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I. INTRODUCTION

In the optimization field, the Augmented Lagrangian method
obtains a solution to a Constrained Optimization Problem
(COP) by solving a sequence of Unconstrained Optimization
Problems (UOPs) that, in general, are more easily solved.
Depending on the problem structure, each UOP can be divided
into subproblems that can be solved in a distributed fashion,
for instance using the Alternating Direction Multiplier Meth-
ods (ADMM) [1]. These properties, allied to the advances
in parallel computing of the past decades, have fostered
applications of Augmented Lagrangian methods in a several
disciplines. In particular, in control engineering, Augmented
Lagrangian methods have been applied in discrete-time Model
Predictive Control (MPC) [2] and discrete-time Nonlinear
Model Predictive Control (NMPC) [3]. In these domains, the
Augmented Lagrangian enabled the distributed solution the
MPC and NMPC problems in discrete time.

Unlike in discrete-time control, the application of Aug-
mented Lagrangian methods to solve Optimal Control Prob-
lems (OCP) in continuous-time system is much less developed.
To this end, this paper contributes to the field of optimal
control by proposing an Augmented Lagrangian method for
optimal control of Differential-Algebraic Equations (DAE),
accounting for constraints in states, algebraic, and control
variables.

The approaches to solve the OCP can be divided in two
big groups: the direct methods (those that find a solution that
applying gradient decent methods to a objective function),
and the indirect methods (those that find a solution for the
optimality conditions). The Indirect Methods generally use a
reduced number of variables, while direct methods discretize
the system of equations and faces a size vs. accuracy dilemma.
The Direct methods tends to have a faster convergence, in
special for large scale systems, in which case the Indirect
Methods might fail to converge. Another advantage of the
Direct Methods is the ease to include constraint in the controls,
states, and algebraic variables; while the Indirect Methods can
only manage constraints on the control variables efficiently.
In this work we were to suppress two of the weakness of
the Indirect Methods, the inability to include constraints in

the states and algebraic variables in practical way, and the
problem with convergence.

The algorithm proposed in this paper obtain the solution
of an OCP by solving a sequence of relaxed OCPs, which
can be solved by any method, Direct or Indirect. However, in
this paper, we chose the Indirect methods to demonstrate the
advantages of such combination.

The main achievements of the proposed algorithms
• The reduction of a system of Algebraic Differential

Equations (DAE) to a system of Ordinary Differential
Equations (ODE), which from a implementation point of
view makes the problem easier to treat since the latter
has more mathematical and numerical tools.

• The OCP problems resultant from the application of this
method tend to be easier to solve given that they are
solved over a less restricted set.

• The method allows us to solve OCP with constraints in
the states and algebraic variables, which is impractical
with Indirect Methods.

II. BACKGROUND

System dynamics can be modeled in different manners, e.g.
using ordinary differential equations (ODE), partial differential
equations (PDE), and differential algebraic equations (DAE).
In this work, we are particularly interested in DAE systems,
which is able to model a large class of systems. For optimal
control of DAE systems, the optimality conditions are found
in the literature and therefore they are briefly discussed herein.
Because the algorithm to be developed reduces a DAE system
into a ODE system, necessary optimality condition for optimal
control of the latter are also presented.

A. Optimality Conditions for ODE Systems

An ODE system is one whose dynamics are generally given
in the form

ẋ = f(x, u, t) (1)

where x(t) ∈ X is the state variable defined in the space X =
RNx , u(t) ∈ U is the control variable defined in the space
U = RNu , and the time variable t is defined in the interval
[t0, tf ]. The function describing the dynamics of the state x is
assumed to be continuously differentiable with respect to the



variables x and u. The initial condition for the state variable
is given by the vector x0, such that x(t0) = x0.

An Optimal Control Problem (OCP) for an ODE system in
the form (1) with a bounded control can be put in the form

PODE : min Φ(x(tf )) +

∫ tf

t0

L(x, u, t) dt (2a)

s.t.: ẋ = f(x, u, t) ∀t ∈ [t0, tf ] (2b)
x(0) = x0 (2c)
u(t) ∈ UB (2d)

The objective functional is defined by the dynamic cost
function L and the final cost function Φ, which are both
assumed to be continuously differentiable with respect to x
and u. The set UB is set defined by

UB = {u ∈ U |uL ≤ u ≤ uU} (3)

where uL is the lower bound and uU is the upper bound for
the control actions. Without loss of generality, the variables t0
and tf are assumed to be fixed values, such that t0 < tf .

