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Abstract
This thesis describes a series of studies made in the field of modelling heavy

vehicle behavior. The main goal of the thesis was to investigate how

car-following behavior of heavy vehicles differs from that of cars, how external

factors affect this behavior, and how to incorporate this knowledge into traditional

car-following models.

In a discipline where heavy vehicles have been neglected in favor of cars, an

increased effort in research is needed to properly include heterogeneous traffic

streams. However, any introduced complexity in the models should not increase

the calibration demands. A large share of practitioners today spend too little time

and effort on calibration, and increased calibration demands might increase this

share.

The main focus of the thesis is describing heavy vehicle behavior. Through three

research papers and one paper describing a data set, several aspects of heavy

vehicle following behavior are investigated.

Previous work have shown that vehicle type of both leader and follower are

important. Findings in the first paper indicate that only the follower vehicle type

matters. A relationship between vehicle weight and time gap was found. It is also

shown that both the threshold value for car-following behavior, and the desired

time gap is different for cars and heavy vehicles.

The behavior of vehicles differ from location to location, depending on properties

of the road and surroundings. It is shown that whether a heavy vehicle is in a rural

or urban environment in combination with either congested or free flow, will affect

the behavior. For cars, the most important factor was the number of lanes.

Weather also affects driver behavior. By measuring the speed and time gap in

different weather and road surface situations, it is apparent that a snow covered

road will reduce the speed and increase the time gap for both heavy vehicles and

cars. Precipitation has a large effect on the following behavior of cars, but does

not seem to have an impact on the behavior of heavy vehicles.

These empirical studies required several data sets about vehicle behavior to be

collected. The data used in the first paper was collected from a Weigh-In-Motion

detector, and included variables such as time gap, speed, vehicle weight, vehicle

length, axle weight, and number of axles. About 670 000 time gaps were

collected from a rural two-lane road for the study. The data set used in the second

paper consisted of about 21 million observations from 16 detectors at different

places in Norway. They were carefully selected for studying the impact of road
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characteristics. For the third paper, about 70 000 joint observations from a

Weigh-In-Motion detector and a weather station were collected.

In the last research paper, Gipps’ car-following model was modified to have one

common parameter set for all vehicle types, instead of one parameter set for each

vehicle type. This was done by introducing a new parameter γ, a double

exponential function of the gross vehicle weight. It was incorporated into Gipps’

model by multiplying it with the deceleration parameters of the leader and

follower vehicle. The results showed that the measured time gap distributions had

a slightly better fit to measured data in the field, despite less parameters to

calibrate.
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Preface
This thesis is submitted to the Norwegian University of Science and Technology

(NTNU) for partial fulfilment of the requirements for the degree of philosophiae

doctor.

This doctoral work has been performed at the Department of Civil Engineering

and Transport, NTNU, Trondheim, with Eirin Olaussen Ryeng as main supervisor

and Tomas Levin as co-supervisor.

The PhD project was initially funded by NTNU through the research project

GOFER, which was co-financed by the SMARTRANS-programme of the

Research Council of Norway and a consortium of public road authorities,

municipalities, transport operators and technology developers. After the

GOFER-project reached its end, the PhD project received funding from NTNU

and the National Public Roads Administration (NPRA).

One of the tasks in the GOFER-project was to develop a simulation model of the

traffic flow to a freight terminal in Oslo, to evaluate several priority alternatives.

During the development of the simulation model, it became obvious that heavy

vehicles and their interactions with other vehicles should be investigated more.

This in turn lead to defining the objectives set for this PhD study.
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Chapter 1

Introduction

Part I of this thesis describes the theoretical base and the state of the art addressed

by the papers in Part II. Chapter 1 provides an introduction to the field of heavy

vehicle behavior and modelling, and summarises the gaps in knowledge in the

field. Chapter 2 defines the research questions for this thesis, and presents scope

and limitations of the thesis. In Chapter 3, a brief summary of the main results of

the papers and how they answer the research questions is given. Part I is concluded

by Chapter 4, which describes the contributions from the PhD project and identifies

topics for future research.

1.1 The Challenges of Road Based Freight Transport
Freight transport in urban areas is a necessity for sustaining today’s way of life.

Our need for goods require transport from producer to consumer. However, the

increasing demand for goods has lead to an increase in the volume of freight

vehicles. In the EU, the increase in road freight traffic is estimated to about 55 %

from 2010 to 2050 (Capros et al. 2013). The increasing presence of freight

vehicles has several negative impacts:

• Congestion in urban areas is aggravated by a growing number of freight

vehicles. The large size and often lower freedom of movement of a heavy

vehicle compared to a car may lead to a significant disturbance in traffic flow.

Slow heavy vehicles can act as bottlenecks in a traffic stream and severely

influence other vehicles (Daganzo and Laval 2005). Heavy vehicles also

influence the capacity of the road (Transportation Research Board 2010, Al-

Kaisy et al. 2005).

• The physical dimensions of heavy vehicles leads to damage and wear on the

3
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road infrastructure. The damaging effect of a heavy vehicle is thousands

of times more than a car (Fwa 2005). An increase in the volume of heavy

vehicles will further increase the negative impacts on the infrastructure.

• Accidents involving heavy vehicles are usually more severe than accidents

with lighter vehicles. The fatality risks when heavy vehicles are involved in

an accident are significantly higher than those compared with passenger

cars and other vehicles. In the EU, 15% of road fatalities result from

accidents involving heavy vehicles (European Commission 2015b). Wood

(1997) estimated that the relative injury risk in collisions between two

vehicles of different sizes were dependent on the relative energy absorption,

as well as the length and mass ratios, meaning that the injury risk increases

as the physical difference between colliding vehicles increases.

• The pollution and noise from a heavy vehicle can be several times greater

that from a passenger vehicle. According to the European Commission

(Capros et al. 2013, p 52), "the main contributor to CO2 emissions growth

is road freight, where the increased activity surpasses improvements in

specific fuel consumption, especially for heavy vehicles". Heavy vehicles

have traditionally been a substantial source of NOx-emissions, but recent

tests indicate that vehicles complying with the EURO VI emission

standards have a greatly reduced emission of NOx and particulate matter

(PM) compared to older vehicles (Hagman and Amundsen 2013). The

external marginal cost of noise produced by a heavy vehicle was estimated

by Maibach et al. (2008) to be approximately ten times greater than the

noise from a car.

Clearly, the increasing volume of heavy vehicles, coupled with the related negative

consequences, will create issues. Finding solutions to problems associated with the

increasing traffic volumes is a challenge for the road research community, the road

authorities, and heavy vehicle operators. The European Commission implemented

an action plan in 2007 to deal with the present problems in the freight and logistics

sector (European Commission 2007). The action plan had a positive effect, but

there are still problems to be dealt with, including rising costs and the negative

environmental footprint (European Commission 2015a). In the EU, the modal

share of road based freigth transport is 71 %, and is projected to be 70 % by

2050 (Capros et al. 2013). By 2013, 52 % of all domestic freight transport in

Norway were produced by road based vehicles (about 19 billion tonne-kilometers),

a growth from 18 % in 1960 (Kolshus 2015). The Norwegian Government plans

for a transition from road to sea and rail for domestic transport, but acknowledges

that this is only achievable for freight trips longer than 500 km (NTP 2013). They
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also state that to achieve the nations climate goals, the traffic flows where short

road freight trips (less than 500 km) takes place needs to become more efficient

and less polluting.

Practitioners who try to solve a transport related problem, have often several

possible solutions in mind. However, the effects of alternative solutions may not

be obvious, making it challenging to select the correct one. A normal approach is

to construct a model of the problem for estimating the consequences of each

alternative.

1.2 Modelling Traffic
"A model is a simplified representation of a part of the real world -

the system of interest - which focuses on certain elements considered

important from a particular point of view." (Ortuzar and Willumsen

2011, p 2)

When modelling traffic, the purpose is to model traffic flow in a specific, limited

area. The model is designed to replicate driver behavior as a function of the road,

the surroundings, the vehicle, the driver, and other drivers. The goal of the model

user is usually either evaluation or optimisation of transportation systems, or

modelling existing traffic flows and forecasting probable results of alternative

designs.

A model needs input for its functions, which then predicts an outcome of the

process. If the functions in the model properly replicate the real world functions,

safe and controlled experiments can be simulated in the model instead of

conducting real world experiments. Thus, time and money can be saved, and even

more important, a more optimal solution can be found.

Historically, models of traffic flow have existed for decades. The first pioneering

studies date back to the first half of the 20th century, where e.g. Greenshields

(1935) studied the relationship between traffic volume and speed. Since then,

models on several levels of detail have been developed. Simulation models are

usually classified in three scopes: macroscopic, mesoscopic and microscopic

(Alexiadis et al. 2004). Macroscopic models are suited for larger regions, as the

relationships between speed, flow and density are simulated section-by-section

rather than simulating individual vehicles.

Mesoscopic models combine the properties of macroscopic and microscopic

models. Individual vehicles are modeled, but with less detail than microscopic

models.
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Microscopic simulations use stochastically distributed properties to model each

vehicle by several behavioral models, with a time resolution of typically one

second or less, and are thus able to evaluate the growth and dissolution of

congestion. They are useful for assessing the dynamic progression of problems

due to traffic congestion. Because individual vehicles are modeled, the inherent

variability in the behavioral and dynamical properties of a vehicle can be included

in the simulation. This PhD project focuses on the behavior modeled by

microscopic simulation models.

There are many examples of microsimulation models being used to successfully

model traffic. Anya et al. (2014), Momenian (2013), and Khaki and Pour (2014)

used microscopic simulations to estimate emissions. Zefreh et al. (2015)

investigated the effect of shared taxies on traffic flow. Chen (2014) used

microsimulations to study detailed traffic and intersection operations. Simulations

can also be used to evalute the effect of ITS on traffic flow, as demonstrated by

Ntousakis et al. (2015). These examples show that traffic models can be helpful in

studying the present and future challenges.

According to Dowling et al. (2004), microscopic simulations are suitable for small

networks, typically less than 520 square kilometers. This is because simulation

models are highly detailed and require a great deal of input data, which in turn

needs to be checked for errors. To establish a valid model, the parameters needs

to be calibrated so that the simulated features replicate actual field conditions. The

calibration procedure can be a tremendous task, depending on the size of the model

and the number of parameters.

Microsimulation models are available as several software packages, which are

used to simulate traffic in existing or future road networks. Descriptions of the

basic principles of these simulation models are commonly found in textbooks,

and a fully operational microsimulation model usually consists of the following

behavioral models:

• Car-following models: These longitudinal models replicate interactions

between follower and leader vehicles. The output of these normally

time-continuous models is usually the acceleration or speed of a vehicle

based on current values of speed, spacing, acceleration and vehicle-specific

parameters.

• Acceleration models: These models describe the longitudinal behavior of

a vehicle where there are no constraining leader vehicles. Several

car-following models describe this type of behavior as well.

• Lane-change models: Latitudinal models which describe the process of
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decision and movements related to change of lane on multi lane highways.

The decision process is a continuous query where the answer is either to stay

in the current lane, or to change to an adjacent lane, depending on current

speed, leader vehicle speed, desired speed, and occupancy in target lanes.

• Gap acceptance models: These models are mainly used in intersections

with priority rules, where the behavior of finding an acceptable gap in a

present conflicting traffic stream is modeled. The models are based on

drivers’ preferences regarding risk acceptance given the speed of

conflicting vehicles and the acceleration properties of the driver.

• Route choice models: Every simulated vehicle in a model has an origin and

a destination, and needs to find a route through the road network. Decisions

made about route choice are at the strategic level, and involves estimations

of fastest or shortest route.

This thesis will focus on the modelling of heavy vehicles in car-following models.

There are several reasons for this choice. Firstly, on the simplest roads without

intersections, and with one lane in each direction, only a car-following model is

needed to model the traffic flow.

Secondly, car-following behavior is the crucial factor for creating speed profiles,

which in turn are important for emission calculations. The engine fuel

consumption and emissions are determined by the engine characteristics, as well

as engine speed and load. These are controlled by the way the driver responds to

the longitudinal road profile and nearby vehicles.

Thirdly, in urban areas, a large share of the driving task consists of car-following

behavior, and there is generally more vehicles and more congestion in urban

areas. Therefore, car-following models are important for modelling urban vehicle

behavior.

Lastly, heavy vehicles have been overlooked when it comes to modelling in

general, although constituting a significant share of traffic (Aghabayk et al. 2012).

It is not hard to understand why, since car is the dominant vehicle type in road

traffic. The most prominent example of the focus on cars can be found in the

terminology of the most important behavioral model in the field, which are

"Car"-following models. This shows that heavy vehicles are in certain ways not

equally important as cars, despite being a significant contributor to emissions,

congestion, and accidents. The increase in road based freight transportation calls

for a proper inclusion of heavy vehicles in the modelling of longitudinal behavior,

as stated by (Aghabayk et al. 2012, p 1): "Following behavior of passenger car
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drivers has been modelled in many studies over the last half century. However,

the existence of heavy vehicles in the traffic stream has not received the same

level of attention."

Before the state of the art in heavy vehicle following behavior is explored, an

introduction to car-following theory in general is given.

1.3 A Brief Introduction to Car-Following Behavior and Models
Car-following behavior can be described as the behavior of a follower vehicle

given the actions of a present leader vehicle. It is a continuous process where the

intervehicular distance and speed difference is constantly fluctuating. Every

change in the movement of the leader will cause a response in the movement of

the follower vehicle. If the gap between follower and leader vehicle is large

enough, the actions of the leader will no longer affect the follower, and the

follower vehicle will be in a state of free flow.

From the perspective of the follower vehicle, the driver has a hypothetical desired

speed which it strives to maintain. Every vehicle in front of the follower with a

lower desired speed will be an obstacle, assuming no overtaking possibilities. A

safety based approach to describing this behavior would assume that the follower

would avoid a collision with the leading vehicle. This implies that the

inter-vehicular gap should not be too small, and that the relative velocity should

not be too high. However, the gap should neither be too large, if the desired speed

of the follower is not reached.

An informative description of the car-following process is a car-following spiral, in

which a series of observations of gap and speed difference are plotted. An example

is shown in Figure 1.1. Here we see that the typical pendulum behavior in both

relative speed and distance gap results in a spiraling behavior.

The modelling of car-following behavior has gone through a long and varied

evolution since the first models appeared in the middle of the 20th century. The

Next-Generation Simulation Program (NGSIM) has rigorously classified the most

well known car-following models in 5 types (Ni 2015), as shown in Table 1.1.

These 5 types represent slightly different ways of determining a change in the

speed of a vehicle, determined by the preceding vehicle. The rule-based models

consist of a set of rules which triggers a certain change in speed. Psycho-physical

models involve both psychological activities (e.g. behavioral thresholds) and

physical behavior (e.g. accelerations and decelerations). Desired measure models

are designed to ensure a safe distance between vehicles, while stimulus-response

models calculate the speed (response) as a function of change in the speed of the

leader vehicle (stimulus). The Intelligent Driver Model (Treiber et al. 2000) is a
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Figure 1.1: A typical car-following process visualised by a time series of relative speed

as a function of distance gap. Source: Brackstone et al. (2009)

relatively complicated model which combines the ability to reach the speed limit

in free flow with the ability to avoid collisions in car-following situations.

Many software packages, both commercial and open source, are developed to

offer a framework for practitioners to implement the theoretical behavioral

models. Table 1.1 lists different types of car-following models, and which type of

model group which is implemented in the most used software packages. It is

apparent that the Desired Measure-type models are most frequently used in

software packages.

Table 1.1: Examples of published models, and usage of model types in software packages,

as classified by NGSIM (Ni 2015).

Type Models Software
Rule-Based Kikuchi and Chakroborty

(1992) and Kosonen (1999)

HUTSIM

Psycho-Physical Michaels (1963) and

Wiedemann (1974)

Paramics, VISSIM

Desired Measure Pipes (1967), Newell

(1961), Gipps (1981), and

Benekohal and Treiterer

(1988)

AIMSUN, ARTEMIS,

CORSIM, DRACULA,

Integration, SimTraffic,

SUMO, WATSim

Stimulus-Response Chandler et al. (1958),

Kometani and Sasaki

(1958), Gazis et al. (1961),

and Ceder and May (1976)

MITSIM, Transmodeler

Intelligent Driver Model Treiber et al. (2000)
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Several guidelines exist for developing a microscopic simulation model. Before

establishing a set of procedures for microscopic simulations in Sweden, Olstam

and Tapani (2011) reviewed the state of the art in existing guidelines. Their review

covered guidelines from USA, Germany, UK, Denmark and Sweden. Although

elements from all guidelines were used, the guidelines given by FHWA (Dowling

et al. 2004) were the most extensive, except for the fact that model validation is

not included.

According to the guidelines from FHWA, a project which involve establishing and

applying a valid simulation model is demanding, both in sense of time and data

requirements. The FHWA separates the workload into several tasks, which are:

• Project scope: Project goals are defined, and plans are made for data

collection, coding procedures, alternatives to be simulated, and calibration.

• Data collection: Collection and preparation of data sets needed for the

model.

• Model development: Coding links, nodes, travel demand, traffic control etc.

• Error checking: Software error checking, input coding error and animation

review.

• Calibration: Adjusting parameters until calibration targets are met. The

model must be calibrated to ensure that the model will be able to correctly

predict the traffic performance.

• Validation: According to Olstam and Tapani (2011), model validation

should be covered at this point, but it is not included in Dowling et al.

(2004) .

• Alternatives analysis: Description of alternatives, analytical procedures and

results.

• Final report: Documentation of the project.

There are several apparent challenges when microsimulation models are

developed. Two important challenges are, according to Dowling et al. (2004),

insufficient managerial expertise for verifying the technical application of the

model, and insufficient data/documentation for calibrating the model. They also

mention that the importance of calibration cannot be overemphasized. Hourdakis

et al. (2003) states that a major share of the criticism against microscopic

simulation are related to calibration and validation. A survey carried out by the
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MULTITUDE project revealed that 19 % of practitioners polled did not calibrate

their models, and that 55% did not follow any guidelines when calibrating a

model (Antoniou et al. 2014).

An evolution of models in the direction of more complexity requires even more

data and effort. The amount of parameters usually increases with the complexity

and size of the model. An important example of increased complexity is the

inclusion of several vehicle types. Usually, cars are the dominant vehicle type in a

traffic flow, but the share of heavy vehicles can in many cases be significant.

Thus, for the model to produce realistic results, the behavior of heavy vehicles

must be modeled sufficiently. The next section describes the state of the art in this

research area.

1.4 State of the Art in Heavy Vehicle Behavior and Modelling
A prerequisite for modelling is empirical knowledge about the processes and

functions within the subject of the model. Several studies have focused on

describing elements of heavy vehicle dynamics, in the absence of car-following

interactions. Then, only the physical and operational properties of the vehicle are

responsible for the behavioral differences:

• The larger mass of heavy vehicles needs more energy to drive uphill. As

shown by Fry et al. (2002), the speed of heavy vehicles decreases with

increasing grade.

• A heavy vehicle can in some cases have a high center of gravity, depending

on the load. This may lead to rollovers in curves, especially if the speed

is too high. As stated by de Pont et al. (2004), high speed through curves

were the cause of more than half of the rollovers of heavy vehicles in New

Zealand and the Netherlands.

• Heavy vehicles are sometimes limited to certain speeds on highways, either

by speed delimiters or by speed limits. A possible reason for this is the

decreased agility due to the high weight compared to cars, in addition to

safety reasons. Saifizul et al. (2011) studied the relationship between vehicle

weight and speed. They found that speed decreased for heavier vehicles, and

that most heavy vehicles had speeds below the speed limit.

• The engine capability of a heavy vehicle should be designed with

maximum cargo in mind, to ensure a reasonable acceleration and

deceleration regardless of the cargo. However, it is shown empirically by

Di Cristoforo et al. (2004) that the acceleration properties of a vehicle is
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related to the weight of the vehicle. Their acceleration tests of combination

vehicles revealed that heavier vehicles have lower acceleration and

deceleration capabilities.

The longitudinal behavior in presence of car-following interactions has been

described my multiple other studies. By measuring either gap or headway

between vehicle pairs, the effect of vehicle type can be determined. When only

cars and heavy vehicles are present, the following combinations of vehicle pairs

are possible:

• Car following Car (C-C). This is the most frequent pair, and also the

behavior which is usually described in studies of car-following behavior.

• Car following Truck (T-C). The larger size of the heavy vehicle reduces

the ability of the car driver to obtain information about downstream traffic

conditions. However, the car presumably has better maneuverability and

braking ability than the heavy vehicle.

• Truck following Car (C-T). The raised position of the heavy vehicle cabin

gives the heavy vehicle driver the ability to see downstream movements,

and thereby predict the behavior of the lead vehicle. On the other hand, the

physical differences between vehicles may lead to fatal consequences in an

eventual collision.

• Truck following Truck (T-T). As heavy vehicles are usually outnumbered

by cars, this is the least occurring vehicle pair.

Brackstone et al. (2009) and Sayer et al. (2003) found that vehicles in general

follow heavy vehicles closer than cars. Ye and Zhang (2009) studied statistical

distributions for time headways. They found that C-C headways were the

smallest, and T-T headways were largest. They also found that C-T headways

were shorter than T-C, presumably because the heavy vehicle drivers could see

further downstream. Ossen and Hoogendoorn (2011) found that the desired

headways are lower when following a heavy vehicle than when following a car.

They also found that heavy vehicles have a more robust following behavior, with

less variation in speed. Nouveliere et al. (2012) developed a headway spacing

estimation model based on vehicle weight data, showing that the headway

increased with increasing vehicle weight. Aghabayk et al. (2012) found that

speed differences between follower and leader, as well as the acceleration of both

vehicles were significant stimuli on heavy vehicle following behavior. Weng et al.

(2013) studied time headway distributions in work zones for different
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Table 1.2: Summary of results showing the effect of vehicle pair on time headway.

Result Source
(T-C & T-T) < (C-T & C-C) Brackstone et al. (2009), Sayer et al.

(2003), Ossen and Hoogendoorn

(2011)

(C-C & T-C) < (C-T & T-T) Nouveliere et al. (2012)

(C-C & C-T) < (T-C & T-T) Weng et al. (2013)

C-C < T-C < C-T < T-T Hashim et al. (2014)

C-C < C-T < T-C < T-T Ye and Zhang (2009)

leader-follower vehicle type configurations. They found that the time headway

was larger for vehicle pairs with heavy vehicle as leading vehicle. They also

found that heavy vehicles tend to keep larger headways than cars when following

other vehicles. A study by Hashim et al. (2014) showed that followers kept a

larger distance to leading heavy vehicles than to leading cars. They also found a

significant correlation between speed and time headway in situations where a

heavy vehicle was either follower, leader or both. The correlation was not found

for C-C interactions.

These results show that the effect of vehicle type on time headway is diverging.

The summary presented in Table 1.2 display the variety in results. The empirical

results show that vehicle type matters for vehicle following behavior, although

Table 1.2 indicates that more research is needed to determine how vehicle type

affects the choice of headway.

The car-following models presented in Table 1.1 may potentially be used for

heavy vehicles as well as for cars. This requires that the relevant parameters are

calibrated for heavy vehicles. However, it is unclear whether these models are

able to capture the differences in behavior between cars and other vehicle types as

for instance heavy vehicles. There has been a relatively small amount of studies

focusing on heavy vehicle modelling compared to cars. A notable exception is in

the field of modelling mixed traffic, sometimes referred to as heterogeneous

traffic. Mixed traffic is characterised by multiple vehicle types present and weak

lane discipline, which is commonly found in developing countries. Although

mixed traffic is not primarily focused on heavy vehicle following behavior, it is an

important component along with other vehicle types such as for instance bicycles

and motorcycles.

