endomorphism α : A −→ A Stacey [22],
following the ideas of Cuntz [6] and Paschke [15], defined the crossed product A×αN as
the universal C∗-algebra generated by A and an isometry S∞ such that S∞aS∗∞ = α(a)
for every a ∈ A. It was also shown that A×α N ∼= α1,∞(1A)(Ā×ᾱ Z)α1,∞(1A) and that
α1,∞(1A) is a full projection. Therefore A×αN and Ā×ᾱZ are strongly Morita equivalent.
So, to study properties like purely infiniteness, simplicity or the ideal structure of A×αN,
it is enough to look at the crossed product Ā×ᾱ Z.
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From now on, we will identify A×α N with the corresponding isomorphic corner sub-
C∗-algebra of Ā ×ᾱ Z, while A is identified with α1,∞(A) and the generating isometry
S∞ of A×α N with the compression α1,∞(1)U∞α1,∞(1) of the generating unitary U∞ of
Ā×ᾱ Z.

There is a bijection λ : Iα(A) −→ I ᾱ(Ā) given by I 7−→ ∑∞
i=1 αi,∞(I), with inverse

λ−1(J) = {a ∈ A : α1,∞(a) ∈ J} for every J ∈ I ᾱ(Ā), that makes commutative the
diagram

I(A×α N) Φ //

µ
��

Iα(A)

λ
��

I(Ā×ᾱ Z) Φ // I ᾱ(Ā)
where µ is the bijection induced by the Morita equivalence. Hence, Φ : I(Ā ×ᾱ Z) −→
I ᾱ(Ā) is a bijection if and only if so is Φ : I(A ×α N) −→ Iα(A). Thus, there is no
ambiguity in saying that A separates ideals of A×α N exactly when Ā separates ideals
of Ā ×ᾱ Z. Now, given I ∈ Iα(A) we have that α restricts to an endomorphism of I,
and therefore we can identify ∑∞i=1 αi,∞(I) with Ī, the dilation of I by α|I . Since Ī is an
ᾱ-invariant ideal of Ā, we can identify Ī×ᾱ|I Z with an ideal of Ā×ᾱZ. Moreover, Ā/Ī is
isomorphic to A/I, the dilation of A/I by αA/I , where αA/I is the natural endomorphism
induced by the quotient. Thus, given I ∈ Iα(A) we have the following short exact
sequence:

0 −→ Ī ×ᾱ|I Z −→ Ā×ᾱ Z −→ A/I ×αA/I Z −→ 0 .
Given I ∈ Iα(A), the ideal 〈I〉 of A×αN generated by I is not necessarily isomorphic

to I×α|IN, as it is defined for the non-unital case, but it is isomorphic to α1,∞(1A)(Ī×ᾱ|I
Z)α1,∞(1A). Indeed, to simplify notation let us denote B := Ā×ᾱZ and p := α1,∞(1A) ∈
B, so that by the above identification we have that pBp := A×αN. From the observation
that U∗∞α1,n(y)U∞ = α1,n+1(y) for every n ∈ N and y ∈ I, it follows that BIB = BĪB,
and hence

〈I〉 = pBpIpBp = pBIBp = pBĪBp .

But BĪB is Ī×ᾱ|IZ, so the claim is proved. Therefore we have that 〈I〉 is strongly Morita
equivalent to Ī×ᾱZ, so K∗(〈I〉) ∼= K∗(Ī×ᾱ|I Z), and we can use the Pimsner-Voiculescu
six-terms exact sequence, together with the continuity of the K-theory, to compute the
K-groups of the ideals of the form 〈I〉 for I ∈ Iα(A). Moreover, given I, J ∈ Iα(A) with
I ⊆ J , by the previous argument we have that

〈J〉/〈I〉 = α1,∞(1)(J/I ×αJ/I Z)α1,∞(1) .

Remark 3.1. We would like to remark that our definition of invariant ideal slightly
differs from the one given by Adji in [1] for two reasons. First, because we only are
interested in actions by injective endomorphisms. And second, because we are not inter-
ested for a characterization of the gauge invariant ideals as another crossed product.

Our goal in this section is to give conditions for the crossed product A ×α N being
purely infinite.

Notice that, if A is a separable purely infinite C∗-algebra of real rank zero and α ∈
End (A) is such that it satisfies the residual Rokhlin* property, then the dilation Ā is
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a separable purely infinite C∗-algebra of real rank zero and the action of Z induced by
ᾱ on (̂Ā) is essentially free. Hence, Ā×ᾱ Z is a purely infinite C∗-algebra [20, Theorem
3.3], and thus so is A×α N.

