

Doctoral theses at NTNU, 2016:373

Leslie Romelia Euceda Wood

Metabolic characterization of breast cancer heterogeneity and response to treatment

ISBN 978-82-326-2090-6 (printed ver.) ISBN 978-82-326-2091-3 (electronic ver.) ISSN 1503-8181

Doctoral theses at NTNU, 2016:373

NTNU Norwegian University of Science and Technology

NTNU Norwegian University of Science and Technology

Leslie Romelia Euceda Wood

Metabolic characterization of breast cancer heterogeneity and response to treatment

Thesis for the Degree of Philosophiae Doctor

Trondheim, December 2016

Norwegian University of Science and Technology Faculty of Medicine Department of Circulation and Medical Imaging

NTNU

Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Medicine
Department of Circulation and Medical Imaging

© Leslie Romelia Euceda Wood

ISBN 978-82-326-2090-6 (printed ver.) ISBN 978-82-326-2091-3 (electronic ver.) ISSN 1503-8181

Doctoral theses at NTNU, 2016:373

Printed by NTNU Grafisk senter

Metabolsk karakterisering av brystkreft – heterogenitet og respons på behandling

På verdensbasis er brystkreft den mest vanlige kreftformen som rammer kvinner. Heterogenitet og kompleksitet i brystkreftens biologi gjør at pasienter med samme kliniske diagnose opplever ulik prognose og behandlingsrespons. Det er derfor nødvendig å finne mer effektive og sikrere behandlingsregimer basert på brystkreftens individuelle egenskaper. Endret metabolisme (stoffskifte) er ett av de nyeste beskrevne kjennemerkene på kreft. Denne endringen i metabolismen er nødvendig for å tilfredsstille kreftcellenes krav til energi og biomasse, slik at de kan fortsette å vokse (proliferere). Metabolsk profilering eller metabolomikk involverer storskalastudier av cellulære metabolitter og deres mellomprodukt som er representert i levende system ved et gitt tidspunkt. Metabolsk profilering kan blant annet gjøres ved hjelp av magnetisk resonans spektroskopi (MRS), og denne teknikken har blitt mye brukt for å måle metabolitter i intakte vevsprøver fra ulike kreftformer.

Hovedmålet i denne avhandlingen har vært å bruke metabolomikk for å øke kunnskapen om heterogenitet i brystkreft og for å identifisere muligheter for å optimalisere behandlingen av brystkreft. Som en del av forberedelsene til metabolomikk-studiene ble det utført et omfattende litteratursøk på pre-prosessering av MRS-data. Dette resulterte i en oversiktsartikkel som er inkludert i denne avhandlingen (artikkel I). Artikkelen peker på de mest vanlige pre-prosesseringstrinnene som benyttes for å analysere MR-baserte metabolske data. Gode metoder for preprosessering er nødvendig for å skille viktig biologisk informasjon fra irrelevant variasjon forårsaket av for eksempel eksperimentelle og instrumentelle artefakter.

I artikkel II er tre metabolske undergrupper av brystkreft etablert og metabolomikkdataene kombinert med gen- og proteinutrykk fra samme tumor. Signifikante forskjeller i både gen- og proteinnivå ble observert mellom de metabolske gruppene. Den mest ulike gruppen viste nedregulering av gener som relateres til kollagener og ekstracellulær matriks. Dette er i samsvar med mangelen av mikromiljørelaterte sub-typer av protein i denne gruppen.

I artikkel III ble de metabolske effektene av neoadjuvant kjemoterapi med eller uten angiogenesehemmeren bevacizumab i brystkreftpasienter, undersøkt. Det ble observert klare metabolske forandringer som en effekt av kjemoterapi. Ved operasjonstidspunktet var de metabolske profilene i tumorene forskjellige i pasienter som hadde god respons på behandlingen, og de som ikke responderte. En liten nedgang i antioksidanten glutation ble

observert som en effekt av bevacizumab, noe som kan være knyttet til en redoxdestabiliserende, apoptose-fremmende rolle for legemiddelet i kreftceller.

I artikkel IV ble det brukt dyremodeller av trippel-negativ brystkreft for å evaluere behandling med mTOR inhibitoren everolimus. Signifikante forskjeller i det metabolske uttrykket ble påvist med behandling. Stor variasjon i det metabolske uttrykket mellom de ulike dyremodellene gjorde det imidlertid vanskelig å påvise klare forskjeller knyttet til god eller dårlig respons på behandlingen, men den metabolske effekten etter behandling var imidlertid mer uttrykt ved respons.

Samlet sett viser avhandlingen at MRS metabolomikk kan ha fremtidig nytte for stratifisering av pasienter til målrettet behandling. Metoden utfyller dessuten andre molekylære analyser slik at man får et mer komplett bilde på underliggende mekanismer som regulerer behandlingsrespons.

Kandidat: Leslie Romelia Euceda Wood

Institutt: Institutt for sirkulasjon og bildediagnostikk

Veiledere: Prof. Tone F. Bathen, Dr. Guro F. Giskeødegård og Prof. Lutgarde M.C. Buydens

Finansieringskilde: Norges forskningsråd

Ovennevnte avhandling er funnet verdig til å forsvares offentlig for graden
Philosophiae Doctor i medisinsk teknologi.
Disputas finner sted i Auditoriet MTA, Medisinsk-Teknisk Forksningssenter,

Onsdag 21. Desember 2016 kl. 12:15.

Acknowledgement

The work presented in this thesis has been carried out at the MR Cancer group, Department of Circulation and Medical Imaging, the Norwegian University of Science and Technology (NTNU), between June 2013 and September 2016. Financial support was provided by the Research Council of Norway.

I would like to thank the women who have participated in the research studies included in this thesis, without whom this work would not have been possible.

So many people have helped and supported me to achieve this. I would like to thank my supervisors, Prof. Tone Bathen and Dr. Guro Giskeødegård. Tone, no matter how challenging things got at times, knowing you were there, I never once doubted that a solution could be found. You always remained accessible to provide guidance all throughout my project with an encouraging demeanor. You lead in a way that motivates me to do things not just to fulfill a requirement, but to give it my very best because I do not get any less from you. Guro, I admire the way you can make the most complicated things so simple and understandable. I have really enjoyed learning from you; you have helped me improve thinking critically whether when performing statistical analyses or writing (although I still have to work on my wordiness...). Thank you both so much!

I would like to express my gratitude to Professor Lutgarde Buydens, for welcoming me for a research stay at her group at Radboud University Nijmegen, The Netherlands. Thank you to Dr. Geert Postma and Dr. Jasper Engel for all the help during and after my stay, and to all the members of the group there for not only making my stay fruitful with regards to how much I learned, but also for showing me a fun time both in and out of office.

I feel fortunate to work at the MR Center with such talented people every day who create such a positive work environment. Thanks to all of you, especially to past and present colleagues at the MR Cancer group. Exchanging knowledge, experiences, cultures, and laughs with all of you has been so valuable, and has played an important role in my enjoying my PhD as much as I have. Thank you Siver for guidance and interesting discussions, especially regarding xenografts and biological pathways. Thank you Trygve, Santosh, and Øystein for providing training, guidance, and troubleshooting assistance during HR MAS MRS analyses. Special thanks to Tonje for her continuous support, from guiding me on my first days in the group to helping me with thesis submission and defense preparations. Thank you also to

Debbie and Neil for useful feedback, discussions, and pep talks. To my office mates: Ailin, Elise, Maria Karoline, Marie, Tonje, Torfinn, and Saurabh, it has been so much fun sharing an office with you, discussing things both related to work and not, and also celebrating each other's successes, and encouraging each other when we needed it.

Thank you to my co-authors and collaborators, especially to Dr. Olav Engebråten, Dr. Anne-Lise Børresen-Dale, Dr. Laxmi Silwal-Pandit, and Dr. Elisabetta Marangoni, for taking time to discuss my work and give suggestions to improve it.

I would also like to thank my friends and family for their support. Special thanks go to Gustavo, Miriam, Glenda, Allan, and Ana Romelia, for always encouraging me to go for what I want, and for believing that I can do anything I set my mind to. Donde quiera que yo vaya, ahí siempre están ustedes. Los quiero!

Last but not least, thanks to my unsung hero, my dear Ion, for your unconditional support and understanding, for doing everything you could to make things easier for me during this period. You balance out all the stress and make me happy every day. Thanks for always reminding me everything is going to be OK. Te iubesc guapo!

TOUR MEDIO

Leslie Romelia Euceda Wood Trondheim, December 2016

Summary

Breast cancer is the most common cancer in women worldwide. Due to the heterogeneity and complexity of breast cancer tumor biology, patients with similar clinical diagnosis might have different prognosis and response to treatment. More efficient and safer breast cancer therapeutic regimens based on the individual tumor properties are necessary. In parallel, defining new strategies for patient stratification and early detection of response/resistance to treatment is warranted.

Altered metabolism is one of the most recently described hallmarks of cancer, and provides cancer cells the means to satisfy their high energy requirements, to synthesize macromolecule precursors, and to ensure proper redox stability, allowing them to survive, grow, and proliferate. The aberrant metabolic characteristics observed in cancer cells include increased glucose uptake and glycolytic lactate production even when enough oxygen is available for oxidative phosphorylation, the more efficient energy-generating pathway predominantly occurring in normal, non-proliferating cells. In addition, cancer cells become dependent on the normally non-essential amino acid glutamine as an alternative source of energy and macromolecular biosynthesis.

Metabolic profiling, or metabolomics, involves the large scale study of cellular metabolites and their intermediates present within a living system at a given moment. Metabolites represent the downstream output of genes, RNA, and proteins, and so metabolomics handles the final step in the omics cascade, conveying information closer to the phenotype. Metabolic profiles can be acquired using magnetic resonance spectroscopy (MRS). When analyzing tumor material, high resolution (HR) magic angle spinning (MAS) MRS generates highly resolved spectra from intact tissue. This technique has been widely applied to study metabolites involved in important pathways in different cancers.

This thesis aimed to use HR MAS MRS metabolomics to gain insight into the heterogeneity of breast cancer and to identify possibilities for optimizing treatment of the disease. Data from different omics levels and advanced statistical techniques were employed for this purpose. In preparation of the metabolomics studies carried out as part of this thesis, an extensive literature search on preprocessing of MRS metabolomics data was performed. This resulted in a review article which has been included as the first paper in this thesis. Whatever the approach used to extract biological meaning from data resulting from metabolomics studies, proper preprocessing is essential to remove irrelevant variation such as experimental and instrumental artifacts. This first paper outlines the most common

preprocessing steps when analyzing MRS metabolomics data, and compares different methods to achieve these.

In the second paper, three metabolic clusters of breast cancer were established and combined with gene and protein expression data from the same tumor. Significant differences at the genetic and protein levels were detected between the metabolic clusters. The metabolic cluster most different from the rest exhibited downregulation of genes related to collagens and extracellular matrix, which was in accordance with the lack of microenvironment-related protein subtypes within this cluster. Importantly, therapies that target different metabolic aberrations observed in separate clusters have already been developed.

The third paper investigated the metabolic effects of neoadjuvant chemotherapy with and without the antiangiogenic drug bevacizumab in HER2 negative breast cancer patients. Clear metabolic changes as an effect of chemotherapy, independent of bevacizumab administration, were observed, indicating a decline in glucose consumption and a transition to normal breast adipose tissue. Metabolic profiles significantly discriminated pathological responders from non-responders after treatment, but not before or during treatment. A subtle decrease in the antioxidant glutathione was detected as an effect of bevacizumab, suggesting a redox-destabilizing, apoptosis-promoting role for the drug in cancer cells.

In the fourth paper, breast tumor tissue from triple negative breast cancer patient-derived xenografts (PDX) was analyzed to evaluate treatment with the mTOR inhibitor everolimus. Treated animals could be significantly discriminated from untreated controls based on metabolite information, indicating reduced glycolytic lactate production and glutaminolysis after treatment, consistent with PI3K/AKT/mTOR pathway inhibition. Innate metabolic heterogeneity between different PDX models was detected, and appeared to impair prediction of treatment response. However, the metabolic effects following treatment were more prominent in responding xenografts compared to non-responders.

In conclusion, MRS metabolomics showed promise for improving breast cancer patient stratification to targeted therapy and for complementing other molecular assays to gain further insight into the underlying mechanisms regulating treatment response. The metabolic signatures identified in this thesis related to long-term clinical outcomes should be further investigated when follow-up data for the studied cohorts is available.

Symbols and Abbreviations

Symbol	Description	Page
13°C	Carbon-13 nucleus	42
¹ H	Hydrogen-1 nucleus	15
α	Lower energy state	15
β	Higher energy state	15
δ	Chemical shift	17
и	Magnetic moment	15
ω_0	Larmor frequency	15
ν	Gyromagnetic ratio	16
Acetyl CoA	Acetyl-coenzyme A	9
AsLS	Asymmetric least squares smoothing	19
ATP	Adenosine triphosphate	8
b	Vector of regression coefficients	23
B_0	External magnetic field	15
B_I°	Radio frequency pulse	16
cDNA	Complementary DNA	44
Cho	Choline	12
CK-α	Choline kinase alpha	13
cpmg	Carr-Purcell-Meiboom-Gill	60
CR CR	Complete response	7
CT	Computerized tomography	7
CV	Cross validation	26
DAB	3,3'-diaminobenzidine	45
DAVID	Database for Annotation, Visualization, and Integrated Discovery	33
DNA	Deoxyribonucleic acid	1
DSS	2,2-dimethyl-2-silapentane-5-sulfonate	18
e	Residual vector	23
E	Residual variance matrix	21
ER	Estrogen receptor	4
ERETIC	Electronic reference to access <i>in vivo</i> concentration	29
F	Matrix of score residuals	24
$FADH_2$	Reduced form of flavin adenine dinucleotide	9
FDA	Food and Drug Administration	6
FDG	¹⁸ fluorodeoxyglucose	80
FDR	False discovery rate	31
FEC100	5-fluorouracil 600 mg/m2, epirubicin 100 mg/m2, cyclophosphamide	
	600 mg/m2	39
FID	Free induction decay	16
FN	False negative	28
FNAC	Fine needle aspiration cytology	2
FP	False positive	28
FWER	Family-wise error rate	31
GC	Gas chromatography	60
GLS	Glutaminase	11
GO	Gene ontology	33
GPC	Glycerophosphocholine	12
GR	Good response	40
GSEA	Gene set enrichment analysis	33

COLL		
GSH	Glutathione	11
HCA	Hierarchical cluster analysis	20
HER2	Human epidermal growth factor receptor 2	4
HES	Hematoxylin, erythrosine, and saffron	62
HIF	Hypoxia-inducible factor	73
HR	High resolution	18
HRP	Horseradish peroxidase	45
I	Spin	14
IL-8	Interleukin 8	77
IR	Intermediate response	40
K	Kelvin	15
KEGG	Kyoto Encyclopedia of Genes and Genomes	34
LABC	Locally advanced breast cancer	4
LDA	Linear discriminant analysis	25
LDH	Lactate dehydrogenase	9
LMM	Linear mixed-effects model	30
LOO	Leave-one-out	26
LV	Latent variable	24
M_0	Net magnetization vector	15
MAS	Magic angle spinning	18
Mc	Metabolic cluster	48
MICE	Multivariate imputation by chained equations	43
MLR	Multiple linear regression	23
MR	Magnetic resonance	19
MRI	Magnetic resonance imaging	2
MRS	Magnetic resonance spectroscopy	14
MS	Mass spectrometry	14
mTOR	Mammalian target of rapamycin	6
mTORC1	Mammalian target of rapamycin complex 1	6
NADH	Nicotinamide adenine dinucleotide	9
NADII	Reduced form of nicotinamide adenine dinucleotide phosphate	9
NBCG	Norwegian Breast Cancer Group	6
NIPALS	Non-linear iterative partial least squares	25
NMR		14
non-ox-PPP	Nuclear magnetic resonance	9
	Non-oxidative pentose phosphate pathway	40
NR	No response	
OSDBEAC	Overall survival	79
OSBREAC	The Oslo Breast Cancer Consortium	48
ox-PPP	Oxidative pentose phosphate pathway	9
P	Loadings matrix	21
pAKT	Phosphorylated Akt	45
PAM50	Prediction analysis of microarray 50	32
PC	Principal component	21
PCA	Principal component analysis	20
PCh	Phosphocholine	12
pCR	Pathological complete response	7
PD	Progressive disease	7
PDC	Pyruvate dehydrogenase complex	9
PDX	Patient-derived xenograft	8
PET	Positron emission tomography	80

PFS	Progression-free survival	7
PgR	Progesterone receptor	4
PI3K	Phosphoinositide 3-kinase	6
PLS	Partial least squares	24
PLS-DA	Partial least squares-discriminant analysis	25
pMRD	Pathological minimal residual disease	40
pNRs	Pathological non-responders	40
ppm	Parts per million	18
PPP	Pentose phosphate pathway	8
PQN	Probabilistic quotient normalization	20
PR	Partial response	7
PtdCho	Phosphatidylcholine	12
PTEN	Phosphatase and tensin homolog	45
$\boldsymbol{\varrho}$	Y-loadings matrix	24
q-q	Quantile-quantile	30
R5P	Ribose-5-phosphate	9
RECIST	Response Evaluation Criteria in Solid Tumors	7
REK	Regional Ethics Committee for Medical and Health Research	38
RF	Radio frequency	16
RIN	RNA integrity	45
RNA	Ribonucleic acid	5
ROS	Reactive oxygen species	11
RPPA	Reverse-phase protein array	5
RT-PCR	Real-time polymerase chain reaction	44
RTV	Relative tumor volume	7
SAM	Significance analysis of microarray	33
SD	Stable disease	7
SDH	Succinate dehydrogenase	73
SIMPLS	Statistically inspired modification of the partial least squares method	25
T	Scores matrix	21
T1	Longitudinal relaxation	16
T2	Transverse relaxation	16
T2*	Effective transverse relaxation	17
TCA	Tricarboxylic acid	9
tCho	Total choline	12
TE	Echo time	61
TMA	Tissue microarray	45
TMS	Tetramethylsilane	18
TN	True negative	28
TNBC	Triple negative breast cancer	4
TNM	Tumor size (T), degree of lymph node involvement (N), distant	
	metastasis (M)	3
TP	True positive	28
TP1	Time point 1, at baseline	38
TP2	Time point 2, 12 weeks into treatment	38
TP3	Time point 3, at surgery, 24 weeks after treatment start	38
TP_E	Earlier time point	65
TP_L	Later time point	65
TSP	Trimethylsilyl propionic acid	29
VEGF	Vascular endothelial growth factor	6

v_{nuc}	Resonance frequency of a nucleus	17
v_{ref}	Resonance frequency of a reference compound	17
W	Weight matrix	24
\boldsymbol{X}	Data matrix containing explanatory or independent variables	19
y	Vector containing the response or dependent variable	20
Y	Matrix containing multiple response or dependent variables	68

List of Papers

Paper I

Preprocessing of NMR metabolomics data

Leslie R. Euceda, Guro F. Giskeødegård, and Tone F. Bathen

Scandinavian Journal of Clinical and Laboratory Investigation 2015 March 4;75:3, 193-203, DOI: 10.3109/00365513.2014.1003593

Paper II

Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes

Tonje H. Haukaas, <u>Leslie R. Euceda</u>, Guro F. Giskeødegård, Santosh Lamichhane, Marit Krohn, Sandra Jernström, Miriam R. Aure, Ole C. Lingjærde, Ellen Schlichting, Øystein Garred, Eldri U. Due, Gordon B. Mills, Kristine K. Sahlberg, Anne-Lise Børresen-Dale, Tone F. Bathen, and The Oslo Breast Cancer Consortium (OSBREAC)

Cancer & Metabolism 2016 June 27; 4:12. DOI: 10.1186/s40170-016-0152-x

Paper III

Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy

Leslie R. Euceda, Tonje H. Haukaas, Guro F. Giskeødegård, Riyas Vettukattil, Jasper Engel, Laxmi Silwal-Pandit, Steinar Lundgren, Elin Borgen, Øystein Garred, Geert Postma, Lutgarde M.C. Buydens, Anne-Lise Børresen-Dale, Olav Engebraaten, Tone F. Bathen

Submitted to Metabolomics 2016

Paper IV

Metabolic response to everolimus in patient-derived xenografts of triple negative breast cancer

