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Abstract

Understanding the properties of magnetic structures confined to nanoscale
dimensions is of both fundamental interest, as well as of importance for the
development of modern electronics technology. With the ever increasing
demand for downsizing devices, understanding how the magnetic properties
might change when confined to the nanoscale is of great importance. At
the same time, the desire for faster operation of devices also decreases the
relevant timescales of the system. Thus, a fundamental understanding of
the magnetodynamic properties of nanostructures is crucial.

In this thesis I have investigated the magnetodynamic properties of
various systems, ranging from thin films to that of confined magnetic el-
ements with lateral dimensions on the nanometer scale. One of the key
experimental techniques utilized is that of ferromagnetic resonance (FMR)
spectroscopy, which forms the experimental basis of this thesis. The investi-
gations have been performed through a combination of FMR spectroscopy,
numerical simulations as well as simplified analytical models.

A common theme in several of the papers of the thesis is the role of
”effective magnetic fields”, and how this determines the magnetization dy-
namics. This being in the form of additional Oersted fields due to induced
microwave eddy currents (papers II and III), ”anisotropy fields” from mag-
netocrystalline and shape anisotropies (paper IV) and the magnetic dipolar
coupling in arrays of spin-torque oscillators (paper V). For further details,
I have introduced the various research topics of the thesis in addition to a
summary of the main results in chapter 5.
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Preface

This thesis is submitted to the Norwegian University of Science and Tech-
nology (NTNU) for partial fulfillment of the requirements for the degree
Philosophiae Doctor (PhD). It is based on 5 published papers investigating
the magnetization dynamics of magnetic thin films and nanostructures.

This work has been carried out at the Department of Physics at NTNU,
under the supervision of Professor Erik Wahlström and co-supervision of
Professor Arne Brataas.

Trondheim, 28.09.2016

Vegard Flovik
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Chapter 1

Introduction

Magnetism is something which, on some level, is probably known to all of us.
At some point or another in their childhood, most kids have tried playing
around with small magnets. How could it be that placing two magnets
together, one feels either a repelling or attractive force? They do not even
touch each other, so how could they exert this kind of invisible force as you
try to put them closer together or pull them apart? The fascination of these
”invisible forces” between magnets is something which is truly enchanting,
and might even seem like some kind of magic. Little did I know, playing
around with magnets as a child, that I would still be doing essentially the
same thing at this age. Although, as I have grown larger, the magnets I
play with have become smaller. While my fascination with magnetism is
still present, my understanding of these phenomena has fortunately evolved
quite a bit, and the explanation of magnetism as some kind of magic has
been replaced by a more physically correct picture.

The fascination with magnetic phenomena is something which has oc-
cupied mankind for ages. ”Understanding” magnetism however, is not at
all a trivial task. Magnetism, in the form most of us know it, is a macro-
scopic manifestation of purely quantum mechanical effects. It is not sur-
prising then, that mankind’s understanding of magnetic phenomena has
taken quite some time to reach the current level of knowledge.

1
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The beginning,

The observation of the most primitive magnetic phenomena, like the at-
traction of iron to naturally occurring magnetite, Fe3O4, has undoubtedly
been observed already before recorded history began. Other than simple
observations, the exact time and place for the first use of magnetite for
functional purposes remains unclear. It is however clear that by the 12th
century, the magnetic compass had gained widespread use in western Eu-
rope. This eased significantly the navigation at sea, and provided a name
for the magnetic mineral that would stick for centuries; lodestone, origi-
nated from middle English for course stone, or leading stone.

In addition to the application prospects, being able to actually explain
the magnetic phenomena is at the heart of scientific curiosity. The first
scientific discussion on magnetism has been attributed to Thales of Miletus,
one of the Greek philosophers who lived from about 625 BC to 545 BC.
According to Thales, the magnetic attraction was due to the fact that
magnetite has a soul. The magnetite caused movement of Iron, and at the
time, the view was that movement of any kind would indicate life, or a soul.

...the present

Since then, our understanding of magnetism has fortunately evolved quite
a bit, and the incorporation of technology based on magnetic phenomena
has completely revolutionized our society. Examples such as the electric
motor, power generators and transformers are all based on understanding
magnetic phenomena, and technology we all take for granted would not
exist if it were not for the combined effort and hard work of scientists over
the last centuries.

Magnetism is one of the oldest scientific disciplines, but one also at
the forefront of the emerging nanotechnology era. The IT revolution has
been made possible by intensive research on magnetic phenomena, and
research on magnetic storage devices resulted in the discovery of the giant
magnetoresistance effect, GMR. This discovery awarded Albert Fert and
Peter Grünberg the 2007 Nobel prize in physics [8]. In addition to being
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interesting from a physics viewpoint, the GMR effect has several important
applications in e.g. magnetic field sensors in hard disc drives, biosensors,
microelectromechanical systems (MEMS) and other devices [9]. Subsequent
discoveries led to the realization that both spin and charge properties of
electrons could be utilized in electronic circuits, leading to the development
of the research field of spintronics, i.e. spin-electronics [10, 11].

The ever increasing demand for processing power and storage led to the
famous Moore‘s ”law” of exponentially increasing transistor density. This
is named after Gordon Moore, co-founder of Intel, who in 1965 observed
an exponential increase in the number of components per integrated circuit
[12]. His initial prediction that this would continue for at least another
decade actually proved to be accurate for several decades, and only in
recent years the pace of advancement has started to slow down.

The increase in transistor density is necessarily accompanied by a cor-
responding scaling in the size of the components. This shrinking process of
magnetic devices has continued past the length scales of the macroscopic
world, and has entered the realms of nanoscale dimensions. In the words
of the famous lecture by Richard Feynman at Caltech in 1959, ”There is
plenty of room at the bottom”. With the desire of shrinking devices to the
nanoscale, it also becomes important to consider how this can affect the
devices properties. One concern in the context of magnetic memory, is that
of the ”superparamagnetic limit”. When shrinking magnetic devices, the
influence of thermal fluctuations becomes increasingly important. At a cer-
tain limit, thermal fluctuations become greater than the energy required for
changing the state of the magnetic bit, thus effectively erasing the stored
information [13].

...and the future

Rather then just keeping on shrinking the devices, these limitations im-
pose the need of thinking of more ingenious ways of designing them and
how one could utilize other physical effects in obtaining this. One such
approach is e.g. the replacement of the power-consuming magnetic-field
based bit-writing by using the less intrusive spin-transfer torque effect [14].
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This enables switching of the magnetization by the transfer of spin angular
momentum through spin currents, and is the governing principle behind
the development of Magnetic Random Access Memory, or MRAM [18].

Other possibilities includes rethinking how logic and data storage can
be implemented. An emerging field of magnetism is that of magnonics [19].
Magnonics combines waves and magnetism, with the aim of investigating
the behavior of spin waves in magnetic nanostructures. There is much
interest in utilizing spin waves for things such as magnonic logic and data
storage schemes, and follows the success of the modern hard disk. The
research on these topics is concerned with the behavior of the magnetization
when confined to very small length scales and very fast timescales, and
improved understanding of these phenomena might lead to improvement of
existing technologies, or generate new technology and computing concepts.

Another recent prospect, is that of bio-inspired computing. Here, re-
searchers look to nature for inspiration in the development of bio-inspired
chips based on natural computing architectures [20]. The brain, and biolog-
ical systems in general, are able to perform high performance calculations
with much higher efficiency than computers, and they do it quickly and with
very low energy consumption. Interestingly, recent advances in nanotech-
nology and materials science finally make it possible to envisage designing
and building networks based on multifunctional nanodevices approaching
the complexity of biological systems [20].

This thesis:

The IT revolution has been made possible by intensive research on mag-
netism, and continued efforts on the investigations of novel magnetic phe-
nomena will likely lead to new and exciting technologies in the years to
come. Common for all these emerging technologies, is the need for un-
derstanding the fundamental behavior of the magnetization dynamics in
systems confined to nanoscale dimensions.

This is also the common ground for the work that forms the basis of
this thesis, with the title: ”Magnetization dynamics in nanostructures”.
The thesis consists of a collection of work performed on various systems,



5

but with the overall aim of providing new knowledge on the magnetization
dynamics in systems confined to nanoscale dimensions.

The thesis is structured as follows: I begin with a review on the funda-
mentals of magnetism, with special emphasis on magnetization dynamics.
I then continue with an introduction to performing micromagnetic simula-
tions, as well as the main experimental techniques utilized during the course
of my PhD. In the following chapters, I provide a general overview of the
main research topics and explain how the findings presented in this thesis
are relevant with respect to ongoing research. Finally, I have appended the
published papers that resulted from my PhD.
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Chapter 2

Fundamentals of magnetism

This chapter aims to provide a general introduction to magnetism and
magnetization dynamics. There are a lot of good introductory textbooks
covering the fundamentals of magnetism and electromagnetism. With focus
on the foundations of solid state physics, we have e.g. the classical text-
books Introduction to solid state physics [21] by C. Kittel and Solid State
Physics [22] by N. W. Ashcroft & N. D. Mermin. Among books on general
electromagnetism we have e.g. Introduction to Electrodynamics [23] by J.
D. Griffiths and Classical Electrodynamics [24] by J. D. Jackson. The focus
of this thesis is more specifically on magnetism on the nanoscale and mag-
netization dynamics, and some nice textbooks on these subjects are e.g.
Magnetism: From fundamentals to Nanoscale Dynamics [13] by J. Stöhr
and H. C. Siegman and Magnetization Oscillations and Waves [25] by A.
G. Gurevich and G. A. Melkov.

The examples listed above are all books I have used during the course
of my studies, and the content of these books forms the backbone of the
following chapter, introducing the fundamentals of magnetism and magne-
tization dynamics.

7
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2.1 Magnetic interaction energies

The following sections provide an introduction to the main magnetic in-
teraction energies, namely exchange, Zeeman, magnetostatic and magne-
tocrystalline anisotropy. Emphasis is put on the implications of the various
energy terms for magnetic systems confined to the nanoscale, and outcomes
such as the formation of magnetic domains are introduced. By analyzing
the interplay between the various energy terms, one can obtain important
understanding on the properties of nanoscale magnetic systems.

2.1.1 Exchange energy

The exchange interaction is a quantum mechanical effect determined by the
Pauli exclusion principle and the electrostatic Coulomb interaction, and is
the fundamental force responsible for long range magnetic ordering [22]. In
the Heisenberg model of magnetism, the exchange energy is given by:

Eex = −1
2
∑

i<j

JijSi · Sj . (2.1)

Here, Jij is the exchange integral representing the energy difference between
parallel and anti-parallel states for the nearest neighbor spins Si and Sj .
The exchange energy given by Eq. (2.1) is isotropic, and depends only on
the relative orientation of the neighboring spins.

Ferromagnetic materials are characterized by a positive exchange in-
tegral, Jij > 0, favoring the alignment of neighboring spins, resulting in
a ferromagnetic (FM) order. Antiferromagnetic (AFM) materials on the
other hand, are characterized by a negative exchange integral, favoring
anti-parallel alignment of neighboring spins. The difference between ferro-
magnetic and antiferromagnetic ordering is illustrated in Fig. 2.1. Thermal
fluctuations can also affect the magnetic state, and at sufficiently high
temperatures they will break the long range magnetic ordering. As the
exchange interaction is the fundamental mechanism behind magnetic or-
dering, the magnitude of the exchange integral will determine this critical
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Figure 2.1: Illustration of Ferromagnetic (FM) and Antiferromagnetic (AFM) ordering
below Tc and TN respectively, depending on the sign of the exchange integral J . Above
a critical temperature, where the thermal energy surpasses the exchange energy, spin
fluctuations prevent long range order.

temperature, named the Curie temperature (TC) for the FM state and the
Néel temperature (TN) for the AFM state.

Going from the discrete case of individual spins to a macroscopic treat-
ment where the magnetization is treated as a continuous vector field rather
than the sum of quantized magnetic moments, one can write the exchange
energy through a phenomenological continuum description [26]:

Eexch = A

M2

∫
(∇ ·M)2 dV. (2.2)

Here, the constant A represents the exchange stiffness, which is a function
of the exchange integral. Although the exchange interaction is strong, it is
very local as it is determined by the overlap of the electron wave functions.
As we shall see, other contributions to the magnetic energy will become
gradually more important as we increase the system size from a few spins
to the macroscopic scale [26]. This will also be discussed further in sections
2.1.5 and 2.1.6

2.1.2 Zeeman energy
The Zeeman energy is the interaction energy between a magnetized body
and any external magnetic field, and it exerts a torque on the magnetic
moment which minimizes the energy when aligned parallel to the applied
field, Hext. For a FM with a local magnetization M, the Zeeman energy is
given by an integral over the magnetized body:
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EZeeman = −µ0

∫

V
Hext ·M dV, (2.3)

where µ0 is the vacuum permeability.
The Zeeman interaction makes it possible to manipulate the magnetic

state by applying an external magnetic field. This allows for an exter-
nal switching mechanism, which is of great importance for applications
in magnetic storage devices and is used in e.g. write heads on hard disc
drives [27]. As we shall see in section 2.2.8, new technologies replacing the
magnetic-field based bit-writing by using the less intrusive spin-transfer
torque effect is also under development [18]. This allows for controlling
the magnetic state locally, compared to classical memory storage which use
external magnetic fields.

2.1.3 Demagnetization energy

At the surface of a magnetized body the magnetization M is suddenly
reduced to zero, and there is a non-zero divergence at the surface, ∇ ·M 6=
0. Through Gauss‘ law of flux conservation (∇ · B = 0) combined with
B = (H + M), this also causes a divergence of H:

∇ ·H = −∇ ·M. (2.4)

The result of this can be modeled as a magnetic field arising from magnetic
poles located at the sample surface where ∇ ·M 6= 0. The magnetic field
caused by this divergence is from heron referred to as the demagnetization
field, HD. The energy associated with this field originates from Eq. (2.3),
and is called the demagnetization energy:

Edemag = −µ0
2

∫

V
HD ·M dV, (2.5)

where a factor of 2 has been introduced to avoid double counting of the
interaction between two magnetic dipoles.
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The demagnetization energy depends on both sample geometry and on the
magnetic state. For an arbitrarily shaped magnetic body, the demagnetiza-
tion field generally shows a complex dependence on position, complicating
the calculation of the demagnetization energy. The concentration of the
magnetic poles depends on the direction of the magnetization. If the mag-
netization is oriented along the longest axis of the magnetized body, the
poles are spread across a smaller surface, resulting in a lower demagnetiza-
tion energy. This is a form of magnetic anisotropy called shape anisotropy,
and is illustrated in Fig 2.2a for the case of an elliptical ferromagnet (FM).

This dependence on geometry is normally given by a demagnetization
tensor N̂, such that HD = −N̂ ·M. Calculating the demagnetization tensor
for an arbitrarily shaped FM is demanding, and a numerical approach is
generally needed. However, for the special case of ellipsoids the demagneti-
zation field is linearly related to the magnetization by a geometry dependent
constant called the demagnetization factor.

Figure 2.2: a) Illustration of the magnetic surface charges (positive and negative respec-
tively) at the surface of a single domain elliptical FM. The direction of the magnetization
is given by M and the demagnetization field by HD b) Field and sample geometry for a
FM with an external field H and magnetization M.
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For an ellipsoid with principal axes aligned along the (x,y,z) coordinate
axes, as illustrated in Fig 2.2b, the demagnetization tensor simplifies to
only diagonal elements Nx, Ny and Nz, where Nx + Ny + Nz = 1. From
the sample geometry illustrated in Fig. 2.2b (magnetic element in the x-y
plane), one gets:

Mx = Ms sin θ cosφ
My = Ms sin θ sinφ
Mz = Ms cos θ.

(2.6)

This yields the demagnetization energy per volume for an ellipsoid:

EDemag = µ0
2 [NxMx

2 +NyMy
2 +NzMz

2]

= µ0Ms
2

2
[
Nx sin2 θ cos2 φ+Ny sin2 θ sin2 φ+Nz cos2 θ

]
.

(2.7)

This expression contains the three extremities of a sphere (all axis equal
length, Nx = Ny = Nz = 1/3), infinite circular cylinder (one axis infinite,
Nx = 0, Ny = Nz = 1/2), and a plane (two axis infinite, Nx = Ny = 0, Nz =
1). In particular the approximation for a plane works very well for thin
films, where the thickness is minute compared to the lateral dimensions.

2.1.4 Magnetocrystalline anisotropy energy
Crystalline ferromagnets are generally not isotropic, and the magnetiza-
tion tends to prefer aligning along certain crystallographic axes referred to
as so-called ”easy axes”. This energy contribution is named the magne-
tocrystalline anisotropy energy, and is defined through the energy required
to rotate the magnetization away from an ”easy axis”. The magnetocrys-
talline anisotropy results from the spin-orbit interaction, and depends on
the orientation of the electron spins relative to the crystallographic axes
of the material. Given the crystalline origin, the anisotropy energy should
reflect the lattice symmetry. This is normally done by an expansion of the
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directional cosines of the magnetization unit vector, m = M/Ms, along
the x, y and z axis, and is here denoted the m1,m2 and m3 component
respectively.

As an example consider Iron (Fe), which has a cubic crystalline anisotropy
[28]. The anisotropy energy is symmetric under magnetization inversion,
and the expansion of the directional cosines is limited to even orders of mi.
From the sample geometry defined in Fig. 2.2b, one obtains to the lowest
order:

EAnis = K1[m2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1] +K2[m1m2m3]2

≈ K1
[

sin4 θ sin2 φ cos2 φ+ sin2 θ sin2 φ cos2 θ + sin2 θ cos2 φ cos2 θ
]
,

(2.8)

where K1 and K2 represent material specific anisotropy constants. For Fe
the K1 term dominates [28], and as a simplification the K2 term can be
neglected.

2.1.5 Magnetic domains
A macroscopic ferromagnet does not generally consist of a single uniformly
magnetized domain. Due to the complex interplay of the various energy
terms introduced in the previous sections, the ferromagnet might minimize
the energy by forming multiple domains with different magnetization di-
rections. The progressive introduction of domains (Fig. 2.3a) reduces the
number of surface poles and demagnetization energy (as illustrated previ-
ously in Fig. 2.2a).

The domain formation will also be influenced by magnetocrystalline
anisotropy, and the domains tend to be oriented along the easy axes of the
system. The transition between two domains with different orientation of
the magnetization is characterized by a region with a spatial spin rotation,
called a domain wall. This domain wall region is governed by a competition
between the demagnetization and exchange energies. On the one hand, an
abrupt realignment of the spins at the boundary between two domains is
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Figure 2.3: a) The formation of multiple domains results from energy minimization of
the contributions from the exchange energy and demagnetization energy. b) Zoom in of
a 180 degree domain wall region, showing examples of the two main groups of domain
walls referred to as Bloch type and Néel type respectively.

not favorable due to the strong exchange interaction. On the other hand, a
slowly varying spin orientation can be costly in terms of magnetocrystalline
and magnetostatic energies. This competition can be expressed through a
characteristic length scale, which determines the crossover from a regime
where one or the other energy term dominates. This length scale is referred
to as the exchange length, lex, determined by the ratio between the exchange
stiffness A and either the magnetocrystalline or demagnetization energy
density, here represented by K [29]:

lex =
√
A/K (2.9)

As an example we here consider iron, using standard literature values with
an exchange stiffness of A = 21 × 10−12 J/m and a crystalline anisotropy
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constant of K1 = 4.3× 104 J/m3. An upper limit for the demagnetization
energy is given by 1

2µ0M2
s , with a saturation magnetization Ms = 1.7 ×

106 A/m. These material parameters result in the characteristic magnetic
length scales of the system, lex = 21 nm and 3.5 nm for the crystalline and
demagnetization energy respectively. Another example is Permalloy, which
has a negligible magnetocrystalline anisotropy. In this case, the exchange
length is determined by the demagnetization energy and one obtains lex = 5
nm [30].

Magnetic domain walls can be divided into two main groups, Bloch and
Néel type respectively, depending on how the magnetization rotates from
one domain to the other. These types of domain walls are illustrated in
Fig. 2.3b, where the Bloch type wall is characterized by a spin rotation
in the plane of the domain wall, with a wall width commonly defined as
w = π

√
A/K [30]. This kind of domain wall is typically found in bulk ferro-

magnets, where the magnetostatic energy due to stray fields at the sample
surface is negligible. However, as the Block wall induces surface charges by
its stray field, the Néel wall becomes favorable when the film thickness be-
comes smaller than the wall width and the magnetostatic energy from stray
fields at the surface is considerable. In cases where the energy of forming
a domain wall is greater than the demagnetization energy, the result is a
single domain state. This is typically the case for small ferromagnets with
a size of the same order as the exchange length lex, which sets the length
scale of the domain wall width.

2.1.6 Total free-energy density

One can learn a lot about the properties of magnetic systems by analyzing
the interplay between the various energy terms introduced in the previous
sections. As an example, consider here a small Fe ellipse. Due to the size
and shape of the ellipse, the magnetic element is considered to be in a
single domain state (as discussed in section 2.1.5). Having a single domain
state allows for using an analytical macrospin model, where the exchange
energy is not considered. One can then calculate the free-energy density
of the system by adding up the various energy terms, which is given by
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Etot = EZeeman + EDemag + EAnis. After adding the terms, one can write
the total free-energy density as:

Etot = −MsH0 sin θ cos(φ− φH)

+ µ0Ms
2

2

[
sin2 θ cos2 φ

(
Nx + 2K1

µ0M2
s

sin2 θ sin2 φ

)

+ sin2 θ sin2 φ

(
Ny + 2K1

µ0M2
s

cos2 θ

)

+ cos2 θ

(
Nz + 2K1

µ0M2
s

sin2 θ cos2 φ

)]
,

(2.10)

where the units for the saturation magnetization and magnetic field are
[Ms ] = A/m and [H0] = T respectively. Eq. (2.10) describes a complex
energy landscape, with competing energies from the various terms.

The free-energy density for a 10 nm thick Fe film for the case of a
continuous film as well as ellipses of varying lateral dimensions is shown
in Fig. 2.4. This indicates how the free-energy density changes when one
gradually reduces the size of the ellipse from the upper limit of a continuous
film, to an ellipse of dimensions 50×150 nm. As expected, one notices that
in all cases the magnetization favors an orientation in the sample plane
(θ = 90, from sample geometry as defined in Fig. 2.2b).

For the continuous film and the largest ellipse in Fig. 2.4a and b, one can
clearly see the dominating crystalline anisotropy, with a four-fold symmetry
between the energy minima along the φ axis. In the intermediate case of
an ellipse of dimensions 150× 450 nm in Fig. 2.4c, one has two dominating
energy minima at φ = 0 and φ = 180 (magnetization oriented along the
long axis of the ellipse). In addition, there is a quite flat saddle point at
φ = 90 (and φ = 270, not included in the figure) which corresponds to
the magnetization oriented along the short axis of the ellipse. These are
not stable energy minima, but the flatness of the saddle point means that
applying a small magnetic field along this axis will create a local energy
minimum along this direction. For the smallest ellipse, in Fig. 2.4d, the
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Figure 2.4: Free-energy density given by Eq. (2.10) for a) continuous film, b) 500×1500
nm ellipse, c) 150 × 450 nm ellipse, d) 50 × 150 nm ellipse. Film thickness is 10 nm in
all cases. (Figure from paper IV of the thesis)

energy landscape is dominated by the two-fold shape anisotropy along the
long axis of the ellipse. To align the magnetization along the short axis of
the ellipse (φ = 90) will thus require a quite large external magnetic field.

For a more detailed discussion on the interplay between the various
energy terms, I refer to paper IV of the thesis where we investigate how the
interplay between magnetocrystalline and shape anisotropies can be used
to tailor the magnetodynamic properties of nanomagnets.
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2.2 Magnetization dynamics

In the following sections I aim to introduce the fundamentals of magneti-
zation dynamics, which is the common ground for the work that forms the
basis of this thesis. Understanding the magnetization dynamics is impor-
tant for modern world applications of magnetic phenomena, such as e.g.
microwave oscillators. It is also playing an increasingly important role in
”static” devices, as the switching times of current applications in e.g. mag-
netic memory approach the sub-ns regime where the intrinsic time scale of
the magnetization dynamics is defined by the gyrotropic precession of the
individual magnetic moments.

The electron spin is only fully described through quantum mechanics.
However, for most purposes a quasi classical macroscopic approach is suf-
ficient. We begin by considering a single electron spin in a static magnetic
field, before dealing with the collective behavior of a collection of spins
which make up the magnetization dynamics in a ferromagnet. The concept
of ferromagnetic resonance is introduced, starting with the simplest case
assuming a uniform spin precession. The case of inhomogeneous spin pre-
cession, spin waves, is then introduced before proceeding with a discussion
on the magnetodynamic damping. Finally, I end this chapter with a brief
discussion on the interplay between charge and spin degrees of freedom of
electrons, and the spin-transfer torque effect.

2.2.1 Larmor precession

The energy of a single electron spin in a static magnetic field H, is given
by the Zeeman energy as:

Es = −µs ·H, (2.11)

where µs is the magnetic moment of the electron spin. From energy min-
imization, this results in the spin aligning with the magnetic field. The
magnetic moment of the electron is related to the spin angular momentum
S:
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µs = −γsS, (2.12)

where γs is the gyromagnetic ratio given by γs = gse/2me. Here, e is the
electron charge, gs the electron spin g-factor and me the electron mass.
However, the static magnetic field also exerts a torque τ on this magnetic
moment, which is given by [22]:

τ = µs ×H. (2.13)

As the torque is equal to the rate of change of angular momentum, one can
combine Eqs. (2.12)-(2.13) to obtain:

dµs

dt
= −γsµs ×H. (2.14)

From Eq. (2.14), one notices that rather than aligning the magnetic mo-
ment along the direction of the applied field, the torque causes a precession
motion around H, as illustrated in Fig. 2.5. By solving Eq. (2.14), one can
obtain the precession frequency ωL, named the Larmor frequency:

ωL = γsH. (2.15)

Figure 2.5: Schematic of the precession of the magnetic moment µs around the external
field H. The precession angle θ is here severely exaggerated for illustration purposes.
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The Larmor condition shows the relation between rotation frequency and
magnetic field strength for a free magnetic moment. Larmor precession is
the governing principle behind several important spectroscopy techniques
such as nuclear magnetic resonance (NMR), electron paramagnetic reso-
nance (EPR) and ferromagnetic resonance (FMR). In particular FMR is
important for the work performed in this thesis, and this phenomena will
be introduced in section 2.2.3.

2.2.2 The Landau-Lifshits-Gilbert equation
Moving on from a single electron to an ensemble of spins, we now consider
a classical approach by approximating the ferromagnet as a sum of the
individual spins. Following this approach, Eq. (2.14) takes the form:

dM
dt

= −γM×H. (2.16)

Here, γ is the gyromagnetic ratio, where γ/2π ≈ 28 GHz/T, and M is the
magnetization of the ferromagnet. This equation describes a uniform pre-
cession of the magnetic moments, and is a good approximation for the mag-
netodynamics of thin ferromagnetic films, as such uniform modes are easily
obtainable experimentally. The more complicated case of non-uniform spin
precession, spin waves, will be introduced in section 2.2.6

Spin dynamics is, similar to any mechanical system, always accompa-
nied by dissipative forces (damping) during precession. To describe the
damping of the precession and the alignment of the magnetic spins along
the effective field, Landau and Lifshits added a phenomenological damping
term to the equation for the magnetization precession [31], here written in
the form of the well known Landau-Lifshitz-Gilbert (LLG) equation:

dM
dt

= −γM×Heff︸ ︷︷ ︸
Gyration

+ α

Ms

[
M× dM

dt

]

︸ ︷︷ ︸
Damping

. (2.17)

The magnetic field H is here replaced by Heff, containing not only the
external field but also take anisotropies etc. into account. The damping is
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Figure 2.6: Schematic of the precession of the magnetization M around the effective
magnetic field Heff. The viscous damping, given by the Gilbert damping parameter α in
Eq. (2.17), pushes the magnetization in the direction of the effective field.

included through the Gilbert damping parameter α, representing a viscous
damping force that pushes the magnetization in the direction of the effective
field, as illustrated in Fig. 2.6.

The various microscopic mechanisms contributing to the Gilbert damp-
ing are quite complex, and there are several processes which can cause dis-
sipation of energy. These are commonly divided into intrinsic and extrinsic
processes, and material specific Gilbert damping in real systems. Further
details concerning the magnetodynamic damping will be introduced in sec-
tion 2.2.7.

2.2.3 Ferromagnetic resonance (FMR)

As introduced in the previous sections, the effective magnetic field exerts a
torque on the magnetization in a ferromagnet, causing a precession motion
of the magnetization. The precession frequency depends on several param-
eters such as the shape of the ferromagnet, strength and orientation of the
applied magnetic field as well as the magnetization of the sample. Applying
a microwave magnetic field similar to this frequency will induce a precession
motion of the magnetization where all the magnetic moments oscillate in
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phase. This is the phenomenon of ferromagnetic resonance, FMR, where
the ferromagnet shows a resonant absorption of the electromagnetic energy.

The dynamical response of the magnetic system can be studied through
solving the LLG equation introduced in the previous section. However,
as the resonance frequency depends on the effective magnetic field, which
includes both the applied magnetic field as well as shape and crystalline
anisotropies, this is in general a complicated problem to solve. As an initial
simplification, magnetocrystalline anisotropies are neglected and an ellip-
soidal sample is assumed. In this case, the demagnetization tensor simplifies
to only diagonal elements, Nx, Ny and Nz, as discussed in section 2.1.3.

Taking the demagnetization effects into account and adding an oscil-
lating magnetic field component, h(t), one obtains the following effective
magnetic field:

Heff =




H0 −NxM0
hy(t)−Nymy(t)
hz(t)−Nzmz(t)


 , (2.18)

where H0 is the external static field. The magnetization is oriented in
the x-direction, and assuming a small-angle precession it can be written
in the form M(t) = M0x̂ + meiωt, where m ⊥ x̂ and we assume that
h � H0 and m � M0. The magnetic response to small excitation fields
is given by the Polder susceptibility tensor χ̂ [32], where the elements of
χ̂ are determined by solving Eq. (2.17) and discarding higher order terms.
Introducing ωH = γH0 and ωM = γM0, one obtains the following set of
coupled equations:

(
ωH + (Ny −Nx)ωM − iαω −iω

iω ωH + (Nz −Nx)ωM − iαω

)(
my

mz

)

= ωM

(
hy
hz

)
.

(2.19)

In order to calculate the susceptibility tensor, one has to invert the matrix
in Eq. (2.19) to get the expression on the form m = χ̂h. Doing this, one
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obtains:

χ̂ =
(
χyy iχyz
−iχzy χzz

)
, (2.20)

where the matrix elements are given by:

χyy/zz =
ωM [ωH + (Nz/y −Nx)ωM − iαω]

ω2
r − ω2(1 + α2)− iαω[2ωH + (Ny +Nz − 2Nx)ωM ] , (2.21)

χyz/zy = ωωM
ω2
r − ω2(1 + α2)− iαω[2ωH + (Ny +Nz − 2Nx)ωM ] . (2.22)

In these expressions, we have also introduced the resonance frequency ωr,
which was first derived by Kittel [33]:

ω2
r = [ωH + (Ny −Nx)ωM ][ωH + (Nz −Nx)ωM ]. (2.23)

Due to the damping term, the susceptibilities are complex functions and the
response can be described through a real and an imaginary term, χ = χ

′ +
iχ
′′ . The real term represents dispersion, or energy storage in the system,

and the imaginary term represents the dissipation. From Eqs. (2.21)-(2.22)
it becomes clear that the susceptibility diverges when the driving frequency,
ω, matches the resonance frequency, ωr, where the divergence is limited
by the presence of the damping term given by α. This divergence of the
susceptibility is the phenomenon of ferromagnetic resonance (FMR), where
the ferromagnet shows a resonant absorption of the electromagnetic energy
at the ferromagnetic resonance frequency. By measuring the power loss in
an applied microwave magnetic field, FMR spectroscopy can thus be used
as an experimental technique to probe the magnetic state. This will be
discussed further in section 4.2, where the experimental FMR setups are
introduced.

The absorbed power during resonance is given by the time derivative of
the magnetic energy. Splitting χ̂ into its real and imaginary part and ap-
plying a microwave magnetic field h(t) = hyeiωtŷ, one obtains the absorbed
power in a FM sample given by an integral over the sample volume [24]:
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Pabs = −1
2<

∫

V
iω(χ̂h) · h∗dV = 1

2ωh
2
xχ
′′
yy. (2.24)

The measured FMR absorption is thus proportional to the imaginary part
of the diagonal elements of the susceptibility tensor, χ′′yy. Using that the
susceptibilities are written in the form χ = Z1/Z2, where Zi are complex
numbers, one can separate the real and imaginary part by multiplying the
expression by the complex conjugate of the denominator: χ = Z1Z∗2

Z2Z∗2
. For a

thin film (Nx = Ny = 0, Nz = 1) and assuming low damping, (α2 ≈ 0) this
gives:

χ
′
yy = ωMωB(ω2

r − ω2)
(ω2
r − ω2)2 + α2ω2(ωH + ωB)2 , (2.25)

χ
′′
yy = αωωM (ω2

B + ω2)
(ω2
r − ω2)2 + α2ω2(ωH + ωB)2 . (2.26)

As shown through Eqs. (2.24) and (2.26), the FMR frequency, ω = ωr,
corresponds to a maximum in the power absorption. The susceptibility
can thus be probed either by varying the microwave frequency ω, or by
keeping the microwave frequency fixed and vary ωr through the applied
magnetic field. This latter field-sweep approach is the technique that has
been utilized in this thesis (see section 4.2 for an introduction to the exper-
imental FMR setups). When analyzing the extracted absorption curves,
one then needs to relate this to the susceptibilities given by Eqs. (2.25)-
(2.26). Expressing the susceptibilities in terms of the applied field strength
rather than frequency is not straightforward, as the resonance field is non-
linear in H0 and M0. However, for curve-fitting purposes, one can obtain
simplified expressions for the field-swept FMR absorption, following a few
approximations.

Firstly, it is assumed that the saturation magnetization is much greater
than the applied field strength, ωM � ωH . In this case, the following
simplifications can be made:
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ωB = ωM + ωH ≈ γM0

ω2
r − ω2 = γ2[H0(H0 +M0)−Hr(Hr +M0)]

≈ γ2M0(H0 −Hr),
(2.27)

Further, when assuming a low damping, the linewidth is small compared
to the resonance frequency and one does not need to deviate far from the
resonance in order to observe the shape of the absorption curve:

ω2
r + ω2 ≈ 2ω2

r ≈ 2γ2M0H0. (2.28)

By applying the above approximations, the real and imaginary part of the
susceptibility given by Eqs. (2.25)-(2.26) can be written as:

χ
′
yy ≈ A

(H0 −Hr)/∆H
(H0 −Hr)2 + (∆H/2)2 (2.29)

χ
′′
yy ≈ A

1
(H0 −Hr)2 + (∆H/2)2 , (2.30)

where A is an amplitude prefactor and the parameter ∆H = 2αω/γ has
been introduced to describe the linewidth. The imaginary part of the sus-
ceptibility has a so-called symmetric Lorentzian lineshape, whereas the real
part has an antisymmetric lineshape, as illustrated in Fig. 2.7a and b re-
spectively.
The derivation of Eq. (2.24) for the FMR absorption assumed a homoge-
neous microwave field, h(t) = hyeiωtŷ, resulting in a symmetric lineshape
given by Eq. (2.30) (illustrated in Fig. 2.7a). However, having an inhomoge-
neous microwave field can lead to a mixing of symmetric and antisymmetric
contributions to the lineshape, given by a combination of Eqs. (2.29)-(2.30).
This is discussed in further detail in section 2.2.4 and papers II and III of
the thesis, where we investigate how additional microwave magnetic fields
due to induced eddy currents can affect the FMR excitation.
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Figure 2.7: a) Imaginary part of the susceptibility, given by Eq. (2.30) b) Real part of
the susceptibility, given by Eq. (2.29)

In any case, one can still extract the absorption linewidth, ∆H. As the
linewidth is given by ∆H = 2αω/γ, one can thus estimate the magnetody-
namic damping parameter α, describing the relaxation rate of the magne-
tization precession. The magnetization relaxation plays an important role
for the magnetodynamic properties, and α is one of the key parameters
obtainable from FMR spectroscopy. Further details on the various contri-
butions to the linewidth is provided in section 2.2.7, and is also discussed in
paper I of the thesis, where we investigate the damping in La0.7Sr0.3MnO3
films.

In the above derivations, the effects of magnetocrystalline anisotropies
have been neglected. The inclusion of magneocrystalline anisotropies fol-
lowing a similar approach was also proposed by Kittel [33]. The equilib-
rium orientation of the magnetization can be found by minimizing the free
energy, and the idea was then to treat the free energy to act as an ef-
fective field on the magnetization, Heff = −∂Etot/∂M. From this, Kittel
included both the effects of demagnetization fields and anisotropy fields
in an effective demagnetization tensor, N̂eff. Following this approach, one
can then calculate the resonance frequency taking also magnetocrystalline
anisotropies into account. Another approach for calculating the resonance
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frequency from the free energy of the system, was performed by Smit, Be-
jers and Suhl following the Smit-Suhl free energy ansatz [34, 35], which is
introduced in section 2.2.5.

2.2.4 Eddy-current effects on FMR

As mentioned in the previous section, having an inhomogeneous microwave
magnetic field can lead to a mixing of symmetric and antisymmetric con-
tributions to the FMR lineshape. A phenomenon which can cause this,
is induced microwave eddy currents in conductive samples, which produce
secondary phase shifted magnetic fields contributing to the microwave field
exciting the FMR. In the following, I provide a brief introduction to eddy
currents and the corresponding microwave magnetic fields which can influ-
ence the FMR excitation. Further details on eddy-current effects are also
found in section 5.2 and papers II and III of the thesis.

A numerical approach is generally needed to calculate the distribution
of induced currents and the associated magnetic fields. There are several
commercial software packages capable of performing such modeling tasks,
such as e.g. COMSOL [36]. However, in order to connect this to the
magnetization dynamics, a numerical solution of the coupled Maxwell’s and
LLG equation is necessary. To my knowledge, electromagnetic modeling
tools taking this coupling into account does not exist. Implementing this
numerically is not a straightforward task, and due to the complexity, we
rather consider simplified analytical models to provide an understanding of
the basic physics involved.

Eddy current induction in a NM thin film disc

For calculating the induced eddy current, a closed form solution is obtain-
able for the simple case of a circular metallic film of thickness much less
than the electro-magnetic skin depth. For a spatially homogeneous time
harmonic magnetic field Beiωt applied perpendicular to a non-magnetic
circular disc, the induced current density in the thin film plane can be
described by [37]:
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Jφ(r) = −k|B|
µ0

I1(kr)
I0(kR) , (2.31)

where
k = √ωµ0σe

iπ/4. (2.32)

Here, R is the radius of the disc, µ0 the vacuum permeability, σ the film
conductivity and In(α) the modified Bessel function of the first kind and
order n. In Fig. 2.8a the normalized current density along a circular sample
calculated from Eq. (2.31) is plotted for various radii in the range R=[0.1,1]
mm, for a conductivity of σpy ≈ 3 ·106 S/m [38] and a microwave frequency
of 9.4 GHz. As shown in Fig. 2.8a, the current density is localized primarily
along the sample edge as the disc size is increased. The current distribu-
tion also depends strongly on the microwave frequency, with a narrower
distribution as the frequency is increased. However, here a fixed microwave
frequency of 9.4 GHz is considered. As a simplification, due to the local-
ized current distribution, the induced current is approximated by a single
circular current loop in the following.

Figure 2.8: a) Calculated current density from Eq. (2.31) as a function of r for samples
of radius R. b) Geometry of the circular current loop. Figure taken from paper III of the
thesis
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Magnetic field from a circular current loop

For a circular loop carrying a current I, the magnetic field at any point in
space can be obtained from the magnetic vector potential:

A = µ0I

4π

∮
dl
s
, (2.33)

s here being the distance from a point in space, P, to the line element dl,
as illustrated in Fig. 2.8b. The general solution to Eq. (2.33) yields the
vector potential [24]:

A = Aφφ̂ = µ0I

2π [2k−1r−/2(K(k)− E(k))− kr−1/2K(k)]φ̂. (2.34)

Here, K and E represent complete elliptical integrals of the first and second
kind respectively, while

k =
√

4rR
z2 + (R+ r)2 . (2.35)

From the vector potential A, one can then calculate the magnetic field
(B = ∇×A):

Bz(r, z) = µ0I

2π
√
z2 + (R+ r)2

(
R2 − z2 − r2

z2 + (r −R)2E(k) +K(k)
)

(2.36)

Br(r, z) = µ0Iz

2πr
√
z2 + (R+ r)2

(
R2 + z2 + r2

z2 + (r −R)2E(k)−K(k)
)

(2.37)

Equations (2.36)-(2.37) give the magnetic field at any point in space pro-
duced by a current flowing in a circular loop. As discussed previously, since
the eddy-current distribution is mainly localized at the sample edges, this
provides a simple approximate solution for circular samples.

As an illustration, the field geometry in a circular Py/Au bilayer sample
is shown in Fig. 2.9. The applied microwave field, hrf, induces a circulat-
ing eddy current, Ieddy, which produces a microwave magnetic field, hind,
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Figure 2.9: Schematic of sample and field geometry for circular Py/Au bilayers. Figure
taken from paper III of the thesis.

according to Eqs. (2.36)-(2.37). The induced field has components both in
the in-plane and out-of-plane direction, and will also have a phase shift, φ,
with respect to the applied microwave field.

In paper II of the thesis, we show that phase shifted contributions to the
FMR excitation produced by eddy currents results in an asymmetry of the
observed lineshapes. Other studies have also shown that the relative phases
of electromagnetic waves are important to consider in FMR exeriments
[39, 40]. Hence, the phase lag between the applied microwave field and the
induced field needs to be considered.

The induced eddy currents have a relative phase lag compared to the
applied microwave field, which in the ideal case is expected to be φ = 90
degrees (IEddy ∝ ∂h

∂t ). However, due to the inductance and resistance of
the film, there will be an additional phase between the applied microwave
field and the induced field. At larger film thicknesses, one also needs to take
into account phase shifts due to the electro-magnetic skin effect. A complex
system such as an experimental setup involving waveguides, coaxial cables
etc. can also introduce a non-zero phase offset, φ0 [39, 40]. Considering
these effects, one can write the relative phase lag as [24]:
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φ =
[
90 + tan−1

(
ωL

R

)
+ d/δ + φ0

]
. (2.38)

Here, ω is the microwave angular frequency, L and R are the inductance
and resistance of the film, d is the film thickness and δ the electro-magnetic
skin depth (' 800 nm for Au at 10 GHz).