Another condition we will consider is related to endomorphisms on C∗-algebras of real
rank zero that acts in a special way at the level of their monoid of projections. Given
a C∗-algebra A, let V (A) be the monoid of Murray-von Neumann equivalence classes of
projections of M∞(A). We briefly recall its construction below.

We say that two projections p and q in a C∗-algebra A are Murray-von Neumann
equivalent if there is a partial isometry v such that p = vv∗ and v∗v = q. One can extend
this relation to the set P(M∞(A)) of projections in M∞(A), and thereby construct

V (A) = P(M∞(A))/∼ ,
where [p] ∈ V (A) stands for the equivalence class that contains the projection p in
M∞(A). This set becomes an abelian monoid when endowed with the operation [p]+[q] =
[p⊕ q], where p⊕ q refers to the matrix

(
p 0
0 q

)
. Moreover, if I is a closed two sided ideal

of A, then V (I) is an ideal of V (A). If A has real rank zero, then all the ideals of V (A)
are of the form V (I) for some ideal I of A, and moreover V (A)/V (I) ∼= V (A/I). Now,
given any C∗-algebra endomorphism α : A −→ A, we can extend it to a endomorphism
α : M∞(A) −→ M∞(A) by a ⊗ k 7→ α(a) ⊗ k for every a ∈ A and k ∈ M∞(C). Hence,
it induces a map α∗ : V (A) −→ V (A) by the rule [p] 7−→ [α(p)] for every projection
p ∈M∞(A).

Definition 3.2. Let A be a C∗-algebra and let α ∈ End (A). Then we say that α
contracts projections of A if given x ∈ V (A) there exists n ∈ N such that α∗n(x) < x.

Example 3.3. Given a C∗-algebra A and a strongly self-absorbing C∗-algebra D with a
non-trivial projection p, we have that A⊗D⊗∞ = ⋃∞

n=1An where An := A⊗D⊗n⊗1D⊗∞.
Therefore given any q ∈ A ⊗ D⊗∞ there exists q′ ∈ A ⊗ D⊗n for some n ∈ N such that
q ∼ q′ ⊗ 1D⊗∞. Since D is strongly self-absorbing, the flip σ : D ⊗ D −→ D ⊗ D is
approximately unitary equivalent to IdD⊗D. Hence, if we write q′ = ∑

i ai ⊗ q′i where
ai ∈ A and qi ∈ D⊗n, then there exists a unitary u ∈ D⊗n+1 such that
‖(1A⊗u⊗1D⊗∞)(

∑
i

ai⊗p⊗ q′i⊗1D⊗∞)(1A⊗u∗⊗1D⊗∞)−
∑
i

ai⊗ q′i⊗p⊗1D⊗∞‖ < 1/2 .

Thus, since p is a non-trivial projection of D we have that
(IdA ⊗∆p)∗[q] = (IdA ⊗∆p)∗[q′ ⊗ 1D⊗∞ ] = [(IdA ⊗∆p)(q′ ⊗ 1D⊗∞)]

= [
∑
i

ai ⊗ p⊗ q′i ⊗ 1D⊗∞ ] = [
∑
i

ai ⊗ q′i ⊗ p⊗ 1D⊗∞ ]

< [
∑
i

ai ⊗ q′i ⊗ 1D⊗∞ ] = [q′ ⊗ 1D⊗∞ ] = [q] .

Therefore, IdA ⊗∆p contracts projections of A ⊗ D⊗∞. Moreover, given any ideal I of
A we have that αA⊗D⊗∞/I⊗D⊗∞ contracts projections of A⊗D⊗∞/I ⊗D⊗∞.

Theorem 3.4. Let A be a unital separable C∗-algebra of real rank zero, let α ∈ End (A)
be an injective endomorphism such that:

(1) It satisfies the residual Rokhlin* property.
(2) Given any ideal I ∈ Iα(A) we have that αA/I contracts projections of A/I.



PURELY INFINITE CROSSED PRODUCTS BY ENDOMORPHISMS 13

Then A×α N is a purely infinite C∗-algebra.

Proof. It is enough to check that Ā ×ᾱ Z is purely infinite, since it is strongly Morita
equivalent to A×α N.

First observe that since A is a separable C∗-algebra with real rank zero so is Ā, and
since ᾱ has the residual Rokhlin* property then the action of Z on (̂Ā) is essentially free.