<u>Leslie R. Euceda</u>, Deborah K. Hill, Endre Stokke, Rana Hatem, Rania El Botty, Ivan Bièche, Elisabetta Marangoni, Tone F. Bathen, Siver A. Moestue

 $Submitted\ to\ the\ Journal\ of\ Proteome\ Research\ 2016$

Table of Contents

1 Introduction	1
1.1 Breast cancer.	2
1.1.1 Anatomy of the breast	2
1.1.2 Diagnosis and staging of breast cancer	3
1.1.3 Predictive and prognostic factors	3
1.1.4 Locally advanced breast cancer	4
1.1.5 Breast cancer heterogeneity	5
1.1.6 Breast cancer treatment strategies.	5
1.1.7 Breast cancer treatment response criteria	7
1.1.8 Patient-derived xenograft models	8
1.2 Tumor metabolism	8
1.2.1 Glucose metabolism	8
1.2.2 Amino acid metabolism	1
1.2.3 Choline phospholipid metabolism	2
1.2.4 Metabolomics	3
1.3 Magnetic Resonance Spectroscopy1	4
1.3.1 Principles of Nuclear Magnetic Resonance	4
1.3.2 High Resolution Magic Angle Spinning MRS	8
1.4 Analysis of MRS metabolomics data	9
1.4.1 Preprocessing of MRS metabolomics data	9
1.4.2 Multivariate analysis	0
1.4.3 Validation of multivariate models	5
1.4.4 Analysis of individual metabolites	9
1.4.5 Multiple testing correction	1
1.5 Gene and protein expression analysis	2
1.5.1 Gene expression profiling	2
1.5.2 Reverse-phase protein array	4
1.5.3 Integrated pathway analysis	4
2 Thesis Objectives	5
2.1 Overall aim	5

2.2 Specific Objectives	35
	25
3 Materials and methods	
3.1 Patients and xenograft models	
3.1.1 Patient cohorts	
3.1.2 Patient-derived xenograft models	
3.1.3 Treatment protocols	
3.1.4 Response criteria	
3.2 HR MAS MRS protocol	41
3.2.1 Sample preparation	41
3.2.2 Spectral acquisition	42
3.3 Spectral preprocessing and data analysis	42
3.3.1 Analysis of individual metabolites	43
3.3.2 Multivariate analysis	43
3.4 Gene and protein analysis	44
3.4.1 Mutation screening	44
3.4.2 Gene expression measurement and subtyping	44
3.4.3 Protein expression measurement and subtyping	45
3.4.4 Immunohistochemical staining	45
3.4.5 Gene expression analysis	45
3.4.6 Integrated Pathway Analysis	46
4 Summary of Papers	47
4.1 Paper I	47
4.2 Paper II	48
4.3 Paper III	50
4.4 Paper IV	52
5 Discussion	55
5.1 Methodological considerations	55
5.1.1 Patients and animal models	55
5.1.2 Criteria for treatment evaluation	58
5.1.3 Metabolic profiling using HR MAS MRS	59

5.1.5 Combining omics		
5.2.1 Synthesis of metabolic findings by pathway		68
5.2.2 Characterization of metabolic heterogeneity in	breast cancer	74
5.2.3 Investigating the effect of breast cancer therap	y on metabolic profiles	76
5.2.4 Assessment of breast cancer therapy response	_	
6 Concluding remarks and future perspectives		83

List of Figures

1.1. Anatomy of the female breast	3
1.2. Overview of breast cancer treatment strategies in Norway	6
1.3. Overview of cellular glucose and glutamine metabolism	
1.4. Choline phospholipid metabolism	
1.5. The omics cascade	
1.6. Depiction of the classical view of the magnetic resonance of a n	ucleus14
1.7. NMR excitation and relaxation	
1.8. Proton high resolution (HR) magic angle spinning (MAS) magn	etic resonance (MR)
spectrum of breast tumor tissue	17
1.9. Hypothetical example of principal component (PC) analysis	21
1.10. Dendogram or cluster tree example	22
1.11. Schematic representation of a four-fold cross validation proced	dure27
1.12. Selection of univariate hypothesis tests according to data distri	bution and number of
classes tested	30
3.1. Representation of Paper II sample proportions analyzed by three	e different omics
modalities	38
3.2. Treatment protocol for Paper III	40
3.3. Cooling work station for tissue sample preparation	41
4.1. Paper I: Baseline correction in the time domain based on proper	data acquisition timing47
4.2. Paper II: Main differences between metabolic clusters	
4.3. Paper III: Principal component analysis including all samples at	nd mean spectra for each
time point	
4.4. Paper IV: PLS-DA scores (A) and loadings plots (B) of treated	
controls (n=103), and mean spectra (C) of treated animals and u	
5.1. LCModel fit for a breast tumor tissue HR MAS MR spectrum w	
signals employing a basis set composed of twenty-three metabo	-
5.2. Multilevel PLS-DA scores for A) pathological minimal residual	
and C) pathological non-responders (pNRs) and loadings for B)	
when discriminating TP1 and TP2 (results not shown in Paper I	
5.3. Number of samples in Paper III classified as Mc1, Mc2, and Mc	
and TP3 (C)	80
List of Tables	
3.1. Materials and methods used in Papers II-IV.	37
3.2. Overview of treatment response criteria employed in Papers III	
3.3. HR MAS MR spectral acquistion parameters for Papers II-IV	
3.4. Spectral preprocessing for Papers II-IV	
5.1. PLS-DA and multilevel PLS-DA classification results not show	
2.1. 1 LG-D11 and municipal LG-D7 diassinguidh igsuits not snow	11 111 1 apci 111

1 Introduction

The human body is made up of cells, which perform all essential functions inside an organism. Hence, cells are commonly referred to as the basic units of life. Most types of cells in the human body are able to divide and grow. This is necessary for the proper maintenance of the body, as it allows processes such as wound repair and replacement of worn out cells. The division of a cell is governed by a series of tightly regulated events known as the cell cycle [1]. This process involves the replication of deoxyribonucleic acid (DNA), which stores the biological instructions of a cell. To ensure its proper development, when the cell cycle is impaired, a series of safety mechanisms are put in motion to either stop its progression or, if the damage is irreparable, to program cell death. Cancer cells are capable of avoiding these mechanisms, as they exhibit uncontrolled growth and proliferation, or multiplication. This is caused by the mutation, or permanent alteration, and subsequent malfunction of different genes, which are regions of DNA. Somatic mutations can occur spontaneously, e.g. due to errors during DNA replication, but can also be induced by exposure to certain physical or chemical mutagenic agents, such as ultraviolet light and chemical carcinogens [2]. Germline mutations are those occurring in sperm or egg germ cells and are thus inherited from a parent. Possessing inherited mutations is referred to as having a genetic predisposition to cancer [3].

As there are more than 100 distinct types of cancer, the term refers to a collection of diseases, typically classified according to the organ and type of cell in which they originate. Nevertheless, cancer cells exhibit common traits or capabilities known as hallmarks of cancer, first described by Hanahan and Weinberg [4]. The first four of these traits refer to uncontrolled growth and multiplication, as cancer cells can 1) stimulate their own growth, 2) bypass anti-growth signals, 3) resist programmed cell death, or apoptosis, and 4) become immortal, i.e. able to multiply endlessly. In addition, cancer cells are able to 5) induce the formation of new blood vessels, or angiogenesis, in an attempt to increase oxygen and nutrient delivery, and 6) invade adjacent tissues and henceforth spread, or metastasize, to distant sites via the blood and lymph systems. The aforementioned hallmarks were later extended [5] with two additional capabilities being added, specifically 7) the reprogramming of energy metabolism and 8) evasion of immune destruction. The acquisition of both original and more recently-described hallmarks is promoted by two enabling characteristics, namely genomic instability and mutation, and inflammation, which drive tumorigenesis.

1.1 Breast cancer

Breast cancer is by far the most common cancer in women worldwide [6]. In Norway, there were 3 324 diagnosed breast cancer cases among women in 2014 [7], making it the most frequent neoplasm in this population group. Although the estimated five year survival in breast cancer patients in Norway is almost 90% [7], predicting patient outcome is still a major challenge.

In addition to previously mentioned germline mutations, whose existence in the BRCA1 and BRCA2 genes account for most hereditary breast cancer cases [8], a number of risk factors that are non-genetic have been associated with breast cancer risk [9]. Reproductive risk factors include early menarche, older age (>30 years) at first full-term pregnancy, lower number of childbirths, and later menopause, as well as use of oral contraceptives and menopausal hormone therapy. Other risk factors include postmenopausal obesity, physical inactivity, and tobacco and alcohol consumption.

1.1.1 Anatomy of the breast

The breast contains a complex network of lobes, or groups of lobules, and ducts, as well as adipose tissue (Figure 1.1A). Milk is produced in the lobules, and from there, it is transported to the nipple via the lactiferous ducts. The epithelium of these two structures is made up of two main cellular lineages positioned in two layers. The cells in the under or basal layer adjacent to the basement membrane are called myoepithelial cells, and are highly elongated, while the surface layer is made up of luminal epithelial cells surrounding the central lumen, or tubular cavity [10] (Figure 1.1B). The majority of breast cancers are either lobular or ductal, depending on whether they originate in the lobules or lactiferous ducts, respectively. The cancer is invasive, or infiltrating, if it spreads from its origin to surrounding tissue, and non-invasive in the case of *in situ* carcinomas. Invasive ductal carcinoma is by far the most frequent invasive breast cancer (65-80%), followed by invasive lobular carcinoma (5-10%) [11].

In Norway, an approach known as triple diagnostics is recommended for breast cancer diagnosis [12]. For this, three diagnostic modalities are employed: clinical examination, imaging tests (mammogram, ultrasound, and/or magnetic resonance imaging (MRI)), and histological examination of needle biopsies or fine needle aspiration cytology (FNAC). This approach has been found to be 100% accurate when all three modalities are in agreement (i.e. all indicating either a benign or malignant lesion) [13].

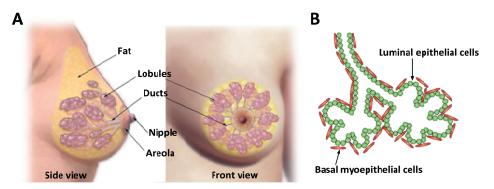


Figure 1.1. Anatomy of the female breast. A) The breast contains a network of lobes and ducts, to produce milk and transport it to the nipple. Reprinted with permission, Cleveland Clinic Center for Medical Art & Photography © 2016. All Rights Reserved. B) The lobes and ducts are made up of two main cellular lineages: luminal epithelial cells and basal myoepithelial cells, located at the surface layer and underlayer, respectively. Reprinted with permission from Macmillan Publishers Ltd: [Nature Cell Biology] (Blanpain C, *Nat Cell Biol*, 2013, 15:126–134), Copyright 2013.

1.1.2 Diagnosis and staging of breast cancer

Following diagnosis, breast cancer stage is determined. The stage describes the extent of cancer, particularly the size of a tumor and its dissemination. The TNM classification system, which is the most widely used, stages cancer based on primary tumor size (T), the degree of regional lymph node involvement (N), and presence of distant metastasis (M) [14]. Increasing stage indicates a more aggressive disease, with Stage 0 referring to non-invasive breast cancer, Stages I through III describing invasive breast cancer, i.e. spread to the skin or chest wall, with or without lymph node metastasis, and Stage IV indicating dissemination to other organs.

1.1.3 Predictive and prognostic factors

Prognostic factors are those capable of predicting clinical outcome at the time of diagnosis, regardless of the administered therapy. Predictive factors, on the other hand, provide information regarding the probability of response to a specific therapy. Axillary lymph node status is the most powerful prognostic factor for early stage breast cancer, followed by tumor size which is the most significant prognostic factor in node-negative patients [15]. The TNM staging system is essentially a grouped prognostic factor. Histological grade, which increases as the degree of tumor differentiation decreases, also provides prognostic information, with higher grades being associated with lower long-term survival [16].

Hormone (estrogen and progesterone) receptor status is the main indicator of the response to endocrine therapy [17]. The presence of estrogen receptors (ER) and/or progesterone receptors (PgR) indicates that tumor progression is driven by these and other related reproductive hormones, and hence benefit of endocrine therapy is likely. Although 70% of human breast cancers are ER positive [18], the mechanisms governing the abnormal expression of hormone receptors in breast cancer are yet to be completely elucidated. Presence of ER and PgR has been widely considered an indication of good prognosis [19, 20]. This is still under debate, however, particularly after long-term follow-up [21, 22]; thus, they are more powerful as predictive markers and less commonly used as prognostic markers.

HER2 positive tumors refer to those with amplification of the gene for human epidermal growth factor receptor 2 (HER2), also known as ERBB2, and/or overexpression of its product, the HER2 protein. HER2 promotes cellular growth and proliferation and its overexpression has been associated with poor prognosis of patients with lymph node-positive breast cancer [23-25]. Novel targeted therapies that inhibit HER2, e.g. trastuzumab, have been developed and approved for clinical use. HER2 status is thus a predictive marker for anti-HER2 treatment and in addition, has been suggested to play a role for predicting response to chemotherapy [26] and endocrine therapy [27].

Breast tumors not expressing ER, PgR, and HER2 are classified as triple negative breast cancer (TNBC). This breast cancer subtype is biologically aggressive, and is a poor prognostic and predictive factor for disease-free survival [28].

1.1.4 Locally advanced breast cancer

Locally advanced breast cancer (LABC) refers to non-metastatic tumors greater than 5 cm, tumors extending to the skin or chest wall, and/or tumors with extensive spread to lymph nodes (N status = N2 or N3) [29]. LABC can be considered the most advanced stage of the disease prior to metastasis. LABC prognosis varies greatly among patients depending mostly on tumor size and lymph node status; this makes it a clinically challenging disease requiring combination therapy strategies. These tumors are generally considered inoperable and are therefore treated with neoadjuvant or preoperative chemotherapy, to reduce them to an extent where surgical removal is possible. In addition to systemic chemotherapy and surgery, it is recommended that LABC patients receive subsequent radiotherapy to reduce the risk of relapse and death [12].

1.1.5 Breast cancer heterogeneity

Due to the heterogeneity and complexity of breast cancer tumor biology, patients with similar clinical diagnosis might have different prognosis and response to treatment. Breast cancer heterogeneity is manifested at different molecular levels. At the genetic level, germline mutations in the BRCA1 and BRCA2 genes account for most hereditary breast cancer cases (Section 1.1).

At the transcriptomic or ribonucleic acid (RNA) level, five intrinsic subtypes of breast cancer based on gene expression profiles have been identified: luminal A, luminal B, basal-like, HER2 enriched, and normal-like [30, 31]. These subtypes have been found to correlate with survival, with the luminal A subtype having the best prognosis while the basal-like subtype has the worst prognosis and is considered the most aggressive [31].

At the proteomic level, differences in the expression of estrogen and progesterone receptors and HER2 protein play an important role in current breast cancer clinical decision-making in terms of prognosis and optimal treatment plan. For TNBC patients, chemotherapy is often a mandatory inclusion in the treatment plan, since these tumors are unresponsive to endocrine and anti-HER2 therapy. TNBC is considered a clinically, histologically, and molecularly heterogeneous disease [32]. Furthermore, six protein breast cancer subtypes based on protein expression by reverse-phase protein array (RPPA) have been identified [33, 34]. These protein subtypes display considerable overlap with the gene intrinsic luminal A, luminal B, HER2, and basal-like subtypes. In addition, two novel protein-defined subtypes were identified and termed *reactive* due to many of their characteristic proteins probably being produced by the tumor microenvironment. The reactive I protein subtype appeared as a subset of the luminal A intrinsic subtype while the reactive II protein subtype was a combination of intrinsic subtypes.

On the metabolic level, the luminal A gene expression subtype has been further divided into three subclasses based on metabolic profiles [35]. One of the subclasses, luminal A2, exhibited a seemingly more malignant metabolic profile compared to the others. This suggests that metabolic variability within gene expression intrinsic subtypes could potentially be useful in further characterizing breast cancer heterogeneity.

1.1.6 Breast cancer treatment strategies

Breast cancer treatment regimens depend on tumor size, histological characterization, grading and receptor status, axillary lymph node status, and age of the patients. Surgery and

radiation therapy are local treatments and are directed towards the tumor. Systemic medical breast cancer therapies include endocrine therapy and novel targeted therapy, as well as chemotherapy. Chemotherapeutic agents such as anthracyclines and taxanes are currently the most potent drugs for use in breast cancer [36]. Taxanes disrupt microtubule function, inhibiting cell division, while anthracyclines damage DNA, causing cell death. Chemotherapy is not tumor specific, and so is more toxic than endocrine or targeted therapy. Figure 1.2 provides a simplified overview of breast cancer treatment in Norway.

Angiogenesis, a hallmark of cancer, can also be therapeutically targeted. To fulfill high nutrient and oxygen demands, tumors secrete growth factors, the most important of which is the vascular endothelial growth factor (VEGF), which stimulate the growth of new blood vessels from existing vasculature into the tumor [37]. Angiogenesis also promotes invasion and metastasis as it creates direct access into the circulatory system through which tumor cells can spread. One clinically used antiangiogenic agent is bevacizumab, a humanized monoclonal antibody, which blocks VEGF signals by binding to it, impeding its interaction with its receptors [38]. Bevacizumab was first approved by the United States Food and Drug Administration (FDA) for metastatic colorectal cancer [38]. However, FDA accelerated approval for the use of bevacizumab in metastatic breast cancer was revoked due to the drug not inhibiting tumor growth nor prolonging patient survival markedly enough to justify its risks [39], which include cardiovascular complications such as hypertension and congestive heart failure, hemorrhaging, and nasal and gastrointestinal perforations.

Treatment for TNBC is challenging, as there are currently no targeted drugs for this group of patients. Other anticancer drugs target signaling pathways known to be deregulated in cancer. Everolimus inhibits the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, a pathway which contributes to cell survival, growth and proliferation [40], by inhibiting the

		Operable Tumor	
	Before Surgery	Inoperable tumor Surgery After Surgery	
Treatment	Neoadjuvant therapy	Mastectomy or breast conserving surgery	Radiation Therapy Endocrine Treatment Chemotherapy Anti-Her2 treatment
Purpose	Tumor shrinkage and downstaging	Remove primary tumor and lymph nodes	Reduce recurrence

Figure 1.2. Overview of breast cancer treatment strategies in Norway. Based on treatment guidelines from the Norwegian Breast Cancer Group (NBCG) [12].

mammalian target of rapamycin (mTOR), a regulatory protein that is a key effector downstream of Akt. As a rapamycin analog, everolimus has high affinity for the FKBP-12 protein, which directly targets the mTOR complex 1 (mTORC1). Everolimus displaces mTORC1 in binding to FKBP-12, blocking the interaction between the two [41]. This interrupts further activation of the PI3K/Akt pathway downstream of mTORC1. The addition of everolimus into the treatment regime of hormone receptor positive [42, 43] and HER2 positive [44] breast cancer patients has been found to significantly prolong progression-free survival (PFS).

1.1.7 Breast cancer treatment response criteria

The efficacy of breast cancer treatment strategies can be measured according to different response criteria. Pathological complete response (pCR) has been considered the gold standard treatment outcome and refers to complete eradication of invasive cancer cells at treatment completion. pCR has been associated with improved survival [45]. However, pCR association to long-term outcome varies between different breast cancer subtypes [46].

The most traditional approaches to measure treatment response are based on anatomical measurements of tumors. The Response Evaluation Criteria in Solid Tumors (RECIST criteria), updated to RECIST 1.1 in 2009 [47], were created in an attempt to standardize treatment assessment, and reflect change in tumor size following treatment. The four RECIST response categories are: complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD). Briefly, CR is defined as the disappearance of all tumor lesions, PR refers to >30% tumor shrinkage, PD indicates >20% increase in tumor size and/or the appearance of new lesions, and SD describes tumors whose size has not decreased or increased enough to qualify as PR or PD, respectively. Computerized tomography (CT) and MRI are the recommended modalities to measure tumor size at both baseline and follow-up [47].

Relative tumor volume (RTV), defined as the tumor volume after treatment divided by baseline tumor volume, is an important measure to assess cancer treatment response in preclinical animal studies. The current standard non-invasive method to measure volume of subcutaneous animal tumors *in vivo* is using external calipers [48]. However, variability of caliper volume measurements, due to e.g. observer subjectivity, differences in tumor shape, or skin and fat layer thickness can affect RTV accuracy and reproducibility.

