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ABSTRACT. The goal of these notes is to present the C*-algebra C*(B, L, ) of a Boolean dynamical system
(B, L,0), that generalizes the C*-algebra associated to labelled graphs introduced by Bates and Pask, and to
determine its simplicity, its gauge invariant ideals, as well as compute its K-Theory.

1. INTRODUCTION

In 1980 Cuntz and Krieger [11] associated a C*-algebra Q4 to a shift of finite type with transition ma-
trix A. Various authors —including Bates, Fowler, Kumjian, Laca, Pask and Raeburn— extended the original
construction to more general subshifts associated with directed graphs, giving origin to the graph C*-algebra
C*(FE) of a directed graph E (see e.g. [21, 27]). Using a different approach, Exel and Laca [17] general-
ize Cuntz-Krieger algebras, by associating a C*-algebra to an infinite matrix which 0 and 1 entries. Later,
Tomforde [33] introduced the class of ultragraph algebras in order to unify Exel-Laca algebras and graph
C*-algebras. Also, motivated by Cuntz-Krieger construction, Matsumoto [30] introduced a C*-algebra asso-
ciated with a general two-sided subshift over a finite alphabet. Later, the first named author [8] extended
Matsumoto’s construction, by constructing the C*-algebra O, associated with a general one-sided subshift
A over a finite alphabet.

One of the the underlying ideas of associating a C*-algebra to a dynamical system comes from the Franks
classification of irreducible shifts of finite type up to flow equivalence [20]. This classification use the Bowen-
Franks group of the shift space, that turns out to be the Ky group of the associated Cuntz-Krieger algebra
[11]. Therefore, the idea was to study the connection between classification of shift spaces and classification
of C*-algebras. Following this point of view, the recent results of Matsumoto and Matui [31] characterize
continuous orbit equivalence of shifts of finite type by using K-theoretical invariants of the associated C*-
algebra. It is natural to try to extend the scope of this strategy to classify shift space over a finite alphabet.
By adapting the left-Krieger cover construction given in [28], any shift space over a finite alphabet may be
presented by a left-resolving labelled graph. Thus, in the same spirit of the previous constructions, labelled
graph algebras, introduced by Bates and Pask in [1], provided a method for associating a C*-algebra to a shift
space over a finite alphabet. The class of labelled graph C*-algebras contains, in particular, all the above
mentioned classes of C*-algebra. Properties like simplicity, ideal structure and purely infinity was studied in
[2, 24] and the computation of the K-theory was achieved in [3].

The original goal of the present paper was to continue the study of the labelled graph C*-algebras, by
characterizing them as 0-dimensional topological graphs [25]. However, the topological graph E associated to
the data of the labelled graph is just a realization of a Boolean algebra of a family of subsets of vertices of F,
plus some partial actions given by the arrows of E. Thus, we adapt the labelled graph C*-algebra construction,
as well as our topological graph characterization, to the context of a C'*-algebra associated to a general family
of partial actions over a fixed Boolean algebra (we call it a Boolean dynamical system). This class of C*-
algebras, that we call Boolean Cuntz-Krieger algebras associated with a Boolean dynamical systems, includes
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labelled graph C*-algebras, homeomorphism C*-algebras over O-dimensional compact spaces, and graph C*-
algebras, among others. Essentially, it is not a new class of C*-algebras, since they are (0-dimensional)
algebras over topological graphs, a class deeply studied by Katsura [25, 26]. However, the advantage of our
approach is that we can skip to deal with the topology of the graph, and instead can concentrate only in
combinatorial properties of actions over a Boolean algebra. In particular, we can use a different picture
when studying C*-algebras associated to combinatorial objects, by using groupoid C*-algebras. This is a
classical approach, used by Kumjian, Pask, Raeburn and Renault [27] when studying graph C*-algebras.
This approach attained a new level of efficiency when Exel [13] developed a huge machinery that helps to
represent any “combinatorial” C*-algebra as a full groupoid C*-algebra. The strategy is to associate to
the C*-algebra an -inverse semigroup (see e.g. [29]) and a “tight” representation (i.e. a representations
preserving additive identities on pairwise orthogonal idempotents). When this is possible, there is a standard
way of producing a étale, second countable topological groupoid which full C*-algebra is isomorphic to the
original C*-algebra under consideration. In the case of Boolean Cuntz-Krieger algebras associated to Boolean
dynamical system this strategy works, and so we can use all the machinery developed by Exel [13, 14] for
analyze the structure of the algebras under study. Recent examples of application of such an strategy are
[18, 19].

The contents of this paper can be summarized as follows: In Section 2 we recall some Boolean algebra
Theory. In particular, we summarize some well-known results about the topology of the space of characters
(the Stone’s spectrum) of a Boolean algebra. In Section 3 we define Boolean dynamical systems, that are
families of partial actions on a Boolean algebra, and their representations in a C*-algebra; the C*-algebra
associated to the universal representation will be the Boolean Cuntz-Krieger algebra. We state the existence
of a universal representation and the gauge uniqueness theorem, that will be proved later. In Section 4 we
recall the definition of Katsura’s topological graph. When F is a 0-dimensional space, i.e. both the vertex
and edge spaces are 0-dimensional, we construct a Boolean dynamical system that can be represented in the
associated topological graph C*-algebra O(FE). In Section 5 we focus on finding a universal representation of
a given Boolean dynamical system. This is achieved by constructing a compactly supported 0-dimensional
topological graph with the data of the Boolean dynamical system, and defining a representation of the Boolean
dynamical system in the topological graph C*-algebra. We conclude proving that the Boolean Cuntz-Krieger
algebras are isomorphic to a 0-dimensional topological graph C*-algebra, and using this characterization to
compute its K-Theory. In Sections 6,7 and 8 we apply Exel’s machinery to Boolean Cuntz-Krieger algebras.
To this end, we first define an *-inverse semigroup associated to a Boolean dynamical system, and then
we prove that the C'*-algebra associated to the universal tight representation of this x-inverse semigroup is
isomorphic to the unitization of our Boolean Cuntz-Krieger algebra. Finally, we define the groupoid of germs
of the partial actions of the x-inverse semigroup on the space of tight filters defined over its semilattice of
idempotents. Thus, by using Exel’s results [13, 15], we can see that the Boolean Cuntz-Krieger algebra is the
full C*-algebra of this groupoid. This allows us to work in the realm of groupoid C*-algebra, and to use the
known results on this class to characterize properties of Boolean Cuntz-Krieger algebras. In particular, we use
the groupoid characterization of the Boolean Cuntz-Krieger algebras in Section 9 to characterize its simplicity
in terms of intrinsic properties of the associated Boolean dynamical system. A similar approach was used
by Marrero and Muhly for ultragraph C*-algebras [32], although the way they constructed the groupoid is
quite different to ours; also, after the final version of the present paper was ready, we were aware of Boava,
de Castro and Mortari’s work for labelled graph C*-algebras [4], were they constructed an inverse semigroup
in a similar (although abstract) way as our inverse semigroup T' (see Section 6), but they concentrated their
attention in understanding the nature of the tight spectra, and do not work out either an associated groupoid
or a groupoid picture of labelled C*-algebras associated to it. In Section 10 we define the hereditary and
saturated ideals for a Boolean dynamical system, and we state an order lattice bijection between these ideals
and the gauge invariant ideals of the Boolean Cuntz-Krieger algebras. Finally, we realize the quotient of
a Boolean Cuntz-Krieger algebra modulo a gauge invariant ideal as the Boolean Cuntz-Krieger algebra of
another induced Boolean dynamical system. We conclude in Section 11 with some interesting examples, e.g.
labelled graph C*-algebras and subshifts C*-algebras, where we apply some of our previous results.
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2. BOOLEAN C*-ALGEBRAS

The main objects of this paper is a Boolean algebra and its associated C*-algebras. We will first introduce
basic definitions and results, mostly well-known, and then we will focus on finding a representation of a
Boolean algebra as the set of clopen subsets of a topological space (Stone’s representation). It turns out that
the points of this topological space are the set of the ultrafilters of the elements of the Boolean algebra.

Definition 2.1. A Boolean algebra is a quadruple (B,N,U,\), where B is a set with a distinguished element
0 € B, that we called empty, and maps U: Bx B — B, N:BxB — B and \ : Bx B — B that we call the
union, intersection and relative complement maps, satisfying the standard azioms (see [22, Chapter 2]).

The Boolean algebra B is unital if does exist 1 € B such that LUA =1 and 1N A = A for every A € B.
A Boolean homomorphism is a map ¢ from one Boolean algebra By to another Boolean algebra Bs such that
B(AN B) = 6(A) N $(B), $(AU B) = 6(A) U d(B), and 6(A\ B) = 6(A) \ 6(B) for all A, B € By.

Remark 2.2. What we call a Boolean algebra is sometimes called a Boolean ring, and what we call a unital
Boolean algebra is sometimes simple called a Boolean algebra. The theories of Boolean algebras and Boolean
rings are very closely related; in fact, they are just different ways of looking at the same subject. See [22] for
further explanation.

A subset B’ C B is called a Boolean subalgebra if B’ is closed by the union, intersection and the relative
complement operations.
Given a Boolean algebra B, we can define the following partial order: given A, B € B

ACB if and only if ANnB=A.
Then (B, Q) is a partially ordered set.

Definition 2.3. An element B € B is called a least upper-bound for {Ax}xen with Ay € B if it is the least
element of B satisfying Ay C B for every A\ € A. We will write the unique least upper-bound as |J Ax.
AEA

Observe that least upper-bound do not necessarily exist, but if [A| < oo then the least upper-bound of
{Axhren is U Ax.
AEA

Definition 2.4. Let B be a Boolean algebra. We say that a subset T of B is an ideal if given A, B € B, then:

(1) if A,BeT then AUB €T,
(2) if A€ then ANB€T.

Observe that in particular an ideal Z of a Boolean algebra B is a Boolean subalgebra.
Given A € B we define 74 := {B € B: B C A}, that is the ideal generated by A.

Definition 2.5. Let B be the Boolean algebra and let Z be an ideal of B. Given A, B € B, we define the
following equivalent relation: A ~ B if and only if there exists A', B’ € T such that AUA" = BUB’'. We
define by [A] the set of all the elements of B equivalent to A, and we denote by B/ the set of all equivalent
classes of B. Moreover, we say that [A] C [B] if and only if there exists H € T such that AC BUH.

Definition 2.6. Let B be a Boolean algebra. A subset & C B is called a filter of B if it has the following
properties:

FO: 0 ¢¢,
F1: given B € B and A € £ with A C B then B € &,
F2: given A,B € & then AN B € €.
If moreover £ satisfies:
F3: given A €€ and B, B’ € B with A= BU B’ then either Be€ £ or B' € €,
then it is called an ultrafilter of B.
Given two filters £; and & of B, we say that & C & if every Ay € & is also in &. This defines a partial

order on the set of filters of B. Then, an easy application of the Zorn’s Lemma shows that an ultrafilter as a
maximal filter.
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We will denote by B the set of ultrafilters of B. Given any A € B, we define the cylinder set of A as
Z(A):={¢ € B:Aec ¢}. It is an easy exercise to show that the family {Z(A) : A € B} defines a topology of
[3\, in which the sets Z(A) are clopen and compact (see for example [22, Chapter 34]). We will call B equiped
with this topology the Stone’s spectrum of B.

Example 2.7. Let X =N and let B := {F C N : F finite } U{N\ F': F finite }. Clearly, B is a Boolean
algebra. We will now describe the Stone spectrum for B of B.
ForieN, let
& ={AeB:ic A},
and let
o :={A € B:3N €N such that k€ AVk> N}.

It is easy to check that £ and each &; are ultrafilters of B.

We claim that B = {& i € NU{oo}}. To see this, let & be an ultrafilter of B such that (| A = 0. We
Aeg
will show that & = . Given k € N, let us denote by [k, 00) the set N\ {1,...,k — 1} € B. Observe that,
since (| A=0, given any k € N there exists n, € N and Ay,..., Ay, € & such that AyN---N Ay, C[k,00).
Aeg
Therefore, by F1, [k,00) € & for every k € N. Now, given any A € &, there exists k € N such that
[k,00) C A, whence A € £ by F1. On the other side, given any A € £, we claim that |A| = oco. Otherwise, if
|A] = n < oo, then there exist Ay, ..., A, € & such that AN Ay N---N A, =0, contradicting condition F2.
Thus, |A| = co. Therefore, since A € B, we have that A = N\ F for some finite set F of N. Then, there
exists k € N such that [k,00) C A. So, since [k,00) € £x, condition F1 says that A € & too. Thus & = Euo.
Therefore, we have that B = {&; : i € NU {oo}}. Finally observe that, with the induced topology, we have

that B is the one point compactification of N.

Let B be a Boolean algebra, and let Z be an ideal of B. Then, the map ¢ : 7 — B defined by «(§) ={A e
B : B C A for some B € ¢} is injective. So, given A € B, we have that Z(A) = L(ﬁ). Therefore, we will
identify f; with Z(A), so f,\q C B for every A € B.

Moreover, there exists a bijection between the ultrafilters of B/Z and the ultrafilters of B that do not
contain any element of Z. Therefore, the natural map = : B — B/Z is surjective, and it induces an injective
map 7 : B//\I — B given by [¢] — 77 1([¢]) = {A € B : [4] € [¢]} for every [¢] € B’//\I Therefore, we will
identify g/\I with %(l’)’//\I)7 SO g/\I CB.

Remark 2.8. Let T be an ideal of B, then Z N l?/\I =0 and B=7U g/\I

Lemma 2.9. Let By and By be two Boolean algebras, and let ¢ : By — Bs be a Boolean algebras homomor-
phism with (0) = 0 such that for every A € By there exists B € By such that A C p(B).

Then this map induces continuous map Q : 1/3; — B} defined as

) ={AeBi:p(A) €&}
for every £ € Bs.

Proof. Let @ : By —» 251 be the map given by o) = {A € By : 9(A) € &}. It is routine to check that
{A € By : p(A) € &} is an ultrafilter of B;. Thus, ¢ : B; — Z/S’\l is a well-defined map. If A € By, then we
claim that ¢=1(Z(A4)) = {¢ € B : p(A) € £}. Indeed, the inclusion C is clear. For the inclusion D, let £ € B,
with ¢(A) € &, and let us define the set F = {B € By : ¢(B) € £}. By hypothesis, we have that A € F,
so FO is satisfied. F1 and F2 follows because of conditions F1 and F2 of £, and the fact that ¢ preserves
intersections. Thus, F is a filter. Then by an easy application of the Zorn’s Lemma we can find a maximal
filter ¢ containing F. Thus, ¢ € B; such that »(B) € & for every B € (, so §(¢) = £ with ( € Z(A), as
desired. .