There has been several past attempts to develop a simulation model for mixed

traffic, focusing on either multiple vehicle types, weak lane discipline, or both.
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Arasan and Koshy (2005) developed a simulation model called HETEROSIM

with the purpose of modelling heterogeneous traffic, but with the capability of

modelling homogeneous traffic as well. The model was revalidated by Arasan

and Dhivya (2010). Gunay (2007) used Gipps’ car-following model as a basis for

developing a new type of model, called staggering car-following model, which

included the modelling of a weak lane discipline. While most studies have chosen

a conventional car-following model, Mallikarjuna and Rao (2009) used a cellular

automata to model heterogeneous flow, and were able to reproduce real traffic

behavior. Ravishankar and Mathew (2011) added a vehicle type parameter in

Gipps’ car-following model (Gipps 1981), and the results showed an

improvement in comparison to the original Gipps’ model. Metkari et al. (2013)

further developed the work of Gunay (2007) and Ravishankar and Mathew

(2011), combining their ideas into a modified Gipps’ model taking both weak lane

discipline and vehicle type into account. Aghabayk et al. (2013) implemented

their previous findings (Aghabayk et al. 2012) in a car-following model. Using a

local linear model tree approach, the resulting car-following model was able to

reproduce car-following behavior depending on the lead vehicle type.

Munigety and Mathew (2016) conducted a thorough review of the state of the art

in the field of modelling mixed traffic. In their road map towards a mixed traffic

behavioral model, more effort is required on vehicle type dependent longitudinal

movement models. This is further elaborated in the next section, where the gaps

in knowledge are presented.

1.5 Gaps in Knowledge
Heavy vehicle following behavior is an important component in the field of mixed

traffic, and a large share of the existing studies on heavy vehicle behavior has

aimed at contributing to a better understanding of heterogeneous and mixed

traffic. Therefore, it is natural to present the gaps in knowledge within this field,

concentrated on the longitudinal behavior of heavy vehicles. The recent review by

Munigety and Mathew (2016) identify some important research directions in the

field of modelling mixed traffic, which include and further develops the gaps

identified by Kanagaraj et al. (2013). These gaps can be grouped into four

categories: (1) data requirements, data collection and extraction, (2) driving

regimes, (3) driver behavioral models, and (4) integrated driving behavior model.

They are further explained in the following sections.

1.5.1 Data Requirements, Data Collection and Data Extraction

One of the challenges in driver behavioral modelling is the identification and

effect of individual and circumstantial factors, and how to incorporate them in
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behavioral models. The former is attributed to the driver and vehicle, while

circumstantial factors are attributed to the surrounding area. The importance of

factors as a function of flow type was postulated by Ranney (1999) as shown in

Figure 1.2. In congested flow, the main influence on driver behavior comes from

other traffic. In free flow, external factors are more important, as well as driver

characteristics.

Figure 1.2: The influence of factors on vehicle behavior at different levels of service.

Source: Ranney (1999)

The data collection method for describing mixed traffic should according to

Munigety and Mathew (2016) be trajectory data. Then, the choice is between

floating car data and video recorded data. While video recordings yield much

information about driver behavior, it is labor intensive to analyse and often

inaccurate. Floating car data requires an extensive instrumentation of vehicles in

order to collect car following behavior data. To properly understand driver

behavior, data should be collected from longer sections with variability in the

vehicular and geometric characteristics. More effort should be invested in

developing methods for extracting data, which is challenging in mixed traffic

conditions due the occlusion caused by large variations in the physical size of

vehicles and weak lane discipline.

1.5.2 Driving Regimes

As the driver behavior may change with circumstantial factors, the need for

definition of boundaries between driving regimes arises. An example of a

boundary is the headway threshold between car-following and free flow. These

thresholds has often been set or calibrated arbitrarily, and set deterministically

without regarding the diversity in vehicle and driver properties (Munigety and

Mathew 2016).
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1.5.3 Driver Behavioral Models

Munigety and Mathew (2016) state that of all available car-following models,

collision avoidance based models, e.g. Gipps’ model (Gipps 1981), seem to be

the most appropriate choice for describing the car-following behavior in mixed

traffic. However, there is a need to develop models which properly describes the

vehicle dependent following behavior which can be observed in mixed traffic.

This is also the case for vehicle dependent lateral movements observed in mixed

traffic.

1.5.4 Integrated Driving Behavior Model

Longitudinal and lateral movements are in reality the results of integrated choices

made by the driver. Therefore, several researches have tried to model integrated

driver behavior by one mechanism. However, according to Munigety and Mathew

(2016), this seems to be unachievable, and further research should try alternative

approaches for modelling integrated behavior, e.g. mechanics-dynamics theory.

In the next chapter, the research questions for the PhD project are presented. They

address a selection of the identified gaps in knowledge.



Chapter 2

Study Objectives

The overall goal of the research work undertaken in this PhD study is:

To investigate how the car-following behavior of heavy vehicles differ
from that of cars, how external factors affect this behavior, and how
to incorporate this knowledge in traditional car-following models.

There are several gaps in the field of heavy vehicle following behavior and

modelling which needs to be addressed. However, it is not possible with the

limited resources available in a PhD study to answer all challenges raised in the

introduction. Neither is it realistic to aim for developing the next generation of

behavioral models. Collecting the vast amount of data for all important vehicle

types in all relevant situations and locations would be an exhaustive task for a

single PhD study. Additionally, theories would have to be postulated, the data

would have to be analysed, and models developed on basis of the theories.

Instead, a subset of the challenges are addressed, with the goal being to improve

the understanding of heavy vehicle behavior, and potentially implement some of

the findings in a model.

A series of four research questions (RQ) were formulated to structure and further

detail the work.

2.1 Presentation of Research Questions
The first three RQs focus on obtaining new knowledge about heavy vehicle

following behavior, while the fourth RQ focus on implementing the new

knowledge in a modelling framework.

17
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-RQ1 What is the difference between following behavior for cars and heavy
vehicles, and how could this difference be measured?

-RQ2 How do road characteristics such as number of lanes, speed limit and traffic
flow status affect heavy vehicle following behavior?

-RQ3 How do environmental factors such as weather, road surface cover and
lighting conditions affect heavy vehicle following behavior?

-RQ4 How can we successfully incorporate a selection of new knowledge about
heavy vehicle behavior in traditional car-following models?

The three first RQs are empirical of nature, which implies that a data collection is

needed to provide answers. To measure empirical differences between cars and

heavy vehicles, variables which describe car-following behavior has to be

determined. Already in the introduction, two candidate vaiables were presented,

which were time gap and speed difference. These two variables are used to

describe car-following behavior in the car-following spirals in Figure 1.1. They

are also the main variables in many car-following models, for example Gipps’

model (Gipps 1981), where speed is the output from a function where relative

speed and gap are variables.

RQ1 What is the difference between following behavior for cars and heavy
vehicles, and how could this difference be measured?

In an empirical study, the selected variables determines the data collection. To

empirically describe car-following behavior, data about car-following needs to be

collected. There are several ways to collect data about time gap and vehicle speeds,

but the most frequently used are point data, video recorded data and floating car

data.

Point data are collected at a specified cross section of a road with a sensor which

detects the presence of a vehicle. Data from traffic registration sites are available

in large numbers, which gives the possibility of describing car-following behavior

accurately. However, each observation is from one vehicle at a time, so that

individual temporal fluctuations can not be observed. Also, data from induction

loops inhibit some inaccuracy, so that quality control of the data is necessary

before use.

Video recorded data are collected from cameras which monitor a limited stretch

of road. These recordings can potentially offer information about traffic behavior

from a large number of vehicles. Although several techniques exist to
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automatically extract data from images, there are some challenges especially for

mixed traffic flow conditions, as mentioned in section 1.5.

Floating car data are collected from one vehicle for each data set. The strength of

this method is that fluctuations in behavior are readily available for analysis.

However, these data sets are expensive to collect because of the time and

equipment needed to achieve observations from a representative fleet of drivers.

The subject vehicles are also required to have equipment able to detect the speed

and position of the leader vehicle to reveal car-following behavior.

Another possible option for data collection is driving simulators. They provide a

simulated environment in which a human test subject can drive. The advantages

of a driving simulator include safe driving environments, a large span in available

simulated scenarios and most importantly a much higher level of data availability.

However, driving simulator experiments are associated with high costs, and there

is an issue regarding the validity of driving simulators.

So far the methodological approach for the first RQ is established. Car following

behavior is observable through variables such as time gap, speed and speed

difference, which can be measured either as point data, video recorded data or

floating car data, either from real world traffic or driving simulator experiments.

For the next two RQs, additional data is required.

RQ2 How do road characteristics such as number of lanes, speed limit and traffic
flow status affect heavy vehicle following behavior?

There are several possible variables which could influence car-following

behavior, as shown in Table 2.1. To study how car-following behavior is affected

by every variable presented in Table 2.1, a large amount of data is needed. The

NPRA (Norwegian Public Roads Administration) collect data from loop detectors

across Norway, but they are usually placed on flat, straight roads (NPRA 2011).

This means that additional data collection with mobile detectors is necessary to

investigate car-following behavior in grades and curves. If floating car data were

to be used, an even larger effort would be needed to collect data for all variables.

Only a selection of variables, as presented in the next chapter, are studied in this

thesis due to time and financial constraints of the PhD project.

Although the effect of a single variable is interesting, interactions between

variables would also be of interest. An example of this is that the presence of

congestion may have a different impact on a two-lane road compared to a

four-lane road. To analyse all possible interactions calls for a even larger data

collection, hence a subset was chosen.
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Table 2.1: Road related variables and possible impacts on car-following behavior.

Variable Description
Grades The need for engine power to maintain a given speed may

increase the speed, especially for heavy vehicles.

Curvature Due to sideways acceleration and the risk of losing friction,

the speed may decrease in curves.

Number of lanes More than one lane in one direction may complicate the

driving task because the driver needs to relate to parallel

driving vehicles.

Lane width Wider lanes may affect the speed sensation, and thus

increase the speed level.

Area type The increased level of traffic on urban roads relative to rural

areas, as well as the urban lifestyle in general, may induce

a difference in car-following behavior. This may also be the

case when comparing a small city with a large city, or even

when comparing two cities in different countries.

Speed limit The speed limit will presumably affect the average speed

level.

Traffic state A congested flow can be characterised as a traffic state

with low speed and high density relative to a state of free

flow. The presence of many vehicles would presumably

be distracting for a driver, removing focus from the car-

following task and lead to change in car-following behavior.
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Table 2.2: Weather related variables and possible impacts on car-following behavior.

Variable Description
Precipitation Rain and snow may interrupt the field of vision, causing

lower speeds and increasing time gaps.

Road surface Wet roads, snow covered roads, and ice covered roads all

reduce friction relative to dry roads. This may reduce the

speed level and increase vehicle gaps.

Light conditions The effect of nightfall relative to daylight may also reduce

speed and increase gap.

Wind Strong winds may affect car-following behavior alone, but

winds in combination with precipitation may drastically

decrease the level of sight.

RQ3 How do environmental factors such as weather, road surface cover and
lighting conditions affect heavy vehicle following behavior?

While road characteristics are relatively constant, except for e.g. traffic state and

varying speed limits, weather and road surface conditions are usually changing.

This is especially the case for Nordic countries, where snow and ice is common

during winter. Models developed for sunny conditions with a dry road surface are

not necessarily applicable for other conditions. Some variables which are related

to weather with the possibility of affecting car-following behavior, are shown in

Table 2.2.

To answer RQ3, it is not necessary to collect data from several locations, but

additional data about weather is required. This means that as long the variables

for describing car-following behavior are collected, an additional instrument for

collecting simultaneous weather data is needed. Information about the weather

conditions are important not only for meteorological purposes, but also for road

maintenance. The Norwegian Public Roads Administration (NPRA) monitors

several roads where adverse weather may drastically worsen the driving

conditions.

As for road characteristics, interacting effects of weather variables will be of

interest. Given that all weather situations of interest will occur at one data

collection point or by one vehicle, only an extended period of data collection is

required. However, interactions between road and weather variables would

require a data collection from multiple sites with both traffic and weather

registration equipment.

While the three first RQs are descriptive, the fourth research question calls for
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a different approach. Munigety and Mathew (2016) propose two possible ways

to achieve a vehicle-dependent movement model. The first way is to modify an

existing car-following model by incorporating vehicle-type specific parameters,

while the second way is to propose separate models for each vehicle-type based on

discrete choice theory. This PhD study will explore the first way by answering the

following research question:

RQ4 How can we successfully incorporate a selection of new knowledge about
heavy vehicle behavior in traditional car-following models?

RQ4 builds on the knowledge obtained through answering RQ1-RQ3, by

implementing a selected subset in a car-following model. This approach is to a

certain degree dependent on what is actually achieved by answering the three first

RQs. It also calls for an exploratory study of car-following models, and how the

mechanisms in car-following behavior are affected by vehicle type and

characteristics of the road and weather.

When an appropriate car-following model has been selected, then the challenge

will be how to implement any new knowledge into an existing model. To make the

models suitable for practical use, the large effort of calibrating a model urges any

further development to not complicate or increase the calibration procedure.

Together, RQ1-RQ4 form a set of questions which, when answered, will help reach

the main goal posted in the beginning of this section.

2.2 Scope and Limitations
Several limitations of scope have already been made in Chapter 1. First, the

operational aspects of freight transport are not given attention, only the traffic

related aspects. Second, it is mentioned that the focus is on heavy vehicles. This

does not however exclude passenger cars from the thesis. It is important to

describe heavy vehicle behavior relative to car behavior, as well as studying

heavy vehicle behavior in the presence of cars. Third, it is already specified that

the focus of the PhD study is on car-following behavior. Although driving is a

complex process involving several types of behavior, car-following behavior is

the omnipresent behavior. Therefore, behavior involving intersections and lane

changes are not in the scope of this PhD project. As shown in Table 1.1, there are

5 main types of car-following models, with several car-following models within

each type. The most commonly used model type is "Desired Measure", where

Gipps’ model is the dominant one. Additionally, Munigety and Mathew (2016)

state that this model type is probably the best choice for describing mixed traffic.

Therefore it was decided to use Gipps’ model as a first choice for the exploratory

study.
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For the first three RQs, the limitation is generally related to data collection. The

limited amount of time and resources in a PhD project means that not all variables

presented in Table 2.1 and Table 2.2 may be explored. As mentioned, the collection

of floating car data is a resource intensive task, and because there are no other data

sets to the authors knowledge which can be used for this purpose, available point

data are used. The loop- and WIM- (Weigh In Motion) detectors owned by NPRA

are numerous, placed in diverse locations, and most importantly, the data from

them are available.

The choice of not collecting floating car data has implications. The first one is that

fluctuations in individual longitudinal behavior will not be possible to study. Only

observations of vehicles passing over fixed detector locations are available outputs.

However, important features of car-following behavior as time gap and speed are

measured. Also, this choice of data source comes with a large amount of samples,

so that a larger share of the vehicle population is possible to study.

Another implication is that not all desired external variables are possible to include

in the data set. A design specification of existing loop detector sites in Norway is to

avoid placement in curves or slopes. Loop detectors are generally placed on roads

with a high level of traffic, which are roads with high standards, e.g. multiple

lanes, high speed limits, and wide lanes. Although there is a large number of

detectors placed on other road types, not all combinations of road type variables

are represented. This is important when studying the effect of interactions between

road variables. Examples of such non-existing combinations of variables are two-

lane road with speed limit 100 km/h, and rural four-lane highways with speed

limit 40 km/h. Data from these road categories are not available because they do

not meet the Norwegian road standards, and in theory does not exists.

As this PhD study focus on the behavior of heavy vehicles, an increased number of

data attributes concerning vehicle characteristics would presumably strengthen the

study. Ordinary loop detectors usually detect vehicle lengths, but Weigh In Motion

(WIM)-detectors detect vehicle weight as well. WIM-detectors are generally used

by the NPRA for controlling the weight of vehicles, and are usually placed close

to roadside control stations at rural highways. The number of WIM-stations are

significantly lower than loop detector sites. Therefore, it may be difficult to gather

data from vehicle weights from sites with different road characteristics.

The practical use of car-following models are through microsimulation software

developed for practitioners, for instance those mentioned in Table 1.1. It is not

in the scope of the PhD study to implement any results or findings in commercial

software.
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Chapter 3

A Summary of Results from the
Papers

To answer the main research goal, four studies were conducted, one for each

research question. They were documented through a series of four research

papers, and one descriptive paper of a dataset used in one of the main papers. The

full text papers can be found in Part II. The work done in the papers are three

empirical studies and one case study.

The papers are numbered I to IV for how they match each other thematically, and

not necessarily for the order they were written in. The following papers were

written as a part of this thesis:

• Paper I: Hjelkrem, O. A., 2014. Vehicle Type Characteristics During Car-
Following Behavior. (Unpublished). The work presented in this paper was

done in late 2012. It was submitted in mid 2014 for the 94th Annual Meeting

of the Transportation Research Board , where it was not accepted. It has

not been submitted anywhere else, primarily because the other papers were

prioritized over doing the work needed to improve Paper I.

• Paper II: Hjelkrem, O. A., 2015. Determining Influential Factors on the
Threshold of Car-Following Behavior. This paper was written between late

2013 and mid 2014, when it was submitted for the 94th Annual Meeting of

the Transportation Research Board, where it was accepted for presentation.

• Paper IIIa: Hjelkrem, O. A., and Ryeng, E. O., 2016. Chosen risk level
during car-following in adverse weather conditions. Accident Analysis &

25
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Prevention, 95, 227-235. Paper IIIa was written between mid 2014 and mid

2015, when it was submitted to Accident Analysis & Prevention. After a

review process it was accepted for publication in mid 2016.

• Paper IIIb: Hjelkrem, O.A. and Ryeng, E.O., 2016. Driver behavior data
linked with vehicle, weather, road surface, and daylight data. Data in Brief

(Submitted). This paper was written during the review process of Paper IIIa,

and submitted in mid 2016. It is still under review by the journal.

• Paper IV: Hjelkrem, O. A. and Nerem, S., 2015. A Transition from
Car-Following to Vehicle-Following Model. Presented at 22th ITS World

Congress, Bordeaux. (Invited and submitted for publishing in International

Journal of ITS). The work presented on this paper is based on the thesis

written by Sebastian Nerem (Nerem 2013), and builds on the work

presented in Paper I. The paper was written between mid 2013 and late

2014, and submitted for the 22th ITS World Congress. It was presented at

the congress in 2015. An extended version was submitted to the

International Journal of ITS in early 2016, where it is still under review.

Paper I and Paper II were authored solely by Odd André Hjelkrem.

Papers IIIa and IIIb were written by Odd André Hjelkrem and Eirin Olaussen

Ryeng. In these papers, Hjelkrem was responsible for the literature study about

the impact of weather on vehicle behavior, the data procurement and the

statistical analysis. Ryeng was responsible for the literature study about risk

theory. The decisions about the goals and methods, and the interpretation of

results was a joint effort.

Paper IV was written by Odd André Hjelkrem and Sebastian Nerem. The main idea

of the study was conceived by Hjelkrem, while Nerem performed the simulations

and the statistical analysis under supervision by Hjelkrem.

3.1 Presentation of Data Sets
Three data sets were collected, one for each empirical study.

The first data set was collected for the study in Paper I from a weigh in motion

(WIM) detector at Stamphusmyra on road E6 in Norway. The majority of vehicles

travelling between the middle and northern parts of Norway choose this route.

The speed limit at the detector was 70 kph, and the road has one lane in each

direction. The data attributes available for the study is presented in Table 3.1. Most

of these attributes were recorded directly from the detector, but traffic volume and

information about the preceding vehicle was added in post processing of the data.
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The case study presented in Paper IV was based on the data set and the findings in

Paper I.

Table 3.1: Data set used in Paper I and IV. N=669 820.

Attribute Data type Range
ID Integer 1 to 669 820

Timestamp Text 1.8.2012 to 30.9.2012

Lane Integer 1 or 2

Speed Floating point 0 to 173 kph

Length Integer 112 to 5 201 cm

Gross Weight Integer 10 to 127 475 kg

Traffic volume Integer 4 to 1 252 veh/hour/lane

Weight previous vehicle Integer 0 to 127 475 kg

Number of axles Integer 2 to 10

Time gap Integer 27 to 65 535 ms

The second data set was used in the study presented in Paper II. Data was collected

from 14 loop detectors in Norway. Unlike the data set for Paper I, this data set

did not include vehicle weight. The other data attributes are shown in Table 3.2.

Information about traffic flow and the preceding vehicle was added during post

processing of the data. The detectors were chosen strategically based on number

of lanes, speed limit and area type. A more detailed presentation of the detector

properties is given in Paper II.

The third data set is described in Paper IIIb.

Table 3.2: Data set used in Paper II. N=20 827 506.

Attribute Data type Range
ID Integer 139 to 21 155 010

Detector ID Integer 1 to 14

Timestamp Text 29.4.2013 to 4.9.2013

Lane Integer 1 to 6

Speed Floating point 0 to 180 kph

Length Floating point 0 to 25.39 m

Leader vehicle ID Integer 139 to 21 155 009

Leader vehicle speed Floating point 0 to 180 kph

Leader vehicle length Floating point 0 to 25.39 m

Traffic volume Integer 1 to 1 765 veh/hour/lane

Time gap Integer 0 to 4 294 967 ms
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In the following sections, a short description of the studies and their results are

given.

3.2 Vehicle Behavioral Differences
RQ1: What is the difference between following behavior for cars and trucks, and

how could this difference be measured?

As mentioned previously, time gap and speed difference are two variables

describing car-following behavior. These are investigated in both Paper I and

Paper II.

Paper I describes how the time gap is affected by vehicle properties during car-

following behavior. The data used in Paper I was collected from a WIM-station,

and included variables such as time gap, speed, vehicle weight, vehicle length,

axle weights, and number of axles. About 670 000 time gaps were collected from

a rural two-lane road for the study.

The first analysis in Paper I focused on the difference in time gap between vehicle

pairs, as several previous studies had shown that the leader vehicle type is

important, not only the follower vehicle. This behavior was investigated on the

basis of the collected data, and the results showed that the characteristics of the

leader vehicle does not affect the time gap as much as the follower vehicle

characteristics. As shown in Figure 3.1, for situations where a truck is the

follower vehicle (red lines), the distribution peak is shifted about 0.5 seconds

compared to the situations with a car as the follower vehicle (blue lines).

It was further investigated if the time gap varied as a function of vehicle weight.

Weight was chosen because it is important for the acceleration capabilities of a

vehicle, and should thus affect the time gap choice of the drivers. The results

showed that, despite large variations in the chosen time gap, there is a statistical

significant, moderate and positive correlation between the weight of a follower

vehicle and the time gap. An inspection of the data suggested a log linear

regression model, as the time gap increases with weight up to a weight of about

20 tonnes, and then flattens out for further increasing weight. The difference in

median time gap for cars and trucks is about 0.5 seconds when the truck has a

weight of 20 tonnes or more. This relationship is illustrated in Figure 3.2.

