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Abstract—Established state-of-the art methods for target
tracking assume perfect knowledge of the sensor position
and orientation. This assumption is violated when the
tracking sensor is mounted on a moving platform such as a
ship. Two methods for solving this problem are compared.
The Schmidt-Kalman filter maintains correlations between
the ownship and the target, while a converted measurement
approach merely translates the navigation uncertainty into
the measurement model of the target. Simulation results
indicate that the Schmidt-Kalman filter yields the best im-
provements with regard to consistency, while the converted
measurement approach yields better improvements in root
mean square error.

I. INTRODUCTION

Target tracking from moving platforms has seen exten-
sive research the last years [1]–[3]. This has applications
such as in collision avoidance for autonomous surface
vehicles. Increased autonomy in the maritime industry
can lead to safer and more efficient operations, either as
a decision support module or a completely autonomous
vehicle.

One suggested approach is to extend methods for si-
multaneous localization and mapping (SLAM) to include
moving objects [1]. Some approaches to this SLAM
with moving objects tracking (SLAM-MOT) warns that
care should be taken to let the estimate of a moving
target influence the estimate of the sensor platform pose
[2], while others allow measurements of the target to
affect the position of the sensor platform [4]. This
can be advantageous when the platform lack sensors
for determining its own absolute position and attitude.
However, one must take care not to let false tracks
or erroneous data association affect the platform pose
estimate. Furthermore, it may be difficult to readjust
navigation estimates when the navigation is performed
by “black-box” proprietary software, which is often the
case.

If the sensor platform is equipped with a navigation
system, it is possible to simply let the uncertainty in
this system affect the target tracking, without letting

information flow the other way around. This mindset
leads into the Schmidt-Kalman filter [5], where the
state vector of the system is augmented by nuisance
parameters. These nuisance parameters are not estimated,
but their correlations with the estimated states will affect
the covariance of the target. The navigation state of the
ownship can be considered to be a nuisance parameter
in this formulation. Previous research has investigated
the performance of such a filter in the case when the
navigation error is zero mean and uncorrelated, and with
constant bias [6]. This approach can also be formulated
in a random finite set (RFS) framework such as in [3].

Another popular approach is to convert measurements
into linear position and/or velocity measurements of the
target before applying the Kalman filter framework. This
approach is not possible with tracking sensors such as
a single camera, since it only has bearing and no range
measurement. A radar, however, provides measurements
of the target in polar coordinates, which can be converted
into Cartesian coordinates in the body frame. This means
a linear Kalman Filter can be used. The conversion of
measurement noise covariances from polar to Cartesian
coordinates has previously been discussed in [7] and sev-
eral other references. We can also convert a covariance
representation of navigation uncertainty along similar
lines. Previous research has addressed compensation
of ownship heading uncertainty [8]. In this paper we
address the more general problem of compensating for
the entire generalized pose uncertainty of the ownship.

This article presents two methods for target tracking
with navigation uncertainty, one based on the Schmidt-
Kalman filter and one based on converted measurements.
The former takes advantage of knowledge of the naviga-
tion error model and maintains the correlations between
the navigation error and the target state. The second ap-
proach does not maintain any correlations, but proposes
a Cartesian measurement with covariance inflated by the
navigation covariance. Finally, note that this paper only



concerns the filtering part of target tracking, and not data
association.

The rest of the paper is organized as follows: In
section II, we introduce the error state Kalman filter
in a navigation system. In section III, we discuss the
tracking model. In section IV, we describe the tracking
architectures. In section V, we present the simulation
results with focus on accuracy and filter consistency.

II. NAVIGATION

Our work is in particular inspired by collision avoid-
ance and navigation at sea, where it is common to use
an inertial measurement unit (IMU) in combination with
one or several global satellite system (GNSS) receivers,
such as receivers for the American GPS system. Attitude
is typically estimated by use of a magnetic compass or
several GNSS antennas. All navigation quantities will be
superscripted with o to denote the ownship system.

A. Model

Ownship navigation is done using the error-state for-
mulation [9], [10]. In this form, one sensor is used to
provide a nominal navigation estimate, and the other
sensors are used to estimate the errors. The attitude
error is estimated by a multiplicative extended Kalman
filter (EKF). The velocity and position error are the
difference between the true and nominal estimates. The
conventional choice is to integrate the IMU output to
orientation, velocity and position nominal estimates, and
use GNSS and compass as complementary sensors.