Then ¢~ 1(Z(A)) = {¢£ € Bz : 9(A) € &} = Z(p(A)) that is an open subset. Thus, @ is a continuous
map. O



C*-ALGEBRAS ASSOCIATED TO BOOLEAN DYNAMICAL SYSTEMS

ot

Given a Boolean algebra B and given A € B we let x4 : B — C denote the function defined on B by

1 ifANB#0
0 otherwise

) = {
We will regard x4 as an element of the C*-algebra of bounded operators on ¢2(13).

Definition 2.10. Let B be a Boolean algebra. Then we define the Boolean C*-algebra of B as the sub-C*-
algebra of the B(¢*(B)) generated by {xa : A € B}. We denote it as C*(B).

C*(B) is a commutative C*-algebra, and given A, B € B we have that

XA XB=Xans  and  XAuB = X4+ XB — XAnB,
where xg = 0. Thus, C*(B) = span{xa : A € B}.
First, recall that the spectrum of C*(B), denoted by C*(B), is the set of characters of C*(B). Observe
that an additive map 7 : C*(B) — C is a *-homomorphism if and only if given A, B € B
(€1 n(xa)n(xs) = n(xans)
(€2) n(xaus) = n(xa) +n(xs) = n(xans) -
If 7 is a character of C*(B), then we define
& ={AeB:n(xa)=1}.
Recall that, since x4 is a projection for every A € B and 7 is a *-homomorphism, 7(x ) is either 0 or 1.
Then the following lemma is straightforward.

Lemma 2.11. Ifn is a character of C*(B), then &, is an ultrafilter of B.

Given an ultrafilter £ of B, we define the unique additive map 7 : C*(B) — C such that

- { 4 4458

Lemma 2.12. ¢ is a character of C*(B).

Proof. We must check that ne satisfies C1 and C2. For C1, let A, B € B, and recall that x4 - xB = xanB-
First, suppose that n¢(xanp) = 0. Therefore, AN B ¢ £ and hence, by F2, either A or B are not in £. Thus,
ne(xa)ne(xB) = 0 = ne(xanB), as desired. Now, suppose that ne(xanp) = 1, so AN B € £. Therefore, by
F1, it follows that A, B € £ too, and hence n¢(xa)ne(x5) =1 = ne(xanp), as desired. Thus, C1 is verified.

For C2, let A, B € B. First, suppose that 7¢(xaup) =0. So, AUB ¢ &, and since A,B,ANB C AUB, it
follows from F1 that A, B, AN B ¢ £. Therefore,

ng(xauB) = 0 =1n¢(xa) +1¢(xB) — 1(XanB) -
Finally, suppose that AU B € £. Hence, by F3, either A or B belongs to £. First suppose that A, B € &.
Then, by F2 so does AN B. Therefore,
ne(xaup) = 1+1—1=mne(xa) +ne(xs) —n(xans)

as desired. Now, suppose that A € £ but B ¢ £. By F2, we have that AN B ¢ &, so

ne(Xaup) =1+ 0—0=mne(xa) +ne(xB) — n(xans)
as desired. 0

The following result follows directly from the definitions.

Proposition 2.13. Let £ be an ultrafilter of B and let 1 a character of C*(B). Then &, = & and ne, = 1.
Therefore, there is a bijection between the ultrafilters of B and the characters of C*(B).

By Proposition 2.13 there is a bijection between B and the set of characters of C'* (B). Recall that by the

—

Gelfand-Naimark Theorem C*(B) = Cy(C*(B)), where C’/*(\B') has the Jacobson topology. Recall that, given

a subset of Y of C%, we define the closure of Y as {n € C/*(\B') :Kern 2 () Ker p}.
peY
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Proposition 2.14 (Stone’s Representation Theorem). Let B be a Boolean algebra and let B be the Stone’s
spectrum of B. Then C*(B) and B are homeomorphic topological spaces. Therefore, C*(B) = Cy (g)

Proof. First recall that, using Proposition 2.13, we identify a character n of C*(B) with its associated ultrafilter
&,. Observe that, given £ € B, we have Ker ne = {xp : B ¢ £}. Then, given a set Y C B, we define

Iy := ﬂ Ker ne =span{xp: B¢ &, V€ €Y}.
gey
Using the definitions, it is straightforward to check that Iy =span{xp: B€ B, Y N Z(B) = 0}.

Let {Ax}rea be a family of elements of B and let us consider V := |J Z(A)). We will prove that
A€EA

Y =B \ V is closed in the Jacobson topology, whence every closed subset of B is also closed with respect to
the Jacobson topology. Hence, Iy =span{xp : B € B, Z(B) C V}. Then, the closure of Y with respect the
Jacobson topology is the set

{¢€B:Kerne DIy} ={¢eB: if Be¢then Z(B) £ V}.

Let £ ¢ Y but in the closure of Y with respect to the Jacobson topology. Then, £ € V = |J Z(A,). So,
AEA

there exists A’ € A such that £ € Z(Ay). But since Z(Ay/) C V, this contradicts that Ay € f.e Therefore, Y

is closed with respect to the Jacobson topology, as desired. So, every closed subset of B is also closed with

the Jacobson topology.

Now, let Y be a closed subset of B with respect the Jacobson topology, and let ¢ be an ultrafilter that does
not belong to Y. Therefore, we have that Ker ne 2 Iyy. This is equivalent to say that there exists Be € £
such that Z(B¢) NY = (. Thus, for every £ € B\'Y we can find B¢ € B such that Z(B¢) NY = (). Then, we
have that B\ Y = U Z(Be). Hence, B\ Y is an open set because it is a union of open subsets. Therefore,

£eB\Y
Y is a closed subset of B. (|

Corollary 2.15. Let B be a Boolean algebra and let B be the Stone’s spectrum of B. Then, given any A € B,
we have that T is a compact subspace of B.

3. ACTIONS ON BOOLEAN SPACES AND CROSSED PRODUCTS

By the previous results, it is possible to define a partial action on the Boolean C*-algebra by describing a
partial action on the Boolean algebra. This gives a more intuitive way to understand the actions at the level
of the C*-algebra, and to extract information of this action by understanding the dynamics of the elements
of the Boolean algebra. In this section, we will introduce dynamical systems on a Boolean algebra, and
define what is a Cuntz-Krieger representation of this dynamical system on a C*-algebra. Essentially, this
is a generalization of a Cuntz-Krieger representation of directed graphs, considering the set of vertices the
Boolean algebra, and the set of edges the partially defined actions on the vertices.

Definition 3.1. Let B be a Boolean algebra, we say that a map 6 : B — B is an action on B if 6 is a
Boolean algebras homomorphism with 6(0) = 0. We say that the action has compact range if {0(A)}aep has
least upper-bound, that we will denote Ry. Moreover, we say that the action has closed domain if there exists
Dy € B such that 0(Dy) = Ry.

Remark 3.2. Observe that given an action 0 with compact range and closed domain, there is not necessarily
a unique Dy with 0(D,,) = Ry, but we will assume that in the definition there is a fized one.
oo
Given a set £, and given any n € N, we define L™ = {(a1,...,an) : oy € L)}, and L* = |J L™, where
n=0

L0 = {0}. Given o € L™ for n > 1, we will write it as & = oy - - o, where a;; € L. Given 1 <1 <k < n, we
define ) 1= oy - - - . We can also endow an order on L* as follows: given o € L™ and 3 € L™,

a<p if and only if n<mand o= S, -

In case that a < 8, we define 3\ « := Bjp41,m) if n < m and @ otherwise.
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Definition 3.3. A Boolean dynamical system on a Boolean algebra B is a triple (B, L,8) such that L is a
set, and {0 }acr is a set of actions on B. Moreover, given o = (avy,...,ay) € LZY the action 6, : B — B
defined as 0, = 04, ©---00,, has compact range and closed domain.

Notation 3.4. Given any o € L*, we will write Dy := Dy, and Ro = Ry, . Also, when a = 0, we will

define Oy = Id, and we will formally assume that Ry = Dy := |J A, in order to guarantee that A C Ry for
AeB
every A € B.

Definition 3.5. Let (B, L,60) be a Boolean dynamical system. Given B € B we define
Ap:={a€eL:0,(B)+#0} and Mg :=|Apg].

We say that A € B is a regular set if given any ) # B € B with B C A we have that 0 < A < 00, otherwise
is called a singular set. We denote by Bycy the set of all regular sets where we will include (.

Definition 3.6. A Boolean dynamical system (B, L,0) is locally finite if for every & € B there exists A € 3
such that g < 0o.

Observe that if |£] < oo then (B, L, 0) is locally finite.

Definition 3.7. A Cuntz-Krieger representation of the Boolean dynamical system (B, £, 0) in a C*-algebra
A consists of a family of projections {P4s : A € B} and partial isometries {S, : a € L} in A, with the
following properties:

(1) If A,B € B, then Ps - Pg = Panp and Paup = Pa + Pp — Panp, where Py = 0.

(2) Ifac L and A e B, then Py-Sy = Sa - Py (a)-

(3) If a, € L then S’ - Sg = 6a,p - Pr,.

(4) Given A € By we have that

Py= > Sa-Py (a)-Si.

Q€A
A representation is called faithful if P4 # 0 for every A € B.

Given a representation {Pga, S,} of a Boolean dynamical system (B,L,6) in a C*-algebra A, we define
C*(Py, S4) to be the sub-C*-algebra of A generated by {P4, S, : A€ B, a € L}.

A universal representation {pa, s} of a Boolean dynamical system (B, £, 0) is a representation satisfying
the following universal property: given a representation {Pa,S,} of (B, L, 0) in a C*-algebra A, there exists
a non-degenerate x-homomorphism mg p : C*(pa, so) — A such that mg p(pa) = Pa and 75 p(sa) = Sa
for A€ Band a € L. We will set C*(B,L,0) := C*(pa,sa). The existence of the universal representation
can be found in [2], but we will show it in a different way in Section 5: given a Boolean dynamical system
(B, L,0), we will construct a topological graph E [25], and we will prove that there exists a one to one
correspondence between Cuntz-Krieger representations of (B, L,6) and Cuntz-Krieger representations of E.
Hence, the universal C*-algebra C*(B, L, 0) is isomorphic to the universal C*-algebra O(FE) associated to the
topological graph E.

Theorem 3.8 (Existence of a Universal representation). Given a Boolean dynamical system (B, L,0) there
exists a unique universal representation of (B, L,0). If C*(B, L,0) is the associated C*-algebra, we will call
C*(B, L,0) the Cuntz-Krieger Boolean algebra of the Boolean dynamical system (B, L, ).

By the universality of C*(B, L, 6), there exists a strongly continuous action 5 : T ~ Aut (C*(B, L,0)) such
that 8.(pa) = pa and 5,.(sq) = 28, for every A € B, o € £ and z € T. The action f is called the gauge
action

Therefore, we can use the representation of C*(B, £, ) as a topological graph C*-algebra to obtain a gauge
uniqueness theorem [25, Theorem 4.5].

Theorem 3.9 (Gauge Uniqueness Theorem). Let (B, L,0) be a Boolean dynamical system and let {Pa, Sqo}
be a representation of (B,L,0) in A. Suppose that Py # 0 whenever A # (), and that there is a strongly
continuous action v of T on C*(Pa,Sa) C A, such that for all z € T we have that v, o mgp = Tg.p © Bs.
Then, mg T s injective.
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4. 0-DIMENSIONAL TOPOLOGICAL GRAPHS

Our goal in this section is to use a topological graph E = (E°, E' d,r) with E° and E' being second
countable, locally compact 0-dimensional spaces (i.e., Hausdorff, totally disconnected and having a basis
consisting of clopen sets) to construct a Boolean dynamical system.

First, we should recall the definition of topological graph given in [25].

Definition 4.1. Let E° and E' be locally compact spaces, let d : EY — E° be a local homeomorphism, and
let v : E' — E° be a continuous map. Then, the quadruple E = (E°, E*,d,r) is called a topological graph.
We will call E a 0-dimensional graph if E° and E' have 0 covering dimension.

Let us denote Cyq(E!) the set of continuous functions on E' such that

(€)= > le)® < oo
ecd—1(v)
for any v € E° and (£|¢) € Co(EY). For £,( € Cy(E') and f € Co(E®), we define £f € Cy(E!) and
(€]¢) € Co(E") by
(£f)(e) = &(e)f(d(e))  foree B!
€O = 3 &ele) forveE’
e€d—1(v)

With these operations, Cy(E") is a right Hilbert Co(EY)-module. We define a left action m, of Co(EY) on
Ca(EY) by (m-(f)€)(e) = f(r(e))é(e) for e € EY, € € Cy(E') and f € Co(E®). In this way, we define a
C*-correspondence Cy(E') over Co(E°).

Definition 4.2. A Toeplitz E-pair on a C*-algebra A is a pair of maps T = (T°,T*), where T° : Co(EY) —
A is a x-homomorphism and T' : Cq(E') — A is a linear map, satisfying:

(1) THE)'TH(C) = TO((8l¢)) for &, ¢ € Ca(EY),

(2) TONTHE) =T (mr(f)E) for [ € Co(E®) and § € Ca(EY).
We will denote by C*(T°, T") the sub-C*-algebra of A generated by the Toeplitz E-pair (T°,T").

Given a topological graph F, we define the following 3 open subsets of E°:
Eyee = E°\ 1(EY),
EJQM := {v € E° : 3Vneighborhood of v such that »~*(V) is compact}, and
E), = E%, \ EY..

sce

We have that 7, " (KK(Cy(E"))) = Co(EY,,) and Ker 7, = Co(EY,.). For a Toeplitz E-pair T = (T°,T"), we
define a *-homomorphism @ : K(Cy(E')) — A by ®(b¢ ) = TH ()T ()* for £,¢ € Cy(EY).