Paper II also investigated the differences between cars and trucks. However, the

variables of interest were slightly different. The aim of the study was to define the

threshold of car-following behavior using loop detector data, based on assumptions

about vehicle behavior. The first assumption was that in the car-following state,

the speed difference fluctuate around a desired gap, as shown in Figure 1.1. For
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Figure 3.1: Relative frequency of time gaps for vehicle pairs, where C represents cars,

and T represents trucks.

Figure 3.2: The relationship between average time gap and following vehicle weight.
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gaps higher than the desired gap, the follower will increase the relative speed to

reduce the gap. For lower gaps, the speed difference will be the opposite, because

the driver will try to increase the gap. The second assumption was that vehicles

have a desired speed choice. Eventually, a free flowing vehicle will catch up a

leader vehicle with a lower desired speed, and thus have a higher relative speed

while in a state of free flow. Vehicles with a lower desired speed than its leader,

will at one point change from a car-following state to a state of free flow. Because

the gap is increasing, the relative speed difference must be negative during this

phase transition.

By investigating about 20 million observations, the threshold value and the desired

speed were determined. The analyses were done separately for cars and trucks, and

showed that the car-following behavior differed greatly between cars and trucks.

Figure 3.3 displays the average speed difference for time gap values between 0

and 25 seconds, with one observation for each 0.1 seconds. The green shaded area

was identified as the car-following state, and the threshold value was found to be

on average 3.9 seconds for cars and 5.8 seconds for trucks, which conformed with

other studies.

Figure 3.3: Speed difference between follower and leader as a function of time gap for

passenger cars (left) and heavy vehicles (right). The green area indicates the car-following

regime, while the white area indicates the free-flowing regime.

By following the assumptions about car-following behavior, the desired gap was

identified as the point where the relative speed is zero. This was found to be 1.1

seconds for passenger cars. The desired gap was not possible to identify for heavy

vehicles from Figure 3.3, but a further examination of the relationship between

speed difference and time gap in different surroundings led to the identification of

desired time gap for trucks in two specific situations. In rural areas, it was found

to be 2.0 seconds, and 2.8 seconds in areas with a speed limit of 60 kph. This

was the first result indicating showing that road characteristics are important for
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car-following behavior.

3.3 How do Surroundings Affect Driver Behavior?
The main goal of Paper II was to find out if road characteristics affected the chosen

behavioral variables: car-following threshold and desired gap. This effort was

made to answer the second research question:

RQ2: How do road characteristics such as number of lanes, speed limit and traffic
flow status affect heavy vehicle following behavior?

The data set used in Paper II consisted of loop detector observations from 16

detectors placed at different places in Norway. They were carefully selected for

studying the impact of road characteristics, so that each detection site was unique

in terms of the variables presented in Table 3.3.

Table 3.3: Range of variables used in Paper II.

Variable Levels
Speed limit 60, 70, 80, 90, 100

Area type Rural, Urban

Number of lanes 2, 4, 6

Traffic state Uncongested, Congested

In the study, a factorial ANOVA was used to determine how the threshold value

varies with area type, number of lanes, and traffic state for cars and trucks, and to

determine any interactions between the factors. The speed limit was not included

in the analysis because the data coverage was not good enough for all speed limits,

and because an inspection of the data showed that the speed limit apparently had

no effect on the threshold value.

The results from the ANOVA are presented in Table 3.4. For cars, the number of

lanes was the only significant main effect. On two-lane roads, the threshold value

was higher than for roads with more than two lanes. However, there were two

significant interactions, which were between traffic state and both area type and

number of lanes. This implies that in congested traffic, the threshold value will

be higher on rural roads or two-lane roads, compared to urban roads or roads with

more than two lanes.

For trucks, the only significant main effect was area type, which means that the

threshold value for trucks will be higher in urban areas than in rural areas. There

was also one significant interaction effect, which was between area type and traffic

state. In urban areas, the threshold value was higher in uncongested traffic than in
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Table 3.4: Significant results from the full-factorial ANOVA. The dependent variable is

the car-following threshold. The level of significance is set to 0.05.

Term Effect Coef SE Coef T-value P-value
Passenger cars:

Constant 3.725 0.091 40.93 0.000

Lanes -0.75 -0.375 0.091 -4.12 0.015

Area*Traffic State 0.75 0.375 0.091 4.12 0.015

Lanes*Traffic State 0.6 0.3 0.091 3.3 0.03

Heavy vehicles:
Term Effect Coef SE Coef T-value P-value

Constant 4.175 0.0729 57.28 0.000

Area 1.0 0.5 0.0729 6.86 0.002

Area*Traffic State -0.75 -0.375 0.0729 -5.14 0.007

congested traffic.

This shows that to some extent, car-following characteristics vary with location.

However, there might be situations where the behavior varies within one location

as well, e.g. during rainfalls and snow storms. This was the topic of the next paper.

3.4 How do Weather Affect Heavy Vehicle Following Behavior?
Paper IIIa describes an empirical study which answered the following RQ:

RQ3: How do environmental factors such as weather, road surface cover and
lighting conditions affect heavy vehicle following behavior?

As adverse weather is assumed to increase the risk of driving, the angle of Paper

IIIa was to investigate how drivers react to adverse weather by changing their car-

following behavior. An index called Chosen Risk Index (CRI) was defined as:

CRI =
v · w
TG

(3.1)

Here, v is vehicle speed, w is vehicle weight, and TG is the time gap. The CRI
was calculated for each observation in the dataset, and all observations were

grouped in the categories presented in Table 3.5. The main goal of Paper IIIa was

to determine how each weather category affected the driver behavior, as well as

interacting effects between variables. As the data were categorised, a Generalized

Linear Model (GLM) was estimated, and the results were the following:
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• Both car and truck drivers perceive the highest risk when driving on snow

covered roads.

• For car drivers, a snow covered road in combination with moderate rain or

light snow are the factors which lowers the CRI the most.

• For trucks, snow cover and partially covered roads significantly lowers the

CRI

• Precipitation does not seem to affect the chosen risk level of truck drivers.

• Interaction effects were found only for car drivers. The interactions were

between road status and both precipitation type and lighting conditions.

While the main effects were negative, and thus decreased the CRI, almost

all interacting terms were positive, and thereby countering the combination

of several main effects.

Table 3.5: Range of variables used in Paper IIIa.

Variable Levels
Precipitation No preciptiation, Light Rain, Moderate Rain, Heavy

Rain, Light Snow, Moderate Snow, Heavy snow

Road surface status Dry, Wet, Snow covered, Partially snow covered

Daylight condition Daylight, Night, Twilight

These results show that weather has an impact on following behavior. Although

the CRI is designed to express chosen risk, it is composed of factors such as time

gap and speed, which expresses car-following behavior.

The combined results from Paper I, II and IIIa comprised a new understanding of

heavy vehicle following behavior. The next challenge was be to incorporate parts

of this knowledge in a car-following model.

3.5 A Vehicle-Following Model
So far, several properties about heavy vehicle behavior has been shown. A subset

of these have been selected for a case study to answer the final research question:

RQ4: How can we successfully incorporate a selection of new knowledge about
heavy vehicle behavior in traditional car-following models?

Paper IV describes a case study where the main goal was to improve

car-following models for heterogeneous traffic flow. This was done by modifying

Gipps’ car-following model (Gipps 1981) in order for it to better reproduce
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observed behavior in heterogeneous traffic, and to reduce the calibration effort.

Gipps’ car-following model was published in 1982, as a model with two regimes,

free flow and car-following behavior. In the car-following regime, it describes the

behavior of a follower vehicle given the changes in behavior of the leader vehicle.

The mathematical equation for Gipps’ model in the car-following regime is

expressed as the speed of vehicle n at time t + τ , where τ is the reaction time of

vehicle n, as:

vn(t+ τ) = bnτ + [b2nτ
2 − bn(2(xn−1(t)− sn−1−

xn(t))− vn(t)τ − v2n−1(t)/b̂)]
0.5

(3.2)

Here,

• bn is the most severe braking that the driver of vehicle n wishes to undertake

(bn < 0)

• xn−1(t) is the position of the front of vehicle n− 1 at time t

• sn is the effective size of vehicle n (vehicle length plus an imagined safety

distance)

• vehicle n− 1 is the preceding vehicle

• b̂ is the estimated deceleration of vehicle n− 1

In Paper IV, several choices were made to improve Equation 3.2 to better

incorporate vehicle behavior without increasing the calibration effort. It was

chosen to include a parameter γ, which was determined on the basis of the

vehicle weight by a double exponential function:

γn = c1e
c2GVWn + c3e

c4GVWn (3.3)

Here, c1, c2, c3 and c4 are coefficients which where calibrated, and GVWn is the

gross vehicle weight of vehicle n. The coefficients in Equation 3.3 was determined

by fitting a curve to the observations plotted in Figure 3.2. The parameter γ was

incorporated in Gipps’ model by multiplying it with the deceleration parameters

for vehicles n and n−1. It was assumed that the relationship between time gap and

deceleration properties were the same shape as the relationship found in Equation

3.3, because drivers with low deceleration presumably maintain higher time gaps.

The modified Gipps’ model was expressed in the following way:
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vn(t+ τ) = γnbnτ + [(γnbn)
2τ2 − γnbn(2(xn−1(t)− sn−1−

xn(t))− vn(t)τ − v2n−1(t)/(γn−1b̂))]
0.5

(3.4)

Here, γn is the GVW-coefficient of vehicle n and γn−1 is the estimated GVW-

coefficient of vehicle n − 1. The inclusion of γ has the advantage of having only

one set of parameters for all vehicles in the model, instead of calibrating a set of

all parameters in Equation 3.2 for each vehicle type.

A simulation environment was programmed in MATLAB, and the car-following

models presented in equations 3.2 and 3.4 were simulated on a straight road

section. The time gap distributions observed in the field was successfully

reproduced by both models. Indeed, the distributions measured with the modified

model was a slightly better fit than the original model.

From the study in Paper IV, two main conclusions can be made. First, the

calibration workload is significantly reduced, and the reduction is greater for each

additional vehicle type included in a simulation with Gipps’ original model.

Second, the modified model reproduced the time gap distributions measured in

the field slightly better than the original model.
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Chapter 4

Concluding Remarks

The main research goal:

To investigate how the car-following behavior of heavy vehicles differ
from that of cars, how external factors affect this behavior, and how
to incorporate this knowledge in traditional car-following models.

and the related research questions were answered through the five papers produced

during this PhD project. The behavior of heavy vehicles was examined, compared

to the behavior of cars, with variation in external conditions. Finally, some of this

knowledge was implemented in Gipps’ car-following model.

4.1 Contribution of the PhD Project
By answering the research questions, several contributions to the state of the art

were made. As described in Chapter 1, there is limited knowledge about heavy

vehicle behavior. The PhD project described new aspects of the following behavior

of heavy vehicles. As the previous studies focused on vehicle types at often only

one location, without any variation in weather, the results from the PhD project

contributed with new knowledge about how vehicle parameters influence behavior,

and how the car-following behavior is affected by external factors.

As for the modelling of heavy vehicle behavior, the PhD study investigated if it is

possible to change car-following models to better incorporate multiple vehicle

types, without increasing the calibration effort. The results from the

MULTITUDE project showed that practitioners rarely follow guidelines for

calibrating microsimulation models, and that some even skip the calibration

37
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entirely (Antoniou et al. 2014). With several vehicle types present, the workload

traditionally increases, which could lead to an even higher percentage of

practitioners not calibrating their models. The work done in this PhD study

showed that it is possible to decrease the number of parameters, and still be able

to model heterogeneous traffic. A simpler calibration task may help to convince

more practitioners to calibrate their models.

4.2 Topics for Future Research
The three first studies were empirical, and could therefore be replicated and

extended by collecting more data. Some variables were found to be particularly

interesting, and should be subjected to more research. The majority of the data

collected for this PhD study were from uncongested traffic flows. It may be that

the effect of congestion would lead to other results as demonstrated in Paper II,

and could therefore be topics for further research. With an extended data

collection, other external properties such as road curvature could have been

examined. If WIM-detectors were more common, the variables studied in Paper I

could have been examined for varying road and weather characteristics as well.

For all research questions about vehicle following behavior, floating car data

could have been used as a supplementary data set. This type of data could have

given information about the fluctuation of speed for individual drivers. As the

acceleration capability is related to vehicle weight, it is likely that smaller

fluctuations in speed will be observed for heavier vehicles. Floating car data have

traditionally been very expensive to collect in a large scale, as they require

vehicles to be instrumented with hardware for detecting, storing and

communicating data. With the development of vehicle technology, modern

vehicles are being equipped with more sensors, more computing power, and more

advanced solutions for communication. If these technologies could have been

used to collect data about driver behavior, then floating car data would become

more available for research.

Paper IV demonstrated that it is possible to reduce the calibration effort and still

achieve acceptable results. There are several key issues which are important to look

further into, e.g. the relationship between vehicle characteristics and behavior in

order to build better models. Further research should also be done to investigate

how the findings from Paper II and Paper IIIa could be incorporated in a behavioral

model.
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4.3 The Future of Car-Following Models
The MULTITUDE project revealed that only 45 percent of practitioners calibrate

their models according to known guidelines. This clearly states that models needs

to be improved, in a sense that they need to be easier to use, but still capture

important behavioral properties. Several efforts could be made, such as reducing

the number of parameters needed for calibration, or improving the guidelines for

calibrations. Targeted models could be made for specific conditions, such as

different area and road types, or even for changing weather situations.

The world has seen the first autonomous vehicles driving in regular traffic, and

it has been predicted that vehicles with human drivers will be extinct in a few

decades (Litman 2015). In this case, car-following models predicting human driver

behavior will be of no use. Until this happen, there are more than 1 billion vehicles

worldwide today (Sperling and Gordon 2009). In the transitional period, there will

be a mix of autonomous and conventional vehicles. Knowledge of driver behavior

is still important for practitioners modelling traffic flows, but equally as important

for designing algorithms for the autonomous cars. They need to know how other

drivers behave to predict how adjacent vehicles will behave.
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Vehicle Type Characteristics During

Car-Following Behavior

Odd Andre Hjelkrem

Abstract

In this study, the relationship between time gap and gross vehicle weight (GVW)

during car-following is investigated. Data for the study was collected using a weigh

in motion detector on a two-lane road in Norway. The effect of leader and fol-

lower vehicle type is examined, both on a continuous weight scale and for vehicle

categories. A log-linear regression model is used to infer a relationship between

time gap and the properties of the follower vehicle. The results show a significant

relationship between time gap and follower GVW. Heavy vehicle drivers tend to

maintain a larger gap in order to compensate for lesser braking ability. The weight

of the leader vehicle does not seem to affect the time gap chosen by the following

driver. These results may affect the design of car-following models.

Keywords: Car-Following, Heterogeneous flow, Traffic flow characteristics, Weigh

in Motion

1 Introduction
A frequently used type of traffic models are microscopic simulation models, which

model individual vehicles. They consist of several behavioral models for each type of

behavior, with car-following models for modelling the interaction between succeeding

vehicles. For car-followingmodels, the time gap is an important variable, as the follower

vehicle will relate to the rear of the leader vehicle. If the time gap is large enough, the

follower vehicle will stop considering the actions of the leader vehicle, and there will be

no interaction between them. This is defined as the threshold between the car-following

regime and the free flow regime. Reiter (1994) estimates that the threshold is at 2

seconds, The Highway Capacity Manual estimates it to be 3 seconds (Transportation

Research Board, 2000), Hoban (1983) and Rahman and Lownes (2012) recommend

a value of 4 seconds, Gattis et al. (1997) use a threshold value of 5 seconds, while

Al-Kaisy and Karjala (2010) and Vogel (2002) estimate a value of 6 seconds.

While in a state of car-following, a driver will adjust the time gap by controlling the

accelerator and brake pedals depending on the behavior of the preceding vehicle. For

a follower, the continuous process of choosing a gap is mainly a compromise between

two events. If the gap is too short, the risk of a rear-end collision increases. The other

event is the urge to drive with the same speed as or faster speed than the leader. If the

urge is not present, the time gap between the follower and leader will eventually reach

a point where the car following behavior is replaced by free flow behavior.
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Empirical based knowledge of time gap distributions is important in order to es-

tablish and verify vehicle behavior models. Several factors may influence a drivers

choice of time gap, for example speed, traffic flow, weather, road geometry, vehicle

type and driver preferences. A study by Brackstone et al. (2009) suggest that vehicle

type may influence the choice of headway during car-following, and found evidence for

drivers following closer behind trucks than cars. Sayer et al. (2003) have also studied

the effect of vehicle type on time gap. They found that passenger cars kept a larger

gap with cars as the leader vehicle as opposed to light trucks as leader vehicle type.

Ossen and Hoogendoorn (2011) studied the heterogeneous car-following behavior of

cars and trucks, and found indications that passenger cars have lower desired headways

when following a truck as opposed to following a car. The difference in time headway

distributions between vehicle types has been investigated by Ye and Zhang (2009) and

Weng et al. (2014), where vehicles were classified according to length and/or number

of axles. They found that trucks tend to keep longer headways than cars.

When performing analyses of transport systems with a significant share of heavy

vehicles, it is important to understand how heavy vehicles affect the traffic flow. Peeta

and Zhou (2005) argued that heavy vehicles can significantly affect the capacity and

safety due to their physical and dynamical appearance. Regarding the car-following

process, heavy vehicles may behave different than cars because of the larger GVW.

A heavy loaded truck will normally have lesser deceleration abilities than a car or an

empty truck. This is shown empirically by Di Cristoforo et al. (2004), who have done

acceleration and deceleration tests of heavy loaded vehicles and found that the stopping

distance increases with GVW. This means that the heavier the vehicle, the larger the

time headway should be in order to avoid collisions. Some research has been done

describing the relationship between GVW and driver behavior. Saifizul et al. (2011)

describe the relationship between vehicle speed and GVW, showing that heavy vehicles

tend to keep lower speeds. The relationship between time headway or time gap and

GVW has to our knowledge not been analysed by other authors.

The main purpose of the study reported in this paper was to determine how the

GVW of a vehicle affects the time gap. This was done by first examining the effect of

vehicle type in leader follower pairs, to compare with the results reported by Brackstone

et al. (2009), Sayer et al. (2003), Ossen and Hoogendoorn (2011), Ye and Zhang (2009)

and Weng et al. (2014) concerning the effect of leader and follower vehicle type. The

second part of the study aimed to determine the relationship between follower GVW

and time gap. The study was performed by analysing empirical data of time gaps and

gross vehicle weights.

2 Data
Time gap is collected by most detection equipment, but the vehicle weight is not a

common data collection variable, as themeasurement of weight requires more advanced

equipment. The detectors need to measure the deflection of the surface in order to

estimate the weight, which requires periodically calibration of the sensors.

For this study, data was collected from weigh in motion (WIM) detectors, which

use piezoelectric sensors and inductive loops to measure the weight of each axle. The
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equipment aggregates the axle readings into vehicle classification and weight. The

detector site is located on E6 in Norway, a part of the international E-road network in

Europe. There are no horizontal or vertical curves, and no interfering intersections in

the proximity of this site. The speed limit is 70 kph.

A total of 669 820 gaps were measured in the registration period, covering August

and September in 2012. The relationship between speed and traffic volume in each

lane for 15 minute intervals is shown in Figure 1. The traffic volume in the 15 minute

intervals varied between 0 and 1250 vehicles per hour per lane. It is apparent that there

were no detected traffic jams.

Fig. 1. Speed flow relationship of the detection period.

For the remainder of this study, the terms truck and car are used for vehicles above

or below 3500 kg. With C and T representing car and truck, four leader-follower

vehicle pairs C-C, T-C, C-T, and T-T can be defined. The leader vehicle type is the

first character. 15 percent of the time gaps were recorded with a truck as the follower

vehicle, with 59 percent of the trucks weighing less than 15 000 kg. The maximum

allowed GVW on Norwegian roads is 50 000 kg, but there were some observations of

even heavier vehicles. This can be explained either by vehicles ignoring weight limits,

or by data error. All observations of GVW exceeding 50 000 kg were excluded from

the data set.

In addition to detecting the time gap, GVW, length and axle loads of each vehicle,

information about the preceding vehicle was stored for each detection event. This

enables the possibility of investigating how the characteristics of the leader and follower

vehicle affect time gaps during car-following behavior. 67 percent of the gaps were

below 6 seconds, which is used as the threshold for car-following behavior in this study.

Time gaps over 6 seconds are not used in the analysis, as only car-following behavior is
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investigated. The threshold value of 6 seconds is based on the studies mentioned in the

introduction, which reported values for the threshold to be between 2 and 6 seconds.

By setting the value to 6 seconds, most of the occurrences of car-following behavior

are included in the data set, but the risk of including vehicles in a free flow regime is

present.

A summary of the data included in the study is shown in Figure 2, where the average

time gap is plotted by contours as a function of leader GVW and follower GVW. The

plot is produced by sorting leader and follower vehicle GVW into cells, forming a

grid, and then calculating the average time gap for each cell in the grid. As most of

the vehicles were cars, the number of observations decrease for increasing leader and

follower vehicle GVW. In order to get enough observations in the cells in the top right

corner of the grid, a cell width of 12 500 kg was necessary. The first cell row was

restricted upwards to a GVW of 3500 kg, so that the differences between cars and trucks

were not masked by unfortunate cell size. By arranging vehicle types in leader-follower

pairs, the four distinct vehicle pairs were marked in the figure.

Fig. 2. Mean time gap during car-following with leader and follower GVW. The limit
between car and truck at 3500 kg is drawn for both leader and follower vehicle. The

color scale is time gap (s).
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3 Data Analysis
The contour plot in Figure 2 form the basis for the analysis in this study, because it

demonstrates the car-following behavior of vehicles by both leader and follower GVW.

By examining the plot, several observations can be made.

First, we see that leader GVW seems to be less important for time gap. The contours

are close to horizontal, especially in the region with low follower GVW. This suggests

that in a car-following process, the follower does not care about the leader vehicle type

when deciding the gap. In the region with high leader GVW, the contours tend to

deviate from the horizontal pattern.

Second, we see that the average time gap increases for increasing follower GVW,

regardless of leader GVW. This shows that the follower vehicle GVW is an important

factor concerning the car-following behavior. The heavier the vehicle is, the larger the

average time gap will be. This implies that the drivers of trucks compensate for their

high weight by increasing the distance to the leader vehicle, regardless of the leader

vehicle type.

Third, we see that the contour lines are denser for low GVW than for high GVW.

There seems to be a boundary at about 20 000 kg, implying that the differences in

time gap for follower GVW over this boundary are small. This suggests a non-linear

relationship between time gap and follower GVW.

These observations are further analysed in the study. The analysis is divided into

two parts, where the first part investigates further the impact of vehicle type on time

gap, and the second part investigates the impact of follower GVW on time gap.

3.1 The impact of vehicle type on time gap
When observing the contours in Figure 2, it seems as the leader vehicle type is not

relevant. However, the contours are based on average values, and may therefore conceal

some of the properties of time gaps. The distributions of time gaps sorted by vehicle

type are therefore further examined in this section to see if the observations derived

from the contour plot are correct.

The total number of detected time gaps for each vehicle pair is shown in Table 1.

The frequency of observations for C-C is larger than the frequency of other vehicle

pairs, as expected. The table shows that approximately one quarter of all observed time

gaps include at least one truck. It also tells us that most of the observations in Figure

2 are close to the edges of the contour plot, with either the follower or leader vehicle

GVW below 3500 kg. Thus, the majority of the area in the contour plot is based on the

10486 observations of T-T.