The kinematics of the attitude, velocity and position
are given by

q̇o = Tq(q
o)ωo (1)

ν̇o = C(qo)fo + γ (2)
η̇o = νo (3)

Where qo, νo and ηo are the attitude, velocity and
position of the ownship, respectively. The angular rate
and specific force from the IMU are denoted ωo and fo,
respectively. Gravity is denoted γ, and C is a rotation
matrix. The matrix Tq is determined by the choice of
attitude representation.

We represent attitude as a unit quaternion, as opposed
to Euler angles, to avoid confusion regarding the se-
quence of Euler angles, and because quaternions are a
standard parametrization in inertial navigation systems.
The unit norm constraint would induce singularities
in the Kalman filter covariance matrix if a full-state
parametrization was used in the filter, and for this reason
the Kalman filter works on the three-parameter error

angle δΨo. The relationship between the error angle
δΨo, the estimated attitude q̂o and the true attitude qo

is

qo = δqo(δΨo)⊗ q̂o (4)

This formulation of the error angle and the use of an
EKF for state estimation leads to the multiplicative EKF
for the attitude estimate [11], as the attitude error is
related to the true attitude by a quaternion multiplication.
The error has been defined such that the error angle is
represented in the global frame. The errors in position
and velocity are additive, and are related to the true and
nominal estimates by

νo = ν̂o + δνo (5)

ηo = η̂o + δηo (6)

Let q̂o, ν̂o and η̂o be the attitude, velocity and position
obtained by integrating the (noisy) IMU measurements
through equations (1)-(3). We consider only the IMU
biases and additive white noise, such that the IMU
measurements are on the form

foimu = fo + boa + wo
a (7)

ωoimu = fo + bog + wo
g (8)

where boa and bog are the accelerometer and gyro biases,
respectively. This leads to an error state on the form

δxo =


δΨo

δνo

δηo

δboa
δbog

 (9)

where δboa and δbog are the residual bias errors. A
continuous system model can be derived by inserting the
error expressions and IMU measurements. The system is
discretized with a suitable discretization method, and the
error state is given as

δxok+1 = Fokδx
o
k + vo (10)

where vo is zero-mean gaussian white noise with covari-
ance matrix Qo. Details of the modelling and discretiza-
tion can be found in, for example, [9].

When the navigation filter has calculated an error es-
timate, the state estimates are corrected by this estimate.
This resets the error estimate to zero.



B. Navigation measurements

We assume that the ownship is equipped with an IMU,
measuring specific force and angular rates, and a GPS
compass, which measures the position and heading of
the ship. This heading measurement can be used along
with roll and pitch estimates from the accelerometer to
obtain a full measurement of the ship attitude. Given
this, the measurement of the ownship is simply given as

zo = ho(xo) + wo =

[
ηo

qo

]
+ wo (11)

where wo is zero-mean gaussian white noise with covari-
ance matrix Ro. Note that most measurements are of the
full state rather than the error state, which necessitates
evaluation of the Jacobian matrix

Ho =
∂ho

∂δxo
=
∂ho

∂xo
∂xo

∂δxo
(12)

The first term of this is, in our simplified case, lin-
ear for position and attitude. However, as seen from
equation (4), the second term will be nonlinear for the
attitude. This is because of the error angle representation
in the Kalman filter. For this reason, the navigation filter
must use a nonlinear estimation tool such as the EKF.

III. TRACKING

This section introduces the tracking models and mea-
surements. All the parameters and states of the target
will be superscripted by t.

A. Model

With the target state vector

xt =


ηtx
νtx
ηty
νty

 (13)

we use a standard constant velocity (CV) kinematic
model, which in discrete time is

xtk+1 = Ftxtk + vtk (14)

where vt is assumed to be a zero-mean gaussian white
noise with covariance Qt, and Ft is given by

Ft =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (15)

where T is the time update interval of the filter, assumed
to be the radar sampling time.