Definition 4.3. A Toeplitz E-pair T = (T°,T") is called a Cuntz-Krieger E-pair if T°(f) = ®(m.(f)) for
any f € Co(EY,). We denote by O(E) the C*-algebra is generated by the universal Cuntz-Krieger E-pair
t = (t0t1).

Therefore, O(E) is generated by {t°(f) : f € Co(E®)} and {t1(¢) : € € Cq(E')}, where (¢°, 1) is a universal
Cuntz-Krieger pair of F.

Definition 4.4. Let E be a topological graph, then a family {Vy}acr of subsets of E* compactly supports E
if it satisfies the conditions:

1) Vo is a compact clopen set of E' for every a € L,
) E= U Va,

2
acel

3) Vo NV =0 when a # B,

4) the restriction dy, is a homeomorphism for every a € L,

(5) there exists a compact clopen D, with r(V,) C D, for every a € L.

(
(
(
(

Remark 4.5. If E is a topological graph with E° and E' being second countable and locally compact 0-
dimensional spaces, then it always exists {V, }aer that compactly supports E.
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Then, we can trivially define a Boolean dynamical system.

Lemma 4.6. Let E be a 0-dimensional topological graph that has a family of subsets {Va}acr of E' that
compactly supports E. Then if B is the Boolean algebra of the compact and clopen subsets of E°, and given
a € L we define the 0,(A) :=d(r~1(A)NV,) for every A € B, then (B, L,0) is a Boolean dynamical system.

Proof. Tt is straightforward to check that 6,, is an action on B with compact range R, := d(V,) and compact
domain D,,. 0

Remark 4.7. Observe that if E is 0-dimensional topological graph, then we can construct a Boolean dynamical
system. However, it is not unique, because it could exist several {Vy,}aer C E satisfying the above conditions.
We will see that, despite of the choice of the above pairs of sets, the C*-algebras of the associated Boolean
dynamical systems are isomorphic.

Lemma 4.8. Let E be a 0-dimensional topological graph and let {Vy}acr be a family of subsets of E!
satisfying conditions of the Definition 4.4. Then if (B,L,0) is the associated Boolean dynamical system
defined in Lemma 4.6 then given A € B we have that

(1) AC EY, if and only if Aa = 0.

(2) AC E},, if and only if Aa < oo.
(3) AC Erog if and only if A € Breg.

Proof. (1) We have that A C EY__, this means that

sce’

h=Anr(EY) :Aﬂr(U Vo) = U Anr(Vy),
ael acl
so ANr(V,) = 0 for every o € L, but it is equivalent to 7~1(A) NV, = () for every o € £. Then by definition
0o (A) = 0 for every o € L, whence Ay = 0.
(2) Let A C E?m, by definition r~!(A) must be compact. Then since |J (r~1(A)NV,) is an disjoint open
ael
covering of r~1(A), only a finite number of 7~1(A) NV, can be non-empty. But this is equivalent to say that
only a finite number of 6,(A) = d(r~*(A) NV,) is non-empty, whence As < oo.

(3) This is clear using (1) and (2). O
Proposition 4.9. Let E be a 0-dimensional topological graph and let {Vo}tacr be a family of subsets of
EY satisfying conditions of the Definition 4.4. Then if (B, L,0) is the associated Boolean dynamical system
defined in Lemma 4.6, given any Cuntz-Krieger E-representation (T°,T') on A, the family of elements of A
defined by

Pa:=T"xa) and S, :=T*(xv,,) -
for every A € B and o € L, is a representation of (B, L,0) on A, i.e.,
(1) IfA,B € B then PP = Panp and Paup = Pa + Pg — Panp, where P@ =0.
(2) If a € L and A € B then PsS, = SQPQQ(A).
(3) If a, B € L then S: S, = Pr,,, and S:Sg =0 unless a = 3.
(4) For A € Byeq, we have
Py = Z SaPs,(a)Sk .

aEA

Proof. For (1), observe that {Pa}aep is a family of commuting projections. Then, Panp = P4Pp and
Paup = Pao+ Pp — Panp for every A, B € B follows from the fact that T° is a homomorphism. For (2), given
A € B and a € L, we have that

PaSa =T (xa)T" (xv,) = T"(m(xa)xv.,) = T ((xa 0 r)xv,.)
=T (Xp-1(a)Xva) = T (Xe-1 )7
=T (xva) T’ (Xag—1 (ayvi) = T 0va )T (Xo.(4)) = Sa P () -
For (3), we look at the equality
SaSs =T (xv.) T (xvi) = T ((xvaIxvi)) -
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By the definition,

(xvalxvy)(v) = Z xv.. (€)xv,(€)

eed—1(v)

for any v € E°. Since V,, N V3 = 0 whenever a # 3, we get that this expression will sum 0 if o # 3. Now,
since d|y, is a homeomorphism it follows that

Y v(@F ={e € Va:dle) = v} = xava) (v) = xR, (V) -
ecd—1(v)

For (4), we will use the Cuntz-Krieger relation

T°(f) = ®(m,(f)),
which holds whenever f € CO(E?g). Since A € B¢y, by the Lemma 4.8 we have that A C E?g. So, it is
enough to show that
mr(xa) = Z Hxva7xva'X9a(A)'
a€EA
Evaluating at £ € Cy(E') and e € E', we have that

Z OXVQ X Ve "X0q (A) (6)(6) =

a€EA 4

> xva (@) (xv - Xou ()|€)(d(e)) =

aEA

dToxva@ | DD xva(@)xo.ade))i(e)

a€EAy d(e’)=d(e)

Whenever e, e’ € V,, for some a € L, since d(e) = d(e’) if and only if e = ¢/, this reduces to

Z XRa (€)X0,(a) (d(€))E(e) = { Xoo()(d(e))e(e) - whenever ¢ € Vi for a € A

0 otherwise
Q€A

In addition, 0,(A) = () when o ¢ A4. Thus, we can omit the case clause. What remains is xg, (a)(d(e))¢(e)
when e € V,, for any o € £. On the other hand,

(mr(xa)€)(e) = xa(r(e))é(e) .-

Now, when e € V,, for some o € L, we get that xa(r(e)) = xapr—1(a)nv.)(d(€)) = xp.(a)(d(e)), so we are
done. g

5. A FAITHFUL REPRESENTATION OF (B, L, 6).

Now, given a Boolean dynamical system (B, L, 8), we will construct a faithful representation of (B, £, 6) in
O(E), where E is a 0-dimensional topological graph.
Let (B, L, 0) be a Boolean dynamical system. We define EY to be the Stone’s spectrum B of B, and E! to
be the disjoint union
E' = | | Ir.,

ael

of Stone’s spectrums of the principal ideals of B generated by the range R, of the actions 6,. Since B and
each I/R\a have a basis of clopen sets, they are 0-dimensional spaces, and since they are totally disconnected
spaces they are locally compact Hausdorff spaces too. These properties are transfered to arbitrary unions of
such spaces, so E° and E' are also locally compact Hausdorff 0-dimensional spaces. Also observe that, given
any o € L, then 1{72: is a clopen and compact subset of B.
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Notation 5.1. To distinguish the edge and the vertex space of the topological graph E, we will denote

EO:{vngeg} and E1:|_|Eé,
acl

where E} = {e? 1€ € I/R\a} Given a € L and A, B € B with B C R, we define the clopen and compact
subsets

Na={ve: A& CE° and %:={e¢ :Be&} CE,.
Proposition 5.2. Let (B, L,0) be a Boolean dynamical system, and let E° = B and E* = L I/R\a If we

acl
define the maps d,r : E' — E° as

d(eg) = ve and  r(eg) = Ug(e)

for every a € L and & € Z{R\a; then (E°, E',d,r) is a topological graph.

Proof. First, by the above arguments, we have that E° and E! are locally compact Hausdorff spaces. Let
d: E' — E° be the map defined by d(eg) = v for some eg € E,. Every point of E' belongs to a component
E! for some a € £, and clearly we have that dp1 is an homeomorphism. Thus, d is a local homeomorphism.

Let O : I/R\a — I/D: be the induced map, that is continuous by Lemma 2.9. Thus, (E°, E',d,r) is a
0-dimensional topological graph. O

Corollary 5.3. Let (B, L,0) be a Boolean dynamical system, let E be the associated topological graph defined
in Proposition 5.2, and let (t°,t') the universal Cuntz-Krieger E-pair. Then,

ba = tO(XNA) and Sa 1= tl(XEé)
for A€ B and o € L, defines a faithful representation of (B, L,0) in O(FE).
Proof. Let E = (E°, E',d,r) be the topological graph defined in Proposition 5.2. Observe that {El}ner
compactly supports E. It is straightforward to check that the Boolean dynamical system associated to E

defined in Lemma 4.6 is (B, L, ) again. Now, using Proposition 4.9 with the universal faithful representation
(t°,t1) of O(E), we conclude the proof. O

Our next step is to prove that the faithful representation constructed in Corollary 5.3 is the universal one.
To do that, we first have to look closer at the topological graph E associated to a Boolean dynamical system.
The following lemma will be useful in the sequel.

Lemma 5.4. Let (B,L,0) be a Boolean dynamical system, and let « € L and & € fp\a. Then, given any
& € Ir, such that 0,(A) € & for every A € £, we have that £ = {B € Ip, : 0,(B) € ¢'}.

Proof. The first inclusion is clear because &' contains 6, (A) for every A € £&. Now, let B € B such that
0, (B) € &. Then, given any A € £ we have that 0,(A) € £’. So, we have that

0 % 0a(A) N 0a(B) = 0,(ANB) € ¢

Thus, AN B # (. Then, A = (AN B)U(A\ (AN B)), but by condition F3 it follows that either AN B or
A\ (AN B) belongs to £. Observe that A\ (AN B) cannot belong to £, as otherwise

0(ANB)NO,(A\(ANB)) =0,
contradicting condition F2 of the ultrafilter &’. Therefore, AN B € £, whence so does B by condition F1. [

Lemma 5.5. Let (B,L£,0) be a Boolean dynamical system, and let E be the topological graph defined in
Proposition 5.2. Then, given e € EL, the following statements are equivalent:

(1) r(e) € Na.
(2) d(e) S NQN(A).
(3) ee My (-
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Proof. (2) < (3) is clear by definition. Now, let e = eg for some o € £ and § € I/R\a Suppose that
ver = 1(eg) € Na, where ¢ = {B € Ip, : 0,(B) € £}, whence vg € Ny, (p) for every B € ¢'. Since A € ¢, it
follows that ve € Ny, (a), as desired. Now, let us suppose that d(eg‘) = ve € Ny, (a), so that ,(A) € . Since
r(ed) = ver, where &' = {B € Ip, : 04(B) € £}, it follows that A € {'. Thus, ver € Na, as desired. O

Example 5.6. Let X = NU{w}, and let B be the minimal Boolean space generated by the subsets {F C N :
F finite } U{N\ F : F finite } U{w}. We have that B is the compact space {vc, : i =1,2,...,00} U {ve,},
where &, ={A € B:w e A}. Let L ={a}, and define

GQ(A):{ gT if A={w}

otherwise ’

that is an action on the Boolean space B. Therefore, (B, L,0) is a Boolean dynamical system, and let E be
its associated topological graph. Thus, E° = {vg, : i =1,2,...,00} U{ve,} and E' = {eg :i=1,...,00}.
Then, d(eg‘i) = ve, and r(eg) = vg, for everyi=1,2,...,00. A picture of this topological graph will be as
follows:

ofoc

Example 5.7. Let B be the minimal Boolean algebra generated by
{F:F CZ finite yU{Z\ F : F CZ finite} .
Let 0, 0y and 6. be actions on B given by the following graph

b b b Q b b b

.. ._2 ._1 .O .1 .2 DR
~— ~— ~— ~— ~— ~—
C (& C c (& c

We have that B = {&, :n € Z} U {€x} where &, = {A€B:nc A} and £ = {Z\ F : F C Z finite}.
Let us consider its associated topological graph E, where E® = {ve, : n € Z} U {ve_} is the one point
compactification of Z, Ey = {e¢ }, Ef = {egn :n€Z}U {egoo} and By = {ef :ne€Z}U{e_}. Hence,

E'=E'UElUE!

is a compact space because E}, El} and E} are compact by Corollary 2.15. Then, we have that d(ego) = g,
and r(e) = vg,. Given n € Z, we have that d(eé’") = ve, and r(egn) = Vg, ., and d(eg ) = vg, and
r(ef ) = ve, .. Finally, d(egoo) =d(eg_) = ve,, and r(eé’w) =r(ef ) = ve. -

Now, using Lemma 4.8 we can characterize the following sets: given A € B
(1) Na C EY_ if and only if A\q =0,
(2) Na C EY,, if and only if A4 < oo,
(3) Na C EY, if and only if for every ) # B C A we have that 0 < Ap < oo,
(4) Na C Egg if and only if there exists ) # B C A such that Ag € {0, 00}.

Theorem 5.8. Let (B, L,0) be a Boolean dynamical system, and let E be the associated topological graph de-
fined in Proposition 5.2. Then, the faithful representation constructed in Corollary 5.8 is universal. Therefore,

C*(B, L,0) = O(E).

Proof. Our strategy will be to prove that any representation {P4, S} of (B, L,6) induces a representation
(T°, Tt) of the associated topological graph E constructed in Proposition 5.2, such that T°(xar,) = Pa
and T'(xg1) = Sa. Then the universality of (¢°,¢') will induce the map 7 : O(E) — C*(Py4,S,) with
pa=1"(xna) = TO(xwva) = Pa and s =t (xg1) = T'(xg1) = Sa-
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First, we claim that the families {xr, : 4 € B} and {xmq : a € L, A € Ig,} generate Co(E’) and
C4(EY) respectively. Recall that the definition for & € Co(E') to be in Cy(E?) is that

> lEE@P <oo
ecd—1(v)
for all v € E°. Since d is injective on a given Ej, we just show that {xaq : A € Zg,} generates C(E}) for
each a € L. Then, Proposition 2.14 proves the claim.

Therefore, we define T° : Co(E®) — A by xar, — Pa for every A € B, and T' : Cy(E') — A by
Xmg — SaPa for every A € I, and a € L. T? is an *-homomorphism by [9, Lemma B.1], and T is a
well-defined linear map since it decreases the norm. Given o, 8 € L, A € Iz, and B € Ig,,

T () T (Xage) = (SaPa)"SpPp = ba,sPans.
Observe that, given e # ¢’ with d(e) = d(e’) = v, if e € E}, for some a € L then ¢’ ¢ E,. Indeed, let e = g
and ¢ = e?, for some o, € L, £ € f/z: and ¢’ € I/R\ﬁ. By hypothesis ve = d(e?) = d(eg,) =ve, 80 £ =¢.