Table 1. Number of observations and median of each vehicle pair.

C-C T-C C-T T-T

N 316694 51176 43840 10486

Median time gap (ms) 2.10 2.16 2.52 2.50

Mean time gap (ms) 2.40 2.42 2.74 2.68
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A histogram of the distribution of time gaps for each vehicle pair is shown in Figure

3. Because of the difference in number of observations between vehicle pairs, the

scale of the histograms of time gaps in each category was incomparable. They have

therefore been normalised to show the relative frequency instead of observed frequency

in order to compare the four distributions. The number of bins are calculated using

the Freedman−Diaconis rule (Freedman and Diaconis, 1981) for the T-T vehicle pairs
, resulting in 74 bins. The relative frequency is found by dividing the number of

observations in each bin by the bin width and the total number of observations in the

histogram. The lines in Figure 3 are drawn between the top of each bin in each histogram

for the sake of comparison.

Figure 3 clearly show the difference between car as follower vehicle and truck as

follower vehicle. The plotted lines for C-C and T-C are almost identical, the same

applies for C-T and T-T. As shown in Table 1, the difference in median time gap is about

0.4 seconds for car and truck as follower vehicle, while the difference in mean time gap

is somewhat smaller. This supports the assumption of trucks having larger time gaps

than cars.

Fig. 3. Histogram of time gaps during car-following for all vehicle pairs.

These results indicate a difference in driver behavior for cars and trucks. The next

step of the analysis is to further examine this relationship by analysing the car-following

behavior on a continuous scale of follower vehicle GVW.
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3.2 The relationship between follower GVW and time gap.
Plotting all the data points reveals no obvious correlation between GVW and time gap,

as one would expect. This is shown in Figure 4. It is in the nature of time gaps that

trucks may have small time gaps, and cars may have large time gaps. The correlation

coefficient for the relationship between time gap and GVW is 0.102, which indicates

a low correlation between the two variables. The p-value of the correlation analysis

is however less than 0.001, which supports a rejection of the null hypothesis that the

calculated correlation coefficient is from an uncorrelated set.

Fig. 4. Scatter plot of observed time gap and GVW.

In order to continue the analysis, the data was categorised to filter out the noise

in the data. The observations were sorted into categories of GVW to investigate the

relationship between median time gap and GVW. The question of the width of the

weight categories then arises. In order to avoid unfortunate category width, the width

is varied between 100 kg to 10 000 kg, while the relationship between median time gap

and GVW is tested for correlation for each category. The results are shown in Table 2.

It is clear that there exists a high correlation between median time gap and GVW. For

weight categories of 100 kg, the correlation coefficient is about 0.5, which increases

to about 0.9 for weight categories of 10 000 kg. The p-values for all the calculated

coefficients are well below 0.001 for weight categories of 2500 kg and smaller, which

means that there is a high probability for a correlation between median time gap and

GVW. The p-value increases slightly for the two highest weight categories, but are still
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significant at a 0.05 level.

Table 2. Correlation coefficient and p-value for correlation between time gap and

GVW, for different weight category widths.

Width (kg) Correlation coefficient p-value

100 0.519 < 0.001

500 0.741 < 0.001

1000 0.771 < 0.001

2500 0.825 < 0.001

5000 0.821 0.00105

10000 0.846 0.0336

This motivates a further analysis of the data by performing a regression analysis,

which will describe the relationship between time gap and GVW. Before a regression

model could be fitted, the data was visually analysed to see if there could be a linear

relationship. As seen in Figure 4, it is impossible to determine a relationship based on

a plot of each pair of data. Figure 2 suggests an approximately linear relationship for

follower GVW up to 20 000 kg, followed by a change in slope for higher follower GVW.

This may indicate a polynomial relationship.

A linear regression model describe the data with the following equation

y = α + βx, (1)

where α and β are constants to be determined. In the case of a non-linear relationship,
a polynomial relation between the variables may be appropriate:

y = αxβ . (2)

In order to perform a linear regression of a polynomial relationship, the data has

to be transformed from polynomial to linear, which can be done using the following

logarithmic transform:

y∗ = α∗ + βx∗, (3)

where y∗ = log y, α∗ = log α and x∗ = log x.
Because of the lack of a theoretical model to explain the relationship, both a linear

and polynomial model was fitted to the data. The polynomial model is fitted by

transforming the data with a logarithmic transform. The results from the regression

analysis are shown in Table 3. First, all single observations were included in the

regression model. For the linear model, the result was a R2 of 0.0102 and a p-value of

less than 0.0001, while the log-linear model was slightly better with a R2 of 0.0196 and

a p-value of less than 0.0001.

Then, a linear and log linear regression model was fitted to median values of time

gaps. The width of the weight categories varied from 100 kg to 10000 kg. Table 3

shows the value of the regression coefficients, R2 and p-value for each regression. The

linear regression models fit well to the data, supported by high values of R2 and low

p-values.
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Table 3. Values of gradient, y-intercept and R2 for the log-linear regression at each

GVW category width.

Linear Log-linear

Width (kg) α β R2 p-value α∗ β R2 p-value

All points 2.43 0.000018 0.0102 < 0.0001 -0.0038 0.10208 0.0196 < 0.0001

100 2.3853 0.0000 0.2724 < 0.0001 -0.0043 0.1008 0.3855 < 0.0001

500 2.3607 0.0000 0.5760 < 0.0001 -0.0254 0.1060 0.7536 < 0.0001

1000 2.3579 0.0000 0.6405 < 0.0001 -0.0232 0.1053 0.8160 < 0.0001

2500 2.3908 0.0000 0.7121 < 0.0001 0.0215 0.0952 0.8458 < 0.0001

5000 2.4027 0.0000 0.7107 0.0006 0.0445 0.0896 0.9069 < 0.0001

10000 2.3001 0.0000 0.7441 0.0270 -0.0014 0.0996 0.9494 0.0010

The log-linear regression models also have high values of R2 and low p-values.

The results show that with a GVW category width of 500 kg, the regression has a R2

of 0.7536. This means that even for a high resolution of 500 kg, the log-linear model
explains about 75 % of the variation in the model. Choosing the best model in Table 3

is a compromise between model detail and model fit. With a category width of 10 000

kg the fit is the best, but the resolution in weight categorization is low. To meet both

demands, a category width of 2500 kg is chosen to be the most promising. The data

points and regression line for Equation (2) with a category width of 2500 kg is shown

in Figure 5. We see that the resulting model fits well to the data. The residuals from

the regression analysis is shown in a quantile-quantile plot in Figure 5. They should be

on a straight line to exclude unfortunate effects in the regression analysis. There are no

evidence for abnormalities in the residuals, which is supported by a R2 of 0.97.

Fig. 5. a) Log-linear regression of time gap vs median GVW for a weight category of

2500 kg. b) Normal probability plot of residuals.

4 Discussion
The results from the analysis give insight to some of the characteristics of car following

behavior in heterogeneous traffic. The first observation was that the leader vehicle type

does not seem to affect the chosen time gap of the following vehicle. This means that in

uncongested traffic flow, it does not make a difference to the chosen time gap whether
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a large truck or a small car is the leader vehicle. This is in contrast to the findings

reported by Brackstone et al. (2009), Sayer et al. (2003) and Ossen and Hoogendoorn

(2011), who stated that the vehicle type of the preceding vehicle will indeed affect the

choice of time gap. Their studies suggested that drivers tend to have smaller gaps when

following trucks as opposed to following cars. Brackstone et al. (2009) suggested that

drivers will increase their gap when following a car because downstream vehicles are

visible to the driver. The driver may then adjust the time gap based on information

about two or more downstream vehicles, and thus being able to predict the actions of

the leader vehicle, which in turn results in a larger gap. When following a truck, it will

shadow most of the downstream traffic. Then the follower only needs to take the truck

into consideration when determining the gap, which results in a smaller time gap.

There are two main differences between this study and the studies by Brackstone

et al. (2009), Sayer et al. (2003) andOssen andHoogendoorn (2011). The first difference

is the properties of the traffic flow in the collected data. The studies by Brackstone et al.

(2009) and Ossen and Hoogendoorn (2011) collected data in congested traffic, while

Sayer et al. (2003) did not report the traffic flow during data collection. The data in our

study did not cover congested flow. This may explain the differences in the results, if

the driver behavior is different in congested and uncongested flow.

The second difference is the type of data collected in the reported studies. Brack-

stone et al. (2009), Sayer et al. (2003) and Ossen and Hoogendoorn (2011) used floating

car data in their analyses, while point data has been used in this study. Floating car data

allows the observer to analyse the behavior of vehicles over a certain period of time,

but the cost of data collection often only allows a limited sample size of dependent

data. Point data captures the behavior of the driver at a certain point in time. This type

of data is cheap, and the sample sizes of the data are usually large. The observations

are therefore able to describe the behavior for a large span in both leader and follower

GVW. Point data are independent, and should therefore be more valid than a limited

amount of floating car data.

While the leader vehicle type was found to be of little importance for the chosen

gap in this study, the follower vehicle type was clearly important. The average driver

will adjust the gap based on the weight of his vehicle, with an increasing gap for

increasing GVW. The gap chosen by the driver does in some way reflect the safety

distance estimated by the driver, based on the perceived ability to prevent a rear-crash

with the leader vehicle. Although GVW is an important factor of the braking distance of

a vehicle, the brakes are equally important. The braking system on trucks should be able

to function when the truck is fully loaded, and trucks with no cargo should therefore

have better braking performance than fully loaded trucks. Thus, we should expect

trucks to have higher time gaps at higher load factors. As this study only incorporates

GVW, and not the load factor, it is difficult to observe this effect in the data.

The coefficients in the log linear regression model are not easily described theoreti-

cally. The unit of α is s
kg , and might be interpreted as an internal resistance in the driver

behavior, leading to higher gaps for higher GVW. The value of α is about 1, indicating
that the dominating effect is from the exponent β, which is dimensionless.

The data from the WIM detectors are not 100 % accurate. Even though the sensors

were calibrated before the data collection, there is an error margin in the data, both

in gap and weight measurements. Random errors in the data should not affect the
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results because of the large number of observations. Systematic errors could affect the

absolute values of time gaps and GVW, but should not affect the main results because

the time gaps will still increase for increasing vehicle weight. There may also be errors

in the classification of vehicles, which may lead to very small headways when a truck is

classified as two cars with almost zero time gap. These outliers in the data are believed

to have little or no importance for this study, because the median time gap is used in the

analysis. The median is not as affected by extreme values as the average. Another result

of classification error is extreme weights when two trucks are classified as one huge

truck. These values are not included in the study because of the maximum limit of 50

000 kg for vehicle weights. Classification errors might also occur for GVWs lower than

50 000 kg, and add noise to the data analysis. We assume however that the occurrences

of these events are not frequent enough to affect the results. This assumption is based

on an inspection of the registered axle loadings in the data.

The results are derived fromdata describing the car following behavior ofNorwegian

drivers. A similar analysis of data from drivers of other nationalities, or even from

other parts of Norway, may yield different results. A study by Sato et al. (2009)

found that English drivers were maintaining shorter headways than Japanese drivers.

Although the values of time gapmight differ between countries, it is not obvious that the

relationship between time gap and GVW will. This study suggests that driver behavior

is dependent on vehicle properties, and vehicles in Norway are probably not performing

very differently from vehicles in other countries.

5 Concluding remarks
Based on an analysis of data collected from weigh in motion detectors in uncongested

traffic flow, the following conclusions can be drawn from the work in this paper:

1) The leader vehicle type does not seem to affect the time gap chosen by the follower

vehicle.

2) There is a positive correlation between the GVW of a follower vehicle and the

time gap.

3) The relationship between time gap and follower GVW can be described by a

log linear regression model. This means that the median time gap increases with

GVWup to a GVWof about 20 000 kg, and then flattens out for further increasing

GVW. The difference in median time gap for cars and trucks is about 0.5 seconds

when the truck has a GVW of 20 000 kg or more.

These results are important for the modelling of vehicle behavior. Car-following

models should be able to reproduce the results from this study when modelling more

than one vehicle type. The relationships found in the study could be used to further

develop existing car-following models.

As these results are only valid for uncongested traffic flow, there is a need to

investigate further the relationship between time gap and GVW in congested traffic

flow. The results from other studies also call for more research in this field.

61



Other variables may help to further explain the relationships described in this paper.

As seen for trucks, there are only small differences in the time gap distributions for

vehicles in the range of 20 000 kg to 50 000 kg. In order to examine this effect, detailed

data about each vehicle would be necessary, not only the GVW, time headway and traffic

volume. With the rapid development of new technology, it is possible to combine a

WIM-detector with equipment for automatic number plate recognition (ANPR), which

reads the license plate of each vehicle. The registration number of the vehicle can be

used to retrieve information about the tare weight and engine power of the vehicle, and

then combining the data for new analyses.

References
Al-Kaisy, A. and Karjala, S. (2010). “Car-following interaction and the definition

of free-moving vehicles on two-lane rural highways.” Journal of Transportation
Engineering, 136(10), 925–931.

Brackstone, M., Waterson, B., and McDonald, M. (2009). “Determinants of following

headway in congested traffic.” Transportation Research Part F: Traffic Psychology
and Behaviour, 12(2), 131–142.

Di Cristoforo, R., Hood, C., and Sweatman, P. F. (2004). “Acceleration and deceleration

testing of combination vehicles.” Report No. RUS-04-1075-01-05, Roaduser Systems
PTY LTD.

Freedman, D. and Diaconis, P. (1981). “On the histogram as a density estimator:L2

theory.” Probability Theory and Related Fields, 57(4), 453–476.

Gattis, J., Alguire, M. S., Townsend, K., and Rao, S. (1997). “Rural two-lane passing

headways and platooning.” Transportation Research Record, 1579(1), 27–34.

Hoban, C. J. (1983). “Towards a review of the concept of level of service for two-lane

roads.” Australian Road Research, 13, 216–218.

Ossen, S. and Hoogendoorn, S. P. (2011). “Heterogeneity in car-following behavior:

Theory and empirics.” Transportation Research Part C: Emerging Technologies,
19(2), 182 – 195.

Peeta, S., P. Z. and Zhou, W. (2005). “Behaviour-based analysis of freeway car-

truck interactions and related mitigation strategies.” Transportation Research Part B:
Methodological, 39 (5), 417–451.

Rahman, A. and Lownes, N. E. (2012). “Analysis of rainfall impacts on platooned

vehicle spacing and speed.” Transportation Research Part F: Traffic Psychology and
Behaviour, 15(4), 395 – 403.

Reiter, U. (1994). “Empirical studies as basis for traffic flow models.” Proceedings of
the second International Symposium on Highway Capacity, Volume 2.

62 Paper I



Saifizul, A. A., Yamanaka, H., and Karim, M. R. (2011). “Empirical analysis of gross

vehicle weight and free flow speed and consideration on its relation with differential

speed limit.” Accident Analysis and Prevention, 43(3), 1068 – 1073.

Sato, T., Akamatsu, M., Zheng, P., and McDonald, M. (2009). “Comparison of car

following behavior between UK and Japan.” ICCAS-SICE, 2009, 4155–4160.

Sayer, J. R., Mefford, M. L., and Huang, R. W. (2003). “The effects of lead-vehicle size

on driver following behavior: Is ignorance truly bliss?.” Proceedings of the Second
International Driving Symposium on Human Factors in Driver Assessment, Training
and Vehicle Design.

Transportation Research Board (2000). “Highway capacity manual.”Washington, DC.

Vogel, K. (2002). “What characterizes a ’free vehicle’ in an urban area?.”Transportation
Research Part F: Traffic Psychology and Behaviour, 5(1), 15 – 29.

Weng, J., Meng, Q., and Fang Fwa, T. (2014). “Vehicle headway distribution in work

zones.” Transportmetrica A: Transport Science, 10(4), 285–303.

Ye, F. and Zhang, Y. (2009). “Vehicle type-specific headway analysis using freeway

traffic data.” Transportation Research Record, 2124, 222–230.

63



64 Paper I



Chapter 6

Paper II

Presented at the Transportation Research Board 94th Annual Meeting, 2015.

65



66 Paper II



DETERMINING INFLUENTIAL FACTORS ON THE THRESHOLD OF CAR-FOLLOWING
BEHAVIOUR

Odd A. Hjelkrem (corresponding author)
Department of Civil and Transport Engineering

Norwegian University of Science and Technology

Telephone: (0047) 98482278; E-mail: odd.hjelkrem@ntnu.no

Word count: 4,937 words text + 6 tables/figures x 250 words (each) = 6,437 words

15.11.14

67



ABSTRACT
In this study, a method for using loop detector data for empirical analysis of car-following behavior

is proposed. It is demonstrated that it is possible to define the threshold of car-following behav-

ior. The analysis is done for both passenger cars and heavy vehicles. We find the threshold to be

3.9 seconds for cars and 5.8 seconds for trucks in general. A factorial ANOVA was carried out

to determine how this threshold varies with area type, number of lanes, and traffic state for both

passenger cars and heavy vehicles, and to determine any interactions between the factors. The

method can also be used to determine the desired gap in a car-following regime, which is found

to be 1.1 seconds for passenger cars. This value is mostly influenced by the number of lanes and

the speed limit. For heavy vehicles, the desired gap is found to be 2.0 seconds in rural areas and

2.8 seconds where the speed limit is 60 kph. These results are important for microscopic traffic

simulation models as well as capacity analyzes.

Keywords: Driver behavior, Car-following, Desired time gap
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INTRODUCTION
Car-following behavior is a term for the longitudinal interactions between vehicles in a traffic flow.

When a vehicle is following another vehicle, the driver will adjust the speed so that a satisfactory

time gap is achieved. In traffic simulation models, this behavior is important to model correctly,

as it is an important part of driving behavior. A specific type of models, that is car-following

models, has been developed for this purpose. There are several types of car-following models, see

for example Toledo (1) or Wilson and Ward (2) for a review.

Car-following is a process where the speed and time gap of a follower vehicle changes over

time. This means that a driver is not likely to have a constant gap, but rather fluctuate around a

desired gap, as demonstrated by e.g. Brackstone and McDonald (3) who analyzed headways from

floating car data recorded during car-following. At the desired gap, the speed difference between

the follower and leader vehicle will be zero. This is defined as steady-state car-following behavior.

Dey and Chandra (4) investigated the desired time gap during steady-state car-following. They

simulated traffic on a two lane road, and found that the desired time gap increases for decreasing

speed. They also found that heavy vehicles have a larger desired time gap due to their weight and

lower braking efficiency.

As pointed out by Toledo (1), there is a need for determining the threshold between free

flow and car-following behavior. There have been several attempts for determining this limit, and

the results are varying. A study by Reiter (5) found a threshold value of 2 s. Rahman and Lownes

(6) reviewed the existing literature and found several threshold values. Based on these values, they

decided to use a value of 4 seconds for studying the impact of rain on speed for platooned vehicles.

The values they found were 3 seconds (TRB (7)), 4 seconds (Hoban (8)), 5 seconds (Gattis et al.

(9)), and 6 seconds (Al-Kaisy and Karjala (10), and Vogel (11)).
The car-following behavior can be affected by both external factors as well as vehicle char-

acteristics. Ayres et al. (12) studied inductive loop data from a four-lane highway in varying traffic

flow. They argued that several factors affect the choice of speed and time headway, such as the

speed limit, grade, lane size, weather, and driver preferences.

This paper proposes a method for analyzing loop detector data to identify the threshold

of car-following behavior, and the desired time gap. The method is applied on data from several

different locations, making it possible to investigate potentially influential variables. The purpose

of the research is to better understand the car-following process, so that car-following models can

be improved.

METHOD
It is assumed that there exists one regime with car-following behavior and one regime with free

flow behavior, and that they are different. In the car-following regime, the speed difference be-

tween succeeding vehicles is highly correlated to the time gap. For low time gaps, the risk of

rear crash is high because of the short distance between the vehicles. The follower will then be at

risk of crashing into the leader if the leader performs an emergency brake, and will decrease his

speed, resulting in a negative speed difference when defining speed difference as follower speed

minus leader speed. It is also expected that there exists a point where the speed difference is zero,

indicating a state of desired time gap. For higher time gaps than the desired time gap, the speed

difference will have positive values, because of the urge of the follower to reach the desired time

gap. At some point, the relationship between speed difference and time gap will be uncorrelated,

and this would mark the threshold for car-following behavior. In the free-flow regime there is no
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correlation between the speed difference and time gap, simply because the follower is behaving

independently of the preceding vehicle. This assumption about the car-following threshold is sup-

ported by the work of Vogel (11), who used the correlation between vehicle speeds and headway

to estimate the threshold between the two regimes.

It is also assumed that the car-following behavior of passenger cars deviates from heavy

vehicle car-following behavior. The rationale behind this assumption is that heavy vehicles have

different behavior than passenger cars because of the difference in size, acceleration and deceler-

ation capabilities. Some studies show that heavy vehicles keep a larger time gap than passenger

cars, e.g. Ye and Zhang (13), and Weng et al. (14), who studied time headway distributions for

different vehicle types. When heavy vehicles are included in microscopic simulation models, they

are often treated as a separate vehicle type. This motivates a distinction between passenger cars

and heavy vehicles in this study.

Based on these assumptions about car-following behavior, a method is proposed to further

investigate the threshold of car-following behavior. The data for the method is collected by induc-

tive loop detectors. The advantages of availability and low cost of collecting point data yields an

exciting new way of describing car-following behavior in several different situations. As the time

gap and speed difference is the direct outcome of car-following behavior, one is able to describe the

result of the process. This is not to be considered as an alternative to floating car data, but however

a complementary data source. With floating car data, one can better study the individual variation

in car-following behavior. This type of data is however more expensive to collect, especially when

the aim is to study how the car-following behavior is affected by independent variables.

The data set was first divided by vehicle type, because of the assumed difference between

passenger cars and heavy vehicles. All the vehicles observed in each data set were then grouped

into bins of time gap, with a resolution of 0.1 seconds. The average speed difference between the

observed vehicle and preceding vehicle was calculated for each time gap bin. The data was further

coded by geometric, vehicle and traffic flow properties to examine the car-following behavior in

different situations, and inspected to see if the car-following threshold and desired gap was visually

recognizable. The factors were then analyzed by a factorial ANOVA to reveal any significant main

effects or interactions of the factors ’area type’, ’number of lanes’ and ’traffic state’.

DATA
Data for the study was collected from 14 loop detectors, with properties as shown in Table 1. For

each lane at each detector site, speed, time gap, vehicle length, and time were collected. The

information about the preceding vehicle was also stored, so that it was possible to use vehicle pair

data in the analyzis.

The detectors used in the study were strategically chosen based on unique properties of

each detector. Half of the detectors were placed in rural areas, while the rest were placed in urban

areas. The difference between urban and rural is in this case defined by the type of traffic travelling

in the area of the detector. Traffic in urban areas are typically dominated by short distance work

trips as travel mode, with congested rush periods in the morning and afternoon. Rural areas may

also have rush periods, but the dominant type of travel is long distance commute, leisure and freight

trips.

The number of lanes was varying, with half of the detectors having two lanes. The other

half had either four or six lanes. This enabled the possibility of studying the impact of number of

lanes on car-following behavior.
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The total number of observations was 20 827 506, with about 75 % of the observations

stemming from urban areas. The heavy vehicle percentage was in general higher in rural areas.

As the detectors did not measure weight, heavy vehicles (HV) were defined by a vehicle length of

more than 7.5 meters.