B. Target measurements

The radar is the primary sensor of interest in a
maritime environment, and it provides measurements of
range r and bearing θ of the target in the ownship body
frame. Given the target position and ownship pose, the
world frame measurement model becomes

zt =

[ √
(ηtx − ηox)

2 + (ηty − ηoy)
2 + wtr

atan2(η
t
y − ηoy, η

t
x − ηox)− ψo + wtθ

]
(16)

= ht(xt,xo) + wt (17)

where atan2 is the four-quadrant arctangent function, as
the radar is able to detect targets in all quadrants around
the ownship. wt is zero-mean gaussian white noise with
covariance matrix Rt, given as

Rt =

[
σ2
r 0
0 σ2

θ

]
(18)

IV. TRACKING ARCHITECTURES

A. Schmidt-Kalman filter

Schmidt [12], presented a method for dealing with
parametric uncertainty, or bias, in the process and mea-
surement model. Instead of estimating the bias, the filter
only accounts for its uncertainty through a covariance
update. This means that it considers the uncertainty of
the bias when estimating the state, and the covariance
added to the state from the bias is also called the consider
covariance [6].

We include the navigation states as biases in the target
state vector. The process model of the augmented system
then takes the form[

xtk+1

δxok+1

]
=

[
Ft 0
0 Fo

] [
xtk
δxok

]
+

[
vtk
vok

]
(19)

The target measurement Jacobian and covariance matrix
for this system can now be written

Ht
S =

[
Ht Hot

]
(20)

Pt
S =

[
Pt Pto

Pot Po

]
(21)

The matrix Po is the covariance matrix of the ownship
errors, which will influence the target covariance and
cross-covariance terms. It is updated at every iteration
with the current covariance from the navigation filter.
The crosscovariance then changes through the measure-
ment equation.



B. Converted measurements

Another alternative is to invert the measurement,
Equation (16), and use a linear Kalman filter to estimate
the target states. In the sequel, we assume that the error
state consist of the errors in horizontal position and
heading, as these are the primary variables of interest
in a 2D tracking system:

δxo =

δηoxδηoy
δψo

 (22)

The corresponding marginalization is straightforward,
since the error angle is defined in the world frame.

Denote the inverse of ht by gt such that the Cartesian
target position is given as

gt(xo, zt) =

[
ηtx
ηty

]
=

[
ηox + r cos(θ + ψo)
ηoy + r sin(θ + ψo)

]
(23)

The inverted measurement function is a nonlinear trans-
formation of the random, assumed Gaussian, variables
xo and zt. The statistics of gt can thus be found by any
nonlinear transformation method such as linearization.
Linearization around the point (x̂o, zt) gives the expec-
tation and covariance of the transformed measurement
as

ztη = gt(x̂o, zt) (24)

Rt
η = GxoPoGT

xo + GztRtGT
zt (25)

where ztη is the cartesian position measurement, and the
Jacobians Gxo and Gzt are given by

Gxo =
∂gt

∂xo
=

[
1 0 −r sin(θ + ψo)
0 1 r cos(θ + ψo)

]
(26)

Gzt =
∂gt

∂zt
=

[
cos(θ + ψo) −r sin(θ + ψo)
sin(θ + ψo) r cos(θ + ψo)

]
(27)

After this transformation, the estimates can be used in
a linear Kalman filter.

As the ownship pose covariance only enters the track-
ing filter before the measurement update, this approach
does not maintain any correlations between the ownship
and the target.

V. RESULTS

We compare the two described methods against two
other tracking filters, neither of which compensates for
navigation uncertainty. One of them will use the ground
truth ownship pose in the filter such that the position and
attitude of the sensor is perfectly known. The other will
use the pose of the navigation system.
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Fig. 1. The ground truth trajectory for the ownship and the target ship.

A. Simulation setup

The trajectory of the target and ownship are shown in
Fig. 1. The ownship start in the origin and moves north,
while the target ship starts at the upper right corner.
At t = 150, the ownship makes a right turn to avoid
collision. The simulation ends after 300 seconds.

To evaluate the methods, we use position and velocity
root mean square error (RMSE) and normalized esti-
mation error squared (NEES). The RMSE values are
calculated as

RMSEη =

√√√√ 1

Nmc

Nmc∑
i=1

(ηtx,i − η̂tx,i)
2 + (ηty,i − η̂ty,i)

2

(28)

RMSEν =

√√√√ 1

Nmc

Nmc∑
i=1

(νtx,i − ν̂tx,i)
2 + (νty,i − ν̂ty,i)

2

(29)

where Nmc denotes the number of Monte-Carlo simula-
tions. The NEES are given by

NEES =
1

Nmc

Nmc∑
i=1

(xti − x̂ti)
T
(
Pt
i

)−1
(xti − x̂ti) (30)

and provide a measure of consistency [13].
The navigation system has sample rates of 100Hz and

5Hz for the IMU and GPS, respectively. For simplicity,
the biases in Equation (7) and Equation (8) are constant,
while the covariances of the noise parameters are given
as

cov(wo
a) = σ2

aI σa = 0.7m/s2 (31)

cov(wo
g) = σ2

gI σg = 0.4◦/s (32)
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Fig. 2. Part of the position tracking results. The ellipses are 95%
confidence-ellipses.
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Fig. 3. Position RMSE for 100 Monte Carlo runs.