But since ef =+ e?, it implies that « # 3.
Therefore,

(Mg s ) (v) = Xms (€)X (€)
d(e)=v

= JO‘vBXNAXNB (U) = 504,5XNAFTNB (U) )
and hence
T2((xmgxane ) = OasPans = T (xmg) T (X))
as desired. Now let a € £, A € B and B € Zr_. Then,
TO(xna )T  (Xmg) = PaSaPs = SaPy,4yPp = SaPo,(a)nE -

Thus, given e € E', and Lemma 5.5, we have that

WT(XNA)(XME)(S) = XNa (T(e))XM;; (e)
= XMg ) (€)xomg (€)
= XMga(A)nNB(e) .
Hence,
T ()T (Xmg) = SaPo, (ayns =T (mr (xava) (xmz))

whence (T°,T") is a Toeplitz E-pair.

Finally, let f € Co(E?,). We need to prove that T°(f) = ®(m,.(f)), where ® : K(Cq(E')) — B is the
associated *-homomorphism associated to (7%, T"). Given e > 0, we will construct f’ € Co(Ep,) such that
|f — f'll < e and such that ®(m,.(f')) = T°(f"). Let K be a compact subset of E; such that [feo\kll <e.
Given v € K, we define the open subset Z, := {w € E; : || f(v) — f(w)|| < e}. Then, we can find A, € By,
such that v € Na, C Z,. Therefore, we have that K C |J Na, C E,Qg, but since K is compact, there exist

veK
V1,...,0, € K such that K C |J NAw' Observe that we also can assume that Ny, ﬂ./\/'Avj = () for i # 7,
i=1 ’ ’
and that K = |J Na, . Then, we define f':= 31" | f(vi)xau, € Co(EY,). Clearly, ||f — f'|| <e. We claim
:1 4 k2

K2
that

n

/ — .
()= fw) | > Ornis )5 a,

i=1 a€Aa,,
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Indeed, let £ € Cy4(E") and e € E}. Observe that 0 < [Ay4, | = Aa, < oo for every i = 1,...,n. Then we

have that
; f(vl) Z GXM/a

05 (Av;)
BeEAA,,

(©)(e) =

sX B
M9/3(Avi)

i) | X e, @b, l00E) ] =

BEA A,

Sfwy| Do Xpmf )(e) > WE(G/) =
i=1 s g

e, d(e')=d(c)
Z fy | > XM§B<AU.>(6)€<€)
i=1 BeEAA,, ‘

Observe that, by Lemma 5.5 and the fact that N, NNy, =0 for i # j, we have that r(e) € K if and
only if there exists a unique 1 < k < n such that e € My (Ay.): Then,
[e3 'Uk:

n

Z f(vz) Z XM? A )(6)5(6) = Z f(vi)XNAvi (r(e))f(e) = ﬂ—r(f/)f(e) )
g i=1

=1 ,BEAA”

as desired.
Finally, since {P4, S, } is a representation of (B, L, ), we have that

TO) = 3T @IT (xwa,, ) = D0 F@)Pa, =D F@) Y SaPoan)Sa,
=1 =1 =1

ac€la,,

because A,, € Byey. But

O(mr(f') = @ Zf(vi) > fu =

« XM
00 (Av,) Mo (Av;)
acla,,

Sfw) | Yo Tl(XM;;a(AW))Tl(XMga(Avi))* => fi) > SaPy.(a,)(SaPo.(a,))" =
3 =1

i=1 Q€A 4, a€la,,
D @) D SaPaa,Si=Tf).
i=1 ac€la,,
Thus, (T°,T1) is a Cuntz-Krieger E-pair, as desired. O

We can use the characterization of C*(B, L, 0) as a topological graph to deduce the following results:

Corollary 5.9. [25, Section 6] Let (B, L,0) be a Boolean dynamical system.
(1) C*(B,L,0) is nuclear,
(2) if B is a unital Boolean algebra then C*(B, L, 0) is unital,
(3) if B and L are countable then C*(B, L, 0) satisfies the Universal Coefficients Theorem.

Our intention now is to state a gauge invariant theorem for C*(B, L,6). By the universality of O(FE),
there exists a gauge action 8’ : T ~ Aut (O(E)) defined by BL(t°(f)) = t°(f) and BL(t'(¢)) = zt' (&) for
f € Co(EY), £ € Cy(E') and 2 € T. Moreover, the map ® : C*(B, L,0) — O(FE), defined by pa — t°(xn,)
and s, — t1(xm, ) for A € B and a € L, is an isomorphism. Then, it is clear that 8, oW = Wo 3, for z € T,
where 3 is the gauge action of C*(B, L, 6) defined in Section 3. Therefore, using the above isomorphism W,
we will not make distinction between C*(B, L,6) and O(F), and between their respective gauge actions
and A'.
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Theorem 5.10. Let (B, L,0) be a Boolean dynamical system, and let {Pa, S} be a Cuntz-Krieger represen-
tation of (B,L,60) in A. Suppose that Py # 0 whenever A # (), and that there is a strongly continuous action
v of T on C*(Pa,Sq) C A, such that for all z € T we have that y,oms p = ms,pof,. Then, mg p is injective.

Proof. The result follows by Theorem 5.8, the above comment and [25, Theorem 4.5]. (|

Finally we will compute the K-Theory of Cuntz-Krieger Boolean algebras. To do that, we will use the above
characterization as topological graph C*-algebra, and then we will use the results of Katsura [25, Section 6]
to give a 6-term exact sequence that allows to compute the K-Theory of the Cuntz-Krieger Boolean algebra.
The peculiarity of the space, that is 0-dimensional, implies that this computation reduces to computing the
kernel and cokernel of a map between the K-groups of certain subspaces of the vertex spaces.

First recall that, given a topological graph E, there is a 6-term exact sequence

L —[mr)

Ko(Co(EY,)) Ko(Co(E")) Ko(O(E))
K1(O(E)) K1 (Co(Ery)) et K1(Co(EY,))

where ¢ : Co(Ey,) — Co(E°) is the natural map, and m, : Co(E?,) = K(Ca(E")).
Let (B, L, 6) be a Boolean dynamical system, and let E be the associated topological graph. Recall that

~ —

E% = B, that E,Qg = B,¢g, and that by the Stone’s Representation Theorem we have that

L —[mr]

KO(C*(Breg)) KO(C*(B)) KO(O(E)) :
K1 (O(E)) 0 (l)

Observe that, since EY is a 0-dimensional space, we have that
Ko(C*(B)) = Ko(Co(E®)) = Co(E°,Z) = C(B,Z),
where C(B,Z) is the Z-linear span of the functions defined on B by
1 ifANB#0)
xa(B) = { 7

0 otherwise
for A, B € B.

Now, given A € B,.q, we have that the characteristic function xn, € Co(E?,), and hence m,(xnry) =
D acAs GXMg“a(A) o . Therefore, the map [m,] : C(Brey, Z) — C(B,Z) is given by xa = >, ca, X0a(A)
for every A € Bg.

Proposition 5.11 (cf. [25, Proposition 6.9]). Let (B, L, 0) be a Boolean dynamical system. Then, Ko(C*(B, L, 0)) =
Coker (Id — [r,]) and K1(C*(B, L,0)) = Ker (Id — [n,]), where Id — [m,] : C(Byeg, Z) — C(B,Z) is given by

XA P XA = D qen, Xooay JOr A € Breg.

Remark 5.12. We would like to remark that Corollary 5.9 is a generalization of [3, Corollary 3.11], that

Theorem 5.10 is a generalization of [3, Corollary 3.10], and that Proposition 5.11 is a generalization of [3,
Theorem 4.4].

@
0o (A)

6. AN *-INVERSE SEMIGROUP

In this section we will associate to C*(B, L, 6) an #-inverse semigroup, which will help us to construct the
groupoid used to represent the above algebra as a groupoid C*-algebra. In order to attain our goal we will
first associate to C*(B, L, 0) a suitable *-inverse semigroup.

Definition 6.1.
T =Tp.o = {sapAsz; ca,feELVAEBNAACRLNRPU{0} CC*(B,L,G).
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Proposition 6.2. T is an *-inverse semigroup.
Proof. First notice that, given o, 8 € L* and A € B,

SapASE = SapAﬁRaﬁR[g SZ 9
so the assumption implies that sapasp # 0.
Now given sapasy, syppsj, we have that

Say' P,/ (A)NBS; if y=pvand Roy NRs # 0
SaPAne, (B)Ssg if B="B and Ra NRsp # 0
SaPANBSS ify=p0and Ry N Ry #0

0 otherwise

SaDASj " SyDBS5 =

So T is closed under multiplication. Moreover,
(5apASE)" = sppASH

for every o, 8 € £* A € B with ) # A C R, NRpg. Thus, T is an *-semigroup with 0.

Next, notice that for any s = sapasy € T', we have that s = ss™s:

558"s = (SaPASE " SBPAS,) " SaPASE = SaPASy * SaPASE = SaPASE = S.

Thus, every s € T is a partial isometry.

Finally, notice that the idempotents ss*, for s € T, have the form s,pas’. Hence,
8P, (A)nBSy if B=af
SaPAne,, (B)Ss if a = pa’

SaPANBS, ifa=p
0 otherwise

SaPASy - SBPBSp =

and it is straightforward to check that these projections pairwise commute. Thus, 7" is an *-inverse semigroup
by [29, Theorem 1.1.3]. O

Corollary 6.3. C*(B,L,0) = span{z : x € T}
Definition 6.4. We will define E(T) to be the set of idempotents of T, that is
E(T) = {sapass:aeL* AeB, D+ AC R, U{0}.

In order to go forward, we want to keep control of the natural ordering of £(T). We let < denote the
natural partial order on T'. Thus, if s,¢t € T, then s < t if there exists an e € £(T') such that s = et.

Definition 6.5. Given ) # A € B, and n € N, we define
a={aeL":0.(A)#0},
and AS" = | AK.
k=1

Lemma 6.6. Let o, € L*, A,B € B with A C R, and B C Rg. Then:

(1) sapass <pp if and only if A C 0,(B).

(2) pa < sgppsy if and only if: (i) Afl = {B} and (i) 83(A) C B.
Proof. (1) sapas;, < pp is equivalent to s4pASs) - PB = Sapas,. But then s,pasy, - pp = SaPang,(B)Sa =
Sapasy if and only if A C 6,(B).

(2) pa < sgpps} is equivalent to ps = pa - SppBSh = 55Pe,(A)nBSj- Multiplying on the right side by sg
we have that pass = sgpg,(a)nB, and multiplying on the left side by s;‘g we have that sgpA55 = Do, (A)NB-
Since sipass = pg,(a), we have 03(A) C B. Moreover, ps = 85D, (A4)S5 means that Afl ={g}.

Conversely, if A‘f‘ = {B} and 05(A) C B, then pa = sapp,(4)5h = 83D9,(A)NBSs = DA - SgPBS), Whence
pa < 58PBSp- O

In order to prove the next property of T', we need a technical result.
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Lemma 6.7. If ) # «a € L* and A € B with A C R, then pa # pass,.
Proof. Suppose that pa = pas,. Since py4 is a projection, we have that
pa =pasy, = (pasy)” = saPa,

whence pa = sqpas),, which only occurs if A‘j‘l = {a} and 0,(A) = A. Now, given any () # B C A, it also
follows that 0 # pp = pppa = PEPAS), = PBSL,, 50 0,(B) = B by the above argument.

Now, consider the ideal Z4 with unique action 6. Then (6a), 5 = id, whence C*(Z4, ¢, 0a) = C(T). Since
C*(Za,,0,) has a faithful representation and any representation of (Z4, «, 6,) induces a representation of
(B, L,0), we get a contradiction. O

Definition 6.8. A x-inverse semigroup T is E*-unitary if for every s € T, e € E(T), if e < s then s € E(T).
Proposition 6.9. T is a E*-unitary inverse semigroup.
Proof. Let o, B,y € L* and A, B € B. Without loss of generality we can assume that || > |al, |3].
We need to check the 6 possible cases:
(1) sypps; < sapasy if and only if
SyPBSy = SaDASj - SyDBS,, = SaS3SESsPBSy = (v = B9)
= SaPDAPR.;S6PBSy = SaDASSPBSy = SasPo;(A)NBSy
if and only if ad =y = 36, whence o =  and then s,pas € E(T).
(2) 54pBS% < sapa if and only if
SyPBSy = SaPDA * SyPBSy = SayPe. (A)NBSy
if and only if ay =, i.e., @ = @), whence s,pa = pa € E(T).
(3) syppsh < pas}, this case is analog to (2).
(4) pp < sapasy if and only if
PB = SaPASZ ‘PB = SapAneg(B)SZ = sﬁpAQQB(B)SZ .
Thus,
DPANOs(B) = SaPBSB = S5458D0s(B) -
By Lemma 6.7 , the only possibility is that « = 3, whence sopasy, € E(T).

(5) pp < sapaifand only if pp = s4pa-PB = SaPanp. Thus, by Lemma 6.7 « = (), whence s,pa € E(T).
(6) pp < pasy, this case is analog to case (5).

O

Proposition 6.9 will play an important role in the sequel. We also need to determine the orthogonality of
idempotents.

Lemma 6.10. sqpasy, - sppps; = 0 if and only if either

(1) a % B and B £ a, or
(2) B=apf and O (A)NB =10, or
(3) a=Ba’ and 0, (B)NA=10.

Proof. Tt is a simple computation, according Proposition 6.2. (]

7. TIGHT REPRESENTATIONS OF T.

This intermediate step will help us to connect C*(B, £, #) with a universal C*-algebra for a suitable family
of representations of T'. Concretely, the goal of this section is to prove that the map

t: T — C*(B,L,0)~

is the universal tight representation of T'. Here, given a C*-algebra A, A~ will denote the (minimal) unitization
of A, with the convention that A~ = A in case A already has a unit.

First we recall some definitions from [13].
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Definition 7.1. Set £ = E(T). Then:
(1) Given X,Y C & finite subsets,

EXY ={ze&:2<x forallz € X and zly forallyeY?}.