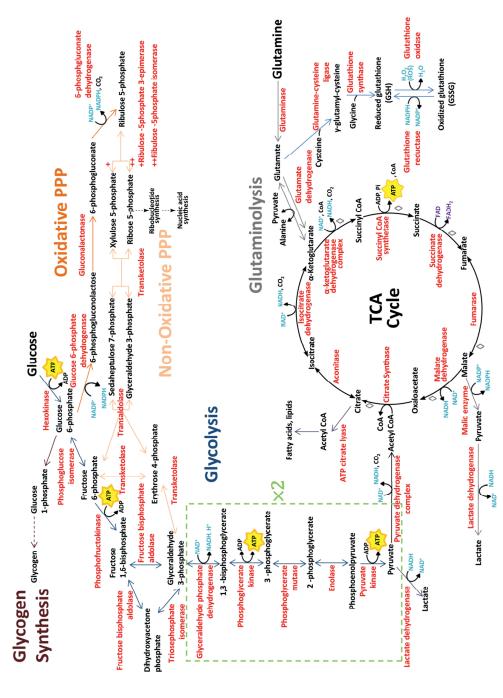
1.1.8 Patient-derived xenograft models

Animal models, in particular mouse models, are widely used to study breast cancer and other diseases. Since breast cancer onset occurs as an effect of several genetic events, transgenic mouse models, which are animals that have been genetically modified to develop tumors, have been highly valuable to study the disease [49]. Breast cancer xenograft models have been used for research purposes for decades; these models are established by implanting in vitro cultivated breast cancer cells of human origin into immunodeficient animals. Cancer cells cultured in vitro, however, have been found to lose many traits of the tumors they were derived from, such as their complexity of gene expression patterns, tumor microenvironment interactions, and heterogeneity in general [50]. This has led to poor clinical translation of findings in mouse xenografts of cancer cell lines. The need for more clinically predictive animal models of cancer has led to the use of patient-derived xenografts (PDX), which are established by implanting primary tumor tissue directly from a patient into an immunodeficient animal. PDX models preserve more similarities to human tumors than traditional cell line xenografts, including histology [51] and gene expression profiles [52]. Therefore, PDX provide an important means to study breast tumor biology and for the assessment of breast cancer treatment strategies.

1.2 Tumor metabolism

Reprogramming of energy metabolism is necessary for tumor survival, growth, and proliferation [53]. This field has gained increasing interest as it has been found that signaling pathways controlled by three gene types of particular relevance to cancer (oncogenes, tumor suppressors, and DNA repair genes) orchestrate this metabolic switch [53-55]. Metabolic deregulation provides cancer cells with three basic needs: 1) rapid generation of adenosine triphosphate (ATP) as a source of energy, 2) increased synthesis of the four types of macromolecules: lipids, carbohydrates, proteins, and nucleic acids, and 3) proper redox stability [53].

1.2.1 Glucose metabolism


Glucose is the major source of energy and carbon for mammalian cells and has three major metabolic fates: glycogen synthesis, glycolysis, or the pentose phosphate pathway (PPP) [56]. Although glycogen has been found to be accumulated in cancerous cells [57], this pathway is not believed to be fundamental for glucose metabolism in cancer.

Glycolysis, or the breakdown of glucose, is a linear pathway whose end product is pyruvate and also yields ATP and the reduced form of nicotinamide adenine dinucleotide (NADH) [54]. Pyruvate then follows one of two pathways depending on the presence or absence of oxygen. Under aerobic conditions, pyruvate enters the mitochondria where it is converted to Acetyl-coenzyme A (Acetyl CoA) by the pyruvate dehydrogenase complex (PDC). The Acetyl CoA then enters the tricarboxylic acid (TCA) cycle which yields CO₂ as a byproduct, as well as NADH and the reduced form of flavin adenine dinucleotide (FADH₂). The NADH and FADH₂ that are produced during glycolysis and the TCA cycle are high-energy electron carriers that enter oxidative phosphorylation, also known as the electron transport chain. During oxidation of NADH and FADH₂, electrons are transferred from these coenzymes to oxygen and free energy is released (Equation 1.1). Glycolysis, the TCA cycle, and oxidative phosphorylation yield two, two, and thirty-two molecules of ATP, respectively (Figure 1.3), and together comprise cellular respiration.

$$NADH/FADH_2 \xrightarrow{electron\ transfer} O_2 \tag{1.1}$$

When little or no oxygen is available to oxidize pyruvate and NADH produced during glycolysis, pyruvate is quickly reduced to lactate via the action of the enzyme lactate dehydrogenase (LDH). The oxidized form of NAD produced through this reaction fuels glycolysis creating a positive feedback loop (Figure 1.3). Although the production of ATP via anaerobic glycolysis is 100 times faster than oxidative phosphorylation [58], it is much less efficient as it yields only two molecules of ATP from glycolysis per glucose molecule. In both cancer cells and normal proliferating cells, most of the pyruvate produced during glycolysis is converted to lactate whether oxygen is present or not; hence, their metabolism is termed aerobic glycolysis [54]. This metabolic switch is known as the Warburg effect, and was first observed by Otto Warburg [59, 60].

The PPP, found to be elevated in cancer [61], is a major source of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), which is an electron carrier or antioxidant. The PPP involves an oxidative (ox-PPP) and non-oxidative (non-ox-PPP) phase. The non-ox-PPP provides a link to glycolysis as it converts ribose-5-phosphate (R5P) into the glycolytic intermediates fructose-6-phosphate and glyceraldehyde-3-phosphate to promote cellular energy metabolism. This pathway is reversible, being able to redirect the glycolysis intermediates to produce R5P to increase biosynthesis of ribonucleotides when required for proliferation (Figure 1.3).

pathway (PPP), which has an oxidative (dark orange) and non-oxidative (light orange) phase. The TCA cycle (black) reactions that are recruited by glutaminolysis (gray) are marked \circ Enzymes are shown in red. ADP: adenosine diphosphate; ATP: adenosine triphosphate; CoA: coenzyme A; FAD: oxidized flavin adenine dinucleotide; FADH2: reduced flavin adenine dinucleotide; NADP*: oxidized nicotinamide adenine dinucleotide phosphate; Figure 1.3. Overview of cellular glucose and glutamine metabolism. Glucose can undergo three fates: glycolysis (dark blue), glycogen synthesis (brown), or the pentose phosphate NADPH: reduced nicotinamide adenine dinucleotide phosphate; Pi: inorganic phosphate; ROS: reactive oxygen species.

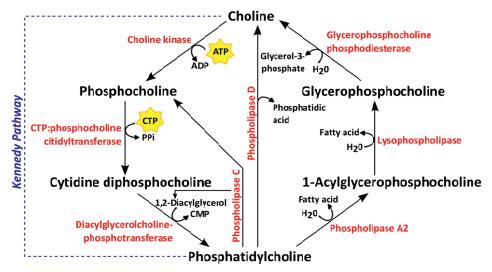
1.2.2 Amino acid metabolism

In culture, cancer cells exhibiting the Warburg effect have been found to require exogenous glutamine for survival, a phenomenon known as glutamine addiction [53, 62, 63]. This normally non-essential amino acid becomes essential as it plays an important role in different pathways that promote cancer cell growth and proliferation. Particularly, it becomes a key source of carbon and nitrogen for nucleotide, lipid, and protein biosynthesis.

Glutamine can be imported into the cell by different transporters, where it is hydrolyzed to glutamate and ammonium by the enzyme glutaminase (GLS). Increased glutamine transporter activity and GLS expression have been found in cancer [55, 62]. Glutamate provides the amino group for non-essential amino acids necessary for macromolecular synthesis such as alanine, aspartate, serine, and glycine [64]. Glycine has been associated with poor prognosis [65] and larger tumor size [66] in breast cancer. Glutamate is also the precursor of glutathione (GSH) and the TCA cycle intermediate α -ketoglutarate. GSH is a major cellular antioxidant [67], and as such provides protection from reactive oxygen species (ROS) that oxidize and damage cellular proteins, lipids, and nucleic acids and may ultimately cause cellular dysfunction or death [68].

With most glucose being diverted to the production of the waste product lactate via the Warburg effect, glutamine becomes an important anaplerotic and source of carbon by replenishing TCA cycle intermediates. Metabolism of α -ketoglutarate generates NADPH and thus energy through oxidative phosphorylation as mentioned before [64]. Oxaloacetate is also generated as a TCA cycle intermediate, and is necessary for the formation of citrate which in turn provides Acetyl CoA groups for cholesterol and fatty acid synthesis [62, 64].

Significant amounts of glutamine carbon have been found to be converted to lactate and secreted from cancer cells *in vitro*, in a similar manner as glucose [53, 62]. This reaction involves the malic enzyme and leads to synthesis of CO₂, pyruvate, and NADPH, the latter being a reducing equivalent, and as such is important for lipid and nucleotide synthesis. Through this pathway, increased glutaminolysis in proliferative cells can fulfill an important proportion of their NADPH demands [53, 62]. An overview of glutamine metabolism is shown in Figure 1.3.


Taurine is another amino acid whose relevance in cancer has been investigated. However, findings for this metabolite vary with different types of cancer [69], and the involved mechanisms are unknown. In gliomas, taurine has been suggested as a marker of apoptosis [70], while in prostate [71] and colon cancer [72, 73] higher taurine levels have been found in

tumor compared to normal tissue. In breast cancer, taurine has been negatively associated with axillary lymph node spread [66] and poor prognosis [65], and has been found to be elevated in ER positive compared to ER negative tumors [74].

1.2.3 Choline phospholipid metabolism

Abnormal choline metabolism has become widely accepted as a cancer metabolic trait over the past years. Choline-containing compounds of particular interest include free choline (Cho), phosphocholine (PCh), and glycerophosphocholine (GPC). These compounds are involved in the metabolism of phosphatidylcholine (PtdCho), the major phospholipid constituent of eukaryote cell membranes. After being transported into the cell, Cho is converted to PCh in the first step of the Kennedy pathway, which is the major source of *de novo* PtdCho. GPC is a product of PtdCho catabolism that is subsequently converted to choline, thereby completing the choline cycle (Figure 1.4). MR spectral peaks for Cho, PCh, and GPC are detected *in vivo* as a single peak termed total choline (tCho), which is elevated in different cancers when compared to normal tissue [69].

Choline-containing compounds are considered essential to sustain cell proliferation in terms of being substrates for membrane multiplication for new cells [75]. In addition, since lipid second messengers are synthesized via choline phospholipid metabolism, this pathway

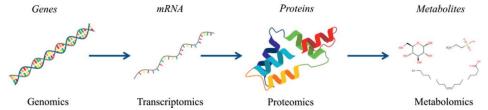


Figure 1.4. Choline phospholipid metabolism. Enzymes are shown in red. ADP: adenosine diphosphate; ATP: adenosine triphosphate; CMP: cytidine monophosphate; CTP: cytidine triphosphate; PPi: inorganic pyrophosphate.

also plays a role in lipid-based signal transduction. Increased tCho and PCh in cancer has been attributed to a higher choline uptake rate [76, 77], as well as increased expression and activity of the enzymes choline kinase alpha (CK-a) [77, 78], phospholipases C [77, 79] and D [77, 80], and glycerophosphocholine phosphodiesterases [81, 82]. The involvement of these enzymes in PtdCho metabolism is illustrated in Figure 1.4. Nevertheless, much of the mechanisms governing altered choline phospholipid metabolism in cancer are still not fully understood. Malignant transformation, rather than rapid proliferation, has been suggested as the main driver for abnormal choline metabolism, as non-cancer proliferating cells were found to sustain low PCh, GPC, and tCho levels [83]. In the same study, the ratio between GPC and PCh was inverted from higher GPC/PCh to higher PCh/GPC with immortalization of cells, suggesting the latter ratio to be a marker for aggressiveness. In contradiction, ex vivo studies have found GPC/PCh to be elevated in breast cancer subtypes with worse prognosis [74, 84]. The discrepancy may be due to the association of higher PCh/GPC to aggressiveness being based on in vitro studies that do not take the effects of the tumor microenvironment into account. Acidic extracellular pH, for example, has been found to significantly increase GPC and decrease PCh levels [85]. In spite of the lack of consensus regarding choline metabolite ratios, increased levels of one or more of the individual metabolites constituting tCho are consistently observed in tumors and are associated with cancer aggressiveness. Decreased tCho signal has therefore been suggested as a marker of tumor response to treatment [86, 87].

1.2.4 Metabolomics

Metabolic profiling, or metabolomics, involves the large scale study of small (size < 1000 Da) cellular metabolites and their intermediates present within a living system at a given moment. The metabolome comprises the total sum of metabolites within a living system and is at the last level of the omics cascade, a flow of biochemical information that is exchanged through the interaction of different molecular levels (Figure 1.5) [88]. The remaining three

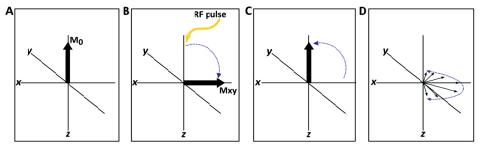
Figure 1.5. The omics cascade. Metabolomics is the final step in the cascade, and thus studies information closer to the phenotype. Reprinted from Paper I, with permission.

levels of the cascade are the genome, transcriptome, and proteome. Because metabolites are downstream of genes, RNA, and proteins, metabolite levels can be considered the ultimate response to genetic modifications or environmental changes including disease, drug, and dietary influences. Metabolomics therefore studies information closer to the observable biological endpoints, i.e. the phenotype, and has been described as "the link between genotypes and phenotypes" [89]. The two main analytical techniques within metabolomics are magnetic resonance spectroscopy (MRS) and mass spectrometry (MS), which are complementary techniques. This thesis concerns metabolic profiling of breast tumor tissue using MRS metabolomics of breast tumor tissue has revealed significantly different metabolic profiles between breast cancer patients and healthy controls [90], as well as distinct metabolic profiles linked to breast cancer prognostic factors [74, 91] and prognosis [92].

1.3 Magnetic Resonance Spectroscopy

1.3.1 Principles of Nuclear Magnetic Resonance

The theory behind nuclear magnetic resonance (NMR) comes from the concept of a quantum mechanical property called spin (I) that atomic nuclei can possess. Spin can be compared to the rotation of a planet on its axis (Figure 1.6A). This property depends on the number of protons and neutrons in a nucleus, with different combinations of these subatomic particles giving rise to distinct spin configurations. In nuclei with even numbers of both protons and neutrons, antiparallel spin pairs, which cancel each other out, are formed, and thus they experience no spin (I=0). Nuclei with odd numbers of both protons and neutrons possess integer spins (I=1,3,5, etc.), while nuclei whose sum of protons and neutrons is odd have half-integer spins (I=1/2, 3/2, 5/2, etc.). Nuclei having these two last configurations, i.e.


Figure 1.6. Depiction of the classical view of the magnetic resonance of a nucleus. A) The magnetic moment vector (μ) is the axis of spin (1), while the external magnetic field (B_{θ}) is the axis of precession (2). B) Under normal circumstances, μ is oriented at random. C) If B_{θ} is applied, nuclear magnetic moments align either parallel (lower energy state, circled in blue) or anti-parallel (higher energy state, circled in red) to B_{θ} .

 $I\neq 0$, generate their own magnetic field, called the magnetic moment (μ) , which is proportional to its spin, and thus give rise to an NMR signal. According to quantum mechanics, nuclei have 2I+1 possible orientations, meaning that nuclei with spin of $\frac{1}{2}$ have two orientations, or energy states, and are thus the simplest systems observable by NMR. The hydrogen-1 nucleus (1 H) is most commonly used for MRS biomedical applications due to its high abundance in the body and high sensitivity [93].

The magnetic moment μ of protons, which can be represented schematically as a vector with direction and magnitude, is usually oriented at random (Figure 1.6B). If an external magnetic field (B_{θ}) is applied, μ will align either parallel or antiparallel to B_{θ} (Figure 1.6C) in a low (I=+1/2) or high (I=-1/2) energy state, respectively. The sum of magnetic moments from two protons at different energy states yields a net magnetization of zero. However, at a state of thermal equilibrium, a very slight majority of protons are found at the lower energy state (α) than at the higher energy state (β), as described by the Boltzmann probability distribution (Equation 1.2):

$$\frac{N_{\beta}}{N_{\alpha}} = e^{-\frac{\Delta E}{k_B T}} \tag{1.2}$$

where N is the population of β or α spin states, ΔE is the energy difference between the spin states, k_B is the Boltzmann constant, and T is the temperature in Kelvin (K). The energy state population difference gives rise to a net magnetization vector (M_0) aligned with B_0 from the sum of magnetic moments of all protons (Figure 1.7A). This residual component of the magnetization causes the magnetic moment of each nuclei to move circularly, or precess, about the B_0 rotational axis at a constant rate (Figure 1.6A). This frequency of precession is the resonance frequency, called the Larmor frequency (ω_0), and is the number of complete

Figure 1.7. NMR excitation and relaxation. A) The sum of magnetic moments of all protons in different energy states $(\alpha \text{ or } \beta)$ gives rise to a residual component of the magnetization (M_{θ}) , or net magnetization vector, parallel to the external magnetic field. B) By applying a radio frequency (RF) pulse, M_{θ} can be tilted from the longitudinal z-axis to the transverse x-y plane. C) Interrupting the RF pulse causes M_{θ} (i.e. the precessing nuclei) to gradually return from the x-y plane to the z-axis, through longitudinal (T1) relaxation. D) In addition, the nuclei spins, which become synchronized with the application of the RF pulse, gradually dephase or fan out chaotically, through transverse (T2) relaxation.

rotations of a given nucleus per second. The resonance frequency corresponds to ΔE and is proportional to the strength of B_{θ} and to the gyromagnetic ratio (γ), which is a fundamental constant unique for each nuclei (Equation 1.3).

$$\omega_0 = \gamma B_0 / 2\pi \tag{1.3}$$

The magnetization vector can be manipulated by applying a radio frequency (RF) pulse (B_I), at the same frequency as the Larmor frequency of the nuclei of interest, to excite said nuclei to a higher energy state. This tilts the magnetization vector away from the B_0 axis at an angle dependent on the pulse magnitude and duration. A 90° pulse rotates M_0 90 degrees, from the longitudinal z-axis to the transverse x-y plane (Figure 1.7B). In addition, the pulse brings the excess α state spins comprising the residual magnetization to a temporary state of phase coherence, meaning they remain fixed with each other instead of fanning out chaotically in a cone-shaped distribution as in Figure 1.7D. When the RF pulse is interrupted, the excited nuclei gradually return to the equilibrium state, precessing around the z-axis with characteristic longitudinal (T1) and transverse (T2) relaxation times, releasing the absorbed energies. The precession of the magnetic vector induces a RF current in a receiver coil, and this is observed and recorded as a free induction decay (FID) or time domain signal, which when converted to the frequency domain via Fourier transform [94] gives the NMR spectrum.

T1 and T2 relaxation are illustrated in Figure 1.7C and D. T1 or spin-lattice relaxation is an enthalpy process and refers to a nuclei's loss of thermal energy to its surroundings, or lattice, to return to a state of equilibrium, i.e. affecting the magnetization components that are parallel to B_0 . T2 or spin-spin relaxation refers to the exponential decay of the transverse component of the net magnetization as a result of the loss of coherence of the individual precessing spins of each nuclei. In other words, spins become desynchronized, affecting the magnetization components perpendicular to B_0 . Spin decoherence occurs due to interactions between neighboring spins that lead to random fluctuations of the local magnetic field of protons and ultimately causes the precession frequency of their magnetic moments to vary at random. The slower a molecule moves, the more its protons are affected by these inhomogeneities in its local magnetic field. Because the mobility of small molecules, such as water, is much higher than that of macromolecules, such as lipids, the latter exhibit shorter T2. The difference in T2 can thus be exploited to suppress lipid signals by employing T2-weighted pulse sequences which generate NMR spectra where the signal intensity of protons is directly proportional to its T2.

T2 relaxation is not only affected by motion-dependent inhomogeneities in the local magnetic field of each proton. Perturbations in the static, external magnetic field B_{θ} , arising

e.g. from defects in the magnet, sample inhomogeneity, or from other materials placed within the field, also contribute to the loss of coherence, therefore accelerating T2. The observed or effective T2 is called T2*, and is always shorter or equal to T2 ($T2 \ge T2*$).