The derivation of the FMR absorption in the previous section which led
to Eq. (2.24), indicated a symmetric Lorentzian lineshape (as illustrated in
Fig. 2.7a). However, this derivation assumed a completely homogeneous
microwave magnetic field. As shown in this section, induced eddy currents
produce additional Oersted fields that contribute to the total microwave
field driving the FMR, which can affect the observed lineshape. This change
in lineshape is relevant with respect to recent experiments, where differences
in the FMR lineshapes have been used to study the spin pumping from
a magnetic material to a normal metal [41, 42, 43, 44, 45, 46]. In such
studies, lineshape symmetry is one of the main parameters used to analyze
the results. Hence, to correctly interpret experimental data involving FMR
it is important to understand how eddy currents might affect the FMR
excitation. For further details on eddy-current effects, I refer to section 5.2
and papers II and III of the thesis.

2.2.5 The Smit-Suhl free-energy ansatz

The fact that ferromagnetic resonance involves a small angle precession
around the equilibrium position of the magnetization along the effective
field, permits an approach to determine the resonance conditions using the
free energy of the system. This idea was first proposed by Smit and Suhl
[34, 35], and the basic ideas are the following: One important feature, is
that the Landau-Lifshits (LL) equation conserves the magnitude of M, i.e.
the magnetization vector can be though of as tracing the surface of a sphere.
It then follows that rewriting the LL equation in spherical coordinates be-
comes natural:
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θ̇ = γ(Hφ + αHθ)
φ̇ sin θ = −γ(Hθ − αHφ),

(2.39)

with the spherical angles as defined previously in Fig. 2.2b. At the equilib-
rium orientation, the magnetization will be aligned along the effective field
and the transverse components Hφ and Hθ vanish. However, when exciting
the system with a microwave magnetic field, the magnetization is deflected
away from the equilibrium orientation. The components Hφ and Hθ then
act as restoring forces, with a strength determined by the slope of the free
energy [25]:

Hθ = − 1
M0

∂Etot
∂θ

Hφ = − 1
M0 sin θ

∂Etot
∂φ

.

(2.40)

At the equilibrium orientation, ∂Etot/∂θ and ∂Etot/∂φ are zero, so a Tay-
lor expansion of ∂Etot/∂θ and ∂Etot/∂φ determines the restoring force due
to small displacements from equilibrium, δθ and δφ. Using this, in combi-
nation with Eq. (2.40), in the equation of motion for the angular variables
given by Eq. (2.39) results in a set of linear differential equations. Using
the harmonic ansatz that δφ(t), δθ(t) ∝ eiωt, one can solve the equations to
obtain the eigenfrequency ωres [34, 35]:

ωres = γ

M0 sin θ

√√√√
(
∂2Etot
∂θ2

∂2Etot
∂φ2 −

(
∂2Etot
∂θ∂φ

)2)
, (2.41)

where the double derivatives of the free energy with respect to the spherical
coordinates are taken at the equilibrium orientation of the magnetization:

(
∂Etot
∂θ

)

θ=θ0,φ=φ0

=
(
∂Etot
∂φ

)

θ=θ0,φ=φ0

= 0. (2.42)
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The advantage of this approach is that it is applicable to a wide range
of magnetic systems with different expressions for the free energy. To find
the resonance frequency of a given system, one needs an expression for
the free energy as a function of the orientation of the magnetization. As
an example, consider the free-energy density of the elliptical ferromagnet
introduced in section 2.1.6, where Etot = EZeeman + EDemag + EAnis. This
system has contributions from the external field, as well as both shape
anisotropy and a cubic magnetocrystalline anisotropy. Using the Smit-Suhl
approach, one can then calculate the resonance frequency directly from Eq.
(2.41) to obtain:

(
ω

γ

)2
=
[
H cos(φ− φH)

+ µ0Ms

(
Nz − (Nx +Ny + (Nx −Ny) cos 2φ

2 )
)

+ Hk

4 (3 + cos 4φ)
]

×
[
H cos(φ− φH) +Hk cos 4φ+ µ0Ms(Ny −Nx) cos 2φ

]
,

(2.43)
where the expression has been simplified by assuming that the magneti-
zation is oriented in the film plane, θ = π/2, and the anisotropy field
Hk = 2K1/M0 has been introduced. Eq. (2.43) illustrates that the Smit-
Suhl approach provides a way of calculating the resonance conditions for
the general case of a ferromagnetic sample containing both magnetocrys-
talline anisotropy as well as shape anisotropy through the demagnetization
factors Ni. In this example, the calculation was performed for an elliptical
sample with a cubic crystalline anisotropy. In the expression for the res-
onance frequency given by Eq. (2.43), one can clearly identify terms with
a four-fold symmetry (∝ cos 4φ) from the cubic crystalline anisotropy, in
addition to terms with a two-fold symmetry (∝ cos 2φ) from the shape
anisotropy along the long/short axis of the ellipse. This example of the
interplay between magnetocrystalline and shape anisotropies is taken from
paper IV of the thesis, and for further details I refer to the appended paper
in chapter 9.
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2.2.6 Inhomogeneous spin precession: Spin waves
To this point, we have only considered the precession motion of the magne-
tization where all spins rotate in uniform. Excitations with a finite phase
shift between neighboring spins however, known as spin waves, represent
the lowest-energy excitation compared to the uniform mode [22]. The spin
wave is characterized by a wavevector k, determined by the wavelength λ as
illustrated in Fig. 2.10. The energy of these spin waves will differ from that
of the uniform precession due to a combination of exchange interaction and
the dipolar interaction between neighboring dipoles. Long wavelength spin
waves however, carry very little energy because the difference in direction
between neighboring dipoles is very small.

The spin-wave frequency is given by the spin-wave dispersion, ω(k),
which will be derived in the following. In the derivation of ω(k), a uniform
precession through the thickness of the film is assumed, as in the thickness
regime of interest here (thin films), spin waves with components of k per-
pendicular to the plane will have very high energy compared to the uniform
k = 0 mode due to the strong exchange interaction. We start from the LL
equation, dM/dt = γM×H, with magnetostatic fields given by [47]:

Figure 2.10: Illustration of the precession of a spinwave. The wavevector k is given by
the wavelength λ through the relation. k = 2π/λ.
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HD
y (k) = −NkMy(k), (2.44)

HD
x,z(k) = −k[Mx(k)kx +Mz(k)kz)](1−Nk)/|k|2, (2.45)

where Nk = [1 − exp(−kd)]/kd, and d is the film thickness. The resulting
spin-wave dispersion is then given by [48]:

(ω(k)/γ)2 = [Hi +Dk2 +M(1−Nk) sin2 θk]
× [Hi +Dk2 +MNk cos2 φ+M(1−Nk) sin2 φ cos2 θk]
− [M(1−Nk) cos θk sin θk sinφ]2,

(2.46)

where Hi is the internal static field, D is the spin-wave stiffness and the
angles are as defined in Fig. 2.11a.

As an example, the calculated spin-wave spectrum for a 10 nm thick
Permalloy film is shown in Figs. 2.11b-d. In Fig. 2.11b, for the magneti-
zation oriented in the sample plane, a static external field of 100 mT is
assumed, which gives a resonance frequency of ≈ 9.7 GHz for the uniform
k = 0 mode. In Figs. 2.11c-d, the static external field has been adjusted to
take into account the static demagnetization fields in these geometries, in
order to keep the uniform mode at the same frequency for easier comparison
between the figures.

The spin-wave frequency depends on both the spin-wave propagation
direction and wavelength, given by the wavevector k, and the orientation
of the magnetization. The calculated spin-wave spectrum is shown for the
magnetization oriented in the sample plane (φ = 0), 45 degrees out-of-plane
(φ = 45) and completely out-of-plane (φ = 90). In Figs. 2.11b-c the spin-
wave frequency is lowest for propagation along the magnetization direction
(θk = 0), and highest for propagation perpendicular to the magnetization
(θk = 90). For the magnetization oriented completely out-of-plane, the
spin-wave frequency is independent of propagation direction (assuming an
infinitely extended thin film in this case).
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Figure 2.11: a) Geometry of a thin film where the magnetization M is oriented in the
x-y plane and the spin-wave wavevector k lies in the x-z plane. b) Spin-wave spectrum
given by Eq. (2.46) for the magnetization oriented along φ = 0, c) φ = 45 and d) φ = 90.
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The study of spin waves is at the focus of an emerging field of modern
magnetism, namely that of magnonics. Magnonics combines waves and
magnetism, where its main aim is to investigate the behavior of spin waves
in nano-structure elements. See e.g. [19] and references therein for a nice
overview of this field of research. The excitation of spin waves due to in-
homogeneous microwave fields is also briefly discussed in paper III of the
thesis, in that case caused by induced microwave eddy currents in conduc-
tive samples.

Another important consideration is the scattering from the uniform k =
0 mode into degenerate spin-wave modes through two-magnon scattering,
which can be a significant contribution to the FMR linewidth. The various
contributions to the linewidth will be introduced in the following section,
and is also discussed in paper I of the thesis where we investigate the
magnetodynamic damping in La0.7Sr0.3MnO3 films.

2.2.7 Magnetodynamic damping
The magnetodynamic damping is one of the key material parameters gov-
erning the magnetodynamic properties. In the LLG equation this was in-
troduced merely as a phenomenological damping parameter α, and the
physical mechanisms behind the damping was not discussed further. There
are several processes which can cause dissipation of energy, commonly di-
vided into intrinsic and extrinsic processes.

As an example, the measured FMR linewidth for a 15 nm thick
La0.7Sr0.3MnO3 film is shown in Fig. 2.12 (data taken from paper I of
the thesis). The linewidth, measured here in terms of field rather than fre-
quency, can be separated into a frequency independent contribution ∆H0
and a term proportional to the Gilbert damping parameter α [49]:

∆H = 4π
γ
αfmw + ∆H0. (2.47)

The intrinsic Gilbert damping is a measure of the microscopic mechanism
by which the absorbed microwave energy is transferred from the spin sys-
tem to the lattice, and is proportional to the precession frequency. It is
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Figure 2.12: Example of measured FMR linewidth, separated into the inhomogeneous
broadening ∆H0 and a term proportional to the damping parameter α and precession
frequency fmw.

commonly assumed that the origin of intrinsic Gilbert damping is the spin-
orbit (SO) coupling [50]. This relativistic effect leads to spin-flip scattering
of electrons, which results in transfer of angular momentum from the spin
system to the lattice.

However, in addition to the intrinsic Gilbert damping, the measured
FMR linewidth consists of several additional contributions from e.g. two-
magnon scattering, eddy-current damping and an inhomogeneous linewidth
broadening [25]. In the following, we will briefly go through these various
contributions and how they affect the measured FMR linewidth.

Two-magnon scattering

The two-magnon scattering contribution to the linewidth represents the
loss due to scattering from the uniform FMR mode into degenerate spin-
wave modes. In a uniform film, the normal modes can be described as a
uniform precession mode which couples to the microwave excitation field,
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and a manifold of spin-wave modes (as discussed in section 2.2.6) which
are not directly excited. Non-uniformities in the sample induce a coupling
between these modes, leading to a broadening of the resonance.

The two-magnon contribution to the damping treats non-uniformities in
the sample as perturbations, causing transitions from the uniform mode to
spin-wave modes [51]. The scattering rate for this transition can be written
as [52]:

λ = 2π
~
∑

k

|Ak|2δ(~ω0 − ~ωk), (2.48)

where Ak is the coupling coefficient between the uniform precession and
the spin-wave modes. As λ represents the decay of a population of k = 0
magnons, it also represents a contribution to the FMR linewidth of the
driven uniform precession.

As expressed through the delta function in Eq. (2.48), the scattering
process from the uniform mode into spin-wave modes is dependent on ac-
tually having degenerate spin-wave modes to scatter into. This can be
illustrated by taking a closer look at the spin-wave spectrum for the 10
nm thick Permalloy film discussed in section 2.2.6. For the magnetization
oriented in the sample plane (Fig. 2.13a), one notices that there are sev-
eral spin-wave modes that are degenerate with the uniform k = 0 mode.
This overlap of modes opens up the possibility of scattering into a mode
with e.g. wavevector k̄. The scattering can be caused by a perturbation in
the system due to defects/scattering centers of a length scale L, given by
k̄ = 2π/L. In the context of thin films, this can e.g. be caused by inhomo-
geneities and defects at the sample surface, and two-magnon scattering is
an effect which is usually more pronounced in thin films.

As two-magnon scattering is dependent on having degenerate modes to
scatter into, this means one can suppress the effect by reducing the number
of available modes. As illustrated in In Fig. 2.13b, applying a sufficiently
strong external magnetic field in order to orient the magnetization out of the
sample plane will strongly affect the spin-wave spectrum. As an example,
one notices that with the magnetization oriented at an angle of 45 degrees
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Figure 2.13: Spin wave spectrum for the magnetization oriented a) in the sample plane
b) 45 degrees out of plane. The unform k = 0 mode is indicated by the red line at
9.7 GHz. Overlap between the modes allows for scattering of the uniform mode into a
spin-wave mode with wavevector k̄.

out of plane, there are no degenerate modes for the uniform k = 0 mode to
scatter into. Orienting the magnetization out of the sample plane is thus
an effective way of suppressing two-magnon scattering, and can be used in
experiments in order to investigate the various contributions to the FMR
linewidth.

Eddy-current damping

Another contribution to the damping in conductive samples, is the dissi-
pation due to induced eddy currents. According to Faraday‘s law, a time
varying magnetic flux induces an AC voltage in any conductive material
[23]. An applied microwave magnetic field and the precessing magnetiza-
tion in a conductive ferromagnet will thus induce AC currents in both the
ferromagnet and any adjacent conductive layers. The dissipation of the
eddy currents give rise to an additional damping of the magnetization pre-
cession, which is named eddy-current damping [53]. For the uniform FMR
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mode, this additional damping contribution is given by [54]:

αeddy = C

16
γµ2

0Msδ
2

ρ
, (2.49)

where ρ is the resistivity, Ms the saturation magnetization, µ0 the vacuum
permeability, γ the gyromagnetic ratio and δ the sample thickness. The
constant C is a correction factor to account for details of the spatial profile
of the induced eddy currents. The eddy-current damping scales with the
thickness as δ2, and for highly conductive samples the eddy-current contri-
bution becomes dominating for sample thicknesses of more then a few 10s of
nm. In thin films of a few nm thickness however, the eddy-current damping
is usually small in comparison with other contributions to the damping.

Even if the contribution to the damping is negligible, induced eddy
currents in the sample can still have other effects, like spin-wave excitations
due to inhomogeneous microwave fields and microwave screening effects.
See also sections 2.2.4 and 5.2 as well as papers II and III of the thesis for
an overview of eddy-current effects on FMR.

Inhomogeneous broadening

As the name suggests, inhomogeneous broadening origins from sample in-
homogeneities. This could e.g. be spatial variations in the sample magneti-
zation and anisotropies (both magnetocrystalline and shape anisotropies).
The FMR frequency is determined by the effective magnetic field Heff (as
introduced in section 2.2.3), and any spatial variations in the effective field
will thus cause slight variations in the resonance frequency in various re-
gions of the sample.

As an illustration of how an inhomogeneous sample would affect the
FMR linewidth, the calculated absorption for a sample where the resonance
frequencies ωi vary across the sample, ωres = ω0±δω, is shown in Fig. 2.14.
For the sake of illustration, a quite large inhomogeneity is assumed, with a
random distribution of δω in the range δω/ω < 5%. The FMR absorption
can then be considered as a superposition of several resonances occurring
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Figure 2.14: Red: Example of FMR absorption in a homogeneous sample. Blue: FMR
absorption in an inhomogeneous sample modeled as a superposition of resonances occur-
ring at slightly different frequencies, leading to an increase in the absorption linewidth.
Inset: Illustration of an inhomogeneous sample where the resonance frequency, ωi, vary
across the sample.

at slightly different frequencies, which results in an apparent broadening of
the FMR linewidth.

2.2.8 Spin-transfer torque

When confined to the nanoscale, the interplay between the spin and charge
of electrons becomes important. On length scales similar to or smaller than
the spin-diffusion length (≈ 10−9 − 10−6 m [55]), the spin of the electron
becomes conserved and a charge current can be considered as a sum of in-
dividual contributions from spin-up and spin-down channels. The spin de-
pendent transport properties makes it possible to manipulate the individual
spin channels, and this is the principle behind the giant magnetoresistance
effect (GMR). The GMR is the change in resistance that is observed in
magnetic multilayers of alternating ferromagnetic and non-magnetic layers
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when the relative orientation of the magnetization in the ferromagnetic lay-
ers differ. The discovery of the GMR effect awarded Albert Fert and Peter
Grünberg the 2007 Nobel prize in physics [8]. In addition to being inter-
esting from a physics viewpoint, the GMR effect also has several important
applications in e.g. magnetic field sensors in hard disc drives, biosensors,
microelectromechanical systems (MEMS) and other devices [9].

However, the interplay between the spin and charge of electrons in mag-
netic multilayers is not limited to the effects of spin-dependent scattering
on the total charge current. The inverse effect, how the layer magnetization
will be affected by the spin-dependent scattering of a spin polarized cur-
rent was predicted by Slonczewski and Berger in 1996 [14, 15]. This effect,
named ”spin-transfer torque” (STT) can cause a steady-state precession of
the magnetization, excitation of spin waves, and may even result in a full
reversal of the layer magnetization [16, 17]. This current-induced switch-
ing of the magnetization is particularly interesting for magnetic memory
applications [18] (e.g. STT-based magnetic random access memory, STT-
MRAM). The current-induced magnetization precession also enables mag-
netic nanostructures as a new type of tunable microwave oscillators, namely
spin-torque oscillators (STO). Current controlled STO are potential gener-
ators of high frequency microwave signals, which is of interest within e.g.
telecommunication technologies [20]. See also section 5.4, as well as paper
V of the thesis and references therein for an introduction to STO.

The main prediction by Slonczewski, is the transfer of spin angular mo-
mentum between the layers caused by a current flowing through a magnetic
multilayer. This transfer of spin angular momentum exerts a torque on the
magnetic moment, causing a precession or even complete reversal of the
layer magnetization. For a current flowing from the fixed layer to the free
layer, the spin-polarized electrons will be scattered at the interface of the
magnetic free layer. From the conservation of angular momentum, this
spin-dependent scattering will transfer spin angular momentum to the free
layer. The transfer of spin angular momentum results in a torque acting
to align the magnetization of the free layer in parallel to that of the fixed
layer, as illustrated in Fig. 2.15.

By reversing the current direction, electrons are first polarized in the
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Figure 2.15: Schematic illustration of spin-transfer torque. Electrons flowing through
the fixed layer become spin polarized and exert a torque on the magnetization in the free
layer.

free layer and consequently scattered at the interface of the fixed layer.
However, due to the greater magnetic hardness of the fixed layer, electrons
of spin antiparallel to the fixed layer are reflected back to the free layer.
From the conservation of angular momentum, this process exerts a torque
on the free layer that tries to orient it anti-parallel to the fixed layer. This
means that the direction of the current controls the stability of the relative
alignment of the magnetization in the fixed and free layer.

Spin-transfer torque may be described micromagnetically through adding
an additional term to the LLG equation [56]:

dM
dt

= −γM×Heff︸ ︷︷ ︸
Gyration

+ α

Ms

[
M× dM

dt

]

︸ ︷︷ ︸
Damping

− χ
d
JP (θ)[M× (M×mf ]

︸ ︷︷ ︸
Spin Transfer Torque

. (2.50)

Here, χ = gµb/(2M2
s e), J is the charge current density and d the free layer

thickness. P (θ) is a polarization function assumed to increase with the
relative angle θ between the magnetization of the free layer and the fixed
layer and mf is a unit vector in the direction of the magnetization of the
fixed layer.
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Figure 2.16: Schematic of the precession of the magnetization M around the effective
magnetic field Heff. The viscous damping given by the Gilbert damping parameter α
pushes the magnetization in the direction of the effective field. The spin-transfer torque
can act effectively as an ”anti-damping” term, depending on the current direction and
orientation of the magnetization of the fixed layer.

From the form of the STT-term in the LLG equation, it can either enhance
or counteract the damping, depending on the current direction and orienta-
tion of the magnetization of the fixed layer. This results in the possibility
of inducing a constant precession motion, or even a complete reversal of
the free layer magnetization. By comparing the relative strengths between
the damping term and the STT term, one can estimate the critical current
needed to induce such excitations. The required current densities are gen-
erally quite high, and experimental observations are typically performed
at current densities of the order 107 − 109 A/cm2 [57]. Such high current
densities are only obtainable in point contact geometries with radiuses of
the order 1-100 nm in order to avoid melting the contact due to Joule heat-
ing. Advances in nanostructuring however, has increased the possibilities
of utilizing STT in physically realizable systems such as STT-MRAM and
STO as mentioned previously, which are intensely studied topics in mod-
ern magnetism. See e.g. refs. [20, 56, 57] and references therein for an
overview.
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Chapter 3

Micromagnetic simulations

Micromagnetics as a field deals with the behavior of (ferro)magnetic mate-
rials on length scales where the atomic level theory can be approximated
by a simpler micromagnetic theory. In micromagnetics, the magnetization
is represented by a continuous function of position, and each spin is repre-
sented as M = Msm, where Ms is the saturation magnetization and m is
the local direction of the magnetic spin [26]. This approach requires slow
variations of the magnetization, on length scales such that the direction
angles of the atomic spins can be approximated by a continuous function.
The continuous magnetization field is a common parameter in classical
electrodynamics [23]. Micromagnetism extends the classical field theory by
non-classical effects such as exchange interaction, where these effects are
expressed in the framework of a continuum theory. Due to the combination
of classical field theory and quantum mechanical effects, micromagnetism
is often referred to as a semi-classical continuum theory.

The goal of micromagnetics is to determine the local magnetization ev-
erywhere in the sample, when different components of the effective field are
present. The application of numerical micromagnetics was first used as a
static method in order to calculate the equilibrium orientation of the mag-
netization in the absence of any applied field. The goal of this method is to
find the full spatial distribution of the local magnetization m(x, y, z) which

47
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minimize the total free energy of the system. This energy minimization
yields the equation m ×Heff = 0, named Brown‘s magnetostatic equation
[26]. This equation shows that the spins are subject to a torque given by the
local effective field, where this torque equals zero at the static equilibrium
configuration.

The main focus of this thesis is on the magnetodynamic properties, but
it turns out that for both static and dynamic micromagnetics, the main
problem to solve is that of determining the local effective field. The mag-
netization dynamics is described by the LLG equation (as introduced in sec-
tion 2.2.2), which contains the effective field, Heff, governing the precession
motion of the magnetization. In section 2.2.3, the effective magnetic field
was defined as the field derivative of the free energy, Heff = −∂Etot/∂M.
The main magnetic interaction energies was introduced in section 2.1,
and includes exchange, magnetocrystalline anisotropy, demagnetization and
Zeeman energy. The main objective of the micromagnetic simulation is
thus to calculate the free energy of the system and obtain the local effec-
tive field governing the magnetic state. This is not at all a trivial task, and
in particular calculating the contribution from the demagnetization energy
is demanding and computationally time consuming due to the long range
dipolar interaction.

3.1 Numerical solution of the LLG equation

The numerical solution of the LLG equation in the micromagnetic solver
used in this thesis (MuMax3 [58]) employs a finite difference discretization
of the magnetized region of space, using a 2D or 3D grid. When dividing
the magnetized region into a grid, it is important to consider an important
characteristic length scale of the material, namely the exchange length.
The exchange length, as defined in section 2.1.5, describes the competition
between exchange and anisotropy energies: lex =

√
A/K [29], where A

represents the exchange stiffness and K the magnetocrystalline or demag-
netization energy. These exchange lengths limit the grid size employed in
the micromagnetic model, which should be less than lex. As an example,
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the exchange length of Permalloy is lex ≈ 5 nm [30], imposing an upper
limit for the grid size used in micromagnetic simulations of this material.

The volumetric quantities such as the magnetization and effective field
are treated at the center of each cell in the grid, whereas coupling quantities
such as exchange interaction are considered at the faces between the cells
[58]. The micromagnetic solver then solves the LLG equation numerically
using the local magnetization and effective field within each grid cell to
obtain the magnetization M for the whole magnetized region.

3.2 Simulation of FMR spectra

The main experimental technique utilized in this thesis for the investigation
of magnetization dynamics is that of ferromagnetic resonance spectroscopy
(FMR). Thus, being able to perform micromagnetic simulations of FMR
spectra is beneficial in order to gain a better understanding of experimental
results. Experimentally, the FMR is excited by a microwave magnetic field.
The microwave field can either be of variable frequency while keeping the
external static magnetic field fixed, or the microwave frequency can be
kept constant and the magnitude of the external field swept to locate the
resonances (see also sections 2.2.3 and 4.2 for an introduction to FMR
spectroscopy).

An approach similar to that performed experimentally is also possible to
perform in the micromagnetic simulations, with a microwave field of varying
frequency as the perturbing field. This is however quite time consuming,
as one needs to scan the full frequency range for each value of the applied
static field in order to locate all the resonances. To obtain the full field
vs. frequency map of the resonances, we rather used a field relaxation
process as follows: The system is first initialized at zero applied field to
obtain the magnetic ground state configuration. If a static field, H0, is
applied, the simulation is run until the system reaches the new ground state
configuration. A 10 mT perturbation field, Hp, is then applied along the
z-axis (out of the sample plane), and the simulation is run until it reaches
the ground state configuration for the field H0 + Hp. The perturbing field
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is then switched off, allowing the system to relax. This perturbation causes
oscillations of the magnetization around the equilibrium position with a
maximum deviation of approximately 1 degrees, avoiding any non-linear
effects [59]. To obtain the resonance frequencies, we calculate the Fourier
power spectrum of the mz component the first 10 ns of the magnetization
relaxation. The various excitation modes of the system will then appear as
distinct peaks in the Fourier spectrum [60].

The experimental analog to this technique is that measured using a
pulsed inductive microwave magnetometer (PIMM) [61]. PIMM uses a
coplanar waveguide (similar to the broadband FMR setup introduced in
section 4.2.2) as both a source of fast pulsed magnetic fields and as an
inductive sensor for the magnetic response from the sample. A sampling
oscilloscope is used to acquire the data, and using fast Fourier transform
(FFT) analysis of the step-response data one can obtain the resonances of
the sample.

As an example, the results of a micromagnetic simulation of a 10 nm
thick Fe ellipse of lateral dimensions 150 × 450 nm are show in Fig. 3.1.
Applying an external magnetic field of sufficient strength along the short
axis of the ellipse, the magnetization orients itself along the direction of the
applied field, except along the sample edges where the contribution from
the demagnetization energy tries to minimize the magnetic stray fields (Fig.
3.1a). This behavior is in agreement with what one would expect from the
previous discussion on demagnetization fields in section 2.1.3.

Rather than the static magnetic configuration, we are now interested in
the magnetodynamic properties. The various magnetic excitation modes of
the system can be investigated using the field relaxation process described
previously. Applying a perturbation field along the z-axis causes oscilla-
tions of the magnetization around the equilibrium orientation, as illustrated
in Fig. 3.1b. Calculating the Fourier spectrum of the magnetization oscil-
lations, one notices several peaks corresponding to the various excitation
modes of the system. The excitation modes indicated in Fig. 3.1c corre-
spond to bulk modes located in the interior of the ellipse, in addition to
edge modes that are localized along the sample edges.



3.2. SIMULATION OF FMR SPECTRA 51

Figure 3.1: a) Magnetic state of a 10 nm thick Fe ellipse of lateral dimensions 150×450
nm for a magnetic field applied along the short axis of the ellipse. Arrows indicate the
orientation of the magnetization, and the color scale indicate the my component along the
long axis of the ellipse. b) mz component of the magnetization after the excitation pulse.
c) Fourier spectrum of the mz component during the first 10 ns of the magnetization
relaxation, showing the distinct excitation modes of the system. d) By plotting the
spatial distribution of the mz component, one can identify the edge modes as localized
excitations at the sample edge.

The various modes can be identified by e.g. plotting the spatial distribution
of the oscillations of the mz component, as illustrated in Fig. 3.1d, where
the edge modes are identified as localized excitations at the sample edge.

Following this approach for several values of the external static field one
can obtain the full field vs. frequency map of the resonances, which in turn
can be compared to the experimental FMR spectrum.



52 CHAPTER 3. MICROMAGNETIC SIMULATIONS

Figure 3.2: Results for the applied static field along the a) long axis and b) short axis
of the ellipse. Left half: Experimental datapoints as red dots and blue squares for the
main mode and edge mode respectively and analytical macrospin model as dotted black
line. Right half: Micromagnetic simulations of the FMR spectrum.

As an example, Fig. 3.2 shows a comparison of the micromagnetic solution
and experimental data-points (red dots and blue squares for the main mode
and edge mode respectively) as well as an analytical macrospin model as
dotted black line. These data are taken from paper IV of the thesis, and I
refer to this paper for further details.

This example illustrates nicely that micromagnetic simulations are a
valuable tool to gain a better understanding of experimental data. How-
ever, micromagnetic simulations are not limited only to this approach. Sim-
ulations can also be used for the benchmarking of analytical solutions to
see if they provide accurate predictions, as well as for performing ”numer-
ical experiments”, as they provide the possibility of investigating complex
structures which might be time consuming or challenging to realize experi-
mentally. This last approach is something we employed in the project which
led to paper V of the thesis, where we investigate the synchronization of
spin-torque oscillators (STO). Here, we performed ”numerical experiments”
of systems which are currently too complicated and time consuming to real-
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ize experimentally, as well as using the simulation results as a benchmarking
comparison for a simplified mathematical model for the coupled STO. For
the applications of micromagnetic simulations in the study of these systems,
I refer to paper V of the thesis for further details.
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Chapter 4

Experimental techniques

In this chapter, I present the main experimental techniques used during
the course of my PhD. I start with a brief introduction to the thin film
deposition technique utilized for the deposition of the normal metal (NM)
layers in the project that resulted in paper II of the thesis. I then move on
to introducing FMR spectroscopy. This is the main experimental technique
used, and in section 4.2 I introduce the FMR setups used in the projects
that resulted in papers I, II, III and IV of the thesis.

4.1 Thin film deposition by DC magnetron sput-
tering

DC Magnetron sputtering is a physical vapor deposition (PVD) process,
meaning that a target material is vaporized and transported in the form of
a vapor to the substrate where it condenses, forming a coating layer [62].
A schematic of the sputtering setup is illustrated in Fig. 4.1.

The target material and the sample is placed in a vacuum chamber,
where a voltage is applied between the sample and target, generating an
electric field. The confining electric and magnetic field causes electrons
to circulate in the field close to the target, creating a plasma region by
ionizing the sputtering gas (generally an inert gas, here Argon (Ar)). The
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Figure 4.1: a) Schematic of the sputtering setup. Ionized Ar atoms bombard the target,
ejecting target atoms which subsequently hit the substrate and coat the surface with a
thin film of the target material.

Ar atoms are ionized and bombarded into the target, which leads to the
ejections of atoms from the surface [62]. These ejected atoms will in turn
hit the substrate and coat the surface with a thin film of the target material,
where the deposition rate is controlled by the Ar pressure in the vacuum
chamber and the applied plasma power.

The thickness of the deposited NM films (Au and Cu) in the project
that resulted in paper II of the thesis was in the range 10 nm - 1 µm.
The film thickness was monitored using a quartz crystal thickness monitor
during the deposition and compared to thickness measurements using a
profilometer subsequent to the deposition.
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4.2 FMR experimental setup

Ferromagnetic resonance spectroscopy (FMR) is an important technique
for the characterization of ferromagnetic samples, and probe static and dy-
namic properties of magnetic materials. The technique relies on measuring
the microwave absorption associated to the precession of the magnetization,
and can be used to extract valuable information about material parameters
such as e.g. the effective magnetization, anisotropies and the magnetody-
namic damping [25].

In an FMR experiment, a static magnetic field is applied in combination
with an orthogonal microwave magnetic field. As previously discussed in
section 2.2.3, this microwave magnetic field will induce a precession motion
of the electron spins, provided that the frequency of the applied microwave
field coincides with the ferromagnetic resonance frequency. As the res-
onance frequency is determined by the effective magnetic field, one can
either vary the frequency of the microwave field at a fixed value of the
external field, or keep the microwave frequency fixed and sweep the magni-
tude of the external field in order to change the resonance frequency. This
latter field-sweep approach is the technique that has been utilized in this
thesis, and the two different experimental setups used are presented in the
following sections.

4.2.1 Cavity-based FMR

The cavity-based FMR measurements were performed using a commercial
Bruker EleXsys E500 X-band EPR setup [63]. In this setup, the microwave
frequency exciting the magnetization precession is kept at a fixed frequency
(here 9.6 GHz), determined by the eigenmodes of the microwave cavity res-
onator coupled to a microwave source. A schematic of the FMR setup is
illustrated in Fig. 4.2a. A microwave bridge housing a solid state radia-
tion source is used to generate microwaves, and a waveguide connects it to
the microwave cavity resonator [64]. The microwave cavity is impedance
matched to the waveguide to ensure a maximal coupling. Thus, the mi-
crowave energy is mainly absorbed in the cavity and very little reflected
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Figure 4.2: a) Schematic of the cavity based FMR setup. b) Schematic of the microwave
cavity resonator. c) FMR absorption for a 10 nm thick Permalloy film and the fit to Eq.
(4.2)

signal is measured at the detector diode. The microwave cavity is con-
structed in such a way that the standing microwave magnetic field within
the cavity is located at the sample position [65], see Fig. 4.2b.

A static magnetic field perpendicular to the microwave magnetic field is
provided by an electromagnet. The sample is attached to a quartz rod con-
nected to a goniometer, allowing for a full 360 degrees rotation of the sam-
ple with respect to the external field. The field strength is swept to locate
the ferromagnetic resonance while the microwave absorption in the sample
is recorded by measuring the reflected microwave power from the cavity.
When the resonance frequency of the sample coincides with the microwave
frequency of the cavity, this causes a change in the cavity impedance. The
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change in impedance results in more microwaves being reflected to the de-
tector diode, thus providing a sensitive probe into the magnetic state of the
system [65].

The measured absorption curve is proportional to the imaginary part of
the magnetic susceptibility (see Eq. (2.24) in section 2.2.3 where the con-
cept of FMR was introduced), and is often assumed to have a symmetric
Lorentzian lineshape. However, in paper II and III of the thesis we show
that in conductive samples, induced microwave eddy currents in the sam-
ple can affect the linshape symmetry. In an experimental setup containing
waveguides, coaxial cables etc., the relative phase between the electric and
magnetic field components can also affect the lineshape [39, 40]. We thus
fit the FMR absorption to a linear combination of symmetric and antisym-
metric contributions, determined by the β parameter in Eq. (4.1).

χ
′′ = A

1 + β(HR −H0)/ΓH
(HR −H0)2 + (ΓH/2)2 , (4.1)

where A is an amplitude prefactor, HR and H0 are the resonance field and
external field respectively and ΓH the linewidth.

In order to increase the sensitivity of the measurements, a field mod-
ulation technique was used. Modulation coils are used to provide a small
modulation of the static field for the use of lock-in detection [66]. The
resulting recorded signal is then proportional to the field derivative of the
susceptibility, and the experimental data was thus fitted to the derivative
of Eq. (4.1) with respect to the external field, which is given by:

dχ
′′

dH0
= A

[
−β/ΓH

(HR −H0)2 + (ΓH/2)2 + 2(HR −H0)[1 + β(HR −H0)/ΓH]
[(HR −H0)2 + (ΓH/2)2]2

]
.

(4.2)
As an example, the measured FMR absorption for a 10 nm thick Permalloy
film and the fit to Eq. (4.2) is shown in Fig. 4.2c
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4.2.2 Broadband FMR
The broadband FMR experiments were performed using a vector network
analyzer (VNA) setup in combination with a coplanar waveguide (CPW)
that created microwave magnetic fields of variable frequency. A schematic
of the setup is illustrated in Fig. 4.3a. A microwave current running through
the center transmission line of the CPW produces a microwave magnetic
field, hmw, as illustrated in Fig. 4.3b. The static external field, H0, was
applied in the sample plane, and perpendicular to the microwave fields
from the CPW.

Figure 4.3: a) Schematic of the broadband FMR setup. b) Zoom in of the coplanar
waveguide (CPW). c) Measured FMR dispersion for a 15 nm thick LSMO film (data
taken from paper I of the thesis), with the fit to the Kittel equation as dotted line. A
typical absorption lineshape and the fit to Eq. (4.1) is shown as inset.



4.2. FMR EXPERIMENTAL SETUP 61

The VNA compares the signal that leaves the analyzer with either the signal
that is transmitted through the test device, or the signal that is reflected
from the device input. Since it is difficult to measure the total current and
voltage at high frequencies, the so-called S-parameters are used [67]. These
can be used to determine common parameters such as gain, loss and re-
flection coefficients. The microwave transmission and reflection parameters
(S12 and S11) can then be measured as a function of the magnitude of the
external field and microwave frequency in order to obtain a complete map
of the ferromagnetic resonances [65].

By measuring the microwave absorption as a function of both microwave
frequency and the applied external field, one can obtain the FMR disper-
sion. The field vs. frequency dispersion can be described by the Kittel
equation (see Eq. (2.23) in section 2.2.3). As an example, the measured
FMR dispersion for a 15 nm thick La0.7Sr0.3MnO3 film is shown in Fig.
4.3c, with the fit to the Kittel equation as dotted line (data taken from
paper I of the thesis). As mentioned in the previous section, the phase of
the recorded signal depends on a number of external parameters. The ab-
sorption lineshape was thus fitted to a linear combination of symmetric and
antisymmetric contributions, determined by the β parameter introduced in
Eq. (4.1), and a typical lineshape and the fit to Eq. (4.1) is shown as inset
in Fig. 4.3c

The advantage of the broadband FMR setup is the possibility of ob-
taining a full field vs. frequency map of the resonances, not being limited
to a single frequency as with the cavity FMR setup. This becomes advan-
tageous when e.g. characterizing a system which has multiple resonance
modes, where tracking the frequency of the various modes as a function of
the applied field can provide valuable information. See e.g. paper IV of
the thesis, where we used a combination of broadband and cavity based
FMR experiments to characterize the various resonance modes of elliptical
ferromagnets of nanoscale dimensions.

The possibility of varying the microwave frequency is also a key ingre-
dient for the ability of measuring the magnetodynamic damping parameter
α, as introduced in section 2.2.7. By measuring the FMR linewidth vs.
frequency, one can extract both α, which characterize the frequency depen-
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dent contribution to the damping, as well as the inhomogeneous frequency
independent contribution to the linewidth. Broadband FMR spectroscopy
thus provides a way of measuring the damping parameter α, which is one
of the key material parameters governing the magnetodynamic properties.
For further details, see e.g. section 5.1 and paper I of the thesis, where we
characterize the damping of La0.7Sr0.3MnO3 films.



Chapter 5

Main research topics

This thesis consists of a collection of work performed on various systems,
but with the overall aim of providing new knowledge on the magnetization
dynamics in systems confined to nanoscale dimensions. In this chapter, I
want to provide a brief motivation to why we have chosen to perform the
studies that resulted in the papers included in this thesis. In doing this, I
introduce a general overview of the main research topics and explain how
the findings presented in this thesis are relevant with respect to ongoing
research. In addition, I include a brief summary of the papers that resulted
from these studies.
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5.1 Magnetodynamic damping in ferromagnetic
thin films

As the switching times of current magnetic applications approach the sub-ns
regime, the intrinsic time scale of the magnetization dynamics is defined by
the gyrotropic precession of the individual magnetic moments. Both static
and dynamic behavior depends on the properties of the magnetic film. In
response to excitations with fast varying magnetic fields, follows funda-
mental magnetodynamic phenomena like the movement of domain walls
and switching of the magnetization [68, 69, 70]. Fundamental questions on
the dissipation and magnetization damping are thus of great interest, and
are intensely studied.

From a practical point of view, the most attractive materials are poly-
crystalline magnetic metals and alloys, which are well suited to nano-
fabrication techniques. Among the metallic ferromagnets, Permalloy is
currently the most widely used material and is one of the prototype mate-
rials for magnetodynamic devices, with a reported damping parameter of
α = 0.008 [72]. For magnetodynamic applications, a low damping is desir-
able. A low damping means less dissipation of energy, which is important
for several applications e.g. in magnonics, which concerns the behavior of
spin waves (see e.g. ref. [19] for a nice review article). The propagation of
spin waves depends crucially on a low dissipation, and the magnetic damp-
ing imposes a limit for the spin-wave propagation length due to the decay
of the spin-wave amplitude.

When it comes to low magnetic damping, the insulating ferrimagnet
Yttrium Iron Garnet (YIG) is often the material of choice. This provides
the lowest magnetic damping recorded so far, with recently reported values
of α ≈ 7 · 10−5 for a 20 nm thick film [73]. Although YIG is more chal-
lenging when it comes to nano-fabrication compared to other materials,
fundamental insight into magnetization dynamics gained through the low
damping is still transferable to other material systems. Due to this, YIG
has proved to be a highly valuable material for the investigation of novel
magnetodynamic phenomena. See e.g. refs. [71, 74, 75, 76] and references
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therein for an overview.
For inducing a precession motion of the magnetization, or even magne-

tization reversal, using the aforementioned spin-transfer torque (STT) (as
introduced in section 2.2.8), the damping is also a critical parameter [56].
The relative strength between the damping term and the STT term is de-
termined by the damping parameter α and the spin current density. This
means that by reducing α, one also reduces the critical current density.
This is important for applications of the STT-effect, as the high current
densities needed are only obtainable in point contact geometries in order
to avoid melting the contacts due to Joule heating [56]. Understanding the
various contributions to the magnetization relaxation is thus important,
and the search for promising material systems with a low damping is an
important research field.

One such group of interesting materials is the complex magnetic oxides.
This source of materials exhibit intriguing phenomena such as e.g. Mott
insulators, metal-insulator transitions, multiferroics and superconductivity
(see e.g. refs. [77, 78, 79, 80] and references therein for an overview). The
material properties of oxides are very sensitive to the structural parame-
ters, and recent technical advances in synthesis of oxide heterostructures
have provided a fertile new ground for creating novel states at their inter-
faces [79]. This sensitivity to structural parameters enables using thin film
growth in order to engineer the magnetic properties [81], and the possibil-
ity of controlling the properties at the nm-scale makes the magnetic oxides
an interesting material system for spintronics and other magnetic based
applications.

Within manganites, La0.7Sr0.3MnO3 (LSMO) has been regarded as one
of the prototype model systems. Transport and static magnetic properties
of LSMO are well studied, but less attention has been paid to the magne-
todynamic properties. This motivates the study of LSMO as a material for
magnetodynamic devices, and in doing this, characterizing the damping is
one of the key properties. This is the main objective of paper I of the thesis,
where we characterize the magnetodynamic damping in thin LSMO films
as a function of film thickness and temperature. A summary of the main
results are found in the following section, and for further details I refer to
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the appended paper in chapter 9.