The necessary optimality conditions for the problem PODE
are usually expressed with respect to the Hamiltonian function

HODE(x, λ, u, t) = L(x, u, t) + λT f(x, u, t) (4)

where λ(t) ∈ RNx is the adjoint variable, also known as
costate. From [4] the necessary conditions for (x∗, λ∗, u∗) to
be optimal to PODE are

ẋ∗ =
∂HODE

∂λ
= f(x∗, u∗, t) (5a)

− λ̇∗ =
∂HODE

∂x
=
∂L

∂x
+ λ∗T

∂f

∂x
(5b)

u∗(t) = arg min
u∈UB

HODE(x∗(t), λ∗(t),u, t) (5c)

λ∗(tf ) =
∂Φ

∂x
(x∗(tf ), tf ), x∗(t0) = x0 (5d)

which forms a system of 2Nx +Nu variables that are defined
by 2Nx differential equations and Nu algebraic equations.
For the differential equations, final conditions are imposed
on the costates and initial conditions on the system states by
(5d), respectively. Since a mix of initial and final conditions
are given, the problem is characterized as a Boundary Value
Problem (BVP) [5].

B. Optimality Conditions for DAE systems

A large class of systems can expressed as a semi-explicit
DAE, which has the form

ẋ = f(x, y, u, t) (6a)
0 = g(x, y, u, t) (6b)

for t ∈ [t0, tf ] with x(t0) = x0, where y(t) ∈ Y = RNy
is the algebraic variable, and the function g defines the
algebraic variable, being assumed continuously differentiable
with respect to x, y, and u. In addition, for a semi-explicit
DAE as (6), the partial derivative ∂g

∂y is nonsingular for all
t ∈ [t0, tf ] [5].

An OCP for the DAE in the form (6) with a bounded control
can be stated in the form:

PDAE : min Φ(x(tf )) +

∫ tf

t0

L(x, y, u, t) dt (7a)

s.t.: ẋ = f(x, y, u, t) ∀t ∈ [t0, tf ] (7b)
g(x, y, u, t) = 0 ∀t ∈ [t0, tf ] (7c)
x(0) = x0 (7d)
u ∈ UB (7e)

where ν(t) ∈ RNy is the multiplier vector for the algebraic
function g.

The Hamiltonian function for the OCP (7) can is given by

HDAE(x, λ, y, ν, u, t) = L(x, y, u, t) + λT f(x, y, u, t)

+ νT g(x, y, u, t) (8)

Using the Hamiltonian (8), the necessary conditions for
(x∗, λ∗, y∗, ν∗, u∗) to be optimal to the OCP (7) are given
by [6]:

∂HDAE

∂x
= −λ̇∗ =

∂L

∂x
+ λ∗T

∂f

∂x
+ ν∗T

∂g

∂x
(9a)

∂HDAE

∂y
=
∂L

∂y
+ λ∗T

∂f

∂y
+ ν∗T

∂g

∂y
= 0 (9b)

u∗(t) = arg min
u∈UB

HDAE(x∗(t), λ∗(t), y∗(t), ν∗(t),u, t) (9c)

∂HDAE

∂λ
= ẋ∗ = f(x∗, y∗, u∗), λ∗(tf ) =

∂Φ(x(tf ))

∂x(tf )
(9d)

∂HDAE

∂ν
= g(x∗, y∗, u∗) = 0, x∗(0) = x0 (9e)

for all t ∈ [t0, tf ].
The system of equations given for necessary conditions (9)

has 2Nx + 2Ny +Nu variables. The state is regulated by the
differential equation that appears in (9d) with initial conditions
established in (9e). Likewise, the costate is governed by the
differential equation (9a), having its final state imposed by
(9d). The control is induced by the minimization (9c), the
algebraic multiplier is defined by (9b), and the algebraic
variable is obtained from (9e).

Notice that the conditions (9) are only necessary for op-
timality of OCP (7). If the optimum control u∗ lies in the
interior of UB for all t, then the minimization of u∗ in (9c)
satisfies the condition ∂H

∂u = 0. However, there will be times
when the optimal control will be at the boundary of UB , in
which case the condition ∂HDAE

∂u = 0 may not be verified.
Let us assume that the Hamiltonian H is convex with respect

to u. If the solution of ∂H∂u = 0 induces a solution û(t) that lies
in the interior of UB , then u∗(t) = û(t) at time t. Otherwise,
if û(t) does not lie in the interior of UB , then, in such cases,
the optimum is obtained by applying the value of the violated
bounds [4]. For instance, if û(t) ∈ R is above uU at some
time t = t1, then u∗(t1) = uU . Therefore, given that û is



the solution to ∂HDAE
∂u = 0, (9c) can be written for a convex

Hamiltonian as:

u∗(t) =

 uU , if uU ≤ û,
û if uL < û < uU ,
uL, if û ≤ uL

(10)

The same approach is valid for optimality conditions of the
ODE case.