The resonance frequency is dependent of the external magnetic field, and nuclei of the same type, e.g. protons, that are in different chemical environments will resonate at slightly different frequencies. The resonance frequency deviation due to electron shielding is known as the chemical shift and is what allows signals from protons situated in compounds of different molecular structure, e.g. metabolites, to be distinguished separately in an NMR spectrum, a plot of the signal intensity as a function of the resonance frequency (Figure 1.8). Other factors, such as pH and temperature, also alter chemical shift. In addition, rather than appearing as sharp resonance lines, peaks are split into multiplets as a result of spin-spin interactions, or couplings, which are transmitted between neighboring nuclei through chemical bonds.

The chemical shift (δ) of a specific nucleus is calculated as the difference between its resonance frequency (v_{nuc}) and that of a reference compound (v_{ref}), followed by division of the reference compound resonance frequency (Equation 1.4).

$$\delta = \frac{\nu_{nuc} - \nu_{ref}}{\nu_{ref}} \tag{1.4}$$

The reference compound will thus have a chemical shift of zero. The most common

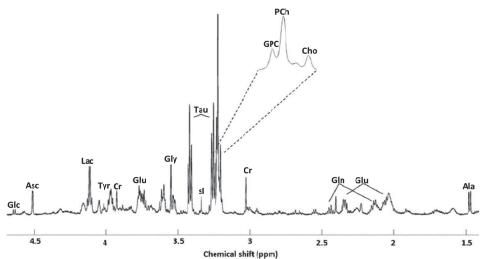


Figure 1.8. Proton high resolution (HR) magic angle spinning (MAS) magnetic resonance (MR) spectrum of breast tumor tissue. Metabolite peaks observed include glucose (Glc), ascorbate (Asc), lactate (Lac), tyrosine (Tyr), creatine (Cr), glutamate (Glu), glycine (Gly), taurine (Tau), scyllo-inositol (sl), glycerophosphocholine (GPC), phosphocholine (PCh), choline (Cho), glutamine (Gln), and alanine (Ala). Adapted from Paper I, with permission.

reference compound employed in ¹H NMR is tetramethylsilane (TMS). Sodium salts of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) are used as references in inorganic solvents, where TMS is not soluble. Because the resonance frequency differences are typically around one million times smaller than the actual resonance frequency values, the chemical shift is commonly expressed in terms of parts per million (ppm), which are independent of the magnetic field strength. Thus, the chemical shift, characteristic of the chemical arrangement a nucleus is in, together with the splitting, reflecting the bonding of a nucleus, provides information about molecular structure. Furthermore, the signal intensity in an NMR spectrum is proportional to the molecular concentration of nuclei producing the signal, and thus allows for quantification of detected compounds.

1.3.2 High Resolution Magic Angle Spinning MRS

NMR of solids and semisolids, such as biological tissue, is characterized by the presence of nuclear interactions that are anisotropic, i.e. dependent on the orientation or direction of the molecules which the involved nuclei are part of with respect to the external magnetic field. Anisotropic interactions arise due to the lack of molecular mobility in these samples, essentially being magnetic and electronic interactions between spatially proximal nuclei in static positions [95]. This gives broad signals in the spectra, increasing the risk of significant overlap of metabolite peaks. The same does not occur in liquid solution state, as the rapid movement of the molecules averages out the anisotropic interactions. The orientation dependence of these interactions can be described by the angular function $3\cos^2\beta - I$, which can be exploited to substantially reduce the line broadening effect. This angular function equals 0 when β , corresponding to the angle of a spinning axis with respect to the external magnetic field, is 54.7°. Rapid spinning of a solid sample on its axis at this angle, referred to as the magic angle, mimics a liquid solution state in which the anisotropy of the interactions is averaged to zero. This method, called high resolution (HR) magic angle spinning (MAS) MRS [96, 97], therefore produces spectra from tissue samples with resolution comparable to that of conventional liquid solution NMR (Figure 1.8).

HR MAS MRS requires minimal sample preparation and can detect over 30 metabolites in breast cancer tissue [98], many of which are involved in the previously described cancer-relevant pathways of glycolysis (Section 1.2.1), glutaminolysis (Section 1.2.2), and choline phospholipid metabolism (Section 1.2.3). The sample remains intact after spectral acquisition, which allows for subsequent analysis, such as histological, gene, and protein analysis, on the same sample.

1.4 Analysis of MRS metabolomics data

Statistical analysis approaches for MRS metabolomics data should be selected taking into consideration the purpose of the study and the structure of the data to be analyzed. Prior to statistical data analysis, however, preprocessing of the data must be performed to avoid interference from unwanted effects such as experimental and instrumental artifacts during subsequent extraction of biologically relevant information.

1.4.1 Preprocessing of MRS metabolomics data

For the purposes of multivariate statistics, one can think of metabolomics data as being organized in a two-dimensional, rectangular structure called a data matrix (X), where the rows represent each sample and the columns represent each variable or point in a spectrum. Alternatively, variables can correspond to individual, quantified metabolites. Raw NMR metabolic spectra are inadequate for statistical analysis as they may reflect differences not related to the biological traits of interest. For instance, lower or higher metabolite peak intensities may arise due to differences in analyzed sample amounts rather than a metabolic response to a certain stimulus. Peaks may shift left or right during NMR acquisition due to e.g. pH or temperature differences, resulting in metabolites appearing at slightly different positions at the ppm scale in raw spectra of different samples and therefore making these not comparable. To remove these and other unwanted effects, a series of computational procedures, collectively referred to as data preprocessing, are applied to the raw data, transforming it into a proper format for subsequent statistical analysis. This decreases sources of error, misleading results, and inaccurate biological interpretations.

Typical magnetic resonance (MR) spectral preprocessing procedures include correction of distorted baselines, alignment of shifted peaks, normalization to correct for variations in amount of sample, and mean centering and scaling to balance differences in abundance of metabolites. Baseline offset can be corrected by shifting the lowest spectral point to zero. Another baseline correction method is asymmetric least squares smoothing (AsLS) [99], which fits the baseline using a vector of asymmetric weights to minimize the residuals and adds a smoothing penalty to the estimated baseline. Spectral alignment can be performed using icoshift [100], for which spectra are divided into segments. Each segment is aligned individually in a way that maximizes the correlation between each spectrum and a reference, without stretching or compression of the signal. Area normalization is widely used for MRS-acquired metabolomics data of tissue, consisting of dividing each spectral point by the total

spectral area. Probabilistic quotient normalization (PQN) calculates a most probable dilution factor based on the distribution of quotients derived from dividing all points of the spectrum to be normalized by the corresponding points in a reference spectrum [101]. Mean centering is typically preformed prior to scaling, by subtracting the column mean from each individual spectral value. The purpose of this is so that the maximum variation is not the deviation from zero. Autoscaling consists of dividing each value by the column standard deviation after mean centering. This makes all metabolites or spectral points have unit variance, and thus contribute equally to subsequent statistical model building.

Paper I of this thesis is a review pertinent to preprocessing of MRS metabolomics data and provides a more detailed description of methods to perform the aforementioned procedures.

1.4.2 Multivariate analysis

MR spectra consist of thousands of points, making the datasets they constitute complex and high dimensional. Because many spectral points make up one metabolite peak, and a single metabolite can be represented by many peaks, MRS metabolomics datasets are typically highly collinear, i.e. an approximate linear relationship will hold between at least some of the variables in the X-matrix. In addition, the high number of variables (p) often greatly exceeds the number of samples (m) in metabolomics datasets. Multivariate analysis methods discover structure in the data and can be divided into two types based on the purposes they are typically used for [102]. Unsupervised methods aim to describe naturallyoccurring, underlying patterns, usually employing visualization techniques to identify outliers and sample clusters or groupings. Supervised methods are used to relate the metabolomics data to a response variable (y) of interest for prediction purposes. Response or outcome variables are factors of interest, such as clinical and biological characteristics, that can be continuous, e.g. percentage of proliferating cancer cells, or categorical, e.g. labels indicating response to treatment or not. The main difference between unsupervised and supervised multivariate methods is that the latter makes use of the response variable for modelling while the former searches for patterns in the explanatory data only [102, 103]. Common unsupervised methods are principal component analysis (PCA) and hierarchical cluster analysis (HCA), while supervised methods include partial least squares methods.

Principal component analysis

Plotting all variables in a metabolomics dataset simultaneously would result in an abstract visual representation of *p*-dimensions, essentially uninterpretable. Plotting all possible paired combinations of the *p* variables is unfeasible and potentially uninformative. Principal component analysis simplifies the data by calculating new variables, or latent variables, as linear combinations from the original variables. PCA latent variables are called principal components (PCs), and they form a new coordinate system of reduced dimensionality. PCs are mutually orthogonal, or independent from each other, which is graphically translated as their being perpendicular to one another, completely uncorrelated. Each new PC explains less variation than the previous one, with the first PC thereby describing the direction of the maximum variation [104]. Thus, the first two or three PCs typically encompass most of the relevant data variation, and plotting them alone eases visualization and allows the identification of hidden trends within the original multidimensional data.

PCA decomposes the original *X*-matrix into scores (T) and loadings (P) matrices as shown in Equation 1.5, where T indicates the transpose of a matrix [104]:

$$X = TP^T + E \tag{1.5}$$

The scores (T) define the position of the samples in the new PC coordinate system. Similarly, the loadings (P) show the contribution of each original variable on the PCs (Figure 1.9A and B). The variation not explained by the PCA model, or residual variance (E), decreases as more PCs are included. The optimal number of PCs to incorporate can be determined using scree plots, i.e. plots of the variance explained by each PC [105]. The PC number positioned where the plotted curve bends suddenly before it starts to straighten horizontally should be selected (Figure 1.9C). The remaining PCs are likely to explain only

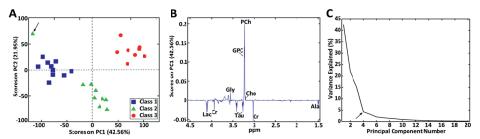


Figure 1.9. Hypothetical example of principal component (PC) analysis. A) The scores plot shows the three sample classes clearly separated, with scores on PC1 increasing with increasing class number. A potential outlier is indicated by the arrow. B) The loadings plot shows lactate (Lac), creatine (Cr), taurine (Tau), and alanine (Ala) having lower values for PC1 (i.e. higher in Class 1 samples) while glycine (Gly), glycerophosphocholine (GPC), phosphocholine (PCh), and choline (Cho), have higher values for PC1 (i.e. higher in Class 3 samples). C) Scree plot with arrow indicating the bend in the curve (optimal dimensionality) at four principal components.

unimportant variation or noise that should not be modelled.

The scores plot can reveal important patterns and sample groupings of physiological importance. Furthermore, using the established PCA model, scores can be calculated for new samples. The position of new sample scores can be used to infer unknown information about new samples, e.g. a class they belong to based on the class of the surrounding samples. Another application is the identification of potential outliers, as these are typically observed separated from the general sample population in the scores plot. PCA can also be used to select important variables, as their being positioned further away from the origin in the loadings plot indicates a higher influence on the model and vice versa. The combined use of scores and loadings plots, which can be plotted together as what is known as a biplot [105], allows the positive or negative association of samples with variables, i.e. metabolites, observed in similar or opposite positions, respectively, in the new coordinate system.

Hierarchical cluster analysis

Hierarchical cluster analysis (HCA) finds natural sample groupings based solely on the variation of the *X*-matrix. These groupings or clusters are organized in a multilevel hierarchy as visualized in a dendogram or cluster tree (Figure 1.10). The clustering is performed according to determined similarity measures, with samples with similar variable measurements being grouped closer together.

At the bottom of the dendogram, each sample is considered a cluster on its own. A similarity or distance measure is calculated for every pair of clusters. The most similar pair of clusters is merged into a single cluster, and distance measures between the new cluster and the rest are calculated to consider every possible cluster combination when determining the subsequent pair to be merged. This process is repeated so that clusters are linked progressively as one moves up the dendogram until only one cluster comprised of all samples remains. The height of the dendogram indicates the

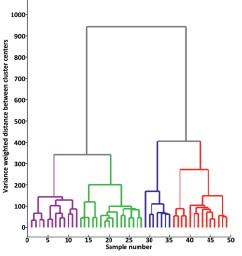


Figure 1.10. Dendogram or cluster tree example. Cutting the dendoram at height 450 partitions the data into four groups or clusters, shown in different colors.

distance between clusters. Thus, as the height where clusters are linked increases, so does their level of dissimilarity. The approach described above is a bottom up approach, termed agglomerative. Alternatively, a top down approach, termed divisive, can be adopted, where a single cluster containing all samples is repeatedly split until each cluster is represented by a single sample [106].

Similarity between samples or clusters is defined using distance measures, as samples which are closer together in the space spanning the *X*-matrix variable measurements are more similar. Several distance measures exist. The Euclidean distance is the most commonly used distance measure for individual samples [106], and it describes the length of the straight line connecting two samples.

Other distance measures include the Mahalanobis distance [107], which takes into consideration the covariance of the population of samples, and the Manhattan distance [108], which is computed following a grid-like path restricted to vertical and horizontal movements.

HCA can be performed using several linkage methods that define the way the intercluster distance is measured [106, 109]. For instance, using single linkage, the distance for a given pair of clusters A and B is computed as the minimum distance found between one sample in A and one sample in B. On the contrary, with complete linkage, the distance between individual samples in A and B that are farthest away from each other is defined as the measure of similarity between both clusters. Ward's method, also called the minimum variance method, aims to minimize the within-cluster variation with each cluster merger [110].

Partial least squares methods

Supervised multivariate methods model the relationship between the metabolomics data matrix (X) and a response variable of interest (y), represented as shown in Equation 1.6:

$$y = Xb + e \tag{1.6}$$

where b is a vector of regression coefficients, one for each variable in X, and e is a vector of residuals, i.e. variation not explained by the model. To regress y on X essentially means to predict the value of y using the values in X. An unknown response for a new sample (y_{new}) can be predicted by multiplying the vector containing the new sample's measurements for the explanatory variables included in X with the vector of determined regression coefficients (b), provided that the new sample comes from a similar population as the samples used to fit the model. Classical multiple linear regression (MLR) fits the model, i.e. calculates the regression coefficients, using the least squares approach (Equation 1.7):

$$b = (X^T X)^{-1} X^T y (1.7)$$

where T and $^{-I}$ indicate the transpose and the inverse of a matrix, respectively. However, MLR is unable to handle cases where the explanatory variables in X are highly collinear and/or there is a higher number of these variables than samples, features typical of metabolomics datasets. For such datasets, X is said to not be of full rank [111], with the inverse of $X^{T}X$ in Equation 1.7 being either incalculable or ill-conditioned [112] due to correlated variables in X cancelling each other out. In these cases, partial least squares (PLS) regression methods are an appropriate alternative to establish linear relationships between X and Y.

Like PCA, PLS regression is a dimensionality reduction technique that finds orthogonal latent variables (LVs), here called PLS LVs, as linear combinations of the original variables. It is therefore suitable that the PLS abbreviation alternatively stands for "projection to latent structures" [113]. Unlike PCs, however, PLS LVs are determined using y to guide the decomposition of X into scores and loadings, thereby capturing the most relevant information for predicting y.

The PLS regression model is established by producing a weight matrix W with columns corresponding to weight vectors for each of the p columns in X. The number of rows (c) in W is the number of LVs included in the model. The weights are calculated so that the covariance between X and y is maximized [114], and together with X produce the scores matrix T as shown in Equation 1.8:

$$T = XW \tag{1.8}$$

Y weights or loadings (Q) are then calculated using y and T according to Equation 1.9:

$$y = TQ + e \tag{1.9}$$

From Equation 1.6 and Equation 1.9, Equation 1.10 is formulated, in which subsequent replacement of *T* according to Equation 1.8 leads to Equation 1.11:

$$Xb = TQ \tag{1.10}$$

$$Xb = XWO \tag{1.11}$$

X on both sides of Equation 1.11 is cancelled out, and thus, for the fitted PLS model, the regression coefficients (b) in Equation 1.6 result from W and Q (Equation 1.12), thereby completing the prediction model:

$$b = WQ \tag{1.12}$$

The loadings (P) for the PLS model are calculated from the X-matrix and the scores, (Equation 1.13), where F contains the residuals for the scores:

$$X = TP + F \tag{1.13}$$

Scores and loadings can be visualized and interpreted using plots similarly as for PCA (Figure 1.9).

The two most common algorithms for performing PLS regression are the non-linear iterative partial least squares (NIPALS) [115, 116] and the statistically inspired modification of the PLS method (SIMPLS) [117]. The NIPALS algorithm was first developed for PCA but was later extended for PLS. Although both algorithms basically produce the same result, SIMPLS is gaining increasing popularity over NIPALS due to its higher speed [118, 119].

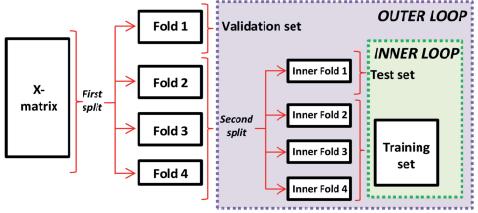
PLS regression was originally developed for the prediction of continuous response variables. However, it can be applied to classification problems, i.e. when the response variable is categorical, using the variant partial least squares-discriminant analysis (PLS-DA). For this, the categories or classes corresponding to each sample are represented using dummy variables, e.g. 1 and 2, to indicate a responder and non-responder, respectively, to a certain treatment [120]. Linear discriminant analysis (LDA) can be performed on the scores matrix (T) extracted by PLS [121], using e.g. Fisher's algorithm which maximizes the between-class variation while minimizing the within-class variation [122]. Often, however, PLS regression is used to relate the metabolomics X-matrix and the response comprised of dummy variables in the same way as when applied to continuous responses, and the model built will assign new samples of unknown origin a numeric value used to determine the class it most closely resembles. This is done by setting an optimal classification threshold, which in the example above would be between 1 and 2, with samples that have predicted responses below that threshold being assigned the class responder and those with responses above it are assigned the class non-responder. The PLS models in the studies included in this thesis have been built for classification purposes, and thus the following descriptions will be generalized for PLS-DA.

1.4.3 Validation of multivariate models

Because supervised methods use a response variable to fit a model, a good prediction performance may be achieved by chance; phenomena unique to the data used for building or training the model may be described, with the model not being applicable to new samples within the same population. This is known as overfitting, and occurs when irrelevant LVs describing only noise are included in the model [123]. In contrast, underfitting results from important phenomena not being considered by the model, i.e. too few LVs are used, therefore excluding relevant variation when modelling. Overfitting and underfitting are the two main causes for poor performance of PLS models. Underfitting is easy to detect as when it occurs

the model performs poorly on both training and new samples. With overfitted models, however, successful prediction of the training samples will be achieved. This may lead to underlying phenomena pertinent only to the training samples being erroneously generalized to the entire population they represent. Overfitting is therefore a more serious problem, as model prediction results are overestimated, leading to false discoveries and interpretations. To avoid this, proper validation of multivariate models using techniques such as cross validation and permutation testing is crucial [124].

Cross validation


Model quality and robustness is commonly assessed using a test set approach, where the said test set is comprised of samples with available explanatory metabolomics data for which the corresponding response values or classes are known. The training samples, constituting the training set, and the test set should be processed in the same way, and should represent a similar population that the new samples intended to be predicted by the model also belong to. The test set can be a large group of unseen samples completely excluded from the training procedure. However, a sufficient amount of samples is needed for a proper division of the data for training and testing, as training sets with low sample size may lead to model underfitting. Technical and time constraints limit sample availability, often to an extent where the use of an independent test set is inappropriate.

A widely used alternative is cross validation (CV), a resampling technique that evaluates how model performance will translate to new samples. This can be carried out by dividing the dataset into a number (k) of subsets, called folds. Each subset is temporarily excluded at a time to serve as a test set, while the rest are used collectively for training the model. The process is repeated until all samples have been used for testing only once. Model diagnostic statistics, such as a misclassification error, of the k models built are combined, e.g. by calculating the mean.