5.1.1 Summary of paper I
Vegard Flovik, Ferran Macià, Sergi Lend́ınez, Joan Manel Hernàndez,
Ingrid Hallsteinsen, Thomas Tybell, Erik Wahlström.
Thickness and temperature dependence of the magnetodynamic damping of
pulsed laser deposited La0.7Sr0.3MnO3 on (111)-oriented SrTiO3.
J. Magn. Magn. Mater. 420, 280-284, (2016).

Here, we investigate the magnetodynamic properties of pulsed laser de-
posited LSMO films of thickness 10, 15 and 30 nm grown on (111)-oriented
STO. By performing broadband FMR experiments in the temperature
range 100-300 K we extract the magnetodynamic damping parameter α
as a function of both temperature and film thickness, and find a mini-
mum value of α ≈ 0.002. This damping is lower than that of e.g Permalloy
(Ni80Fe20), which is one of the prototype materials for magnetodynamic de-
vices. The low damping, in addition to other intriguing material properties
and the possible coupling to the aforementioned functionalities provided by
oxide electronics, indicate LSMO as a promising material for applications
in magnetodynamic devices.



5.2. EDDY-CURRENT EFFECTS ON FERROMAGNETIC RESONANCE 67

5.2 Eddy-current effects on ferromagnetic reso-
nance

The microwave frequency spin dynamics in nanostructures usually involves
stacks of layers combining ferromagnets (FM) and normal metals (NM) at
the nanometer scale [10, 11, 19, 82]. Studies of magnetization dynamics in
FM/NM structures are important within the field of microwave spintronics
and magnonics, highlighted as an emerging research direction in magnetism
[83]. In these structures, time varying magnetic fields will induce eddy cur-
rents in conductive layers. Eddy-current effects have often been neglected
for film thicknesses below their skin depth (≈ 800 nm for Au at 10 GHz).
However, the contribution of the microwave conductivity of magnetic mul-
tilayers has received increasing attention in recent years, indicating the
importance of eddy-current effects also for NM films far below their skin
depth [2, 3, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96].

In FM/NM bilayers, Maksymov et al. showed that the amplitude of the
magnetization precession in the FM layer can be diminished by the shield-
ing effect due to microwave eddy currents circulating in the NM layer [89].
A study by Kostylev also showed that in single layer and bi-layer metallic
FM, the microwave screening effect results in a spatially inhomogeneous
microwave field within the magnetic film [94]. The experimental manifes-
tation of this is a strong response of higher order standing spin-wave modes
due to the non-uniform microwave field across the thickness of the magnetic
film.

The FMR in the FM layer is driven by the total microwave magnetic
field. In conductive samples, depending on the field and sample geometry,
this consists of both the external applied field and the Oersted fields from
induced eddy currents. In paper II of the thesis, we show that induced eddy
currents can strongly affect the FMR excitation and that the phase-shifted
contribution from the induced microwave fields give rise to an asymmetry
in the observed FMR lineshapes. This is relevant with respect to recent
experiments, where differences in symmetry of the lineshapes have been
used to study the spin pumping from a magnetic material to a normal
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metal [41, 42, 43, 44, 45, 46]. In such studies, lineshape symmetry is one
of the main parameters used to analyze the results. Hence, to correctly
interpret experimental data involving FMR it is important to understand
how eddy currents can affect the FMR excitation. This is the main focus of
paper II of the thesis, where we perform a systematic study of how sample
geometry and adding NM layers of various thicknesses affects the FMR
lineshape.

However, rather than simply considering eddy currents a parasitic effect,
one can also investigate how controlling the current paths can be used to
tailor the local microwave field. The excitation of wave-vector specific spin
waves in FM films using a diffraction grating has been studied by Sklenar
et. al [97], where they show that a patterned silver antidot lattice on
a thin uniform permalloy film enables coupling to spin-wave modes. In
paper III of the thesis we investigate how eddy currents, in addition to the
aforementioned microwave screening effects, also enables the excitation of
spin-wave modes with non-zero wave vectors (k 6= 0), in contrast to the
uniform k = 0 mode normally excited in FMR experiments.

The findings presented in paper II and III of the thesis points towards
the importance of considering eddy-current effects not only for understand-
ing basic experiments, but also for control of the local microwave field in
thin film structures, which could be of importance for magnonics applica-
tions. A summary of the main results of paper II and III are found in the
following sections, and for further details I refer to the appended papers in
chapter 9

5.2.1 Summary of paper II
Vegard Flovik, Ferran Macià, Andrew D. Kent, Erik Wahlström.
Eddy current interactions in a ferromagnet-normal metal bilayer structure,
and its impact on ferromagnetic resonance lineshapes
J. Appl. Phys. 117, 143902 (2015)

In this manuscript, we show (through ferromagnetic resonance (FMR) spec-
troscopy) that induced eddy-current effects are important even for thin films
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(10-100nm Au or Cu) in Ferromagnet/Normal metal (FM/NM) bilayers –
contrary to what is usually assumed. The dynamics of such bilayers is
governed by the interplay of the microwave fields from an FMR microwave
cavity and the additional Oersted fields from the induced eddy currents.
This coupling leads to a phase shift in the FMR excitation, measured and
quantified through an asymmetry in the observed FMR lineshapes.

Further, we show that this coupling is tunable through changing the
sample geometry and NM layer thickness. The tunability of the coupling
opens up possibilities to use patterned NM structures to tailor the local
field geometry and phase of the induced microwave fields.

5.2.2 Summary of paper III
Vegard Flovik, Bjørn Holst Pettersen, Erik Wahlström.
Eddy-current effects on ferromagnetic resonance: Spin wave excitations and
microwave screening effects.
J. Appl. Phys. 119, 163903 (2016)

In this manuscript, we investigate (through ferromagnetic resonance (FMR)
spectroscopy) how induced eddy-current effects in patterned FM/NM struc-
tures can be used to tailor the local microwave fields in FMR experiments.
We show how induced fields from eddy currents can be used to partially
compensate the applied microwave field, acting as an effective screening
mechanism in selected parts of the sample. We also provide evidence that
controlling the local microwave field can enable the excitation of spin-wave
modes, in contrast to the uniform mode normally excited in FMR experi-
ments. Our results suggests the possibility of actively using eddy currents
to control the local microwave field excitation in thin film structures, which
could be of importance for magnonics applications.
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5.3 Magnetodynamics of confined magnetic ele-
ments

Confining a magnetic element to nanoscale dimensions has several impor-
tant implications, and the complex interplay between the various magnetic
energy terms all contribute to determining the magnetic state. The static
magnetic configuration is determined by the material properties and the size
and shape of the magnetic elements (as introduced in section 2.1.5), and it
might become energetically favorable to form multiple magnetic domains
with different orientations of the magnetization. The possibility of obtain-
ing states where the magnetization orientation represents a bit enables the
use as magnetic memory devices, and nanometer sized magnetic elements
play an important role in advanced magnetic storage schemes [98, 99]. How-
ever, even for such ”static” applications, as the switching times of current
magnetic applications approach the sub-ns regime, understanding the mag-
netization dynamics is becoming increasingly important.

In addition to the importance of understanding the magnetization dy-
namics in terms of fast switching processes, it is also at the foundation
of the emerging research field of magnonics introduced previously. The
study of spin waves in nanoscale systems is of great importance, both for
gaining fundamental understanding on these novel phenomena, as well as
for application purposes. Due to this, the dynamic magnetic properties
of nanostructures are being intensely studied, and have received extensive
attention from both fundamental and applications viewpoints. See e.g.
refs. [19, 83, 100, 101, 102] and references therein for an overview of recent
research.

While technological applications are important, there is also significant
interest in understanding the fundamental behavior of magnetic materi-
als when they are confined to nanoscale dimensions. In confined magnetic
elements, there is a complex competition between exchange, dipolar and
anisotropic magnetic energies. Understanding the interplay between the
various energy terms is thus of importance when investigating the magne-
todynamics of such systems.
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The magnetization dynamics of patterned magnetic structures has been
extensively studied previously [103, 104, 105, 106, 107, 108, 109]. The
spin dynamics in elliptical permalloy dots was investigated by Gubbiotti et
al.[104]. They studied the various excitation modes as a function of dot
eccentricity and in-plane orientation of the applied field, showing how the
shape of the ellipses affects the spectrum of excitable modes and their fre-
quencies. In addition to the excitation spectrum, Nembach et. al. also in-
vestigated the mode-and size-dependent magnetodynamic damping in mag-
netic nanosctructures [108].

However, the above-mentioned studies of patterned magnetic struc-
tures were all performed for systems having a negligible magnetocrystalline
anisotropy. Material systems with a significant crystalline anisotropy pro-
duce an effective field which also contributes to the spin dynamics. To
the best of our knowledge, the dynamic properties of magnetic structures
with comparable contributions from both crystalline and shape anisotropies
remained unexplored.

The goal of the study that resulted in paper IV of the thesis was thus to
investigate a system where the energy terms from both crystalline and shape
anisotropies contribute to determine the dynamics. In order to achieve this,
one needs a material system which has a significant magnetocrystalline
anisotropy. In our study, we utilized epitaxial Fe thin films as the FM
material, patterned to an array of elliptical nanomagnets. This resulted
in a system combining the cubic crystalline anisotropy of Fe [28] with the
shape anisotropy due to the elliptical shape of the magnetic elements. This
allowed for a fundamental study of the magnetodynamic properties of a
system where the interplay between the various energy terms could be con-
trolled through the shape and size of the magnetic elements.

A summary of the main findings of this investigation is found in the
following section, and for further details I refer to the appended paper in
chapter 9.
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5.3.1 Summary of paper IV
Vegard Flovik, Ferran Macià, Joan Manel Hernàndez, Rimantas Bručas,
Maj Hanson, Erik Wahlström.
Tailoring the magnetodynamic properties of nanomagnets using magne-
tocrystalline and shape anisotropies.
Phys. Rev. B. 92, 104406 (2015)

In this manuscript, we investigate the interplay of magnetocrystalline and
shape anisotropy in elliptical nano-magnets, and set the size range that
allows controlling their dynamic properties. Through a combination of
analytical calculations, micromagnetic simulations and ferromagnetic res-
onance (FMR) spectroscopy, we show how the size of the magnetic ele-
ments governs the balance between crystalline and shape anisotropy and
how this affects their dynamic properties. From an applications viewpoint,
the manuscript shows how one might utilize magnetocrystalline anisotropy
in addition to the size and shape of the magnetic elements to tailor the
magnetodynamic properties.



5.4. SYNCHRONIZATION OF SPIN-TORQUE OSCILLATORS 73

5.4 Synchronization of spin-torque oscillators
The emergence of coherent phases of interacting oscillators is a common
phenomena, and is at the foundation of the cooperative functioning of a
wealth of different systems in nature. Coherent phases emerge in natural
systems of interacting oscillators, leading to collective synchronized states,
and we are surrounded by those systems – from disease spreading to bio-
logical body rhythms [110].

Understanding the collective behavior in oscillator networks is also an
intensely studied topic in modern magnetism: the synchronization of spin
torque oscillators (STO). STO are strongly non-linear magnetic oscillators
that can be implemented into nanoscale devices working at microwave fre-
quencies. For a nice review on STO see e.g. refs. [111, 112] and references
therein.

The functioning of STO are based on the spin-transfer torque (STT) ef-
fect and the giant magnetoresistance effect (GMR), as introduced in section
2.2.8. In a simplified picture, a nanopillar STO consists of a fixed polar-
izer layer and a magnetic free layer. Running a charge current through the
fixed layer causes a spin polarized current which then runs through the free
layer, exerting a torque on the magnetization. At sufficiently hight current
densities, this torque can induce a precession motion of the magnetization,
characterized by a single frequency set by the applied field strength and
the current density. Due to the GMR effect, as the free layer precesses at
a certain frequency, the resistance of the nanopillar also oscillates at the
same frequency. Thus, a direct charge current creates a microwave voltage
across the STO, which is an attractive feature for applications.

STO are envisaged to be useful for a variety of advanced magnetic
nanodevices, as microwave sources and for signal processing in telecommu-
nication technologies (see e.g. refs. [20, 113] and references therein for an
overview). STO have also been proposed as possible candidates for a full
spintronic implementations of neural networks, based on nano-devices em-
ulating both neurons and synapses [20, 114]. Building artificial neural net-
works for computation is an emerging field of research within bio-inspired
computing [20, 113, 114, 115, 116, 117, 118, 119], where controlling the
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collective behavior in oscillator networks is crucial.
For applications however, the ability of STO to be frequency and phase

locked to external oscillatory signals or other STO is considered crucial,
and is an intensely studied topic [120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132]. Several approaches to obtain synchronization
have been investigated, such as e.g. the coupling through magnetic dipolar
fields [124, 127, 128, 131], electrical connections [125, 129] and interaction
mediated by spin waves [132].

In both experimental and theoretical studies, most of the work has been
performed for a limited number of oscillators. Experimentally, the synchro-
nization of STO has proven to be difficult, and the synchronization of only
a few oscillators has been demonstrated [130, 132]. Theoretically, the mag-
netization dynamics of STO is modeled with the Landau-Lifshitz-Gilbert-
Slonzewski (LLGS) equation [31, 56] (as introduced in section 2.2.8), but
large number of STO lead to challenging computations. It is important
to consider that in these non-linear systems, ”more is different”, and that
the collective behavior can not be derived simply from the behavior of the
individual elements. Thus, a theoretical framework capable to capture the
essential dynamics would be ideal to explore those systems.

Mathematical models for understanding collective phenomena in large
populations of interacting oscillators are sought after in science, and one of
the more well known is the Kuramoto model. The Kuramoto model is a
well known mathematical model in non-linear dynamics that describes large
systems of coupled phase oscillators [133]. The model, with a remarkable
simplicity, has been used to describe the essential features of collective
excitations in a vast set of biological and physical phenomena [133, 134,
135, 136, 137, 138, 139, 140, 141].

Inspired by the successful use of the aforementioned Kuramoto model
in describing various phenomena related to synchronization, we wanted to
see if a similar simple mathematical model could be obtained for the case
of a large number of interacting magnetic oscillators. This is one of the
objectives of paper V of the thesis, where we show that arrays of dipolar
coupled STO can be successfully described through a Kuramoto model
with a coupling term mimicking the dipolar interactions. In this study,
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we perform ”numerical experiments” of systems which are currently too
complicated and time consuming to realize experimentally. However, the
results still shed new light on the synchronization of STO, and we believe
that a fundamental understanding of synchronization phenomena might
prove to be useful in designing new approaches to obtain synchronization
of STO.

A summary of the main findings of this investigation is found in the
following section, and for further details I refer to the appended paper in
chapter 9.

5.4.1 Summary of paper V
Vegard Flovik, Ferran Macià, Erik Wahlström.
Describing synchronization and topological excitations in arrays of magnetic
spin torque oscillators through the Kuramoto model.
Sci. Rep. 6, 32528 (2016).

Finding mathematical models that describe complex systems is not only
important for a basic understanding, but it is also important in order to
create and exploit such systems with all the potentiality of collective be-
havior. Here, we investigate the collective dynamics in large populations of
magnetic vortex-based spin-torque oscillators (STO). The micromagnetic
modeling of those systems is complicated and time consuming. We show
that arrays of STO can be modeled using a variant of the Kuramoto model
with a coupling term mimicking the magnetic dipolar fields, providing a
simple theoretical framework capturing the essential dynamics to explore
those systems.

By investigating the collective dynamics in large arrays of STO using
the Kuramoto model as well as micromagnetic simulations, we find that
the synchronization in such systems is a finite size effect. The critical
coupling – for a complete synchronized state – scales with the number
of oscillators, preventing global synchronization in large systems. Using
realistic values of the dipolar coupling strength between STO, we show that
this imposes an upper limit for the maximum number of oscillators that
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can be synchronized. The ability to synchronize several STO is considered
crucial for applications, and our results shed new light on the problem of
mutual synchronization of a large number of oscillators.

The presented work has an interdisciplinary nature, establishing con-
nections between different subfields such as non-linear dynamics, statisti-
cal physics and magnetization dynamics. We present an analogy between
systems of interacting oscillators in biology and neuroscience to magnetic
oscillators which can be implemented into nanoscale devices. This suggest,
on the one hand, that the use of models from non-linear dynamics might
be useful for describing synchronization of magnetic oscillators and, on the
other hand, that arrays of STO may be good candidates for a spintronic im-
plementation of neural networks or other unexplored phenomena described
by the Kuramoto model.



Chapter 6

Popular science article based
on paper V

As scientists, I believe we should be better at sharing our research with the
public. After all, a major part of our research funding is coming from the
government and the taxpayers’ money. Thus, in addition to the publication
of research in specialized journals, contributing to the public awareness of
science should also be part of our focus. Also, I find that trying to explain
complex problems in a way that is easily comprehensible and captures the
interest of the ”non-scientist” reader, while still providing physics insight,
is an interesting challenge.

As an effort in contributing to the popular science dissemination of
research, I have written an article inspired by paper V of the thesis. I
have emphasized avoiding technical jargon and to keep it easy to follow,
without requiring any previous physics knowledge. Slightly modified and
shortened versions of this article have been published on the university blog,
as well as in the Norwegian popular science magazine ”Gemini” [142]. If
my contribution is able to catch the interest of some ”non-scientists” and
get them to appreciate the joy of physics along the way, I have reached my
goal.
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Can we build artificial brain networks using nanoscale
magnets?

Before addressing my initial question on the connection between nanoscale
magnets and brain networks, let me first introduce our recent article: It has
the rather technical title ”Describing synchronization and topological exci-
tations in arrays of magnetic spin torque oscillators through the Kuramoto
model”. Let us try to chop this into pieces, to make it less intimidating:
The main term to understand initially is that of synchronization. The de-
tails related to topology are perhaps more suitable for the specialist reader,
and will be skipped for now.

The concept of synchronization should be well known, even if you might
not have thought about it that much, and do not spend your time think-
ing about mathematical equations on how to describe it. Synchronization
basically surrounds us in all parts of nature and technology. A beautiful
example of synchronization in nature includes that of e.g. fireflies. Large
groups of fireflies sometimes synchronize and start flashing in unison, pro-
ducing really fascinating flashing patterns. I highly recommend a quick
youtube search on these phenomena. In addition to illustrating the con-
cept of synchronization, they are simply very beautiful to look at! Another
example, where you have probably contributed to the synchronization your-
self, is that of rhythmic applause. The tendency of an audience to break
into synchronized rhythmic applause constitutes a form of spontaneous syn-
chronization. There are also examples of synchronized activity in the brain,
and research has shown that synchronous electrical activity between neu-
rons in distinct regions of the brain might play an important role in the
performing of cognitive tasks and memory formation.

So, these phenomena are interesting, but what do they have to do with
nanoscale magnets? Well, there is a common denominator in these cases of
synchronized activity. As it turns out, they are connected via ”the mathe-
matics of synchronization”. These vastly different phenomena can actually
be described remarkably well using the same mathematical equations, all
connected by the common concept of synchronization. One of the more
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”famous” mathematical models to study synchronization is the Kuramoto
model. The Kuramoto model has been used to describe the essential fea-
tures of coupled oscillations in a vast set of biological and physical systems,
where an oscillator in this sense is any system that executes periodic be-
havior. A swinging pendulum, for example, returns to the same point in
space at regular intervals, where these intervals correspond to the oscilla-
tors frequency. You might also recognize the Kuramoto model from the
title of our recent article, which I introduced in the beginning. This means
we are getting closer to the content of our actual research.

So, what are the key ingredients we have introduced? Well, we have
the concept of synchronization, the Kuramoto model, and the magnetic
oscillators. More specifically, the focus of our latest research has been on
understanding the behavior of nanoscale magnetic oscillators. These oscil-
lators have a size of a few hundred nanometers. In comparison, a human
hair has a thickness of approximately 100.000 nanometers (one nanometer
is 0.000000001 meter, so they are pretty small!). They have been envisaged
to be useful for a variety of magnetic nanodevices, as microwave sources
and for signal processing in telecommunication technologies. Another very
interesting proposal is the use of such oscillators as building blocks for the
implementation of artificial neural networks, inspired by the functioning of
the brain. Building artificial neural networks is an emerging field of re-
search within bio-inspired computing. Here, researchers look to nature for
inspiration in the development of bio-inspired chips based on natural com-
puting architectures. The brain, and biological systems in general, are able
to perform high performance calculations with much higher efficiency than
computers, and they do it quickly and with very low energy consumption.
Interestingly, recent advances in nanotechnology and materials science fi-
nally make it possible to envisage designing and building networks based
on multifunctional nanodevices approaching the complexity of biological
systems.

We are now getting closer to our initial question: Can we build arti-
ficial brain networks using nanoscale magnets? As an effort in achieving
this, understanding what happens when you put a lot of these magnetic os-
cillators together, allowing them to interact with each other is crucial. This
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is what we have been studying recently. When fabricating such nanoscale
oscillators they will all be slightly different from the fabrication process,
and due to this they tend to oscillate at slightly different frequencies. This
is bad news for several of the interesting applications mentioned previously,
where the ability of the oscillators to synchronize and oscillate at a common
frequency is crucial. As a means to solve this, one can try to put several
of these oscillators closely packed together, allowing them to interact and
”talk” to each other. By doing this, they tend to adjust their individual
frequencies and ”agree” on a common rhythm with their neighbors: i.e.
they become synchronized.

This synchronization transition is similar to something you have prob-
ably experienced yourself: when a theater audience spontaneously starts
clapping in unison. The audience ”talk” to each other and interact via the
clapping sounds, where people tend to adjust their own clapping rhythm to
that of the surrounding audience. This can sometimes spontaneously result
in the well- known rhythmic applause. The crucial ingredient here, is that
they are able to interact by hearing the clapping of the neighboring audi-
ence. Without this kind of interaction, it is highly unlikely that everyone in
the audience spontaneously start clapping at exactly the same pace. This
is similar also for the magnetic oscillators: In order for them to ”agree” on
a common frequency, they need to be able to interact with each other. In
their case, the interaction is of course not through clapping, but through
the magnetic fields produced by the individual oscillators. This means that
by putting several of them closely packed together, the interactions among
them could result in a collective behavior of all the oscillators.

This is where things get interesting: Understanding the behavior of a
single oscillator is not that hard (although it can be complicated enough!),
it is the collective behavior when you put a lot of them together which is
the real challenge to understand. The study of such phenomena belongs
to what scientists refer to as non-linear dynamics. The main consideration
is that in these non-linear systems, ”more is different”, and the collective
behavior cannot be derived simply from the behavior of the individual el-
ements. Putting a lot of ”simple” elements which are well understood on
their individual level together and allowing them to interact, it gets very
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complicated and non-intuitive to understand how they will behave collec-
tively. At the same time, this complicated collective behavior is also what
makes these systems interesting! This leads us to one of the main ques-
tion we wanted to address in our research: What happens when you put a
lot of these oscillators closely packed together, allowing them to interact?
Will they synchronize to a collective rhythm, or will perhaps some other
interesting effects occur?

The way we studied this, was through mathematical equations we could
solve on our computers. However, the set of equations one must solve when
the number of oscillators increases gets very complicated and time consum-
ing. Even on powerful computers, the computation time is simply too long
to obtain a sensible result in a reasonable amount of time. Inspired by the
successful use of the aforementioned Kuramoto model in describing a vast
set of different phenomena related to synchronization, we wanted to see if a
similar ”simple” mathematical model could be obtained for the case of in-
teracting magnetic oscillators. The short answer here is: yes, we believe so.
In our recent article, we show how one could use this mathematical model
to describe the collective behavior in large networks of such magnetic os-
cillators, and present an analogy between systems of interacting oscillators
in e.g. neuroscience and these magnetic oscillators, as they both can be
described by similar mathematical equations.

So, returning again to our initial question: Can we build artificial brain
networks using nanoscale magnets? Well, building an artificial brain, in
the sense of a human brain, might be difficult. However, being able to
build artificial neural networks which perform computations inspired by
how the brain performs cognitive tasks is a more likely outcome. A part
of the puzzle in achieving this goal is to identify the suitable elemental
building blocks. In this context, nanoscale magnetic oscillators are one of
the promising candidates for an implementation of neural networks based on
nanodevices emulating neurons. At least, we find it very interesting that the
mathematical equations used to study the synchronization of neural activity
in the brain can also be used to study the synchronization of magnetic
oscillators. However, with many issues yet to overcome and problems to
solve, only continued hard work over the coming years will show whether
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such devices will become a reality in the futre. In the meantime, we are
just excited to contribute our small piece of the puzzle.



Chapter 7

Outlook

Advances in science is building upon the knowledge from previous research.
As every contribution represents one piece of the puzzle, our combined un-
derstanding expands over the years due to the hard work and dedication of
scientists all over the world. As such, this thesis represents my contribution
to advancing the understanding of magnetization dynamics. It is my hope
that the publications that resulted from my PhD will prove to be useful for
fellow scientists, as well as sparking new ideas for future research. In this
final chapter of my thesis, I would thus like to briefly summarize the main
scientific findings and perspectives for future work.

Magnetodynamic damping in thin films

In paper I of the thesis, we investigated the magnetodynamic damping in
LSMO thin films. In this study we found a minimum damping parameter
of α = 0.002, which is a factor of four lower than that of Permalloy, one of
the prototype materials for magnetodynamic devices.

Due to limitations of our experiments, we were not able to separate the
intrinsic Gilbert damping from other contributions such as eddy-current
damping and two-magnon scattering. The eddy-current contribution is
known to scale with the film thickness as δ2, and performing experiments

83



84 CHAPTER 7. OUTLOOK

for a larger number of film thicknesses would enable us to extract this con-
tribution to the damping. The contribution from two-magnon scattering
could also be investigated further by measuring the damping as a func-
tion of the orientation of the magnetization with respect to the film plane.
With the magnetization perpendicular to the sample plane, the two-magnon
contribution should vanish, and one could get an estimate for the intrinsic
Gilbert damping. Unfortunately, orienting the magnetization out of the
sample plane requires higher magnetic fields than that obtainable in the
experimental setup we used.

Due to this, performing additional studies where one could extract the
various contributions to the damping would be interesting. Understanding
the contributions to the damping better and optimizing film growth might
lead to an additional reduction of the damping parameter, which would
make LSMO a very interesting material system for further investigations.

Eddy-current effects on FMR

In paper II and III of the thesis, we showed how magnetic fields due to
induced microwave eddy currents can affect the FMR excitation. Eddy
currents produce highly localized fields due to the localization of the in-
duced currents, which allows for generating and controlling the microwave
field in small regions. The findings in these papers indicate that this can
be utilized in order to tailor the local microwave field, which can be used
for screening of an applied microwave field as well as the excitation of spin-
wave modes. To obtain this, being able to control the current paths is an
important step.

In our investigations, we used Permalloy as the ferromagnet. Using
a conductive material, there will be induced currents flowing also in the
ferromagnetic layer in addition to any adjacent normal metal layers. In
order to obtain better control of the induced current paths, it would thus be
interesting to utilize an insulating material like e.g. YIG as the ferromagnet.
This is unfortunately not something we have been able to try yet, as we
did not have access to high quality YIG films to perform such experiments.

By using patterned normal metal structures on top of a ferromagnetic



85

layer, it might be possible to excite spin waves with well defined wave vec-
tors determined by the periodicity of the patterned structure. This could
potentially be interesting for magnonics applications, where a controlled
excitation of spin-wave modes is desirable. This is usually obtained using a
microwave antenna, which requires nanostructuring on top of the ferromag-
netic film with connections to electrical leads running a current through the
antenna. The prospective of exciting well defined spin-wave modes using
eddy currents would simplify the device, as electrical leads would then be
obsolete. However, to investigate if this is feasible or not will require further
work which is beyond what could be included in this thesis.

Magnetodynamics of confined magnetic elements

Paper IV of the thesis represents a fundamental study of the interplay be-
tween the various magnetic energies, and how they determine the magne-
todynamic properties. In the data presented in this paper, we investigated
arrays of elliptical magnets with a film thickness of 10 nm. For these sam-
ples, all the magnetic elements were in a single domain state. However, we
also performed some initial investigations of similar samples with film thick-
nesses of 30 and 50 nm. In this thickness range, demagnetization effects
are becoming increasingly important. At low magnitudes of the external
magnetic field this resulted in the samples not being in a single domain
state. Through Magnetic Force Microscopy (MFM) imaging, states with
both single and two vortices in each magnetic element was observed.

It would be interesting to investigate the dynamical behavior of these
vortex states, and how the magnetocrystalline anisotropy might affect the
gyrotropic motion of the vortex core. However, as the formation of vor-
tex states lowers the magnetostatic energy by reducing the magnetic stray
fields, this also causes some challenges experimentally. Using a broadband
FMR setup, the CPW acts as an inductive sensor for the magnetic response
from the sample. With the magnetic elements being in a state that reduces
the magnetic stray fields, it also reduces the sensitivity of the measure-
ments. Due to this, we were not able to obtain a strong enough signal in
the low-field regime in order to measure these excitations.
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The measurements were performed using a flip-chip approach, placing
the sample on top of the CPW. By rather depositing the patterned magnetic
structures directly on top of the CPW, one could increase the sensitivity and
perhaps obtain sufficient signal in order to measure these low-field vortex
excitations. This is unfortunately not something we had the opportunity
or time to investigate further during my PhD.

Synchronization of spin-torque oscillators

In paper V of the thesis we investigated the collective behavior in large
arrays of dipolar coupled STO. The behavior of large populations of inter-
acting oscillators is an intensely studied topic in non-linear dynamics, and
the Kuramoto model is one of the most well known models for studying
such systems. Describing interacting STO through the Kuramoto model
thus suggest the possibility of tapping into this knowledge, in order to
gain a better understanding of synchronization phenomena also relevant
for STO.

In our investigations, we observed that the interaction strength needed
to obtain a synchronized state depends on the number of STO in the array.
This scaling with system size has implications for the desire of scaling up to
large arrays of synchronized STO. On a more fundamental level, being able
to understand the origin of this finite size scaling would also be interesting
to investigate further. The similarities with the topological defects observed
in the XY model of magnetism is then something which might be relevant
to look into.

The coupling mechanism we have considered is due to the magnetic
dipolar interaction. Other means to obtain synchronization, such as through
electrical connections or spin waves, might also be studied using extensions
of the Kuramoto model with different coupling topologies, phase offsets in
the couplings etc. However, as this project represents the final stages of my
PhD, we have unfortunately not had the time to pursue these ideas further
yet.
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7.1 Final considerations
The completion of this thesis, also marks the completion my PhD studies.
Obtaining a PhD is hard work, but although it has been challenging at
times, it has overall been an extremely rewarding experience. I have always
been attracted by physics phenomena, and the joy of solving problems and
learning something new about how nature works is truly a great feeling.

These last nine years mark the gradual transition from starting my
physics studies back in 2007, to becoming a physicist capable of performing
independent research. My PhD studies have also been a humbling experi-
ence. The more you learn about physics, the more you realize how much
you do not know. However, in my opinion, the most important skillset as a
physicist is not knowing everything. Rather, it is the way of thinking and
how to approach problems.

It does not seem like we will run out of questions to answer and problems
to solve any time soon. In this sense, the future as a physicist is looking
bright, and I am looking forward to new challenges in the years to come.
As such, the completion of my PhD marks the ending of one chapter of my
scientific career, and the beginning of a new one. This is only the beginning!
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[100] J. Åkerman. Toward a Universal Memory. Science 308, 508 (2005)

[101] S. D. Bader. Colloquium: Opportunities in nanomagnetism. Rev.
Mod. Phys. 78, 1 (2006)

[102] M. Krawczyk, D. Grundler. Review and prospects of magnonic crys-
tals and devices with reprogrammable band structure. J. Phys.: Con-
dens. Matter 26 123202 (2014)

[103] R. D. McMichael, M. D. Stiles. Magnetic normal modes of nanoele-
ments. J. Appl. Phys. 97, 10J901 (2005).

[104] G. Gubbiotti et. al. Spin dynamics in thin nanometric elliptical
Permalloy dots: A Brillouin light scattering investigation as a function
of dot eccentricity. Phys. Rev. B. 72, 184419, (2005)

[105] F. Montoncello et. al. Soft spin waves and magnetization reversal
in elliptical Permalloy nanodots: Experiments and dynamical matrix
results. Phys. Rev. B 76, 024426 (2007)

[106] O. F. Xiao, J. Rudge, B. C. Choi, Y. K. Hong, G. Donohoe. Dynamics
of ultrafast magnetization reversal in submicron elliptical Permalloy
thin film elements. Phys. Rev. B 73, 104425 (2006)

[107] M. L. Schneider et. al. Spin dynamics and damping in nanomagnets
measured directly by frequency-resolved magneto-optic Kerr effect. J.
Appl. Phys. 102, 103909, (2007)

[108] H. T. Nembach, J. M. Shaw, C. T. Boone, T. J. Silva. Mode- and
Size-Dependent Landau-Lifshitz Damping in Magnetic Nanostructures:
Evidence for Nonlocal Damping. Phys. Rev. Lett. 110, 117201, (2013)



99

[109] Y. Yahagi, C. R. Berk, B. D. Harteneck, S. D. Cabrini, H. Schmidt.
Dynamic separation of nanomagnet sublattices by orientation of ellip-
tical elements. Appl. Phys. Lett. 104, 162406, (2014)

[110] S. H. Strogatz, I Stewart. Coupled oscillators and biological synchro-
nization. Sci. Am. 269(6), 102-109 (1993).

[111] T. Silva, W. Rippard. Developments in nano-oscillators based upon
spin-transfer point-contact devices. J. Magn. Magn. Mater. 320, 1260-
1271 (2010).

[112] J.-V. Kim. Spin-Torque Oscillators. Solid State Physics 63, 217-294
(2012).
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Ingrid Hallsteinsen, Thomas Tybell, Erik Wahlström.
Thickness and temperature dependence of the magnetodynamic damping of
pulsed laser deposited La0.7Sr0.3MnO3 on (111)-oriented SrTiO3.
J. Magn. Magn. Mater. 420, 280-284, (2016).



106 CHAPTER 9. PAPERS INCLUDED IN THE THESIS:



Thickness and temperature dependence of the magnetodynamic
damping of pulsed laser deposited La0.7Sr0.3MnO3 on (111)-oriented
SrTiO3

Vegard Flovik a,n, Ferran Macià b,c, Sergi Lendínez b, Joan Manel Hernàndez b,
Ingrid Hallsteinsen d, Thomas Tybell d, Erik Wahlström a

a Department of Physics, NTNU, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
b Grup de Magnetisme, Dept. de Física Fonamental, Universitat de Barcelona, Spain
c Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
d Department of Electronics and Telecommunications, NTNU, Norwegian University of Science and Technology, Trondheim, N-7491, Norway

a r t i c l e i n f o

Article history:
Received 26 May 2016
Received in revised form
29 June 2016
Accepted 13 July 2016
Available online 15 July 2016

a b s t r a c t

We have investigated the magnetodynamic properties of La0.7Sr0.3MnO3 (LSMO) films of thickness 10,
15 and 30 nm grown on (111)-oriented SrTiO3 (STO) substrates by pulsed laser deposition. Ferromag-
netic resonance (FMR) experiments were performed in the temperature range 100–300 K, and the
magnetodynamic damping parameter α was extracted as a function of both film thickness and
temperature. We found that the damping is lowest for the intermediate film thickness of 15 nm
with α ≈ · −2 10 3, where α is relatively constant as a function of temperature well below the Curie
temperature of the respective films.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The magnetodynamic properties of nanostructures have re-
ceived extensive attention, from both fundamental and applica-
tions viewpoints [1–3]. Nanometer sized magnetic elements play
an important role in advanced magnetic storage schemes [4,5],
and their static and most importantly their dynamic magnetic
properties are being intensely studied [6–8].

Complex magnetic oxides display intriguing properties that
make these materials promising candidates for spintronics and
other magnetic applications [9]. Manganites have received atten-
tion due to a large spin polarization, the appearance of colossal
magneto-resistance and a Curie temperature above room tem-
perature [10–13]. Within manganites, LSMO has been regarded as
one of the prototype model systems. Transport and static magnetic
properties of LSMO are well studied, but less attention has been
paid to the magnetodynamic properties. For applications in mag-
netodynamic devices a low magnetic damping is desirable, and
having well defined magnetic properties when confined to na-
noscale dimensions is crucial.

The dynamic properties can be investigated by ferromagnetic
resonance spectroscopy (FMR), which can be used to extract

information about e.g. the effective magnetization, anisotropies
and the magnetodynamic damping. Earlier studies on LSMO
have investigated the dynamic properties of the magnetic ani-
sotropies [14], also providing evidence for well defined re-
sonance lines, which is a prerequisite for magnetodynamic
devices.

The magnetodynamic damping is an important material para-
meter that can be obtained through FMR spectroscopy by mea-
suring the resonance linewidth as a function of frequency. The
linewidth of the resonance peaks has two contributions; an in-
homogeneous contribution that does not depend on the fre-
quency, and the dynamic contribution that is proportional to the
precession frequency and to the damping parameter α.

Earlier studies by Luo et. al. have investigated the magnetic
damping in LSMO films grown on (001)-oriented STO capped by a
normal metal layer [15,16], and found a damping parameter of
α ≈ · −1.6 10 3 for a 20 nm thick LSMO film at room temperature.
Typical ferromagnetic metals have damping values of α ≈ −10 2,
and the low damping indicate LSMO as a promising material for
applications in magnetodynamic devices. The studies by Luo et. al.
were performed at room temperature, whereas the Curie tem-
perature of LSMO is around 350 K. However, the Curie tempera-
ture depends strongly on film thickness and approaches room
temperature as the thickness is decreased. Being able to control
the temperature is thus important in order to accurately char-
acterize the damping in thin LSMO films.

Contents lists available at ScienceDirect
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The thickness and temperature dependence of static and dy-
namic magnetic properties of thin film LSMO grown on (001)-or-
iented STO have been investigated in a previous study by Monsen
et. al [17]. The dynamic properties were characterized from the
FMR linewidth measured in a cavity based FMR setup at a fixed
frequency of 9.4 GHz, and provided evidence that the magnetic
damping is dominated by extrinsic effects for thin films.

The properties of complex magnetic oxides are very sensitive to
the structural parameters, hence thin film growth can be used to
engineer the magnetic properties. We have previously shown that
LSMO grown on (001)-oriented STO results in a biaxial crystalline
anisotropy, compared with almost complete in-plane isotropy for
LSMO grown on (111)-oriented STO [18]. The possibility to control
the functional properties at the nm-scale make these materials
promising for spintronics and other magnetic based applications.
Hence, detailed studies on how film thickness affect the magnetic
properties is important.

Here, we investigate the magnetodynamic properties of pulsed
laser deposited LSMO films of thickness 10, 15 and 30 nm grown
on (111)-oriented STO (in contrast to the previous study by Mon-
sen el. al for LSMO grown on (001)-oriented STO [17]). By per-
forming broadband FMR experiments we separate the in-
homogeneous linewidth broadening and the dynamic contribution
to the FMR linewidth, and extract the magnetodynamic damping
parameter α. The main objective of our study is to characterize α
for the various film thicknesses. However, as Tc changes with film
thickness, it is difficult to compare the absolute values at a single
temperature. We thus performed experiments in the temperature
range T¼100–300 K using the FMR setup described in Section 2.2,
allowing us to extract α as a function of both temperature and film
thickness.

2. Sample growth and experimental setup

2.1. Sample growth and characterization

La0.7Sr0.3MnO3 thin films were deposited by pulsed laser de-
position on (111)-oriented SrTiO3 substrates. A KrF excimer laser
( = )248 nm with a fluency of ≈ −2 J cm 2 and repetition rate 1 Hz
was employed, impinging on a stoichiometric La0.7Sr0.3MnO3 tar-
get. The deposition took place in a 0.35 mbar oxygen ambient, at
500 °C and the substrate-to-target separation was 45 mm, result-
ing in thermalized ad-atoms [19,20]. After the deposition, the films
were cooled to room temperature in 100 mbar of oxygen at a rate
of 15 K/min. Atomic force microscopy (AFM) was used to study the
surface topography. The AFM topography images shown in Fig. 1a
confirm the step and terrace morphology of the films after growth
for the 10 nm and 15 nm thick films. For the 30 nm film, we ob-
serve a surface relaxation and transition to a more 3 dimensional
growth and rougher surface compared to the 2 dimensional layer
by layer growth for thinner films.

The crystalline structure of the films was investigated using
x-ray diffraction (XRD), and the XRD scans of the respective films
are shown in Fig. 1b.

Magnetic moment measurements were performed with a vi-
brating sample magnetometer (VSM). In Fig. 1c the temperature
dependence of the saturation magnetization is plotted against
temperature, taken during warm-up after field cooling in 2 T. Both
saturated moment and Tc increase with film thickness as expected
for thin films, and the values are comparable to similar thicknesses
of LSMO films grown on (001)-oriented SrTiO3 [17].

2.2. FMR experiments

The FMR experiments were performed using a vector network
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Fig. 1. (a) AFM topography for films of thickness 10 nm, 15 nm and 30 nm. (b) XRD θ θ− 2 scans of the Bragg reflection for the respective film thicknesses. (c) Magnetic
moment measurements (performed with a vibrating sample magnetometer, (VSM)), showing the difference in magnetic moment and Curie temperature for the various film
thicknesses.
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analyzer (VNA) setup in combination with a coplanar waveguide
(CPW) that created microwave magnetic fields of different fre-
quencies to the film's structure. We used a He cryostat with a
superconducting magnet capable of producing bipolar bias fields
up to 5 T. The experiments were performed in the temperature
range = −T 100 300 K using a CPW designed specially for the
cryostat and using semi-rigid coaxial cables capable to carry up to
50 GHz electrical signals.

The static external field, H0, was applied in the sample plane,
and perpendicular to the microwave fields from the CPW. We
measured the microwave transmission and reflection parameters
as a function of field and frequency in order to obtain a complete
map of the ferromagnetic resonances. Magnetic fields were varied
from �500 to 500 mT, and microwave frequencies from 1 to
20 GHz.

By measuring the microwave absorption as a function of both
microwave frequency and the applied external field, one can ob-
tain the FMR dispersion. The field vs. frequency dispersion when
the field is applied in the film plane is described by the Kittel
equation [21] given by the following:

γ
π

= ( + ) ( )f H H H
2

. 1FMR 0 0 eff

Here, fFMR is the FMR frequency and γ is the gyromagnetic ratio,
where γ π ≈/2 28 GHz/T. H0 is the applied external field and

π= −H M H4 s keff is the effective field given by the saturation
magnetization Ms and the anisotropy field Hk.