From a practical standpoint, when the convexity of the
Hamiltonian cannot ascertained, then the procedure (10) can
be seen as a best effort strategy.

C. Indirect Methods

The methods that solve the BVP consisting of the opti-
mality conditions, equations (5) for ODEs and (9) for DAEs,
are known as Indirect Methods. In contrast, Direct Methods
minimize the objective functional (7a), while satisfying the
constraints (7b)–(7e), in order to reach a solution. Although
both classes of methods serve the same purpose, they achieve
the solution in a different manner.

Each class can be split in implicit and explicit methods.
The implicit methods make use of a black-box procedure to
obtain a solution for underlying ODE/DAE system and its
sensitivities [6]. On the other hand, the explicit approaches
express the solution of the ODE/DAE system as a set of
nonlinear equations. Shooting and collocation methods are
arguably the most representative for implicit and explicit
methods respectively.

1) Shooting Methods: Shooting methods solves a BVP
through a sequence of Initial Value Problems (IVP). It works
by solving an IVP (called a “shoot”) for an initial guess,
evaluating if the final boundary conditions are met, and making
corrections for the guess in the next shoot. The shoot process
can be represented, mathematically, by evaluating a function
F : RNx × T → RNx that, for an initial condition x0,
returns a final condition xf of a given DAE system during
time interval T . The boundary conditions are modeled by the
function G : RNx → RNx . The Single-Shooting Methods
(SSM) consists in finding a vector x0 that satisfies the system
of nonlinear equations

xf = F (x0, [t0, tf ]) (11a)
0 = G(x0, xf ) (11b)

which can be solved by any nonlinear optimization algorithm,
for instance Newton’s method.

The SSM is not suitable for unstable BVPs [5], as those
that arise from conditions (5) and (9) which invariably have
unstable states or costate. From the duality nature of state-
costate, if the state is stable, then the costate is unstable, and
vice versa. For this reason, we choose the Multiple-Shooting
Method for solving BVPs which is more robust to instability.

The Multiple-Shooting Method (MSM) breaks the integra-
tion interval in N subintervals. In each subinterval Ti, the
function F is evaluated for an initial condition xi0 to obtain
the final state xif of Ti. The initial state of Ti and the final
state of Ti−1 must agree to ensure state continuity. Further,

the initial state of the first subinterval and the final state of
last subinterval must satisfy the boundary conditions, given by
function G. Altogether, they lead to the equations

xif = F (xi0, Ti) i = 1, . . . , N (12a)

xi−1f = xi0 i = 2, . . . , N (12b)

0 = G(x10, x
N
f ) (12c)

which can be solved using the same tools of the SSM.
2) Collocation Method: Collocation is widely used method

for solving OCPs using sparse nonlinear solvers [6]. Similar
to MSM, it breaks the integration interval into N subintervals.
However, instead of relying on a numerical integrator to solve
the underlying ODE/DAE system, the Collocation Method
approximates the trajectory of the states, algebraic variables,
and controls by a parametrized function, in each subinterval.
Typically, a Lagrangian interpolation polynomial x̃i is used to
approximate x within an interval Ti. The approximation en-
sures that the differential and algebraic equations are satisfied
at some particular points, known as the collocation points.

In relation to MSM, Collocation consists in replacing the
numerical integrator embedded in function F (12a) with a
system of nonlinear equations. To ensure that the polynomial
x̃i approximates the trajectory of x, the derivative of x̃i is
forced to be equal to f at the collocation points.

III. AUGMENTED LAGRANGIAN FOR CONSTRAINED
OPTIMIZATION PROBLEMS

In mathematical programming, the Augmented Lagrangian
Method is used to solve an equality Constrained Optimization
Problem (COP) through a sequence of Unconstrained Opti-
mization Problem (UOP). Let COP be of the form:

min
z

V (z) (13a)

s.t.: c(z) = 0 (13b)

The Augmented Lagrange method relax the equality con-
straint (13b) and includes a penalization term in the objective
function creating an augmented objective function:

Vµk(z, λk) = V (z) + λT c(z) +
µ

2
‖c(z)‖2 (14)

where µk > 0 is a scalar that belongs to sequence {µk} → ∞,
and λk is approximation of the Lagrange multiplier of the
constraint c(z), which belongs to a sequence {λk} → λ∗ [7].