The described procedure is a type of CV designated k-fold CV, according to the number of folds (k) defined. Sample allocation to each fold can be carried out in different ways [125], one of which is random sampling. Because randomly varying the composition of each test set when repeating the CV procedure will likely produce different results, the random CV error is less biased. Instead of establishing the number of k folds, a percentage of samples comprising each fold can be defined, such that leaving out 20% of samples at each repetition will result in the data being divided into five non-overlapping folds. For datasets including too few samples to allow for large test sets, leave-one-out (LOO) CV can be used. With this procedure, each

alternating test set is comprised of a single sample, i.e. *k* corresponds to the total number of samples. Implementing LOO CV will produce the same total error if repeated, as the test sets consisting of only one sample will not change with each repetition. Thus, random sampling is unnecessary. For datasets containing repeated measurements, leave-one or *n*- patients-out CV should be employed, so that all samples from the same patient are included in either the training or test set. Additionally, centering and scaling factors should be calculated from training data and applied to test set data to avoid overfitting.

CV is commonly used to determine model parameters, such as model dimensionality for PLS-DA. For this, PLS-DA models are built with each training set including a different number of LVs at a time. The models are used to predict the class of the corresponding test set samples. The number of LVs with which fewer samples are misclassified is selected as optimal. However, assessing both the number of LVs to include and the final model performance using the same CV-generated test sets is likely to result in overestimating the utility of the model. It is therefore advisable to perform a separate validation using an independent sample set after determining the optimal number of LVs [124]. Alternatively, if enough samples are available, a double CV procedure can be employed, where an inner loop nested in an outer loop allows for separate dimensionality optimization and prediction performance assessment as illustrated in Figure 1.11. The validation set samples in the outer loop are completely unseen to the inner loop LV optimization procedure, making their use for testing the resulting model less prone to overfitting. For interpreting the scores and loadings, a

Figure 1.11. Schematic representation of a four-fold cross validation procedure. The number of latent variables (LVs) is optimized in the inner loop while model quality is assessed in the outer loop. A new fold is alternated to be left out as a validation or test set, at each repetition for the outer and inner loop, respectively, until all folds have been left out once. The risk of overfitting is reduced since the validation set samples are unseen to the LV optimization procedure.

final model can be built from the entire dataset using the most frequently selected number, i.e. the mode, of LVs in the inner loop. When performing variable selection, which is a type of model parameter optimization, validation should be performed similarly as for LV optimization, using test set data completely unseen to the variable selection procedure to validate models built with the selected variables [126].

Permutation testing

The statistical significance of a classification model can be assessed through permutation testing. Essentially, permutation tests provide information on whether classification results are better than random. They do so by rearranging, i.e. permuting, the class labels in the response variable y in random order. This destroys the true relationship between the X-matrix and the y response vector, as samples will now be assigned random class labels. A model is built using the permuted y-vector employing CV to obtain a misclassification error. A permuted model is expected to perform much worse than the model that has been built using the true class labels. The procedure is repeated a number of times (N), to obtain N permuted misclassification errors. A p-value can be calculated as the proportion of permuted models achieving an equal or lower error than the non-permuted model (Equation 1.14).

$$p = \frac{number of \ permuted \ errors \ equal \ or \ lower \ than \ the \ nonpermuted \ error}{N} \qquad (1.14)$$

In order to be able to achieve p-values in the thousandth order of magnitude (10^{-3}) or lower, the number of permutations (N) should be set to at least 1000. As is common practice, a p-value of 0.05 or 0.001 (outside the 95% or 99% bounds, respectively, of the permuted misclassification error distribution), should be considered statistically significant [124].

Classification model diagnostic statistics

Common model diagnostic statistics to assess the performance of a classification model include the aforementioned misclassification error, as well as the sensitivity and specificity [120]. To calculate these, the classes, hereby referred to as cases (*positives*) and controls (*negatives*), assigned by the classification model to each sample are compared to the corresponding true class. The sums for correctly classified samples of the case class and control class (true positives (TP) and true negatives (TN), respectively) and incorrectly classified samples of the case and control class (false negatives (FN) and false positives (FP), respectively) are used to summarize the predictive ability of the classification model as described below.

The misclassification error is the ratio of incorrectly classified samples by the total number of classified samples (Equation 1.15). In contrast, the accuracy can be calculated as the ratio of correctly classified samples by the total number of classified samples, or simply one minus the misclassification error.

$$Error = \frac{number\ of\ incorrectly\ classified\ samples}{total\ number\ of\ samples} = \frac{FN + FP}{TP + TN + FN + FP} \quad (\ 1.15\)$$

The ability to correctly classify the case classes is measured by the sensitivity (Equation 1.16) while the specificity indicates how well the model classifies the control cases (Equation 1.17)

$$Sensitivity = \frac{number\ of\ correctly\ classified\ case\ samples}{total\ number\ of\ case\ samples} = \frac{TP}{TP + FN} \hspace{0.5cm} (1.16\)$$

$$Sensitivity = \frac{number\ of\ correctly\ classified\ control\ samples}{total\ number\ of\ control\ samples} = \frac{TN}{TN + FP} \quad (1.17)$$

A highly sensitive model is one that correctly associates the case samples with the presence of the condition being predicted, while a highly specific model correctly associates the control samples with the absence of said condition.

1.4.4 Analysis of individual metabolites

As has previously been mentioned (Section 1.3.1), the proportionality of the NMR signal intensity to the number of nuclei producing that signal makes MRS highly quantitative. Absolute quantification of spectra is possible but requires a reference signal with known concentration. Trimethylsilyl propionic acid (TSP) [127] and the electronic reference to access *in vivo* concentration (ERETIC) [128] can be used as internal references for the absolute quantification of HR MAS MR spectra. However, TSP may bind to proteins and other membrane components in tissue, which may lead to overestimation of metabolite concentrations [95]. ERETIC is an electronically-simulated reference which can be positioned at any region of the spectrum, therefore avoiding reference-analyte interactions and peak overlap [129]. Relative concentrations can be calculated by integrating peaks corresponding to each metabolite, provided that an appropriate sample normalization strategy is implemented to correct for differences in amounts of sample analyzed. The concentrations can then be used for univariate hypothesis testing to evaluate differences between groups or classes.

Univariate tests can be parametric or non-parametric, and for the proper selection between these, three assumptions should be checked: normality, homoscedasticity, and

independency of samples [130]. Normality refers to variables, in this case metabolite concentrations, following a normal, also called Gaussian, distribution. This can be evaluated visually using histograms or quantile-quantile (q-q) plots. A symmetric, bell-shaped curve or an ascending diagonal line in a histogram or q-q plot, respectively, indicates that the data is normally distributed. Normality can also be checked employing statistical tests such as Shapiro-Wilk or Kolmogorov-Smirnov [131]. Figure 1.12 illustrates how data distribution and number of groups tested should be considered for the selection of an appropriate univariate hypothesis test for group differences. Homoscedasticity refers to homogeneity of variances, and heteroscedastic data does not allow for parametric tests. However, data transformation, e.g. a logarithmic transformation, might make the data suitable for such tests, which also applies for non-normally distributed data. Independency of samples is lost in datasets where for instance, multiple metabolite measurements from the same patient are included. This is referred to as repeated measurements, and can be handled by methods such as linear mixed-effects models (LMM).

Linear mixed-effects models

Linear mixed-effects models (LMM) [132] are extensions of linear regression models, whose name derives from the inclusion of two types of effects when modelling: fixed effects, which are somewhat systematic, and are the explanatory variables, and random effects, which are a component of the unsystematic variation that arises e.g. due to individual differences among patients [133]. LMM can be employed for multilevel analysis of data grouped according to multiple classification factors, which are essentially the fixed effects. These

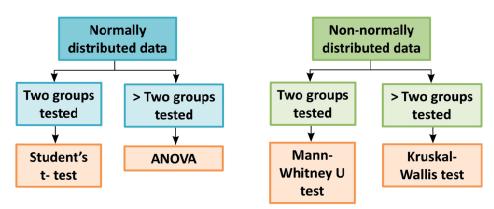


Figure 1.12. Selection of univariate hypothesis tests according to data distribution and number of classes tested. Adapted with permission from Tonje H. Haukaas.

effects, which one has modelling control over, originate from variations between the different factor levels, while the random effects originate from the between-patient variation that cannot be accounted for, such as unrecorded diet and exercise habits. Incorporating a random effect variable that contains labels for the patient each sample was collected from allows for the correction of repeated measurements when relating the fixed effects to the response variable (*y*), e.g. a metabolite concentration. This is especially useful for longitudinal studies where sample collection is performed on the same patients over time for follow-up purposes. In addition, LMM can handle incomplete data, which refers to measurements from certain patients not being available at all time points. This is not uncommon in clinical studies, and for other methods requires the exclusion of patients lacking data at any given time point from the analysis, or the use of estimated values for the missing data.

1.4.5 Multiple testing correction

Statistical tests which associate a p-value to individual metabolites are often repeated in parallel for all metabolites under investigation. As the number of tests performed increases, so does the probability of obtaining a significant p-value by chance, ultimately leading to the accumulation of false positive findings. Multiple testing corrections aim to control the number of false positives, also known as type I errors. The Bonferroni adjustment [134] is a widely used approach which is carried out simply by multiplying each p-value by the number of tests performed. This adjustment is the standard approach for controlling the family-wise error rate (FWER), which is the probability of producing at least one false positive. However, for omics studies, especially those which are untargeted, this adjustment proves to be too strict, risking potentially important compounds to be overlooked, i.e. the generation of type II errors or false negatives.

Correcting for the false discovery rate (FDR) is an alternative approach that provides a more suitable balance between the dangers of committing type I and type II errors. This can be achieved through the Benjamini-Hochberg adjustment [135, 136], which produces a corrected p-value (q-value) for each tested metabolite. The q-values are calculated based on the metabolite p-value and on the distribution of the entire population of p-values generated with multiple parallel tests for all metabolites being considered. The q-value specifies the smallest FDR at which the tested metabolite would be considered important. For instance, a q-value of 0.05 implies that for the corresponding test to be considered significant, of all tests achieving p-values equal to or smaller as such test, i.e. those that would be considered

significant, 5% would be false positives [130]. In this example, the FDR threshold, which should be defined prior to testing, would have to be set to 5% or above for the test to be considered significant.

1.5 Gene and protein expression analysis

While profiling and statistical analysis of metabolomics data has been described, data from other omics levels is complementary and can be used to increase the validity of results. Combining omics data provides a powerful approach for the global understanding of pathway regulation. Several methods exist to extract biological meaning from omics data, with applications ranging from the determination of differentially expressed proteins and genes, to functional annotation of gene sets, some of which are described below.

1.5.1 Gene expression profiling

Gene expression levels can be measured based on the detection of total RNA. This procedure includes sample RNA extraction and purification. Gene expression microarrays are employed to measure the expression levels of thousands of genes in one sample simultaneously [137]. DNA hybridization, which occurs between two DNA strands that are complimentary to each other, is central to this procedure. Gene expression microarrays contain thousands of DNA probes, i.e. fragments of single-stranded DNA of variable length that can be fluorescently labeled. The ribonucleic acid sequence of each probe uniquely identifies a gene, and the extracted RNA will bind to each probe according to the base pairs of nucleobases (guanine binds with cytosine and adenine with thymine). Fluorescence levels at each sequence-specific microarray location are subsequently measured, and are considered directly proportional to the amount of complementary mRNA sequence present. Although gene expression microarrays do not provide absolute quantification of expression, they are useful to compare expression levels between two groups (e.g. normal vs. tumor tissue).

Prediction analysis of microarray 50

Prediction analysis of microarray 50 (PAM50) [138] is an algorithm with which a nearest centroid classifier for breast cancer gene expression intrinsic subtypes (Section 1.1.5) is built based on the expression levels of 50 genes. New samples are assigned the subtype of training samples whose shrunken mean, i.e. centroid [139], they are closest to. The distances to centroids are calculated using Spearman rank correlation [140].

Significance analysis of microarray

Significance analysis of microarray (SAM) [141] determines significant changes in gene expression and at the same time accounts for the problem of chance discoveries with the immense numbers of genes tested. Genes are assigned a score based on differences in gene expression relative to the standard deviation of repeated expression measurements [141]. A threshold for the score is defined to determine statistical significance. In addition, SAM employs permutations on expression measurements to test which potentially significant genes are identified by chance, with which the FDR is calculated.

Gene set enrichments analysis

While SAM focuses on differences in expression of individual genes, gene set enrichment analysis (GSEA) [142] tests for collective expression changes in groups of genes between two classes, biological states, or phenotypes. Prior knowledge is used to define the gene sets, e.g. based on cellular location of gene products, molecular function, associated biological processes, or gene ontology (GO) [143] category. Each gene is ranked according to their correlation with the classes. The ranked list is examined to determine whether genes are randomly distributed within the list or accumulated at the top and bottom extremes, with the latter indicating that the tested gene set is related to the distinction between classes.

DAVID

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) [144] consists of a set of tools for functional annotation of gene lists, where annotation terms describe the biological roles of specific genes. The inputted gene lists can be, for instance, a compilation of genes found to be significantly differently expressed between two groups. Functional annotation clustering within DAVID makes groups of annotation terms taking into account the extent of common genes involved, considering group members to have similar biological meaning. In addition to related annotation terms being grouped together, an enrichment score is provided for each group or cluster [145]. This eliminates redundant annotation terms within a gene list, organizing them into a clean summary easy to visualize, along with an associated measure of relevance in the enrichment score, thereby easing biological interpretation.

1.5.2 Reverse-phase protein array

Reverse-phase protein array is a high-throughput method for the quantitative measurement of protein expression levels using antibodies [34]. The procedure consists of fractionating cells to produce a cell lysate rich in released proteins. The lysate is then spotted on a slide that can contain hundreds to thousands of different immobilized samples. The slide is then incubated with a single primary antibody that binds specifically to a protein of interest. Secondary antibodies that are labeled, e.g. with a fluorescent label, bind to the primary antibody and the intensity of the fluorescence signal provides a measure of the protein expression in each of the samples in the array. Protein expression data determined by RPPA can be used to classify samples into the previously mentioned RPPA breast cancer subtypes (Section 1.1.5) defined by Hennessy *et al.* [34].

1.5.3 Integrated pathway analysis

Gene expression and metabolomics data can be combined through integrated pathway analysis using the online data analysis tool suite MetaboAnalyst 3.0 [146]. Metabolites and genes whose concentration and expression, respectively, exhibit significant changes are linked together based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database [147, 148] to define potential molecular pathways regulating biological processes as enriched. Topology analysis [149] is subsequently performed to determine the relative importance of metabolites and genes based on their relative locations in the pathway. Maps of the significantly enriched pathways can be generated, highlighting the involved genes and metabolites identified as important.

2 Thesis Objectives

2.1 Overall aim

The main aim of this thesis was to explore the potential of HR MAS MRS metabolomics of breast tumor tissue combined with advanced statistical techniques for complementing transcriptomics and proteomics in the characterization of tumor heterogeneity, optimization of treatment stratification, and for the evaluation of current available breast cancer therapies.

2.2 Specific Objectives

- To review the available methods for the main preprocessing steps of MRS metabolomics data.
- To establish and characterize metabolic subgroups of breast cancer patients and further examine the molecular heterogeneity of the disease by combining metabolite, gene, and protein expression data from human breast tumors.
- To explore the effect of neoadjuvant therapy and the antiangiogenic drug bevacizumab
 on metabolic profiles and to examine the potential of MR metabolomics in
 discriminating responders from non-responders.
- To investigate the tumor response to everolimus treatment in a heterogeneous panel of triple negative breast cancer xenografts.

3 Materials and methods

This thesis includes four papers pertaining to MRS metabolomics. Paper I is a review article that summarizes the preprocessing steps for MRS metabolomics and compares the most common methods to achieve these. Papers II-IV present MRS metabolomics data from human and PDX breast tumor tissue. Materials and methods used in Papers II-IV are summarized in Table 3.1.

Table 3.1. Materials and methods used in Papers II-IV.

		Paper II	Paper III	Paper IV		
Materials	Human Samples	228 breast tumor tissue samples from 228 patients	270 breast tumor tissue samples from 122 patients			
Materials	Xenograft samples			103 breast tumor tissue samples (13 PDX models)		
	Metabolic profiling	HR MAS MRS	HR MAS MRS	HR MAS MRS		
Data	Gene expression	Microarray profiling	Microarray profiling			
acquisition	Protein expression	RPPA		IHC		
	Other			Mutation screening		
	Analysis of individual metabolites	-Relative quantification -Kruskal-Wallis test -Benjamini-Hochberg multiple testing correction	-Relative quantification and imputation -LMM -Benjamini-Hochberg multiple testing correction	-Relative quantification -LMM -Benjamini-Hochberg multiple testing correction		
Data	Multivariate modelling	-HCA -PLS-DA	-PCA -PLS-DA	-PCA -PLS-DA		
analysis ·	Gene and protein expression	-PAM50 intrinsic subtyping -RPPA subtyping -SAM analysis -DAVID -GSEA	-PAM50 intrinsic subtyping			
	Combining omics	Integrated pathway analysis				

DAVID: Database for Annotation, Visualization, and Integrated Discovery; GSEA: gene set enrichment analysis; HCA: hierarchical cluster analysis; HR MAS MRS: high resolution magic angle spinning magnetic resonance spectroscopy; IHC: immunohistochemistry; LMM: linear mixed-effects model; PAM50: prediction analysis of microarray 50; PCA: principal component analysis; PDX: patient-derived xenografts; PLS-DA: partial least squares-discriminant analysis; RPPA: reverse-phase protein array; SAM: significance analysis of microarray.

3.1 Patients and xenograft models

3.1.1 Patient cohorts

Papers II and III included patients enrolled in large clinical breast cancer studies in Norway.

In Paper II, surgical biopsies from human untreated, primary breast tumors included in the Oslo 2 study were examined. Patients underwent surgery at the Oslo University Hospital (Radium Hospital and Ullevål Hospital) between 2006 and 2009. A piece of the surgically removed tumor was collected for the Oslo 2 study. Samples were divided into three sections for analysis; histological analysis, including ER status and tumor cell percentage, was performed on the edges of the two outer sections. An adequate amount of the middle section was used for metabolic profiling using HR MAS MRS. The remaining material from all three sections were pooled for DNA, RNA, and protein analysis. Of the 228 samples analyzed by MRS, gene and protein expression was successfully measured for 201 and 217, respectively, with a total of 191 samples being analyzed using the three omics modalities (Figure 3.1).

Paper III included tumor tissue samples (n=270) from 122 patients enrolled in a phase 2 randomized clinical trial: the NeoAva study. This study recruited women with non-metastatic, HER2 negative breast tumors with a diameter larger than 2.5 cm, between 2008 and 2012. The purpose of the study was to evaluate neoadjuvant antiangiogenesis treatment with bevacizumab. Recruitment was carried out at St. Olavs University Hospital in Trondheim in addition to Oslo University Hospital (Radium Hospital and Ullevål Hospital). The patients were treated as described in Section 3.1.3 and sampled at three different time points: prior to treatment (TP1), 12 weeks into treatment (TP2), and at surgery (TP3), i.e. 24 weeks after treatment start. Ultrasound-guided needle biopsies were obtained at TP1 and TP2, while a

piece from the surgically removed tumor was sampled at TP3.

Samples from both Papers II and III were snap-frozen after collection and subsequently stored at -80 °C. Both the Oslo 2 and NeoAva studies were approved by the Regional Ethics Committee for Medical and Health Research (REK) and the Norwegian Medical Agency, and carried out in accordance with the Declaration of Helsinki, International Conference on Harmonization Good Clinical practice. Informed written consent was obtained

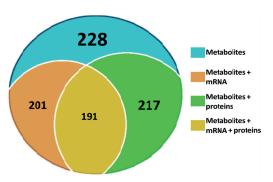


Figure 3.1. Representation of Paper II sample proportions analyzed by three different omics modalities. Of the 228 samples included for which metabolic profiles were acquired using magnetic resonance spectroscopy, 201 and 217 were measured for gene and protein expression, respectively. Data from the three omics levels was measured for a total of 191 samples. The correspondence of the shaded areas with the sample number has been estimated for illustrative purposes and should not be considered exact.

from all patients.

3.1.2 Patient-derived xenograft models

Paper IV included thirteen TNBC PDX that were previously established as described in [150]. In short, breast tumor fragments from primary surgical specimens obtained from patients with informed written consent were transplanted subcutaneously into the interscapular fat pad of female Swiss nude mice. After xenograft emergence 2-8 months after transplantation, serial grafting was performed from mouse to mouse. Animals were handled at the Translational Research Department, Institut Curie in Paris, France. The animals were divided to either be treated as described in Section 3.1.3 or to be untreated controls, so that approximately four animals per PDX model were included in each group. This resulted in a total of 50 and 53 animals in the treated and untreated groups, respectively, giving tissue samples from a total of 103 animals. The harvested tumor tissue was stored at -80 °C after snap-freezing. The tumor material was divided for mutation screening, immunohistochemistry analysis, western blotting, and metabolic profiling. All procedures and experiments involving animals were carried out according to the institutional guidelines of the French Ethical Committee and the European Convention for the Protection of Vertebrates used for Scientific Purposes.