The FMR absorption lineshape is often assumed to have a
symmetric Lorentzian lineshape. However, in conductive samples,
induced microwave eddy currents in the film can affect the line-
shape symmetry [22,23]. In an experimental setup containing
waveguides, coaxial cables etc., the relative phase between the
electric and magnetic field components can also affect the line-
shape [24,25]. We thus fit the FMR absorption, χ, to a linear
combination of symmetric and antisymmetric contributions, de-
termined by the β parameter in Eq. (2).
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Here A is an amplitude prefactor, HR and H0 are the resonance
field and external field respectively and ΔH the full linewidth at
half maximum (FWHM). By measuring the FMR linewidth as a
function of the microwave frequency fmw, we extract the damping
parameter α and the inhomogeneous linewidth broadening ΔH0
from the following relation [26]:

π
γ

αΔ = + Δ
( )

H f H
4

.
3mw 0

3. Results and discussion

The measured FMR absorption shows a good agreement with
the Kittel dispersion given by Eq. (1). In Fig. 2a we show as an
example the FMR dispersion for the 15 nm film measured at room
temperature, with the fit to Eq. (1) as dotted line. A typical ab-
sorption lineshape and the fit to Eq. (2) is shown as inset. Fitting
the FMR dispersion to Eq. (1) allows us to extract the effective field
Heff , given by the saturation magnetization Ms and the anisotropy
field Hk through the relation π= −H M H4 s keff . The extracted values
of Heff for the various films are shown in Fig. 2b. From Heff and Ms

(shown in Fig. 1c) we calculate the anisotropy field Hk. The ob-
tained values for Hk are shown in Fig. 2c and indicate a strain in-
duced negative perpendicular magnetocrystalline anisotropy
(PMA), as expected for epitaxial films. The negative PMA is in
agreement with that observed in LSMO grown on (001)-oriented
STO [27]. As indicated in Fig. 2c, the PMA is strongest for the
thinnest film and decreases as one approaches the Curie
temperature.

The main objective of our study is to characterize the magne-
todynamic damping, as measured through the FMR linewidth. As
an example we show in Fig. 2d the linewidth vs. frequency for the
15 nm sample at =T 300 K. The linear relation between linewidth
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and frequency from Eq. (3) allows us to extract the damping
parameter α and the inhomogeneous linewidth broadening ΔH0.

To ensure all samples are in a fully ferromagnetic (FM) state, we
first compare the damping well below Tc of the respective films.
We find that the damping is relatively constant as a function of
temperature well below Tc, as shown in Fig. 2e, and the lowest
damping was found for the intermediate film thickness of 15 nm
with α ≈ · −2 10 3. This value of α is comparable to that found in a
previous study by Luo et. al. [15] for an LSMO film of thickness
20 nm, but in their case grown on (001)-oriented STO.

We observe an increased damping as the temperature ap-
proaches the Curie temperature of the respective films, which we
attribute to the coexistence of ferromagnetic and paramagnetic
domains as →T Tc. The increase in damping is largest for the
10 nm film, in agreement with the reduced Tc for this film com-
pared to the thicker 15 nm and 30 nm films, as shown in Fig. 1c.
This behavior is consistent with data from LSMO single crystals
[28], and with previous work by Monsen et. al. [17] for LSMO films
grown on (001)-oriented STO.

The difference in damping for the various film thicknesses is
observed well below Tc (see Fig. 2e), and is thus not caused by the
coexistence of ferromagnetic and paramagnetic domains. The in-
creased damping for the 10 nm film compared to the 15 nm film is
rather attributed to the increased importance of surface defects for
the thinnest film. Surface/interface imperfections/scatterers in-
duce a direct thickness dependent broadening due to local varia-
tions in resonance field, or indirectly through two-magnon pro-
cesses, as these contributions become more dominating as the film
thickness is reduced [29]. Previous studies of the thickness de-
pendence of the FMR linewidth in LSMO films grown on (001)-
oriented STO by Monsen et. al. [17] show similar behavior, with a
minimum in the linewidth for an intermediate film thickness and
increased linewidth for thicknesses below approximately 10 nm.

For the 30 nm film we also observe an increased damping
compared to the 15 nm film. Interface effects should be less im-
portant for the 30 nm film, and the increased damping is attrib-
uted to other effects as the thickness is increased. It is known that
LSMO films can experience strain relief relaxation as the film
thickness is increased [30,31], and for the 30 nm film we observe a
rougher surface compared to the thinner films. This change in film
structure can be observed in the AFM topography images in Fig. 1a,
and the difference in film structure could thus cause an increased
damping for the thickest film. Another consideration is the eddy-
current contribution to the damping in conducting films [32]. The
eddy-current contribution scales with the film thickness d, as d2,
and separating the various contributions to the damping would
thus require a more detailed study of the scaling of damping vs.
film thickness.

In a homogeneous strain-free ferromagnet one expects that the
inhomogeneous linewidth broadening, ΔH0, should be in-
dependent of temperature well below Tc [33]. The relatively tem-
perature independence of ΔH0 for the 15 nm and 30 nm films
shown in Fig. 2f indicate high quality samples, with Δ <H 1 mT0 .
For the 10 nm film there is a slight increase in ΔH0 at low tem-
perature, with an inhomogeneous broadening of Δ ≈H 2 mT0 . The
increase in ΔH0 at 300 K is attributed to the reduced Tc of the
10 nm film compared to the 15 and 30 nm films, and the coex-
istence of ferromagnetic and paramagnetic domains as →T Tc.

4. Summary

We have characterized the magnetic damping parameter α in
10, 15 and 30 nm thick LSMO films grown on (111)-oriented STO
for temperatures T¼100–300 K. We found that α is relatively in-
dependent of temperature well below the Curie temperature of

the respective films, with a significant increase as →T Tc due to the
coexistence of ferromagnetic and paramagnetic domains. The
lowest damping was found for the intermediate film thickness of
15 nm, with α ≈ · −2 10 3. For the 10 nm film, we attribute the in-
creased damping to the increased importance of surface/interface
imperfections/scatterers for thinner films. For the 30 nm film the
increased damping is attributed to changes in the film structure
with an increased surface roughness compared to the thinner
films, as well as additional eddy-current contributions to the
damping as the film thickness is increased.

The damping of α ≈ · −2 10 3 for the 15 nm film is lower than that
of e.g Permalloy ( )Ni Fe80 20 which is one of the prototype materials
for magnetodynamic devices. The low damping, in addition to
other intriguing material properties like large spin polarization,
indicate LSMO as a promising material for applications in mag-
netodynamic devices.
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We investigate the effect of eddy currents on ferromagnetic resonance (FMR) in ferromagnet-

normal metal (FM/NM) bilayer structures. Eddy-current effects are usually neglected for NM layer

thicknesses below the microwave (MW) skin depth (’800 nm for Au at 10 GHz). However, we

show that in much thinner NM layers (10–100 nm of Au or Cu) they induce a phase shift in the

FMR excitation when the MW driving field has a component perpendicular to the sample plane.

This results in a strong asymmetry of the measured absorption lines. In contrast to typical eddy-

current effects, the asymmetry is larger for thinner NM layers and is tunable through changing the

sample geometry and the NM layer thickness. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4917285]

I. INTRODUCTION

Eddy currents are induced currents in conductors by

changing magnetic fields. These currents flow in closed

loops perpendicular to the driving fields, and produce addi-

tional Oersted fields that partially compensate the external

driving fields. The effects of eddy currents on ferromagnetic

resonance (FMR) in conducting films are well known in the

limit of film thickness approaching their electro-magnetic

skin depth (’800 nm for bulk Au at 10 GHz). In those cases,

eddy-current effects can lead to linewidth broadening and

give rise to spin-wave excitations due to inhomogeneous

microwave fields.1,2

The microwave frequency spin dynamics in nanostruc-

tures usually involves stacks of layers combining FM and

NM at the nanometer scale.3,4 Although eddy-current effects

are usually neglected in metals with thicknesses below their

skin depth, some studies have shown that this may be impor-

tant also for normal metal (NM) films far below their skin

depth.5–10 In these studies, it was predominantly microwave-

screening effects that were considered, and little attention

was paid to how the induced Oersted fields can affect the

magnetization dynamics in an adjacent ferromagnetic thin

film.

FMR spectroscopy experiments probe static and

dynamic properties of magnetic materials. The technique

relies on measuring the microwave absorption associated to

the precession of the magnetization. In FMR experiments,

position and width of absorption lines carry valuable infor-

mation about material parameters such as anisotropy fields

and magnetic damping.11

Many experimental setups used for such studies have

the main component of the MW driving field oriented in the

sample plane (coplanar waveguide (CPW)/stripline FMR).

Non-uniformity of the MW field, and sample position with

respect to the CPW/stripline center would still lead to field

components perpendicular to the sample plane, which would

enhance the effects of eddy currents. On the other hand, in

cavity-FMR setups, the MW fields can be oriented either par-

allel or perpendicular to the sample plane depending on the

cavity.

Differences in symmetry of FMR lines have been used

to study the spin pumping from a magnetic material to a nor-

mal metal.12–14 We notice here that a recent study has

reported different values for the voltage induced by the

inverse spin hall effect, depending on the cavity mode

used.15 In such studies, lineshape symmetry is one of the

main parameters used to analyze the results.

Hence, to correctly interpret experimental data involv-

ing FMR it is important to understand how eddy currents—

even in very thin films—can cause modifications in the

measured FMR lineshape.

In this study, we investigate the contribution of eddy

currents to the FMR absorption lineshapes in ferromagnet-

normal metal (FM/NM) bilayer structures. We have system-

atically studied how the sample geometry and NM thickness

affect the coupling between microwave (MW) fields and

eddy-current-induced fields, and we show that this coupling

is tunable through changing the sample geometry and the

NM layer thickness.

II. THEORETICAL MODEL FOR THE OBSERVED
LINESHAPES

The ferromagnetic resonance is usually driven directly

by the MW field from a cavity or from a coplanar wave-

guide/microstrip line. However, capping a FM sample with a

NM layer leads to circulating eddy currents in the NM, and

additional Oersted fields in the FM. These Oersted fields

have a different phase with respect to the MW fields—there

is a relative phase lag between the MW fields and the

Oersted fields from the induced currents—and this results in

a distortion of the FMR lineshape. A sketch of the FM/NMa)Electronic mail: vegard.flovik@ntnu.no
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bilayer geometry and the path of the induced eddy currents

are shown in Fig. 1(a). The induced currents flow in closed

loops in the sample plane, with highest current density along

the sample edges.16,17 Figures 1(b) and 1(c) compare two

representative FMR lineshapes for a 10 nm Py sample before

and after capping it with 10 nm Au; although resonance fre-

quency and linewidth stay constant, the lineshape changes

considerably.

To understand the origin of the distorted lineshapes due

to the induced eddy currents, we consider a model describing

the magnetization dynamics of the FM, starting from the

Landau Lifshitz Gilbert equation18

@M

@t
¼ �cM�Heff þ

a
Ms

M� @M

@t

� �
; (1)

where c is the gyromagnetic ratio, a is the Gilbert damping

parameter, and Ms is the saturation magnetization. The effec-

tive magnetic field, Heff, includes the external field H0, the

anisotropy field, HA (we neglect the effects of dipole and

exchange fields), and a driving oscillatory field, hac, com-

posed of MW fields and fields from the eddy currents. In the

following, the contribution from the anisotropy field to the

effective field is neglected, as this is negligible compared to

the resonance field for Py.

We assume the external applied field, H0, is along z in

the film plane (see Fig. 1(a)) and only consider perturbations

of the oscillatory field, hac, in the x-y plane, perpendicular to

the external applied field (the components in the direction of

the applied field do not directly perturb the dynamics of M).

The phase of the microwave excitation in any FMR

experiment is arbitrary and can depend on many factors.

However, as we are only interested in relative phase differen-

ces, we can set the reference phase of the MW field to zero.

The combined driving field can thus be written in the form

hacðtÞ ¼ hMWeixt þ hindeiðxt�/Þ

¼ ½hMW þ hindðcos /� i sin /Þ�eixt � heixt½1� bi�;
(2)

where / is the relative phase difference between the MW

field and the induced field, and h ¼ hMW þ hind cos /. The

parameter b is thus defined as

b ¼ ðhind sin /Þ=ðhMW þ hind cos /Þ ¼ ðbx; byÞ; (3)

and accounts for the relative magnitude of the two fields and

their phases in the x/y direction, respectively. The parameter

b will thus approach zero when the induced field is small

compared to the MW field, or the phase difference between

the MW field and the induced field is close to 0�. There will

also be maxima for b for some value of the phase difference

in the range between 90� and 180�, which depends on the

magnitude of the induced field compared to the MW field.

The magnetization M(t) is then taken the form MðtÞ
¼ M0zþmeixt, where m? z. The magnetic response to

small excitation fields, m ¼ vh, is determined by the Polder

susceptibility tensor v.19

The elements of v were determined by solving Eq. (1),

and discarding higher order terms. Setting m ¼ vh and intro-

ducing x0¼ cH and xM¼ cM0, one obtains

v ¼ vxx ivxy

�ivyx vyy

� �
; (4)

where the matrix elements are given by

vxx=yy ¼
1� ibx=y

� �
xM x0 þ iaxð Þ

x2
0 � x2 1þ a2ð Þ þ 2iaxx0

; (5)

vxy=yx ¼
1� iby=x

� �
xxM

x2
0 � x2 1þ a2ð Þ þ 2iaxx0

: (6)

The observable quantity in our FMR experiments is the

MW power absorption, which is given by an integral over

the sample volume V26

Pabs ¼
1

2
<
ð

V

ix vhð Þ � h�dV: (7)

Splitting v into its real and imaginary part and using that

hx and hy are orthogonal, one obtains

Pabs ¼
1

2
<
ð

V

ix v0 þ iv00
� � hx

hy

 !
� h�x ; h

�
y

� �
dV

¼ � 1

2

ð
V

x
v00xxhx þ v00xyhy

v00yxhx þ v00yyhy

 !
� h�x ; h

�
y

� �
dV

/ x v00xxh2
x þ v00yyh2

y

� 	
: (8)

The MW power absorption is thus given by the imagi-

nary part of the diagonal elements v00xx and v00yy, for the field

components in the x/y direction, respectively.

Using that vyy=xx is written in the form vyy=xx¼Z1/Z2,

where Zi are complex numbers, one can separate the real and

imaginary parts by multiplying the expression by the

FIG. 1. (a) A schematic of the sample geometry showing the path of the

induced eddy currents flowing in closed loops around the sample, with high-

est current density along the sample edges.16,17 (b) and (c) FMR lineshapes

and fitted parameters from Eq. (14) for a sample with 10 nm Py (b), and the

same sample after being capped with 10 nm Au (c).
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complex conjugate of the denominator: vyy=xx ¼
Z1Z�

2

Z2Z�
2

.

Assuming low damping, (a2	 0) this gives

< vxx=yyð Þ ¼
x0xM x2

0 � x2
� �

� bx=yaxxM x2
0 þ x2

� �
x2

0 � x2
� �2 þ 2axx0ð Þ2

; (9)

= vxx=yyð Þ¼
�axxM x2

0þx2
� �

�bx=yx0xM x2
0�x2

� �
x2

0�x2
� �2þ 2axx0ð Þ2

: (10)

As the FMR linewidth for permalloy films is small com-

pared to the resonance frequency, one can assume that one

does not need to deviate far from the resonance in order to

observe the shape of the curve. That being the case,

x2
0 þ x2 	 2x2

0, and

ðx2
0 � x2Þ2 ¼ ðx0 þ xÞ2ðx0 � xÞ2 	 4x2

0ðx0 � xÞ2: (11)

Hence, for narrow linewidths, Eq. (10) is well approxi-

mated by

= vxx=yyð Þ 	
�xMCw

4

� �
1þ bx=y x0 � xð Þ=Cw

x0 � xð Þ2 þ Cw=2ð Þ2
; (12)

where the parameter Cw¼ 2ax has been introduced to

describe the linewidth. This expression consists of two com-

ponents: a symmetric absorption lineshape arising from the

in-phase driving fields, and an antisymmetric dispersive line-

shape proportional to b arising from out-of-phase driving

fields. The b parameter is thus determined by the ratio

between the absorptive and dispersive contributions to the

FMR lineshape.20,21

In our set-up the microwave frequency is fixed at

9.4 GHz, and the magnetic field H0 is then swept to locate the

ferromagnetic resonance at the resonance field, H0¼HR, sat-

isfying the condition for the resonance frequency, xR

¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HRðHR þ 4pMsÞ

p
. To extract b from our experiments,

we thus use an expression of same functional form as Eq.

(12), but expressed in terms of field rather than frequency

= vxx=yyð Þ ¼ A
1þ bx=y HR � H0ð Þ=CH

HR � H0ð Þ2 þ CH=2ð Þ2
; (13)

where A is an unimportant proportionality factor and CH

has been introduced to describe the linewidth. In this form,

Eq. (13) describes what is known in the literature as

Dysonian lineshapes.20–22

In our experiments, we measure the field derivative of

the MW absorption. The experimental data is thus fitted to

the derivative of Eq. (13) with respect to the external field,

which is given by

d

dH0

= vxx=yyð Þ ¼ A

"
�bx=y=CH

HR�H0ð Þ2þ CH=2ð Þ2

þ
2 HR�H0ð Þ½1þbx=y HR�H0ð Þ=CH�

½ HR�H0ð Þ2þ CH=2ð Þ2�2

#
: (14)

Through the b parameter, FMR lineshapes in an other-

wise unperturbed system is thus a measure of the amplitudes

and relative phase of the MW field and the induced fields

from eddy currents.

III. EXPERIMENTAL SETUP

Experiments were performed with Permalloy

(Py¼ Fe20Ni80) as the ferromagnet layers, and gold (Au) and

copper (Cu) as NM layers. The Py was grown by E-beam evap-

oration on oxidized silicon substrates, and the Au and Cu layers

were grown by DC Magnetron sputter deposition. We controlled

the thickness of the deposited NM layers using a Veeco Dektak

150 profilometer, and we cut our samples using a Dynatex

DX-III combined scriber and breaker to obtain well defined

sample geometries. Ferromagnetic resonance measurements

were carried out in a commercial Electron Paramagnetic

Resonance setup (Bruker Bio-spin ELEXSYS 500, with a cylin-

drical TE-011 microwave cavity).

The sample is attached to a quartz rod connected to a go-

niometer, allowing to rotate the sample 360�. The MW field

is oriented perpendicular to the sample plane and is rotation-

ally symmetric due to the cylindrical shape of the cavity, as

shown in Fig. 2.

Our FMR experiments were performed with a low am-

plitude ac modulation of the static field, which allows lock-

in detection to be used in order to increase the signal to noise

ratio. The measured FMR signal is then proportional to the

field derivative of the imaginary part of the susceptibility.

The experimental data was thus fitted to Eq. (14), dv/dH0

(i.e., we obtained an absorption line as in Fig. 1(b) when the

driving field had only the MW component; we obtained an

absorption line as in Fig. 1(c) when the driving field had a

strong component from the eddy-current induced fields).

IV. RESULTS AND DISCUSSION

A. Effect of sample geometry

We first focus on the effect of the sample geometry. A

full in-plane 360� rotation of a sample of dimensions

FIG. 2. Schematic of the cylindrical TE-011 microwave cavity, showing the

sample position and field geometry.
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1� 3 mm with a thickness of 10 nm Py capped with 10 nm

Au is shown in Fig. 3(a), where h¼ 0 corresponds to an

applied field, H0, parallel to the short side of the sample. We

note that although capping the sample with a thin NM layer

affects the lineshape asymmetry considerably, the resonance

field HR and linewidth C stay constant. Thicker NM layers of

materials with considerable spin orbit coupling would lead to

a linewidth broadening due to loss of spin angular momen-

tum through spin pumping effects, but for thin Cu/Au layers

this effect is negligible.23,24

The microwave field in the cavity can be considered uni-

form on the length scale of the sample, and rotationally sym-

metric due to its cylindrical shape. If the microwave

excitation is inhomogeneous when rotating a long sample, it

could be possible to excite magnetostatic modes in the FM

film.25 However, if this was the case in our experiments, one

should observe the same asymmetry for the FM without the

NM capping layer. To rule out conclusively this as a cause

of the asymmetry, we performed control experiments where

we re-positioned the sample with an offset from the centre of

the cavity (offset of the same order as the sample dimen-

sion). This did not affect the asymmetry of the lineshape,

indicating that an inhomogeneous MW field in the cavity

could not be the cause of the observed effect.

To investigate the effect of sample geometry further, a

set of samples of dimensions 1�L mm, where L ranged

from 0.5 to 4 mm was studied. The samples were again of

10 nm Py capped with 10 nm Cu and 5 nm Ta to prevent oxi-

dation. We notice that the sample length in the direction par-

allel to the applied field is the main parameter that

determines the asymmetry of the FMR lineshapes, given by

the parameter b. Figure 3(b) shows the dependence of sam-

ple length when the varying dimension is parallel to the

applied field. We see that the asymmetry increases with the

sample’s length and reaches a value where b appears to

diverge at a length of about 3.3 mm. Samples with a length

below 1 mm have lineshapes almost identical to samples

with no NM capping.

We consider now the basic physics to describe the above

results. The induced eddy currents flow in closed loops in

planes perpendicular to the MW magnetic field, which is per-

pendicular to the film plane in our experiment. Thus, to

obtain circulating eddy currents as shown in Fig. 1(a), it is

required to have the MW field perpendicular to the film

plane. We have conducted control experiments where the

MW fields were applied in the film plane and we observed

that the FMR lineshapes were always symmetric, indicating

there were no observable effect of the eddy currents.

In our experimental geometry, the induced eddy currents

flow mainly in circulating paths, with highest current density

along the sample edges.16,17 The induced Oe fields have a

component in the film plane and another perpendicular to the

film plane. As indicated in Fig. 1(a), for the sample edges

that are parallel to the applied field, the Oe fields will have

the main in-plane component perpendicular to the applied

field and could thus affect the FMR of the Py film. On the

other hand, currents along sample edges perpendicular to the

applied field will give rise to an in-plane Oersted field that is

parallel to the applied field, and should not affect the FMR

response.

The observed strong rotational dependence (see Fig. 3(a))

suggest that the effective driving field has the dominating con-

tribution oriented in the sample plane; the contribution from

the component perpendicular to the sample plane should not

depend on the direction of the sample edges with respect to

the applied field. As the effective driving field appears to be

dominated by the in plane components, this indicates that the

induced local field perturbing the FM is larger than the exter-

nal field. This could be possible due to the close proximity to

the induced currents at the FM/NM interface.

We now compare the length series with the rotational

measurements by using a simple geometric approximation:

we consider that the length of the sample parallel to the

applied field is given by LðhÞ ¼ l sinðhÞ þ w cosðhÞ, where l
and w are the length (3 mm) and width (1 mm) of the sample,

and h¼ 0 corresponds to the applied field parallel to the short

side of the sample. We have plotted in Fig. 3(b) the

FIG. 3. (a) Angular dependence of the b parameter describing the FMR line-

shape for a sample of 10 nm Py capped with 10 nm Au of dimension

1� 3 mm; the applied field is rotated 360� in the film plane. (b) Sample

length dependence of b for samples of 10 nm Py capped with 10 nm Cu (and

5 nm Ta to prevent oxidation) of dimensions 1�L mm, i.e., each datapoint

in the “Length series” corresponds to a separate sample of length L. We also

plotted in (b) the rotational measurements shown in (a) for a single sample,

considering that the effective length in the direction of the applied field, H0,

is approximated by LðhÞ ¼ l sinðhÞ þ w cosðhÞ, l¼ 3 mm and w¼ 1 mm.
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rotational measurements following this approach and we can

see that the resulting curve is almost identical to the length

series.

To investigate the effect of sample size closer, we

designed a control experiment that consisted of taking a large

sample of dimensions 1� 3 mm and dividing it into electri-

cally isolated regions of 1� 1 mm. This was performed using

an automated scriber that scratched the sample without

breaking it—we limited the size of the possible current loops

(as illustrated in Fig. 4).

We tested this for samples with no NM capping, and the

FMR signal was not affected. However, the same procedure

on a sample capped with 10 nm Au presented a remarkable

effect: the lineshape before scratching the sample was

strongly asymmetric, but after scratching the film it returned

to being symmetric again and matched the lineshapes for a

sample of dimensions 1� 1 mm.

The asymptotic behaviour of b as the sample length

increases can be understood by considering how the sample

size affects the magnitude of the induced field. As a simpli-

fied model, we approximate the current path as a rectangular

loop around a sample of length l and width w. The induced

electromotive force (EMF) is then given by the rate of

change of magnetic flux through the area enclosed by

the loop; its absolute value is given by j�j ¼ lwj @h
@t j

/ lw hMW2pf , where f and hMW are the MW frequency and

amplitude, respectively. The resistance of such a loop is

given by R ¼ 2Rsðlþ wÞ=f, where Rs is the sheet resistance

and f is the width of the current path. The induced current is

finally given by I¼ �/R. We consider as an approximation

that the magnetic field resulting from a current I in such a

plane is given by hind¼ l0I/2f, where l0 is the vacuum per-

meability. The expression for the induced field is thus pro-

portional to the sample size.

As an estimate for the strength of the induced field, we

calculated this for a square sample, w¼ l, using the above

expression for hind. The sheet resistance was measured to be

Rs	 50 X for samples with 10 nm Py capped by 10 nm Cu

and 5 nm Ta. Considering the width of the current path along

the sample edge as f¼w/4, one can estimate the sample size

where hind¼ hMW. In the presence of a MW field of 9.4 GHz

and 6 lT (values used during our experiments), we obtained

that at a dimension of about 2� 2 mm the induced field

equals the MW field. Our estimate corresponds with what we

see in the experiments: when the sample size approaches the

mm scale, the effects become increasingly important.

B. Thickness of NM layer

Next, we focus on another important parameter that gov-

erns the effect of eddy currents: the thickness of the NM

layer. We prepared samples with a NM (both with Au and

Cu) thickness ranging from 10 nm to 1 lm (Au) and

10–50 nm (Cu). (The experiments presented here were also

performed in two more samples, where we obtained the

same results. The measured asymmetry parameter b as a

function of NM thickness is shown in Fig. 5 for a sample of

dimensions 1� 3 mm, with the applied field parallel to the

long side of the sample. Replacing the Au layer by Cu in the

range of 10–50 nm shows a similar behavior; the thicker the

NM, the more symmetric the FMR lineshapes. In the thick

film limit one observes asymmetric lineshapes again, but

with an opposite sign of the b parameter.

To explain the thickness dependence, we use a simplified

model where we assume that the induced eddy currents circu-

late in two dimensional planes in the NM layer. The Oersted

fields originated by the eddy currents have a relative phase

lag, /, compared to the external MW field, which in the ideal

case of no inductance is expected to be / ¼ �90 deg

(IEddy / @h
@t). However, due to the inductance and resistance

of the NM film, there will be an additional phase between the

MW field and the induced field that depends strongly on the

NM thickness (due to the low conductivity of Py compared to

Au/Cu, we consider the currents to circulate mainly in the

NM layer). At larger thicknesses, one also needs to take into

account phase shifts due to the skin effect. Considering this,

one can write the relative phase lag as a function of NM

thickness as26

/ dð Þ ¼ � 90þ tan�1 xL dð Þ
R dð Þ

 !
þ d=d

" #
; (15)

FIG. 4. Scratching the sample limits the size of the possible current loops,

reducing the magnitude of the induced fields.

FIG. 5. NM thickness dependence of the b parameter describing the FMR

lineshape for a sample of dimension 1� 3 mm, with the applied field parallel

to the long side of the sample. Comparing Au and Cu as NM layer in the

region 0–50 nm. Inset: Calculated thickness dependence of bx, given by Eqs.

(3) and (15).
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where x is the microwave angular frequency, L and R are

the inductance and resistance of the film, d is the NM thick-

ness, and d is the MW skin depth (’800 nm for Au at

10 GHz).

To estimate values for the inductance, we consider a rec-

tangular current path along the edges of the NM layer,27 and

sample dimensions of w¼ 1 mm, l¼ 3 mm with thickness d
(L	 10�8 H for a thickness of 10 nm).

L dð Þ ¼ l0lr

p

�
�2 wþ lð Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ w2

p

� l � ln lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ w2
p

w

� �
�w � ln wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ w2
p

l

� �

þ l � ln 2l

fd

� �
þ w � ln 2w

fd

� ��
; (16)

where lR is the relative permeability of the NM film (	 1),

and f is the width of the current path, set to w/2 in this

calculation.

As mentioned in Sec. IV A, we measured a sheet resist-

ance of Rs	 50 X for samples with 10 nm Py capped by

10 nm Cu and 5 nm Ta. However, for NM layers in this

thickness regime, the conductivity depends strongly on the

thickness. This is due to increased interface scattering in thin

films when the thickness is of the same order as the electron

mean free path. Due to this we estimate the film resistance,

R(d), as a function of thickness by introducing a correction

factor, g, which describes a correction to the film conductiv-

ity compared to its bulk value. In Ref. 6 it was found that the

increase in conductivity is close to linear in film thickness

below 20–30 nm, before reaching an asymptotic value for

thicker films. In our calculations we thus considered g to be

a linear function of the film thickness below 20 nm:

g ¼ min 1; d
lmfp

� 	
, where d is the NM thickness and we set

lmfp¼ 20 nm.

From the rotational measurements, we argued that the

effective driving field is dominated by the in plane compo-

nent of the induced field. For thicker NM layers the sheet

resistance is reduced, and the magnitude of the induced field

should thus increase, as jhindj / 1=Rs. Due to this, the effec-

tive driving field should be dominated by the in plane com-

ponent, hx, also for thicker NM layers. From Eqs. (8) and

(14), the asymmetry of the lineshape is then given by the

parameter bx.

Using these approximations, we computed the phase

shift between the MW field and the induced field, and calcu-

lated the thickness dependence of bx, given by Eqs. (3) and

(15), illustrated in the inset of Fig. 5. As the NM thickness

increase, the phase difference approaches a value of 180�,
which then corresponds to bx¼ 0 (i.e., the asymmetric line-

shapes disappear quickly as the NM thickness increases). For

thicker NM layers, one gets an additional contribution to the

phase difference due to the skin effect. At a certain thickness

the phase shift will thus be larger than 180�, which corre-

sponds to an opposite sign of bx.

These main features of our simple model agree well

with the experimental data in Fig. 5, where the asymmetry

drops off quickly with the thickness for thin NM layers. As

the thickness of the NM layer is increased further, one also

observes the expected transition to asymmetric lineshapes

again, but with an opposite sign of the b parameter. The

thick film limit corresponds to the regime where one usually

assumes eddy-current effects to become important, i.e.,

when the NM thickness approach its MW skin depth.

Experimentally, we observed the strongest lineshape

asymmetry in films with a NM thickness of 10 nm. We also

investigated thinner NM layers of 5 nm, and the FMR line-

shapes were similar to single Py films. We believe this is

because we had non-continuous metal films for these thick-

nesses; Au films tend to be granular and the Cu films might

have oxidized.

V. SUMMARY

To summarize, we have shown that induced eddy cur-

rents can play an important role in FM/NM bilayer structures

for certain sample geometries. In contrast to what is usually

assumed about eddy currents, our results indicate that these

effects can be important also for film thicknesses far below

their skin depth. In FMR measurements, the influence on

lineshape asymmetries has to be taken into account for NM

layers below 50 nm and sample dimensions above approx.

1 mm2 when the MW field has a significant component per-

pendicular to the film plane.

The dynamics of the system is determined by the inter-

play of the MW fields and induced fields by eddy currents,

and we have shown that this coupling is tunable through

changing the sample geometry and the NM layer thickness.

The tunability of the coupling opens up possibilities to use

patterned NM structures to tailor the local field geometry

and phase of the induced microwave fields, which could be

of importance for magnonics applications.
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We investigate how controlling induced eddy currents in thin film ferromagnet-normal metal (FM/

NM) structures can be used to tailor the local microwave (MW) fields in ferromagnetic resonance

(FMR) experiments. The MW fields produced by eddy currents will in general have a relative phase

shift with respect to the applied MW field which depends on the sample geometry. The induced

fields can thus partially compensate the applied MW field, effectively screening the FM in selected

parts of the sample. The highly localized fields produced by eddy currents enable the excitation of

spin wave modes with non-zero wave vectors (k 6¼ 0), in contrast to the uniform k¼ 0 mode nor-

mally excited in FMR experiments. We find that the orientation of the applied MW field is one

of the key parameters controlling the eddy-current effects. The induced currents are maximized

when the applied MW field is oriented perpendicular to the sample plane. Increasing the magnitude

of the eddy currents results in a stronger induced MW field, enabling a more effective screening of

the applied MW field as well as an enhanced excitation of spin wave modes. This investigation

underlines that eddy currents can be used to control the magnitude and phase of the local MW fields

in thin film structures. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948302]

I. INTRODUCTION

The microwave (MW) frequency spin dynamics in nano-

structures usually involves stacks of layers combining ferro-

magnets (FM) and normal metals (NM) at the nanometer

scale.1,2 A time varying magnetic field with a component

perpendicular to a conductive thin film induces circulating

currents in the thin film plane. These currents, commonly

referred to as eddy currents, produce secondary phase shifted

magnetic fields in close proximity to the conductor. The

effects of eddy currents on ferromagnetic resonance (FMR)

in conducting films are well known in the limit of film thick-

ness approaching their electro-magnetic skin depth (’800 nm

for bulk Au at 10 GHz). In those cases eddy-current effects

can lead to FMR linewidth broadening, and spin-wave excita-

tions due to inhomogeneous microwave fields.3,4

Eddy-current effects have often been neglected for film

thicknesses below their skin depth. However, the contribu-

tion of the microwave conductivity of magnetic multilayers

has received increasing attention in recent years, indicating

the importance of eddy-current effects also for NM films far

below their skin depth.5–18 In FM/NM bilayers, Maksymov

et al. showed that the amplitude of the magnetization preces-

sion in the FM layer can be diminished by the shielding

effect due to microwave eddy currents circulating in the NM

layer.10 A study by Kostylev also showed that in single layer

and bi-layer metallic FM the MW screening effect results in

a spatially inhomogeneous MW field within the magnetic

film.15 The experimental manifestation of this is a strong

response of higher order standing spin wave modes due

to the non-uniform MW field across the thickness of the

magnetic film.

In a recent study, Flovik et al.18 investigated the effects

of the induced Oersted fields in FM/NM bilayer structures.

They show that the induced fields can strongly affect the

FMR excitation, resulting in significant changes to the sym-

metry of the FMR lineshape. Differences in symmetry of

FMR lines have been used to study the spin pumping from a

magnetic material to a normal metal.19–24 In such studies,

lineshape symmetry is one of the main parameters used to

analyze the results. Hence, to correctly interpret experimen-

tal data involving FMR it is important to understand how

eddy currents affect the FMR excitation.

However, rather than considering eddy currents a parasitic

effect, we here investigate how controlling the current paths

can be used to tailor the local MW fields. By using lithographi-

cally fabricated samples, we have systematically studied how

sample and field geometry affect the coupling between the

applied MW fields and eddy-current-induced fields. We show

that eddy-current effects can have a significant impact on the

FMR excitation even in very thin metallic FM (�10 nm Py),

determined by the sample and MW field geometry. The

induced MW fields from eddy currents can partially compen-

sate the applied MW field, effectively screening the FM layer

in selected parts of the sample. In contrast to the screening

effects previously observed for continuous FM/NM bilayers by

Maksymov et al.,10 we here consider the screening also in

samples consisting of patterned NM structures.

Controlling the current paths by patterned NM structures

generates highly localized MW fields. We provide evidence

that this enables the excitation of spin wave modes with non-

zero wave vectors (k 6¼ 0), in contrast to the uniform k¼ 0

mode normally excited in FMR experiments. As we are con-

sidering very thin metallic FM (�10 nm Py), we do not

observe the aforementioned standing spin wave modes

across the film thickness studied by Kostylev.15 Here, wea)Electronic mail: vflovik@gmail.com

0021-8979/2016/119(16)/163903/10/$30.00 Published by AIP Publishing.119, 163903-1

JOURNAL OF APPLIED PHYSICS 119, 163903 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  129.241.49.127 On: Thu, 21 Jul 2016

10:50:14



argue that the inhomogeneous MW field produced by the

induced eddy currents excites Damon–Eshbach surface spin

wave modes.25

The excitation of wave vector specific Damon–Eshbach

spin waves in FM films using a diffraction grating has been

studied by Sklenar et al.26 They showed that a patterned sil-

ver antidot lattice on a thin uniform permalloy film enables

coupling to spin wave modes. The amplitude of the spin

wave excitations was however very small compared with the

uniform FMR mode.

Here, we show that the orientation of the applied MW

field with respect to the sample plane is one of the key pa-

rameters controlling eddy-current effects. The induced cur-

rents are maximized when the applied MW field is oriented

perpendicular to the sample plane. Increasing the magnitude

of the eddy currents results in a stronger induced MW field,

enabling a more effective screening of the applied MW field

as well as an enhanced excitation of spin wave modes. This

points toward the importance of considering eddy-current

effects not only for understanding basic experiments, but

also for control of the local MW field in thin film structures.

II. EXPERIMENTAL SETUP AND SAMPLE
PREPARATION

A. FMR experiments

Ferromagnetic resonance experiments were carried out

in a commercial X-band electron paramagnetic resonance

(EPR) setup with a fixed microwave frequency of 9.4 GHz

(Bruker Bio-spin ELEXSYS 500, with a cylindrical TE-011

microwave cavity). The measurements were performed with

an MW power of 0.65 mW, resulting in an MW field ampli-

tude of hmw � 6 lT at the sample position. The magnitude of

the external field is then swept to locate the resonance field,

HR. The sample is attached to a quartz rod connected to a go-

niometer, which allows for a 360� rotation of the sample with

respect to the external static field. The applied MW field is

oriented either parallel (Fig. 1(a)) or perpendicular (Fig. 1(b))

to the sample plane depending on sample mounting. The MW

field in the cavity can be considered uniform on the length

scale of the sample, and rotationally symmetric due to the

cylindrical shape of the cavity.

The ferromagnetic resonance is usually driven directly

by the MW field from a cavity or from a coplanar waveguide/

microstrip line. However, a time varying magnetic field com-

ponent perpendicular to the sample plane will induce circulat-

ing eddy currents in conducting samples, and additional

Oersted fields perturbing the FM. The FMR is often assumed

to have a symmetric Lorentzian lineshape, but previous work

by Flovik et al.18 show that eddy-current effects can strongly

affect the lineshape symmetry. We thus fit the FMR line-

shapes to a linear combination of symmetric and antisymmet-

ric contributions, determined by the b parameter in Eq. (1)

v ¼ A
1þ b H0 � HRð Þ=C
H0 � HRð Þ2 þ C=2ð Þ2

: (1)

Here, A is a general amplitude prefactor, H0 and HR are

the external field and resonance field, respectively, and C the

FMR full linewidth at half maximum (FWHM). This expres-

sion consists of two components: a symmetric absorption

lineshape arising from the in-phase driving fields, and an

antisymmetric dispersive lineshape proportional to b arising

from out-of-phase driving fields from the induced eddy cur-

rents. In this form, Eq. (1) describes what is known in the

literature as Dysonian lineshapes.27–29

The FMR experiments were performed with a low

amplitude ac modulation of the static field, which allows

lock-in detection to be used in order to increase the signal-

to-noise ratio. The measured FMR signal is then proportional

to the field derivative of the absorption, and the experimental

data were thus fitted to Eq. (2), dv=dH0

dv
dH0

¼ A

"
b=C

H0 � HRð Þ2 þ C=2ð Þ2

�
2 H0 � HRð Þ 1þ b H0 � HRð Þ=C

� �
H0 � HRð Þ2 þ C=2ð Þ2

h i2

#
: (2)

B. Sample preparation

Experiments were performed with Permalloy (Py

¼ Fe20Ni80) as the FM layer and gold (Au) as the NM layer.

The thin film structures were prepared using a lift off process

FIG. 1. Schematic of the cylindrical

TE-011 microwave cavity, showing

the sample position and field geometry

for (a) vertical sample mounting result-

ing in hmw parallel to the sample plane,

and (b) horizontal sample mounting

resulting in hmw perpendicular to the

sample plane. A goniometer allows for

a 360� rotation of the sample with

respect to the external static field, H0.
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combining optical lithography, DC magnetron sputter depo-

sition, and electron beam evaporation.

A thin layer of AZ5214E image reversal resist was first

applied to a clean silicon support. To enhance the resolution

of the lithographic pattern transfer, edge beads correspond-

ing to resist thickness variations along the sample edge are

removed before transferring the pattern from a photomask to

the resist layer. Before loading the resist covered substrates

into the sputtering chamber a hard baking step was per-

formed to reduce water content in the photoresist, thereby

increasing its etch resistance. After loading the patterned

substrate into the vacuum chamber an argon pre-sputtering

step was performed to remove contaminants from the sample

surface, thus improving the quality of the final thin film.

Permalloy was deposited using DC magnetron sputtering.

The steps following Py deposition depended on the number

of lithography steps used to define the final thin film struc-

ture. In the single mask process, gold was deposited directly

on top of Py by E-beam evaporation. A lift off process was

performed to dissolve the photoresist, leaving only the thin

film stacks in direct contact with the substrate. In the multi

mask process, lift off was performed directly after Py deposi-

tion followed by a second lithography process transferring a

secondary pattern to the substrate, thus allowing one to vary

the geometry of the gold layer independently of the Py layer.

After completing the final lift off process all samples were

inspected by optical microscopy to reveal defective samples.

Atomic force microscopy (AFM) was used to measure the

height of deposited thin films, and the individual samples

produced on the same silicon support were separated using

an automated scriber and breaker.

III. THEORETICAL CONSIDERATIONS

A. Eddy current induction in an NM thin film disc

A numerical approach is generally needed to calculate

the distribution of induced currents and the associated mag-

netic fields. However, a closed form solution is obtainable

for the simple case of a circular metallic film of thickness

much less than the electro-magnetic skin depth. For a spa-

tially homogeneous time harmonic magnetic field Beixt

applied perpendicular to a non-magnetic circular disc, the

induced current density in the thin film plane can be

described by Ref. 30

J/ rð Þ ¼ � kjBj
l0

I1 krð Þ
I0 kRð Þ

; (3)

where

k ¼ ffiffiffiffiffiffiffiffiffiffiffi
xl0r
p

eip=4: (4)

Here, R is the radius of the disc, l0 the vacuum permeability,

r the film conductivity, and InðaÞ the modified Bessel func-

tion of the first kind and order n. In Fig. 2(a), we plot the nor-

malized current density calculated from Eq. (3) along a

circular sample for various radii in the range r¼ [0.1,1] mm,

for a conductivity of rpy � 3 � 106 S=m (Ref. 31) and a

microwave frequency of 9.4 GHz.

As shown in Fig. 2(a), the current density is localized

primarily along the sample edge as the disc size is increased.

The current distribution also depends strongly on MW

frequency, with a narrower distribution as the frequency is

increased. However, in this work we consider a fixed micro-

wave frequency of 9.4 GHz. Due to the localized current dis-

tribution, we approximate to first order the induced current

as a single circular current loop along the sample edge.