(2) Given any F C &, we say that Z C F is a cover for F if for every 0 # x € F there exists z € Z such
that zx £ 0. Z is cover for y € € if it is a cover for F ={x € & : x < y}.

(3) A representation ¢ of £ is tight if for every XY C & finite subsets, and for every finite cover
Z g 8X7Y7

Ve = N\ e@n N\ —ely) )

z2€Z reX yey

where “\/”7 refers to the operation of taking supremum of a commuting set of projections.

Remark 7.2. In terms of the algebra, identity (1) above becomes

Ve =[] e@ [T - ew),

z€Z recX yey
and so, when looking for the tightness of a map, we shall assume that we are working with unital algebras,
by using the unitization of an algebra when necessary.

Next result will help us to determine when a representation ¢ is tight.

Proposition 7.3 ([13, Proposition 11.8]). If ¢ is a representation of £ which satisfies :

(1) &€ contains X C & finite such that \/ (x) =1, or
zeX
(2) € admits no finite cover,

then ¢ is tight if and only if for every x € £ and for every finite cover Z C £ for x,

V ¢(2) = ¢(z).

z€EZ

In order to apply Proposition 7.3 to our case, first observe that C*(B, £, ) is unital if and only if B is a
unital Boolean algebra, with suprema 1, and in this case p; will be a finite cover for T. If C*(B, L, ) is not
unital, then we have that {pa}acp is an approximate unit of projections. In particular, given a finite set ¥’
of elements of £, there exists A such that pgepg = ¢ for every e € Y and B € B with A C B.

Now, let X C £ be a finite cover. Then, X is of the form

{pa} U{saipBisa, bita -
Let us define C := AU Lnj D., € B. Since C*(B, L, 0) is not unital, and hence B has not suprema, there exists
0 # D e B with C'nN Dlzle). Therefore
ppNpa=0 and  pp-sapps, =0 Vie{l,...,n}.
Then,
Corollary 7.4. Proposition 7.3 apply to E(T) for every (B, L,0).

Next step is to identify finite covers for ¥, = {y € E(T) : y < z}, € E(T). But first a (probably well
known) result.

Lemma 7.5. Let T be any x-inverse semigroup, and let E(T') its semilattice of idempotents. Let x € E and
s € S such that x < s*s. Then {ey...,e,} is a finite cover for X, if and only if {seis*, ..., se,s*} is a finite
cover for Ygpex.

Now, we need to fix a concept.
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Definition 7.6. Given ) # A € B, we define an expansion of A to be a finite set {aq,...,a,} C L* such
that 0,,(A) # 0 for every 1 < i < n. Moreover, we say that an expansion of A is complete if a; £ a; and
a;j % a; whenever i # j, and for every B € L* with 63(A) # 0 there exists i such that either a; < 8 or 8 < «;.
Equivalently, {ax, ..., a,} is a complete expansion for A if pa = >+, 80:D0,,(A)Se, -

Definition 7.7. Given a cover Z of X, we say that Zisa refinement of Z if Z is a cover of %, and for every
element © € Z there exists y € Z with x < y.

7.8. Now we will analyse how look like the finite covers of ¥, for x = p4 and © = sopas},. By Lemma 7.5 it
will be enough to look at x = p4. Then a finite cover for X, has the form

Z = {pBi};l:l U {S“/ijj S;j };nzl CX.

n

Observe that we can joint all the idempotents {pp, }7"

n
in a single idempotent pp where B := B;, so
=1

1=

Z ={ps}U{sy,pc;s;,}it1 C X

Now, if A\ B= A\ (AN B) ¢ B¢y, it means that there exists C C A\ B with either A\c = 0 or A¢ = o0.
If A\c = 0 then we have that

PC * $+,P0, 85, = $v,D0, (O)nC; 5y, = Sy,posy, =0 Vjie{l,...,m},

contradicting the fact that Z is a cover of pa. If A\ = oo, there exists 3 € £ such that 8 & 7; for 1 <i < m.
Thus, if we consider the element sgpy,(c)sj, then

86P0,(C)Sp " S4;PC; 8y, =0 Vi€ {l,...,m},
and moreover, since
DA 8Pgs(C)S = DA - Pespsi =0,
this contradicts that Z is a cover for 3,. Therefore, A\ B must be in B,., for Z to be a cover.

Notice that pg covers all the elements of 3, that are dominated by pang. Thus, without loss of generality,

we can assume that

Z = {S’Yipcisf/i}?:l 9
since Z C X, with 0., (A) # 0 for every 1 <i < n, where © = ps with A € B¢y, and that 7; # 7; whenever
1 7.

Next, we see that {v;}?_; must contain a complete expansion for A. Otherwise, there exists § € L* with
05(A) # 0 with o; £ 8 and B £ «; for every 1 < i < n, and then sgpg,(a)sh < pa and sppg,(a)sh <
pa * $y,pc;s5, = 0 for every 1 < i < n, contradicting that Z is a cover for ps. We relabel the complete
expansion as 7i,...,7 for some 1 < [ < n. We can also take it minimal, so for every k > [ there exists
1 <1 <1 with v <.

Another important observation is that D; := 6,,(A) \ C; € By whenever 1 < i < I. Indeed, let us first
suppose that Ap, = 0. Then, 0 # s,,pp,s’, is the element that leads to contradiction with Z being a cover
of pa. Now suppose that there exists E; C D; with Ag, = co. Then, there exists § € Ag, such that 7,8 £ ;
for every ; with [ +1 < j <n. Thus, the element s.,3pg,( Ei)sji 5 1s the element that leads to contradiction
with Z being a cover of py4.

We also have that, given ; with 1 < i < such that v; & ~; for every j > + 1, it must be 6., (A) C C;.
Otherwise, the element s, Do.,, (A\C; s%, is the element that leads to contradiction with Z being a cover of p4.

Now, we define A; := 0.,(A) \ C; for those i < [ such that A; # 0. So, there exist 7vi,,..., i, With
v < i, for 1 < j < k(i), and we define E; j := C;; for 1 < j < k(i). We can relabel the A;s as Ay,..., Ay,
and if we define 3; j := s, \ v for 1 < j < k(i), then the sets Z; := {sp, ;pE, , SE”} are finite covers of p4,
for 1 <i<m.

Now, must proceed as above with this new covers as many time as we need, and since they are finite covers,
each step will have less elements than the previous. So, in a finite number of steps, there will be a refinement
of the cover that will contain a complete expansion {v;} of A with C; = 6,,(A).

Summarizing
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Lemma 7.9. If Z C X, is a finite cover for x € E(T), there exists a refinement on of Z such that:
(1) ZCY,isa finite cover,
(2) The elements in Z are pairwise orthogonal,
(3) V p(2) = > p(2) for every representation p of E(T).
z€Z €2
We are ready to prove the main result of this section. Notice that, because of Remark 7.2, we need to
require to the universal algebra for tight representations of T' being unital. Hence, we have the following

Theorem 7.10. The representation ¢ : T — C*(B, L,0)"~ is the universal tight representation of T.

Proof. First notice that, because of Corollary 7.4 and Lemma 7.9, the representation ¢ : T — C*(B, L, 0)" is
tight.

Now, let A be any unital C*-algebra, and suppose that p : T' — A is a tight representation. Consider
Sq := p(sq) for every a € L, and pa := p(pa) for every A € B. Then, {3, :a € L} U{pa: A€ B} C A, and
clearly:

(1) {pa: A€ B}isaset of projections in A.
(2) {84 :a € L} is a set of partial isometries in A.
Since p is a *-homomorphism of semigroups, we clearly have that:
(1) papp = panp for every A, B € B.
(2) PaSa = 8aPy,(a) for every a € L and A € B.
(3) §%8p = dapPr, for every a,b e L.

In order to prove the two remaining identities, we will use the fact that p is tight:

(1) Take A, B € B. Then, it is clear that {p\p,panp} is a finite orthogonal cover of p4, and so does
{pB\a;PanB} of pp. Hence, pa = pa\p + Panp and pp = pp\a + PanB, whence pa + Pp — panB =
Pa\B + PB\A + Panp. Since {pa\B,Pp\a;PanB} is an orthogonal finite cover of p4up, we conclude
that paus = Pa\B +DPB\a + PanB = Pa + DB — Panp, as desired.

(2) If A € By, then {saps,(4)s; : @ € Aa} is an orthogonal finite cover of p4. Hence,

pa=p(pa) = \/ p(SaDo,(A)Ss) = \/ 5aPo, ()85 = Z 546, (A)50s
a€A a€A a€EA 4
so we are done.

Thus, by the Universal Property of C*(B, £, 8), there exists a unique *-homomorphism

v C*B,L,0) — A
Sa > 84
pa = DPa
1 = 1
Since 1 o v = p, the universality of ¢ is proved. U

Corollary 7.11. C*(B,L,0)~ = Z-ght(T)-

8. THE TIGHT GROUPOID OF T

In this section we will benefit of the previous work to construct a groupoid G such that C*(B, L, 0) = C*(G).
Now, we proceed to recall the construction of Gigni(T). Let us recall the construction in a generic form (see
e.g. [18]):

e If T is an inverse semigroup, then & = £(T') = {idempotents of T} is a semilattice with ordering e < f
ifand only if ef = e, and e A f = ef. It extends to an order in S, s < t if and only if s = ts*s = ss*t.
We denote by el f if and only if ef = 0, and em f if and only if ef # 0.

e A character on £ is a nonzero map ¢ : £ — {0,1} with ¢(0) = 0, and ¢(ef) = ¢(e)p(f) for every
e, f € £. We denote the set of characters by 50. This is a topological space when equipped with the
product topology inherited from {0,1}¢. Since the zero map does not belong to fj‘o, it is a locally
compact space and totally disconnected Hausdorff space.



C*-ALGEBRAS ASSOCIATED TO BOOLEAN DYNAMICAL SYSTEMS 21

A filter in £ is a nonempty subset n C £ such that:
(1) 0 ¢mn,
(2) closed under A,
(3) f > e €nimplies f €n.
e Given a filter 7,
on: € —{0,1}
e —leen)
is a character. Conversely, if ¢ € &, then Ny = {e € E|¢(e) = 1} is a filter. These correspondences
are mutually inverses.
e A filter n is a ultrafilter if it is not properly contained in another filter. We denote EAOO C go the space
of ultrafilters.
e Tight filters are defined in analogy with tlght representations. The set of tight filters (tight spectrum)
is a closed subspace 5mght of Eo, contamlng 500 as a dense subspace.
e We can define a standard action of T" on 80 as follows:
(1) For each e € £, DP = {p € & : p(e) = 1},
(2) given s € T,
Bs:DL, — DI,
¢ — Bs(9)(e) = ¢(s"es)
When working with filters, D? = {5 € &|e € n} while B,(n) = {f € £ : f > ses* for every e €

n}.

e [ restricts to an action of T on ultrafilters and on tight filters.

Definition 8.1. Consider the set Q = {(s,z) € T x (E:'tight cx € DO} and define (s,x) ~ (t,y) if and only if
x =y and exvists e € £ such that v € D? and se = te.
Define Giigni(S) = Q/ ~, with:

(1) d([s,z]) = z and r([s,z]) = Bs(x),
(2) [S,Z] ’ [tvx} = [Stvx} if and only if z = Bt(x);
@) [s.al = B0l
(4) Giighs = {le,a) s € €} = Euigns
Gright(T) is the tight groupoid of the inverse semigroup T'.
Then, we have
Lemma 8.2. Gygni(T) is Hausdorff.
Proof. By Proposition 6.9 and [18, Corollary 3.17] O

Moreover, if we restrict our attention to the case of the inverse semigroup T being countable (which
corresponds to the requirement that both B and £ are countable), then we can prove the following facts

Theorem 8.3. If B and L are countable, then C*(B, L,0) = C*(Grignt(T)).

Proof. Since T is countable, the result holds by Definition 3.7, Corollary 7.11 and [15, Theorem 2.4], because
C*(Gignt(T)) is the closed *-subalgebra of C*(Giigni (1))~ generated by {1, : s € T}, and this algebra is
isomorphic to C*(B, L, §) because of Corollary 6.3. O

and

Lemma 8.4. If B and L are countable, then Gy gn(T) is amenable.

Proof. Since C*(Gignt (T)) = C*(B, L, 0) is nuclear, then C*, ,(Giight (T')) = C*(Giight (T')), and thus C*, ;(Grignt (T'))
is nuclear. Hence, the result holds by [6, Theorem 5.6.18]. O

Suppose that B and £ are countable. Then, since Gyigne(T) is the tight groupoid of an countable *-inverse
semigroup, Gyignt(T') is an étale, second countable, topological groupoid [13]. Hence, because of [34, Lemma
3.3 & Proposition 10.7], Lemma 8.2 and Lemma 8.4, we conclude
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Lemma 8.5. If B and L are countable, then C*(Gygni(T)) is in the UCT class.
Notice that Lemma 8.5 proves Corollary 5.9(3) using groupoids instead of topological graphs.

9. SmMPLICITY OF C*(B, L,0)

In this section we will characterise when C*(B, L, 0) is simple, using information from Gign¢ (7). To this
end, we use a result of [5].

Theorem 9.1 ([5, Theorem 5.1]). Let G be an étale, Hausdorff, second countable, topological groupoid. If G
is (elementary) amenable, then the following are equivalent:

(1) G is minimal and essentially principal,

(2) C*(G) is simple.

If B and L are countable then, since Gyigne(T') is the tight groupoid of an countable *-inverse semigroup,
Qtight(T) is an étale, second countable, topological groupoid [13]. We know that Gright (T") is Hausdorff and
amenable. Hence, we need only to take care of Gygne(7) being essentially principal and minimal. As Giighe (T')
is the tight groupoid of an inverse semigroup, we can benefit of the results of [18] for this task.

9.1. Essentially principal groupoids. In this subsection we take care of the essential principal property.
For this and related properties we refer to [18, Section 4]. In particular, we skip the definitions.

Recall the following facts.

Theorem 9.2 ([18, Theorem 4.7]). Guigni(T) is essentially principal if and only if B : T ~ gtight is topologically
free.

Definition 9.3 ([18, Definition 4.8]). Let s € T, e € E(T) such that e < ss*. Then, we say that:
(1) e is fized under s if se = e.
(2) e is weakly fived under s, if sfs* ™ f for every f € E(T)\ {0} and f <e.