3.1.3 Treatment protocols

All patients in Paper III were administered neoadjuvant chemotherapy according to current Norwegian treatment guidelines. This included four cycles of anthracyclines in the form of FEC100 (5-fluorouracil 600 mg/m2, epirubicin 100 mg/m2, cyclophosphamide 600 mg/m2) every three weeks and subsequent therapy with taxanes for 12 weeks (weekly infusion with paclitaxel 80 mg/m2 or four cycles of docetaxel 100 mg/m2 every three weeks). Patients were randomized to receive bevacizumab in a dose of 15 mg/kg every three weeks. Most patients were started on docetaxel as the taxane therapy, with those treated with bevacizumab continuing to receive the same dose of the antiangiogenic agent as with the previous 12 weeks of anthracycline-based therapy. The taxane therapy was changed to paclitaxel for a majority of patients due to toxicity, with those treated with bevacizumab subsequently receiving it at a dose of 10 mg/kg every other week. The treatment protocol for Paper III is summarized in Figure 3.2.

Scree (TF		ng									1		reel P2)	ks											rgery P3)
Week→	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	2 2	23	24	
All patients→													Cy	1 DT	X	Су	2 DT	X	Cy	3 DI	X	Cy	4 DI	X	←DTX-treated
All patients	Су	1 FE	C	Cy	2 FE	C	Cy	3 FE	C	l c	4 FE	C	P	P	P	P	P	P	P	P	P	P	P	P	←PTX-treated
Bevacizumab	В			В			В			В			В			В			В			В			←DTX-treated
treated	В		В		В		В		В		В		В		В		В		В		В		В		← PTX-treated

Figure 3.2. Treatment protocol for Paper III. All patients received four three-weekly cycles (Cy) of FEC followed by 12 weeks of taxane-based treatment. For those patients receiving bevacizumab (B), this was administered once every three weeks and every other week for docetaxel (DTX) receivers and paclitaxel (PTX) receivers, respectively. P:Paclitaxel administration.

Animals treated with everolimus in Paper IV received it orally for 4-5 weeks at a dose of 2.5 mg/kg three times a week.

3.1.4 Response criteria

An overview of response criteria used in the present thesis is given in Table 3.2.

Three treatment response criteria were used in Paper III. First, pCR, defined as complete eradication of all invasive cancer cells in both breast and axillary lymph nodes, was evaluated. However, since only 20/122 patients achieved pCR, a second response criterion that considered patients experiencing a good response but not achieving pCR was employed. For this, a 1 cm cut-off value for the tumor diameter measured pathologically at the time of surgery (TP3) was used to classify patients as having pathological minimal residual disease (pMRD, tumor diameter < 1 cm) or as pathological non-responders (pNRs, tumor diameter ≥ 1 cm). Finally, the change in tumor size with treatment was evaluated by calculating a response ratio as tumor diameter at TP3/tumor diameter at TP1 (mmTP3/mmTP1), i.e. inversely proportional to a good response. This ratio was used to classify patients as having a good, intermediate, or no response (GR, IR, NR) as shown in Table 3.2.

In Paper IV, everolimus treatment response was evaluated based on RTV. Significant differences between RTVs of treated and untreated tumors from the same PDX model were calculated at the end of the treatment period using Student's t-tests. PDX models achieving $p \le 0.05$ were classified as responders, while those with p > 0.05 were classified as non-responders.

Table 3.2. Overview of treatment response criteria employed in Papers III and IV.

	Metric	Definition	Groups	Criteria
	Pathological complete response	Complete eradication of all invasive cancer cells	pCR+	Patients achieving pCR
	(pCR)	in both breast and axillary lymph nodes.	pCR-	Patients not achieving pCR
	Pathological	1 cm cut-off value for the	pMRD	Diameter < 1 cm
Paper III	minimal residual disease (pMRD) response	tumor diameter measured pathologically at the time of surgery.	Pathological non- responders (pNRs)	Diameter ≥ 1 cm
	Dogwongo natio	Tumor diameter at TP3	Good response (GR)	RR≤0.10
	Response ratio (RR)	Tumor diameter at TP1	Intermediate response (IR)	0.10 <rr<0.90< td=""></rr<0.90<>
			No response (NR)	RR ≥0.90
Paper IV	Relative tumor	Tumor volume at time of treatment end	Responders	Significantly different RTVs (p≤0.05) between treated and control animals
	volume (RTV)	Tumor volume at baseline	Non-responders	No significant different RTVS (p>0.05) between treated and control animals
TP: time poi	nt.			

3.2 HR MAS MRS protocol

Metabolic profiles for Papers II-IV were acquired from breast tumor tissue using HR MAS MRS as described below.

3.2.1 Sample preparation

Samples were prepared on a cooling work station filled with liquid nitrogen so that they were kept cold to minimize tissue degradation (Figure 3.3). The preparation time did not exceed five minutes, and consisted in cutting the samples to fit into 30 μ L, leak-proof, disposable inserts containing 3.0 μ L cold solution of sodium formate in D20 at a concentration of 24.29 mM. The insert was then transferred into a MAS zirconium rotor with 4 mm outer diameter and kept at -20 °C until

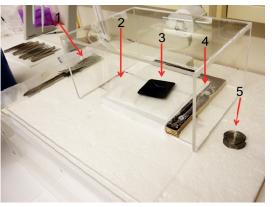


Figure 3.3. Cooling work station for tissue sample preparation. The work station, designed to minimize sample degradation, is filled with liquid nitrogen to keep samples cold during preparation. 1: disposable scalpel; 2: opening for filling of liquid nitrogen covered in plexi glass to avoid evaporation; 3: disposable weighing boat on which samples are prepared; 4: metal cooling block; 5: insert filled with sodium formate solution. Photo: Deborah K. Hill.

spectral acquisition.

3.2.2 Spectral acquisition

HR MAS MR spectra were acquired on a Bruker Avance DRX600 spectrometer (Bruker Biospin GmbH, Germany) equipped with a 1 H/ 13 C MAS probe. A spin-echo one dimensional experiment with presaturation (cpmgprld, Bruker BioSpin, Germany) for water and lipid suppression was recorded for all samples using the acquisition parameters summarized in Table 3.3. Two additional experiments, namely noesy and two-dimensional J-resolved pulse sequences, were acquired, but were not used for the purposes of this thesis (total acquisition time for all experiments < 50 minutes).

Table 3.3. HR MAS MR spectral acquistion parameters for Papers II-IV.

Temperature	Spin rate	Effective Echo time	Number of scans	Relaxation delay	Delay (τ)	Spectral width
5 °C	5 kHz	77 ms	256	4s	0.3 ms	−5 to 15 ppm

3.3 Spectral preprocessing and data analysis

The acquired FIDs were Fourier transformed into 64K real points after modification by an exponential line broadening factor of 0.30 Hz. Automatic phase correction for each spectrum was implemented using TopSpin 3.1 (Bruker BioSpin GmbH). Subsequent preprocessing was performed in Matlab R2013b (The Mathworks, Inc., USA). Chemical shifts were referenced to the creatine peak at 3.03 ppm. The spectral region between 1.40 – 4.70 ppm, containing the majority of low-molecular weight metabolites, was selected as the region of interest. The spectra were baseline corrected using AsLS with parameters $\lambda = 1e7$ and p = 0.0001. In Papers II and IV, the baseline offset for each spectrum was corrected prior to AsLS by setting the lowest point to zero. In Paper III, the baseline was set to vary around zero by subtracting the mean value of the noise regions at 4.52-4.49, 3.10-3.06, 2.63-2.58, and 1.84-1.75 ppm from each spectrum after AsLS. The spectra were peak aligned using icoshift and normalized using either area normalization (Papers II and IV) or PQN (Paper III). An overview of the spectral preprocessing performed in this thesis is shown in Table 3.4.

Table 3.4. Spectral preprocessing for Papers II-IV.

	Paper II	Paper III	Paper IV					
Chemical shift reference	Creatine 3.03 ppm	Creatine 3.03 ppm	Creatine 3.03 ppm					
Baseline correction	Lowest point shifted to 0	AsLS and baseline set to	Lowest point shifted to 0					
Baseline correction	and AsLS	vary around 0	and AsLS					
Peak alignment	icoshift	icoshift	icoshift					
Normalization	Area normalization	PQN	Area normalization					
AsLS: Asymmetric least squares smoothing; PQN: probabilistic quotient normalization.								

3.3.1 Analysis of individual metabolites

Metabolite peaks were assigned based on previous identification in HR MAS MR spectra of human breast tumor tissue [98]. Relative quantification was performed by integrating fixed spectral regions corresponding to the metabolite of interest in Matlab R2013b. In Paper III, the integral of the metabolite lactate could not be calculated for 116 samples due to an overlapping lipid peak at 4.13 ppm. The imputation procedure of multivariate imputation by chained equations (MICE) [151] was thus employed to calculate lactate integrals for these samples in R 3.1.1 (R Foundation for Statistical Computing) [152]. In Paper IV, the dataset of individual metabolite integrals included the ratios of lactate/glucose, taurine/creatine, and glycerophosphocholine/phosphocholine. Metabolite levels between the metabolic clusters in Paper II were compared using the Kruskal-Wallis test.

LMM were built in R 3.1.1 (R Foundation for Statistical Computing) [152] for multilevel analysis of data grouped according to different classification factors in Papers III and IV. For this, the method of restricted maximum likelihood was employed using the function *lme* from the 'nlme' package [153]. Furthermore, LMM was applied in Paper IV to correct for repeated PDX model measurements while determining individual metabolite differences based on treatment group only.

The resulting p-values for tests repeated for multiple metabolites were adjusted for FDR by the Benjamini Hochberg method. Adjusted p (q-value) ≤ 0.05 was considered statistically significant.

3.3.2 Multivariate analysis

Multivariate analysis on spectra (Papers II and III) and integrals (Paper IV) was performed in Matlab R2013b (The Mathworks, Inc., USA). Spectra or integrals were mean-centered or autoscaled, respectively, prior to multivariate model building. HCA (Paper II) was performed on spectra of untreated primary tumors using Matlab's Statistical toolbox to identify metabolic clusters. For this, Euclidean distance and Ward's method were set as the distance measure and linkage criterion, respectively. PCA and PLS-DA were employed using PLS Toolbox 7.8.2 (Eigenvector Research Inc., U.S.A) to explore naturally occurring differences and to build classification models, respectively. The number of PCs for PCA was selected based on visual inspection of residual explained variance plots.

PLS-DA models were validated using double CV, where the number of PLS LVs was optimized in the inner loop and model performance was assessed in the outer loop. At each

loop, samples were split into a training and test set by randomly selecting a percentage of samples (20% for Papers II and IV, and 10% for Paper III) to be left out for testing. Since Paper IV included multiple samples of the same PDX type, spectra from samples derived from the same patient were all included in either the training or test set. The maximum number of LVs tested was 10. The final classification assessment parameters of accuracy, sensitivity, and specificity resulted from the mean of 20 repetitions of the double CV procedure, while the optimal number of LVs was the value most often selected as optimal during the repetitions, i.e. the mode. Additionally, validation with permutation testing was performed, building PLS-DA models using the final optimal number of LVs from double CV and randomly shuffled class labels (y) for each sample. The permutation procedure was repeated 1000 times, resulting in a permuted accuracy distribution. Models were considered significant if the final accuracy obtained from non-permuted double CV was higher than 99% (Paper II) or 95% (Papers III and IV) of the permuted accuracy values (p≤0.01 or p≤0.05, respectively).

3.4 Gene and protein analysis

3.4.1 Mutation screening

Mutation status for the tumor suppressor p53 was determined in Paper IV from complementary DNA (cDNA) amplified by real-time polymerase chain reaction (RT-PCR) as described in [154]. The BigDye Terminator kit was used for cDNA sequencing on an ABI PRISM 3130 automated DNA sequencer (Applied Biosystems, Courtaboeuf, France), with 10% sensitivity for mutated cell detection.

3.4.2 Gene expression measurement and subtyping

In Papers II and III, total RNA extraction from human breast tumor tissue was performed using TRIzol® reagent (Invitrogen, Carlsbad, CA, USA). Gene expression profiles were acquired using one color Sureprint G3 Human GE 8x60k Microarrays (Agilent Technologies) according to the manufacturer's protocol (One-Color Microarray-Based Gene expression Analysis, Low Input Quick Amp Labeling, v.6.5, May 2010). Preprocessing of the microarray data included log2 transformation, quantile normalization, and adjustment for hospital differences. In Paper II, values for probes corresponding to the same gene were averaged resulting in a single expression measurement for each gene. In Paper III, gene expression values were additionally adjusted for batch effect from array design and correlations to RNA

integrity (RIN) value and background signal. Microarray data in Paper III was also mean centered on both rows and columns. The PAM50 algorithm (Section 1.5.1) was employed in both Papers II and III to assign samples the intrinsic subtype labels of luminal A, luminal B, HER2-enriched, basal-like, or normal-like.

3.4.3 Protein expression measurement and subtyping

Protein expression measurements in Paper II were acquired from tissue lysates with RPPA (Section 1.5.2) using 151 primary antibodies. Subsequent primary antibody detection was carried out using a DakoCytomation-catalyzed system (Dako, Glostrup, Denmark) for signal amplification with a biotin secondary antibody. Spotted slides were scanned to determine signal intensities using MicroVigene software (VigeneTech Inc., Carlise, MA, USA). Quantification was achieved through curve fitting, employing a standard curve relating signal intensity to protein concentration (R package SuperCurve /version 1.01). Protein concentrations were log2 transformed and median centered. RPPA subtypes were assigned by consensus clustering [155], with which the number of groups that best fit the data was identified to be five: luminal, HER2, basal, reactive I, and reactive II as defined by the Cancer Genome Atlas Network dataset [33].

3.4.4 Immunohistochemical staining

Tumor material from the PDX models in Paper IV was fixed in 10% neutral buffered formalin and paraffin embedded. Two tissue cores from the paraffin blocks of two or three tumors per PDX model type were transferred into tissue microarray (TMA) [156] blocks. TMA were analyzed by immunohistochemistry for the expression of phosphatase and tensin homolog (PTEN) and phosphorylated Akt (pAkt) as described in [154]. Immunostaining was performed using a Discovery XT Platform (Ventana Medical Systems, Inc., Tucson, Arizona, USA, part of Roche Diagnostics). Monoclonal rabbit antibodies were used as primary antibodies, and horseradish peroxidase (HRP) conjugated with 3,3'-diaminobenzidine (DAB) tetrahydrochloride as substrate was used as secondary antibody for color development.

3.4.5 Gene expression analysis

In Paper II, differential gene expression between metabolic clusters was determined in R 2.15.2 using SAM analysis, considering differences to be statistically significant for adjusted p < 0.01. For this, 21 851 genes from 42 405 mRNA probes were inputted and the number of permutations was set to 100 for validation. Functional annotation of gene sets determined

based on SAM results was performed using DAVID, selecting the official gene symbol as gene identifier. Furthermore, GSEA was employed for the identification of enriched gene sets in the metabolic clusters, setting the number of permutations on phenotypes to 1000 and an FDR cutoff of 25%.

3.4.6 Integrated Pathway Analysis

Transcriptomics and metabolomics data were combined in Paper II using the *Integrated pathway analysis* tool in the MetaboAnalyst 3.0 online data analysis suite. Genes achieving a SAM analysis p-value < 0.05 and significantly differently expressed metabolites between clusters were selected to be inputted in the analysis. Pathways achieving a p \leq 0.05 were considered to be significantly enriched.

4 Summary of Papers

4.1 Paper I

Preprocessing of NMR metabolomics data

Leslie R. Euceda, Guro F. Giskeødegård, and Tone F. Bathen

Scandinavian Journal of Clinical and Laboratory Investigation 2015 March 4;75:3, 193-203, DOI: 10.3109/00365513.2014.1003593

Metabolomics involves metabolite profiling carried out on a large scale to study cellular processes in a biological sample. It is the youngest discipline within the omics sciences, emerging only when technological advancements enabled the measurement of many biochemical compounds within a sample simultaneously. The two main analytical techniques used to acquire metabolomics data are mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy.

Independently of the analytical technique used, metabolomics studies produce vast amounts of information which result in complex datasets with a large number of variables. Therefore, multivariate statistical techniques are typically used for the proper biological interpretation of this type of data. Prior to multivariate analysis, irrelevant variation such as that which arises due to baseline distortion, peak shifting, or differences in amount of sample

analyzed or abundance of metabolites within the sample, must be removed. This is achieved through a series of computational procedures collectively referred to as data preprocessing.

This paper is a review article which aims to outline the most common steps in the preprocessing of NMR metabolomics data. In addition, some of the methods to perform these steps are described and compared. Since data analysis results may vary when using different preprocessing methods, an appropriate pipeline for the selection of the optimal combination of methods in the preprocessing workflow should be established.

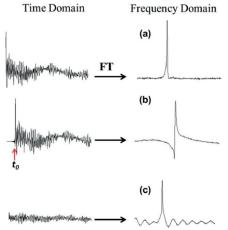


Figure 4.1. Paper I: Baseline correction in the time domain based on proper data acquisition timing. (A) Absence of dead time leads to no baseline distortion. (B) Phase errors are observed with both dead time and signal detection starting at time zero. (C) Baseline distortion observed when signal detection starts after a dead time of t0. FT: Fourier transform.

4.2 Paper II

Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes

Tonje H. Haukaas, <u>Leslie R. Euceda</u>, Guro F. Giskeødegård, Santosh Lamichhane, Marit Krohn, Sandra Jernström, Miriam R. Aure, Ole C. Lingjærde, Ellen Schlichting, Øystein Garred, Eldri U. Due, Gordon B. Mills, Kristine K. Sahlberg, Anne-Lise Børresen-Dale, Tone F. Bathen, and The Oslo Breast Cancer Consortium (OSBREAC)

Cancer & Metabolism 2016 June 27; 4:12. DOI: 10.1186/s40170-016-0152-x

This paper aimed to combine metabolite, protein, and gene expression data to study the molecular heterogeneity of breast cancer. Because patients with similar clinical diagnosis, histological characteristics, and disease stage may experience different outcomes, with regards to e.g. response to treatment and survival, identifying mechanisms contributing to breast cancer heterogeneity at a molecular level may reveal new targets for therapy or clinically relevant subgroups useful to stratify patients for treatment management.

Primary tumor samples from untreated breast cancer patients (n=228 tumor tissue samples) were analyzed using high-resolution magic-angle spinning magnetic resonance spectroscopy (HR MAS MRS). Hierarchical cluster analysis was performed on the acquired metabolic profiles, resulting in three significantly different metabolic clusters (Mc1, Mc2, and Mc3) being derived. Gene and protein expression data from the same tumors were used to further characterize the clusters.

The three metabolic clusters displayed distinct metabolic characteristics. Among these, Mc1 displayed the highest levels of glycerophosphocholine and phosphocholine, Mc2 was characterized by significantly higher levels of glucose, and Mc3 exhibited higher lactate and alanine levels. Combining metabolite and gene expression data using integrated pathway analysis revealed differences in glycolysis/gluconeogenesis and glycerophospholipid metabolism between the clusters.

Although significant differences in the distribution of reverse-phase protein array (RPPA) breast cancer subtypes were determined for all three clusters, the gene expression intrinsic subtypes were evenly distributed among them. The metabolic clusters may thus contribute additional information for the understanding of breast cancer heterogeneity. As for the differences in protein subtypes, these were predominantly due to only 9% of the samples classified as RPPA-reactive belonging to Mc1, while 44% of Mc2 tumors were of the reactive subtypes. The reactive RPPA-subtypes have a protein expression pattern believed to be

produced by the tumor microenvironment. In accordance with this, genes related to collagens and extracellular matrix were downregulated in Mc1 compared to Mc2 and Mc3.

In conclusion, metabolic profiles combined with gene and protein expression data provide new information about the heterogeneity of breast tumors. Furthermore, the distinct metabolic traits identified for each cluster infer that they may respond to different metabolically targeted drugs.