B. Magnetic field from a circular current loop

For a circular loop carrying a current I, the magnetic

field at any point in space can be obtained from the magnetic

vector potential

A ¼ l0I

4p

þ
dl

s
; (5)

with s here being the distance from a point in space, P, to the

line element dl, as shown in Fig. 2(b). The general solution

to Eq. (5) yields the vector potential32

A ¼ A//̂ ¼ l0I

2p
2k�1r�=2 K kð Þ � E kð Þð Þ � kr�1=2K kð Þ
� �

/̂:

(6)

Here K and E represent complete elliptical integrals of the

first and second kind, respectively, while

FIG. 2. (a) Calculated current density from Eq. (3) as a function of r for

samples of radius R. (b) Geometry of the circular current loop.
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k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4rR

z2 þ Rþ rð Þ2

s
: (7)

From the vector potential A, one can calculate the magnetic

field (B ¼ r� A)

Bz r; zð Þ ¼
l0I

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ Rþ rð Þ2

q R2 � z2 � r2

z2 þ r � Rð Þ2
E kð Þ þ K kð Þ

 !
;

(8)

Br r; zð Þ ¼
l0Iz

2pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ Rþ rð Þ2

q R2 þ z2 þ r2

z2 þ r� Rð Þ2
E kð Þ �K kð Þ

 !
:

(9)

In previous work by Flovik et al.,18 it was shown that phase

shifted contributions to the FMR excitation produced by eddy

currents result in an asymmetry of the observed lineshapes.

Other studies have also shown that the relative phases of electro-

magnetic waves are important to consider in the FMR experi-

ments.33,34 Hence, the phase lag between the applied MW field

and the induced field needs to be considered. The Oersted fields

produced by the eddy currents have a relative phase lag, /,

compared with the applied MW field, which in the ideal case is

expected to be / ¼ �90� (IEddy / @h
@t). However, due to the in-

ductance and resistance of the film, there will be an additional

phase between the applied MW field and the induced field. At

larger film thicknesses, one also needs to take into account phase

shifts due to the skin effect. A complex system such as an exper-

imental setup involving waveguides, coaxial cables, etc., can

also introduce a non-zero phase offset, /0.33,34 Considering this,

one can write the relative phase lag as32

/ ¼ � 90þ tan�1 xL

R

� �
þ d=dþ /0

� �
: (10)

Here, x is the microwave angular frequency, L and R
are the inductance and resistance of the film, respectively,

d is the film thickness, and d is the MW skin depth

(’800 nm for Au at 10 GHz).

IV. RESULTS AND DISCUSSION

The effects of eddy currents on the FMR excitation

depend on both sample and field geometry. In Sec. IV A, we

investigate the effects of the MW field geometry and show

that eddy-current effects are significant also for thin FM layers

(�10 nm Py). In Sec. IV B, we add NM layers with a high

conductivity compared with the Py layer. The induced cur-

rents in the NM layer produce localized MW fields, enabling

the excitation of spin wave modes with a non-zero wavevector

(k 6¼ 0). In Sec. IV C, we investigate how patterned NM struc-

tures can be used to control the induced current paths, and by

this the local MW field in thin film structures.

A. Circular Py discs: Effect of MW field geometry

We first characterize the simplest case of samples con-

sisting of a single layer of Py and investigate the FMR

absorption in a series of Py discs with a thickness of 10 nm

and radius in the range 0.15–1.3 mm.

By fitting the FMR lineshape to Eq. (2), we plot the

absorption amplitude, resonance field, lineshape asymmetry

parameter b, and linewidth as a function of disc area in

Fig. 3. Results are shown for the applied MW field oriented

both parallel and perpendicular to the sample plane. Having

the MW field oriented perpendicular to the sample plane

will, according to Faraday’s law, maximize the induced cur-

rents in the sample, while rotating the MW field parallel to

the sample plane should minimize any eddy-current effects.

The FMR absorption amplitude is proportional to the energy

dissipation in the sample. For the MW field oriented in the

sample plane such that eddy-current effects are minimized,

FIG. 3. (a) FMR absorption amplitude

as a function of disc area for the MW

field oriented parallel and perpendicu-

lar to the sample plane, respectively.

Inset: Geometry for MW field oriented

parallel and perpendicular to the sam-

ple plane. (b) Resonance field; (c)

Lineshape asymmetry parameter b;

and (d) Linewidth for the same field

geometries.
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we observe the expected behavior that the FMR absorption

amplitude increases linearly with sample volume (blue

squares in Fig. 3(a)). The lineshape also remains symmetric

for all sample sizes with an asymmetry parameter b � 0 for

the field geometry that minimizes eddy-current effects (blue

squares in Fig. 3(c)). The lineshape asymmetry in the geome-

try that maximizes eddy currents (red dots in Fig. 3(c)) is

due to the contribution of phase shifted induced fields

from eddy currents to the FMR excitation, as discussed in

Sec. III B and in a previous study.18

The differences in resonance field and linewidth (Figs.

3(b) and 3(d)) between the two geometries can be explained

by effects which we do not attribute to eddy currents. Due to

different sample holders for the two geometries there could

be a slight misalignment of the external static field with

respect to the sample plane, resulting in a small shift in reso-

nance field and linewidth. Another consideration is that the

magnetization precession in thin films is not circular but

elliptic due to strong demagnetizing fields, which force the

magnetization into the film-plane. Having the applied MW

field oriented along the long/short elliptic trajectory in the

two geometries will affect how effectively the FMR is

excited. This determines the cone angle of the magnetization

precession, which could also cause a small shift in resonance

field and linewidth.

The significant difference between the two MW field

geometries is thus the FMR absorption amplitude and line-

shape asymmetry. Comparing the results, one notice that for

small samples the amplitude increases with sample size in

both cases, until the sample reaches an area of approximately

1 mm2 (Fig. 3(a)). Above this size, the amplitude starts to

decrease as the sample size is increased when the MW field

is oriented perpendicular to the sample plane. The lineshape

asymmetry b also increases with sample size, reaching a lim-

iting value of jbj < 1 for large samples (Fig. 3(c)).

While these trends present strong evidence for the

effects of eddy currents on FMR in a single layer of Py, care

should be taken when comparing the absorption amplitude

for the two field geometries. As shown in Fig. 3(a), an in-

plane orientation of the MW field results in an increase in

amplitude compared with the same samples measured with

an out-of-plane MW field. This is partially attributed to the

screening effect of the applied MW field by the induced

fields from eddy currents, but there are additional factors

which also need to be considered. In the two measurement

geometries the sample orientation with respect to the mag-

netic mode in the cavity is different, which could affect the

detector coupling coefficient j. As the recorded signal ampli-

tude is proportional to j, this would introduce a scaling off-

set in the signal amplitudes. Another consideration is the

aforementioned ellipticity of the magnetization precession in

thin films. Having the MW field oriented along the long/short

elliptic trajectory in the two geometries will affect the FMR

excitation, and by this the absorption amplitude. The differ-

ence in amplitudes between the two geometries could thus

be caused by a combination of several factors. The main

point to note is rather the dependence of absorption ampli-

tude vs. sample area, whether a linear trend is observed or

not. To explain the observed trend in the FMR absorption

amplitude vs. disc radius in Fig. 3(a), which shows a maxi-

mum for an intermediate disc radius, we consider a simple

current loop model:

From electromagnetic theory we know that the induced

electromotive force (EMF), �, is proportional to the time de-

rivative of the magnetic flux enclosed by the sample, and �
will thus increase proportional to the sample area. At the

same time, approximating the current path as a circular loop

around the edges of the sample, the resistance, R, of the loop

scales linearly with the radius r. This means that the magni-

tude of the induced current should scale linearly with the

sample radius, as jIindj ¼ j�j=R / pr2=2pr. As the simplest

case we consider the magnetic field from a circular current

loop, given by Eqs. (8) and (9). For a single layer of Py, we

are interested in the magnetic field in the sample plane.

Calculating the magnetic field at the center of the current

loop in the x-y plane, the expressions simplify to the well

known result for the magnetic field from a circular current

loop: Bz ¼ l0IInd=2pr. As mentioned previously, the magni-

tude of the induced current should scale linearly with the

disk radius. Using these approximations results in that the

magnetic field at the center of the loop is independent of the

loop radius. This cannot simply explain the observed maxi-

mum in the FMR absorption amplitude for an intermediate

disc radius in Fig. 3(a). However, one of the approximations

used was that one could consider the induced current as a

single current loop localized at the sample edge. As shown

in Fig. 2(a), this approximation is not independent of the disc

radius. For small discs, even if the current density is highest

along the edges, it is still more evenly distributed throughout

the sample. The current distribution also determines the bal-

ance between in-plane and out-of-plane components of the

corresponding induced MW field perturbing the FM.

Determining the relative magnitude of the MW field

components is in general a complicated problem, and would

require a simultaneous numerical solution of the coupled

Maxwells and LLG equations35 for the various sample geo-

metries. However, previous observations indicate that the

induced field perturbing the FM can be comparable and in

some cases even larger than the applied MW field, due to the

close proximity to the induced currents at the FM/NM inter-

face.18 Two limiting cases are worth considering: A uniform

current distribution in the sample would result in induced

field components having only in-plane components (analo-

gous to the magnetic field from a current in an infinite con-

ducting plane). On the other hand, a localized current at the

sample edge would produce mainly out of plane components

of the corresponding magnetic field in the sample plane. As

the applied MW field is oriented perpendicular to the sample

plane, having induced field components perpendicular to the

plane is needed in order to partially compensate the applied

field. This could thus explain the observed behavior in Fig.

3(a): For the smallest samples, having a more uniform cur-

rent distribution, the induced field components will have sig-

nificant components in the sample plane. As the sample size

is increased and the current density more localized along the

sample edge, the induced fields will have the main compo-

nent perpendicular to the sample plane, and could thus par-

tially compensate the applied MW field. A compensation
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effect, reducing the effective MW field exciting the FMR,

would lead to the decrease in the absorption amplitude which

is observed for the larger samples.

B. Circular Py discs with Au capping: Spin wave
excitations

By adding NM layers with a high conductivity compared

with the Py layer one can control the dominant current paths,

and thus also the induced MW fields. We fabricated two sepa-

rate set of samples consisting of Py discs capped with a 10 nm

Au layer, as shown in Fig. 4. The conductivity of Au is signif-

icantly higher than for Py, with rAu=rPy � 6� 7.31 This

results in larger induced currents in the sample, mainly flow-

ing in the Au layer.

The two set of samples both give similar results. Starting

with the absorption amplitude in Fig. 5(a), it does not follow

the same trend as for the single layer Py samples (Fig. 3(a)).

For a disc area below 0:5mm2, there is an initial region where

the signal amplitude increases slowly with sample size,

whereas for larger samples a clear increase in amplitude with

sample size is observed. This initial region corresponds with

the size range where a peak in both lineshape asymmetry b
and linewidth is observed (Figs. 5(c) and 5(d)). There is also a

shift in the resonance field of �5 Oe, before remaining rela-

tively constant for larger samples (Fig. 5(b)). The shift in reso-

nance field and linewidth between the two sample series can

be explained by a slight variation in material properties, as the

samples were deposited at two separate occasions.

Compared with the case of a single layer of Py, there are

some important factors that differ: With a circulating current

flowing in the Au layer, the Py layer will experience MW

field components in both the in-plane and out-of-plane orien-

tations, as indicated in Fig. 4. The balance between in-plane

vs. out-of-plane components is determined by the current

distribution in the sample, as regions directly below the cur-

rent paths will be dominated by in-plane components. As the

sample size is increased, the current paths will be gradually

more localized along the sample edge (Fig. 2(a)). As this

occurs, the induced field will gradually be dominated by out-

of-plane components (Fig. 4). This means that one should

expect three different size regimes governing the influence

by eddy-current effects.

For the smallest samples the induced currents are low

due to the small size of the sample, as well as having a more

uniformly distributed current density (Fig. 2(a)). Still, there

are observable eddy-current effects. For a disc area below

�0:5mm2, there is an initial region where the signal ampli-

tude increases slowly with sample size compared with larger

samples (Fig. 5(a)). This behavior is attributed to screening

effects, reducing the amplitude of the magnetization preces-

sion in the FM layer.

For increasing sample sizes the current density becomes

gradually more localized along the sample edges (Fig. 2(a)).

The FM will experience both in-plane and out-of-plane MW

field components, and this regime corresponds to where we

observe significant changes in behavior for amplitude, reso-

nance field, lineshape asymmetry, and linewidth (Figs.

5(a)–5(d)). It has been shown that non-uniform MW fields

can excite spin waves with a non-zero wave vector (k 6¼ 0),

and that this can cause a shift in resonance frequency and

broadening of the FMR linewidth.16,17 Here, the region

which has dominant contributions from both in-plane and

out-of-plane MW field components, and thus a non-uniform

MW field, is localized along the sample edge. The width of

this edge region will thus determine the range of possible

wave vectors of spin wave excitations. The excitation of

Damon–Eshbach surface spin wave modes is dominating in

this field geometry,25,36 and the spin wave frequency is

determined by the magnetostatic spin wave dispersion given

by the following:37

w kð Þ ¼ cl0 H0 H0 þMsð Þ þM2
s

1� e�2kdð Þ
4

� �1=2

; (11)

where c is the gyromagnetic ratio, l0 the vacuum permeabil-

ity, H0 the external field, Ms the saturation magnetization of

Py, k the spin wave vector, and d the thickness of the Py film.

If we denote the width of the edge region by D, the maxi-

mum spin wave vector will be determined by kmax / p=D.

From the radial current density in Fig. 2(a), the area with

highest current density is localized in an edge region of width

D� 10–50 lm. As a simple estimate we calculate the spin

wave dispersion from Eq. (11) for the uniform k¼ 0 mode as

well as the spin wave modes for kmax when D¼ 10 lm and

D¼ 50 lm. The results are shown in Fig. 6, where the FMR

cavity resonance frequency is indicated by the solid line at

9.4 GHz. Shown as inset is a zoom-in of the same plot, where

the splitting between the various modes is visible. The calcu-

lated splitting between the k¼ 0 mode and the spin wave

mode is 3 and 13 Oe, respectively, determined by the width of

the edge region, for D¼ 50 lm and D¼ 10 lm.

FIG. 4. Sample and field geometry,

Py/Au bilayers.
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The excitable spin wave modes vary over a continuous

range, 0 < k < kmax. In the linear response regime, the total

FMR response can be taken as the sum of all excitable states.

As shown in the inset of Fig. 6, for such long wavelength spin

waves the shift in resonance field between excitations in the

range 0 < k < kmax is too small to be observed as separate

peaks in the FMR spectrum. Summing the FMR response

over a continuum of closely spaced states would thus rather

appear as an apparent broadening of the FMR linewidth,

where the broadening will be in the order of the shift in reso-

nance field between the modes. This suggests that the

observed linewidth broadening of �5 Oe in Fig. 5(d) for inter-

mediate sample sizes is related to the excitation of spin waves

modes with k 6¼ 0, due to the mixing of in-plane and out-of-

plane MW field components for these sample sizes. By further

increasing the sample size the FM will experience mainly

out-of-plane field components, and one would no longer

expect significant contributions from spin wave excitations to

the total FMR absorption. This corresponds well with the

experimental observations, where the resonance field and

linewidth approach constant values for large samples.

For the lineshape asymmetry in Fig. 5(c) we observe a

similar trend as for the linewidth, with a maxima for interme-

diate sample sizes. As mentioned previously, the lineshape

asymmetry results from several phase shifted contributions

to the FMR excitation. One would thus expect a maxima in

b in the size range where the FM experience a mixing of

several MW field components, which is consistent with the

experimental observations. The asymmetry parameter can

have both positive and negative signs, depending on sample

geometry and the phase shifts between the applied MW field

and the induced fields. In this geometry, we observe a sign

change in b compared with the case of single Py discs in

Sec. IV A. This is caused by the change in sample geometry

where the current in this case is mainly flowing in the adja-

cent NM layer, compared with in the FM layer for the first

samples. The different sample geometry introduces an effec-

tive phase shift to the induced field perturbing the FM, and

thus a sign change in b. In general, determining the magni-

tudes and phases of the MW fields exciting the FMR is a

non-trivial problem to solve even with a numerical approach.

However, the lineshape asymmetry is not our main focus,

and we refer to earlier work investigating the effects of eddy

currents on the FMR lineshape.18

Our results indicate that by modifying the conductivity

one can control the dominant current paths in the sample,

and thus the induced MW fields. As a model system to inves-

tigate this further, we fabricated patterned NM structures

which enable better control of the current paths.

C. Circular Py discs enclosed by Au ring: MW
screening effects

As a final set of samples, we fabricated structures consist-

ing of Py discs enclosed by an Au ring, as shown in Fig. 7.

The high conductivity of Au compared with Py, as well as the

FIG. 5. Comparing two set of samples

of Py capped with a thin Au layer. (a)

FMR absorption amplitude; (b)

Resonance field; (c) Lineshape asym-

metry parameter b; and (d) Linewidth.

FIG. 6. Calculated spin wave dispersion, xðkÞ from Eq. (11) for spin waves

with wave vectors kmax, determined by the width of the edge region, D. The

cavity FMR frequency of 9.4 GHz is shown as solid line.
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radial current density distribution shown in Fig. 2(a), results

in that the induced current is mainly flowing in the Au ring.

In this case the induced MW field perturbing the FM will

have only out-of-plane components, as the radial component

vanishes due to the sample geometry. The fabricated samples

consist of series where both the radius of the FM disk, as well

as the width of the NM ring, is varied. Increasing the NM ring

width reduces its resistance, resulting in stronger eddy-current

effects.

In Fig. 8(a), we plot the FMR absorption amplitude for

several samples of different size as a function of NM ring

width, ranging from 10 to 250 lm. A clear trend is observed

where the amplitude drops as the width of the NM ring is

increased. For an NM ring of 250 lm, where the eddy cur-

rents should be strongest, the amplitude approaches zero. We

interpret this as an almost complete compensation of the

applied MW field by the induced fields from eddy currents in

the NM ring, suggesting a strong screening effect.

For the resonance field (Fig. 8(b)) we observe an increase

of �70 Oe compared with that of the previous sample series,

which indicates a reduction in the saturation magnetization.

The preparation of this sample series involves an extra lithog-

raphy step, as mentioned in Sec. II B, and this could cause a

reduced film quality compared with the other samples. A

reduced film quality is consistent with the increased linewidth

(Fig. 8(d)), which is in the order of 10 Oe larger than that for

the other samples. However, we do not observe any clear

trend in the linewidth as a function of disc size or NM ring

width. This corresponds well with what one would expect if

the change in linewidth for the PyAu bilayers in Fig. 5(d) is

caused by the excitation of spin waves. In this last series, due

to the sample geometry shown in Fig. 7, there will be no in-

plane field components. Without any mixing of in-plane vs.

out-of-plane field components, one should thus not expect any

spin wave excitations and corresponding FMR linewidth

broadening.

By investigating the lineshape asymmetry in Fig. 8(c)

for an NM ring width ranging from 10 to 100 lm, we observe

that the asymmetry increases with both the NM ring width

and the FM disc radius. (For an NM ring width of 250 lm,

the absorption amplitude was too low to get a good estimate

of the linewidth and lineshape asymmetry.) As mentioned

previously in Sec. IV B the sign of b depends on the sample

geometry, and we note here that b has a negative sign, same

as for the single Py discs in Sec. IV A. This is due to the sim-

ilar sample geometry where the current loop (flowing mainly

FIG. 7. Sample and field geometry Py/

Au ring series.

FIG. 8. (a) FMR absorption amplitude,

(b) resonance field, (c) lineshape asym-

metry, b and (d) linewidth as a func-

tion of FM disc radius and metal ring

width.
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in the NM ring) is in the same plane as the FM disc. This is

in contrast to the PyAu bilayers in Sec. IV B where the cur-

rent is flowing mainly in the adjacent Au layer, and a posi-

tive b is observed.

The most interesting observation for this sample series

is the significant screening effect. The FMR absorption am-

plitude in Fig. 8(a) indicates that the induced fields from

eddy currents in the NM ring are able to almost completely

compensate the applied MW field for an NM ring width of

250 lm, where the absorption amplitude drops to near zero.

To estimate the compensation of the applied MW field by

induced fields from eddy currents, we consider a simple cur-

rent loop model: The induced electromotive force (EMF) � is

given by the rate of change of the magnetic flux through the

area enclosed by the current loop; its absolute value is given

by j�j ¼ pr2j @hmw

@t j. The induced current is then given by

IInd ¼ �=R, where R is the resistance of the current loop. The

resistance of the Au ring is given by R ¼ 2prqAu=wd, where

qAu is the resistivity of Au, w is the width of the NM ring,

and d is the thickness of the Au layer. As discussed previ-

ously in Section IV B, the expressions for the magnetic field

at the center of a circular current loop of radius r in the x-y

plane given by Eqs. (8) and (9) simplify to the well-known

expression: hInd ¼ l0IInd=2pr. We are here interested in the

condition where the induced field is comparable in strength

with the applied MW field, hInd � hmw. Fulfilling this rela-

tion, one obtains the following expression for the NM ring

width:

w ¼ 2qAu

l0fmwd
: (12)

A microwave frequency fmw¼ 9.4 GHz, Au thickness

of d¼ 10 nm, and the standard textbook value of resistivity,

qAu, results in an NM ring width of w� 400 lm. Comparing

the model calculation with experimental data, we observe

such a compensation already at w� 250 lm. However, in

this simplified model we only consider induced fields from

currents in the NM ring. As we have discussed previously

in Section IV A, and shown in Fig. 3(a), induced currents in

the Py disc also affect the absorption amplitude. Taking the

compensation effect from the Py disc into account would

result in that a thinner NM ring width is needed to compen-

sate the applied MW field. This is consistent with the

results from our simplified current loop model, which over-

estimate the NM ring width compared with the experimen-

tal result.

V. SUMMARY

To summarize, we have shown that eddy-current effects

can have a significant impact on the FMR excitation even in

very thin metallic FM (�10 nm Py), determined by the sam-

ple and MW field geometry. Our results indicate how pat-

terned FM/NM structures can be used to control the induced

current paths. The corresponding MW fields have a relative

phase shift with respect to the applied MW field, which

depends on the sample geometry. The induced fields pro-

duced by eddy currents can thus be used to compensate the

applied MW field, as an effective screening of the FM in

selected parts of the sample. We also provide evidence that

controlling the local MW field enables the excitation of spin

wave modes with a non-zero wave vector (k 6¼ 0), in contrast

to the uniform (k¼ 0) mode normally excited in the FMR

experiments.

What is not contained within this study is a proper

investigation on the linearity of these effects. The induced

current density given by Eq. (3) depends linearly on the

microwave magnetic field. At some point, however, the

magnitude of induced currents will be limited by the con-

ductivity and thickness of the NM film. This will limit the

MW fields produced by eddy currents, and will thus intro-

duce a threshold for when eddy-current effects will affect

the system.

Developing a more detailed theoretical model involving

a numerical solution of the coupled Maxwells and LLG

equation would also be beneficial. A numerical model would

enable the investigation of the interplay between applied and

induced MW fields for various sample geometries. This is

however outside the scope of our current work.

For applications, combining the effects of eddy currents

could be used for canceling of MW fields in different geome-

tries, and providing highly localized fields due to the local-

ization of the eddy currents. This allows for generating and

controlling the MW field in small regions. In more compli-

cated geometries, as often found in devices, the findings

point toward that care should be taken in design, and that

eddy-current effects can yield both FMR lineshape changes,

unwanted or wanted screening/amplification of the local

MW field, as well as the FMR excitation of spin waves with

non-zero wave vectors. However, rather than treating eddy

currents as a parasitic effect, our results suggest the possibil-

ity of actively using eddy currents to control the MW field

excitation in thin film structures, which could be of impor-

tance for magnonics applications.
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Magnetodynamical properties of nanomagnets are affected by the demagnetizing fields created by the same
nanoelements. In addition, magnetocrystalline anisotropy produces an effective field that also contributes to the
spin dynamics. We show how the dimensions of magnetic elements can be used to balance crystalline and shape
anisotropies, and that this can be used to tailor the magnetodynamic properties. We study ferromagnetic ellipses
patterned from a 10-nm-thick epitaxial Fe film with dimensions ranging from 50×150 to 150×450 nm. The
study combines ferromagnetic resonance (FMR) spectroscopy with analytical calculations and micromagnetic
simulations, and proves that the dynamical properties can be effectively controlled by changing the size of the
nanomagnets. We also show how edge defects in the samples influence the magnetization dynamics. Dynamical
edge modes localized along the sample edges are strongly influenced by edge defects, and this needs to be taken
into account in understanding the full FMR spectrum.

DOI: 10.1103/PhysRevB.92.104406 PACS number(s): 75.75.Jn, 75.78.−n, 76.50.+g

I. INTRODUCTION

The magnetodynamic properties of nanostructures have
received extensive attention, from both fundamental and
applications viewpoints [1–5]. Nanometer-size magnetic el-
ements play an important role in advanced magnetic storage
schemes [6,7], and their static and, most importantly, their
dynamic magnetic properties are being intensely studied.
While technological applications are important, there is also
significant interest in understanding the fundamental behavior
of magnetic materials when they are confined to nanoscale
dimensions. In confined magnetic elements, there is a com-
plex competition between exchange, dipolar, and anisotropic
magnetic energies. Understanding the interplay between the
various energy terms is thus of importance when investigating
the magnetodynamics of such systems.

The magnetization dynamics in patterned magnetic struc-
tures has been extensively studied [8–14]. The spin dynamics
in elliptical permalloy dots was investigated by Gubbiotti
et al. [9]. They studied the various excitation modes as a
function of dot eccentricity and in-plane orientation of the
applied field, showing how the shape of the ellipses affects the
spectrum of excitable modes and their frequencies.

However, the above-mentioned studies of patterned mag-
netic structures were all performed for systems having a
negligible magnetocrystalline anisotropy. Material systems
with a significant crystalline anisotropy produce an effective
field which also contributes to the spin dynamics. The combi-
nation of shape and crystalline anisotropy results in a complex
energy landscape, where the interplay of these energy terms
determines the magnetodynamic properties of the system.

The influence of shape and crystalline anisotropy on
magnetic hysteresis and domain structures in submicron-size
Fe particles has been investigated by Hanson et al. [15].

*vegard.flovik@ntnu.no

However, here we explore the dynamic properties of magnetic
structures utilizing both crystalline and shape anisotropies. The
goal of this study is to investigate a system where the energy
terms from both crystalline and shape anisotropy contribute to
determine the dynamics of the system.

We have investigated a system utilizing epitaxial Fe as the
ferromagnetic (FM) material, patterned to an array of elliptical
nanomagnets. This results in a system combining the cubic
crystalline anisotropy of Fe with the shape anisotropy due to
the elliptical shape of the confined magnetic elements.

The dynamic properties were investigated by ferromagnetic
resonance (FMR) experiments for ellipses with a thickness
of 10 nm and lateral dimensions of 50×150, 100×300,
and 150×450 nm. The experimental results are compared
with micromagnetic simulations and a macrospin model
considering the total free-energy density of a ferromagnetic
structure containing both crystalline and shape anisotropies.
The macrospin model is then used to explore the properties
of ellipses with lateral dimensions ranging from 50×150 to
500×1500 nm, showing how the ellipse size governs the
balance between crystalline and shape anisotropy.

During the fabrication of such structures, the magnetic
properties may be affected by edge defects and shape dis-
tortions [16–19]. As the size of the magnetic elements are
reduced, the edge regions become increasingly important.
Understanding how edge defects affect the magnetodynamic
properties of the elements is thus of importance in nanomag-
nets, where the edge region covers a significant amount of the
total sample area. We show how this affects the magnetization
dynamics, and that edge defects need to be taken into account
in understanding the full FMR spectrum.

II. EXPERIMENTAL SETUP

The samples are based on a single-crystalline Fe film
epitaxially grown on MgO(001) substrates. The ferromagnetic

1098-0121/2015/92(10)/104406(10) 104406-1 ©2015 American Physical Society
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FIG. 1. (a) Array of ellipses with dimension A×B, an aspect
ratio of A/B = 3, and interparticle spacing of two times the
corresponding ellipse dimension in each direction. The [100] and
[010] crystallographic axis of Fe is oriented along the long/short
ellipse axis. (b) Field geometry of the individual ellipses.

ellipses were patterned by electron-beam lithography and
ion-beam milling from a 10-nm-thick Fe layer, and have
lateral dimensions of 50×150, 100×300, and 150×450 nm.
The crystalline easy axis [100] and [010] of the Fe film are
oriented along the long/short axis of the ellipses, as indicated
in Fig. 1(a). Further details concerning sample growth and
processing are similar to that described earlier [20].

The FMR experiments were performed using two comple-
mentary setups. The cavity FMR measurements were carried
out in a commercial X-band electron paramagnetic resonance
(EPR) setup with a fixed microwave frequency of 9.4 GHz
(Bruker Bio-spin ELEXSYS 500, with a cylindrical TE-011
microwave cavity). The magnitude of the external field is then
swept to locate the resonance field, HR . The sample is attached
to a quartz rod connected to a goniometer, allowing one to
rotate the sample 360 degrees in order to accurately resolve the
angular dependence. The FMR measurements were performed
with a low-amplitude ac modulation of the static field, which
allows lock-in detection to be used in order to increase the
signal-to-noise ratio.

For the broadband FMR measurements, we used a vector
network analyzer (VNA) FMR setup with a coplanar waveg-
uide (CPW) excitation structure. The static external field H0

was applied in the sample plane, and perpendicular to the
microwave field from the CPW. This was used to obtain the
standard microwave S parameters as a function of frequency for
various fixed values of the static field. This allows for a com-
plete field-versus-frequency map of the resonance absorption,
not being limited to a fixed frequency as for the cavity mea-
surements. Data was then collected in a field range of ±500 mT
and a frequency range of 1–25 GHz. Typical absorption maps
had a step size of �f = 0.1 GHz and �H0 = 5 mT.

III. MICROMAGNETIC SIMULATIONS

The micromagnetic calculations were performed using
MuMax [21]. The simulated ellipses have a dimension of

150×450 nm, with a thickness of 10 nm. In order to have mesh
independence, the discretization cells should have sides of the
same order, or less than, the two characteristic magnetic length
scales of the system. The exchange length is lexch = ( A

K1
)1/2 and

the magnetostatic exchange length is ldem = ( A
Kd

)1/2. Here, A is
the exchange stiffness constant, K1 is the first-order anisotropy
constant, Kd is the energy density of the stray field, and an
upper limit for Kd is given by 1

2μ0Ms
2.

Material parameters used in the simulations are standard
literature values, with a saturation magnetization, Ms =
1.7×106 A/m, and a crystalline anisotropy constant of K1 =
4.3×104 J/m3, with the easy axis oriented along the long and
short axis of the ellipse. The exchange stiffness was set to a
value of A = 21×10−12 J m−1 and the damping coefficient to
α = 0.01.

Performing simulations for a 3d model and a 2d model,
we obtained the same results, and varying the grid size it
was found that the results converge at a grid size of 2×2
nm. To save computation time, the simulation model was thus
implemented as a 2d model with a grid size of 2×2 nm, which
is well below the characteristic magnetic length scales of the
system (lexch = 21 nm, ldem = 3.5 nm).

Simulations of the FMR spectrums were performed by
using a field relaxation process. The system is first initialized
at zero applied field. If a static field H0 is applied, the
simulations are run until the system reaches the new ground-
state configuration. A 10 mT perturbation field Hp is then
applied along the z axis (out of plane), and the simulation is
run until it reaches the ground-state configuration for the field
H0 + Hp. The perturbation field is then switched off, allowing
the system to relax. The perturbation causes oscillations of
the magnetization around the equilibrium position with a
maximum deviation of approximately 1 degree, avoiding any
nonlinear effects. To obtain the resonance frequencies, we take
the Fourier power spectrum of the mz component the first 10 ns
of the magnetization relaxation. The various excitation modes
of the system will then appear as distinct peaks in the Fourier
spectrum [8].

Simulations with an ac field of varying frequency as the
perturbing field were also performed, and we obtained the same
results as for the field relaxation procedure. The ac approach
is, however, more time consuming, as one has to scan the full
frequency range for each value of the applied static field in
order to locate all of the resonances. To obtain the full field-
versus-frequency map of the excitation modes in the system,
we thus used the field relaxation process.

IV. FREE-ENERGY DENSITY AND THEORETICAL
FMR SPECTRUM

Due to the size and shape of the ellipses, we consider the
individual magnetic elements to be in a single domain state.
This was also confirmed by magnetic force microscopy (MFM)
imaging of similar samples [22], where all particles were found
to be in a single domain state for a thickness of 10 nm.
Increasing the thickness makes it energetically favorable to
form flux closure domains, and already at a thickness of 30 nm
some of the particles were found to be in such multidomain
states. This means that to make sure the magnetic elements
are in single domain states, one has to keep the film thickness
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well below 30 nm for ellipses of the dimensions we have
investigated. Having a single domain state allows us to use an
analytical macrospin model to investigate the ferromagnetic
resonance properties of the system.

The array of ellipses has an interparticle spacing of two
times the corresponding ellipse dimension in each direction, as
illustrated in Fig. 1(a). This spacing is sufficient to significantly
reduce the dipolar coupling between the individual elements,
and as a first approximation we consider the ellipses as
uncoupled magnetic elements.

We start by defining the geometry of the system and
consider the free-energy density of the individual magnetic
elements. From the sample geometry illustrated in Fig. 1(b)
(magnetic element in the xy plane), one gets

Mx = Ms sin θ cos φ,

My = Ms sin θ sin φ,

Mz = Ms cos θ,

(1)

where Ms is the saturation magnetization. Assuming the
external applied field H0 is oriented in the sample plane,
θH = π/2, gives

Hx = H0 cos φH ,

Hy = H0 sin φH . (2)

After defining the geometry, one can calculate the free-
energy density of the system by adding up the various energy
terms. Using a macrospin model, we do not consider the
exchange energy. The total free-energy density of the system
is then given by Etot = EZeeman + Edemagnetization + Eanisotropy,

EZeeman = − �M · �H
= −MsH0[sin θ cos φ cos φH + sin θ sin φ sin φH ]

= −MsH0 sin θ cos(φ − φH ), (3)

Edemagnetization = μ0

2

[
NxM

2
x + NyM

2
y + NzM

2
z

]
= μ0Ms

2

2
[Nx sin2 θ cos2 φ + Ny sin2 θ sin2 φ

+Nz cos2 θ ], (4)

where μ0 is the vacuum permeability, Ni are the demag-
netization factors, and Nx + Ny + Nz = 1. The units for
the saturation magnetization and magnetic field are [Ms] =
A/m and [H ] = T, respectively. We assume cubic crystalline
anisotropy for the epitaxial Fe film, with the easy axis oriented
parallel to the long/short axis of the ellipse, as indicated in
Fig. 1(a). The lowest-order term in the crystalline anisotropy
energy is then the fourth-order term,

Eanisotropy = K1
[
α2

xα
2
y + α2

yα
2
z + α2

zα
2
x

]
= K1[sin4 θ sin2 φ cos2 φ + sin2 θ sin2 φ cos2 θ

+ sin2 θ cos2 φ cos2 θ ], (5)

where K1 is the magnetocrystalline anisotropy constant and
αi = Mi/Ms . After adding the terms, one can write the total

free-energy density as

Etot = −MsH0 sin θ cos(φ − φH )

+ μ0Ms
2

2

[
sin2 θ cos2 φ

(
Nx + 2K1

μ0M2
s

sin2 θ sin2 φ

)

+ sin2 θ sin2 φ

(
Ny + 2K1

μ0M2
s

cos2 θ

)

+ cos2 θ

(
Nz + 2K1

μ0M2
s

sin2 θ cos2 φ

)]
. (6)

Equation (6) describes a complex energy landscape, with
competing energies from the various terms. It is important
to note that the orientation of the magnetization, given by
φ, might not be parallel to the applied field, φH . Thus, to
investigate the resonance conditions of the system, one must
first find the equilibrium orientation of the magnetization. The
equilibrium orientation was found by minimizing the free-
energy density of the system given by Eq. (6) for each value of
H and φH , and was performed numerically. After obtaining the
equilibrium orientation of the magnetization, one can calculate
the resonance frequency ω given by [23]

ω = γ

μ0Ms sin θ

√√√√[
∂2Etot

∂θ2

∂2Etot

∂φ2
−

(
∂2Etot

∂θ∂φ

)2
]
. (7)

By solving Eq. (7), one can obtain the resonance frequency
as a function of magnitude and direction of the applied field,
ω(H,φH ). By calculating the various terms in Eq. (7), one
obtains

∂2Etot

∂θ2
= MsH sin θ cos(φ − φH )

+ K1

4

(
cos 2θ

{
1 − cos 4φ − 4μ0M

2
s Nz/K1

+ 2μ0M
2
s

K1
[Nx + Ny + (Nx − Ny) cos 2φ]

}

+ (cos 4φ + 7) cos 4θ

)
, (8)

∂2Etot

∂φ2
= MsH sin θ cos(φ − φH ) + 2K1 sin2 θ

×
[

cos 4φ sin2 θ + μ0Ms
2(Ny − Nx)

2K1
cos 2φ

]
,

(9)

∂2Etot

∂θ∂φ
=MsH cos θ sin(φ−φH )+ 8K1 sin φ cos φ sin θ cos θ

×
[

cos 2φ sin2 θ + μ0M
2
s (Ny − Nx)

4K1

]
. (10)

For thin films, one can simplify these expressions by
assuming that the magnetization is oriented in the film
plane, θ = π/2. After introducing the anisotropy field, Hk =
2K1/Ms , one obtains the resonance frequency given by
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Eq. (7), (
ω

γ

)2

=
[
H cos(φ − φH ) + μ0Ms

{
Nz −

[
Nx + Ny + (Nx − Ny) cos 2φ

2

]}
+ Hk

4
(3 + cos 4φ)

]
× [H cos(φ − φH ) + Hk cos 4φ + μ0Ms(Ny − Nx) cos 2φ]. (11)

Equation (11) gives the resonance frequency for the general
case, with the assumption that the magnetization is oriented in
the sample plane. Depending on the shape and size of the mag-
netic elements, one can then adjust the demagnetization factors
Ni to obtain the resonance conditions for various samples.

In addition to the fourfold symmetry from the cubic
anisotropy, one notices that in this case there are additional
terms of twofold symmetry due to the shape anisotropy along
the long/short axis of the ellipse. The resonance conditions of
the system are thus more complicated and are determined by
the interplay of shape and crystalline anisotropies. This brings
us to the main topic of the study, which is to investigate how
tuning the various energy terms changes the magnetodynamic
properties of the system.

V. RESULTS AND DISCUSSION

A. Cavity FMR measurements

The experiments to investigate the angular dependence
were performed in the X-band cavity FMR setup described
in Sec. II. This gives an angular FMR spectrum for both the
continuous film and an array of ellipses of dimension 150×450
nm, as shown in Fig. 2.

Going from a continuous film to a patterned array of
ellipses, there is a significant difference. For the continuous
film, the fourfold symmetry due to the cubic crystalline
anisotropy in Fe is dominating. For the ellipses, the situation is
more complicated, as there are competing energies also from
the shape anisotropy.

To investigate this, we compare the experimental and
theoretical results. By solving Eq. (11) after first minimizing
the free-energy density for each value of H and φH , one gets
the FMR dispersion relations shown in the lower panel of
Fig. 3. From Eq. (11), the relevant parameters determining the
dispersion are the demagnetization factors Ni , the anisotropy
field Hk , and the saturation magnetization Ms . In nanometer-

FIG. 2. (Color online) Experimental FMR spectrum for (a) con-
tinuous film and (b) ellipses of dimension 150×450 nm from the
X-band cavity FMR setup.

dimension magnetic structures, estimates of the demagne-
tization factors using ellipsoidal formulas are considered
to represent the anisotropy fields well [24,25]. The factors
Ni were found from [24] and, for an ellipse of dimension
10×150×450 nm, they are Nx ≈ 0.005, Ny ≈ 0.05, and Nz =
1 − Nx − Ny . The anisotropy field Hk was determined from
the experimental FMR spectrum in Fig. 2(a) and was found to
be approximately 50 mT. In the calculations, Ms was adjusted
to obtain the best fit between the experimental and theoretical
spectrum, and the best fit was found for Ms = 1.5×106 A/m (a
reduction of approximately 10% compared to textbook values
of Ms for Fe).

To compare the angular dependence of the theoretical spec-
trum with experimental results from the cavity measurements
shown in Fig. 2, one can invert the solution. This instead
gives the resonance field HR as a function of rotation angle
for a fixed excitation frequency of 9.4 GHz, and the inverted
solution is shown in the upper panel of Fig. 3. To distinguish the
effect of crystalline anisotropy and shape anisotropy, the same
calculations were also performed assuming polycrystalline Fe,
setting Hk = 0.

0.05
0.1

0.15

30

210

60

240

90

270

120

300

150

330

180 0

Resonance field, [Tesla], on radial axis
vs. rotation in the x−y plane, [degrees]

0.05
0.1

0.15

30

210

60

240

90

270

120

300

150

330

180 0

Resonance field, [Tesla], on radial axis
vs. rotation angle, [degrees]

Thin film Ellipse(a) (b)

(c) (d)

0 0.1 0.2 0.3 0.4

Easy axis (0 degrees)
Hard axis (45 degrees)
No anisotropy

0 0.1 0.2 0.3 0.4

Long axis
Short axis

Fr
eq

ue
nc

y,
 [G

H
z]

5

10

15

20

25

]z
H

G[
ycneuqerF

5

10

15

20

25

Applied field, [T]Applied field, [T]

FIG. 3. (Color online) (a),(b) Theoretical data for resonance field
vs rotation angle for (a) continuous film and (b) ellipse of dimen-
sion 10×150×450 nm, with (red) and without (blue) crystalline
anisotropy. (c),(d) Dispersion for (c) continuous film and (d) ellipse
of dimension 10×150×450 nm, with (solid lines) and without (dotted
lines) crystalline anisotropy.
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Comparing theory and experiment in Figs. 2 and 3, one
notices that for the continuous film, both show the expected
fourfold cubic symmetry. For the ellipses, the theory replicates
the “heart shape” of the resonance well. In the experimental
data in Fig. 2(b), there are also some additional weak resonance
lines. It is known that regions along the sample edges could
lead to a spectrum of additional edge modes [9,10,16].
However, from our experiments, we observe that the main
mode is dominating, and thus focus on this in the following.
The other resonances are characterized and discussed in detail
in Sec. V C.

B. Size of the ellipses

To investigate the interplay of shape anisotropy and
crystalline anisotropy, we studied ellipses of various lateral
dimensions, but with the same aspect ratio of 1:3. Changing
the sample size affects the balance between crystalline and
shape anisotropy in the free-energy density. As shown using
our macrospin model for the main FMR mode, this will in
turn change the resonance frequency. There are two limiting
cases worth noticing: in the limit of a very large ellipse,
one should expect a behavior close to that of a continuous
film, where crystalline anisotropy is dominating. By gradually
reducing the size of the ellipse, shape anisotropy becomes
increasingly important. This means that one can use the size
of the magnetic elements to tune the ratio between crystalline
and shape anisotropies, and thus change the magnetodynamic
properties of the system.