A post processing of the data was done to calculate the traffic flow at each 15 minute

interval, and this value was assigned to each data line in each interval. Hence, it is possible to

study the effect of traffic state on car-following behavior. The speed flow relationship at each

detector is shown in Figure 1. We see that there is great variation in traffic flow characteristics

between the detectors. Most urban detectors have observations for congested traffic, as one would

expect, but a large share of the data is collected in uncongested traffic.

The detectors were placed on straight and level road segments, which is a common feature

of almost all loop detectors owned by the Norwegian Public Roads Administration. The exis-

tence of grades, curves or intersections would presumably have affected the vehicle behavior at the

detector, which in turn could have led to different results.

TABLE 1 Detector properties. The detectors were named a to n for the sake of simplicity.
Detector Area type Speed limit Number of lanes N Heavy vehicle percentage

a Rural 80 2 175,729 27

b Rural 70 2 301,435 12

c Rural 80 2 980,486 3

d Rural 80 2 1,006,298 9

e Rural 80 2 179,440 7

f Rural 100 4 1,039,161 7

g Rural 100 4 392,523 11

h Urban 60 4 2,878,893 6

i Urban 80 6 2,341,110 8

j Urban 60 2 1,086,916 7

k Urban 90 4 3,891,076 4

l Urban 80 2 1,267,603 7

m Urban 90 4 2,509,480 6

n Urban 80 4 2,777,356 6

ANALYSIS
Figure 2 (a) and (b) are aggregated plots of all observations, and show the observed car-following

behavior. Figure 2 (a) is based on time gaps where passenger cars are followers, while Figure 2

(b) show the following behavior of heavy vehicles. For each interval of time gap, with an interval

length of 0.1 seconds, the average speed difference between follower and leader is calculated. A

positive speed difference means that the follower speed is larger than the leader speed and vice

versa for a negative speed difference. By examining the figure, several observations can be made

for Figure 2 (a):

• There is a local maximum for the speed difference where the time gap is 3.9 seconds.

• The speed difference is zero where the time gap is 1.1 seconds.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

FIGURE 1 Speed-flow relationships observed by the detectors a) to n).
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• The slope of the curve is steeper in the green area than in the white area.

(a) (b)

FIGURE 2 Speed difference between follower and leader as a function of time gap for a)
passenger cars and b) heavy vehicles. The green area indicates the car-following regime,
while the white area indicates the free-flowing regime.

At the local maxima the speed difference is at its highest value, which occurs at a time

gap of 3.9 seconds. This value can be interpreted as a balance point between the two regimes.

Between time gaps of 1.1 and 3.9 seconds, the positive speed difference is presumably describing

an urge to reach the desired time gap at the x-intercept. For time gaps higher than 3.9 seconds, the

decreasing speed difference for increasing time gap presumably represent an average free-flowing

vehicle. As a free-flowing is closing in on the preceding vehicle downstream from a distance, the

speed difference grows in the favor of the free-flowing vehicle, until the behavior is interrupted by

the appearance of a leader vehicle. Based on this interpretation of the plot, we defined the time gap

of 3.9 seconds to be the threshold for car-following behavior.

The intercept with the x-axis indicate a steady state of car-following. We see that the

intercept is well defined at 1.1 seconds. For lower time gaps, the follower speed is lower than the

leader. This means that the speed difference grows rapidly in favor of the leader vehicle as the

time gap decreases to zero, suggesting that the average follower will decelerate more than usual

to increase the time gap. At higher time gaps, the follower speed is higher than the leader. This

indicates that the first intercept is an equilibrium point, and we define it as the desired time gap.

In Figure 2 (b), the following is observed:

• The shape of the curve is quite different from the equivalent plot for passenger cars.

• There is a local minimum for the speed difference where the time gap is 5.8 seconds.

• In the green area, there is no intercept with the axis.

• The slope of the curve is steeper in the green area than in the white area.

While the speed difference plot for passenger cars had a maximum, the plot for heavy

vehicles has a minimum. At these extreme points the behavior changes, this is interpreted as the

threshold for car-following behavior. It is apparent that in average, the heavy vehicles have a lower
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speed than their leader, and this speed difference increases for increasing time gaps, until the free-

flow regime is reached. Because of this, it is not possible to determine a desired gap for heavy

vehicles from this plot. This does not necessarily mean that heavy vehicles do not have a desired

gap, but rather that it is not measurable by using this method.

The green areas in Figure 2 (a) and (b) mark car-following regimes, while the white areas

are free-flow regimes. The threshold between the regimes is set to the distinct point where the

slope changes. It is also possible to measure the desired gap for passenger cars, but not for heavy

vehicles. The threshold value and the desired time gap will probably depend on several factors,

e.g. area type and speed limit. Therefore, the same plots are created while changing several of the

available variables. These plots are presented in the following section.

Impact of factors
Figure 3 show the speed difference as a function of time gap where the following factors are varied

for both passenger cars and heavy vehicles: Area type, number of lanes, speed limit and traffic

state. Some plots have more scatter than others, implying a lower number of observations. A large

share of the observations was made in uncongested flow in urban areas where the speed limit is 80

kph, and it is apparent that the plots made from these observations have a low degree of scatter.

The plots made from observations from congested flow, a speed limit of 100 kph or rural areas are

however characterized by a larger degree of scatter.

Figure 3 (a) and (b) show the difference between rural and urban traffic for passenger cars

and heavy vehicles. The desired time gap for cars is slightly lower in urban areas than in rural

areas, while the car-following threshold is 4.1 seconds in urban areas and 5.2 seconds in rural

areas. For heavy vehicles it is not possible to determine the desired gap, because all data points are

negative. The threshold value is 5.0 seconds in both urban and rural areas.

The effect of number of lanes is shown in Figure 3 (c) and (d). The threshold value for cars

is 5.1 seconds for cars on two-lane roads, while it is 3.9 seconds if the number of lanes is four or

six. The desired time gap is 1.6 seconds on two-lane roads and 1.0 seconds for roads with four or

six lanes. For heavy vehicles, the threshold value is 5.0 seconds on two-lane roads and 5.9 seconds

for roads with four or six lanes. The most interesting thing about this plot is that it is possible to

identify a desired gap for heavy vehicles on two-lane roads, which is 2.0 seconds.

In Figure 3 (e) and (f), there is a trend of increasing speed differences for increasing speed

limits. The threshold for passenger cars is about 4 seconds for speed limits 90 kph or lower, and

5.2 seconds at a speed limit of 100 kph. The desired gap is 1.4 seconds in 60 kph, 0.8 in 80 kph, 1.1

in 90 kph and 1.2 in 100 kph. For heavy vehicles the threshold value is between 4 and 5 seconds at

all speed limits, while the desired time gap is only possible to measure for a speed limit of 60 kph,

where it is 2.8 seconds.

Figure 3 (g) and (h) show the effect of traffic state. It is clear that the threshold value is

lower in congested traffic than uncongested traffic, for both passenger cars and heavy vehicles. The

desired time gap for cars is not affected by the traffic state, while it is not measurable for heavy

vehicles.

A summary of the findings from Figure 3 is that the car-following threshold for passenger

cars is lower in urban areas than in rural areas, lower on four- or six-lane roads than on two-lane

roads, somewhat higher at a speed limit of 100 kph than other speed limits, and quite lower in

congested traffic than in uncongested traffic. For heavy vehicles, the threshold is apparently not

affected by area type or speed limit, but lower on two-lane roads than on four- or six-lane roads,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 3 Speed difference as a function of time gap for all factors. Figure (a), (c), (e) and
(g) show the speed differences with passenger car as the follower, while Figure (b), (d), (f),
and (g) show the speed differences with heavy vehicle as the follower.
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and lower in congested traffic than uncongested traffic. These results show how the factors affect

the threshold, but there might be some underlying interactions which cause the changing value of

the thresholds shown in Figure 3. This is investigated in the next section.

Interactions between factors
To determine if any such interactions exist, a factorial ANOVA has been carried out on the available

data set. A full 23 factorial design was chosen, one for passenger cars and one for heavy vehicles,

resulting in a total of 16 experiments. The response of each experiment was the car-following

threshold. An equally interesting response could have been the desired gap, but this could not be

measured for heavy vehicles at all factor levels.

The factors included in the experiment were chosen to be area type, number of lanes, and

traffic state. The levels of the factors were ’rural’ and ’urban’ for area type, ’two’ and ’more than

two’ for number of lanes, and ’uncongested’ and ’congested’ for traffic state. The reason for using

these factors was to identify eventual situations where the car-following threshold is different,

depending on the characteristics of the road in question.

The speed limit factor is not included in the interaction analysis. The main reason for this

is that none of the detectors were placed on four- or six- lane roads in rural areas with a low speed

limit. It is also clear from Figure 3 (e) and (f) that the speed limit has relatively small impact on

the value of the car-following threshold.

The experiment was carried out by calculating the speed difference as a function of time

gap for each experiment, and then determining the threshold value for each graph, as demonstrated

in Figure 2. The factor levels in each experiment, and measured threshold values for passenger

cars and heavy vehicles are shown in Table 2.

TABLE 2 Threshold values for PC and HV in all experiments prepared for the ANOVA.
Experiment Threshold PC Threshold HV

Rural - Two lanes - Uncongested 4.8 3.3

Rural - Two lanes - Congested 3.2 4.3

Rural - More than two lanes - Uncongested 3.5 2.9

Urban - Two lanes - Uncongested 4.3 4.9

Rural - More than two lanes - Congested 3.0 4.2

Urban - Two lanes - Congested 4.1 4.3

Urban - More than two lanes - Uncongested 2.9 4.8

Urban - More than two lanes - Congested 4.0 4.7

The significant main effects and interactions from the ANOVA is shown in Table 3, for both

passenger cars and heavy vehicles. For passenger cars, the significant main effect is the number

of lanes. The results show that the threshold value will be higher on two-lane roads than on roads

with more than two lanes. The significant interactions are between area type and traffic state, and

number of lanes and traffic state. This means that in congested traffic, the threshold will be lower

in urban areas or on roads with more than two lanes, than if the traffic was in an uncongested

state. In rural areas or on two-lane roads, the threshold will be lower in uncongested traffic than in

congested traffic.

From the experiments with heavy vehicles, the area type was found to be a significant

main effect. In urban areas, the threshold value is higher than in rural areas. The only significant
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interaction for heavy vehicles was found to be between area type and traffic state. This means that

in urban areas the threshold value is higher in uncongested traffic than in congested traffic, but in

rural areas the threshold value is higher in congested traffic than in uncongested traffic.

TABLE 3 Significant results from the full-factorial ANOVA. The α is set to 0.05.
Term Effect Coef SE Coef T-value P-value

Passenger cars:

Constant 3.725 0.091 40.93 0.000

Lanes -0.75 -0.375 0.091 -4.12 0.015

Area*Traffic State 0.75 0.375 0.091 4.12 0.015

Lanes*Traffic State 0.6 0.3 0.091 3.3 0.03

Heavy vehicles:

Term Effect Coef SE Coef T-value P-value

Constant 4.175 0.0729 57.28 0.000

Area 1.0 0.5 0.0729 6.86 0.002

Area*Traffic State -0.75 -0.375 0.0729 -5.14 0.007

DISCUSSION
The values for the car-following threshold found in this study vary between 2.9 seconds and 5.8

seconds, depending on vehicle type and road characteristics. All these values are in accordance

to values found in previous studies, which were in the range of 2 seconds to 6 seconds. However,

the analysis of factors showed that there were some significant effects on the threshold value. For

passenger cars, the number of lanes has a significant impact on the threshold. This means that

vehicles will start considering the actions of the approaching downstream vehicle sooner on two-

lane roads. The reason for this behavior could be that vehicles driving on roads with more than two

lanes have the option of changing lanes. Hence, they do not need to adjust their speed according

to the behavior of the preceding vehicle, if there is enough space in the next lane to perform a lane

change. The ANOVA also showed that the interactions between traffic state and number of lanes,

as well as the interaction between traffic state and area type are significant. A surprising result of

this is that in rural areas and two-lane roads, the threshold value is higher in congested traffic than

in uncongested traffic. One could think that in congested traffic, the high traffic density results in a

low threshold, but this is clearly not the case in rural areas or on two-lane roads.

For heavy vehicles, the area type and the interaction between area type and traffic state were

found to have a significant impact on the threshold value. The interaction between area type and

traffic state was also found for passenger cars, but with positive effect on the threshold. This means

that the behavior of heavy vehicles is opposite that of passenger cars in congested or uncongested

traffic in rural or urban areas.

The desired time gap was easily determined for passenger cars as the point where the speed

difference between succeeding vehicles are zero. The reason for identifying this as the desired

gap was based on the assumption that the desired gap is an equilibrium point, in which the speed

difference is zero. This reasoning would have been more wavering if the number of observations

were lower, and if the shape of the curve was not as well defined as it is. The observed behavior

also agree with the assumed behavior of a vehicle in a car-following regime, which is described

empirically from floating car data by Brackstone and McDonald (3).
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A particularly interesting result from the analysis is that it is not possible to identify a

desired time gap for heavy vehicles, except for data from two-lane roads or where the speed limit

is 60. The probable reason for this is that heavy vehicles are on average not able to maintain the

desired gap at high speeds, to some extent because of speed limiters installed in heavy vehicles in

Norway which limits the top speed to 90 kph.

Weather conditions could also influence the data, but there has been no attempt to collect

data about weather in the registration period. Because the data was registered in the summer, there

were no snowy or icy road conditions. There were probably periods with rainfall when the data

set was collected. This was not controlled for in the study, which implies that the results could

be slightly different if the data was collected in periods with no precipitation. One should for

example expect that the measured desired time gap would be lower in dry spell, because the time

gap increases slightly during wet road conditions Rahman and Lownes (6).
At several of the detectors the road geometry allows for overtaking. This is especially the

case for two-lane roads where the speed limit is 80 kph or more. On roads with more than two lanes,

follower vehicles may have a larger speed than the leader vehicle because of an imminent lane

change for overtaking the leader vehicle. However, the follower speed at overtaking is probably

higher on two-lane roads than on roads with four lanes because of the risk of appearing meeting

vehicles on two-lane roads. It is not possible to identify observations where the follower vehicle

is about to overtake the leader vehicle in the data set, but we assume that these events are not

frequent. If there were a large share of such events, the speed difference at very low time gaps

would have been high, so that an adjusted data set without overtaking events would have a lower

speed difference at low time gaps than reported in this study.

The results from the analysis are derived from the behavior of vehicles in Norway, which

may be different from the behavior in other countries. As reported by Brackstone and McDonald

(3), the average time headway is lower for French drivers than for German and English drivers.

One should therefore expect that the values for the threshold of car-following behavior as well as

the desired time gap vary between countries. However, this does not necessarily mean that the

behavioral pattern is different, so that the same method can be used to determine these values in

other countries.

CONCLUDING REMARKS
The car-following behavior of vehicle pairs was investigated in this study. By examining about 20

million observations, we conclude with the following:

• The average values of speed differences show that the car-following behavior of pas-

senger cars and heavy vehicles are different. The threshold value for the car-following

regime is higher for heavy vehicles, and the few values for desired gap which was found

in the study were higher than the ones found for passenger cars.

• By studying the speed difference between follower and leader vehicle, we can accurately

describe the threshold between the car-following regime and the free-flow regime. The

average value is 3.9 seconds for passenger cars, which is in the scope of results reported

in other studies.

• The results of the ANOVA showed that the number of lanes as well as the interactions

between area type and traffic state, and number of lanes and traffic state had significant
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impact of the car-following threshold of passenger cars. For heavy vehicles, the signifi-

cant effects were found to be area type as well as the interaction between area type and

traffic state.

• The desired gap of a vehicle is found to be 1.1 seconds for passenger cars, but this value

varies depending on the number of lanes and the speed limit. For heavy vehicles, it is

only possible to measure the desired time gap on two-lane roads and in speed limits of

60 kph, where it is found to be respectively 2.0 and 2.8 seconds.

The results are important for car-following models, as they should be able to replicate the

results from this study. A better understanding of when drivers start to take the preceding vehicle

into consideration will help to define the limits for when car-following models have to be initiated

for free flowing vehicles.

We propose to perform similar studies in other areas as well, for example in other countries

or at highways with higher traffic flow than observed in this study. There could also be other ex-

ternal factors which affect the threshold and desired time gap, for example weather, road surface

conditions, time of day, and grade. It is also apparent that the car-following behavior of large vehi-

cles should be investigated further, because of the observed differences in car-following behavior

between passenger cars and heavy vehicles. The differences between passenger cars and heavy

vehicles could also suggest that other vehicle properties affect the threshold, for example vehicle

speed.
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combination with  moderate  rain or  light  snow  are  the factors  which  lowers the  CRI  the  most. For trucks,

snow cover and partially  covered  roads significantly  lowers  the CRI,  while precipitation  did  not  seem  to

impose any higher risk. Interaction  effects  were found for car drivers  only.

©  2016  Elsevier Ltd. All rights  reserved.

1. Introduction

The challenges of driving vary according to varying driving con-

ditions. Among these are changes in weather and road conditions.

Rain, snow and ice alter the friction between the tires and the road

surface, while precipitation may  impair the driver’s visual ability to

detect potential dangers, as do driving in twilight and dark hours.

How do drivers perceive and respond to risk under such varying

conditions?

1.1.  Theoretical approach

Numerous theories and models have been developed to better

understand and predict road  user behaviour. Risk perception is a

central component and predictor in many of these, proposing that

road users’ perceptions of risk influence their behavioural choices.

One of these theories is  Wilde’s Risk homeostasis theory (Wilde,

1982) in which he suggests that individuals continuously compare

their perceived level of risk to their target level of risk and take

behavioural decisions in  order to balance the two. The target level

of  risk represents the levels of risk individual drivers are willing to

take. In order to maintain the balance between perceived and tar-

get  risk, the theory posits that if drivers perceive an increased risk,

∗ Corresponding author.

E-mail addresses: odd.hjelkrem@ntnu.no (O.A. Hjelkrem), eirin.ryeng@ntnu.no

(E.O. Ryeng).

for example due to reduced friction, they will adjust their driv-

ing accordingly to reduce the risk they are facing. In a  situation

with  perceived reduced friction, lowering speed or increasing the

time  gap could be possible strategies to avoid exceeding the desired

target  level of risk. The theory has, however, been mostly used to

advocate that traffic safety measures have no effect since a lowered

perceived risk level will be met by a more risky behaviour. Thus, a

reduction in traffic accidents will only take place if the target level

of  risk  is lowered.

Wilde’s theory has been heavily discussed and criticised, and

is  regarded more as an interesting basis for discussion by iden-

tifying  important mechanisms in human behaviour, than as an

applicable model. Since it is  not possible to falsify the theory, it

has  no explanatory value (Elvik et  al., 2009). However, the notion

of drivers adjusting their behaviour as a response to  changes

in  their environment is the basis for the concept of behavioural

adaptation (OECD, 1990). The concept behavioural adaptation was

redefined by Kulmala and Rämä (2013) as “Any change of driver,

traveller, and travel behaviours that occurs following user interac-

tion with a change to the road traffic system, in addition to those

behaviours specifically and immediately targeted by the  initiators

of the change”. Although this concept is mostly discussed as a

response  to implemented measures, it  is also meaningful to apply

when  discussing driver behaviour as a  response to natural changes

in  weather and road surface conditions. These are changes that are

easily  observed and therefore likely to evoke changes in  risk per-

ception,  which in  turn may  affect the behavioural decisions taken

by  the drivers.

http://dx.doi.org/10.1016/j.aap.2016.07.006

0001-4575/© 2016 Elsevier Ltd. All  rights reserved.
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Van der Molen and Bötticher (1988) suggested a hierarchical

risk model in which drivers’ tasks take place at three levels: strate-

gical, tactical and operational. Decisions about choice of speed and

time  gap belong at both strategical and tactical level. At strategi-

cal  level, strategies for the journey are planned, such as general

strategies for choice of speed and time gap, depending on weather

and road surface conditions. At tactical level, however, these strate-

gies  are transformed into manoeuvring plans with short time spans

based on the current situation. These manoeuvring plans are put

into action at operational level. At both strategical and tactical

level, drivers perceive information from their environments and

make judgements based on their motivations and expectations. The

model utilises utility functions in the decision process, in  which

both risk and other judgements are included. These judgements and

the decision rules may  vary both intra- and inter-individually. Both

Wilde’s risk homeostasis theory and the concept of behavioural

adaptation can be integrated into this model. In both cases, risk

perception is a key element. Slovic and Peters (2006) claim that

risk can be perceived in  two ways, both analytical and as feelings.

Risk as feelings is the most intuitive way of perceiving risk while

the  analytical way is based on logic and reason. Risk perception at

strategical level is suggested to be more analytical than risk per-

ception at tactical level. Thus, there is  a mixture of both analytical

and  emotional elements to risk perception when driving at adverse

conditions.

1.2. State of research

Several studies have investigated how driving behaviour is

affected by adverse conditions, and how the accident rates change

as  well. The following statements can be made based on the litera-

ture:

1.2.1. Precipitation reduces speed and increases time gap, and the

speed reduction is larger for higher intensities

Rain and snow disturbs the field of  view enough to influence the

traffic flow. This is shown empirically by several studies. Agarwal

et  al. (2005) found that speed was reduced by rain and snow, and

that the reduction was dependent on the precipitation intensity. In

heavy rain and heavy snow the speed was reduced by respectively

4%–7% and 11%–15%. A study by Billot et  al. (2009) also found that

drivers reduce their speed during rain, and the impact was increas-

ing  with precipitation intensity. Rahman and Lownes (2012) found

that  a shift from no-rain to rain led to a speed reduction of 3.7% and

an increase in time gap of 5.7%. Lam et  al. (2013) studied the impact

of  rain intensity on the Hong Kong road network, and found that

speed  decrease as the rain intensity increases.

1.2.2. Precipitation increases accident rate

During rain or snow, changing driving conditions leads to more

accidents. Eisenberg and Warner (2005) found that snowy days

have  fewer fatal accidents, but more nonfatal injury accidents. A

study by Hermans et al. (2006) showed that among several weather

indicators, the presence of precipitation had the most significant

impact on number of accidents. Qiu and Nixon (2008) conducted

a  meta study of 34 papers and 78 records showed an increase in

accident rate during precipitation. Snow had the greatest effect,

with a possible increase in accident rate by 84% and injury rate

by  75%. Karlaftis and Yannis (2010) found a surprising decrease in

accident rate for increasing precipitation intensity, and suggested

that  a decrease in speed as well as Southern European drivers being

unaccustomed to wet roads as an explanation. Strong et al.  (2010)

reported that snowy weather leads to a decrease in speed and an

increase in accident frequency, but  a decreased number of fatal

accidents. They attributed this primarily to the fact  that the sever-

ity  of accidents decrease as the speed decreases. Mills et  al.  (2011)

found that precipitation in the form of both rain and snow sub-

stantially increases the risk of injury collision. Andrey et al.  (2013)

performed a risk analysis showing an increase in collision rate on

days with snow, and a higher relative risk in  rural areas than in

urban areas. Bergel-Hayat et  al. (2013) studied a  large European

dataset of  weather and injury reports, and found significant corre-

lations between weather and accident rate, but the results varied

for  different road types. On motorways, the effect of rainfall was

direct, but on main roads, the effect was indirect through exposure.