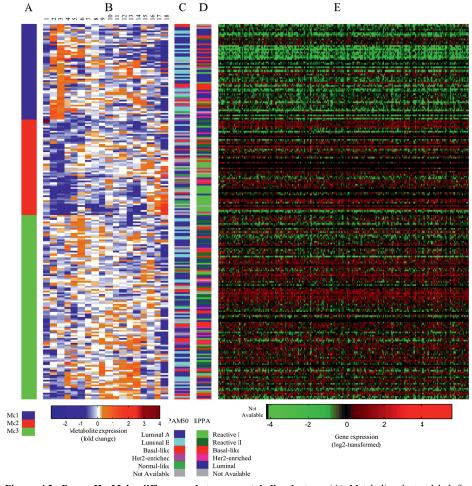


Figure 4.2. Paper II: Main differences between metabolic clusters. (A) Metabolic cluster label from hierarchical clustering of HR MAS MR spectra of samples. The samples clustered in three groups called Mc1, Mc2 and Mc3. (B) Fold change in expression levels of (1) scyllo-inositol, (2) glycerophosphocholine, (3) phosphocholilne, (4) creatine, (5) ascorbate, (6) taurine, (7) glutathione, (8) tyrosine, (9) lactate, (10) glutamate, (11) succinate, (12) glutamine, (13) glycine, (14) alanine, (15) choline, (16) myo-inositol, (17) acetate, (18) glucose. Blue regions in the heat map represent decreased levels while red levels represent increased metabolite levels. (C) PAM50-subtype (D) RPPA-subtype (E) Gene expression levels (quantile normalized, log 2 transformed) for the 277 overlapping significant genes (SAM, adjusted p < 0.01) between Mc1 and Mc3. The genes have been clustered.

4.3 Paper III

Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy

<u>Leslie R. Euceda</u>, Tonje H. Haukaas, Guro F. Giskeødegård, Riyas Vettukattil, Jasper Engel, Laxmi Silwal-Pandit, Steinar Lundgren, Elin Borgen, Øystein Garred, Geert Postma, Lutgarde M.C. Buydens, Anne-Lise Børresen-Dale, Olav Engebraaten, Tone F. Bathen

Submitted to Metabolomics 2016

This paper aimed to use magnetic resonance (MR) spectroscopy to explore the metabolic changes in breast tumor tissue occurring as an effect of overall neoadjuvant therapy, to investigate metabolic differences between therapy responders and non-responders, and to determine the metabolic effects of antiangiogenic treatment with bevacizumab.

The metabolic profiles of 122 tumors (n=270 tissue samples) from breast cancer patients were acquired using high resolution (HR) magic angle spinning (MAS) MR spectroscopy. All patients received neoadjuvant chemotherapy, while they were randomized to receive bevacizumab or not. Biopsies were sampled at three different time points: at baseline, 12 weeks into treatment, and after treatment (at surgery). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used to analyze the metabolic profiles. The levels of 16 metabolites were calculated by integrating fixed regions of preprocessed spectra, and analyzed by linear mixed-effects models (LMM). For this, the response variable was the metabolite level while the fixed effects were *time*, *pathological minimal residual disease* (pMRD) *response*, and *bevacizumab*, and the random effect was the patient ID.

PCA showed clear metabolic changes with increasing time of treatment, indicating a decline in glucose consumption and a transition to normal breast adipose tissue as an effect of chemotherapy. PLS-DA revealed metabolic differences between pMRD patients and pathological non-responders (pNRs) after treatment, but not before or during treatment, with an accuracy of 77% (p<0.001). Furthermore, patients exhibiting a good response (≥90% tumor reduction) could be discriminated from those with no response (≤10% tumor reduction) based on metabolic profiles before and after treatment, with a classification accuracy of 76% (p=0.001) and 75% (p=0.002), respectively. Lower glucose and higher lactate was observed in the good response group before treatment, while the opposite was observed after treatment. Bevacizumab-receiving and chemotherapy-only patients could not be discriminated at any time point. LMM detected significant differences during and/or after treatment for 11 out of

16 metabolites, while eight metabolites differed between pMRD and pNRs. LMM additionally revealed a significant interaction between *time* and *bevacizumab* for glutathione, indicating higher levels of this antioxidant in chemotherapy-only patients than in bevacizumab receivers after treatment.

In conclusion, MR-based metabolic profiles reflected changes as an effect of chemotherapy and showed potential in detecting metabolic response to treatment and complementing other molecular assays for the elucidation of underlying mechanisms affecting pathological response.

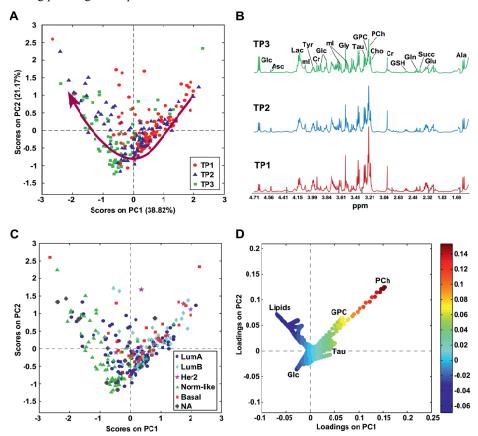


Figure 4.3. Paper III: Principal component analysis including all samples and mean spectra for each time point. (A) The scores plot shows a trend in the direction of the arrow with increasing time point. (B) PQN-normalized mean spectra at each time point. Gray bars indicate removed spectral regions. (C) The normal-like intrinsic subtype is most clearly separated from the rest in the scores plot, showing a similar distribution as TP3 in A. (D) The loadings plot indicates higher phosphocholine, glycerophosphocholine, and taurine at TP1 and increasing glucose and lipids with increasing time of treatment and in normal-like samples. Loadings are colored according to LV1. Ala:alanine; Asc:ascorbate; Cho:choline; Cr:creatine; Glc:glucose; Gln:glutamine; Glu:glutamiate; Gly:glycine; GPC:glycerophosphocholine; GSH:glutathione; LumA:luminal A; LumB:luminal B; NA:not available; Norm-like:normal-like; Lac:lactate; ml:myo-inositol; PCh:phosphoscholine; Succ:succinate; Tau:taurine; Tyr:tyrosine.

4.4 Paper IV

Metabolic response to everolimus in patient-derived xenografts of triple negative breast cancer

<u>Leslie R. Euceda</u>, Deborah K. Hill, Endre Stokke, Rana Hatem, Rania El Botty, Ivan Bièche, Elisabetta Marangoni, Tone F. Bathen, Siver A. Moestue

Submitted to the Journal of Proteome Research 2016

Since triple negative breast cancer (TNBC) lacks expression of estrogen receptors (ER), progesterone receptors (PgR), and HER2 protein, these patients are unresponsive to both endocrine and anti-HER2 therapy, limiting the therapeutic option to chemotherapy. Furthermore, the heterogeneous nature of TNBC contributes greatly to the variability in treatment response. TNBC displays the most overlap with the basal-like gene expression subtype, which is associated with the highest activation of the PI3K/AKT/mTOR signaling pathway. Thus, the mTOR inhibitor everolimus is a potential candidate for TNBC targeted therapy.

In this study, we assessed the metabolic responses to treatment with everolimus in a heterogeneous panel of TNBC patient-derived xenografts (PDX) using high resolution (HR) magic angle spinning (MAS) magnetic resonance spectroscopy (MRS), aiming to identify metabolic biomarkers for response/resistance. Breast tumor tissue from 103 animals representing 13 different TNBC PDX models that were divided to be treated with everolimus or not were analyzed by HR MAS MRS. The relative concentrations of 17 metabolites in addition to three metabolite ratios were combined to form a single dataset for multivariate analysis. Multilevel linear mixed-effects models (LMM) were built using individual metabolite relative concentrations as the response variable, with *treatment group* (treated or untreated) and *response group* (responding or non-responding PDX) as fixed effects and the PDX model as the random effect.

Partial least squares-discriminant analysis (PLS-DA) discriminated treated animals and untreated controls with an accuracy of 67% (p=0.003). LMM revealed similar treatment group trends observed by PLS-DA, strongly indicating reduced glycolytic lactate production and glutaminolysis after treatment, consistent with PI3K/AKT signaling pathway inhibition. Although inherent metabolic heterogeneity between different PDX models seemed to hinder prediction of treatment response, the metabolic effects following everolimus treatment were more pronounced in responding xenografts compared to non-responders. Furthermore, mutation status for the tumor suppressor p53 could be predicted using MR-based metabolite

levels, which may provide complimentary insight into the interplay between PI3K signaling and other drivers of disease progression.

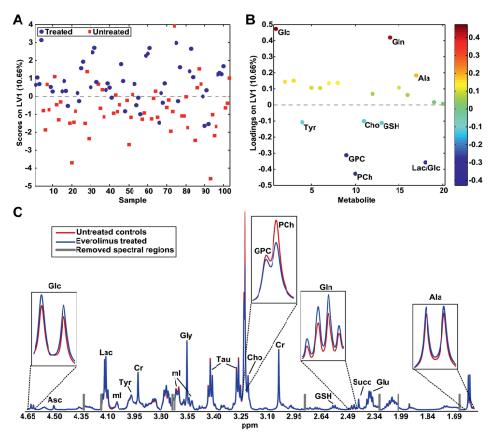


Figure 4.4. Paper IV: PLS-DA scores (A) and loadings plots (B) of treated animals vs untreated controls (n=103), and mean spectra (C) of treated animals and untreated controls. Loadings are colored according to latent variable (LV) 1. Ala: alanine; Asc: ascorbate; Cho: choline; Cr: creatine; Glc: glucose; Gln: glutamine; Glu: glutamate; Gly: glycine; GPC: glycerophosphocholine; GSH: glutathione; Lac: lactate; mI: myo-inositol; PCh: phosphocholine; Succ: succinate; Tau: taurine; Tyr: tyrosine.

5 Discussion

This thesis aimed to use *ex vivo* HR MAS MRS metabolomics to gain insight into the heterogeneity of breast cancer and to identify possibilities for optimizing treatment of the disease. Experimental data were acquired from breast tumor tissue samples of both human subjects (Papers II and III), and preclinical mouse models implanted with human cancers or patient-derived tumor xenografts (Paper IV).

Preprocessing has been found to be a critical step when analyzing the complex datasets generated from metabolomics studies. Paper I resulted from an extensive literature search on preprocessing of MRS metabolomics data, performed in preparation of the subsequent studies carried out in Papers II-IV. In Paper II, three significantly different metabolic clusters were derived from MR spectral data from a large cohort of untreated human breast tumors, and were characterized at the proteomic and transcriptomic levels. The metabolic clusters did not exhibit significant differences in intrinsic subtype distribution, indicating that the metabolic level may contribute additional biological information to further elucidate the heterogeneity of breast cancer. Papers III and IV investigated the effect of different available systemic breast cancer therapies. Paper III was carried out as part of the NeoAva phase 2 clinical trial, for which HER2 negative patients were administered neoadjuvant chemotherapy and were randomized to receive antiangiogenic bevacizumab in parallel, or not. The study design was longitudinal, including three sampling time points over the treatment course. In Paper IV, a heterogeneous panel of patient-derived triple negative breast tumor xenografts were divided to either receive treatment with the mTOR inhibitor everolimus, or not. In both Papers III and IV, significant metabolic changes as an effect of treatment were detected. Regarding treatment response, patients achieving pathological minimal residual disease (pMRD) were significantly discriminated from pathological non-responders (pNRs) after neoadjuvant chemotherapy using metabolic profiles in Paper III, independent of bevacizumab administration, while in Paper IV, the metabolic effects following everolimus treatment were more pronounced in responding xenografts compared to non-responders.

5.1 Methodological considerations

5.1.1 Patients and animal models

Tumor material from Papers II and III was obtained from large cohorts (n > 122 patients) of breast cancer patients. This represents a strength of this thesis, as small sample sizes may have a negative impact on statistical power, i.e. in the instance that statistical significance

cannot be achieved despite of there being a true effect, or that a statistically significant finding does not reflect a true effect [157]. Recruiting clinical cohorts, such as these, is challenging and usually takes several years (≥3 years in Papers II and III), and typically even more to collect relevant clinical follow-up data. Although pilot studies are hindered by imprecision from small sample sizes, they are often useful indicators of feasibility for larger, full-scale studies, as they give insight into study design and how a particular biological question should be addressed [158]. Pilot studies specifically designed for the studies in Papers II and III were not performed; however, similar studies of a smaller scale have previously been carried out by our research group. HCA on HR MAS MRS metabolic profiles (n=43 patients) was employed by Borgan et al. [35] to determine three subgroups of the luminal A intrinsic subtype, with one of them exhibiting significant metabolic differences and enriched genes related to cell cycle and DNA repair. The potential of HR MAS MRS metabolic profiles (n=33 and 89 patients, respectively) to predict survival and monitor response to neoadjuvant chemotherapy was evaluated by Cao et al. [159, 160]. In these studies, metabolic profiles reflected 5-year survival, while a subtle metabolic association to treatment response was detected in [159]. This gave the motivation for further investigation and result validation in larger cohorts, which was made possible through the inclusion of metabolomics for the global molecular characterization of breast tumors in the Oslo2 and NeoAva clinical studies.

Animal models are living experimental systems used to study human diseases. The advantages of employing animal models in cancer research include avoiding the risk of harming human subjects, and facilitating subject monitoring and control of experimental conditions [161]. Animal models of cancer are a more faithful representation of human tumor systems than cell lines grown *in vitro*, as *in vitro* models lack the presence of tumor microenvironment, i.e. stroma composed of the extracellular matrix, fibroblasts, blood vessels, and multiple cell types. The absence of such structures and their mutual interactions potentially hamper the translation of *in vitro* findings to the clinic [162]. It is important, however, to be aware that most of the components of the tumor microenvironment in all preclinical animal models are of the host and not of human origin, and as such, findings should be interpreted with caution.

Tumor material from PDX models was examined in Paper IV; patient-derived breast cancer cells were transplanted subcutaneously into the intrascapular backs of immunosuppressed mice. These xenograft models have been found to be more clinically predictive than those of *in vitro*-cultured cell lines [51, 52]. However, the general structure of the tumor tissue, which includes the tumor microenvironment, and perfusion may not be

entirely representative of the clinical site of interest, i.e. the breast. While orthotopic transplantation of cells into the mammary fat pad would provide a more similar microenvironment for proliferating cancer cells, a more complicated surgical procedure is required, representing a higher risk of infection or death for the animals. In addition, subcutaneous tumors are easily visualized and measured, which reduces the need to perform *in vivo* imaging to monitor cancer growth. This was the case for the animals in Paper IV, where the RTV was determined by external caliper measurement.

A general limitation of xenograft models is that the emergence of the tumor does not occur spontaneously, as it would clinically. The tumor development process is therefore not accurately portrayed in these preclinical models. To circumvent this, transgenic mouse models can be used. Another advantage of transgenic models is that, unlike xenograft models, the immune system of the host is intact. Therefore, the tumor microenvironment and structural composition will be influenced by the presence of immune cells and their interactions [163]. However, transgenic models also have limitations, with one of the most important being the large variability in the tumor development rates [163]. In these models, in vivo imaging is advantageous to determine appropriate recruitment criteria for mice into studies, which is often time consuming and expensive. Without such criteria, results can be misleading, for example, RTVs may differ due to differences in tumor onset time, rather than as a result of treatment. In addition, as opposed to human cells in PDX models, tumor cells in transgenic models are animal cells, which prevents direct studies of human disease. Finally, an important consideration made for Paper IV was that the study should take into account the heterogeneity of TNBC, which was achieved by examining PDX models derived from 13 TNBC patients who demonstrated variability in genetic and protein characteristics.

In the metabolomics workflow, sample collection, storage, and transport are the initial steps, and it is of the utmost importance that these steps are carried out according to strict protocol; inappropriate sample handling can lead to modification of the metabolic profile such that it no longer represents the physiological state of the tissue when it was harvested. Samples should be kept at low temperatures to avoid further enzymatic reactions occurring *ex vivo* that would lead to confounding metabolic alterations. It has been found that HR MAS MRS metabolic profiles of breast tumor samples are not significantly altered for tissues snapfrozen within 30 minutes post-surgery [164]. In accordance with this, all tissue samples analyzed as part of this thesis were kept at room temperature for no more than 30 minutes after collection, before being snap-frozen in liquid nitrogen. In addition, samples were transported and stored at -80°C (Section 3.1), and were kept cold during preparation and MRS

acquisition as described in Sections 3.2.1 and 3.2.2, respectively, to minimize tissue degradation.

5.1.2 Criteria for treatment evaluation

Strategies for determining metabolic changes as an effect of treatment in Papers III and IV differed slightly due to their respective study designs. In Paper III, the use of needle biopsies for sampling at baseline (TP1) and during treatment (TP2), in addition to sampling on the surgically removed tumor after treatment (TP3), facilitated a longitudinal study design. This provides the possibility to compare unpaired pre and post treatment samples. In addition, paired analysis as well as repeated measures analysis, e.g. LMM, can be performed, with which the between-patient variability can be disregarded when investigating the treatment effect, which is a component of the within-patient variability. In Paper IV, the animals were divided to receive treatment or not. Samples were collected from both groups at the same time point following completion of treatment in the treated group. The treatment effect was therefore evaluated by comparing the treated and untreated groups. In this case, since only one sample per animal was measured, paired analyses are not possible, and the effect of interest is a component of the between-animal variability, i.e. variability between treated and untreated animals. The use of mice as experimental subjects in Paper IV make longitudinal, ex vivo measurements challenging to acquire. Although longitudinal preclinical studies using non-invasive techniques such as in vivo MRS or MRI are common practice, the same is not the case for the ex vivo setting. Repeated biopsy collection in mouse models is challenging owing to the much smaller size of mice compared to humans and the higher risk of infection following tissue removal. Furthermore, the smaller mouse tumors could be more severely affected by the loss of a portion of a couple of millimeters in diameter, which could even alter further tumor development, e.g. as a result of stimulating wound repair processes, such as angiogenesis. Still, subcutaneous tumors, such as the ones grafted in the mice in Paper IV, are the optimal candidates for longitudinal needle biopsy sampling, as they are easier to locate and would require a less invasive procedure. However, a detailed protocol should be well established and ethical approval granted before applying this in preclinical studies.

An important aspect when evaluating cancer therapeutics is to define the clinical endpoint of response. In Paper III, three different response criteria were considered to assess response to neoadjuvant chemotherapy with or without bevacizumab: pCR, pMRD response, and response ratio. pCR is widely used as a primary endpoint in clinical studies and has been considered a standard outcome surrogate for survival [165]. A small number of patients in

Paper III achieved pCR (20/122 patients), which is in accordance with the reported rates of pCR after neoadjuvant chemotherapy [166, 167]. This gave the motivation to introduce a less strict metric for pathological response, i.e. pMRD response, as having minimal residual tumor burden after treatment (tumor diameter < 1 cm measured pathologically), so that metabolic information from patients not achieving pCR but experiencing a good response, would not be lost. A similar metric was previously employed in [168] to evaluate dynamic contrastenhanced MRI for predicting LABC patients' response to neoadjuvant chemotherapy. In said study, however, negative lymph node status was an additional criterion for pMRD. The pMRD criterion may be considered misleading since it does not take the initial tumor diameter into account. Tumors whose size increased with treatment progression might be classified as pMRD if the diameter at TP3 was below the cutoff value. However, all patients included in Paper III had tumors measuring at least 2.5 cm in diameter; thus, all pMRD cases experienced a decrease in tumor size of at least 1.5 cm with treatment. Nevertheless, the response ratio was included as a third response criterion to investigate the effect of tumor reduction on metabolic profiles, rather than just considering size at TP3. One must take into account, however, that the tumor sizes used for the calculation of this ratio were measured using imaging techniques at TP1 and pathologically at TP3. Ideally, the same method for measuring size should be used at both time points to ensure comparability. Consequently, pMRD response was used as the response fixed effect for multilevel analysis with LMM.

In Paper IV, the response criteria were based on changes in RTV, which is typically employed in preclinical studies to assess antitumor activity of a therapy under investigation [169-171]. Comparing raw tumor volumes for treated animals and untreated controls would be biased, as tumor volumes at baseline are typically heterogeneous.