Changing the dimensions of the ellipse affects the free-
energy density of the system, given by Eq. (6). The transition
from a continuous film to a small ellipse can be observed by
considering the energy landscape of the system as a function
of the ellipse dimension, as shown in Fig. 4.

Figure 4 indicates how the free-energy density changes
when one gradually reduces the size of the ellipse from the
upper limit of a continuous film to an ellipse of dimension

(a) (b)

(c) (d)

Continuous film 500x1500 nm Ellipse

150x450 nm Ellipse 50x150 nm Ellipse

E(J/m³)
E(J/m³)

E(J/m³)E(J/m³)

FIG. 4. (Color online) Free-energy density given by Eq. (6) for
(a) continuous film, (b) 500×1500 nm ellipse, (c) 150×450 nm
ellipse, and (d) 50×150 nm ellipse. Film thickness is 10 nm in all
cases.

50×150 nm. As expected, one notices that in all cases, the mag-
netization favors an orientation in the sample plane [θ = 90,
from sample geometry as defined in Fig. 1(b)]. For the contin-
uous film and the largest ellipse in Figs. 4(a) and 4(b), one can
clearly see the dominating crystalline anisotropy, with a four-
fold symmetry between the energy minima along the φ axis.

In the intermediate case for an ellipse of dimension
150×450 nm, one has two dominating energy minima at φ = 0
and φ = 180 (magnetization along the long axis of the ellipse).
In addition, there is a quite flat saddle point at φ = 90 (which
corresponds to a magnetization along the short axis of the
ellipse). This is not a stable energy minimum, but the flatness
of the saddle point means that applying a small magnetic field
along this axis will create a local energy minimum along this
direction.

For the smallest ellipse, the energy landscape is dominated
by the twofold shape anisotropy along the long axis of the
ellipse. To align the magnetization along the short axis of the
ellipse (φ = 90) will thus require a quite large external field.

As shown in Sec. IV, the FMR frequency given by
Eq. (11) is determined by the free-energy density of the
system. Adjusting the lateral dimensions of the ellipse is
thus an important parameter controlling the FMR frequency.
From Eq. (11), one notices that the resonance frequency is
determined by contributions of both twofold and fourfold
symmetry. From this expression, the relevant ratio to determine
which term will dominate is given by HK/μ0Ms(Nx − Ny).
Changing the ellipse dimensions, and thus the demagnetization
factors Ni , affects the resonance frequency significantly, as
shown in the upper panel of Fig. 5.

Figures 5(a) and 5(b) compare the theoretical FMR spec-
trum for ellipses of dimension 150×450, 100×300, and

Theoretical data:

Experimental data:
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FIG. 5. (Color online) (a) Theoretical dispersion for ellipses
of dimension 50×150 nm (black), 100×300 nm (blue), and
150×450 nm (red). (b) Angular dependence of same data. Exper-
imental data for ellipse of dimension (c) 150×450 nm, (d) 100×300
nm, and (e) 50×150 nm.
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FIG. 6. (Color online) (a) Theoretical dispersion for ellipses
of dimension 500×1500 nm (black), 250×750 nm (blue), and
150×450 nm (red). (b) Angular dependence of same data.

50×150 nm. As the dimensions of the ellipse are reduced, the
twofold shape anisotropy tends to dominate over the crystalline
anisotropy, and the heart shape of the spectrum in Fig. 5(b) due
to the cubic crystalline anisotropy is suppressed. Comparing
the theoretical results with the experimental data in the lower
panel of Fig. 5, they follow the same trend. As the size is
reduced, the resonance is shifted to slightly higher fields, and
the heart shape of the resonance gets suppressed.

Investigating the opposite limit, one can determine when
the crystalline anisotropy starts to dominate. Comparing the
theoretical FMR spectrum for ellipses of dimension 150×450,
250×750, and 500×1500 nm in Fig. 6, one notices that by
increasing the size, the effect of shape anisotropy is suppressed
compared to that of crystalline anisotropy.

For an ellipse of dimension 500×1500 nm, the dispersion
starts to look similar along the long/short axis of the ellipse,
as indicated in Fig. 6(a). If the only contribution was from the
crystalline anisotropy, the dispersion should be identical along
the long/short axis due to the fourfold symmetry. Comparing
the FMR spectrum for the largest ellipse in Fig. 6(b) to that
of a continuous film in Fig. 3(a), they look very similar.
This indicates that as the sample dimensions approach the
micrometric scale, shape anisotropies play a minor role
compared to the crystalline anisotropy.

To summarize the size dependence, we have shown that
for sample dimensions above approximately 1 μm, crystalline
anisotropy will dominate. In the opposite size limit, shape
anisotropy will dominate for sample dimensions below ap-
proximately 50×150 nm. In this intermediate regime, one can
thus effectively use the sample size as a parameter to tune the
balance between crystalline and shape anisotropies.

C. Broadband FMR measurements
and micromagnetic simulations

The assumption that the magnetization in the individual
ellipses is uniform is a good approximation at the center of
the ellipse, but along the edges the magnetization will be less
uniform due to the demagnetizing fields. Regions along the
sample edges could lead to a spectrum of additional edge
modes [9,16]. In addition, there could be other spin-wave exci-
tations with nonzero wave vectors, and correspondingly vary-
ing frequencies [9,10]. To characterize the various resonances,
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FIG. 7. (Color online) (a),(b) Experimental FMR spectrum for
ellipses with field oriented along long/short axis. Experimental data
is shown as red dots/blue squares, and theoretical spectrum as dotted
black line. (a) Field sweep from the negative to positive field along
the long axis, also showing the switching of the magnetization at
approximately 75 mT. (b) Similar measurement along the short axis,
showing the main mode (red dots) and an additional weak resonance
at lower frequency (blue squares). (c),(d) Simulated FMR spectrum
for a single ellipse of dimension 150×450 nm with the field oriented
along the (c) long and (d) short axis.

we thus performed a series of broadband FMR measurements
in combination with micromagnetic simulations.

To obtain a complete field-versus-frequency map of the
FMR absorption, we performed experiments using the broad-
band setup described in Sec. II. The experimental FMR
absorption peaks were extracted and are shown in the upper
panel of Fig. 7. Red dots represent the main FMR mode and
the blue squares represent the additional weaker mode. For
clarity, only a few selected data points are included, where
the uncertainty in determining the absorption peak position
is of the order of the dot size. The experimental results are
then compared with the theoretical FMR spectrum from the
macrospin model, shown as dotted black lines.

The agreement between theory and experiment is good for
an applied field oriented along the long axis of the ellipse,
as indicated in Fig. 7(a). Sweeping the field from negative to
positive, one also notices the switching of the magnetization.
As the field is swept from negative to zero, the FMR frequency
decreases as expected. This continues also for positive fields
until the external field is strong enough to overcome the
anisotropy favoring the magnetization along the long axis of
the ellipse. The switching is then observed as an abrupt jump
in the FMR spectrum.

When applying the field along the short axis, there are
two parallel dispersing lines, as shown in Fig. 7(b): a
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high-frequency resonance and an additional weaker resonance
at lower frequency, which corresponds well to the additional
resonance also seen in the cavity measurements [see Fig. 2(b)].
Comparing the measurements along the short axis with the
theoretical dispersion, one does not observe the low field
resonance in Fig. 7(b) (the black dotted line below 100 mT). In
this field range, the magnetization is not saturated and it is still
oriented along the long axis of the ellipse, being parallel to the
microwave (MW) pumping field from the CPW. However,
in the cavity measurements, we observed both resonances
because the pumping field is, in this case, oriented out of the
sample plane and thus perpendicular to the magnetization. The
first resonance is observed at a field of ∼50 mT [see Fig. 2(b)]
and a second one is observed at ∼100 mT, which agrees
well with the expected resonance fields from the theoretical
curves shown in Fig. 7(b) at a frequency of 9.4 GHz. At
higher fields, the magnetization in the ellipse saturates in the
direction of the external field, being perpendicular to the MW
pumping field from the CPW, and thus the theoretical spectrum
corresponds well with the high-frequency branch of the
experimental data.

Using a macrospin model, one accounts only for the main
FMR mode. In order to investigate the observed low-frequency
resonance, we performed micromagnetic simulations. The
model was implemented as a single ellipse of dimensions
150×450 nm with a thickness of 10 nm, and the simulated
FMR spectrums are shown in the lower panel of Fig. 7.
Comparing the experimental data with the micromagnetic sim-
ulations, we notice a few differences. Applying the field along
the long axis of the ellipse, the simulated and experimental data
both show a single dispersing resonance. The simulated FMR
frequency is, however, noticeably higher than the experimental
results. Applying the field along the short axis of the ellipse,
the differences between the experimental and simulated FMR
spectrum are more significant. The experimental data show
two parallel dispersing lines, whereas the simulated spectrum
shows a whole range of various excitation modes.

A similar splitting of the main mode has been observed
experimentally in elliptical permalloy dots, and was attributed
to a hybridization of the main mode with other spin-wave
modes [9,10]. A study of the excitation modes in permalloy
dots as a function of dot eccentricity has been performed by
Gubiotti et al. [9], where they found a large range of possible
modes depending on the orientation of the external field with
respect to the axis of the dots. The number of modes in our
system compared to theirs may be smaller because of the
different material parameters and sample size. The exchange
stiffness in Fe is almost twice that of permalloy and, combined
with a smaller sample size, this results in a reduction in the
number of excitation modes due to the increased exchange
energy. This was also confirmed in our simulations, where the
mode splitting disappears when reducing the sample size or
increasing the exchange stiffness.

The low-frequency branch in Fig. 7(d) was identified
by imaging the mz component from the micromagnetic
simulations (out-of-plane component). From the periodic
oscillations of the magnetization, we determined the low-
frequency resonance to be localized along the edges of the
ellipse, as indicated in Fig. 8 for an applied field of 150 mT
along the short axis.

t=0 ns t=0.06 ns t=0.12 ns t=0.18 ns t=0.24 ns

Oscillation of
edge modes

< 0 

> 0 

FIG. 8. (Color online) mz component, showing one oscillation
period of the edge mode at H = 150 mT, corresponding to a frequency
of approximately 4 GHz.

After identifying the excitation modes, one needs to
consider why there is a significant difference between the
simulated and experimental FMR spectrum. It is known
that the fabrication process of nanostructures can lead to
distortions and defects at the sample edges [16–19]. To
investigate how this would affect the magnetodynamic
properties, the effects of edge defects need to be taken into
account in the simulation model.

1. Edge modes and edge defects

In the initial simulations, the edges of the ellipse were
treated as ideal. However, the samples most likely have some
kind of nonideal edges, which could influence the FMR
spectrum. The effects of nonideal edges on the dynamics have
been investigated theoretically by McMichael et al. [16]. It
was shown that several cases, such as edge geometry, reduced
edge magnetization and surface anisotropy on the edge surface
all had similar effects. The main effect was to reduce the
edge saturation field, which is the field needed to align the
magnetization at the edge nearly parallel to the applied field. A
reduced edge magnetization will also lead to a smaller effective
demagnetization field along the edges. This would cause a
significant increase of the edge mode resonance frequency
compared to that of an ideal edge, and the shift could be of
the order of several GHz [16]. Such effects would be less
important when the field is oriented along the easy axis of the
ellipse, explaining the better agreement between the simulated
and experimental spectrum in that geometry.

To account for edge defects in the simulations, we made
a model where the material properties were changed along
the edges of the ellipse. In a real sample, the variation of the
material properties when approaching the sample edge should
be gradual, but as a first approximation the model was defined
with two distinct regions. The width of the edge region was set
to 10 nm and is within the same width range as that investigated
theoretically by McMichael et al. [16]. A schematic of the
model including edge defects is shown in Fig. 9(b).

As mentioned in Sec. II, the samples were defined by ion-
beam milling. This can affect the magnetic properties of the
sample [19], and a more disordered edge region could lead
to an increased damping of the FMR modes. Two kinds of
defects have thus been considered in the simulations: increased
damping α and reduced Ms .

In the initial simulation model with ideal edges, excited
spin waves would be reflected at the edges of the sample.
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FIG. 9. (Color online) (a) Simulation using normal edges, show-
ing the edge mode and splitting of the main mode. (b) Schematic
of simulation model with a defined edge region. (c) Simulation with
reduced Ms in the edge region (reduction of 40%). (d) Simulation
with increased damping α in the edge region (from 0.01 to 0.1).

This explains the multiple excitation modes observed in the
simulations, due to a hybridization of the main mode with other
spin-wave modes [9,10] [see Fig. 9(a)]. As a disordered edge
region could lead to increased damping of the FMR modes, we
introduced an edge region where the damping was increased
from α = 0.01 to α = 0.1. This would absorb the propagation
of spin waves, reducing the spin-wave reflection at the sample
edges. As seen in Fig. 9(d), the increased damping leads to
a broadening of the FMR modes and suppresses some of the
splitting of the main mode. The low-frequency edge mode,
however, remains relatively unaffected.

The edge magnetization Ms was found to be the most
important parameter, and we made simulation models where
the outer region of the ellipse had a significantly reduced Ms

from Ms = 1.7×106 to Ms = 1×106 A/m. Reducing Ms in
the edge region changes the FMR spectrum considerably, as
seen when comparing Figs. 9(a) and 9(c). The splitting of the
main mode is suppressed and the resonance frequency of the
edge mode is shifted significantly. The resulting spectrum now
resembles the experimental data, showing mainly two parallel
dispersing modes.

Another important effect to consider in arrays of nanomag-
nets is the dipolar interaction among the individual particles.
In order to take this into account, we performed simulations
for arrays of interacting ellipses.

2. Dipolar interactions

The simulations so far have been performed for single el-
lipses. However, due to the periodic array of ellipses [as shown
in Fig. 1(a)], there will be some degree of dipolar interaction
between the individual ellipses. The dipolar interaction in
arrays of magnetic particles can have both static and dynamic
contributions. The effects of static dipolar interaction on the
magnetization reversal of the same samples were investigated
previously, and an interaction field in the order of tens of
mT was found [22]. The dynamic interaction can couple the
magnetization dynamics of adjacent dots through the stray field
generated by the precessing magnetization, forming collective
spin excitations in the system [4,5].

Interactions were included in the simulations by using
periodic boundary conditions (bc), with the same periodicity
as that indicated in Fig. 1(a). In the limit of strong dipolar
interaction, one could also expect collective modes in the
system. A simple model of a single ellipse with periodic
bc would not be sufficient to resolve such modes, as the
neighboring ellipses could rotate either in phase (acoustic
mode) or out of phase (optic mode) [26,27]. To take this
into account, we compared the simulation results for a single
ellipse with periodic bc versus arrays of 3×3, 5×5, and 10×10
ellipses. Comparing the simulated FMR spectrums for the
various array sizes, we found no indication of such collective
modes in our system. In the following simulations, the dipolar
interaction was thus taken into account by using a simple
model for a single ellipse with periodic bc.

Comparing the simulated spectrums for a single ellipse
versus an array of ellipses, we found that the dipolar interaction
changes the effective field felt by the individual ellipses. At
zero applied field, the magnetization is oriented along the long
axis of the ellipses. The overall dipolar field caused by the
array geometry will then oppose the magnetization direction.
As seen in Fig. 10(a), the dipolar field reduces the resonance
frequency at zero applied field for the array compared to a
single ellipse. Increasing the field along the short axis of the
ellipse, the magnetization will reorient itself along the short
axis at an applied field of approximately 75 mT [seen as a
“dip” in the FMR spectrum in Fig. 9(c)]. At fields above this
switching field, the dipolar interaction acts to increase the
effective magnetic field felt by the ellipses, and thus increases
the FMR frequency. These shifts can be seen in Fig. 10(a)
for an applied field between 150–350 mT, and are of the
order of 1 GHz. These shifts in the FMR frequencies along
the hard/easy axis are similar to those observed by Carlotti
et al. [28], who studied the effects of dipolar interactions in
arrays of rectangular permalloy dots.

To capture all significant effects, we thus made a simulation
model with periodic bc, where edge defects were modeled
as a reduced Ms at the sample edges. After including both
edge defects and dipolar interactions, one can compare the
simulated and experimental spectrums in Figs. 10(b) and 10(c).

We notice that the inclusion of edge defects and dipolar
interactions gives a better agreement between the simulated
and experimental FMR spectrum. As expected, the edge modes
are strongly influenced by edge defects in the samples. To
accurately capture the behavior of all the FMR modes, it
is thus important to take edge defects into account in the
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FIG. 10. (Color online) (a) Fourier power spectrum of a single
ellipse (black dots) vs an array of ellipses (blue line) using periodic
bc, for an applied field oriented along the short axis of the ellipse. (b)
Left half: Experimental data and macrospin model as dotted black
line. Right half: Micromagnetic simulation including edge defects
and dipolar interactions in an array of ellipses. Data shown is for the
field oriented along the long axis. (c) Same data for the field oriented
along the short axis.

simulation model. Due to the large spacing between the
individual ellipses in the array, the dipolar interaction is quite
weak. In the simulations, we observe a small shift in the
FMR frequencies, but not any indications of collective modes
between neighboring ellipses.

The fact that the amplitude of the main mode dominates
in the experiments, together with the weak dipolar coupling,
explains the good agreement between the analytical macrospin
model and experimental data. This indicates that in the limit
of weak dipolar interaction, our macrospin model can be
used to estimate the FMR frequency of the main mode in
magnetic elements within the investigated size range (e.g., in
a single domain state). Using an analytical macrospin model
compared to performing numerical simulations simplifies the
analysis considerably. The various energy terms contributing
to the FMR dynamics can then be separated and their relative
importance investigated.

VI. CONCLUSIONS

In this study, we have investigated how the combined
interplay between shape anisotropy and crystalline anisotropy
affects the magnetodynamic properties of confined mag-
netic elements. We have shown how the dimensions of the
magnetic elements can be used to balance crystalline and
shape anisotropies, and that this can be used to tailor the
magnetodynamic properties

We have shown that a simple macrospin model for the
FMR frequency gives good agreement with the experimental
results for the main FMR mode. Comparing experimental data
and model calculations, we show how changing the sample
size affects the magnetodynamic properties. For the smallest
ellipses, shape anisotropy is dominating, whereas for the
largest ellipses, crystalline anisotropy is the dominating energy
term. From Eq. (11), the relative contributions to the resonance
frequency from crystalline and shape anisotropy are given
by Hk/μ0Ms(Nx − Ny), determined by the anisotropy field
Hk , the saturation magnetization Ms , and the demagnetization
factors Ni . This means that for the case of a 10-nm-thick
epitaxial Fe film, one has an intermediate regime between
approximately 50 nm to 1 μm where one can use the
sample size as an additional tuning parameter for the dynamic
properties. For other materials with a different Hk and Ms , this
regime can be shifted to smaller/larger sample sizes.

The effects of nonideal sample edges and dipolar interaction
in the array of ellipses were investigated using micromagnetic
simulations. We found that edge defects in the form of
a reduced edge magnetization had to be included in the
micromagnetic model, and that this needs to be taken into
account in understanding the full FMR spectrum. The static
dipolar interaction in the array was found to shift the FMR
frequency of the order of 1 GHz compared to that of a single
ellipse. From the simulated FMR spectrums, we found no
indications of collective spin excitations due to the dynamic
dipolar interaction between neighboring ellipses.

The tunability of the relative contributions from crystalline
and shape anisotropies means that by changing the material
parameters and sample size, one can tailor the magnetody-
namic properties of the magnetic elements, which could be of
importance for magnonics applications.
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Describing synchronization and 
topological excitations in arrays of 
magnetic spin torque oscillators 
through the Kuramoto model
Vegard Flovik1, Ferran Macià2 & Erik Wahlström1

The collective dynamics in populations of magnetic spin torque oscillators (STO) is an intensely studied 
topic in modern magnetism. Here, we show that arrays of STO coupled via dipolar fields can be modeled 
using a variant of the Kuramoto model, a well-known mathematical model in non-linear dynamics. By 
investigating the collective dynamics in arrays of STO we find that the synchronization in such systems 
is a finite size effect and show that the critical coupling—for a complete synchronized state—scales 
with the number of oscillators. Using realistic values of the dipolar coupling strength between STO we 
show that this imposes an upper limit for the maximum number of oscillators that can be synchronized. 
Further, we show that the lack of long range order is associated with the formation of topological 
defects in the phase field similar to the two-dimensional XY model of ferromagnetism. Our results 
shed new light on the synchronization of STO, where controlling the mutual synchronization of several 
oscillators is considered crucial for applications.

The emergence of coherent phases of interacting oscillators is at the foundation of the cooperative functioning 
of a wealth of different systems in nature1. Examples of collective behavior can be chosen within a wide range 
of systems such as laser arrays2, Josephson junctions3, chemical reactions4, synchronously flashing firefly popu-
lations1, disease spreading5, or cortical oscillations in the brain6,7. Science has sought mathematical models for 
understanding collective phenomena in large populations of oscillators that were tractable both analytically and 
numerically.

The Kuramoto model is a well known mathematical model in non-linear dynamics that describes large 
systems of coupled phase oscillators8. The model, with a remarkable simplicity, has been used to describe the 
essential features of collective excitations in a vast set of biological and physical phenomena8–16. Although the 
Kuramoto model originally described oscillators interacting all-to-all with the same strength, variations of the 
model have been used to describe systems with phase offset and time delays in the couplings, other topologies like 
one-dimensional structures with local couplings etc. (see e.g. ref. 9 for an overview of extensions of the Kuramoto 
model). In particular, two-dimensional Kuramoto networks with diffusive local coupling accept solutions con-
sisting in waves, spirals and many other patterns17.

Understanding the collective behavior in oscillator networks is also an intensely studied topic in modern 
magnetism: the synchronization of spin torque oscillators (STO). STO are strongly non-linear magnetic oscil-
lators that can be implemented into nanoscale devices working at microwave frequencies, and can be frequency 
and phase locked to external oscillatory signals or other STO18–32. They are envisaged to be useful for a variety of 
advanced magnetic nanodevices, as microwave sources and for signal processing in telecommunication technol-
ogies (see e.g. refs 33–35 and references therein). STO have also been proposed as possible candidates for a full 
spintronic implementations of neural networks, based on nano-devices emulating both neurons and synapses35,36. 
Building artificial neural networks for computation is an emerging field of research within bio-inspired comput-
ing33–40, where controlling the collective behavior in oscillator networks is crucial.

In both experimental and theoretical studies, most of the work has been performed for limited number of 
oscillators. Experimentally, the synchronization of STO has proven to be difficult, and the synchronization of 

1Department of Physics, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway. 
2Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain. Correspondence 
and requests for materials should be addressed to V.F. (email: vflovik@gmail.com)

received: 26 April 2016

accepted: 10 August 2016

Published: 01 September 2016

OPEN



www.nature.com/scientificreports/

2Scientific Reports | 6:32528 | DOI: 10.1038/srep32528

only a few oscillators has been demonstrated30,32. Theoretically, the magnetization dynamics of STO is modeled 
with the Landau-Lifshitz-Gilbert-Slonzewski (LLGS) equation41,42, but large number of STO lead to challenging 
computations caused by the non-local dipolar fields. It is important to consider that in these non-linear systems 
“more is different”, and that the collective behavior can not be derived simply from the behavior of its individual 
elements. Thus, a theoretical framework capable to capture the essential dynamics would be ideal to explore those 
systems.

Here, we show that two-dimensional arrays of STO coupled via dipolar fields can be modeled by a variant 
of the Kuramoto model. We begin with describing two coupled STO with the Thiele equation43 and show that 
for small-amplitude oscillations the system can be described as a simple phase oscillator model. Next, we model 
the interactions for the case of a two-dimensional array of oscillators based on the dipolar coupling and obtain a 
modified Kuramoto model. Finally we compare the results from our model to the micromagnetic solution of the 
LLGS equation.

We find that the synchronization in two-dimensional arrays of dipolar coupled STO is purely a finite size effect 
and the critical coupling strength for obtaining a globally synchronized state scales with the number of oscillators 
N as λcrit ∝​ log(N). Using realistic values of the dipolar coupling strength between STO we show that this imposes 
an upper limit for the maximum number of STO that can be synchronized. Further, we study the synchronization 
transition between the initial formation of locally synchronized clusters and the globally synchronized and phase 
coherent state and correlate it with a transition in the local order of the system. We also observe the emergence 
of topological defects and the formation of patterns in the phase field similar to the two-dimensional XY-model 
of magnetism—suggesting a connection between arrays of STO, systems described by a 2d Kuramoto model and 
the 2d XY model of statistical mechanics.

Results
From the Thiele equation to the Kuramoto model.  We are considering STO whose free layer ground 
state configuration is a magnetic vortex. The vortex state is characterized by in-plane curling magnetization, and 
a small (~10 nm) region of the vortex core with out-of-plane magnetization44. The gyrotropic motion of the vortex 
core is driven by the injection of a DC spin polarized current through the STO stack, and can be described by 
a gyration radius r and phase θ, as illustrated in Fig. 1a. We first model the interaction of two vortices with the 
Thiele equation with an extra term that accounts for the vortex interaction. These equations describe the vortices 
motion given by their coordinates X1,2 in their self induced gyrotropic mode, and include the spin-transfer-torque 
(STT) as well as a coupling term43,45.

× − − − − = . G k De X X X X F F X( ) ( ) ( ) 0 (1)z 1,2 1,2 1,2 1,2 1,2 STT1,2 int 2,1

Figure 1.  (a) The gyrotropic motion of the vortex core around the center of the disc can be described by the 
radius r and phase, θ. (b) Two vortex based STO separated by a distance dij, showing the curling magnetization 
in the disc plane and the location of the vortex core indicated in black. (c) Network model for an array of STO. 
The interaction strength is determined by the spacing dij and we include interactions within a coupling radius 
R, indicated by the blue circle in the figure. The local correlation function βi at position i (blue) is given by the 
degree of synchronization with its neighbors (red).
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Here, G is the gyroconstant, k(X1,2) the confining force, D1,2 the damping coefficient and FSTT the STT. The inter-
action between the neighboring STO illustrated in Fig. 1b is summarized by a dipolar coupling term given by 
Fint =​ −​μ(d)X2,1, where μ(d) describes the interaction strength as a function of the separation d between the two 
STO.

Assuming a small difference in the nominal frequencies of two coupled STO described by Eq. (1), one can lin-
earize the set of equations following the approach by Belanovsky et al.27, showing that the dynamics of the phase 
difference between the STO can be described by Adler’s equation46. Following these approximations, the set of 
equations reduce to that of two coupled phase oscillators θ1 and θ2: (see ‘Supplementary information’ for details).

θ ω λ θ θ= + − sin( ), (2)1 1 2 1

θ ω λ θ θ= + − sin( ), (3)2 2 1 2

where ω1,2 are eigenfrequencies of oscillators θ1,2 respectively, and λ describes the interaction strength trying to 
synchronize them.

To check the validity of the approximations, one can compare the results obtained using a simplified phase 
oscillator model to a numerical solution of Eq. (1) as well as a micromagnetic solution of the full system using 
the LLGS equation. This was done by Belanovsky et al.27, where they found that for a small difference in nominal 
frequencies, in their case given by a difference in STO disc diameter Δ​D/D0 ≤​ 5%, the synchronization can be 
qualitatively described using the simplified model. Assuming the error in state-of-the-art fabrication processes is 
below this limit, the simplified equations are a valid description of the system.

The functional form of Eqs (2–3) is the same as that of the well known Kuramoto model8,9, which is a gener-
alization for the case of an ensemble of weakly coupled phase oscillators. Considering the interaction between 
several STO, we obtain a Kuramoto model where the single oscillator state is described through the dynamic 
equation of its phase θi due to the interaction with its surrounding oscillators θj:

∑
θ

ω λ θ θ= + − .
≠

d
dt

sin( )
(4)

i
i

j i
ij j i

The coupling term is here generalized to include the interaction between several oscillators, determined by the 
interaction strength λij between oscillators θi and θj. This determines the nature of the interaction, ranging from 
a global all-to-all coupling where λij =​ λ for all oscillators, to a local interaction where λij =​ 0 for all but the nearest 
neighbors. Here, we are considering the intermediate case of a non-local coupling to mimic the dipolar interac-
tion between neighboring STO. Starting from a macrodipole approximation for the dipolar energy between two 
magnetic dipoles μ1 and μ2, the average interaction strength is found to decay as µ ∝ −d d( ) ij

3 47, where dij is the 
distance between oscillators θi and θj. We thus set the coupling strength to

λ
λ
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where we include interactions within a coupling radius R, indicated by the blue circle in Fig. 1c. The network 
model for the STO array is implemented with bi-periodic boundary conditions and the time evolution of the 
oscillator phases given by Eq. (4) is solved numerically. A small random disorder in the oscillator eigenfrequen-
cies is included by setting ωi =​ ω0 ±​ δωi. Here, ω0 =​ 1 GHz and δωi represents a uniformly distributed random 
disorder where δωi/ω0 ≤​ 2.5%. The interaction strength is determined by the STO spacing and size, as well as the 
magnetic material properties31. Here, the interaction strength has been varied in the range λ =​ 1–20 MHz, and is 
in the same range as the interaction strength extracted from micromagnetic simulations for similar STO31.

In order to evaluate the Kuramoto model as a valid description for arrays of STO, we compare it to a micro-
magnetic solution of the complete system, accounting for all dynamic dipolar terms (see ‘Methods’ section). To 
compare the Kuramoto model and the micromagnetic solution, we define a suitable order parameter to distin-
guish disordered and synchronized states. The phase of the individual oscillators θi is used to define the order 
parameter ρ, describing the phase coherence in a system of N oscillators:

∑ρ = .θ⋅
N

e1

(6)j

i j

The case ρ =​ 0 corresponds to the maximally disordered state, whereas ρ =​ 1 represents the state where all 
oscillators are perfectly synchronized and phase coherent. In addition to the global order parameter ρ, we define 
a local correlation function β:

∑β = θ⋅

n
e1 ,

(7)
i

j

i j

where the brackets indicate a summation over neighboring oscillators, and n is the number of neighbors. βi is 
a measure of the phase correlation of oscillator θi and its neighbors, indicated by the blue and red oscillators in 
Fig. 1c respectively. If oscillator θi is located within a synchronized cluster, βi →​ 1. Calculating β thus allows for 
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investigating the formation of locally synchronized clusters and the emergence of patterns of synchronized states, 
which can not be obtained simply from the global order parameter ρ.

Kuramoto model versus micromagnetic simulations.  We now compare the Kuramoto model given 
by Eq. (4) and the full micromagnetic solution of the LLGS equation (see ‘Methods’ section for details). Starting 
from a disordered initial state, we investigate the synchronization dynamics by calculating the time evolution of 
the phase distribution θi and local correlation βi. As an example, we show in Fig. 2 snapshots of θi and βi for the 
Kuramoto model and the micromagnetic solution for a system of 45 ×​ 45 oscillators at times t1 and t2 >​ t1, with 
random initial phases. At time t1, one notices the initial formation of small locally synchronized clusters, as seen 
through both the phase distribution and the bright areas in the correlation maps, where β →​ 1. As time progress 
to t2, these clusters grow in size and merge with neighboring clusters.

Comparing the two models, we find that they both show the same behavior. For weak interaction strengths, 
the system tends to be in a disordered state with no correlation between neighboring oscillators. By increasing the 
interaction strength above a certain threshold, synchronized clusters begin to form. The oscillators within each 
cluster are synchronized, but might not be phase coherent with other clusters. This can be seen in the phase maps 
in Fig. 2, where the individual clusters have different phases. As time progresses, the transition from a disordered 
to a synchronized state is governed by the growth and merging of neighboring clusters, reaching a globally syn-
chronized and phase coherent state for sufficiently strong interactions.

Depending on the interaction strength, the system ends up in either a disordered, partially synchronized 
or globally synchronized state. Controlling the interaction strength is thus the key parameter to determine the 
system behavior. The interaction strength needed to obtain synchronization will depend on the differences in 
the nominal frequencies of the oscillators31. Another important consideration, is whether the critical interaction 
strength also depends on the number of oscillators. Lee et al.48 have studied the synchronization in a 2d Kuramoto 
model with a nearest neighbor interaction. They showed that the transition to a synchronized state depends 
strongly on system size, and that the critical coupling strength needed to synchronize scales with the number of 
oscillators N as λcrit ∝​ log(N). This raises the question if such a scaling law can also be observed in our models: 
observing the same scaling laws in both the Kuramoto model and the micromagnetic solution would strengthen 
the suggestion of the Kuramoto model as a valid description of arrays of STO.

We first consider our Kuramoto model, which has a non-local interaction to mimic the dipolar interaction in 
arrays of STO. Due to the increased complexity compared to the nearest neighbor model studied by Lee et al.48, an 
analytical derivation of the scaling behavior with system size is to our knowledge still an open question. To inves-
tigate the scaling behavior we thus resort to a numerical solution. We performed simulations with the number of 
oscillators ranging from N =​ 9 to N =​ 2500, gradually increasing the interaction strength between each simulation 
until the system reaches a synchronized state at a critical coupling strength, λcrit. 100 simulations were performed 
for each system size, with different initial oscillator phases and eigenfrequencies. In Fig. 3a we show a plot of 
λcrit vs. number of oscillators, N. The results indicate that the critical coupling strength scales as λcrit ∝​ log(N), 
same as the nearest neighbor Kuramoto model investigated by Lee et al.48. The main difference compared with 
the nearest neighbor model is that we include interactions within a coupling radius R, as indicated by the blue 
circle in Fig. 1c. The imposed cutoff radius has a physical justification when considering a realistic system, which 
would inevitably include thermal noise. As the STO we consider are weakly coupled, and the dipolar interaction 
decay with distance, there will be a limiting spacing where the thermal noise level is comparable to the coupling 

Figure 2.  Snapshots of the phase map θi and local correlation function βi for the Kuramoto model and the 
micromagnetic solution at time t1 and t2 > t1 for a network of 45 × 45 oscillators. 
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strength. In our model we observe that the results do not depend qualitatively on the range of the cutoff radius, 
and that the large scale behavior is dominated by the diffusive coupling. This suggests that insight from studying 
the analytically tractable nearest neighbor model of Lee et al.48 might provide valuable insight into the behavior 
of STO arrays.

The coupling in the Kuramoto model is defined simply as an interaction strength given by λ in Eq. (4). In the 
micromagnetic model the coupling comes from dipolar interactions, determined by the magnetic material prop-
erties and the STO spacing. In order to investigate the scaling behavior in the micromagnetic solution, one thus 
needs to relate the critical interaction strength to a critical STO spacing. Following the aforementioned macrodi-
pole approximation that the effective dipolar interaction decay as 1/d3, one can relate the coupling strength λcrit 
to a critical spacing dcrit between neighboring STO as dcrit ∝​ [log(N)]−1/3. Micromagnetic simulations were then 
performed to obtain dcrit vs. number of oscillators in the range N =​ 3 ×​ 3 to N =​ 15 ×​ 15. The results are shown 
as the red datapoints in Fig. 3b. For comparison, we show as a solid line the expected scaling from the Kuramoto 
model: dcrit ∝​ [log(N)]−1/3. The good agreement between the micromagnetics result and the Kuramoto model 
indicate that they both follow the same scaling law, strengthening the suggestion of the Kuramoto model as a valid 
description for arrays of STO.

Scaling of output power in arrays of STO.  To investigate the implications of the scaling with system size, 
we consider a model calculation of the output power as we increase the number of STO. For applications of STO 
as e.g. nanoscale microwave generators, the power output of a single STO is not competitive. Decisive improve-
ment is expected from the synchronization and phase locking of several STO, as this would result in a quadratic 
increase of the output power, P ∝​ N2 for N synchronized oscillators.

The output of a single STO can be described by its amplitude and phase, θa ej
i j. In our model we have assumed 

a constant amplitude for all STO and the total amplitude A for an array of STO is given by: = ∑ θA aej
i j. The 

power output is proportional to |A|2, and for N oscillators we obtain ρ∝ ∑ ∝θP aN e N( )
N j

i1 2 2j , from the defi-

nition of the order parameter ρ in Eq. (6). A quadratic scaling in the power output, P ∝​ N2, implies a perfectly 
synchronized and phase coherent state, given by ρ =​ 1. However, as the coupling strength to obtain a synchro-
nized state scales with the number of STO, this will affect the power output when scaling up to large arrays.

As an example, we consider a system of STO composed of 200 nm diameter spin valve nanopillars with 15 nm 
thick Permalloy as the ferromagnetic layer. The average interaction energy can be extracted from micromagnetic 

Figure 3.  (a) Critical coupling strength λcrit vs. number of oscillators N in the Kuramoto model, normalized to 
the case where N =​ 3 ×​ 3. Red dotted line: For a system size ∼N , there is a corresponding minimum coupling 
strength λ to obtain a synchronized state, and vice versa. (b) Blue solid line: Expected scaling between critical 
oscillator spacing, dcrit, and number of oscillators when assuming a dipolar interaction decaying as 1/d3. Red 
datapoints: Results from micromagnetic simulations. (c) Black solid line: Power output assuming an ideal 
scaling, P ∝​ N2. Blue dotted line: Calculated power output for an interaction strength λ= . 7 5 MHz, normalized 
to the case where N =​ 3 ×​ 3. Inset: Order parameter ρ for 3 ×​ 3 and 13 ×​ 13 STO respectively, showing the 
transition from a synchronized state to chaotic behavior as the number of STO is increased.
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simulations, and for an edge-edge spacing of 150 nm the interaction strength is found to be λ≈  7–8 MHz31. To 
increase the output power, we are now interested in scaling up to a large number of STO. We keep the same STO 
spacing when scaling up, e.g. keeping λ fixed. From Fig. 3a, we see that for an interaction strength λ, there is a 
corresponding number of STO, ∼N , where λ λ> 

crit . This can be illustrated by calculating the total power output 
as the number of STO is increased, as shown in Fig. 3c. For a small number of STO, we see that the power output 
follows close to the ideal N2 scaling. However, as the number of STO is increased, the scaling with system size 
becomes increasingly important. For a certain number of STO, indicated by ∼N  in Fig. 3a, the interaction is no 
longer strong enough to obtain a synchronized state. This is also illustrated in the inset of Fig. 3c, where we plot 
the order parameter ρ for arrays of 3 ×​ 3 and 13 ×​ 13 STO respectively, showing the transition from a synchro-
nized state to chaotic behavior as the number of STO is increased above ∼N .

This illustrates the importance of our findings that synchronization in such 2d arrays is purely a finite size 
effect. The interaction strength is limited by the material properties and STO spacing, and using realistic values of 
the coupling strength we start to see significant deviations from the ideal P ∝​ N2 scaling for array sizes larger than 
10 ×​ 10 STO (see Fig. 3c). This means that in a physical realizable system, the scaling with system size imposes an 
upper limit for the maximum number of STO that can be synchronized.

Topological defects.  That the synchronized and phase coherent state is purely a finite size effect, is similar 
to that of the classical 2d XY model of magnetism. The Kuramoto model is indeed similar to the 2d XY model49, 
where the direction of spin in the XY model corresponds to the oscillator phase in the Kuramoto model. In the 
2d XY model a long range ordered phase is absent due to the presence of spin wave fluctuations and topological 
defects. The lack of long range order is a specific case of the Mermin-Wagner theorem in spin systems50, stating 
that continuous symmetries cannot be spontaneously broken in systems with sufficiently short range interactions 
in dimensions d ≤​ 2. The fluctuations preventing long range order in the 2d XY model diverge logarithmically 
with system size49, in agreement with the logarithmic scaling observed in our system of STO.

Similar topological defects at the boundaries between locally synchronized clusters have previously been 
observed in the nearest neighbor Kuramoto model48 as well as in other two-dimensional oscillator network  
models17,51–53. In oscillator networks this is associated with the appearance of topological defects in the oscillator 
phase field, θi. In the continuum limit this is expressed as:

π
θ∇ ⋅ = ±∮ t d nr l1

2
( , ) , (8)

where dl is an integration path enclosing the defect, and n is the topological charge.
Such topological features are observed also in our Kuramoto model for arrays of STO. The presence of vortices 

in the phase field is more pronounced as the system size increases. As an example we here consider an array of 
50 ×​ 50 oscillators. The disorder in the system is kept constant (given by the difference in the nominal frequen-
cies of the oscillators) and the interaction strength λ is varied, acting as the inverse temperature: as coupling 
increases, the system becomes more ordered. Starting from a disordered initial state and varying the interaction 
strength between each simulation, we observe 4 different regimes: For weak interaction strengths we observe the 
formation of locally synchronized clusters, where cluster sizes increase with interaction strength. Apart from the 
localized clusters there is no long range order in the system (indicated as regime 1 in Fig. 4). Increasing λ above a 
certain threshold, we enter regime 2. Here we observe the formation of vortices in the phase field, and as an exam-
ple we show in Fig. 4c a state with 4 vortices. The topological charge is conserved in the system, and two vortices 
of charge ±​1 respectively is present.

In both regime 1 and 2 long range order in the system is absent and ρ ≈​ 0, as indicated in Fig. 4a. (that ρ >​ 0 
here is a result of fluctuations due to the finite array size). Increasing λ further we enter regime 3, where the tran-
sition from regime 2 →​ 3 is governed by vortex annihilation processes (see ‘Supplementary information’). Here 
there are no topological defects in the phase field, and the lack of global phase coherence is due to spin waves in 
the phase field where the oscillator phases change smoothly across the array (regime 3 in Fig. 4b). For sufficiently 
strong interactions we enter regime 4. Increasing the interaction strength is analogous to increasing the exchange 
coupling in a Ferromagnetic system, resulting in a more ordered state. The result here is a gradual suppression 
of the spin waves in the phase field observed in regime 3 as the interaction strength is increased. Regime 4 is 
thus characterized as the globally phase coherent state where all oscillators are synchronized and phase coherent 
(regime 4 in Fig. 4b).

The growth of the order parameter ρ with increasing coupling strength λ in Fig. 4a resembles that of a phase 
transition. Previous work have shown that the synchronization transition in the globally coupled Kuramoto 
model can be described as a phase transition, where the nature of the transition can be of first or second-order 
depending on the frequency distribution and coupling topology8,54. The Kuramoto model with finite range cou-
plings is less studied, as these systems are difficult to analyze and solve analytically. A study of the locally coupled 
Kuramoto model on a d-dimensional lattice have shown that the synchronization transition depends strongly on 
the lattice dimensionality, and indicates d =​ 4 as the lower critical dimension for phase synchronization55. This is 
in agreement with the observed scaling with system size in our model, which indicates that the synchronization 
transition is purely a finite size effect.