1.2.3. Water, snow or  ice on the road surface reduce speed and

increase time gap

Typical values of coefficients of friction are: dry surface

(0.80–1.00), wet  surface (0.40–0.90), snow covered surface

(0.15–0.30), and ice covered surface (0.05–0.15) (Aurstad et al.,

2011). The reduced friction, either from rain, snow or ice will lead to

longer braking distances and reduced handling capabilities. Strong

et  al. (2010) summarised the results from earlier studies on how

weather affects speed and accident rate in  an extensive literature

review, showing how the  speed reduces with increasing adver-

sity  for pavement conditions. In the worst case, which was “very

icy”, the speed adjustment factor was  estimated to be 0.83. Dixit

et al. (2012) reported that drivers behave more careful in  situations

with  a wet  road surface compared to situations with a dry  surface.

Kwon et al. (2013) found that road surface condition has a signifi-

cant effect on free flow speed and capacity. They calibrated models

based on empirical data which estimated a reduction of 17.0% in

free flow speed for a snow covered road, and an 11.0% reduction

for  wet  road surface. Kvernland (2013) observed speed at several

places  along a straight road section ending in a  curve during winter

conditions. Compared to dry surface, he  found speed reductions of

5.9–13.9% on icy surface and 4.6–12.2% on snow covered surface,

but  hardly any changes on wet  surface. The highest reductions were

found just before entering the curve. However, calculations based

on  measured friction showed that none of these speed reductions

were  sufficient to fully compensate for the reduced friction.

1.2.4. Water, snow or  ice on the road surface increases accident

rate

The challenging driving conditions during reduced friction often

lead  to a  loss of control of the vehicle. Keay and Simmonds

(2006) investigated the impact of  rainfall on daily road accidents

in  Australia and found that the risk is greater in wet  conditions

caused by rainfall. Strong et  al. (2010) also found that the accident

rate increased with more adverse surface conditions. In the worst

condition, “very icy”, their accident adjusted factor was 1600% as

opposed to 100% for dry roads. A meta study by Elvik et al. (2009)

derives relative accident risks for adverse lighting and surface con-

ditions  based on Norwegian studies. They found that the relative

risk  increased to 1.3 for wet  surfaces, 1.5 for slushy roads and 2.5

for  icy or snow covered surfaces.

1.2.5. Lower visibility reduces speed and increases time gap

Another important factor is the reduced sight caused by pre-

cipitation, somewhat depending of the time of day. When driving

in  daylight during a  dry spell, the sight is  usually quite good, and

eventual hazards can be spotted in  time for the driver to react. On

the  other hand, driving in heavy snowfall or fog at night will dra-

matically reduce the visibility. During situations of reduced sight,

the  ability of the driver to detect potential hazards will decrease.

Hoogendoorn et al. (2010) showed that fog leads to a significant

reduction in speed and a significant increase in gap. The study by

Kwon et al.  (2013) found that visibility, measured in sight distance,

has a  significant effect on free  flow speed and capacity, showing an

increase in speed and capacity for increasing visibility.
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Table  1
Overview of vehicle detection data, limited to all observed following vehicles with

time  gap below 5 s.

Statistic Value

Nfollowingvehicles 67 723

Truck percentage (%) 10.5

Speed limit (kph) 80

Speed all vehicles (kph) Mean/SD 80.6/8.0

Time gap all vehicles (s) Mean/SD 2.5/1.1

Speed cars (kph) Mean/SD 80.7/8.1

Time gap cars (s) Mean/SD 2.43/1.08

Speed trucks (kph) Mean/SD 80.2/7.0

Time gap trucks (s) Mean/SD 2.77/1.13

Length trucks (m)  Mean/SD 16.2/3.6

Weight trucks (kg) Mean/SD 16 871/7 733

1.2.6. Lower visibility may increase accident rate

The only result found concerning this statement was  the meta

study  by Elvik et al. (2009). They found that the impact of  adverse

lighting on the relative risk was 1.1 at night for accidents involving

vehicles, and 2.1 and 2.2 for accidents involving bicycles or pedes-

trians  respectively. These findings were however based on a limited

number of studies.

1.3. Study objective

The statements presented in Section 1.2 are all supported by

the existing literature in this field, and each statement seems log-

ical with anticipated results. However, when put together, the

statements lead to the following conclusion, which may  sound

surprising. Firstly, we see  that adverse weather induce a  change

in  driver behaviour. The speed decreases, and time gap increases.

Secondly, we see that the accident rate increases during adverse

weather, despite the compensating behaviour by the drivers. This

might imply that, based on the literature presented here, drivers do

not  compensate enough for the reduced friction and the loss of vis-

ibility. The perceived risk by the drivers seems not to be coherent

with  the actual risk.

Driven by these challenges, we seek to explore some of the

underlying mechanisms of the driver behaviour during adverse

conditions. The main objective of the study is to examine how pre-

cipitation, light conditions and surface conditions affect the drivers’

risk  perception. We focus on situations on rural roads where two

subsequent vehicles are interacting, also known as car-following

behaviour.

2.  Method

2.1. Dataset

The data used for this study was based on the data set described

by  Hjelkrem and Ryeng (2016), which was collected from a two-

lane rural road in Norway, equipped with a  dual loop detector, a

Weigh in Motion (WIM)-detector, and a roadside weather station.

These measurement equipment allow for studies of how weather

affects driving behaviour, as the winter season with heavy snow-

fall, low temperatures and winds creates challenging conditions

for  drivers. The vehicle weight was used to classify the vehicles by

labelling all vehicles under 3500 kg  as cars. The heavier vehicles

were defined as trucks. Table 1  shows a summary of the vehicle

data included in this study.

In total, there were 67 723 observations in the data set, where

each observation included information about the observed leader-

follower vehicle pair, the current weather, the current road surface

condition, as well as the lighting condition at that time. Table 2

shows how the numbers of observations are distributed across

these varying conditions.

2.2. Measures of risk

The  definition of risk and how it is  measured varies in the litera-

ture  from explicit variables to more complex terms. In traffic safety

research, a commonly used value is the time to collision (TTC),

which  is defined as the time to an impact in seconds if  two vehi-

cles  maintain their current speed. In car-following situations TTC

can only be calculated in cases where the follower speed is  greater

than the leader speed. Oh and Kim (2010) developed a method to

estimate rear-end crash potential by using the TTC to calculate a

crash  risk index. They expressed the probability of an accident as

an  exponential decay function of TTC, and calculated the probability

in  real-time based on vehicle trajectories.

Jin et al. (2011) used the percentage of TTC below a certain

threshold sampled from Beijing expressways as an indicator for

risk.  They used this indicator to show that the risk varies between

lanes and locations. Brackstone and McDonald (2007) investigated

if  drivers with low headways have higher TTC, in order to maintain

a constant risk level. They found the opposite, which is  that drivers

with  low headways also had low values of TTC.

Duan et al. (2013) measured perceived risk in a  simulator exper-

iment. They used time headway as  a measure for perceived risk,

and  found that drivers decreased their headway with oncoming

vehicles in  the adjacent lane, thus increasing their risk.

Vogel (2003) compared time headway and TTC as indicators for

traffic safety. She stated that time headway can be  small without

necessarily indicating a  dangerous situation, while low values of

TTC will always indicate danger. Time headway should therefore

be  used for enforcement issues, and TTC should be used when the

safety of a specific situation is  to be evaluated.

Hassan and Abdel-Aty (2013) and Abdel-Aty et al. (2012) used

real-time traffic flow data to predict crashes due to reduced visi-

bility. They found that changes in average speed and occupancy, as

well  as  fluctuations in speed were valid indicators for predicting

both visibility related crashes and other crashes.

2.3.  Defining an index of chosen risk

In  order to study drivers’ risk perception during adverse con-

ditions, we need to define a measure of risk that is  applicable and

based on available data. Our measure is based on an underlying

assumption that risk perception is  reflected in actual behaviour.

Although Wilde’s risk homeostasis theory (Wilde, 1982) has obvi-

ous weaknesses as a predictive model, we  base our measure on the

core  mechanism described in his model. We assume that the target

level of  risk is the risk  chosen when driving at normal conditions,

i.e. at daylight with dry road surface and no precipitation. Thus,

any  deviations in  chosen behaviour compared to the normal condition

express changes in perceived risk.

2.3.1. Indicator of accident probability

It  is  clear that time headway, TTC and speed are recurring terms

when dealing with risk during car-following. Risk is often defined

as the product between probability and consequence. As reported

in previous studies, both TTC and intervehicular distance in form

of  gap or headway has been used as a measure for probability.

However,  it is not obvious which of these are best to use when

studying car-following behaviour on rural roads. A low value of

time gap might come with a high TTC and vice versa, depending

on  the speed difference between leader and follower. As shown

by  Brackstone and McDonald (2007), there might be a correlation

between the value of TTC and time headway. In  our dataset we find

that there is a  significant positive correlation between time gap
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Table 2
Observations categorised by varying precipitation, surface and lighting conditions (Daylight/Twilight/Night). Both  cars and  trucks are included. There were 917 observations

without precipitation intensity data, which were left out from this table.

Dry Wet Visible tracks Snow cover Sum

Clear 11591/5523/31144 3649/1138/8048 351/150/1274 18/3/229 63 118
Light  Rain 61/7/69 190/88/339 69/26/159 41/2/201 1252
Moderate Rain 0/0/18 30/11/94 14/1/77 10/0/29 284
Heavy Rain 0/0/0 5/0/10 1/0/0 2/0/0 18
Light  Snow 47/25/75 347/308/1065 16/7/50 0/0/24 1964
Moderate Snow 0/0/19 19/1/4 7/0/51 4/0/25 130
Heavy Snow 0/0/6 0/0/26 0/8/0 0/0/0 40
Sum  48 597 15 354 2  279 594 66 806

and TTC (p = 0.000), with a Pearson correlation coefficient of 0.361.

A  positive correlation between the two variables means that the

time gap is the explaining factor in the TTC term. A negative cor-

relation would have implied that the speed difference is the most

important contributor to TTC. The correlation test was  run for all

observations where the speed difference was positive, which is  the

criterion for calculating TTC. Since the speed difference is not preva-

lent  and TTC only can be calculated for positive speed differences,

we decided to use the inverse time gap as the  indicator for accident

probability. Thus, we can utilise the whole dataset. The inverse time

gap  is used because the accident probability is assumed to increase

with decreasing time gap.

2.3.2. Indicator of accident consequence

The potential consequence of an incident span from minor

fender scratch marks to fatal accidents. The severity of an accident

is  to a high degree governed by the laws of physics. The higher the

momentum, the more impact an object will have. As the momen-

tum  is the product of speed and mass, the severity of  an accident

will  normally increase for increasing speeds and vehicle weight. We

therefore use the vehicle speed multiplied with the vehicle weight

as  a proxy for the accident consequence.

2.3.3. Chosen Risk Index (CRI)

Based on the findings from the literature and the general defini-

tion of risk, where risk is a  product of consequence and probability,

we  deduce an expression for the risk chosen by each driver.  We call

this expression the Chosen Risk Index (CRI):

CRI = V ∗ W

TG

In this equation, TG is time gap, while V is speed and W  is  vehi-

cle  weight of the following vehicle. A decrease in time gap or an

increase in speed or weight translates to an increase in CRI in  a

given situation.

The introduction of CRI is  to our knowledge the first attempt to

define an index based on traditional risk theory of probability and

consequence. Compared to other similar risk indicators, it is  more

complex, by involving speed, weight and time gap.

2.4. Analyses

The analyses use CRI in two ways. Firstly, by defining the nor-

mal  condition as 1, the relative CRI (CRI/CRInorm) is  calculated for

all  other conditions. The relative CRI is explored to observe and

describe any trends. The chosen risk is  compared between all  situa-

tions where the road surface condition, weather status and lighting

conditions change. Given the assumption that driving at normal

condition expresses the drivers’ target level of risk, and given that

drivers according to Wilde’s theory (Wilde, 1982) adjust their driv-

ing  behaviour to maintain their target level of risk, the relative CRI

gives an indirect expression of how risk is  perceived. The relative

CRI shows how much the chosen risk in a given situation devi-

ates from the chosen risk at normal conditions. A low relative CRI

corresponds to a high percepted risk, and vice versa.

The second way of utilising CRI is  by performing a generalised

linear model (GLM) analysis in which CRI is  chosen as the depen-

dent  variable. For independent data, the GLM models the expected

response via a transformation of a linear combination of covariate

terms with a vector of coefficients. For a full discussion about GLM

and applications, see McCullagh and Nelder (1989).

Our model estimates CRI as a function of the following variables:

• Precipitation type (PREC CAT). Nominal variable with values

“Clear”, “Light rain”, “Moderate rain”, “Heavy rain”, “Light snow”,

“Moderate snow” and “Heavy snow”.
• Road surface status (ROAD CAT). Nominal variable with values

“Dry”, “Wet”, “Visible tracks” and “Snow cover”.
• Time of day (TIME OF DAY). Nominal variable with values “Day-

light”, “Twilight” and “Night”.

Both main effects and interactions were explored. Thus, CRI is

modelled in the following way:

CRIijk = Constant + PREC CATi + ROAD CATj + TIME OF DAYk
+ INTERACTIONSijki,j,k denotes the values representing each nom-

inal variable (i.e. j  denotes either “Dry”, “Wet”, “Visible tracks” or

“Snow cover”, and so on). INTERACTIONS may  include both 2-way

and 3-way interactions.

The GLM procedure should always have independent factors.

In  our dataset there might be some correlations. For example, we

expect that a  rainfall leads to a wet  road, and that a snowfall leads

to  a snow covered road. However, a wet  road does not necessarily

mean  that it  is raining. To further investigate this, the correlation

coefficient between PREC CAT and ROAD CAT was calculated to be

0.274 using Cramerı́s V, and the correlation was statistically signifi-

cant.  As the score of Cramerı́s V ranges from 0 to 1, where 1 implies

full  correlation, a  score of  0.274 means that there is a moderate

association between the variables, but  still acceptable for using

the  data. The implication of the revealed association is that if only

main  effects are present, the parameter estimates for PREC CAT and

ROAD CAT could be misleading. However, any interacting effects

would to a certain extent represent correlations. No correlations

were found between TIME OF DAY and the other main effects.

To find the best model, we used the backward selection algo-

rithm. Starting with all  factors and interactions, non-significant

factors were iteratively removed from the analysis until a satis-

factory model was achieved.

In  this analysis, the normal condition is  defined as the refer-

ence  situation (“Clear”, “Dry” and “Daylight”). Thus, all parameter

estimates give direct measures of each value of each variable’s con-

tribution to changes in the CRI compared to the normal condition.

Since  we propose CRI as a measure of chosen risk, these parameter

estimates can be interpreted, when comparing them relatively to
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Table  3
Relative CRI for cars and trucks, as well as relative consequence and relative probability. N  =  67 723.

Cars Trucks

CRI/CRInorm Relative cons.

(V*W)/(V*W)norm

Relative prob.

(1/TG)/(1/TG)norm

CRI/CRInorm Relative cons.

(V*W)/(V*W)norm

Relative prob.

(1/TG)/(1/TG)norm

ClearDry Daylight 100 100 100 100 100 100

Twilight 100 100.5 99.5 102.8 107.4 98.1

Night 98.6 99.9  97.3 107.9 113.5 101.9

Wet Daylight 99.3 104.2 94.2 102.2 107 97.1

Twilight 98.3 101.8 94.7 101.4 106.7 95.9

Night 95.4 97.3  93.5 108.8 118.2 98.5

Visible tracks Daylight 85.7 79.8  91.2 88.9  88.5 89.2

Twilight 93.4 95.7  91 91.1  100.8 80.2

Night 87 88.4  85.6 99.1  108.3 89

Snow cov. Daylight 77.7 42.7  101.2 72.5  67.3 77.3

Twilight 68.1 51.5  81.3

Night 73.3 57.9  86 82.2  76.8 87.4

Rain Dry Daylight 90 85.3  94.4 88.5  66.5 106

Twilight 101.8 105.8 97.7 106.2 110.5 101.6

Night 85.4 83.1  87.6 92.3  97.3 87.1

Wet Daylight 101.3 109.6 92.2 99.3  97.1 101.5

Twilight 96.7 99.1  94.4 107.4 116.4 97.6

Night 95.1 99.4  90.7 52 39 62.2

Visible tracks Daylight 76.2 68.8  83

Twilight 94.4 87.1  101.2 92.9  94 91.8

Night 83.9 70.9 95.2

Snow cov. Daylight 59.8 50.6 67.7

Twilight

Night 76 57.5  90.8 73.7  59.9 85.4

SnowDry Daylight 96.8 97.8  95.9 102.1 101.1 103.1

Twilight 96.9 92.3  101.2 101.1 108.8 92.9

Night 95.1 95.4  94.7 101.5 105.1 97.8

Wet Daylight 96.6 100.7 92.3 93.7  81.9 104.1

Twilight 95 99.3  90.6 113.8 126.9 99

Night 95.4 99.1  91.6 101.8 115.2 86.3

Visible tracks Daylight 88 75.6  98.9 78.2  69.1 86.3

Twilight 83.1 84.2  82 62.3  64 60.5

Night 84.4 78.9  89.5 88.6  94.1 82.7

Snow cov. Daylight 73.9 47.5  93 96.8  88.4 104.6

Twilight 62.1 36.9  79.8

Night 78.8 65 90.5 72.8  67.9 77.3

each other, as measures of each variable’s contribution to the risk

perception. Negative estimates correspond to increased risk.

In  order to distinguish between free flow and car-following

behaviour, the threshold between these regimes must be defined.

Several previous studies have tried to locate this point, e.g. Gattis

et  al. (1997), Reiter (1994), Hoban (1983),  Rahman and Lownes

(2012), Al-Kaisy and Karjala (2010), Vogel (2002). The values found

in  these studies vary between 2 and 6 s. A recent study by Hjelkrem

(2015) showed how this threshold vary with external factors, sug-

gesting a value of approximately 5  s for two lane rural roads with

speed limit of 80 kph. Based on these values, only data where the

time gap was below 5 s were included in this study.

There are several differences between cars and trucks which

call for separate analyses. They hold different physical appear-

ances in weight, length and height. Truck drivers are expected to

be more experienced and professional than car drivers. The num-

ber  of trucks on the road is  also far lower than cars, which means

that the effect of trucks would probably be concealed if we treated

cars and trucks as one group. Therefore, we separate between cars

and trucks throughout the analyses.

3.  Results

In this analysis, the normal situation is  defined as daylight, no

precipitation and dry road surface. The data observed at these con-

ditions serve as a sample of a reference situation to which all other

weather, light and road conditions are compared.

3.1. Results from descriptive analysis of CRI

The  relative CRI was investigated first to illustrate how the CRI

deviate from the normal situation when conditions change. The

results are shown in Table 3  where each value is categorised accord-

ing  to weather, lighting and road surface condition. Several trends

can  be noticed.

For cars we see that the CRI tend to generally decrease for all

adverse  weather conditions when compared to the normal situa-

tion. The CRI decreases for more adverse precipitation type and road

cover,  and especially where the road surface is covered by snow

or have visible tracks. By inspecting the columns showing relative

consequence and probability, it  is obvious that drivers regulate both

their  speed and gap according to changing conditions.

For trucks, the pattern is  more complex. Although the general

trend is  in line with the results for cars, we also find that the CRI

actually increase with dry or wet  road surface, especially during

twilight and night time. The table reveals that trucks have generally

higher relative consequence at night time. An analysis of the truck

data showed that the mean truck weight was  16.9 tons at night, 15.3

at  twilight and 14.9 tons at daytime. As weight is  a factor in the CRI,

this could explain why the CRI is  higher at night and twilight for

trucks.

It  is apparent that there are some systematical patterns in the

way CRI is  affected by lighting conditions, precipitation and the

road surface condition. There might also be some interactions

between the factors. Because the number of observations in each
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Table 4
Parameter estimates for chosen risk  index for cars, CRIcars.Non-significant effects are in italic. N  =  59 795.

Parameter B  Std. Error 95% Wald Confidence Interval

Lower Upper Sig.

Intercept 21.38 0.1204 21.144 21.616 0.000

Heavy snow −1.768 3.1875 −8.015 4.479 0.579

Moderate snow −11.47 3.085 −17.517 −5.424 0.000

Light  snow −3.899 1.1376 −6.128 −1.669 0.001

Heavy rain 2.822 4.3746 −5.752 11.396 0.519

Moderate rain −11.956 2.9929 −17.822 −6.09 0.000

Light  rain −2.755 1.0922 −4.896 −0.615 0.012

Snow  covered −13.984 1.7574 −17.423 −10.545 0.000

Visible tracks −6.558 0.6456 −7.823 −5.292 0.000

Wet  −0.593 0.2368 −1.057 −0.129 0.012

Night −0.85 0.1412 −1.127 −0.574 0.000

Twilight −0.130 0.2105 −0.543 0.283 0.537

Heavy  snow*Snow covered −1.833 9.4508 −20.356 16.69 0.846

Moderate snow*Snow covered 16.606 3.7896 9.179 24.034 0.000

Light  snow*Snow covered 5.033  1.6529 1.793 8.273 0.002

Heavy snow*Visible tracks 1.741 12.7573 −23.263 26.744 .891

Moderate snow*Visible tracks 10.937 3.3631 4.346 17.529 0.001

Light  snow*Visible tracks 3.359 1.4362 0.544 6.173 0.019

Moderate snow*Wet 10.988 3.2727 4.573 17.402 0.001

Light  snow*Wet 2.416 1.2542 −0.42 4.874 0.054

Heavy  rain*Snow covered −7.609 7.094  −21.513 6.295 0.283

Moderate rain*Snow covered 9.476 3.8917 1.849 17.104 0.015

Light  rain*Snow covered 7.793 2.9258 2.058 13.527 0.008

Heavy rain*Visible tracks −6.406 5.0348 −16.274 3.462 .203

Moderate rain*Visible tracks 9.858 3.4257 3.143 16.572 0.004

Light  Rain*Visible tracks 1.083 1.861  −2.565 4.73 .561

Moderate rain*Wet 11.525 4.0737 3.541 19.51 0.005

Light  rain*Wet 2.504  1.144 0.262 4.746 0.029

Snow  covered*Night 3.404  1.6442 0.181 6.627 0.038

Snow  covered*Twilight −1.505 5.742  −12.759 9.749 0.793

Visible  tracks*Night 0.913 .7095 −0.478 2.303 0.198

Visible tracks*Twilight 3.317 1.1552 1.053 5.581 0.004

Wet*Night −1.046 0.2791 −1.593 −0.499 0.000

Wet*Twilight −0.555 0.4407 −1.419 0.309 0.208

category varies greatly, the explanatory power also  varies. To unveil

these  mechanisms, we adopt a generalised linear model (GLM) for

the  response variable CRI.

3.2. Results from GLM-analysis

For cars, two  second order interactions were found to be signif-

icant, as shown in the resulting model:

CRIcar = Const.  + PREC CAT + ROAD CAT + TIME OF DAY

+ PREC CAT ∗ ROAD CAT +  ROAD CAT ∗ TIME OF DAY

However, this model gave a non-significant main effect from

TIME OF DAY, with a p-value of 0.986. Although not significant, we

chose to keep it in the model, as it is present in  the second order

interactions.

The  parameter estimates of each variable in the model are

shown in Table 4. For each estimate, a confidence interval and

p-value is reported. A negative estimate implies that the chosen

risk is decreased relative to the normal situation, expressing higher

perceived risk, and a positive number imply the opposite.