Theorem 9.4 ([18, Theorem 4.10]). Since Giigne(T) is Hausdorff, the following statements are equivalent:

(1) B:T g’tight is topologically free.
(2) for every s € T and every e € E(T) weakly fized under s, there exists F C X finite cover consisting
of fized elements.

Definition 9.5. Let (B, L,0) be a Boolean dynamical system.
(1) We say that the pair (o, A) witha =1 ---a, € L, n>1, and ) # A € B with A C Ry, is a cycle if
given k € NU{0} we have that 0,k (A) # 0 and for every O # B C 0% (A) we have that BN, (B) # 0.
(2) A cycle (a, A) has no exits if given any k € N U {0} we have that O,rq,...q,(A) € Breg with
Aaukul...at("‘) ={awp1} fort <n and O,0+1(A) € Breg with Ag , , (a) = {an}.
(3) We say that (B, L,0) satisfies condition (Lg) if there is no cycle without exits.

The following result justifies the above definitions in comparison with the definitions given in [26, Definition
6.5].

Proposition 9.6. Let (B, L,0) be a Boolean dynamical system, and let E be the associated topological graph
defined in Proposition 5.2. Let (a, A) be a cycle, then Na is an open subset of E° such that every point
x € Na is a base for a loop. Moreover, if (o, A) is a cycle without exits then every point x € N4 is a base
for a loop without entrances.

Proof. Let (a, A) be a cycle, then given k € NU {0} and () # B C 6,1(A) we have that BN 6,(B) # 0.
Without lost of generality we can suppose that o € £!. We claim that 6,(A) = A. Indeed, first suppose that
0 # A\ 6,(A) C A. Then

(AN 00 (A) N0a (AN Oa(A)) = (AN 0a(A)) N (0a(A) \ 0a2(A)) =0,
that contradicts the hypothesis. Then A C 6,(A). No suppose that ) # 6,(A) \ A, then
(0o (A) \ A) N 00 (0a(A) \ A) = (0a(A) \ A) N (0a2(A) \ 0a(A)) =0,
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that contradicts the hypothesis. Thus, 6,(A) = A. In particular observe that 6,(B) = B for every B C A,
s0 (0a)z, = Id.

Then using the definition of E in Proposition 5.2 it follows that every point in N4 is a basis for a loop.
Moreover, if (o, A) is a cycle without exits then the loops with base point in A4 have no entrances. O

Then we can visualise condition (Lg) in terms of the groupoid.

Theorem 9.7. The following are equivalent:
(1) (B, L,0) satisfies condition (Lg),
(2) B:T ~~ Etigne is topologically free,
(3) Grignt(T') is essentially principal.

Proof. (2) < (3) by Theorem 9.2.

For (1) & (2) First, let s € T. If it satisfies condition (2) in Theorem 9.4, then for any idempotent g € F
we have that sg = g, equivalently g < s. So, when s = h € &(T), condition (2) in Theorem 9.4 always
holds (just take F' = {e}). But since T is a E*-unitary by Proposition 6.9, no element in 7'\ £(T") can satisfy
condition (2) in Theorem 9.4, as g < s imply that s € £(T"). Hence, condition (2) in Theorem 9.4 is equivalent
to the statement:

Vs e T\ E(T) and V0 # e € E(T) with e < s*s, there exists 0 # f < e such that sfs*- f=0.

We will separate 3 cases:
(1) Case s = sopa with A C R,: Then, let e < s*s = p4. Thus, without loss of generality, we can
assume e = pa and f < pa. By Lemma 6.6, f = sgppsy with ) # B C 05(A) C Rap. Without loss
of generality, we can assume that |a| < |8|. Then

0# sfs™ - [ = 5aPASEPBSEPASHSEPBS = SapDPBShgSsPBSH
implies 8 = af3. Assuming |a| < |3|, we have that 3 = o3’ and by recurrence
ﬂ:aﬁl :azﬁzzzanﬁn:.

Since |8] < oo, B must be o* for some k € N, and thus 0 # sfs* - f = Sak+1DBAOL(B)Sakt1 1S
equivalent to 8 = o and B N6, (B) # (). But this is equivalent to say that (a, A) is a cycle without
exits. This prove the equivalence for this case.

(2) Case s =pas’ with A C R,: Then, let e < s*s = s,pasy. Replacing e for ses* we reduce to the
case (1).

(3) Case s = sypas), with A C Ry NR,: Then, let e < s*s = sopas),. Again replacing e for ses* we
reduce to the case (1).

O

If B and L are countable, this picture allows to prove an analog of the Cuntz-Krieger Uniqueness Theorem
for labelled graph C*-algebras [2, Theorem 5.5] in our context. In order to prove such a theorem, we need to
recall some facts:

Remark 9.8. Suppose that B and L are countable. Then:

(1) By [18, Proposition 2.5], the set {D. : e € E(T)} is a basis of gtight(T) by clopen compact sets.

(2) Foranys €T, the set ©(s, Dg+s) :={[s,n] : n € Dg=s} is a open bisection of Gign(T) [13, Proposition
4.18]. Moreover, the isomorphism C*(B, L,0) = C*(Gtignt(T)) sends each s € T C C*(B, L, 0) to the
characteristic function le(s,p...) € C*(Gtignt(T)).

(3) By [13, Proposition 4.15] and point (1) above, ©(s, Ds«s) is open and compact for every s € T.

(4) By point (1) above and [18, Proposition 3.8], the set {O(s, Dsxs) : s € T} is a basis of the topology of
Gright(T). In particular, since gifg)ht ={le,x] :e€ &} = é\tight, the set {O(e,D.) : e € E(T)} is a basis
of the topology of Gignt(T)(©).

Now, we are ready to prove our theorem.
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Theorem 9.9 (Cuntz-Krieger Uniqueness Theorem for C*(B, L,0)). Let (B, L,0) be a Boolean dynamical
system such that B and L are countable, satisfying condition (Lg), and let C*(B, L,0) be its associated C*-
algebra. Then, for any x-homomorphism w : C*(B, L,0) — B, the following are equivalent:

(1) 7(saPask) #0 for every 0 £ A € B with A C R,,.
(2) 7 is injective.
Proof. By Lemma 8.2, Lemma 8.4 and Theorem 9.7, we can apply [16, Theorem 4.4] to C*(Gyight(T')). Thus, in
order to conclude our result, it is enough to prove that 7T|Co(gugm(T)‘°)) is injective if and only if m(sq Pas) # 0
for every ) # A € B with A C R,.
By Remark 9.8(2), if 7T|Co(g“gm(T)(o)) is injective then (s, Pas) # 0 for every ) # A € B with A C R,,.
Conversely, suppose that 7(sqaPask) # 0 for every ) # A € B with A C R,,. If there exists 0 # f €
Co(gtight(T)(o)) such that w(f) = 0, then by Remark 9.8(4) there exists ¢ € £(T) such that O(e, D) C
supp(f), whence 7(e) = 0, contradicting the assumption. So we are done. O

Now we are going to prove that condition (Lp) is also a necessary condition to apply the Cuntz-Krieger
uniqueness theorem.

Proposition 9.10. Let (B, L,0) be a Boolean dynamical system that does not satisfy condition (Lg). Then
there exists a faithful representation {Pa, S} of (B, L,0) that is not isomorphic to C*(B, L,0).

Proof. Let E be the associated topological graph defined in Proposition 5.2. Since (B, £, ) does not satisfy
condition (Lg), there exists a cycle without exits (a, A). Then by Proposition 9.6 we have that E is not a
topologically free graph (see [26, Definition 6.6]). Then identifying C*(B, L,6) with the topological graph
C*-algebra O(FE) (Theorem 5.8) and using [26, Theorem 6.14], it follows the result. O

9.2. Minimal groupoids. In this subsection we deal with the question of minimality of the groupoid. As
in the previous subsection, we refer [18, Section 5] for definitions and results. We will use the following

Theorem 9.11 ([18, Theorem 5.5]). The following statements are equivalent:

(1) B: T~ SA},-ght 18 irreducible,
(2) Grignt(T) is minimal,
(3) for every 0 # e, f € E(T) there exists s1,...,8, € S such that {s; s}, is an outer cover for e.

By analogy with the case of graph C*-algebras, we propose the following definition:
Definition 9.12. We say that (B, L,0) is cofinal if for every ) # A € B and for every ¢ € g}ight there exist
a, B € L* such that sapg,(a)ss € §-

Recall that given e € £, we define the cylinder set of e in aight as
Z(e) :={¢ € é\tjght te €},
For every e € £, Z(e) is a compact open subset of aight.
Then, we have

Proposition 9.13. The following statements are equivalent:
(1) (B,L,0) is cofinal.
(2) Grignt(T) is minimal.

Proof. First, we will prove that cofinality implies condition (3) in Theorem 9.11. For this end, suppose that
e = sapas,and f = sgppsj. Since A C R, we have

5aPASq < SaPRaSa = SaSq < PD, -
As every cover of pp_ is a cover of s,pas,, we can assume without loss of generality that e = p4 for some
A € B. Since pp = sj fsp, we can assume without loss of generality that f = pp for some B € B.

Given ¢ € Z(pa), cofinality implies that there exist a, B¢ € L* such that

Sozgpgﬂi (B)S:;g e 6
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Hence,
Zpa) < Y Z(SaePs, (B)Sa)-
§€Z(pa)
Since Z(pa) is compact, there exist e ,..., ¢, ,Beq,- -, B¢, such that
n
Z(pa) < Z(Sa¢,Pos, (B)Sac,)-
i=1
By [18, Proposition 3.7], this is equivalent to say that {sagipgﬁgi(g)sg{i}?zl is an outer cover for ps. Notice
that Saﬁipeﬁgi(B)szgi = (s%iszgi)pg(s%ig};{i)*. Thus, the result holds for s; := (sagiszsi).

Now, we will prove that condition (3) in Theorem 9.11 implies cofinality. For this end, take any () # A € B
and any & € Eigne. By the argument at the start of this proof, there exists ) # B € B such that pp € £&. By
condition (3) in Theorem 9.11, there exists s; := sa,pc,sp, for 1 < i < n such that {s;pas;}i_, is an outer
cover for pg. Without loss of generality, we can assume that 6g,(A) C C; for every 1 < i < n, so that s;pas} =
Sa; P9y (A)Se, for every 1 < i < n. By multiplying by pp, we conclude that {sa,p. (B)nos, (A))5a; fie1 1S @
finite cover for pp. Since £ is tight and pp € &, then there exists 1 < j < n such that

PB * Sa,;P05, (A)Sa; = Sa;P(0a,(B)N0;,(A)Sa; €&

by [18, (2.10)]. As ¢ is a filter and pp - So; Do, (WS, < Sa, Do, (4)Sa, We conclude that Sa;Pos, (4)8a, €&, as
desired. O

Our next goal is to give a characterization of the cofinality of (B, L, ) in terms of the elements in B and
the actions 0. First we need the following definitions.

Definition 9.14. We say that an ideal T of B is hereditary if given A € T and « € L then 0,(A) € Z. We
also say that T is saturated if given A € Byey with 8,(A) € T for every a € Ay then A € 1.

Given a collection Z of elements of 5 we define the hereditary expansion of Z as

H(IZ):={BeB:BC U 0a,(A;) where A; € T and o, € L*}.
i=1
Clearly, H(Z) is the minimal hereditary ideal of B containing Z. Also, we define the saturation of Z, denoted
by S(Z), to be the minimal ideal of B generated by the set

U s,
n=0

defined by recurrence on n € Z™ as follows:

(1) sl%z).=1

(2) For every n € N, SI"N(Z) := {B € B,y : 0a(B) € S"~U(Z) for every a € Ap}.
Observe that if 7 is hereditary, then S(Z) is also hereditary. Therefore, given a collection Z of elements of B,
S(H(Z)) is the minimal hereditary and saturated ideal of B containing Z.

We set L™ := HZO:1 L. Given o € L and k € N, we define Qp =01 ag € Lk

Theorem 9.15. Let (B, L,0) a Boolean dynamical system. Then the following statements are equivalent:

(1) The only hereditary and saturated ideals of B are O and B,
(2) Given A, B € B, there exists C € Byeg U {0} such that
(a) B\ C € H(A), and
(b) For every av € L there exists k € N such that 0, ,,(C) € H(A).
(3) For every0+#e, f € E(T), there exist s1,...,8, € S such that {s; s}, is an outer cover for e.
(4) (B, L,0) is cofinal.
(5) Gright(T') is minimal.
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Proof. First observe that (3) < (4) < (5) follows from Theorem 9.11 and Proposition 9.13.
(1) = (2). Suppose that the only hereditary and saturated are () and . Then, given A # () we have that
S(H(A)) = B. By definition,

H(A)={C €B:3B,...,Bn € L* and n € N such that C C | | 0,(A)}.
i=1
Since S(H(A)) = B, by definition of saturation we have that B={CUD : C € H(A) and D € B,.,}. Thus,
given any B € B, there exists D € H(A) such that C := B\ D € B,.,4, and there exists n € N such that
C € S"(H(A)). Therefore, for every o € £, we have that Oap,.,, (C) € H(A).

(2) = (3). Without loss of generality, we can assume that f = ps and e = pp for some ) # A, B € B.
By hypothesis, there exists C' € Byey U {0} such that B\ C € H(A). So, there exist fi,...,Bn € L* such
that B\ C C | 0p,(A). Thus, if we define s; := sj for 1 < i < m, then s;fs; = py, (1). Hence, since

i=1 i
V?;lpgﬁ_(,q) =p 0 s ()’ we can reduce the proof to the case that e = pc. Now, if 0,(C) € H(A) for every
s 5,
i=1
v € Ac and C € By, we have that C' € SH(#(A)), whence we can find a finite cover for pc. Otherwise,
there exists 71 € A¢ such that 6,,(C) ¢ H(A). Now, we repeat the argument to find a finite cover for py_ ().
71
By recurrence, we either construct a finite path v = =1 - - -7, such that 6,(C) € H(A), or we construct an
infinite path o € £ such that ap 1)(C) ¢ H(A) for every k € N. In the first case we obtain a finite cover
for pc. In the second case we get an infinite path, contradicting the hypothesis. So we are done.