In order to investigate the synchronization transition in our model further, we calculate the spatial correlation 
function for the array of oscillators. The correlations decay with distance, and asymptotically the correlation 
function is given by: 〈​θ(r) ⋅​ θ(R)〉​ ∝​ e−|r−R|/ξ/|r −​ R|η. This describes the correlation between oscillators at positions 
r and R respectively, and the correlation length ξ is obtained by averaging over all positions r and R in the array 
(an example is shown in ‘Supplementary information’ Fig. S2). From the decay of the correlation function, we 
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obtain the correlation length ξ as a function of the interaction strength λ. Conventional phase transitions are 
accompanied by a diverging correlation length close to the transition. Here, we do not observe a diverging ξ going 
from the disordered to the phase coherent state (1 →​ 4 in Fig. 4), and the correlation length remains finite. As 
inset in Fig. 4a we show a log-log plot of the correlation length normalized to the system size, ξ/L, (N =​ L ×​ L). 
The results indicate a power law relating the correlation length and the interaction strength as ξ ∝​ λν, where the 
exponent for this case was found to be ν =​ 2.1 ±​ 0.1. This means that the correlation length simply scales with the 
coupling strength, and the transition between regimes 1–4 in Fig. 4 correspond to structures of ever increasing 
length scales. The transition to the phase coherent state (ρ →​ 1) occurs when the correlation length approaches 
the system size L, underlining the finite size effects on the synchronization transition and that the system is not 
undergoing a conventional phase transition. Further investigations of finite size effects, the lack of long ranger 
order in the Kuramoto model and the connection to the 2d XY model will be the subject of future work.

Discussion
To summarize, we have shown that the Kuramoto model provides a good description of arrays of STO. It pro-
vides a simple theoretical model to study large populations of coupled STO, which were previously unaccessible 
due to the long computation time for a full micromagnetic solution. By investigating the collective dynamics 
in large arrays of STO, we observed a scaling with system size indicating that the synchronization in arrays of 
dipolar-coupled STO is purely a finite size effect. The critical coupling strength to obtain a globally synchro-
nized state scales with the number of oscillators, as λcrit ∝​ log(N), preventing global synchronization for large 
system sizes. As a consequence of the scaling with system size, we showed that for realistic values of the dipolar 
coupling strength between STO this imposes an upper limit for the maximum number of oscillators that can be 
synchronized. Further, we showed that the lack of long range order and scaling with system size is associated with 
the emergence of topological defects and the formation of patterns in the phase field, similar to that of the 2d 
XY-model of magnetism.

In the present study we considered dipolar-coupled STO, where the short time delay in the coupling between 
neighboring oscillators compared to the oscillator frequency means that phase delay in the couplings can be 
neglected. However, for other coupling mechanisms, time delay can become significant. Interaction mediated by 
spin waves provide a different mechanism to obtain synchronization of STO32, where the finite propagation speed 
of the spin waves results in a phase offset in the couplings. Another recent proposal includes the use of non-local 
electrical couplings, where the coupling phase can be externally tuned through an electrical delay line56.

From a dynamical systems point of view, the study of time delay induced modifications to the couplings is of 
fundamental interest, as well as of practical relevance for modeling of physical, biological and chemical systems. 
In such systems, time delay is associated with finite propagation velocity of the couplings via e.g latency times of 

Figure 4.  (a) Order parameter ρ vs. interaction strength λ in the Kuramoto model for a system of N =​ 50 ×​ 50 
oscillators, showing the transition from a disordered (ρ ≈​ 0) to a globally synchronized and phase coherent 
state (ρ →​ 1). Inset: Calculated correlation length ξ vs. interaction strength λ, where the correlation length is 
normalized to the system size, ξ/L (N =​ L ×​ L) (b) The corresponding phase maps, showing the transition from 
a disordered state via the formation of locally synchronized clusters (1), vortices (2), spin waves (3) and the 
globally phase coherent state (4). (c) Zoom in of phase map for regime 2, showing the appearance of 4 vortices 
of charges ±​1 respectively, as defined in Eq. (8).
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neuronal excitations, reaction times in chemical systems etc. (see e.g. ref. 9 and references therein). The possibil-
ity of designing STO arrays with a defined phase offset in the couplings suggests a real world analog to the more 
general Sakaguchi-Kuramoto model on a 2d lattice, which allows for a phase lag in the couplings57.

Our study suggests, on the one hand, that the use of models from non-linear dynamics can be useful for 
describing synchronization of magnetic oscillators and, on the other hand, arrays of STO as a a physical realizable 
model system for the Kuramoto model on a 2d lattice.

Methods
Micromagnetic model.  The micromagnetic model is defined as arrays of discs, where the system is divided 
into a grid with a mesh size of 5 nm, limited by the exchange length of the ferromagnetic material (here Py). The 
volumetric quantities such as the magnetization M and effective field Heff are treated at the center of each cell, 
whereas coupling quantities such as exchange strength are considered at the faces between cells. The numerical 
solution was obtained using the micromagnetic solver Mumax3 58, which uses a RKF 45 method to solve the 
Landau-Lifshitz-Gilbert-Slonzewski (LLGS) equation41,42 given by:

γ α χ θ= − × +





×






− 

 × × 
 .

−

� ������ ������
� ������ ������� � ����������� �����������

d
dt M

d
dt d

JP MM M H M M M m( ) (

(9)
s

feff
Gyration

Damping Spin TransferTorque

Here, γ is the gyromagnetic ratio, α the damping parameter and Ms the saturation magnetization. The 
spin-transfer torque term is given by χ µ= g M e/(2 )b s

2 , the charge current density J and the free layer thickness d. 
P(θ) is a polarization function assumed to increase with the relative angle θ between the magnetization of the free 
layer and the fixed layer and mf is a unit vector in the direction of the magnetization of the free layer.

In the model, each disc is composed by a magnetic free layer and a fixed polarizer which generates a perpen-
dicular spin polarization pz. The free layer in the STO is 30 nm thick Py with a disc diameter of 150 nm, and the 
damping parameter α was set to 0.01. A small disorder in the eigenfrequencies of the individual STO is included 
through a random distribution in the saturation magnetization in the range [865, 885] ⋅​ 103 A/m, resulting in a 
slight variation of STO eigenfrequencies. All discs were initialized with a vortex of same polarity and chirality, 
and the center-center spacing of the discs was varied to change the interaction strength. The polarizing layers are 
not included in the model as these layers, being uniformly magnetized in z direction have almost no influence 
on the vortices motion. The vortex gyration was driven by a DC spin current with a polarization pz =​ 0.3, and 
current density J ≈​ 4.3 ⋅​ 107 A/m2. During the simulations, a static magnetic field of 150 mT was applied along the 
z direction to set the vortex core polarity.
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From the Thiele equation to the phase oscillator model

We here provide some more details on the derivation of the Kuramoto model starting from
the coupled Thiele equation:

G(ez × Ẋ1,2)− k(X1,2)X1,2 −D1,2Ẋ1,2 − FSTT1,2 − Fint(X2,1) = 0. (S1)

Here, G = −2πpMsh/γ is the gyroconstant, p is the core polarity, γ is the gyromagnetic ratio,
Ms is the saturation magnetization and h is the thickness of the ferromagnetic layer. The
confining force is given by k(X1,2) = ω01,2G

(
1 + a

X2
1,2

R1,2

)
[1, 2], where R1,2 are the disc radii

and the gyrotropic frequency for disc 1, 2 is ω01,2 = 20
9 γMsh/R1,2. The damping coeficcient

−D1,2 = αη1,2G, where η1,2 = 1
2 ln

(
R1,2
2le

)
+ 3

8 . Here, le =
√

A
2πMs

is the exchange length given
by the exchange stiffness A and the saturation magnetization Ms. Assuming a uniform
perpendicularly magnetized polarizer layer, FSTT = πγaJMsh(X1,2 × ez) = κ(X1,2 × ez)
[3], where the spin torque coefficient is given by aJ = ~pzJ/(2|e|hMs), ~ is the Planck‘s
constant, J is the current density and e is the elementary charge. The interaction between the
neighboring vortices is summarized by a dipolar coupling term given by Fint = −µ(d)X2,1,
where µ(d) describes the interaction strength as a function of the separation d between the
STO. A study of the dipolar interaction between neighboring vortices has been performed
by Araujo et al. [4]. Starting from a macrodipole approximation for the dipolar energy
between two magnetic dipoles µ1 and µ2, they show that the average interaction energy can
be written as 〈Wint〉 = µeffC1C2X1X2. Here, Ci and Xi are the chirality and gyration radius
respectively and µeff is given by:

µeff = 3π
2χ2R2h2

2d3 , (S2)

where χ = 2/3, R is the disc radius, h the thickness and d is the inter-disc spacing. In polar
coordinates (X1,2 cos θ1,2, X1,2 sin θ1,2), the coupled equations for two neighboring vortices
from Eq. (S1) can be written as:

Ẋ1

X1
= αη1θ̇1 −

κ
G

+ µX2

GX1
sin(θ1 − θ2) (S3)

i



θ̇1 = −k(X1)
G
− αη1

Ẋ1

X1
− µX2

GX1
cos(θ1 − θ2) (S4)

Ẋ2

X2
= αη2θ̇2 −

κ
G
− µX1

GX2
sin(θ1 − θ2) (S5)

θ̇2 = −k(X2)
G
− αη2

Ẋ2

X2
− µX1

GX2
cos(θ1 − θ2) (S6)

One can then show that after a few approximations, the set of equations reduce to that
of two coupled phase oscillators. We assume the same gyration radius for both vortices,
X2 = X1, and that the steady state vortex gyrotropic radius is close to its mean value, X0.
This means that Eq. (S3) can be set to zero, as Ẋ1 = 0, and we obtain:

θ̇1 = κ
αη1G

− µ

αη1G
sin(θ1 − θ2) (S7)

Setting Ẋ1 = 0 and X2 = X1 also in Eq. (S4):

θ̇1 = −k(X1)
G
− µ

G
cos(θ1 − θ2) (S8)

We then add Eqs. (S7) and (S8) to obtain:

θ̇1 = κ − αη1k(X1)
2αη1G

− µ

2αη1G
[sin(θ1 − θ2) + αη1 cos(θ1 − θ2)] . (S9)

Following the same procedure for vortex nr. 2 and assuming low damping, αη << 1, we
obtain the equations for two coupled phase oscillators θ1 and θ2:

θ̇1 = ω1 + λ sin(θ2 − θ1), (S10)

θ̇2 = ω2 + λ sin(θ1 − θ2), (S11)

Where ω1,2 = κ−αη1,2k(X1,2)
2αη1,2G

and λ = µ
2αη1,2G

. The functional form of Eqs. (S10)-(S11) is the
same as that of the well known Kuramoto model, which is a generalization for the case of an
ensemble of weakly coupled phase oscillators. Considering the interaction between several
STO, determined by the interaction strength λij between oscillators θi and θj, we obtain a
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Kuramoto model for a population of N interacting oscillators:

dθi
dt

= ωi +
∑

j 6=i
λij sin(θj − θi). (S12)

Vortex annihilation processes

Starting from a disordered initial condition, a number of vortices with n = ±1 is created
initially, depending on the array size. Thermal fluctuations of sufficient amplitude could
give rise to vortex unbinding, where free vortices proliferate due to thermal fluctuations. As
we do not consider thermal effects, such vortex unbinding is not observed this in our model.
Since a vortex is topological, it exists until it meets and annihilates with a vortex of opposite
polarity, and the transition from disordered to a synchronized state is governed by vortex
annihilation processes.
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FIG. S1. a) Order parameter ρ vs. time for an interaction strength of λ = 25 MHz for a system of 50× 50
oscillators, starting from a disordered initial state. b) Snapshots of phase and correlation maps at various
timesteps (increasing time from left to right), showing the vortex annihilation processes.
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In Fig. S1a we show the order parameter ρ vs. time, starting from a disordered initial state
for a system of 50 × 50 oscillators using the Kuramoto model. The observed jumps in the
order parameter correspond to the annihilation of vortices of charge ±1. This process is also
illustrated in the panels of Fig. S1b, where we show snapshots of the phase map θi and local
correlation βi at various timesteps (with time increasing from left to right). The location
and polarity (n = ±1) of the vortices can be seen in the phase maps in the upper panels.
The position of the vortex core is identified by areas of low correlation (β → 0) between
neighboring oscillators, seen as the black spots in the lower panels. As time progress the
vortices annihilate, resulting in a globally synchronized and phase coherent state.

Correlation function and correlation length

The spatial correlation function is given asymptotically by: 〈θ(r) ·θ(R)〉 ∝ e−|r−R|/ξ/|r−R|η.
The brackets indicate the correlation between oscillators at positions r and R, and the
correlation length ξ is obtained by averaging over all positions r and R in the array. An
example of the decay of spatial correlations is shown in Fig. S2 for a system of 50 ×
50 oscillators using the Kuramoto model, showing a dominating exponential decay in the
correlations for increasing distances between the oscillators. The spacing |r − R| is here
expressed in terms of the number of lattice spacings between the oscillators. From the decay
of the correlation function, we can then extract the correlation length ξ.
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FIG. S2. Correlation as a function of oscillator spacing, |r−R| for a system of 50× 50 oscillators using the
Kuramoto model.
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The magnetic properties of arrays of nanoparticles are determined by the interplay between the individual
particle properties and the dipolar interactions between them. Here we present a study of arrays of elliptical
Fe(001) particles of thickness 10–50 nm. The aspect ratios of the ellipses are 1:3, their short axes a = 50, 100,
or 150 nm, and the periodicity of the rectangular arrays is either two or four times the corresponding axes of
the ellipses. Magnetic measurements together with numerical and micromagnetic calculations yield a consistent
picture of the arrays, comprising single-domain nanoparticles. We show that the magnetization reversal, occurring
in the range 100–400 mT for fields applied along the long axis, is mainly determined by the properties of the
corresponding single Fe ellipses. The interaction fields of the order of tens of mT can be tuned by the array
configurations. For the actual arrays the interactions promote switching. For film thicknesses below the Bloch
wall width parameter of Fe, lw = 22 nm, magnetization reversal occurs without formation of domain walls or
vortices. Within this range arrays may be tuned to obtain a well-defined switching field. Two general conclusions
are drawn from the calculations: the character of the interaction, whether it promotes or delays magnetization
reversal, is determined by the aspect ratio of the array grid, and the interaction strength saturates as the size of
the array increases.

DOI: 10.1103/PhysRevB.92.094436 PACS number(s): 75.60.−d, 75.75.−c

I. INTRODUCTION

The physics of arrays of small ferromagnetic particles
is a topic of great interest in current research. Part of the
motivation for studies of such systems lies in their potential for
applications, e.g., for data storage [1], as discussed within the
developing field of magnonics [2,3], or for studies of artificial
spin ices [4]. The arrays are complex systems in which the
individual particles as well as the interparticle interactions,
introduced by the design of the arrays, must be controlled to
obtain any desired static and dynamic magnetic properties of
a device.

*maj.hanson@chalmers.se

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

In a finite two-dimensional (2D) array of magnetic particles
the dipolar interactions depend on the symmetry and size of
the array. Finite arrays of single domain, weakly interacting
magnetic dots were investigated by Stamps and Camley [5].
They found that a resulting array anisotropy, depending on
array size as well as symmetry, was induced and that this in turn
controlled the hysteresis curves (comprising discrete steps)
and magnetization reversal processes. Kayali and Saslow [6]
applied the same model in studies extended to larger arrays
and Takagaki and Ploog [7] performed similar studies adding
an internal magnetocrystalline anisotropy to the individual
particles. In a comment Alcántara Ortigoza et al. [8] pointed
out that some qualitative differences between the results
obtained in the two last mentioned studies could be attributed
to different choices of the dipolar interaction strength in
respective work. The ground state of two-dimensional lattices
attracts continued interest and, as discussed in a recent work
by Ewerlin et al. [9], its nature depends on details of the
interaction and boundary conditions.

1098-0121/2015/92(9)/094436(12) 094436-1 Published by the American Physical Society
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Realistic array models require the intrinsic properties and
magnetic switching of the individual particles to be included
in the calculations. As for the choice of materials, permalloy
(Fe81Ni19) is the archetype for soft magnetic properties with
low intrinsic anisotropy. Single-domain permalloy particles
of circular or other shapes with low aspect ratio are often
used as model systems to study the influence of array con-
figurations. As methods for fabrication of nanostructures [10]
and computation capacity develop, the number of publications
in the field continues to increase. It is beyond the scope of
this paper to give a comprehensive review of the current
state; here we give a few examples in which also further
references can be found. A system that attracted particular
interest comprises nearly isotropic permalloy particles, which
for a certain range of thicknesses and lateral sizes may
undergo switching through vortex formation and movement.
The properties of the particles were reviewed by Guslienko
[11], and their sensitivity to dipolar interactions was studied
for different array configurations, e.g., by Novosad et al. [12].
Also arrays with elliptical permalloy particles were studied,
but to a lesser extent; see, e.g., the work by Wang et al. [13],
Pardavi-Horvath [14], and references therein.

For arrays of materials with higher intrinsic magnetization
and anisotropy the classic ferromagnet Fe is well suited,
and such systems are less well studied. In earlier work we
developed fabrication methods and studied the thickness
and size dependence of the equilibrium domain structures in
rectangular and circular particles of epitaxial Fe(001) films
[15–17]. With the aim to study the interplay between single-
particle properties and array configurations, we prepared
two-dimensional (2D) arrays of smaller, single-domain
(SD) elliptical particles in the same way. Magnetization
measurements together with numerical and micromagnetic
calculations in the quasistatic regime show how the field
Bsw for magnetization reversal depends on film thickness
and lateral extension of the individual particles, and how the
interaction strength Bi and its character varies with the design
of the arrays. Balancing Bsw and Bi makes it possible to tune
the onset of switching of the arrays.

The paper is organized as follows. Section II describes
the sample preparation and methods for magnetic character-
ization. Section III presents magnetic hysteresis, dc rema-
nent magnetization observed by magnetic force microscopy
(MFM), first-order reversal curves (FORCs), micromagnetic
simulation of single particle switching, numerical analysis
of the interaction field in finite array configurations, and
micromagnetic calculations of magnetization reversal in finite
arrays. Section IV gives account of the arguments behind our
interpretation regarding magnetization reversal and influence
of array configurations. Section V gives a summary of the main
results of the work.

II. MATERIALS AND METHODS

A. Sample preparation

Fe films with thickness t in the range 10 nm � t � 50 nm
were epitaxially grown by magnetron sputtering on MgO(001)
substrates, 10 × 10 × 0.5 (mm)3. The films were capped by
a 5-nm layer of Al2O3 to prevent oxidation. Samples with
arrays of elliptical particles were patterned by electron-beam

FIG. 1. Layout for patterning of arrays of ellipses. Ellipses with
a = 50, 100, or 150 nm were prepared with the axes along the in-plane
easy magnetization directions [100] and [010] of the Fe(001) film.
b = 3a. The center-to-center distances between the particles scale
with the sizes of the ellipses. For narrow and wide distances c = 2a

and d = 2b or c = 4a, and d = 4b, respectively.

lithography and ion-beam milling, as described earlier [15].
The axes of the ellipses are oriented along the easy directions
of magnetization [100] and [010] in Fe; see the sketch of
the layout in Fig. 1. The aspect ratio a : b is 1 : 3 for all
ellipses and the center-to-center interparticle distances are
either two (narrow separation) or four times (wide separation)
the lateral size of the corresponding ellipses. On each film up
to six samples, including one circular reference with diameter
1.7 mm, were prepared. A patterned area is composed of a
number of e-beam fields with area 500 μm × 500 μm, that
form samples of rectangular areas with edges up to 3 mm. A
sample comprises of the order of 5 × 106–108 ellipses.

B. Magnetic measurements

The magnetization of the samples was measured with an
alternating gradient magnetometer (AGM) from Princeton
Measurements Corporation. The samples were investigated
at room temperature in magnetic fields B in the range
−2 T � B � 2 T. Hysteresis curves and FORCs were recorded.
The magnetization M was obtained after diamagnetic correc-
tion determined from the slope of the high-field hysteresis
curves. It was verified that the saturation magnetization Ms of
the arrays and reference samples were equal to the value for
the nominal amount of Fe.

The arrays were studied by scanning force microscopy
(SFM) in a Dimension3000 from Digital Instruments. To-
pographic and magnetic images were recorded at room
temperature in zero field. The magnetic tip used for imaging
has a coating of Co and Cr films yielding a resulting radius of
curvature of the order of 90 nm. The switching behavior was
studied during dc demagnetization, by scanning sampled areas
and counting the number of switched particles in arrays that
were first saturated in a field B = +2 T, applied along the long
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axis of the ellipses, and subsequently exposed to a field in the
opposite direction. Due to tip-sample interactions and limited
resolution of dense-packed patterns the demagnetization was
not traced for all samples.

C. Micromagnetic simulation

The field dependence of the magnetic state of the Fe
ellipses was calculated using the MicroMagus package for
quasistatic micromagnetic simulations [18]. Each ellipse was
discretized into layers of cubic elements. In order to obtain
mesh independence the discretization cells should have sides
of the same order, or better, less than, the two characteris-
tic length scales in micromagnetics (both frequently called
exchange lengths). The competition between exchange and
dipolar energy is characterized by the magnetostatic exchange
length lex = ( A

Kd
)1/2 and the competition between exchange

and anisotropy energies is characterized by the Bloch wall
width parameter lw = ( A

K1
)1/2 [19–22]. Here A is the exchange

stiffness constant, Kd is the energy density of the stray field,
and K1 is the first-order anisotropy constant. An upper limit
for Kd is 1

2μ0M
2
s , where μ0 is the permeability of vacuum

and Ms is the saturation magnetization. In the simulation we
used the following bulk values for Fe: A = 21 × 10−12 J m−1,
Ms = 1.7 × 106 A m−1, K1 = 4.3 × 104 J m−3. These yield
lw = 22 nm and lex = 3.5 nm. An estimate of the width of
a Bloch wall in Fe, δw = 64 nm, is given by Coey [22]. For
the smallest ellipses simulations made with cube sides of 2
and 3 nm, respectively, yielded the same switching behavior.
For the rest of the simulations we used cubic cells with
sides �x = �y = �z = 3 nm. Here the x and y axes are
along the short and long axes of the ellipses, respectively,
and the z direction is perpendicular to the film plane. To
minimize computation time the number of discretization cells
should be factors of low prime numbers. For example, ellipses
50 nm × 150 nm with t = 10 nm are simulated with a = 16�x ,
b = 48�y , and t = 3�z.

III. RESULTS

A. Thickness and size dependence of magnetization
reversal in arrays

To study the thickness and size dependence of the arrays,
the samples were first characterized by measuring the
hysteresis curves, and by MFM observation of the ellipses
after dc demagnetization. Figure 2 gives an overview of
hysteresis curves of arrays within the actual size and thickness
range. Three different sizes of ellipses and three thicknesses
are displayed. The center-to-center separation is narrow
(twice the corresponding lateral size of the ellipses). For all
three sizes the 30-nm particles are hardest to switch. The
hysteresis curves of the two largest and thickest particles, with
short axes 100 and 150 nm and t = 50 nm, are characteristic
for magnetization reversal through domain-wall formation
and movement. The curves for samples with t = 10 and
30 nm have different shapes, and we will show that in
these magnetization reversal occurs through formation and
movement of quasisingle domain configurations called S and
C states [23]. The reversal processes will be further analyzed
by micromagnetic simulations and FORC analysis.
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FIG. 2. (Color online) Size and thickness dependence of hystere-
sis curves of Fe ellipses with the field applied along the long axes.
The interparticle separation is twice the lateral size of corresponding
ellipses. The film thicknesses and the long axes are noted in the figure.
All curves are drawn to scale with an ofset for all except the central
one.

In a second set of arrays, ellipses of size 50 nm × 150 nm
and 100 nm × 300 nm were prepared with t = 10, 20, 30, and
50 nm. To study the influence of interactions, samples with
narrow and wide (four times the size of the ellipses) particle
separation were made. All samples are hardest to switch
for t = 20 nm. The thickness dependence of the hysteresis
is shown for 100 nm × 300 nm ellipses with 400 nm ×
1200 nm separation in Fig. 3(a). The field region with the
steep slope right until the loop closes is the range where the
dominant magnetization component, along the long axis of
the ellipses, is reversed. This is clearly seen in a comparison
with the stepwise dc demagnetization of the sample with
t = 20 nm; see Fig. 4. The MFM images of the remanent
state after saturation display particles of elliptical shape with
stray fields of dipolar character, aligned along the saturation
field. This is characteristic for a single domain (SD) state,
which is without domain walls, but not necessarily with
homogeneous magnetization. In the ellipses edge domains are
formed to minimize the stray fields. All investigated samples
follow a similar switching behavior as observed in Fig. 4.
During the stepwise dc demagnetization the particles were
always observed in one or the other dipolar state and the
switching began with isolated particles at random positions.
In the ac demagnetized state, however, the largest particles
were occasionally observed in another state, e.g., the particles
of size 100 nm × 300 nm were observed in a bidomain
state for t = 30 nm and thicker, but not for t = 10 nm. The
smallest 50 nm × 150 nm ellipses were always observed as
single domains. Thus, from the magnetic force microscopy
we conclude that the particles form stable single domains and
there is no long-range ordering in the arrays.

The shape of the hysteresis curves have widely differing
characters; pot bellies with spreading middles, and wasp waists
with constrained middles [24] can be seen, as well as curves
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FIG. 3. (Color online) (a) The thickness dependence of hystere-
sis curves for Fe elliptical particles with lateral size and thicknesses
as noted in the figure. Note the order of complete reversal: t = 50,
10, 30, and 20 nm. (b) The influence of interactions for the 10-nm
sample in (a). The field is applied along the long axis.

with a character like any polycrystalline ferromagnetic film.
For these the usual coercivity Bc defined as the field at M =
0, is not a proper measure of the switching field, thus, for
comparison the closing of the hysteresis curve at Bcl is used.
Samples with narrow and wide separation yield very similar
hysteresis curves; see Fig. 3(b). As a main influence of stronger
interactions, it was found that the switching starts earlier and
is completed at about the same value of Bcl as the sample with
weaker interaction. For the samples with wide separation of
100 nm × 300 nm ellipses the values of Bcl are in the range
100–200 mT. For the 50 nm × 150 nm ellipses (not shown
here) the corresponding range is 200–400 mT. The influence
of interactions is further analyzed from the FORC curves, and
numerical calculations.

In a third set of arrays ellipses of size 100 nm × 300 nm
and 150 nm × 450 nm, t = 15, 25, and 30 nm, and wide
separation were prepared. Of these the 25-nm sample has
the highest values of Bcl. The hysteresis curves for the
150 nm × 450 nm ellipses are shown in Fig. 5 and the
corresponding dc remanent switching range in shown in Fig. 6.
Both measurements indicate the same values of Bcl, being in
the range 100–200 mT. When comparing the switching field
Bsw determined by micromagnetic simulation for an individual
Fe ellipse (cf. Fig. 7), the experimentally determined value Bcl

for an array is lower. The differences, as well as range of
switching, vary between different samples. For the 150 nm ×

-220 mT-200 mT

-180 mT-140 mT

-120 mT-100 mT

FIG. 4. (Color online) MFM images taken during stepwise dc
demagnetization of the saturated state of an array of 20-nm-thick
ellipses with lateral size 100 nm × 300 nm and the separation four
times the lateral size of the ellipses. The magnetization was made ex
situ, thus the images do not represent identical areas. The sampling is
made at random locations in the central part of the sample. The scan
sizes are 10 μm × 10 μm.

450 nm ellipses, see Figs. 5 and 6, the values of Bcl are
about 60 mT lower than the calculated Bsw for corresponding
single Fe ellipses with thicknesses 15, 25, and 30 nm. For the
100 nm × 300 nm ellipses made of the same films (not shown
here), the corresponding difference is about 50 mT.

FIG. 5. (Color online) The thickness dependence of the hys-
teresis curves for Fe elliptical particles. The lateral size and film
thicknesses are noted in the figure. The field is applied along the long
axis. Note the order of complete reversal: t = 30, 15, and 25 nm.
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FIG. 6. (Color online) The relative number of ellipses that re-
mained unswitched vs a reversal field applied after saturation in a
field of +2 T. The lateral size and film thicknesses are noted in the
figure. Note the order of complete reversal: t = 30, 15, and 25 nm.

A common trait of the hysteresis curves is an initial curved
slope as the field decreases to a remanent magnetization Mr

significantly lower than Ms . Thus they deviate from the ideal
square hysteresis behavior. This is mainly due to the initial
film properties and demagnetizing effects in the particles,
and does not significantly affect the switching of the ellipses,
which occurs in a different field range. To estimate orders
of magnitude, we take the demagnetizing factors from the
relations applied in our earlier work [15] and obtain for the
largest ellipses the values along the long axes; Ny = 0.025,
0.041, and 0.050, for t = 15, 25, and 30 nm respectively. The
ratios Mr/Ms = 0.46, 0.59, and 0.47 taken from the hysteresis
curves in Fig. 5 increase to 0.64, 0.70, and 0.68, respectively,
after demagnetization correction.

The switching field of the arrays display a systematic
dependence of the thickness and size of the individual
elements. This will be compared with the switching properties
of the corresponding single Fe ellipses, which are analyzed in
the next section.

FIG. 7. (Color online) Micromagnetic simulation of the field Bsw

for magnetization reversal of a single Fe ellipse, plotted vs film
thickness t . The field is applied along the long axis of the ellipses.
The lateral sizes of the ellipses are noted in the figure.

B. Micromagnetic simulation of magnetization
reversal in single Fe ellipses

The field dependence of the magnetization of the Fe ellipses
was studied in micromagnetic simulations. By treating the
ellipses as structures composed of 3-nm-thick layers it is
possible to follow the behavior of the individual layers. The
switching field Bsw for a single Fe ellipse was simulated
by starting with the single ellipse saturated in a field +Bi

applied along the easy axis of the ellipse, and then recording
the magnetic equilibrium state as the field was decreased in
steps until the magnetization was completely reversed. It is
not possible to catch the reversal in a quasistatic simulation;
the value of Bsw is taken as the first field step in showing
a switched state. Figure 7 shows the thickness dependence
of the switching for three lateral sizes of ellipses. Bsw has a
maximum at tsw, in the range of the wall width parameter lw =
22 nm. This marks a transition between different magnetization
reversal processes. For thicknesses below tsw all layers undergo
identical in-plane reversals, and the micromagnetic state of
a single ellipse immediately before the final switching of
the dominant magnetization direction is an S-like quasisingle
domain state. Figure 8 shows the in-plane components mx

and my and the out-of-plane component mz in the field steps
before and after switching of layer 1 of three. mx and my are
identical in all three layers. The mz components are practically
zero, except at the edges of the long axis of layers 1 and
3, which have equally large components of reversed signs,
that is opposite directions. As the thickness increases, a phase
shift between the in-plane rotations in different layers can be
observed, together with an increasing out-of-plane component.
Only in the thickest films and for the two largest particle sizes
were states with clear domain walls observed during switching;
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FIG. 8. (Color online) Micromagnetic simulation of a single
Fe(001) ellipse with easy axes along the [100] and [010] directions.
The field is applied along the long axis. In the simulation the thickness
was 3 × 3 nm, the short axis 16 × 3 nm, and the long axis 48 × 3 nm.
Layer 1 of three is plotted.
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for 100 nm × 300 nm with t = 48 nm and for 150 nm × 450 nm
with t � 45 nm.

The simulated thickness dependence of the switching field
is in good agreement with the experimental observations,
which showed a maximum for t = 20–25 nm. In general
the hysteresis and dc remanent demagnetization are softer
than the calculated values indicate. There are several factors
that can lead to such discrepancies, among which effects of
disturbed particle edges and interactions are obvious. The
program allows simulations of edge defects by setting an area
near the element border where the magnetization is reduced.
The values of Bsw displayed in Fig. 7 were obtained with a
width of the disturbed area corresponding to one calculation
cell. With a disturbance of for example two cells width, the
value of Bsw is decreased by about 13 mT for the smallest and
thinnest ellipses.

Two important results from the magnetic measurements
are (i) the thickness dependence of the switching field for a
given pattern shows the characteristics of the corresponding
single Fe particles with a clear maximum in the range around
t = 20–25 nm, and (ii) the switching starts in lower fields
when the interactions are increased.

The following sections treat the interactions in the arrays.

C. Interactions in first-order reversal curves FORCs

1. Experimental details

In order to investigate the details of the magnetization
reversal processes and in particular to gain an experimental
measure of the strength of the magnetostatic interactions
present within the array, the first-order reversal curve (FORC)

technique [25–27] was used. With the field H applied along
the long axes of the ellipses the measurement of a FORC
proceeds as follows: After positive saturation, the applied field
is reduced to a given reversal field, HR . From this reversal
field the magnetization is then measured back towards positive
saturation. This process is repeated for decreasing reversal
fields filling the interior of the major hysteresis loop with
a family of FORCs, Figs. 9(a), 9(c), and 9(e), where the
magnetization is a function of both the applied and reversal
fields, M(H,HR). The FORC distribution is then defined
[25] as a mixed second-order derivative of the normalized
magnetization:

ρ(H,HR) ≡ −1

2

∂2M(H,HR)/MS

∂H∂HR

. (1)

It is often convenient to perform a simple coordinate
transformation and interpret the results in terms of a local
coercivity HC = (H − HR)/2 and bias/interaction field HB =
(H + HR)/2, as shown in Figs. 9(b), 9(d), and 9(f).

2. Analysis

The family of FORCs and corresponding FORC distribu-
tion for the median sized (100 nm × 300 nm), 30-nm-thick Fe
ellipses on a 400 nm × 1200 nm grid are shown in Figs. 9(a)
and 9(b), respectively. While the major loop, as seen by the
outer boundary of the family of FORCs, shows a distinct
pinching often seen in magnetic nanostructures that reverse
via a vortex state [26], the FORC distribution shows no signs
of vortex state reversal. In fact, the FORC distribution, which
is characterized by a relatively narrow ridge centered along

FIG. 9. (Color online) Families of FORCs, whose starting points are represented with black dots (a, c, e) and corresponding FORC
distributions (b, d, f) plotted against (HC,HB) coordinates for 100 nm × 300 nm Fe ellipses with the indicated thickness and grid spacing.
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the HC axis, is consistent with a single highly irreversible
switching of the magnetization in each ellipse. However, the
relatively low remanence of the major loop is consistent with
a significant amount of curling or buckling preceding the
switching. The extent of the ridge along the HC axis provides
a measure of the coercivity distribution while the fact that
this ridge is not skewed in any manner along the HB axis
indicates that the ellipses are highly noninteracting. The FORC
distribution begins to evolve as the thickness of the Fe ellipses
is increased to 50 nm, Figs. 9(c) and 9(d), for the same grid
spacing. The average interaction field of the ellipses should
increase as they get thicker, which is observed as the FORC
distribution begins to develop a clear feature for negative
values along the HB axis, indicated with an arrow. However,
the primary ridge still lies predominately along the HC axis
(HB = 0) indicating that the interactions are still quite weak.
The interactions can be increased further by decreasing the
spacing of the ellipses to 200 nm × 600 nm, as shown in
Figs. 9(e) and 9(f). Here the FORC distribution, Fig. 9(f), not
only has developed a significant feature for negative values of
HB , but the ridge along the HC axis now has a significant tilt
with respect to the HC axis. Following the analysis in earlier
work [27], the maximal extent of this tilt along the positive
HB axis, shown with a horizontal dashed line, provides a direct
experimental measure of the average interaction fields, namely
μ0Hi ≈ 18 ± 2 mT. This is in good agreement with the value
of the interaction field 22.6 mT that was calculated at the center
of a 61 × 61 array of the same ellipses. The calculation was
made as described in the following section.

D. Calculation of interaction fields in arrays

The interaction between the nanoparticles is investigated by
calculating the magnetic dipolar fields at different positions
in the arrays. We consider the saturated case where each
nanomagnet is assumed to have a magnetic moment equal
to the magnetization of iron MFe = 1.7 × 106 A/m times
the volume V . To calculate the interaction fields with high
spatial accuracy we divide each ellipse into tiny cubes with
�x = �y = �z = 2 nm. The considered magnetization is a
static quantity. Each cube behaves like a tiny magnetic dipole
with moment m and and generates a magnetic near-field
according to

B = μ0

4πr3
[3n(n · m) − m], (2)

where n is a unit vector pointing from the cube to the place at
which we calculate the field and μ0 is the permeability of free
space.

The ellipses as well as the periodicity have an aspect ratio
of 3 and here we calculate the field from a square pattern
of 61 × 21 particles occupying 6 μm × 6 μm with 100 nm
being the short axis periodicity. We calculate the magnetic
field in the center of the array, at the corners and either edge.
The positions are marked in Fig. 10. Equation (2) is used to
calculate the magnetic field at desired positions for discretized
ellipses from 10 to 50 nm in thickness and semiaxes 25
and 75 nm.

We begin by analyzing the magnetic field that is generated
by the saturated nanomagnets. In the calculations we assume

FIG. 10. (Color online) Array scheme for the calculations. A
nanomagnet is in the shape of an ellipse of a given height and semiaxes
25 and 75 nm in the x and y directions, respectively. The periodicity
has the same aspect ratio as that of the semiaxes and equals 100 and
300 nm. The magnetic moment of each ellipse is assumed to be in the
−y direction. We mark clearly the particles for which we calculate
the magnetic fields acting onto them from the remainder of the array,
i.e., we calculate the magnetic field at its geometrical center as if it
were not present; these particles are the central particle, those at the
top edge (along the x axis), and the side edge (y axis).

that the magnetic dipole moment is in the −y direction. The
interaction magnetic field is calculated at the geometrical
center of each ellipse in question, i.e., the field acting onto
the central ellipse is calculated as a sum of the fields from all
ellipses except for the central one. We begin by investigating
the spatial dependence of the field for 10-nm-thick ellipses
in an array with a short axis periodicity of 100 nm. The
results are plotted in Fig. 11. The field acting onto the central
ellipse, and indeed onto most of the ellipses in the array, is
approximately 10 mT. However, at the edges it deviates from
this value and at each of the four corners, in Fig. 10, it is
equal to 6 mT. At the side edge the field decays down to 4 mT
(in the geometrical center of that edge), which is the lowest
calculated value. The opposite happens at the top edge which
has a dense arrangement of ellipses—the field there reaches
a value of 13.5 mT. These are the By components which are
aligned along the magnetization vector and add/subtract from
the outside magnetic field applied to switch the magnetization
of the ellipses. In addition to the dominant By component, at
the center of the ellipses one can determine the cross-polarized
Bx component. It is much weaker reaching a value of −2 mT
at the corner (the sign depends on which corner) and for most
of the array is negligible in the geometrical centers of the
ellipses due to symmetry. As noted, these interaction fields are
calculated at the geometrical centers of the ellipses. However,
these fields within the volume of an ellipse will inevitably vary.
In Fig. 12 we present the dependence of the magnetic field
generated by the arrays and calculated at selected positions
as a function of the array periodicity and ellipse thickness.
Note, that at the onset of switching the interaction between the
ellipses serves to reinforce the outside magnetic field used for
switching the magnetization.

The size of the array also has an effect on the interaction
strength. When the size of a square array, with lattice constant
c, increases from N × N to (N + 1) × (N + 1) the number
of ellipses increases by 2N + 1 at a distance of r ≈ (2N+1)c

2
from the center of the array. The near-field term decays as
r−3. Thus, the incremental contribution to the interaction field
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FIG. 11. (Color online) Magnetic field at the geometrical centers
of 150 nm × 50 nm ellipses in an array with a short axis period
100 nm in the x direction and thickness of 10 nm; there are 61 × 21
particles in the array. The fields are plotted along the edges of the
array from their respective centers (0 μm) to the corner (3 μm) with
markers indicating positions of the particles along the edges (there
are more particles along the top edge, hence the density of markers is
larger than at the side edge). The solid line marks the magnetic field
(only By component is nonvanishing) acting onto the central particle.
At the edges the By field is either smaller (side edge) or larger (top
edge, except corner) than at the center of the array. There is also
a nonvanishing Bx component which is strongest at the corner and
decays rapidly when moving away from it.

decreases as N−2 or r−2, and the field approaches a limiting
value. For example, for a 10-nm-thick ellipse the magnetic
field acting onto the central particle in a square array 600 nm ×
600 nm (3 × 7 ellipses) is approximately 11 mT, a value which
decreases when increasing the array size. In the limit of large
arrays it is equal to approximately 9.3 mT. This value is
reached (within a 1% accuracy) already for arrays 6 μm ×
6 μm (the employed 61 × 21 particle arrays). The magnitude
of this effect as well as the trend (increase or decrease) depend
on the array geometry. The above-mentioned effect (decrease
of the interaction field with array size) occurs for a periodicity
aspect ratio that is the same as that of the ellipse’s semiaxes,
namely 3. However, for the same ellipses arranged in a square
lattice with a period of, e.g., 150 nm, increasing the array size
will asymptotically increase the interaction field. Moreover,
the periodicity will also affect the sense of the magnetic field
generated by the array. For the previously mentioned square
lattice the interaction field will change qualitatively—it will
reinforce the magnetization and, as mentioned, will increase
in amplitude for larger arrays. Figure 13 shows how the
interaction field varies with the aspect ratio for two cases of
array configurations. Thus, by designing the array properly,
it is possible to tailor the magnetization properties to either
promote switching (by lowering the switching field via the
interaction field) or inhibit it.

E. Micromagnetic simulation of arrays

To find the influence of interactions on the magnetization
switching in an array it is not sufficient to simply add an
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FIG. 12. (Color online) Dependence of the magnetic field acting onto the nanoellipses on the array periodicity and ellipse thickness. The
field is calculated for (a) the central particle, (b) the corner particle, (c) the top central particle, and (d) the side central particle. In all cases
the solid lines indicate the By component which is parallel to the magnetization of the ellipses and for the corner particle the dashed lines show
the Bx component. The arrows indicate the direction of increasing thicknesses from 10 to 50 nm.
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FIG. 13. (Color online) The interaction field calculated at the
center of an array, for two cases of varying aspect ratios. The arrays
comprise 11 × 11 nanoparticles, all 20 nm thick and with lateral
sizes as noted in the figure. Lx and Ly are the periods in the x

and y directions, respectively. The aspect ratio A = Lx/Ly is varied
according to the following relations. For one set of ellipses Ly is
const = 300 nm and Lx = LyA. In the second case, for the same size
of ellipses, 60 nm � Lx � 480 nm, and Ly/A. The magnetic moment
of each nanoparticle is assumed to be in the −y direction.

effective field to the applied field, since this does not take
the local variation of the interaction into account, nor the
changes of the magnetic domain structure of the ellipses
during demagnetization. One method, often applied when
looking for ferromagnetic resonances (FMR) in arrays, is to
find the effects of dipolar interactions by simulating the array
as a single ellipse under periodic boundary (PB) conditions.
Figure 14(a) shows the resulting micromagnetic state at the
last field step before switching for the smallest, 10-nm-thick
ellipses. (The image displays one of the three identical layers
in the simulation.) With open boundary (OB) conditions
switching occurred at Bsw = 354 mT. Simulation with PB
for wide and narrow separation yielded switching at 345 and
331 mT, respectively. This gives an estimate of interaction field
strengths of 9 and 23 mT, respectively, in agreement with our
calculated interaction fields. An additional, important effect of
interactions can be noted in Fig. 14(a); the symmetry of the
magnetic state just before switching is changed from being an
S state to more like a C state.