We  see that all significant main effects have negative coeffi-

cients, meaning that these effects help to lower the CRI. The road

surface status has coefficients ranging from −13.984 to −0.593. Pre-

cipitation type range from −11.47 to 2.822, while light conditions

range from −0.85 to −0.13. Snow cover is the most extreme sit-

uation with a value of −13.984, which is about two thirds of the

intercept value of 21.38. The effects of moderate rain or snow are

also large, with coefficients of −11.956 and −11.47, respectively.

We  also see that the effect of precipitation increases with inten-

sity, except for heavy precipitation. However, there is  not enough

data  to achieve significant results for heavy rain or heavy snow. The

effects of night and twilight are negligible compared to other main

effects, indicating that drivers don’t perceive driving in twilight and

night  as much riskier than driving at daylight.

All  significant interactions, except for the combination of night

and rain, have positive coefficients. This means that the negative

coefficients found for main effects are countered by the interacting

variables. The interactions with highest coefficients are interac-

tions  involving either snow covered road, moderate precipitation,

or  both, which have the highest main effects. This means that in

situations with two  strong main effects present, their interaction

will counteract the impact of  the CRI.

An interesting effect is the interaction between rain and night

being the only significant interaction with negative coefficient. This

can  to a certain degree be explained with the effect water has on

pavement. A wet pavement will usually become darker, and at night

time,  the combined effect affects the driver to reduce speed and/or

increase time gap. We also see that the opposite is  the case for a

snow covered road at night time, with a positive coefficient of 3.404.

The estimated CRI can be calculated for all possible combina-

tions of the three variables. When considering only statistically

significant combinations, there are 35 possible situations, as

“Twilight”, “Heavy snow”, “Heavy rain” and some second order

interactions are not significant. The significant combinations and

their estimates of CRI are shown in Table 5. It  is apparent that

drivers adjust their car following behaviour mostly in situations

with  a  snow covered road, especially in combination with mod-

erate rain. At night, with moderate rain on a snow covered road,

the  estimated CRI is more than 5  times lower than the reference

situation with daylight, dry  road and no precipitation.
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Table  5
Estimated CRI for cars in all significant situations. The situations marked with bold

are assumed to be transitional, as they represent situations with a dry road surface

despite the presence of precipitation.

Precipitation type Road surface status Time of day Estimated CRI

Moderate rain Snow covered Night 4.07

Moderate rain Snow covered Daylight 4.92

Clear Snow covered Daylight 7.40

Light snow Snow covered Night 7.68

Light snow Snow covered Daylight 8.53

Moderate rain Dry Night 8.57
Moderate snow Dry Night 9.06
Moderate rain Dry Daylight 9.42
Moderate snow Dry Daylight 9.91
Clear Snow covered Night 9.95

Moderate snow Snow covered Night 11.68

Moderate rain Visible tracks Night 11.87

Moderate snow Snow covered Daylight 12.53

Moderate rain Visible tracks Daylight 12.72

Light rain Snow covered Night 14.10

Moderate snow Visible tracks Daylight 14.29

Clear Visible tracks Daylight 14.82

Light rain Snow covered Daylight 14.95

Light snow Dry Night 16.63
Light snow Visible tracks Night 17.33

Light snow Dry Daylight 17.48
Light rain Dry Night 17.78
Light snow Visible tracks Daylight 18.18

Light rain Dry Daylight 18.63
Clear Wet  Night 18.89

Moderate snow Visible tracks Night 19.46

Moderate snow Wet  Night 19.46

Moderate rain Wet Night 19.51

Light rain Wet  Night 19.69

Moderate snow Wet Daylight 20.31

Moderate rain Wet  Daylight 20.36

Clear Dry Night 20.53

Light rain Wet  Daylight 20.54

Clear Wet  Daylight 20.79

Clear Dry Daylight 21.38

For trucks, the only effects found significant were the main

effects of road status and lighting conditions, resulting in the fol-

lowing model:

CRItruck = Const.  + ROAD CAT + TIME OF DAY

The  effect of PREC CAT was not found to be  significant, with a

p-value of 0.29, and was therefore not included in  the model.

The  largest impact was found to be snow covered roads and

visible tracks, as shown in Table 6. However, there were no second

order interactions countering the main effects. A wet road will also

probably reduce the CRI, but the 95% confidence interval includes

positive values of the coefficient as well.

A somewhat surprising result is the effect of night and twilight,

with positive values of 24.469 and 6.601 respectively, although the

effect  of twilight is not significant. As previously mentioned, the

trucks at night are on average heavier than trucks driving at day-

light. With the CRI increasing with vehicle weight, this can explain

the  large positive effect of night.

Table 7
Estimated CRI for trucks in all significant situations.

Road surface status Time of day  Estimated CRI

Snow covered Daylight 70.93

Snow covered Night 95.40

Visible tracks Daylight 108.14

Visible tracks Night 132.61

Dry Daylight 152.18

Dry Night 176.65

The significant combinations and their estimates of  CRI for

trucks  are shown in  Table 7. The estimated CRI is  reduced by 60%

in  situations with a snow covered road in daylight compared to a

dry  road at night.

4.  Discussion

As  cited in Section 1.2, previous studies have found effects of

precipitation, road surface condition and light conditions on speed,

time gaps and accident frequencies. By introducing the Chosen Risk

Index  (CRI) as an expression of speed, time gap and vehicle weight,

we  were able to study the combined effect of these three variables

on  risk perception, assuming (1) that drivers aim at maintaining

their  desired target level of  risk when choosing speed and time gap,

and  (2) that the desired target level of risk is reflected in  the choice

of  speed and time gap when driving on dry road surface in day-

light without precipitation. Like for the previous studies, we also

found  that the surface conditions affect car-following behaviour

more than do precipitation and light conditions. We found, how-

ever,  interaction effects moderating the effect for cars when two

states other than the normal situation were present. Interpreting

these  findings in the light of risk perception, our dataset implies

that both car and truck drivers perceive the highest risk  when driv-

ing  on snow covered roads. For cars, the highest perceived risk is

observed when snow covered roads are combined with moderate

rain,  followed by light snow. At these conditions, higher risk is  per-

ceived at night time compared to daylight. The model also implies

that the effect of moderate rain or moderate snow has a large effect

on  the chosen risk level. However, while precipitation is present,

the  road surface is rarely dry. In combination with either wet  road,

visible  tracks, or a snow covered road, the second order interaction

coefficients counteract the apparently large effect from moderate

precipitation.

The  suitability of  CRI as a tool to study risk relies on our two main

assumptions, (1) that changes in perceived risk reflect in changing

behaviour, and (2) that drivers strive to maintain their target level of

risk.  As presented in the introduction, the driving task takes place at

strategical, tactical and operational level. Risk evaluations are part

of  the decisions made at strategical and tactical level, and risk can be

perceived both analytical and as feelings. Snow covered roads are

very visible indicators of reduced friction and hence higher risk, and

this  is common knowledge by drivers. Driving during precipitation

and  twilight and night limits the driver’s sight vision. Since these

Table 6
Parameter estimates for chosen risk index for trucks, CRItrucks. Non-significant effects are in italic. N = 7037.

Parameter B Std. Error 95% Wald Confidence Interval

Lower Upper Sig.

Intercept 152.177 3.1919 145.921 158.433 0.000

Snow covered −81.243 15.5334 −111.668 −50.798 0.000

Visible tracks −44.038 8.6643 −61.020 −27.057 0.000

Wet  −4.619 3.5412 −11.560 1.702 .192

Night 24.469 3.5289 17.552 31.386 0.000

Twilight 6.601 5.8364 −4.838 18.040 0.258
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conditions often occur gradually, they might affect risk perception

more intuitively, as feelings.

Our findings may  thus indicate that the analytical risk dimension

is  dominating when driving at adverse conditions. Since risk per-

ception is suggested to be more analytical at strategical level, this

may  also indicate that if judgments made on tactical level find sup-

port  at strategical level, they are more likely to be addressed. There

is  however still a question whether the high effect of snow covered

roads  compared to other conditions is  an indicator of analytical

strategical thinking as more influential than intuitive feelings at

tactical level on risk perception, or if the findings merely express

that  drivers adjust their behaviour intuitively in accordance to the

actual risk.

The composition of the CRI was based on assumptions about

how drivers react to perceived risk. A different functional form of

the  expression could have given other results. As an example, one

could have used the inverse squared time gap as probability, or only

speed as consequence. However, a closer inspection reveals that the

unit of CRI is kg m/s2, or N. While it is  tempting to imagine the CRI

as  a force, this would probably be a mistake. However, CRI is  some-

what related to the force accepted when braking a vehicle. Given a

vehicleı́s  speed and mass, a shorter time gap implies a more abrupt

retardation in an emergency brake to avoid a rear end accident.

Weight is a factor included in  the CRI, but in  contrast to the two

other factors speed and time gap, the weight is a constant value

which the driver cannot change. It is  however something that the

driver should be aware of, especially for trucks. We also see  that

the  average truck weight is highest at night, which automatically

leads to a higher CRI at  night, all else equal. This is  unfortunate in

the sense that we do not capture the real effect of light conditions

for trucks.

One could argue that the target level of risk varies from driver to

driver, and since our dataset does not necessarily include the same

drivers during all conditions, we will not be able to distinguish the

effects of varying conditions from the effect of individual risk pref-

erences among the observed drivers. We  argue, however, that our

sample size is substantial enough for most situations to outweigh

the  effect of individual variations compared to the effect of vary-

ing  conditions. The number of  observations in each data category

varies from 0 observations during rain, twilight and snow cover to

a  maximum of 31 144 observations for dry road with no precipita-

tion at night time. Some situations were not frequently observed in

the time period of the data collection, which is probably the reason

why for example the effect of variables including twilight was  not

found to be significant.

With the recent development of ITS equipment for cars, it is  not

unlikely that some of the observed vehicles were equipped with

Adaptive Cruise Control (ACC), which is a driver support system

that  regulates the speed of the following vehicle in  order to keep

a  given distance to the leader car. Since the drivers set this dis-

tance by themselves, they are able to choose their preferred risk

level according to the current conditions. This can be regarded as a

choice at strategical level. There was no way of detecting whether

ACC  were in use, so we have to accept that there might be some

disturbances in the data. By disturbance we mean that the dis-

tance headway may  have been set long before the vehicles reached

our  observation site and thus been set  for other road and weather

conditions. A pre-set distance headway also impede the driversı́

continuous adjustments of  speed and time gap that takes place

otherwise at operational level. We assume, however, that any such

effects on the results are negligible.

When driving on a wet road at temperatures around 0 ◦C,  it  may

be  difficult to visually determine if the road is  covered with liquid

water  or solid ice. Because of the severe difference in friction on the

different surfaces, this will affect the handling of the vehicle. It was

not possible to determine from the images alone if wet roads were

actually wet or ice-covered. However, this would also be difficult

to  decide for every driver in  the dataset. They had to mainly rely on

their eyes to decide the friction between the tires and the pavement,

although a driver can get a sense of  the driving conditions through

physical feedback from the car.

5. Conclusions

In this study, we have defined an indicator CRI, which describes

the  chosen risk  level for drivers in car-following situations. The

CRI  is  defined as speed multiplied by weight and divided by time

gap.  It  should be underlined that CRI is  not a measure of actual

risk, but merely an indicator of perceived risk developed specifi-

cally  for this study. The lower CRI, the higher perceived risk. The

use of CRI as an indicator of perceived risk rests on assumptions

based on Wilde’s Risk homeostasis theory (Wilde, 1982). From the

analysis we see that the CRI is an effective indicator for expressing

chosen risk during adverse weather conditions. With the normal

situation (daylight with dry road surface and no precipitation) as a

reference, we see that as the driving conditions worsen, the drivers

adjust their behaviour. As a result, CRI decreases. Based on the size

of  the unique dataset prepared for this analysis, we achieved sta-

tistically significant GLM-models which describe the CRI for rural

car-following behaviour.

For cars, the CRI is  modelled by the road surface status, precipita-

tion  type, lighting conditions, the interaction between precipitation

type  and road status, and the interaction between road status and

lighting conditions. We found that a snow covered road in com-

bination with moderate rain or light snow are the factors which

lowers the CRI the most, thus being the situation contributing the

highest to the perception of risk. Due to few observations in  heavy

snow and heavy rain, it  was not possible to significantly estimate

the  effects at these conditions.

For trucks, only the road surface condition and lighting condi-

tions were found to have an impact on the CRI. Snow cover and

partially covered roads significantly lowers the CRI, indicating that

these conditions are perceived as the riskiest. The CRI is increased

at  night and twilight. This can be explained by the fact that the aver-

age  truck weight in the data set increased at night, which confounds

with  the effect of night on CRI.

There are several aspects about this study that should be inves-

tigated in  further research:

• It  would be  interesting to compare our measured chosen risk level

to the actual accident risk to uncover any situations where the

drivers underestimate the risk level. However, the actual acci-

dent risk is  derived from registered accidents. In order to perform

such a comparison, we need accident data which contains not

only  information about road surface, precipitation and lighting

conditions, but also exposure data which relates traffic volumes

to  these conditions.
• Our definition of CRI assumes that the actions of the driver reflect

his perceived risk. To  investigate this further, a  survey should be

conducted to see  if there is accordance between the perceived risk

expressed by the drivers and the chosen risk levels as revealed in

this study.
• Further studies including CRI may  reveal whether the proposed

methodology is valid as a comparative measure. If  so, a  possible

application could be to identify areas or roads where the CRI is

especially high, that may  be areas where the drivers underesti-

mate the risk. As all components of the CRI are vehicle dependent,

it  can be used as a measure of chosen risk level independent

of location, and thus be used for identifying possible locations

requiring preventive action.
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• The vehicles observed in this study were driving on a rural road.

Only  car-following behaviour was studied, defined as a time gap

less than 5 s. One could imagine that more congested states of

traffic would lead to other results, especially as the time gap dis-

tribution would be different, with presumably a lower average

value  for time gap. It would be very interesting to perform the

same analysis in congested areas, to see  if the influence of adverse

weather conditions is  comparable.
• With the rapid development of vehicle technology, the CRI may

in  the future be measured as a time series for each single vehicle,

and  thereby provide a different data source for a  similar study.

Depending on the results from such a study, a long term goal could

be  to develop a real-time application which alerts the driver if a

measurement of CRI deviates from a typical CRI for that specific

driver.
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Data article 
Title: Driver behaviour data linked with vehicle, weather, road surface, and daylight data. 

Authors: Odd André Hjelkrem and Eirin Olaussen Ryeng 

Affiliations: Norwegian University of Science and Technology 

Contact email: odd.hjelkrem@ntnu.no 

Abstract 
This article describes a data set related to the article "Chosen risk level during car-following in adverse 
weather conditions"[1].  In this data set, vehicle observations have been linked to data containing 
weather and road surface conditions. A total of 311 908 observations are collected and classified in 
categories of precipitation type, road status information, and daylight condition. The data is collected for 
a long period of time, so that several different weather situations are present, ranging from dry summer 
to adverse winter weather conditions.  
 
Specifications Table 

Subject area Transport Engineering. 

More specific subject area Traffic flow, traffic safety 

Type of data Table, .csv file. 

How data was acquired Detection equipment, ephemeris, visual investigation. 

Data format Raw, analysed 

Experimental factors Raw data obtained from WIM-detectors, a weather station and a roadside 
camera. 

Experimental features Image classification performed after data collection. 

Data source location Latitude: 62.48780N, Longitude: 7.76104E. 

Data accessibility Data is included in this article. 
 
Value of the data 

• A unique collection of linked data sources offers a large number of factors available for 
studying vehicle behaviour. 

• The data set include vehicles in both free flow and car-following state, so that the impact of 
both traffic and surroundings can be analysed 

• The vehicles observed are diverse in physical characteristics and driver behavior, allowing for 
studies of either specific vehicle types or the entire traffic flow 

95



• The weather situations observed range from normal conditions to adverse conditions, such as 
snow during night time on snow covered roads, facilitating studies of weather related driver 
behaviour. 

1. Data 
A presentation of the available attributes in the data set (see Supplementary Material .csv file) is shown 
in Table 1. 
 
Table 1: Description and range of attributes in the data set, N=311 908. 
Attribute Data type Range 
ID Integer 19 to 794 438 
Timestamp Text 21.03.2012 to 30.04.2014 
Vehicle length Floating point 102 to 2981 cm 
Lane Integer 1 or 2 
Vehicle speed Floating point 0 to 169 kph 
Vehicle weight Floating point 0 to 69 548 kg 
Number of axles Integer 2 to 11 
Validity code Text  
Lead vehicle ID Integer 19 to 794 436 
Lead vehicle speed Floating point 0 to 169 kph 
Lead vehicle weight Floating point 0 to 69 548 kg 
Lead vehicle length Floating point 102 to 2981 cm 
Time gap Floating point 0 to 530 331 s 
Air temperature Floating point -13.6 to 24.8 
Precipitation type Text Clear, Rain, Snow 
Precipitation intensity Text None, Low 0-1 (mm/10min), Moderate 1-5 

(mm/10min), High above 5 (mm/10min) 
Relative humidity Floating point 16 to 97 % 
Wind direction Integer 0 to 360 degrees 
Wind speed Floating point 0 to 23.1 m/s 
Road surface status Text Dry, Wet, Visible tracks, Snow covered 
Time of day Text Daylight, Night, Twilight 

2. Experimental Design, Materials and Methods 
The vehicle and weather detection equipment are placed close to each other at a rural two-lane road in 
Norway. The speed limit at the site is 80 kph. The traffic level at the site is quite low, with an AADT of 
about 2000. Located about 15 km from the city of Åndalsnes, the road is an important route for road 
transport between Oslo and the west coast. About 10 km further east, there is a climb of about 500 
meters for 25 km, which is quite steep. Still, there are no viable alternatives for heavy vehicles, so the 
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heavy vehicle percentage is about 10 %. The data was recorded between March 21th 2012 and April 30th 
2014, although not continuously. 
 

2.1  Observations 
The vehicle detectors measured speed, time, lane number, vehicle length, vehicle weight, and number 
of axles for each passing vehicle. From this data, it was possible to derive time gap and information 
about the lead and following vehicle. 

The roadside weather station measured meteorological data every 10 minutes, including precipitation 
intensity, precipitation type, air temperature, relative humidity, wind speed and wind direction. 

The weather station was also equipped with a camera which stored a picture of the road surface 
approximately every 10 minutes. These pictures were used to identify the road surface conditions. All 
pictures in the detection period were manually investigated to classify the road surface according to the 
categories 'dry', 'wet', 'snow covered' and 'visible tracks’ in snow, with the latter category meaning 
longitudinal bare strips on a surface otherwise covered by snow. The definition of snow cover is when 
the complete road surface is covered with snow. 

Using the spatial position of the detector site and the point in time for each vehicle detection event, the 
lighting condition was found by looking up in an ephemeris, which is an almanac for the movements of 
the celestial bodies. The specific ephemeris used was the PyEphem module available for Python [2]. It 
can be used to determine the sunrise and sunset at a specific place and time on the planet. The lighting 
conditions were categorised into daylight, twilight and night. Twilight was defined as the time period 
one hour before and one hour after both sunset and sunrise. 

2.2  Data join 
The following routine was used for creating the data set: 

1. Import vehicle observations into a PGSQL-database. 
2. Assign time of day to each observation  
3. Import weather data to another PGSQL-database. 
4. Join the two databases using the time of each vehicle event and each 10-min interval of weather 

data. 
5. Add information about the preceding vehicle (ID, speed, weight and length) 
6. Add information about road status information based on the manual classification of images. 

 
Supplementary Material 
The .csv file is available in the online version of this article. 
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The author would like to thank the Norwegian Public Roads Administration for access to data from the 
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A Transition from Car-Following to Vehicle-Following Model

Odd André Hjelkrem*1           Sebastian Nerem*2  

Norwegian University of Science and Technology *1
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(Postboks 626, 1303 Sandvika, +47 48607530, sebastian.nerem@norconsult.com)

The recent development in car-following behavior has turned the attention towards other vehicle types than cars, e.g., 
trucks, two- and three-wheelers. In this study, we propose that the next step in the evolution of both model framework 
and terminology should allow for the inclusion of other vehicle types. Our contribution is a modification of Gipps' car-

following model, resulting in a vehicle-following model. The main change is the addition of a vehicle property 
dependent parameter. The modified model yields a significant reduction in number of parameters to calibrate, yet being 
able to reproduce realistic driving behavior. A comparison to the original Gipps' model on selected areas show that the 

modification leads to slightly better results. Even more importantly, the calibration effort is greatly reduced, and the 
reduction increases for each vehicle type included in the model.

Keywords: Car-Following, Traffic flow, Trucks, Heterogeneous flow

1. Introduction

Car-following models aim to replicate the 
vehicle behavior when in the presence of a leader vehicle. 
They constitute central components in microscopic 
simulation software developed to simulate traffic in road 
networks. Recent advances in this field show an
increasing number of studies focusing on the role non-
car-vehicles have in traffic flow. When modelling 
heterogeneous traffic flow, the behavior of several 
vehicle types needs to be properly modelled. Differences 
in vehicle size and performance lead to behavioral 
differences. 

The size of a vehicle does affect the vehicle 
dynamics, as shown by [1]. They studied the acceleration 
properties of a vehicle related to the weight of the 
vehicle for trucks of different sizes. Their acceleration 
and deceleration tests showed that heavier vehicles have 
lower acceleration and deceleration capabilities. Other 
studies have investigated the effect of vehicle type on the 
time gap. [2] and [3] found results suggesting that 
vehicles follow trucks closer than cars. The explanation 
for this effect was that the increased distance when 
following a car gives the driver more information about 
the downstream flow, thus being capable of adjusting the
speed to downstream speed fluctuations. [4] developed a 
headway spacing estimation model based on vehicle 
weight data, showing that the headway increased with 
increasing vehicle weight.

Vehicle properties also affect other aspects of 
vehicular behavior, e.g. lane-changing behavior. [5]
argued that heavy vehicles have different properties than 
cars, and showed that the previous generation of lane-
changing models was insufficient for modelling heavy 

vehicles. They introduced a new model for heavy 
vehicles which was more accurate than the one used in 
the VISSIM microscopic simulation model at the time. 

[6] added a vehicle type parameter in Gipps' 
car-following model [7]. Their attempt was probably the 
first to model explicitly the effects of vehicle-type 
behavior, and the results showed an improvement in 
comparison to the original Gipps' model. [8] investigated 
the car-following behavior of heavy vehicles. They 
found that speed differences between follower and leader, 
as well as the acceleration of both vehicles were the most 
significant stimuli. They also state the need for 
incorporating heavy vehicle behavior in a car-following 
model. In a more recent paper, [9] implement their 
previous findings from [8] in a car-following model. 
Using a local linear model tree approach, the resulting 
car-following model was able to reproduce car-following 
behavior depending on the lead vehicle type.