The radar has a sample rate of 1Hz, and the measurement
covariances in Equation (18) are given as

σr = 20m σθ = 1◦ (33)

B. Tracking results

Fig. 2 shows the start of the target trajectories for the
different filters. The most notable difference between the
filters in this setting is the stretched covariance ellipse
from the Schmidt-Kalman filter. The ground truth filter
have both the smallest errors and covariance ellipses.

The position RMSE is shown in Fig. 3. The dif-
ference between the uncompensated filter and the two
compensated methods is very low. A slightly lower
RMSE is seen for the converted measurements in the
transient phase. However, as the distance between the
ownship and target decreases, the difference becomes
negligible, and at the closest point is even comparable
to the ground truth tracking filter. The primary reason
for the relatively small improvement is that the heading
uncertainty from the navigation system is dominating
the measurement noise. In practice, this means that the
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Fig. 4. Velocity RMSE for 100 Monte Carlo runs.

navigation covariance can be seen as an increase in the
measurement covariance, common to all the filters.

The velocity RMSE is shown in Fig. 4. This time, the
compensated filter has a more significant performance
increase over the uncompensated filter. The transient
phase in particular shows an improvement of factor 1.5.
The RMSE also decreases as the distance between the
ships decrease.

The notable improvement seen in velocity are the
results of filtering. The increased uncertainty in the
compensated filters leads to a lower Kalman gain. The
biggest effect is seen in the converted measurement
filter, as it has less information than the Schmidt-
Kalman filter. As we approach steady-state, this effect
seems to decrease, in particular for the Schmidt-Kalman
filter which seems to become more erroneous. This
effect could arise from the fact that it maintains cross-
correlations between the target and ownship. As such, it
has more information and is more inclined to increase
the Kalman gain. Another possibility is that the effects
of the navigation error reset have not been captured by
the filter.

C. Consistency results

Fig. 5 shows the NEES for the filters. The ground truth
filter and the Schmidt-Kalman filter is mostly within
the 95% confidence interval, while the converted mea-
surement approach is slightly above. The uncompensated
filter suffers severely from inconsistency.

Although the Schmidt-Kalman filter were outper-
formed in the RMSE-analysis, it performs very well in
the consistency analysis. The reason for this is, as pre-
viously mentioned, that it keeps track of the correlations
between the ownship and the target. This information is
discarded in the converted measurement filter. Finally,
note that an inconsistent filter may have severe effects
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Fig. 5. NEES analysis for 100 Monte Carlo runs, with 95% confidence
interval.
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Fig. 6. NEES analysis for 100 Monte Carlo runs, with 95% confidence
interval. The navigation standard deviation values are halved from the
values used in Fig. 5.

on data association. If the filter covariance is not com-
mensurate with the respective error, the validation region
set up by some data association methods, such as the
PDA [7], might be too small to capture the measurement.
Inconsistency can also be a source of divergence in the
EKF.

Reducing the navigation covariance parameters only
reduced the NEES values for the uncompensated track-
ing system and slightly for the converted measurement
filter, as seen in Fig. 6.

VI. CONCLUSION

Uncompensated navigation errors can cause signifi-
cant inconsistency in a target tracking system mounted
on a moving platform. This makes the estimator over-
confident and can be critical for data association. This
can be remedied, for example, by either inflating the
measurement covariance in a converted measurement
filter, or by designing a Schmidt-Kalman filter. While
the RMSE of the position were not significantly affected

by the compensation, the RMSE of the velocity saw an
improvement, particularly in the initial transient.

Future research includes a more in-depth study of
body-parametrized tracking filters, as well as compar-
isons of Schmidt-Kalman filters and SLAM-based meth-
ods. Testing the methods in clutter with data association
is also an interesting topic.
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