Now we claim that given any I ∈ Iα(A) we have that ᾱĀ/Ī contracts projections
of Ā/Ī. Indeed, first observe that αA/I = ᾱĀ/Ī . Then, it is enough to check that ᾱ
contracts projections of Ā. Given any projection p ∈ Ā there exists a projection q ∈ A
and n ∈ N such that α1,n(q) ∼ p, and hence ᾱ(α1,n(q)) = α1,n(α(q)). But since α
contracts projections of A we have that α∗([q]) < [q], and hence

ᾱ∗[p] = ᾱ∗[α1,n(q)] = [α1,n(α(q))] < [α1,n(q)] = [p] ,
as desired.

Therefore, by [16, Proposition 2.11] it is enough to check that every non-zero heredi-
tary sub-C∗-algebra in any quotient of Ā ×ᾱ Z contains an infinite projection. Since Ā
separates ideals in Ā×ᾱ Z, we have that every ideal of Ā×ᾱ Z is of the form Ī ×ᾱ Z, so
(Ā×ᾱ Z)/(Ī ×ᾱ Z) ∼= A/I ×αA/I Z. Because of all the assumptions pass to quotients, we
can replace A/I by Ā and αA/I by ᾱ.

Let x be any positive element of Ā×ᾱZ. By [20, Lemma 3.2] there exists a ∈ Ā+ such
that a . x. As Ā has real rank zero, there exists a projection p ∈ Ā such that p . a, so
p . x. Then, there exists n ∈ N such that α∗n([p]) < [p] in V (Ā). Hence, there exists
t ∈ Ā such that tᾱn(p)t∗ + z = p for some idempotent 0 6= z ∈ Ā. If we set r := tαn(p)
and we define s := rUnp, where U is the unitary in M(Ā×ᾱZ) that implements ᾱ, then

s∗s = (pU∗nr∗)(rUnp) = pU∗nr∗rUnp = pU∗nᾱn(p)Unp = p

and
ss∗ = (rUnp)(pU∗nr∗) = rUnpU∗nr = rᾱn(p)r∗ = tᾱn(p)t∗.

Hence, ss∗ + z = tᾱn(p)t∗ + z = p, whence p is an infinite projection (since z 6= 0).
Therefore, since p . x, by [12, Proposition 2.6] there exist δ > 0 and v ∈ Ā ×ᾱ Z

such that v∗(x − δ)+v = p. With w = (x − δ)1/2
+ v it follows that w∗w = p, whence

ww∗ = (x− δ)1/2
+ vv∗(x− δ)1/2

+ ∈ x(Ā×ᾱ Z)x is a projection equivalent to p. Hence, ww∗
is infinite because so is p. Thus, by [16, Proposition 2.11], we have that Ā ×ᾱ Z is a
purely infinite C∗-algebra and hence A×α N is too. �

4. Examples

In this section we will use the previous results to construct interesting examples of
purely infinite crossed products C∗-algebras with different ideal structures. In particular
we are going to build actions on strongly purely infinite C∗-algebras A, i.e. A ∼= A⊗O∞.
SinceO∞ is a strongly self-absorbing C∗-algebra with non-trivial projections, when A has
finitely many ideals we can apply Corollary 2.11 to perturb any injective endomorphism
β ∈ End (A) to another endomorphism α satisfying the residual Rokhlin* property and
with K∗(α) = K∗(β). Therefore A×αN will be a purely infinite C∗-algebra with a lattice
isomorphism Φ : I(A×α N) −→ Iβ(A).
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Example 4.1. Let On be the Cuntz algebra for n = 2, . . . ,∞; by Kirchberg’s work we
have that On ⊗ O∞ ∼= On. Given m ∈ N with m < n, by Corollary 2.11 there exists
an injective endomorphism αm : On −→ On that satisfies the Rokhlin* property and
K∗(αm) = m · IdK∗(On). Therefore, since On is a simple purely infinite C∗-algebra in
the UCT class, so is On ×αm N. Thus, by Kirchberg-Philllips classification results, it is
enough to compute its K-theory to determine in which isomorphism class lies.

First recall that

K∗(On) ∼=
{

(Z, 0) if n =∞
(Z/(n− 1)Z, 0) otherwise .