(3) = (1). Let ) # A € B. We want to prove that S(H(A)) = B. If we take ) # B € B then, by hypothesis,

there exist s1,...,s, such that {s;fs7}_; = {Sa,Pe, (4)a, }i=1 is an outer cover for pp. So,

n
pB < \/ Sa; Py, (A)Sa, -
i=1
We set Ny :=max {|a;| : ¢ =1,...,n}. Since only regular sets can have finite covers, it must exists C' € B4
such that
B\C C | 05(4) e H(4A).
ai=0

So we have that
n

pe <\ Sa.Pos (a)Sh
i=1,0; 20
and C € B,cy. Thus, we can assume that B € B,., and «; # () with

n
pB < \/ Sa; Do, (A)Sa, -
i=1

Now, we label Ap = {71,...,7vm}, and relabel {o;} so that there exist 0 = jo < j1 < jo < - < jm =n
with v < «; for every ;1 < k < j; and i ﬁ «; otherwise. Then, we have that

Ji

s,yipgw(B)sfn < \/ Sakpegk(A)S:;k forevery i =1,...,m,
k=ji_1+1
or equivalently
Ji
P, (B) < \/ Sak\’yip%k(A)SZk\m foreveryi=1,...,m.
k=ji—1+1

Observe that we have |ay \ vi| < |ag|. Thus, we can assume that
n

Do, (B) < \/ Saipegi(A)SZi for every v € Ap
i=1
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with Ny := max {|oy| 14 =1,...,n} = N7 —1 < N;. By hypothesis, we can also assume that 0 (A4) € By,
for every v € Ap.
Therefore, after repeating this process Ny times, we prove that py (p) € Brey for every vy € AENl_l, and
0., (B) € H(A) for every v € AR, Thus, B € SIMJ(#H(A)), and hence B € S(H(A)).
O

9.3. The simplicity result. Now, we are ready to state a result, giving a characterization of simplicity for
C*(B, L, 0) in terms of properties enjoyed by (B, L, 9).

Theorem 9.16. Let (B,L,60) be a Boolean dynamical system such that B and L are countable, and let
C*(B, L, 0) be its associated C*-algebra. Then, the following statements are equivalent:
(1) C*(B,L,0) is simple.
(2) The following properties hold:
(a) (B,L,0) satisfies condition (Lg), and
(b) The only hereditary and saturated ideals of B are O and B.

Proof. By Theorem 9.1, C*(B, L, 0) = C*(Gyignt(T')). By Lemma 8.2 and Lemma 8.4, Giigne (') is Hausdorff
and amenable. Then, the result holds by Theorem 9.7, Theorem 9.15 and Theorem 9.1. (]

Theorem 9.16 generalizes [2, Theorem 6.4] (where only sufficient conditions are given) and [23, Theorem 3.8,
3.14 & 3.16] (which provided an equivalence, and solved a problem in Bates and Pask’s result) in our context,
the point being the use of a completely different approach to fix the conditions equivalent to simplicity, that
are stated in terms of both the groupoid properties and the Boolean dynamical system.

10. GAUGE INVARIANT IDEALS

Now, using the characterization of the Cuntz-Krieger Boolean C*-algebras as topological graph C*-algebras
explained in Section 5, we will use the work of Katsura [26] to determine the gauge invariant ideals of the
Cuntz-Krieger Boolean C*-algebras. We will restrict for simplicity, to the class of locally finite Boolean
dynamical systems (see definition 3.6).

Given a Boolean dynamical system (B, L, ), we will denote by E(z ) the associated topological graph
defined in Proposition 5.2. If there is no confusion, we will just write E.

Definition 10.1. Let E = (E°, E',d,r) be a topological graph. A subset X° of EV is said to be positively
invariant if d(e) € X° implies r(e) € X° for each e € E', and to be negatively invariant if for every
ve X' Egg there ezists e € E' with r(e) = v and d(e) € X°. A subset X° of EY is called invariant if X°
s both positively and negatively invariant.

Definition 10.2. Let E = (E°, E',d,r) be a topological graph. A subset Y of E° is said to be hereditary if
r(e) € Y implies d(e) € Y, and saturated if v € B}, with d(r~'(v)) CY implies v € Y.

Observe that a subset X° of EV is positively invariant if and only if £\ X° is hereditary, and it is negatively
invariant if and only if E°\ X° is saturated.

Lemma 10.3. Let (B, L,0) be a Boolean dynamical system, and let E = E(g gy be the associated topological

graph. If H is an ideal of B, then H is hereditary (definition 9.14) if and only if Y := |J Na is a hereditary
AeH
subset of EO.

Proof. Suppose that H is a hereditary ideal of B. Let ve € Y, so there exists A € H such that ve € Ny,
and suppose that there exists a € £ such that ve € 7(E,). Let & € Zg, such that r(eg) = ve, so that
£ =0a(") ={B € Ip, : 0a(B) € &'}. Since A € £, we have that 0,(A) € &, 50 ver € Ny, (4). As A € H, by
hypothesis 6, (A) € H, and therefore ves € Ny, 4y €Y. Thus, d(e?) =wvg €Y, as desired.

Conversely, suppose that Y := |J N4 is a hereditary subset of EY, and suppose that there exists A € H
AeH
such that 6,(A) ¢ H. We claim that there exists an ultrafilter £ of B such that A € £ and 6,(B) ¢ H for

every B € £. Indeed, let us consider the set " of all the filters £ of B such that A € £ and 0,(B) ¢ H for
every B € £. T is a partially ordered set with the inclusion.
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First observe that T # (), because the minimal filter containing A belongs to I'. Now, let {&, }nen be an

ascending sequence of filters of I'. £ = |J &, is clearly a filter from I" with &, C £ for every n € N. Then,
neN
by Zorn’s Lemma, there exist maximal elements in I'. If £ is a maximal element of I', we claim that £ is an

ultrafilter of B. Indeed, we only have to check condition F3. Let B € ¢, and let C,C" € B\ {0} such that
B=CUC" and CNC" = 0. Suppose that C,C" ¢ £. Then, CND,C' N D # ( for every D € ¢&; otherwise, if
there exists D € & such that C N D = ), then £ 3 (BN D) C C’ by condition F2. Thus, C' € ¢ by condition
F1, a contradiction, whence C N D # ) for every D € £. By the same argument C/ N D # () for every D € £.
Now, suppose that there exists D € £ such that 0,(CND) € H. Then, for every D’ € £ with D’ C D, we have
that 6, (CND’) C 6,(CND). So, 0,(CND") € H too, since H is an ideal. Now, suppose that 6,(CNG) € H
for some G € £. By the same argument as above, 0,(C N G’) € H for every G' € £ with G' C G. Thus,
BNDNG €€ and

0,(BNDNGNC)Ub,(BNDNGNC')=0,(BNDNG) ¢ H.

But by the above arguments, we have that 6,(B N D NG) € H because H is an ideal, a contradiction.
Therefore, we can assume that 0,(C N D) ¢ H for every D € {. Now, we construct the filter ¢’ = {B € B :
CND C B forsome D € £}. We clearly have that ¢ € T with £ C ¢, contradicting with the maximality of
£. Thus, £ is an ultrafilter of B, as desired.

Now, we claim that there exists an ultrafilter ¢’ of B such that 0,(B) € & for every B € £ and C ¢ H
for every C € &', where £ is the ultrafilter constructed above. Let T be the set of all filters of B satisfying
the above requirements. We have that TV # () since the filter D = {C :€ B : 6,(B) C C for some B € ¢}
belongs to I. Also, I is a partially ordered set with the inclusion, and clearly every ascending sequence
of filters of IV has an upper-bound. By the Zorn’s Lemma, I'” has maximal elements. Let £ be a maximal
element. We claim that & is an ultrafilter of B. Indeed, we only have to check condition F3. Let C € ¢ and
let D,D" € B\ {0} with C =DND" and DND' = and D,D’ ¢ &. We have that DNG,D' NG # ) for
every G € &'; otherwise, if there exists G € & such that D N G = (}, then we have that (C N G) C D’. So,
D’ € £ by condition F1, a contradiction. Thus, D N G # @ for every G € £’. By the same argument we have
that D' NG # 0 for every G € &'. Finally suppose that there exists G, G’ € ¢ such that DNG, D' NG’ € H.
Then,

(CNGNG'ND)U(CNGNGE ND)Y=CNGNG ¢ H,
but since H is an ideal, we have that CNGNG’ € H, a contradiction. Therefore, suppose that § £ DNG ¢ H
for every G € &'. Then, we can define the filter ¢ = {C € B: DN G C C for some G € £'}. We have that
" eI and & C £, contradicting the maximality of &’. Thus, £’ is an ultrafilter, as desired.
Finally, since £’ € I/R:, we can define eg, € El. But ve ¢ Y, since B ¢ H for every B € . Observe that

by Lemma 5.4 we have that 5;({’) = ¢, whence r(eg‘/) = ve. Moreover, ve € Ny C Y, since A € . But this

contradicts that Y is a hereditary set of E°. Thus, 6,(A) € H, as desired, whence H is a hereditary ideal of
B. O

Observe that, if A € Byeq, then given any £ € f,; we have that ve € Egg.

Lemma 10.4. Let (B,L,0) be a Boolean dynamical system, and let E = Eg 1 gy be the associated topological

graph. If H is an ideal of B, then H is saturated (definition 9.14) if and only if Y := |J Na is a saturated
AeH

subset of E.

Proof. First, suppose that H is a saturated subset of B, and let £ € BB such that ve € E?g. Recall that
rve) ={ef : ¢ € B such that 3o € £ with £ = {A € B: 0,(A) € £'}}.

Suppose that d(eg)) = ver € Y for every eg) € r~1(ve). Hence, there exists B € &' such that Be € H. We

claim that, for every o € £ such that 6,(A) # 0 for every A € &, there exists A € £ such that 6,(A) € H.
Indeed, suppose that there exists a € £ such that 6,(A) ¢ H for every A € €. Let T' the set of all filters F
of B such that 6,(A) € F and 0,(A) ¢ H for every A € £&. Then, F = {B € B: 0,(A) C B for some A € &}
is a filter in T', whence T' # (). We have that I" is a partially ordered set with the inclusion, and it is clear

that I' contains an upper-bound for every ascending chain. Therefore, by the Zorn’s Lemma, I" has maximal
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elements. Given any maximal element ¢ € T, we have that & is an ultrafilter. Therefore, we have that
& ¢ f; for every B € H, and hence ver ¢ Y. Moreover, by Lemma 5.4 we have that r(e?,) = ve. But this
contradicts the hypothesis that d(r~!(v¢)) C Y. Thus, there exists A € ¢ such that 6,(A) € H. Then, given
any a € L such that 6,(A) # 0 for every A € &, there exists A, € £ such that 6,(A,) € H.

Now, since vg € Erg, there exists A € £ such that Ay < oo, and given any B € B with B C A then A # 0.
So, A is a regular set of B. If replace A by AN ( N Ao | €& we can suppose that 6,(A) € H for every

aEA

a € Ay. Then, since H is saturated, we have that A € H, and hence v € Ny CY. Thus, Y is a saturated
subset of EY.

Conversely, suppose that Y is a saturated subset of E°, and let A be an ideal of B. Let A € H and regular
such that {0,(A) : @ € L} C H. We claim that for every ultrafilter £ € T there exists B: € H with £ € IBE
Indeed, since A is regular, we have that ve € Ey,. Moreover, since {#,(4) : a € L} C H, we have that
d(r~'(ve¢)) C Y. Therefore, since Y is saturated, it follows that ve € Y, so Be € £ for some Be € H, as
desired.

Let ¢ € ﬂ. By the above claim, there exists B € H with { € I/B:, and then AN By € £NH and

NaNNp, = Nanp,. Therefore, N4 = |J Nanp,. But since ﬁ is compact by Corollary 2.15, we have

¢eZa
that Ny = NAOB§1 U---UNang,, for some n € N. Hence, it is easy to check that A = (J (AN Be,). As
i=1
ANBg, € Hforevery ¢ =1,...,n, and H is an ideal, it follows that A € H, as desired. O

We have proved in the previous lemmas that, given a hereditary and saturated ideal H of B, then ¥ =

U N is a hereditary and saturated subset of E°. The converse is also true. Indeed, let Y be a hereditary
AeH

and saturated subset of E°. Given v € Y, pick A, € B such that v € N4, and N4, C Y. We define H to
be the minimum ideal of B containing the A,’s. Observe that since every N4, is compact by Corollary 2.15,
and since H is an ideal, H is independent of the choice of the A,’s. Now, following the proof of Lemmas 10.3
& 10.4, one can check that H is a hereditary and saturated ideal of B. Thus, the following results follows:

Proposition 10.5. Let (B,L£,0) be a Boolean dynamical system, and let E = Eg gy be the associated
topological graph. Then, there is a bijection between the hereditary and saturated subsets of B and the invariant
subsets of E.

Example 10.6. Let (B,L,0) be the Boolean dynamical system of Example 5.7. Then, the only hereditary

and saturated subset of B is the set H = {F : F C Z finite}, the associated open hereditary and saturated

subspace Y = |J Na of E® is {ve, :n € Z}, and let X = E°\'Y = {£} is the associated invariant space.
AeH

Proposition 10.7. Let (B, L,0) be the Boolean dynamical system, and let H be a hereditary ideal of B. If for

any a € L and any [A] € B/H we define 0,([A]) = [04(A)], then (B/H, L,0) is a Boolean dynamical system.

Proof. We only need to prove that, given o € £, the map 0, : B/H — B/H is a well-defined map. But this
clear because H is a hereditary ideal of B. Also, the range and domain of 8, are [R,] and [D,] respectively. O

Let X° be an invariant space of E?. If we define X! = {e € E' : d(e) € X°}, then (X", X', d,r) is also a
topological graph.

Proposition 10.8. Let (B,L,0) be a Boolean dynamical system, and let E

= E(B £,6) be the associated
topological graph. Given a hereditary and saturated ideal H of B, define X° := E°

0
Na. Then, By =

A

Egaco = (X0, X', d,r).

Proof. Since E° = B and AUH Ny = 7-7, using Remark 2.8 we can identify X° with l?/?—[ = EY by ve — Vig]-
€
By definition, X' = | ] {eg : ¢ € I/R\a and [£] € B/H}. So, we can identify it with E}, = | ] I/[R\a] by
acl acl
eg — e[5 With these identifications, it is clear that the maps d and r are the corresponding ones. O
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A topological graph E = (E°, E',d,r) is called row-finite if r(E') = E},.