The solution of (13) is obtained by a sequence of uncon-
strained minimizations of (14), determined by a scalar µk and
a vector λk that are updated at each iteration. The method is
outlined in Algorithm 1 [8].

A traditional rule for updating parameter µk, in line 7, is

µk+1 = βµk (15)

where β is a scalar greater than 1, usually in the range from 5
to 10. However, if µk is large, then the minimization of (14)



Algorithm 1 Augmented Lagrangian for Constrained Opti-
mization
Require: µ0 > 0, εV,0 > 0, starting points zs0 and λ0:

1: for k = 0, 1, . . . do
2: Find a zk that minimizes Vµk(z, λk), starting at zsk,

satisfying
∥∥∥∂Vµk∂z (zk, λk, )

∥∥∥ ≤ εV,k,
3: if zk satisfies a convergence condition, then
4: return the solution zk,
5: end if
6: Obtain λk+1 with the equation λk+1 = λk +µkc(zk),
7: Choose a new parameter µk+1 ≥ µk,
8: Set the starting point for the next iteration zsk+1 = zk,
9: Select tolerance εV,k+1

10: end for

might become ill conditioned [7]. To this end, an alternative
update rule is

µk+1 =

{
βµk if βµk < µmax

µmax otherwise (16)

There exists a theoretical value µ∗ that, for any µ > µ∗,
{Vµ(zk, λk)} → V (z∗) where z∗ is a solution for (13), if the
tolerance εV,k+1 → 0 as k → ∞ and the problem satisfies
some conditions [8].

IV. ALGORITHM

For the constrained optimization problem (13), the standard
Augmented Lagrangian Method relaxes the equality (13b)
and then solves a sequence on unconstrained problem. By
analogy, the algebraic equations of the optimal control problem
of a DAE system (7) could be relaxed according with the
Augmented Lagrangian. This section presents an Augmented
Lagrangian algorithm to solve OCPs with algebraic equations,
following the structure developed for constrained optimization,
briefly described in Section III.

Given a optimal control problem in the form PDAE , the
algorithm relaxes the algebraic equation (7c) which is then
penalized in the objective, introducing the new functional

Jµ(x, y, u, ν) = Φ(x(tf )) +

∫ tf

t0

Lµ(x, y, u, ν, t) dt (17)

where the function Lµ is defined by

Lµ(x, y, u, ν, t) = F (x, y, u, t) + ν(t)T g(x, y, u, t)

+
µ

2
‖g(x, y, u, t)‖2 , (18)

where the µ > 0 is a scalar and the function ν : [t0, tf ]→ RNy
is an approximation for the multiplier function ν∗ that satisfies
the optimality conditions (9) for the OCP PDAE .

The functional (17) is the objective of an auxiliary optimal
control problem solved by the algorithm at each iteration k,
which is given by

PL(µk, νk) :

min
y,u

Jµk = Φ(x(tf )) +

∫ tf

t0

Lµk(x, y, u, νk, t) dt (19a)

s.t.: ẋ = f(x, y, u, t), ∀t ∈ [t0, tf ] (19b)
x(0) = x0 (19c)
u(t) ∈ UB ∀t ∈ [t0, tf ] (19d)

Notice that without an algebraic equation, the variable y is free
to be optimized. In this sense, the algebraic variable plays the
same role as the control variable u. Therefore, we define an
extended control variable û = [u, y], where û ∈ Û = UB×Y .
Using û, the problem PL meets the standard form of an OCP
with ODE (2), and the optimality conditions (5) apply.

The Augmented Lagrange Method for Optimal Control is
stated in Algorithm 2. Therein, the parameter µ0 is the initial
value of the sequence {µk}, ν0 is the initial function for the
sequence {νk}, and εg is the tolerance on the violation of the
algebraic constraint g.

Algorithm 2 Augmented Lagrangian for Optimal Control
Require: µ0, ν0, K, εJ , and εg:

1: J0 ←∞
2: for k = 1, 2, . . . do
3: (Jk, xk, yk, uk)← solve{PL(µk, νk)}
4: νk+1 ← νk + µkg(xk, yk, uk)
5: µk+1 ← update mu{µk}
6: if ‖g(xk, yk, uk)‖ < εg, ∀t ∈ [t0, tf ] then
7: return uk
8: end if
9: end for

Some particularities of this algorithm deserve discussion:
1) In line 3, the pseudo-function solve produces a solution

to the OCP PL using any suitable method, direct or in-
direct. In the case of yk being parametrized, for instance
as a polynomial in direct method, then yk should be a
sufficiently good approximation in order to not hinder
convergence. To speed up the algorithm, the solution of
the previous iteration can be used as an initial guess at
the current iteration.