Observe that the endomorphism αm defines a group endomorphism K0(αm) : K0(On) −→
K0(On) given by y 7−→ my for every y ∈ K0(On). By continuity of K-theory we have
that

K∗(On) ∼= lim−→
K0(αm)

Ki(On) ,

so

lim−→
K0(αm)

K0(On) =
{

Z[1/m] if n =∞
Z/kZ if n 6=∞ where k = [gcd(n− 1,m)|(n− 1)] ,

where given a, b ∈ N we define [a|b] := max {c ∈ N : c|b and gcd(a, c) = 1}. Then,
K0(αm) : K0(On) −→ K0(On) is given by x 7−→ mx for every x ∈ K0(Om), while
K1(Om) = 0.
Therefore, we can assume that m ≤ k and hence

Ker (Id−K0(αm)) =


Z if n =∞ and m = 1
0 if n =∞ and m 6= 1
Z/kZ if n 6=∞ and m = 1
Z/lZ otherwise, where l = k/gcd(k,m− 1)

,

and

Coker (Id−K0(αm)) =


Z if n =∞ and m = 1
Z/(m− 1)Z if n =∞ and m 6= 1
Z/kZ if n 6=∞ and m = 1
Z/lZ otherwise, where l = k/gcd(k,m− 1)

.

So, using the Pimsner-Voiculescu six-term exact sequence, we have

K0(On)
Id−K0(αm)

// K0(On) // K0(On ×αm N)

��
K1(On ×αm N)

OO

0oo 00oo

.

Thus, K0(On×αm N) ∼= Coker (Id−K0(αm)) and K1(On×αm N) ∼= Ker (Id−K0(αm)).
Hence, by Kirchberg-Phillips Classification Theorems it follows that

On ×αm N ∼=


B if n =∞ and m = 1
Om if n =∞ and m 6= 1
Ol+1 ⊗Ol+1 otherwise

,

where B is the unique Kirchberg algebra with K∗(B) ∼= (Z,Z).
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Example 4.2. Let E be the following graph

•v1

(8)

��

}} !!
•v2

(3)

��

!!

•v3

(4)

��

}}
•v4

(6)

��

.

Then, the graph C∗-algebra C∗(E) is purely infinite with real rank zero [10], and C∗(E) ∼=
C∗(E) ⊗ O∞. So, taking β = IdC∗(E), by Theorem 2.8 there exists an injective en-
domorphism α : C∗(E) −→ C∗(E) that satisfies the residual Rokhlin* property, and
Iα(C∗(E)) = I(C∗(E)). Moreover, K∗(α) = IdK∗(C∗(E)).
E has the following hereditary and saturated subsets

{∅, {v4}, {v4, v2}, {v4, v3}, {v2, v3, v4}, {v1, v2, v3, v4}} .

so by [2] the Hasse diagram of its primitive ideal space X3 is

1

2

@@

3

^^

4

@@^^

Given two ideals I, J ∈ I(C∗(E)) with I ⊆ J , using [3] we can easily compute K∗(J/I).
For example:

K∗(I{4}) ∼= (Z/5Z, 0) , K∗(I{3,4}) ∼= (Z/5Z⊕ Z/3Z, 0) ,

K∗(I{2,4}) ∼= (Z/5Z⊕ Z/2Z, 0) , K∗(I{2,3,4}) ∼= (Z/5Z⊕ Z/3Z⊕ Z/2Z, 0) ,

K∗(I{1,2,3,4}) ∼= (Z/7Z⊕ Z/5Z⊕ Z/3Z⊕ Z/2Z, 0) ,

where IX := IZ/IY and Z, Y ⊆ E0 are hereditary and saturated subsets with Y ⊆ Z and
X = Z \ Y .

Then C∗(E) ×α N is purely infinite with primitive ideal space X3. Since C∗(E) sep-
arates the ideals of C∗(E) ×α N, we have that all the subquotients of C∗(E) ×α N are
of the form 〈J〉/〈I〉 for I, J ∈ I(C∗(E)) with I ⊆ J , and 〈J〉/〈I〉 is strongly Morita
equivalent to (J̄/Ī) ×ᾱ Z. Therefore we can use the Pimsner-Voiculescu six-term exact
sequence for K-Theory to deduce that K∗(〈J〉/〈I〉) ∼= (K0(J/I), K0(J/I)).
Finally observe that, given any ideals I, J ∈ I(C∗(E)) with I ( J , does not exist any

non-zero map K0(〈J〉/〈I〉) −→ K1(〈J〉/〈I〉), thus C∗(E)×α N is K0-liftable. Hence, by
results of Pasnicu and Rørdam [16, Theorem 4.2], it must have real rank zero.
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