A more realistic picture is expected from simulations of
the actual array. We did not make a complete investigation to
catch the statistics and all details of how array size and step
length during demagnetizing influence the processes; here we
give a few examples. The smallest, 10-nm-thick ellipses were
studied in, e.g., small arrays with 3 × 3, 5 × 5, 4 × 6, and 6 ×
4 ellipses in configurations with narrow and wide separation.
In all cases the first reversal occurs in fields lower than Bsw for
the corresponding single ellipse. In arrays with wide separation
the ellipses switch individually and the switching seems to
always be finalized at about Bsw. With narrow separation the
switching range is narrower.
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FIG. 14. (Color online) (a) Comparison of simulated states of
a 48 nm × 144 nm single ellipse with t = 3 × 3 nm, just before
switching. From left to right, the x component of the magnetization
was obtained with open boundary conditions and periodic boundary
conditions for wide and narrow separation, respectively. (b) The x

component of the magnetization in the simulated state of an array
with 15 × 5 of the same ellipses. Layer 1 of three is shown in all
figures. The field is at the point before the switching of the first
ellipse, located in the lower right corner of the array.

Figure 14(b) shows one step at B = 309.1 mT during
demagnetization of a larger array of 15 × 5 ellipses with
narrow separation. In the next step, with B = 311.6 mT,
the first ellipse at the lower right corner is reversed and in
the following B = 314.1 mT all ellipses are reversed. The
variations in internal structure, with strong effects at the edges
of the array, can be noted. A simulation of a still larger array
of the same configuration, 54 × 18 ellipses in field steps of
1.25 mT, displayed a switching of all ellipses at B = 310.4 mT.
The switching fields of these two arrays are both about 40 mT
lower than Bsw of the single Fe ellipse. The difference is
larger than the calculated interactions fields, which implies
that effects of variations in local interaction fields and internal
domain structures are important. Although we did not perform
simulations for the larger ellipses, it is interesting to note that
the difference between Bsw and Bcl is of the order 50–60 mT
for these, as discussed in Sec. III A. The simulations of the
arrays support the conclusion drawn from the calculation of
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the interaction fields, namely that the interactions saturate for
arrays with sizes in these ranges.

IV. DISCUSSION

The properties of a 2D array of submicron or nanosize
ferromagnetic particles are determined by the combination
of, on one hand, the domain state and magnetization reversal
processes of each single particle, and on the other, the array
configuration. Now, the question is how well theoretical
models can describe the magnetic properties of the real system,
or perhaps whether an ideal system really can be fabricated.

A. Magnetization reversal

The magnetization switching field Bcl was determined for
arrays of epitaxial Fe(001) ellipses with thickness t in the
range 10–50 nm and lateral sizes in the range 50–450 nm.
It was found that Bcl decreases with increasing particle size,
and the t dependence of Bcl for each particle size displays
a maximum in the range 20–25 nm. This thickness is of
the order of the wall width parameter lw = 22 nm. It is not
possible to fully characterize the magnetization reversal from
the major hysteresis loops only. The switching field range
and remanent domain state were determined also from MFM
observation of dc demagnetization. The equilibrium zero-field
state during these processes was observed to be SD, except
for the largest particles, which were occasionally seen as
bidomains. Complementary measurements of the hysteresis
with FORC analysis could clearly identify the field range for
single-particle reversal and sort out effects of interactions. It
can be noted that in the literature there are several examples of
hysteresis curves that have similar character, but are generated
by different materials and magnetization processes. Pot bellies,
with spreading middles, and wasp waists, with constrained
middles, were shown by Tauxe et al. [24] to originate from
different populations of superparamagnetic and single-domain
particles. Bennett and Della Torre [28] showed how two
exchange coupled materials may be arranged to yield one or
the other of the two shapes, and how FORC analysis could
separate the two cases.

The switching field Bsw of single Fe ellipses was determined
by micromagnetic simulations, in which the values for bulk
Fe were used as input parameters. The size and thickness
dependence of Bcl observed in the experiments is well
reproduced in the behavior of the single ellipses. The absolute
values display systematic deviations, with Bcl being lower
than corresponding Bsw. For the 100 nm × 300 nm ellipses
with 400 nm × 1200 nm separation Bcl is in the range
100–200 mT, about 50 mT lower than Bsw for corresponding
thicknesses. For the smaller and larger ellipses the difference
is smaller and larger, respectively. For the single ellipses it
was shown that below the maximum of Bsw at tsw, about equal
to lw, all layers undergo identical in-plane reversals, and the
micromagnetic state of a single ellipse immediately before the
final switching of the dominant magnetization direction is an
S-like quasisingle domain state. When interactions are taken
into account by introducing periodic boundary conditions,
the symmetric S state is deformed towards a more C-like
state. In simulated arrays the particles display a variety of

similar, but not identical, C- or S-like states. The FORC
analysis gave evidence that, whereas details in the major loops
resembled those of nanostructures reversing via vortex states,
the FORC distributions showed no signs of vortex reversal.
Altogether, our interpretation is that the particles undergo
in-plane switching through the development of the quasisingle
C or S states in which the spins finally rotate into the reversed
SD state. Above tsw the switching becomes more complex
with a gradually increasing phase shift between the in-plane
rotation in different layers, and finally also an out-of-plane
component develops.

These switching processes are known to be sensitive to im-
perfections in the materials, as well as to interactions between
the particles. The influence of interactions are discussed in
the next section. The imperfections in the materials may be
defects and variations—on one hand in the structure and/or
surfaces of the Fe films on the other in the particle shapes and
edges. Particle edge effects of the size of a discretization cell
(3 nm) were found to decrease the switching by the order of
10 mT. We did not study the influence of capping layer directly,
but note that in our earlier studies of larger Fe/Co particles
capped with V, the relative saturation remanence was higher
[23]. Fruchart et al. [29] showed hysteresis curves with higher
squareness in their studies of Fe(110) dots. Their films were
sandwiched between two Mo or W (110) layers. Our capping
layers of Al2O3 were chosen because they prevent oxidation
efficiently; examples showed identical hysteresis curves when
the measurements were repeated after three years.

B. Arrays

There are two important conclusions to draw from the
calculations of the interaction field in the arrays. The character
of the interaction, whether it promotes or delays magnetization
reversal, is determined by the aspect ratio of the array grid,
and the interaction strength saturates as the size of the array
increases. The dipolar interaction field was calculated for
arrays with 61 × 21 Fe ellipses with lateral size 50 nm ×
150 nm and thickness in the range 10–50 nm. For these the
thickness dependence of the field was calculated at different
positions, in the center and at the edges, and for varying
periodicity while keeping the aspect ratio 1 : 3 of the grid.
In this particular grid the interactions promote the onset of
switching, as was clearly demonstrated in both experiments
and micromagnetic simulations; the switching field of arrays
was in all cases lower than that of the corresponding single
ellipses. For the smallest particles the interaction field is of the
order of 10 mT. For 50-nm-thick 100 nm × 300 nm ellipses
with 200 nm × 600 nm separation, the calculated interaction
field 22.6 mT at the center of the array agrees well with the
average interaction field ≈(18 ± 2) mT, determined by FORC
analysis.

Micromagnetic simulations were made for arrays of 15 × 5
and 54 × 18 ellipses with lateral size 50 nm × 150 nm
and 10 nm thickness. The switching fields are about the
same for the two arrays, thus showing the same tendency
of saturation as found for the calculated interaction field.
We compared the switching fields obtained by simulations
with periodic boundary conditions and arrays with the value
Bsw obtained for corresponding single ellipse. Whereas the
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shift obtained with periodic boundary conditions is in good
agreement with the calculated interaction field, the shift for
the arrays is significantly larger. We suggest this to be an
effect of interactions on the magnetic domain states during
switching of the ellipses. It is appropriate to here point out
the limitations of the quasistatic treatment, since it cannot give
full account of the reversal processes. Thermal fluctuations and
statistical processes in the magnetization reversal are always
present, but were not considered in our calculations. In another
work [30] the magnetization dynamics of the samples was also
investigated. In ferromagnetic resonance (FMR) the behavior
is dominated by the properties of the single Fe ellipses, without
significant influence of interactions.

V. CONCLUSIONS

The experimental and numerical results yield a consistent
picture of the studied arrays of Fe ellipses: the magnetization
reversal, occurring in the range 100–400 mT, is mainly

determined by the properties of the corresponding single
Fe ellipses, and the interaction fields determined by the
array configuration are of the order of tens of mT. For the
actual arrays the interactions promote switching. For film
thicknesses below the wall width parameter of Fe, about
20 nm, magnetization reversal occurs without formation of
domain walls or vortices. In this range an array might
be tuned to obtain a well-defined switching field. Another
parameter to consider is the size of the array. The finite arrays
with 54 × 18 and 61 × 21 ellipses are only 5 μm × 5 μm
and 6μm × 6 μm large. The interaction effects are already
stabilized and the majority of ellipses feel the same interaction
field as the central particle. This implies that it could be
possible to arrange several substructures of arrays with
different well-defined switching fields, within limited areas on
one chip.
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Wäppling, Magnetic properties of two-dimensional arrays of
epitaxial Fe(001) submicron particles, J. Appl. Phys. 85, 2793
(1999).

[16] M. Hanson, O. Kazakova, P. Blomqvist, R. Wäppling, and B.
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Interplay between shape and magnetocrystalline anisotropies in
patterned bcc Fe/Co(001) multilayers, Phys. Rev. B 69, 094408
(2004).

[24] L. Tauxe, T. A. T. Mullender, and T. Pick, Potbellies,
wasp-waists, and superparamagnetism in magnetic hysteresis,
J. Geophys. Res. 101, 571 (1996).

[25] C. R. Pike, A. P. Roberts, and K. L. Verosub, Charac-
terizing interactions in fine magnetic particle system us-
ing first order reversal curves, J. Appl. Phys. 85, 6660
(1999).

[26] R. K. Dumas, C.-P. Li, I. V. Roshchin, I. K. Schuller, and Kai
Liu, Magnetic fingerprints of sub-100 nm Fe dots, Phys. Rev. B
75, 134405 (2007).

[27] D. A. Gilbert, G. T. Zimanyi, R. K. Dumas, M. Winklhofer,
A. Gomez, N. Eibagi, J. L. Vicent, and K. Liu, Quantitative
decoding of interactions in tunable nanomagnet arrays using
first order reversal curves, Sci. Rep. 4, 4204 (2014).

[28] L. H. Bennett and E. Della Torre, Analysis of wasp-waist
hysteresis loops, J. Appl. Phys. 97, 10E502 (2005).

[29] O. Fruchart, J.-P. Nozières, W. Wernsdorfer, D. Givord,
F. Rousseaux, and D. Decanini, Enhanced Coercivity in
Submicrometer-Sized Ultrathin Epitaxial Dots with In-Plane
Magnetization, Phys. Rev. Lett. 82, 1305 (1999).
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The change in contact angles due to the injection of low salinity water or any other

wettability altering agent in an oil-rich porous medium is modeled by a network of

disordered pores transporting two immiscible fluids. We introduce a dynamic wettability

altering mechanism, where the time dependent wetting property of each pore is

determined by the cumulative flow of water through it. Simulations are performed to

reach steady-state for different possible alterations in the wetting angle (θ ). We find that

deviation from oil-wet conditions re-mobilizes the stuck clusters and increases the oil

fractional flow. However, the rate of increase in the fractional flow depends strongly on

θ and as θ → 90◦, a critical angle, the system shows critical slowing down which is

characterized by two dynamic critical exponents.

Keywords: wettability, porous media, porous media flow, fluid transport, two-phase flow in porous media,

two-phase flow, capillary forces, critical slowing down

1. INTRODUCTION

The world’s primary energy demand is predicted to increase by one-third between 2011 and 2035,
where 82% of it comes from fossil fuels [1]. In this scenario, the fact that some 20–60% of the oil
remains unrecovered in a reservoir after the production is declared unprofitable, is a challenge of
increasing importance [2]. The main reason for this loss is the formation of oil clusters trapped in
water and held in place by capillary forces, which in turn are controlled by the wetting properties
of the reservoir fluids with respect to the matrix rock. The production from complex oil reserves
that today are considered immobile or too slow compared to the cost is therefore an important
area of research. In this context, the role of formation wettability is a focus area within the field of
Enhanced Oil Recovery (EOR) [3].

Different reservoir rocks have widely different wetting characteristics [4]. Wettability may
vary at the pore level from strongly oil wet through intermediate wetting to strongly water wet.
Carbonate reservoirs contain more than half of the world’s conventional oil reserves, but the oil
recovery factor (a number between zero and unity representing the fraction of recoverable oil [5])
is very low compared to sandstone reservoirs [6]. This is due to the complex structure, formation
heterogeneity and more chemically active wettability characteristics of the carbonate reservoirs,
which leads to uncertainty in the fluid flow and oil recovery [7]. Sandstone is strongly water wet
before oil migrates from a source rock into the reservoir. When oil enters a pore, it displaces the
water which leaves behind a water film sandwiched between the oil and rock surface. This happens
as a result of balancing van der Waals and electric double layer forces, capillary pressure and grain



Flovik et al. Dynamic wettability alteration in two-phase flow

curvature [8]. A permanent wettability alteration is then believed
to take place by adsorption of asphaltenes from the crude oil to
the rock, and leads to high but slow recovery through continuous
oil films [9, 10]. As the oil saturation drops, these films can
become discontinuous, leaving immobile oil clusters held in place
by capillary forces.

After drilling a well into a reservoir, the natural pressure
inside can force only around 10% of the total available volume
of oil to reach the surface, which is called the primary recovery
stage [5]. To maintain the pressure for further recovery, water
or gas is injected by another injection well which is known as
secondary recovery. This allows around 30% further production
of oil depending on fluid properties and reservoir parameters.
To recover the huge amount of oil left inside the reservoir
after the secondary recovery, different techniques beyond the
simple secondary injection are implemented, which constitutes
the tertiary or EOR stage. In this stage wettability is the most
important petrophysical property which plays a key role in the
fluid transport properties of both conventional (permeabilities in
milli-Darcy to Darcy range) and unconventional (low porosity
and low permeability in nano to milli-Darcy range, e.g., shale)
reservoirs [11] and there is great potential to improve the
oil recovery efficiency by altering the wetting properties [12].
Main factors which can alter the pore wettability are: lowering
the salinity [13, 14], adding water-soluble surfactants [15, 16]
or adding oil-soluble organic acids or bases [17]. Increasing
the reservoir temperature also increases water-wetness [4, 18].
There are some correlations with the wetting behavior to the
electrostatic forces between the rock and oil surfaces [19], but
there is no consensus on the dominatingmicroscopic mechanism
behind the wettability alteration. It is known from laboratory
experiments and field tests that a drift from strongly oil-wet
to water-wet or intermediate-wet conditions can significantly
improve the oil recovery efficiency [17]. The amount of change
in the wetting angle is a key factor here [20, 21] which not only
decides the increase in oil flow but also the speed of the process.
An improper change in the wetting angle can also make the
recovery very slow and not profitable.

Given there is a certain change in the wetting angle due to a
brine, the next important factor is the flow pathways in thematrix
rock which transports the oil and brine. One cannot expect any
change in the wetting angle of a pore if there is no flow of the
brine through it. The flow pathways depend on several different
factors: the porous network itself, oil saturation, capillary number
and also on the present wettability conditions. A change in the
wettability will cause a perturbation in the flow distribution of
the system. This will in turn again affect the wettability change
through the altered flow pathways, causing further changes in
the flow distribution. The dynamics of wettability alterations is
therefore controlled by a strongly correlated process.

There are some studies of wettability alterations in two-
phase flow by equilibrium-based network models [22] for
capillary dominated regimes where viscous forces are negligible.
Wettability alterations by network models with film-flow has
been studied [23] to find residual oil saturation as functions
of contact angle. However, investigation of the time-scale of
dynamics lacks attention in such models which is extremely

important for practical reasons. In this article, we present
a detailed study of wettability alterations in two-phase flow
considering a network model of disordered pores transporting
two immiscible fluids where a dynamic wettability alteration
mechanism, correlated with the flow-pathways, is implemented.
We will focus on the transport properties due to the change in the
wettability as well as on the time scale of the dynamics.

We study in the following the effect of wettability changes
on immiscible two-phase flow based on a network model [24–
26]. In Section 2, we present the model and how we adapt it
to incorporate the dynamic wettability changes. In Section 3,
we present our results. Initially, we let the two phases settle
into a steady state where the averages of the macroscopic flow
parameters no longer evolve. At some point, we then introduce
the wettability altering agent, so that it starts changing the wetting
angle. The wetting angle alteration depends on the cumulative
volume of the wettability altering fluid that has flowed past a
given pore. This induces transient behavior in the macroscopic
flow properties and we measure the time it takes to settle back
into a new steady state. We find that there is a critical point
at a wetting angle of 90◦ and we measure its dynamical critical
exponents; the exponents are different whether one approaches
the critical point from smaller or larger angles. In Section 4 we
summarize and conclude.

2. MODEL

We model the porous medium by a network of tubes (or links)
oriented at 45◦ relative to the overall flow direction. The links
contain volumes contributed from both the pore and the throat,
which then intersect at volume-less vertices (or nodes). Any
disorder can be introduced in the model by a proper random
number distribution for the radius r of each link, and we choose
a uniform distribution in the range [0.1 l, 0.4 l] here, where l
is the length of each tube. It is possible to consider any other
distribution of pore sizes without any further change in the
model. The network transports two immiscible fluids (we name
them as oil and water), one of which is more wetting than the
other with respect to the pore surface. The pores are assumed to
be in between particles, and the pore shape is thus approximated
to be hour-glass shaped, which introduces capillary effects in the
system. The model is illustrated in Figure 1.

Due to the hour glass shape of the pore, the capillary pressure
at amenisci separating the two fluids is not constant, and depends
on the position x of the menisci inside the pore. The capillary
pressure pc(x) at position x inside the ith pore is then calculated
from a modified form of the Young Laplace equation [24, 27],

pc(x) =
2γ cosϑi

ri

[
1− cos

(
2πx

l

)]
. (1)

where γ is the interfacial tension between the fluids and ϑi is the
wetting angle for that pore. As an interface moves in time, pc(x)
changes. The capillary pressure is zero at the two ends (x = 0 and
l) and it is maximum at the narrowest part of the pore. It makes
the model closer to the dynamics of drainage dominated flow,
where the film flow can be neglected. When there are multiple
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FIGURE 1 | (A) Illustration of the pore network model, constructed by links

(tubes) with random radii connected to each other via nodes at the intersection

of the dashed lines. One single link in the network is highlighted by gray which

is again shown in (B) filled with two fluids. The wetting and non-wetting fluids

are colored by white and gray, respectively. p1 and p2 are the pressures at the

two ends of the link and q is the local flow-rate. There are three menisci inside

and capillary pressure difference at a menisci is indicated as pc (x).

menisci in a pore, the total capillary pressure inside the ith pore
is obtained from the vector sum (

∑
i pc(x)) over all the menisci

in that pore. The flow is driven by maintaining a constant total
flow rate Q throughout the network, which introduces a global
pressure drop. The instantaneous local flow rate qi inside the
ith link between two nodes with pressures p1 and p2 follows the
Washburn equation of capillary flow [28],

qi = −
πr2i ki

µeff
i l

[
1pi −

∑
i

pc(x)

]
, (2)

where 1pi = p2 − p1. ki = r2i /8 is the permeability of
cylindrical tubes. Any other cross-sectional shape will only lead to
an additional overall geometrical factor.µeff

i = µosi+µw(1− si),
is the volume averaged viscosity of the two phases inside the link,
which is a function of the oil saturation si in that link. Here µo

and µw are the viscosities of oil and water, respectively.
The flow equations for the tube network are solved using

a conjugate gradient method [29]. These are the Kirchhoff
equations balancing the flow, where the net fluid flux through
every node should be zero at each time step, combined with
the constitutive equation relating flux and pressure drop across
each tube. The system of equations is then integrated in time
using an explicit Euler scheme with a discrete time step and
all the menisci positions are changed accordingly. Inside the
ith tube, all menisci move with a speed determined by qi.
When any menisci reach at the end of a tube, new menisci
are formed in the neighboring tubes. Consequently, wetting
and non-wetting bubbles are snapped-off from the links having
flow toward a node and enters in neighboring links having
outward flow. Here, the total volume of the fluids entering
to a node are distributed according to the flow rates of the
neighboring tubes. Moreover, it is not allowed to increase the
number of menisci inside any tube infinitely and therefore we
implement coalescence process by merging two nearest menisci.
In this article, we considered a maximum of four menisci inside
one pore which can be tuned depending on the experimental
observations. When this maximum number is exceeded, the

two nearest menisci are merged keeping the volume of each
fluid conserved. In this way bubble snap-off and coalescence are
introduced in the model. The absolute details of these processes
in the simulation can be found in Knudsen et al. [25]. We did
not consider film-flow in the present study. This is because
wettability alteration techniques are important for reservoirs with
low oil-saturation and when oil-saturation drops, the continuous
oil films [9, 10] in a oil-wet network are expected to become
discontinuous leaving immobile oil clusters stuck due to capillary
forces.

The simulations are started with an initial random
distribution of two fluids in a pure oil-wet network. Bi-
periodic boundary conditions are implemented in the system,
which effectively makes flow on a torus surface. The flow can
therefore go on for infinite time, keeping the saturation constant
and the system eventually reaches to a steady state. In the steady
state, both drainage and imbibition take place simultaneously
and fluid clusters are created, merged and broken into small
clusters. One can consider this as the secondary recovery stage.
Once the system reaches the steady-state in a oil-wet network,
the dynamic wettability alterations are implemented, which
may be considered as the tertiary recovery stage or EOR. In the
following we discuss this in detail.

2.1. Dynamic Wettability Alteration
We now introduce a dynamic wettability alteration mechanism
to simulate any wetting angle change, decided by the oil-
brine-rock combination and the distribution of the flow
channels in the system. In a previous study [26], a simplified
static wettability alteration mechanism was studied, where the
alteration probability was considered equal for all pores without
any correlation with the flow of brine inside a pore. However,
for wettability alterations to occur, the wettability altering agent
(e.g., low-salinity water or surfactant) needs to be in contact with
the pore walls. Thus, the wettability alteration should follow the
fluid flow pathways and any change in the wetting angle inside a
pore should depend on the cumulative volumetric flow of brine
through that pore. This claim is rather trivial, as one can not
expect any wettability change in a pore if the altering agent is
not present. This means that if a certain pore is flooded by large
amounts of brine, the wetting angle should change more in that
pore than the one which had very little water flooded through.
This is implemented in the model by measuring the cumulative
volumetric flux Vi(t) in each individual pore with time t,

Vi(t) =

t∑
t̃=t0

qi(t̃)(1− si(t̃))1t̃, (3)

where t0 is the time when the injection of low salinity water is
initiated, 1t̃ is the time interval between two simulation steps
and (1− si(t̃)) is the water saturation. Vi(t) is then used to change
the wetting angle for each tube continuously, updated at every
time step after t = t0. The wetting angle ϑi of the ith pore
can change continuously from 180◦ to 0◦ as Vi(t) changes from
0 to ∞. Correspondingly, the cosϑi term in Equation (1) will
change from−1 to 1 continuously. This continuous change of the
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wetting angle with the variation of Vi(t) is modeled by a function
Gi(t) given by,

Gi(t) =
2

π
tan−1

[
C

(
Vi(t)

V th
i

− 1

)]
(4)

which replaces the cosϑi term in Equation (1). As, to our
knowledge, there is no consensus in the literature about the exact
functional dependence of the wetting angle on the volumetric
flow of brine at the pore level, we have chosen a function which
starts the wetting angles from oil-wet conditions (ϑi ≈ 0◦) at
Vi(t) = 0 and then asymptotically approaches to water-wet
conditions (ϑi ≈ 180◦) as Vi(t) → ∞. The pre-factor 2/π
is a normalization constant to set the range of the function.
The parameter C can be tuned to adjust the slope during the
transition from oil wet to water wet and can also change the initial
wetting angle from 180◦. As our model does not include film
flow, the wetting angles are not likely to reach either 0 or 180◦

for circular cross-section of pores. We have chosen C = 20 for
our simulations which sets the starting wetting angle ϑi = 165.5◦

when Vi(t) = 0. This leads to the change in the wetting angle as
a function of Vi(t) as shown in Figure 2.

As a larger pore will need more brine to be flooded in order
to have a similar change in the wetting angle than a smaller pore,
a threshold value V th

i is introduced, which is proportional to the
volume of that pore,

V th
i = ηπr2i l. (5)

At Vi(t) = V th
i , the wetting angle reaches to 90◦ in that pore

and pc(x) essentially becomes zero. Here η is a proportionality

FIGURE 2 | Variation of the wetting angle ϑi in the ith link given by Gi (t)

(Equation 4) as a function of the cumulative volume of water Vi (t)

(Equation 3) passed through that link. Vth
i

is the water volume needed to

reach the wetting angle to 90◦ in that pore. When there is a cut-off (θ ) in the

maximum change in the wetting angle, ϑi is not allowed to change anymore as

soon as ϑi = θ . An example of a cut-off 60◦ is shown by dashed lines, in this

case as soon as ϑi = 60◦ or Vi (t) = vVth
i
, ϑi is not changed anymore. The time

(t) needed to reach the cut-off value therefore varies from pore to pore and

depends on the value of Vth
i
.

constant which decides how many pore volumes of water is
needed to reach Vi(t) = V th

i for the ith pore. This parameter
can possibly be adjusted against future experimental results, but is
considered as a tuning parameter in this study. The expression for
the capillary pressure at a menisci from Equation (1) then takes
the form,

pc(t) =
2γGi(t)

ri

[
1− cos

(
2πx

l

)]
. (6)

The maximum amount of wetting angle that can be changed
depends on the combination of brine, oil and rock properties
[20, 21]. We therefore set a cut-off θ in the wetting angle change,
such that any pore that has reached to a wetting angle ϑi = θ , can
not be changed further. The model thus includes all the essential
ingredients of wettability alteration study–it is a time dependent
model where the wettability alteration is correlated with the flow
pathways of the brine, and can be used to study any oil-brine-rock
combination decided by θ .

3. RESULTS

Simulations are started with a random distribution of oil and
water in an oil-wet network, where θ = 165.5◦ for all links.
First, the oil-wet system is evolved to a steady state before any
wettability alteration is started. This will allow us to compare the
change in the steady-state fractional flow of oil (F) with a change
in the wetting angle. The oil fractional flow (F) is defined as the
ratio of the oil flow-rate (Qoil) to the total flow-rate (Q) given by,
F = Qoil/Q. The flow rate (Q) is kept constant throughout the
simulation, which sets the capillary number Ca = µeffQ/(γA),
where A is the cross-sectional area of the network. A network
of 40 × 40 links are considered, which is sufficient to be in
the asymptotic limit for the range of parameters used [25]. An
average over 5 different realizations of the network has been
taken for each simulation. As the simulation continues, both
drainage and imbibition take place simultaneously due to bi-
periodic boundary conditions and the system eventually evolves
to a steady state, with a distribution of water and oil clusters in
the system. In Figure 3, F is plotted against the number of pore
volumes passed (N) through the network. As we run the system
with constant flow-rate, N is directly proportional to the time t,
N = tQ/v where v is the total volume of the network. The initial
200 pore volumes are for an oil-wet network, where it reaches
to a steady state with F ≈ 0.235. We then initiate the dynamic
wettability alteration which resembles the flow of a wettability
altering brine and F starts to drift. Here we run simulations for
different values of η, defined in Equation (5), and the results are
plotted in different colors. θ = 0◦ in these simulations, which
means any pore can change to pure water-wet depending upon
the flow of brine through it. One can see that F approaches to a
new steady-state with F ≈ 0.308 due to the wettability alteration.
The initialization of steady state is defined as the instant when the
average fractional flow stops changing with time and essentially
stays within its fluctuation. The time (τ ) required to initialize the
steady state after wettability alteration is started is measured in
terms of the pore-volumes and plotted in the inset of Figure 3
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FIGURE 3 | (Color online) Change in the oil fractional-flow (F) during

the simulation as a function of the number of network pore-volumes

(N) of fluids passed through any cross-section of the network. Here the

network is of size 40× 40 links with oil saturation S = 0.3 and Ca = 10−1. The

initial part of the plot (N < 200) shows the change in F in an oil-wet system

where it approaches to a steady state with F ≈ 0.235. The wettability alteration

starts at N = 200, where results for different simulations with different values of

η (the number of pore volumes of water needed to pass through one pore to

reach the wetting angle to 90◦ in that pore) are plotted in different colors. The

system evolves to a new steady-state where F fluctuates around a higher

average value. Different values of η only affects the rate of change in F but

leads to the same average F. In the inset we plot τ , the number of network

pore-volumes of fluids passed through the network to reach the steady-state

after wettability alteration is initiated, as a function of η. τ is proportional to the

total time to reach steady state which increases linearly with η as seen in the

inset. A higher value of η results in a longer time to reach the new steady-state.

as a function of η and a simple linear dependency is observed.
Therefore, different values of η only make the simulation faster
or slower, but it reaches to the same steady state. In order to save
computational time, we therefore use η = 10 in all our following
simulations.

How the two fluids and the local flow-rates are distributed
in the network in the two steady-states before and after the
wettability alteration are shown in Figure 4. The network size
is 64 × 64 links here with an oil-saturation S = 0.3 and the
capillary number Ca = 10−2. All the links are hour-glass shaped
in the actual simulation with disorder in radii, but shown as a
regular network for simplicity in drawing. The upper row shows
the distribution of oil bubbles drawn in black. The left column
(Figure 4A) shows the steady state in a oil-wet network and
the right column (Figure 4B) shows the steady-state after the
wettability alteration is initiated with maximum possible wetting
angle change θ = 0◦. A closer look in these bubble distributions
shows more clustered oil bubbles in Figure 4A than in Figure 4B

where they are more fragmented. A more interesting picture can
be seen in the local flow-rate distribution in the bottom row,
which shows a more dynamic scenario. The left (Figure 4C) and
right (Figure 4D) figures are for the same time-steps before and
after wettability alteration as in Figures 4A,B, respectively. Here
the local flow-rates in each pore, normalized in between 0 and
1, are shown in gray scale. Interestingly, in the oil-wet system
(Figure 4C), the flow is dominated in a few channels (black lines)

where the flow-rates are orders of magnitude higher than the
rest of the system. Other than those channels, the system has
negligible flow, indicated by white patches whichmeans the fluids
are effectively stuck in all those areas. This situation happens
when the difference in the saturation of the two fluids is large,
where the phase with higher saturation (water here) tries to
percolate in paths dominated by a single phase with less number
of interfaces. This is not favorable in oil-recovery, as it leaves
immobile fluid in the reservoir. In the flow distribution after the
wettability alteration (Figure 4D), the flow is more homogeneous
and distributed over the whole system, indicating higher mobility
of the fluids. However, one should remember that when the
wettability alteration is started in a system shown in Figure 4C,
the wettability alteration starts taking place only in those pores
with active flow. But then it perturbs the flow-field and starts
new flow paths and eventually the system drifts toward a more
homogeneous flow with time, as shown in Figure 4D.

We now present the results when the wetting angle of any
pore can change all the way down to zero degree (θ = 0◦).
In Figure 5 the steady-state oil fractional-flow in an initial oil-
wet system (F) is compared with that in the steady-state after
wettability alteration (F′). Results are plotted as a function of
S for two different capillary numbers, (Figure 5A) Ca = 10−1

and (Figure 5B) Ca = 10−2. The diagonal dashed line in the
plots corresponds to F = S. If the fluids are miscible and
there is no capillary forces at the menisci then both the fluids
will flow equally and F will be exactly equal to S. But the
presence of capillary forces at the interfaces lead to the deviation
of the fractional-flow curve from the diagonal line. A lower
capillary number (higher capillary forces) therefore results in
more deviation from the F = S line. For low oil saturation, the
oil fractional-flow is lower than S, i.e., under the diagonal and
for high S, F is higher than S, i.e., above the diagonal. Roughly,
the phase with higher volume fraction gains and it flows faster
than the other. At some point, the curve crosses the diagonal and
it is the point where no phase gains. The crossover point is not
at 50% saturation which clearly shows the asymmetry between
the two phases [30]. As F stays below the F = S line for low
S, the flow of oil becomes lower and lower as oil saturation
drops resulting small but stuck oil clusters. Interestingly, when
wettability alterations are implemented, a significant increase in
F can be observed for the full range of oil-saturation. Moreover,
increase in F is higher for the lower capillary number, indicating
that wettability alteration is very significant in the case of oil
recovery, as Ca can go as low as 10−6 in the reservoir pores.
Fractional flow also obeys the symmetry relation F′(S) = 1 −

F(1− S) [26] which implies that, if the wetting angle of any pore
is allowed to change all way down to zero degree (θ = 0◦), the
system will eventually become pure water-wet with time.

As noted earlier, the maximum change in wetting angle for a
system, depends on the properties of the reservoir rock, crude
oil and brine, and also on the temperature. Existing wettability
alteration procedures generally turns the oil-wet system into
intermediate wet, rather than to pure water-wet. Some examples
of the change in the wetting angle for different rock materials
and brine can be found in Kathel and Mohanty [20] and Nasralla
et al. [21]. In our simulation this is taken care of by the parameter
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FIGURE 4 | Distribution of fluid bubbles (top row) and local flow rates (bottom row) in steady state in a network of 64 × 64 links with oil saturation

S = 0.3 and Ca = 10−2. The left column is for the steady state in a oil-wet network and the right column is the new steady state after wettability alteration takes

place. In (A,B), the oil bubbles are drawn in black. In (C,D), the normalized local flow-rates qi/qmax are drawn in gray scale.

FIGURE 5 | Oil fractional-flow (F) in the steady state at different oil saturation (S) in the initial oil-wet system (©) and after the wettability alteration (2).

There is no cut-off in the wetting angle change in these simulations and therefore θ = 0◦ here. Individual simulations are performed for all S values at two different

capillary numbers (A) Ca = 10−1 and (B) Ca = 10−2. F is higher after wettability alteration for the whole range of S. The diagonal dashed line represents F = S curve,

miscible fluids without any capillary pressures at the menisci would follow that line.

θ , which decides the maximum change in the wetting angle ϑi

for any pore. One should remember that, we are not forcibly
changing the wetting angles ϑi to θ , rather the change in ϑi

is decided independently for individual pores by the amount
of brine passed through it (by Equations 3–6), and there is a
maximum allowed change in any ϑi. As before, simulations are
started with a pure oil-wet system to reach a steady state and then
wettability alteration is started and simulation continues until the
system reaches to a steady state again. Independent simulations
have been performed for different values of θ . The proportionate
change in the oil fractional-flow due this wettability change from

the oil-wet system, 1F/F = (F′ − F)/F is measured for different
simulations and plotted in Figure 6 against θ . There are a few
things to notice. First, as one can immediately see, fractional
flow increases with the decrease of oil-wetness, θ → 0◦. The
maximum increase in F is higher for lower Ca, about 86% for
Ca = 10−2 and about 32% for Ca = 10−1. This is because
the change in wetting angle affects the capillary pressures at
the menisci, so the change in F is larger when the capillary
forces are higher. Secondly, the major change in F happens in
the intermediate wetting regime, upto θ ≈ 60◦, and then it
becomes almost flat afterwards. Moreover, this increase in F is
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more rapid for lower value of Ca. All these facts points toward
an optimal range of wetting angle change to increase the oil flow.
This is an important observation for practical reasons, as it is not
necessary to change the wetting angle further. Thirdly, there is a
discontinuity in the curve exactly at θ = 90◦, as we will discuss
later.

Increase in the oil fractional-flow with the increase in the
water-wetness may seem to be obvious and reported by many
experiments and field tests. But, the most important concern
for the oil industry is the rate of increase, or the time required
to achieve a significant increase in the oil production. If the
increment in oil flow is very slow compared to the cost of the
process, then the oil recovery is declared as not profitable and
the reservoir may be considered to be abandoned. As per our
knowledge, there are very few systematic studies reported in the
literature predicting the time scale to change the oil flow due to
the wettability change by two-phase flow of brine and oil in a
porous media. We observe that, due to the correlations between
the flow paths and the wetting angle change, the time scale of the
process varies dramatically with θ . This is illustrated in Figure 7,
where F is plotted as a function of pore volumes (N) of fluid
passed through the system. The initial 400 pore volumes are for
an oil-wet system and then results of few different simulations
with θ = 85, 88, 89, 90, 91, 92 and 94◦ are plotted. Interestingly,
the rate at which the system reaches a new steady-state, varies
significantly depending on the value of θ . For example, after
the wettability alteration is started, it needs to flow less than
100 pore volumes to reach the new steady state for θ = 94◦

whereas more than 300 pore volumes are needed to reach a
steady state for θ = 91◦. Therefore, even if the final steady-
state fractional flow is higher for θ = 91◦ than for θ = 94◦,
it might not be profitable to alter the wetting angles to 91◦

because of the slow increase in F. In general, the process becomes
slower and slower as θ → 90◦ from both sides. Such kind of
slow increase in oil recovery as θ → 90◦ is also observed in
experiments [20, 21]. This slowing down of the process is an
combined effect of two factors. First, the fact that wettability
only can change in the pores where there is flow of brine
and the second is the value of θ . All the pores were initially
oil-wet (ϑi ≈ 165◦) and when it reaches the steady state,

the flow finds the high mobility pathways depending on the
mobility factor of the pores and the capillary pressures at the
menisci. When the wettability alteration is started, the wetting
angles of the existing flow pathways start decreasing. As a
result, capillary pressures at menisci in those channels first
decreases as ϑi → 90◦ and then it increase afterwards as
ϑi → 0◦. This creates a perturbation in the global pressure
field and correspondingly viscous pressures start changing with
time which changes the flow field. However, capillary pressures
at the zero-flow regimes are now higher than the high-flow
regimes which makes it difficult to invade the zero-flow regimes
causing a slower change in the flow field as ϑi approaches 90

◦.
An interesting feature is observed exactly at θ = 90◦, where
the average fractional flow does not change at all after the
wettability change. At exactly θ = 90◦, capillary pressures in all
the pores in the existing flow pathways essentially become zero,
making them the lowest resistive channels with zero capillary
barriers. As a result, the fluids keep flowing in the existing

FIGURE 7 | Change in the oil fractional-flow F during the simulation for

different values of maximum allowed wetting angle θ . The wettability

alteration started at N = 400 pore-volumes. The initialization of the

steady-states for different θ values are marked by crosses on the respective

plots.

FIGURE 6 | Proportionate change in the steady-state oil fractional-flow (1F/F) due to wettability alteration as a function of maximum wetting angle θ .

For (A) the capillary number Ca = 10−1 with oil-saturation S = 0.3 and for (B) Ca = 10−2 with S = 0.4.
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FIGURE 8 | Variation of steady-state initialization time τ (measured in pore-volumes) as a function of maximum allowed wetting angle θ in any pore.

For (A) Ca = 10−1 with oil saturation S = 0.3 and for (B) Ca = 10−2 with S = 0.4. τ diverges rapidly as θ → 90◦, which is the critical wetting angle (θc).

FIGURE 9 | Plot of logτ vs. log|θ − θc|, where θ is the final allowed wetting angle in any pore, θc = 90◦ and τ is steady-state initialization time (measured

in pore-volumes) after wettability alteration is initiated. For (A) the capillary number Ca = 10−1 with oil saturation S = 0.3 and for (B) Ca = 10−2 with S = 0.4.

From the slopes, the value of the dynamic critical exponent α is obtained as α = 1.0± 0.1 for θ < θc (circles) and α = 1.2± 0.1 for θ > θc (squares).

channels forever and the system stays in the same steady-state.
The time taken to reach another new steady-state is therefore
infinite at θ = 90◦ and it therefore is a critical point for the
system.

We nowmeasure the steady-state initialization time τ , defined
as the moment when the average of the fractional flow stops
changing with time and becomes horizontal with the x axis. This
is shown In Figure 7, where the initialization of steady states is
marked by crosses on the respective plots. As the simulations
are performed with constant Q, τ is proportional to the fluid
volume passed through the system and therefore we measure
τ in the units of N. τ for different simulations with different
values of the maximum wetting angle (θ) is plotted in Figure 8A

for Ca = 10−1 with S = 0.3 and in Figure 8B for Ca =

10−2 with S = 0.4. One can see that τ diverges rapidly as θ

approaches θc = 90◦ from both sides, θ > 90◦ and < 90◦. This
divergence of the steady-state time τ as θ → θc indicates the
critical slowing down of the dynamics, which is a characteristics
of critical phenomena. The critical slowing down is the outcome
of the divergence of correlations at the critical point and can be
characterized by a dynamic critical exponent z defined as τ ∼ ξ z ,
where ξ is the correlation length [31]. As θ → θc, the correlation
length ξ diverges as |θ − θc|

−ν where ν is the correlation length

exponent. The divergence of the steady-state time τ can therefore
be expressed as τ ∼ |θ − θc|

−α , where α = zν. In Figure 9, τ is
plotted vs. |θ−θc| in log-log scale which gives two different slopes
for θ > θc and θ < θc. We then find the value of the dynamic
exponents α as α = 1.2 ± 0.1 for θ > θc and α = 1.0 ± 0.1 for
θ < θc. However, they are the same within error bar for different
capillary numbers and saturations (Figure 9). The value of the
dynamic critical exponents depend on the underlying dynamics
and on the model [32]. In this case, wettability alteration was
started from an oil-wet system with ϑi = 165◦ for all the pores.
So for the simulations with θ < 90◦, the wetting angles cross the
critical point (90◦) when the capillary forces change directions.
This might cause the system to mobilize the clusters somewhat
faster than for θ > 90◦ when the capillary forces does not change
any direction. As a result, α becomes smaller for θ < 90◦ than for
θ > 90◦.

We like to point out that a 2-dimensional (2D) pore
network is considered in this study, but the model is
equally applicable to any 3-dimensional (3D) network without
any further change. However, as critical exponents depend
on the spatial dimensionality of the system, values of the
exponents measured for a 3D network are expected to be
different.
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4. CONCLUSIONS

In this article we have presented a detailed computational study
of wettability alterations in two-phase flow in porous media,
where the change in the wetting angle in a pore is controlled
by the volumetric flow of the altering agent through it. When
the wetting angles are allowed to alter toward water-wetness,
the stuck oil clusters start to mobilize and oil-fractional flow
increases. However, due to the correlations in the wetting angle
change with the flow pathways, the time-scale of the dynamics
strongly depends on the maximum allowed change in the wetting
angle. We find that, as the final wetting angle is chosen closer to
90◦, the system shows a critical slowing down in the dynamics.
This critical slowing down is characterized by two dynamic
critical exponents. The critical point we are dealing with is
an equilibrium critical point as the system is in steady state.
The dynamical critical exponents measure how long it takes

to go from one steady state to a new one. To our knowledge,
this is the first example of there being different values for the
exponents on either side of the critical point. Our findings
are in agreement with experimental observations reported in
literature, and are extremely important for application purposes
like oil recovery, where the time scale of the process is a key
issue.
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