2) Line 4 updates the multiplier νk. Because generic func-
tions cannot be stored in computers, νk is approximated
with a parametric function which, in this work, is the
same Lagrange interpolation polynomial used in the
Collocation Method. Any educated guess for ν0 should
used, otherwise by defining ν0 = 0 the algorithm will
consider only the quadratic penalty at the first iteration.

3) In line 5, the pseudo-function update mu increments
the penalty parameter µk. The traditional rule for Aug-
mented Lagrange is (15), however the alternative rule
(16) can be applied to prevent ill conditioning.



To a great extent, the contributions of this work are the
following desirable properties of the algorithm:

1) By relaxing the algebraic equations, the algorithm trans-
forms the DAE system into an ODE system. This reduc-
tion renders optimal control more applicable, given that
ODE solvers are readily available and have a reduced
computational cost.

2) The algorithm solves an OCP of the form (7) which
accounts for bound constraints on control variables. In
addition, it can cope with bound constraints on algebraic
algebraic and state variables, that is, y(t) ∈ YB and
x(t) ∈ XB ,∀t ∈ [t0, tf ], with

YB = {u ∈ Y | yL ≤ y ≤ yU} (20a)
XB = {u ∈ X |xL ≤ x ≤ xU} (20b)

where yL and yU are bounds for the algebraic variables,
and xL and xU are bounds for the state variables.

By noticing that û = [u, y], the second property can be
shown by defining û(t) ∈ ÛB = UB × YB and using the
condition (5c) to obtain a solution to PL that, by consequence,
ensures y(t) ∈ YB .

To satisfy x(t) ∈ XB , a variable yx ∈ XB is introduced in
the original OCP (7) along with the algebraic equation

yx = x (21)

Then, by defining an extended control variable û = [u, y, yx] ∈
ÛBX = UB×YB×XB , the solution of the problem PL using
the (5c) implies x(t) ∈ XB .

V. EXPERIMENTS

This section presents results from computational experi-
ments that substantiate the distinct properties of the Aug-
mented Lagrangian Method.

A. Experimental Setup

The analysis consider the Van der Pol oscillator [9], which
has an unstable equilibrium at 0 and an attractive limit cycle.
These features render the oscillator a widely used benchmark
for control of nonlinear systems. The Van der oscillator can
be modeled in the form of a ODE system by

ẋ1 = (1− x22)x1 − x2 + u (22a)
ẋ2 = x1 (22b)

For the purpose of our analysis, the ODE system (22) is recast
as a DAE system,

ẋ1 = y + u (23a)
ẋ2 = x1 (23b)

y = (1− x22)x1 − x2 (23c)

With the objective of keeping the system at the unstable equi-
librium, the following optimal control objective was chosen

J(x, y, u) =

∫ tf

t0

[
x21 + x22 + u2

]
dt (24)

Let us define the optimal control problem PVODE as the
one that minimizes the functional J (24) and subject to the
ODE system (22). In addition, let the optimal control problem
PVDAE consist of the minimization of the functional J (24),
while being subject to the DAE system (23).

To investigate the properties of the proposed algorithm,
three cases were considered for the optimal control problems:
• Case 1, compares the solutions of PVODE and PVDAE

obtained by solving BVPs, with the solution of PVDAE
using the proposed algorithm.

• Case 2, considers the same settings of Case 1, however
the control variable is constrained by −0.3 ≤ u ≤ 1.

• Case 3, solves only PVDAE subject to the bound con-
straints −0.3 ≤ u ≤ 1 on the control variables and the
constraint −0.4 ≤ x1 on the state x1. Only the proposed
algorithm can handle this problem.

Case 1 and Case 2 intend to show that all the approaches
induces the same optimal values. Case 3 highlights the algo-
rithm’s ability of handling bounds on state variables.

For all the test cases, the Multiple Shooting and Collocation
Method were used to solve the BVPs resulting from the
optimality conditions.