Lemma 10.9. Let (B, L, 0) be a locally finite Boolean dynamical system, then the associated topological graph
FE is row-finite.

Proof. Recall that
r(E') = {ve € E°|3a € L£,0,(A) # 0 VA € &}
and
E), ={ve € E°[3A €&, VB C A we have that 0 < Ap < 0o} .

The inclusion Ep, C r(E") is always valid, and the converse is obvious by locally finiteness of the Boolean
dynamical system. O

Given a Boolean dynamical system (B, £,0) and a hereditary and saturated set H of B, we define I3 as
the ideal of C*(B, L, 6) generated by the projections {p4 : A € H}.

Conversely, given an ideal T of C*(B, L, 0) let us define p; : C*(B, L,0) — C*(B, L, 6)/I to be the quotient
map, and Hy := {A € B: pr(pa) = 0}. Clearly H; is a hereditary and saturated set of B.

Then using Proposition 10.8 it follows:

Proposition 10.10 (cf. [26, Proposition 3.15]). Let (B,L,0) be a Boolean dynamical system. If T is an
ideal of C*(B, L,0), then there exists a natural surjection C*(B/Hy, L,0) — C*(B, L,0)/I which is injective
in C*(B/Hr).

Proposition 10.11 (cf. [26, Proposition 3.16]). Let (B, L,0) be a locally finite Boolean dynamical system.
For an ideal I of C*(B, L,0), the following statements are equivalent:

(1) T is a gauge-invariant ideal,

(2) The natural surjection C*(B/Hr,L,0) — C*(B,L,0)/I is an isomorphism,

(3) I =1y,.

Theorem 10.12 (cf. [26, Corollary 3.25]). Let (B, L,0) be a locally Boolean dynamical system and let E the
associated topological graph. Then the maps I — Hy and H — I3 define a one-to-one correspondence between
the set of all gauge invariant ideals of C*(B, L, 0) and the set of all hereditary and saturated sets of (B, L,0).

Example 10.13. Let (B, L, 0) be the Boolean dynamical system from Example 5.7. By Example 10.6 there ex-
ists only one non-trivial hereditary and saturated subset H. Then, the only gauge invariant ideal of C*(B, L, 0)
is the ideal Iy generated by the projections {pr : F C Z finite}. Then the quotients C*(B, L,0)/Iy is iso-
morphic to C*(B/H, L,0). Observe that B/H has only one non-empty element [Z], and 0,([Z]) = [0] and
0u([Z]) = 0.(1Z]) = [Z], thus C*(B/H, L,0) is isomorphic to the Cuntz algebra Os.

11. EXAMPLES

Our motivation to define the Boolean Cuntz-Krieger algebras was to study the labelled graph C*-algebras
from a more general point of view. Therefore, our first example will be how, given a labelled graph, to construct
a Boolean dynamical system. Besides of that, as we showed that the Boolean Cuntz-Krieger algebras are
0-dimensional topological graphs, the C*-algebras that we can construct as Boolean Cuntz-Krieger algebras
includes homeomorphism C*-algebras over 0-dimensional compact spaces, and graph C*-algebras, among
others [25]. Finally, we present the C*-algebras associated to one-sided subshifts as Cuntz-Krieger Boolean
algebras, and apply our result about simplicity.

Example 11.1. (Weakly left-resolving labelled graphs) First, we refer the reader to [1, 2, 3] for the basic
definitions and terminology about labelled graphs C*-algebras. Let (E, L, B) be a labelled graph, where E is a
directed graph, £ : EY — A is a labelling map over an alphabet A, and B is an accommodating set of vertices
E° [3, Section 2] that contains {{v} :v € EY ,}. We will suppose that (E,L,B) is weakly left-resolving and
that B is a Boolean algebra.

Then, given A,B € B and o € L(E'), we have that 7(AU B,a) = r(A,a) U r(B,a) by definition,
and r(AN B,a) = r(A, o) Nr(B,a) since (E,L,B) is weakly left-resolving. We claim that r(A\ B, o) =
r(A,a) \ r(B,«a). Indeed, observe that

r(A\ B,a)Nr(B,a) =r((A\ B)NB,a)=r(0,a) =0
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since (E, L, B) is weakly left-resolving and A\ B € B. Thus, since
r(A\ B,a)Ur(B,a) =r(AUB,a) =r(4,0) Ur(B,a) = (r(4,a) \ r(B,a)) Ur(B, o),

it follows that r(A\ B,a) = r(A,a) \ r(B,a), as desired.

Since B is an accommodating set we have that r(a) € B for every o € L, that we will call Ry = r(a).
Moreover, we will assume that there exists Do € B such that r(Dg, ) = () for every a € L.

Then the triple (B, L(E"Y),0), where 0, := r(—,a) for every o € L, is a Boolean dynamical system, and
C*(E,L,B) = C*(B,L(E"Y),0).

Now we are going assume that the graph E has no sinks or sources, and that the labelled graph (E,L)
is receiver set-finite, set-finite and weakly left-resolving (see [2]). Let B be the Boolean algebra generated by
{Ro :a € L*}, and given | € N we define Q== {xp € B: F C L=} where

xF::ﬂRa\ U Rs |,

a€F BeLS\F

that is well-defined because [2, Lemma 2.3]. We set Q :=J;2, Q. Given any F C L=! we have that xp € B,
and that for every A € B there exist k € N and 1, ...z, € Qy such that A =J;_, z; (c.f. [2, Proposition
2.4]). Thus, the Boolean algebra generated by Q) is B.

Observe that given F C L5

zp={ve E’:ver(a) for everya € F, but v ¢ r(B) if B ¢ F}.

Two vertices v,w € xp are called I-past equivalent. The set of l-past equivalent vertices to v is denoted by
[v];. Thus, for every x € Q there exists v € E° such that [v]; = z.

We will determine the cycles of the above defined Boolean dynamical system (B, L(E"),0). Let (o, A) be a
cycle, where o = a1 -- -, € L™ and ) # A C Ry = (). Then ) # (A, a*) C r(a®) for every k € Ny, and
given ) # B C r(A, o) we have that BN r(B,a) # 0.

Given 1 € {0,...,n — 1} we define A; :==r(A,a1---op), where Ag := A and ap := a. Then since (o, A)
is a cycle without exits we have that (A, qqp1 - - apay---q) is also cycle and Ay, = {41} for every
0 <1l <n-—1. Then, as it is shown in the proof of Proposition 9.6, given any B C A; we have that
r(B,aui1 - -apay - oq) = B for every 0 <1 < n — 1. Therefore, that given 0 <1 <n—1 and v € A; then
v € r((aqy1 - anay - ap)¥) for every k € N. In particular, given any v € A; and k € N with [v]y C A; we
have that r([v]k, iy -+ apaq - o) = [v]g, and r([v]x, B) = 0 whenever 8 # a41.

Then (A, «) with A € B and a € L™ is a cycle without exits if given l € {0,...,n — 1} and v € A; there
exists e € E™ with r(e) = v such that v ~y s(e) for every k € N. Moreover this path e € E™ must satisfy
L(e) = apy1 - apaq -+ ap. Observe that if (E, L, B) is left-resolving the above e is unique.

Now easily follows that if there exists a cycle without exits then the label graph is not disagreeable (see |2,
Definition 5.1]). Thus, if the labelled graph (E,L,B) is disagreeable then the associated Boolean dynamical
system (B, L(EY),0) has no cycle without exits, whence satisfies condition (Lg).

The authors cannot prove the converse, that is (E, L, B) is disagreeable when (B, L(E"),0) satisfies condi-
tion (Lg).

Finally to describe when (B, L(E'),0) is cofinal we use Proposition 9.15 and the fact that B = B,..,, whence
(B, L(EY),0) is cofinal if and only if given A, B € B\ {0} and o € L™ there exist n € N and \1,...,\, € L*
such that v(A, o n)) C Ule r(B, ;). It is then clear that (E, L, B) is cofinal (see [2, Definition 6.1]) when
(B, L(EY),0) is cofinal.

Example 11.2. Now, we will construct a unital Boolean Cuntz-Krieger algebra with infinitely generated
K-theory. Let us define the Boolean algebra

B:={F CZ:F finitet U{Z\ F : F finite},
and let L :={«a;}iez U{B}. Then, given A € B, we define the actions
Oo;(A) =A+i={c+i:x € A} for every i € Z

| Z if0ecA
0p(A4) = { 0 otherwise,
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and then Ro;, = Rg = Do, = D =Z € B for every i € Z. Thus, (B,L,8) is a Boolean dynamical system.
Then C*(B, L, 0) is a unital C*-algebra, and since (B, L,0) satisfies condition (Lg) and there are non-trivial
hereditary and saturated ideals C*(B, L, 0) is simple by Theorem 9.16. Since Bycq = 0, it follows from Theorem
5.11 that

Ko(C*(B,L,0)) (@Z) and K1(C*(B,L,0)) =
€L
Therefore, since C*(B, L, 0) is unital and has non-finitely generated K -theory.

Example 11.3. Let X be a Cantor set, and let Y, Z C X be compact clopen subsets, and let p : Y — Z be a
homeomorphism. Let ¢ : C(Z) — C(Y) the induced isomorphism. We define B as the Boolean algebra of the
compact and clopens of X, and L = {a} with the single action 0, : B — B defined as 0,(A) := ¢~*(A) for
every A € B. Whence 0, has compact range, with R, =Y, and compact domain because 0,(Z) =Y. Then
C*(B, L,0) is generated by projections {pa}tacn and a partial isometry s, such that

PASa = SaPp—-1(A) sta =Py and SaSq = DPZ -

since Z € Breg. Then C*(B,L,0) is isomorphic to the partial automorphism crossed product C*(C(X), @)
(see [12]).

The Boolean dynamical system (B, L,0) satisfies condition (Lg) if and only if for every A CY N Z such
that p~"(A) # 0, there exists k € N and ) # B C ¢~ *(A) such that =1 (B)N B =0, and it is cofinal if given
A, B € B\ 0 there exist ny,...,ng € Z such that A C Ule ©"i(B).

In particular, if ¢ : X — X is a homeomorphism then C*(B,L,0) = C(X) x4 Z. Thus, (B,L,0) satisfies
condition (Lg) if for every ) # A € B there exists ) # B C A with BN ¢~ *(B) = ().

Moreover, observe that if ¢ is minimal, i.e. all the orbits are dense, then (B, L, 0) satisfies condition (Lg)
and minimality. The converse is also obvious.

Example 11.4. (Algebras associated with one-sided subshifts) In this example we are going to study the
C*-algebra associated with a general one-sided subshift [8, 10]. Given a one-sided subshift (X, o) with a finite
alphabet X, we define the subsets
Cla)={zeX:arec X}

for a € ¥*, where C())) = X. Let Bx be the minimal Boolean subalgebra of 2% generated by the subsets
{Cla) : @ € &}

Given |l € N and xz,y € X, we say that x and y are l-past equivalent, written x ~; vy, if given z € L= we
have that

zx € X if and only if zy € X.

We denote by [z]; the set of all the point of X that are l-past equivalent to x. Observe that

fi= (] Cl@) U c®|esy,
{a€SslazeX} {Bex=t:Bx¢ X}
and that Bx is generated by {[z]; : x € X ,l € N}.

Now given o € ¥ we define 0,, as the action that extends 0,(C(a)) = C(aa) for a € &* to Bx. Observe
that Ry = 0,(C(0)) = C(a), so 84 is an action with compact range and domain. Then C*(Bx,%,0) is the
universal algebra generated by {patacny and {sq}acs satisfying:

(1) The map C(a) = pe(ay for a € L*, extends to a map of Boolean algebras,
(2) 8580 = Pc(a) for every a € X,

(3) PASa = SaPo,(a) for A € Bx,

(4) given A € (Bx)req then

PA= Y SaDo.(A)Sk -
[e3
First observe that given o, 8 € X using (3) we have that sysa55 = Ss5S,5a53, and then s,sqsp85 =

S3ShSaSaSpSh = SpS5SaSESaSa = SpSEShSa. The converse is also clear, so condition (3) is equivalent to
SaSaSpSh = SBS5SaSa-
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Finally, since |X| < oo we have that C(0) € (Bx)req, and then by condition (4) it follows
1 =pc@ = Z 5aPC(a)Sn = Z SaSh -
« «

From the observation that every nonempty element C(a) € Bx is regular, it follows that every ) # A € Bx
is also reqular. Thus, condition (4) is equivalent to

*
1= g SaSy -
«

Therefore, we have that C*(Bx, %, 0) is isomorphic to the C*-algebra Ox associated to a one-sided subshift.

Our task will be first to determine the cycles of the Boolean system (Bx,X,0). Let (a, A) be a cycle, where
a=a;a, €X"and ) # A C Ry = C(a). Then ) # 0,x(A) C C(a*) for every k € Ny. This means
that the cycle o> € X since X is closed. Moreover, by the proof of Proposition 9.6 we have that (04)4 = Id,
whence for every x € A we have that o*z € X.

Now suppose that (a, A) is a cycle without exits, this implies that if ax € A then © = a®. In particular
A = {a>®}. Conversely, if {a>} € Bx we have that («, {a}) is a cycle without exits.

Observe that {a™} € Bx is equivalent to say that there exists | € N such that [a™]; = {a™}. Then o is
said to be isolated in past equivalence [7].

Given © € X we define the map & : E(T) — {0,1} such that £,(SapaSs) =1 if x = ax’ for some z’ € A,
and 0 otherwise. It is clear that &, is an ultrafilter and that {£; : © € X} is dense in Eoo. Then it is only
necessary to check cofinality of (Bx,X,0) for the characters of the form &, for x € X. Let us suppose that
(Bx,%,0) is cofinal, then giving x,y € X andl € N there exist a, 3 € L™ such that sapo,((y],)Sa € &x, that is
equivalent to there exists z € X such that z ~; y and that ™ (x) = o™ (z) for some m,n € N. Then we say
that X is cofinal in past equivalence [7].

Therefore, we have that C*(Bx,X,0) is simple if and only if there is no cyclic point isolated in past
equivalence and X is cofinal in past equivalence [7].
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