The current state of the art shows that there is a
need for research on how car-following behavior is 
dependent on vehicle types, and how this can be 
implemented in microscopic simulation models. With 
the increase in road based freight transport, the 
interactions between vehicle types and the resulting 
effect on the traffic flow increase in importance. 
However, separating into vehicle types leads to a 
discrete distinction, with the risk of large variation in 
size and performance for vehicles within one vehicle 
type. We rather propose a redefinition of the concept by 
a change in the terminology from "car-following" to 
"vehicle-following". After all, the term "car"-following 
is used, even if the leader vehicle is a truck.  We add to 
the previous work by [9] and [6] by introducing vehicle-
property based parameters into Gipps' car-following 
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model, and thereby eliminating the need for vehicle 
types. The modification of Gipps' model is based on 
assumptions of heavy vehicle behavior, as well as 
relationships discovered in empirical data. The potential 
gain in this procedure, besides an improved vehicle 
behavioral model, is a reduction in calibration effort by 
reducing the total number of parameters in the model. 
The modified model is calibrated to behavior for a two-
lane road with a minimum of confounding elements,
such as intersections, grades, turns, traffic conditions etc. 
Finally the results from the modified model are 
compared to the results from the original Gipps' model.

2. Method

The car-following model developed by Gipps is one of 
the most extensively used car-following models. It is 
classified as a safety-distance model, meaning that 
modelled vehicles adjust their gap and speed to avoid a 
collision with any preceding vehicles [10].

According to Gipps' model, the speed of a 
vehicle is dependent on the vehicle status. In free flow, 
only the restrictions of the driver will affect the chosen 
speed, as there is no preceding vehicle to set restrictions. 
If the subject vehicle is driving at its desired speed, there 
is no need to change the speed, and it will maintain the 
desired speed until disturbed by other vehicles. The 
equation describing this behavior is formulated by Gipps 
as:

( + ) = ( )  +  2.5 1  ( )   0.025 + ( )  (1)

, where vn is the speed of vehicle n at time is 
the reaction time of the vehicle, an is the maximum 
acceleration which the driver of vehicle n wishes to 
undertake, and Vn is the desired speed of vehicle n. Note 
that when vn(t) equals Vn, vn equals vn(t), which 
implies a state of constant speed.

If the subject vehicle is following another 
vehicle, it is in the car-following regime, and the 
behavior is more complex. The vehicle will then have to 
react to the actions of the preceding vehicle in order to 
maintain a safe distance. The resulting behavior is 
described by Gipps as:

( + ) =  +  2[ ( ) ( )] ( ) ( )    (2)

Here, bn is the most severe braking that the driver of 
vehicle n wishes to undertake, xn-1(t) is the position of 
the front of vehicle n-1 at time t, vehicle n-1 is the 
preceding vehicle, sn is the effective size of vehicle n
(vehicle length plus an imagined safety distance) and  is 
the estimated deceleration of vehicle n-1.

2.1. Proposed Model structure

A typical use of Gipps' model would involve a 
calibration of the parameters an n, bn, sn-1 and  in
equations (1) and (2) for each vehicle type. In 
homogeneous flow this would not be a problem, but for 
heterogeneous flow, the calibration effort increases for 
each included vehicle type. Additionally, the effects of 
leader and follower vehicle type are only indirectly 
represented through sn-1 and  . Therefore, we propose to 
modify Gipps' model in order to deal with these two 
issues.

We chose to use the findings available in the 
literature as a starting point for the analysis. As 
previously mentioned, the weight of the vehicle is 
important for the braking ability. As shown by [1], the 
acceleration and deceleration properties are dependent 
on the gross vehicle weight (GVW). During deceleration, 

the vehicle mass will determine the force the braking 
systems need to oppose in order to achieve the desired 
deceleration. A high GVW results in a higher opposing 
force, which demands better braking capabilities. By 
using a parameter dependent on vehicle weight, there 
will be no use of vehicle types, because one set of 
parameters could be used for all vehicle types. 

Equally important, the other parameters do not 
affect the deceleration properties in the same way. The 
driver reaction time is assumed to be constant for all 
drivers, and hence not vary for heavy and light vehicles. 
The effective size could be used as a proxy for modelling 
the impact of weight on time gap, as an increase in size 
is the same as an increase in time gap seen from an 
observer's perspective. However, as the effective size is 
a fixed value for each vehicle, it will not affect the 
dynamical properties of the vehicle the same way as the 
deceleration parameter, as shown by [1].

There are three possible approaches for
introducing a vehicle specific parameter in the equations:
1. Add a new element to the equations where the new 

parameter is included. A new element can be added 
to one or both of the equations if the new parameter 
has direct influence on vehicle speed. The new 
element must be of unit meters per second, to be in 
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accordance with the remaining elements of the 
equation.

2. Multiply one or more of the existing elements with 
the new parameter, or a factor which is determined 
by a function of the new parameter. This is useful if 
the new parameter does not necessarily have a direct 
influence on the vehicle speed, but affects one or 
more of the other input parameters of the model.

3. Exchange one of the existing elements, which might 
be useful if it can be shown that the element in 
question contributes to incorrect vehicle behavior.

The second approach was chosen because there 
was limited data to support a direct influence of vehicle 
weight on vehicle speed in all situations. There was 
neither no evidence to support that one of the existing 
elements causes incorrect vehicle behavior. In order to 

achieve complete weight incorporation in Gipps’ model, 
the weight parameter needs to be introduced to both 
speed equations. We propose to introduce a new 
parameter n, which is affected by the GVW of vehicle n. 
During car-following, most vehicles will be constrained 
by equation (2), and we will therefore focus only on this 
equation for the remainder of the study. When a vehicle 
is not affected by preceding vehicles, it is assumed that 
the GVW is not important. Even though GVW will 
affect the acceleration-parameter, most of the time spent 
in free flow will be with constant speed, when on a 
straight road with no interfering factors. In the case of a 
vehicle driving uphill, the GVW will be very important 
for the choice of speed. This is however not in the scope 
of this study.

As a result of the inclusion of n, we propose 
the following equation for the modified Gipps' model:

( + ) =  +  2[ ( ) ( )] ( ) ( )    (3)

, where n is the GVW-coefficient of vehicle n and n-1 is 
the estimated GVW-coefficient of vehicle n-1. In order 
to determine the relationship between GVW and , a 
closer inspection of empirical data is necessary.

2.2. Data collection

As the study aims at investigating how well the model 
reproduces differences in driving behavior caused by 
vehicles’ weight, data from vehicles with many different 
gross weights is needed. In order to reduce uncertainty it 
is also desirable to obtain data from several vehicles with 
the same weight. Floating car data allows the researcher 
to analyze time series of data, but usually only a modest 
amount of data is collected because of the cost. In this 
study, we have used data collected at a weigh in motion 
(WIM) detector, which use piezoelectric sensors and 
inductive loops to measure the axle weight. The WIM 
detector used in this study also measured gap, which is 
the spacing between two preceding vehicles. 

There are several reasons for choosing data 
from this detector for the study. First, the data is 
available in very large amounts, and it is cheap to collect 
given that the detector is already installed. This results in 
a high number of observations for vehicles with all kind 
of weights. Second, we are able to measure the specific 
properties of each vehicle, such as weight, length and 
number of axles. Thus, we can validate the model for the 
whole weight scale instead of using a few probe vehicles. 
Third, we are measuring the speed and time gap, which 
are direct results from the car-following process. 

To ensure that the collected data really reflect 
car-following behavior, only time gaps lower than 6 
seconds were used in the study. The value of 6 seconds 
is based on previous studies reporting values between 2 

seconds and 6 seconds for the car-following threshold 
value [11]. A total of 247 645 vehicles were identified as 
being in the car-following regime. For each passing 
vehicle, the variables GVW, speed, time gap, length and 
time were detected. The flow rates were found by 
counting the number of vehicle observations in each lane 
in 15-minute intervals. It is assumed that observations 
from the two lanes are independent of each other. These 
values were then multiplied by four to find the 
equivalent hourly flow rate. No congestion occurred 
during the detection period, and most flow rates were 
below 1000 vehicles per hour. 

About 14 % of the vehicles were heavier than 
3500 kg, and thereby classified as heavy vehicles. Half 
of all heavy vehicles weighed more than 7500 kg, and 
the other half were between 3500 and 7500 kg. The 
relationship between GVW and time gap is shown in 
Figure 1. Here, the vehicles are sorted in GVW 
categories, and the average time gap for each category is 
plotted in the figure. We see that time gap increases for 
increasing GVW until 20 000 kg, where the curve 
flattens out.

The weight factor n has to represent how GVW 
affects the deceleration capabilities of vehicle n. Because 
we do not have detailed data about this relationship, we 
assume that the relationship between deceleration and 
GVW is of the same shape as the relationship between 
time gap and GVW. The reason for this assumption is 
that vehicles with lower deceleration capabilities will 
compensate by an increase in time gap. The weight 
factor n is therefore assumed to have the following 
relationship with GVW, based on a regression to a 
double exponential function:= ( ) + (1 ) ( ) (4)
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Here, c1, c2, and c3 are coefficients to be calibrated. The 
factor n is dimensionless, and the value determines the 
effect the vehicle weight has on the deceleration. c1 is 
also dimensionless, while c2, and c3 have unit kg-1. The 
interpretation of this is not intuitive. The constants can 
for example be regarded as parameters describing 
resistance in deceleration, or that the coefficients c2, and 
c3 are reference weights describing some extreme 
situation.

Figure 1. Relationship between GVW and average 
time gap, field data and fitted curve.

2.3. Implementation in a simulation model

Two models were made, one with the original 
Gipps' model implemented, and the other with the 
modified model implemented. The traffic in the original 
model was simulated with two vehicle types, cars and 
trucks. The modified model was simulated with one 
generic vehicle type, with a distribution of GVW in the 
vehicle generation sampled from the field data. Both the
original and modified models were simulated in a 
MATLAB-script. The model consisted of a straight 
section with vehicle generation at the beginning of the 
section. A detector area was defined at the end of the 
section, to simulate a loop detector. The distance from 
the beginning of the section to the detector area was set 
high enough so that steady state car following behavior 
would occur at the simulated detector, and not be 
influenced by the vehicle generating arrival distribution. 
Figure 2 show simulated vehicle trajectories for a time 
period of 4 minutes. It is clear that equation (1) and (2) 
are both employed in the model, as vehicles in the front 
of a platoon will have free flow behavior, and the 
following vehicles will have car following behavior.

In order to simulate for the same flow rates as 
the field data, the traffic flow at the input was varied 
from 200 to 1000 veh/h in 50 veh/h intervals. For each 
input flow rate, a satisfying number of replication was 
run, and the detector data was stored for the analysis. 

The simulation models were calibrated on both 
macroscopic and microscopic level. On the macroscopic 
level, the Root Mean Squared Percent Error (RMSP) 
developed by [12] was used to calibrate the speed-flow 
relationship. The RMSP should be as low as possible, 
preferably below 15 %. The input chosen for calibration 
was the desired speed, which was thought to have the 
most influence on the speed-flow relationship in 
uncongested flow. By using the Golden Selection Search 
Algorithm [13] for mean and standard deviation of the 
desired speed, the RMSP was calibrated to 0.5 % for cars 
and 0.9 % for trucks in the simulation with the original 
Gipps' model. For the modified model the corresponding 
value of RMSP was 0.55 %. Figure 3 shows the resulting 
speed-flow relationships compared to field data.

Figure 2. Vehicle trajectories from the model. 

On the microscopic level, the models were calibrated to 
replicate time gap distributions observed in the empirical 
data. If data from congested flow were available in the 
data set, we would be able to use the procedure 
presented by [14] to calibrate all input parameters in 
Gipps' model using macroscopic variables. Since this 
was not available, the parameters had to be manually 
calibrated. Although it is not necessarily an inadequate 
procedure, it is time consuming. Each input parameter 
was tuned carefully until the time gap distributions were 
in correspondence to the observed data. For each change 
in an input parameter, the macroscopic flow-speed 
relationship was checked for deviations. For the original 
model, one parameter set was calibrated for each vehicle 
type. For the modified model, only one parameter set 
had to be calibrated. The values of the calibrated 
parameters are shown in Table 1. We see that only 14 
parameters had to be calibrated in the modified model, as 
opposed to 23 in the original model. The reaction time is 
excluded from this number because it is not vehicle type 
differentiated.
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Figure 3. Speed-flow relationship for original model (left) and modified model (right) after calibration, 
compared to field data.

In the modified model, the vehicle length was 
determined using the vehicles' weight, which was picked 
from the weight distribution. The function was 
determined empirically, as the fitted curve shown in 
Figure 4. The curve was fitted with a second degree 
polynomial function shown with a black line in Figure 4. 
The function is shown in and Equation (5), where 
vehicle length l is given in meters and GVW in kg. The
fit of the polynomial had a R2 of 0.98.( ) = 5.88 10  + 0.0006 + 4.58       (5) 

A new data set was acquired for validating the 
calibrated models. The data was collected at the same 
site, but for a different time period. The RMSP for the 
speed-flow relationship between the validation data and 
the original and modified model was 0.75 % and 0.66 % 
respectively. These are almost the same values of RMSP 
as for the calibration, and the two models are therefore 
considered valid.

Figure 4. The relationship between vehicle length and 
vehicle weight for intervals of 500 kg.

Table 1. Calibrated parameters in the original and modified Gipps' model. Parameters without standard 
deviation were treated as constants in the simulations. The vehicle length was a function of GVW in the modified 
model.

Cars, original model Trucks,  original model Modified model
Parameter Symbol Unit Mean Std. 

dev.
Mean Std. 

dev.
Mean Std. dev.

Max acceleration an m/s2 3.0 0.2 1.0 0.5 3.0 0.2
Max deceleration bn m/s2 2.9 1.0 2.5 1.0 3.0 1.2
Veh. length ln m 5.5 0.9 10.8 5.0 f(GVW)
Eff. Veh. Length sn m ln +1.1 ln +1.0 ln +1.0
Desired speed Vn m/s 20.7 1.4 20.2 1.8 20.5 1.4
Estimated dec. m/s2 6.2 1.0 5.5 0.9 6.7 1.2
Reaction time s 0.8 0.8 0.8
Constant c1 0.78
Constant c2 kg-1 -9*10-7

Constant c3 kg-1 -2.5*10-4

105



3. Results from the simulations

In order to evaluate the modified model, some 
evaluation criteria had to be determined. This could be 
how an observed vehicle in the model reacts to different 
maneuvers performed by the downstream vehicle. 
Alternatively could one or more single variables be
compared. Based on the previously reviewed literature, 
acceleration rates, deceleration rates, and vehicle spacing 
seemed to be affected by the weight of the vehicle. 

These variables are thus eligible for comparison. 
Vehicle spacing was chosen as the main comparison 
variable. This is an important variable because it 
influences how much space one vehicle occupies on the 
road, which again is of importance when determining 
road capacity. In addition, vehicle spacing may be 
particularly relevant for an analysis of Gipps’ car-
following model, because it is a safety-distance model. 
The foundation, upon which this type of model is built, 
is the following distance to the vehicle ahead. 

Of the different kinds of spacing variables, 
time-gap is chosen for the comparison. The main reason 
is that this variable is independent of the length of the 
vehicle ahead, as opposed to the headway. Secondly, 
time-gap is advantageous over space-gap because it 
includes the vehicle’s speed. It could be argued that 
headways should be chosen over time-gaps, as vehicle 
length also influences how much space a vehicle 
occupies on the road. However, when analyzing 
potential deviations between headways collected in the 
field and from the model, it may be difficult to determine 
whether the source of error is the vehicle length or the 
vehicle spacing. Of the two variables, only gap is solely 
a result of driving behavior. 

As it was implemented in the modified model 
that the weight of the downstream vehicle should affect 
the estimated deceleration of the downstream vehicle, it 
is interesting to investigate whether this has had any 
effect. Therefore the vehicle spacing is also grouped by 
different pairs of leader and follower vehicles.

The cumulative distribution function of time 
gap for different weight groups is shown in Figure 5. 
Field data as well as results from both the original and 
modified model are included in the figures. For vehicle 
weight categories between 0 kg and 10 000 kg, we see 
that both the original and modified model produce 
results which are quite close to the field data. For vehicle 
weights above 10 000 kg, the modified model produces 
more accurate distributions, while the original model 
underestimates the lengths of the time gaps.

Goodness of fit tests were applied on the time
gap distributions for heavy vehicles in the original and 

2-test was run with the null 
hypothesis being that the time gap distribution from the 
model is equal to the time gap distribution from the field 
data. The alternative hypothesis was that the time gap 

2–value is 
higher than a critical value, the null hypothesis is 

rejected. With a significance level of 0.05 and 11 bins in 
the distributions, the critical value was 18.31.

Figure 5. Cumulative distribution of time gaps in the 
car-following regime for vehicles in different weight 
groups for the original and modified model, 
compared to field data.

In Table 2, we see that the null hypothesis is 
rejected for all comparisons at a 0.05 level of 
significance. The table does however show that the 

2–values than the 
original model, and thus closer to the critical value. This 
supports that the modified model provides a better fit for 
the time gap distributions of heavy vehicles than the 
original model.

Table 2. 2–test for comparisons to 
time gap distributions from field data.
Weight category 2 Original 

model
2 Modified 

model
3500-10,000 kg 254 122
10,000-20,000 kg 826 32
20,000-30,000 kg 1310 31
30,000-40,000 kg 1610 24
40,000-50,000 kg 1598 26

The modified model includes the GVW of the 
preceding vehicle by multiplying  with n-1. It was 
therefore investigated whether the modified model 
improves the accuracy of time gaps between different 
pairs of leader and follower vehicles where one or both 
are heavy. The different pairs of vehicles which were 
compared are: car–car (leader–follower), car–heavy 
vehicle, heavy vehicle–car, and heavy vehicle–heavy 
vehicle. 
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Figure 6. Cumulative distributions of time gaps in the 
car-following regime grouped by leader-follower 
vehicle pairs.

Figure 6 shows the cumulative distributions of 
time gaps sorted by pairs of leader and follower vehicle. 
The top right graph shows that both the original and the 
modified model produce accurate results for the case 
where a heavy vehicle follows a car. In situations where 
car follows car and car follows a heavy vehicle, the 
modified model produces a better fit than the original 
model. For the case of heavy vehicle following heavy 
vehicle there does not seem to be a considerable 
difference between the two models. In all cases of 
deviation the distribution curve is shifted to the right, 
meaning that the lengths of time gaps are underestimated. 

For the sake of comparison, the average time 
gap was calculated for each time gap distribution, and 
compared to the average time gap in the field data. The 
results are shown in Table 3, and they are quite similar to 
the findings in Figure 6. The lowest deviation is found 
for heavy vehicle following car, and the largest 
improvement is found for car following heavy vehicle. 
The improvement for heavy vehicle following heavy 
vehicle is 0.1 %, and is not considered to be of 
significance. The largest deviations for the modified 
model are found in the cases where a heavy vehicle is 
the leader. This may be an indication that the same 
constants in the function determining the weight 
dependent reduction factor should not be used for both 
bn and  .
Table 3. Deviations from average time gap in the car-
following regime measured in the field data.
Vehicle pair Original 

model
Modified 
model

Car - Car -3.4% 0.7%
Car - Heavy vehicle -1.7% -0.3%
Heavy vehicle - Car -10.4% -5.6%
Heavy vehicle -Heavy vehicle -5.3% -5.2%

4. Discussion of results

The results revealed several important findings. 
It is clear that there is a potential gain in further 
developing vehicular models, especially for
heterogeneous traffic. By reducing the number of 
parameters to calibrate from 23 to 14, we show that the 
calibration task can be decreased, and the savings are 
larger the more vehicle types originally modelled. The 
results show that the parameter reduction does not 
compromise the ability to predict vehicle behavior, and 
in some cases even improve it. However, the study 
revealed some issues to be discussed.   

The calibration task was performed with 
extensive data about the vehicle weight distribution at 
the model area. As WIM-sites are not very common, it 
could be difficult to calibrate a similar model with 
heterogeneous flow without such data. One could argue 
that average weight distributions which are assumed to 
be present on different road types could be used instead 
of weight data, but this would presumably impede the 
calibration.

The data used for the study is not without noise. 
There may be systematic errors such as overestimating 
vehicle weights, but this should be possible to 
compensate by changing the constants in the modified 
model. The large number of observations means that it is 
impossible to manually validate each data entry. 
Therefore, some false registrations might not have been 
spotted. However, the high number of observations 
should reduce the significance of such errors.

There are some limitations in the data set used. 
First, the choice of using point data instead of time series 
data introduces some uncertainties. The calibrated 
acceleration parameters were not compared to real 
deceleration and acceleration rates. This would certainly 
improve the quality of the study, but time series data 
from enough vehicles from the whole spectra of GVW is 
much more difficult to collect than the data used in this 
study. Second, the data is from a rural two-lane road 
only. There are certainly other locations with different 
road and traffic characteristics which would be 
interesting to include in the analysis, e.g. congested flow, 
hills, curves, urban areas, adverse weather. An important 
reason for this limitation is that WIM-detectors are 
usually placed on locations where there are no 
confounding factors, which means that other data 
collection methods should be used for further research.

There might be better ways to incorporate the 
effect of vehicle size in Gipps' model. We proposed 
three options, but only had the data to explore one of 
these. The implementation of the modified model was 
made on the assumption of declining deceleration rate 
for increasing GVW. Even though this assumption is 
supported on literature, there might be other unknown 
factors affecting the relationship between spacing and 
GVW. 
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There might be other types of vehicle behavior 
affecting the vehicle-following model. Including the 
model in microscopic simulation software would also be 
of interest, as this will show how well the model 
performs together with other types of models, such as 
lane-change models. It is not known either if the 
reduction of parameters limits the use of Gipps' model. It 
must though be expected that some degrees of freedom 
is lost, when a model is simplified. In the longer term, a 
similar analysis can be performed for other car-following 
models. This may show if some models are better fitted 
for weight incorporation than others.

The data collected for the study describe the 
behavior of Norwegian drivers, which may behave 
differently than drivers with other nationalities. A similar 
data set from drivers of other nationalities, or even from 
other parts of Norway, may produce different results. 
Although the data might differ between countries, it is 
not obvious that the relationship between vehicle-
following behavior and vehicle properties will. The 
implementation of GVW in Gipps' model suggests that 
vehicle properties affect the behavior, and vehicles on 
Norwegian roads are not very different from vehicles in 
other similar countries.

5. Conclusion

This was an initial study in the attempt of 
improving vehicle-following models in heterogeneous 
traffic flow. The purpose was to modify Gipps' car-
following model in order for it to better reproduce 
observed behavior in heterogeneous traffic, and to 
reduce the calibration effort. By introducing a parameter 
, which is determined on the basis of the vehicle weight, 

we were able to fulfil these goals. The following can be 
concluded:
1. When GVW is included in the model, the time gap 

distributions fit slightly better than with the original 
model.

2. The calibration effort is significantly reduced, and 
the reduction is greater for each additional vehicle 
type included in a simulation with Gipps' original 
model.
These results are useful for simulations with 

heterogeneous flow. However, several important topics 
are to be addressed before the modified model can be 
implemented, and which should be addressed in future 
research.

We propose to collect more data about heavy 
vehicle car following behavior to test the modified 
model in other cases, especially for congested traffic. As 
loop detectors are known to have issues with detecting 
slow moving vehicles, floating car data could be a better 
option. However, this type of data collection is resource 
demanding, especially because of the need of vehicles 
with a large variation in GVW.

We also propose to collect data about the 
relationship between deceleration and GVW in order to 

verify the impact of the weight factor . In this study, it 
is assumed that this relationship is equal in shape as the 
relationship between time gap and GVW. By performing 
deceleration tests of vehicles with different GVW, it is 
possible to define this relationship more accurate. If the 
performance tests are also done on varying surface 
conditions, it is possible to simulate different weather 
conditions, as the behavior changes whether the surface 
is dry, wet or even icy.
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