B. Boundary Value Problem

For Case 1, we explicitly define the BVP arising from the
optimality conditions for the relaxed OCP of the form (19),
which is iteratively solved by Algorithm 2 to obtain a solution
to PVDAE . First, the algebraic equation (23c) is relaxed and
penalized in the objective functional. By defining g(x, y, u) =
(1− x22)x1 − x2 − y, the functional becomes

Jµ(x, y, u, ν) =

∫ tf

t0

[
x21 + x22 + u2 + νT g(x, y, u)

+
µ

2
‖g(x, y, u)‖2

]
dt (25)

The relaxed OCP for Case 1 minimizes the functional (25)
subject to the ODE system formed by (23a) and (23b). Given
that û = [u, y] ∈ X = U × Y , the optimality conditions for
OCP of ODEs (5) yields the BVP of the DAE:

ẋ∗1 = y∗ + u∗, ẋ∗2 = x∗1 (26a)

−λ̇∗1 = (2x1) + [ν + µg(x∗, y∗, u∗)](1− x∗22 ) + λ2 (26b)

−λ̇∗2 = (2x∗2) + [ν + µg(x∗, y∗, u∗)](−2x∗1x
∗
2 − 1) (26c)

0 = 2u∗ + λ1, (26d)
0 = ν(−1) + µg(x∗, y∗, u∗)(−1) + λ∗1 (26e)

x(t0) = x0, λ1(tf ) = λ2(tf ) = 0 (26f)

in view that (26c) and (26c) are algebraic equations.
From (26e), the optimal controls can be derived

u∗ = −λ
∗
1

2
, y∗ = −ν

µ
− (1− x22)x∗1 − x∗2 +

λ∗1
µ

(27)

By substituting (27) for u∗ and y∗ in (26), the system (26)
becomes a BVP of an ODE.



C. Experiments Results

The experiments where implemented in the automatic differ-
entiation framework CasADi (version 3.0.0) [10] which uses
the numerical integrator Sundials CVODES and IDAS to solve
the ODE and DAE systems, CasADi makes use of nonlinear
solver IPOPT [11] to solve the nonlinear system of equations.
The parameters used for the Augmented Lagragian algorithm
was β = 8, µ0 = 2, ν0 = 0, and εg = 10−6

The analysis of the results will be done with respect to the
convergence of the objective, the convergence of the violation
of the algebraic constraint, and the feasibility of the x1.

1) For the Case 1, the ODE, DAE and Augmented La-
grangian resulted in the same objective value of 2.86695,
with the Multiple-Shooting and the Collocation Method.
Case 2 had the same outcome, all of the tests resulted
in the objective value 2.87972. The solution of Case 3
resulted in the objective 2.95321, which agrees with the
results reported in [12]. Table I display the time taken
to obtain the solution in each approach.

2) To measure the violation, we used the root mean square
(RMS) of the the algebraic function g, which is given
by

RMS(g) =

√∫ tf

t0

‖g(xk, yk, uk, t)‖22 dt (28)

Figure 1 shows the RMS of the algebraic function g in
each iteration of the algorithm while solving the OCP
of Case 1, using both, the Collocation and Multiple-
Shooting Methods. The figure shows that the algorithm
presented a superlinear convergence for the experiment,
taking only 6 iterations to reduce the violation to very
small values. It is worth to say that after solving the first
iteration the subsequent solutions are fast obtained.

3) Figure 2 shows the optimal control and the evolution
of the states obtained for for Case 3 using the Multiple
Shooting Method. The control profile has the same shape
than the control profiles depicted in [12], for the same
problem.

Table I
SOLUTION TIME OBTAINED WITH THE EXPERIMENTS

ODE DAE Aug. Lagrangian

Case 1 Coll. 0.69 s 0.89 s 0.95 s
MSM 0.45 s 0.83 s 1.75 s

Case 2 Coll. 0.64 s 0.86 s 0.97 s
MSM 0.72 s 1.32 s 1.88 s

Case 4 Coll. 1.22 s
MSM 3.18 s

VI. CONCLUSION

In this work we proposed and algorithm that is able to obtain
the solution of OCP of DAE systems through a sequence of
OCP of ODE system. This approaches allows the use of ODE
solvers, which have reduced computational cost and are more
available. Another property of the transformation is the ease
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Figure 2. Plot of the optimal trajectories for Case 1

of including bound constraints on the states, which otherwise,
would not be possible using the common approaches of
Indirect Methods. The results of the experiments have shown
that the proposed method have competitive solution time with
the respect to the traditional DAE approach, while ensure a
sufficiently small violation in the algebraic constraint, using
less specialized tool, and solving a larger class of problems.
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