5.1.3 Metabolic profiling using HR MAS MRS

The most widely used analytical techniques in metabolomics research are MRS and MS. A brief overview of the most important advantages and limitations when employing these techniques for metabolomics studies was provided in Paper I. Despite MS being a more sensitive technique, advantages of MRS of relevance to this thesis include the simple sample preparation procedure and the possibility for analyzing intact tissue. Papers II-IV included a high number of samples (n = 601 tumor tissue samples), and simpler sampling preparation is less-time consuming, enabling higher-throughput analysis. Furthermore, complex procedures involving a higher degree of sample manipulation introduce more potential sources of variability, which can reduce reproducibility and comparability between samples. Unlike HR

MAS MRS for intact tissue, MS analysis requires sample pretreatment e.g. derivatization and extraction, which can affect the metabolic profile. The global metabolic profile has been found to sustain significant alterations when exposed to elevated temperatures commonly used in gas chromatography (GC)/MS for processes such as derivatization, vaporization, and ionization [172]. The metabolites detected in intact tissue can therefore be considered less likely to be a product of changes other than the innate biological processes of the tumor.

A possible source of degradation when performing HR MAS MRS is prolonged spectral acquisition; during this time, the sample is spinning rapidly, which can cause the release of bound metabolites, and is kept at temperatures not considered low enough to completely interrupt enzymatic activity [173]. This has been investigated in human breast tumor tissue samples by our research group [164], with glucose, glycine, choline, and GPC exhibiting significant differences after being kept spinning inside the magnet for 1.5 hours. However, the acquisition protocols used in this thesis involved a shorter time (< 50 minutes, Section 3.2.2). Therefore, this consideration is more applicable for studies requiring a longer acquisition time, such as quantitative two dimensional HR MAS MRS studies.

One of the disadvantages of MR spectroscopy compared to MS is its low sensitivity, and thus the relatively few detectable metabolites. Nevertheless, metabolites involved in the pathways of glycolysis, glutaminolysis, and choline phospholipid metabolism, can be measured using this technique. More metabolites can be detected using MRS when analyzing tissue extracts in the same way as biofluids [98]. However, the degree of chemical degradation of the tissue that this entails, which gives rise to issues similar to the effect of thermal degradation, is unknown. One of the benefits of HR MAS MRS that was not exploited in this thesis was to use the same sample for histological, gene, or protein analyses after metabolic profiling. Rather, the clinical studies of which Papers II and III were a part of were designed so that the tumor material was divided for analysis with the different molecular platforms. However, post HR MAS MRS tissue has been allocated for large scale proteomic analysis (Paper II) or single cell whole genome sequencing (Paper III), of which the resulting data can be used in future follow-up studies.

Metabolic profiles for Papers II-IV were acquired using a Carr-Purcell-Meiboom-Gill (cpmg) pulse sequence. Breast cancer cells are surrounded by many different cell types, the most abundant of which are adipocytes, i.e. fat-storing cells [174]. It is therefore typical to observe broad lipid signals in breast tumor tissue spectra, which can mask low-molecular weight metabolites. The difference in mobility between macromolecules, such as lipids, and small molecules leads to the former experiencing a quicker T2 relaxation (Section 1.3.1). The

cpmg pulse sequence acts as a T2 filter; as this is a T2-weighted pulse sequence, the signal intensity of the faster-relaxing lipids is suppressed, while signals from the smaller metabolites are enhanced. However, quantification using cpmg spectra can be misleading unless proper action is taken, as metabolite peak intensities can differ slightly due to variations in T2 relaxation times rather than just reflecting differences in concentrations [175]. In order to ensure accurate absolute quantification, the T2 relaxation effect should be corrected for. This process involves calculating T2 for each metabolite to be quantified, by repeating MRS experiments with different echo times (TE), and relating each resulting metabolite peak area with the corresponding TE to fit a monoexponential decay function representing T2 [176]. This can be time-consuming, especially for untargeted studies like those included in this thesis, in which only relative quantification was employed, as discussed in Section 5.1.4.

5.1.4 Data analysis

Paper I concludes that in order to optimize MRS metabolomics data analysis, the most appropriate combination of preprocessing procedures and methods, which depends on the types of samples analyzed, should be selected. The previously mentioned lipid signals typically observed in spectra of breast tumor tissue make their preprocessing challenging, often requiring modifications to the initially proposed strategy. Of the three experimental papers included in this thesis, preprocessing for Paper III differed slightly from Papers II and IV (Table 3.4). A considerable number of spectra in Paper III exhibited lipid signals of substantially higher intensity compared to Papers II and IV. This was attributed to tumor reduction as an effect of chemotherapy, leading to much less cancer cells in TP2 and TP3 tissue samples compared to samples from untreated tumors.

Preprocessing includes the removal of unwanted peaks, such as lipids or contaminants, e.g. ethanol. Normalization after the removal of lipid peaks not only corrects for differences in sample size, but also tumor cell content, as it is assumed that most of the lipid signals originate from adjacent normal adipose cells. However, the noise level of spectra with high lipid signals became more pronounced after normalization, due to the originally high lipid-to-metabolite ratio.

To address the elevated noise level after normalization in Paper III, three strategies were implemented. First, instead of shifting the lowest point of the baseline to zero, the baseline was set to vary around zero so that positive and negative noise signals would cancel each other out as much as possible. Second, PQN was attempted instead of area normalization. Although the latter is the *de facto* standard for normalizing MRS metabolomics data, it has

been found to be greatly affected by massive amounts of single metabolites in samples [101], such as those observed for lipids in Paper III. PQN has been widely applied for the normalization of data from biofluids analysis, particularly urine, and has been reported to be more robust and accurate than area normalization in the aforementioned case of extreme concentrations of single analytes [101]. Finally, spectra with high lipid content were excluded from data analysis. The criterion for exclusion was based on a lipid ratio, calculated as the integral of lipid peaks (2.50 - 0.60 ppm) divided by the integral of the total spectral intensity. Samples with lipid ratio ≥ 0.90 were excluded from further analysis. This cut-off was based on previous experience where staining with hematoxylin, erythrosine, and saffron (HES) was performed after HR MAS MRS on the same breast tissue sample [90], revealing that samples with spectra consisting of 90% lipid signals are not faithful representations of tumor tissue. Employing the three aforementioned strategies in Paper III reduced the noise levels considerably. The lipid ratio strategy was implemented for Paper II as well, as presence of high-intensity lipid signals was also an issue, albeit with much fewer spectra affected and lipid-to-metabolites ratio generally much lower. Although tumors in Paper IV were also treated with chemotherapy, the spectral lipid signals were not as elevated as in Paper III. This may be due to availability of a larger amount of tumor tissue from which to cut the sample to be analyzed when using animal models, and thus less chance of incorporating adipose cells during sample preparation.

The two main approaches for extracting biological meaning from MRS metabolomics data are analyzing quantified metabolites or metabolic profiles. With regards to the former, there are several methods available to perform absolute quantification of metabolites from MR spectra. Curve fitting routines, such as Peakfit, previously implemented in our research group to determine the area of metabolite peaks, can handle overlapping signals. However, since this approach can be time consuming as each metabolite peak of interest must be fitted manually, it was considered unfeasible for the high number of samples and untargeted approach employed in Papers II-IV.

A more automatic quantification method that has been successfully employed for the quantification of *ex vivo* spectra of brain [175] and prostate [177, 178] tumor tissue is LCModel [179]. This method uses linear combinations of spectra of individual metabolites to fit the spectra to be quantified, which will be referred to as the target spectra. Attempts were made to establish this method for HR MAS MR spectra of breast tumor tissue, including the generation of spectra of individual metabolites, collectively referred to as a basis set, through computer simulation using NMR-SIM (Bruker BioSpin, Germany) based on chemical shifts

and coupling constants as in [175]. However, LCModel requires all peaks observed in the target spectra, including those considered irrelevant, e.g. lipids or contaminants, to be comprised in the basis set; a signal that is unaccounted for will negatively affect the area calculation for the rest of the peaks in the spectrum. Simulating the lipid peaks in the breast tissue spectra proved to be the biggest challenge, achieving fits of acceptable quality for no more than half of the target spectra (Figure 5.1). This consistent, poor success rate, together with the need to invest time for T2 relaxation correction, led to a re-evaluation of the feasibility of LCModel for the automatic quantification of HR MAS MR spectra of breast tumor tissue, and the establishment of the method was ultimately deemed to be not worth pursuing as one of the goals of this thesis.

Relative quantification using integration was ultimately employed for Papers II-IV. This can be performed automatically once the spectra are appropriately aligned and the metabolite regions of interest are defined. Although relative concentrations are not comparable with other studies, they allow comparisons between two groups within the same study, similarly as for the gene expression microarray measurements (Section 1.5.1) acquired in Papers II and III.

An important drawback of peak integration is that areas of overlapping peaks cannot be distinguished. This can lead to peak areas being influenced by signals other than those belonging to the metabolite of interest. To avoid this, only metabolite regions known to be isolated, i.e. not having overlap, were selected for integration. The procedure was evaluated manually by visually inspecting the regions selected for integration for each spectrum.

As lipid signals overlapping with the lactate peak at 4.11 ppm in Paper III would not allow accurate relative quantification for this metabolite, imputation was employed to determine the missing lactate level values. Although including only the measurable lactate values for LMM analysis was a possible solution, this may introduce another type of bias with regards to the results not being representative of the cohort. Imputation is not usually used in metabolomics studies; however, it is quite frequently applied to gene expression microarray data [180], which can contain 1-11% missing values affecting up to 95% of the measured genes [181]. In fact, imputation was employed on the gene expression microarray data for Papers II and III. Validation for imputation procedures is not typically performed. Nevertheless, we validated the imputation of missing lactate level values in Paper III using a resampling technique, with results indicating high confidence for the procedure (RMSE=0.006, R²=0.9996).

Data of: Department of Neurosciences, Norwegian University of Science and Technology, Trondheim LCModel (Version 6.3-1C) Copyright: S.W. Provencher. Ref.: Magn. Reson. Med. 30:672-679 (1993).

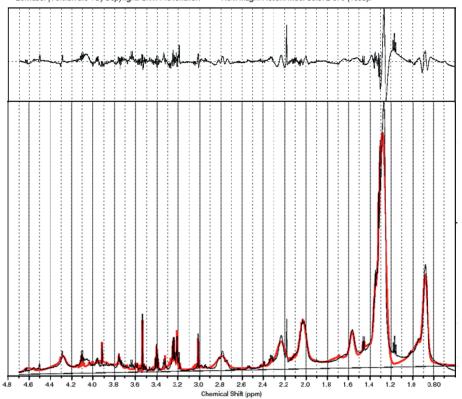


Figure 5.1. LCModel fit for a breast tumor tissue HR MAS MR spectrum with high-intensity lipid signals employing a basis set composed of twenty-three metabolite spectra simulations. The lower panel shows the target spectrum (black) and the fit (red) automatically generated by LCModel. The broad peaks observed from 2.30 to 0.80 ppm correspond to lipid signals. The upper panel shows the LCModel residuals, i.e. unfitted signals. Optimal residuals would be of minimal intensity and would vary randomly around the horizontal dotted line at the center of the upper panel. Residuals show inadequate fit for the lipid peak at 1.30 ppm, as well as for the peak originating at around 2.20 ppm, corresponding to the contaminant lidocaine, a local anesthetic. Cramér-Rao lower bounds [182] vary between 2% and 49% for the metabolite/lipid fits.

Biological pathways involve many molecular compounds that interact with one another. Multivariate analyses can model information from multiple metabolites simultaneously, taking into account the interactions between them while identifying metabolic patterns associated with the biological question of interest. However, supervised multivariate methods, such as PLS-DA used in Papers II-IV, are highly prone to provide over optimistic results. Proper validation of PLS-DA models is therefore of the utmost importance. All studies in this thesis included enough samples to perform a double cross validation, with which the assessment of the quality of the model is performed using samples completely independent of

the optimization of the model, i.e. the number of LVs. It is generally considered that the best case scenario for supervised model validation is to use a completely independent validation set, to assess the quality of the model after optimization with CV. An independent validation set comprises samples that are not alternated to serve for training or testing, but rather excluded so they are solely used for the latter. Although the number of samples in Papers II-IV was probably sufficient enough to implement this, it can be argued that in the independent validation set situation, a single model is built from one combination of samples, while with double CV, different sample combinations from the same population are used for modelling and the quality assessment results are pooled from the different models built. Results from double CV are therefore likely to be more robust than when employing one independent validation set. In addition to double CV, PLS-DA results were validated using permutation testing, to ensure CV results were better than random, giving high confidence to the multivariate analyses.

The study design for Papers III and IV allowed for multilevel analyses. Multiple LMMs were built for this purpose, where the individual metabolite levels were alternated to serve as the response, the fixed effects were treatment group and response group, and the random effect was the different individuals (Paper III) or PDX model types (Paper IV). Since Paper III had a longitudinal design, this study additionally included a fixed effect for time. Multilevel approaches where the information from all metabolites can be analyzed simultaneously are also currently available. One such approach implemented previously in our research group [160] is multilevel PLS-DA [183], with which the within-subject variation is separated from the between-subject variation of spectra paired by time point. This method was attempted in Paper III to maximize the differences between earlier (TPE) and later time points (TP_L) by subtracting TP_E-TP_L for the former and TP_L-TP_E for the latter. This was carried out after separating samples into either pMRD or pNRs and bevacizumab-receiving or chemotherapy-only patients for each of the three different time point combinations: TP1 vs TP2, TP2 vs TP3, and TP1 vs TP3. Further PLS-DA classifications of the resulting withinsubject variation to discriminate between TP_E and TP_L were performed using double CV including both spectra from the same patient in either the training or test set to avoid overfitting.

A significant separation of TP_E from TP_L was achieved with multilevel PLS-DA in all cases (p \leq 0.003), indicating a strong metabolic effect due to treatment in accordance with PCA. When compared to unilevel PLS-DA of all time points (not shown in Paper III), multilevel PLS-DA improved classification results in terms of accuracy, sensitivity, and

specificity (Table 5.1), reflecting how time point differences are enhanced when betweensubject variations are removed. However, multilevel PLS-DA loadings plots of earlier vs later time points were similar when comparing pMRD and pNRs and bevacizumab-receiving patients and chemotherapy-only patients; essentially, the metabolic effect of treatment appeared to be similar in all groups. Figure 5.2 shows TP1 vs TP2 for pMRD and pNRs as an example.

Table 5.1. PLS-DA and multilevel PLS-DA classification results not shown in Paper III.

Method	Patients/samples included in the model	Discriminated Classes	n	No. of LVs	Class. Accuracy (%)	Sensitivity/ Specifcity (%)	Perm. p-value
Unpaired PLS-DA	All [#]	TP1 vs TP2 vs TP3	122	6	73	73/73	<0.001*
Paired Multilevel PLS-DA	pMRD	TP1 vs TP2	21	1	82	82/82	0.001*
	pNRs	TP1 vs TP2	45	1	73	73/73	<0.001*
	pMRD	TP2 vs TP3	15	2	81	81/81	<0.001*
	pNRs	TP2 vs TP3	40	2	95	95/95	<0.001*
	pMRD	TP1 vs TP3	27	1	100	100/100	<0.001*
	pNRs	TP1 vs TP3	46	2	86	86/86	<0.001*
	Bev-treated	TP1 vs TP2	31	1	84	84/84	<0.001*
	Chemo-only	TP1 vs TP2	35	1	68	68/68	0.003*
	Bev-treated	TP2 vs TP3	29	1	83	83/83	<0.001*
	Chemo-only	TP2 vs TP3	26	2	88	88/88	<0.001*
	Bev-treated	TP1 vs TP3	43	1	88	88/88	<0.001*
	Chemo-only	TP1 vs TP3	30	1	90	90/90	<0.001*

Bev: Bevacizumab; Chemo:chemotherapy; Class.:classification; n: number of patients; Perm.:permutation; pMRD:pathological minimal residual disease; pNRs:pathological non-responders.

#Sensitivity/Specificity are reported as the mean of the three class labels. * indicates significant p-values ≤0.05).

When comparing LMM and multilevel PLS-DA, the advantages of the former over the latter include its capability to handle unbalanced data; patients not having samples from both time points available must be excluded when performing multilevel PLS-DA. Furthermore, LMM can analyze the relationship between various classification factors at once. In addition, multilevel PLS-DA can handle samples from only two time points at a time, while a single LMM can incorporate as many time points as there were measured. However, the benefit of simultaneously analyzing all metabolites in multilevel PLS-DA is that interactions between metabolites are taken into account. Multilevel PLS-DA detected metabolic differences due to treatment time only, while LMM could detect differences between pMRD response groups

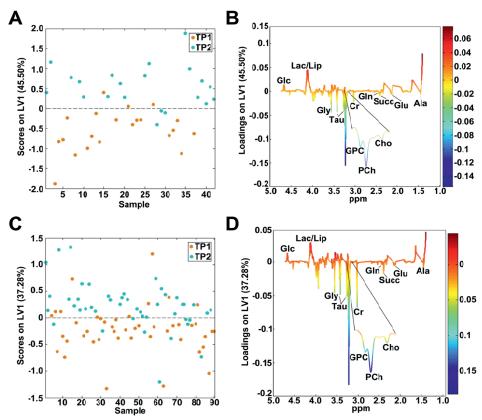


Figure 5.2. Multilevel PLS-DA scores for A) pathological minimal residual disease (pMRD) patients and C) pathological non-responders (pNRs) and loadings for B) pMRD and D) pNRs when discriminating TP1 and TP2 (results not shown in Paper III). Ala:alanine; Cho:choline; Cr:creatine; Glc:glucose; Gln:glutamine; Glu:glutamate; Gly:glycine; GPC:glycerophosphocholine; Lac:lactate; Lip:lipids; LV:latent variable; PCh:phosphocholine, Succ:succinate; Tau:taurine.

and bevacizumab randomization groups in addition. Multilevel PLS-DA could not be employed in Paper IV since paired samples were not available, as discussed in Section 5.1.2.

5.1.5 Combining omics

Biological processes occur as a result of the interaction between molecules from different molecular levels in the omics cascade (Figure 1.5). Different analytical platforms have seen advances that have facilitated the high-throughput collection of large amounts of molecular data from a specific level. The availability of multi-layer omics data provides a unique opportunity to uncover a more comprehensive picture of biological systems. As the different molecular levels are complementary, integrating omics data, rather than focusing on data from a single omics layer, has the potential to improve models for clinical applications. Previous

studies have integrated metabolomics and transcriptomics data to explore possibilities to identify further subgroups in breast cancer using HCA and multidimensional scaling [184] within intrinsic gene expression subtypes [35] and to investigate the underlying mechanisms behind abnormal levels of citrate and choline-containing compounds in prostate cancer using a PLS model relating gene expression (*X*-matrix) and metabolite levels (*Y*-matrix) [185].

In this thesis, particularly in Paper II, metabolite, protein, and gene expression data were merged in the search for a more comprehensive characterization of the molecular heterogeneity of breast cancer. In Paper IV, a targeted approach was employed, where key proteins involved in the PI3K/Akt pathway, as well as the well-known tumor suppressor p53, were selected to investigate the effect of their expression or mutation status, respectively, on metabolite levels. Thus, only a reduced number of molecules were measured. In contrast, an untargeted approach was employed for Paper II, where expression differences within the established metabolic clusters were investigated for 21 851 genes using SAM analysis. Gene expression microarray data was further exploited in Paper II for functional analysis of lists of genes identified by SAM using DAVID, and to determine sets of enriched or over-represented genes within the metabolic clusters using GSEA. Finally, metabolite and gene expression levels were combined using integrative pathway analysis to determine significantly different metabolic pathways between the metabolic clusters.

5.2 Biological and clinical interpretation

In the following sections, the metabolic findings from Papers II-IV are integrated and interpreted by pathway. Metabolomics results are subsequently put into the context of the clinical aspects of breast cancer heterogeneity, treatment effect, and response assessment.

5.2.1 Synthesis of metabolic findings by pathway

Glucose metabolism

To satisfy their high energy demands, cancer cells and normal proliferating cells exhibit the Warburg effect: higher rate of glycolysis and shunting of pyruvate away from the TCA cycle and into lactate production independently of oxygen availability [54]. Of the three metabolic clusters (Mcs) established in Paper II, Mc2 exhibited significantly higher levels of glucose compared to the other metabolic clusters, while Mc3 displayed higher lactate levels from the rest. This suggests lower glucose consumption and hence, lower energy requirements for Mc2 tumors, while the opposite seems to be the case for Mc3 tumors. Based on significant

differences for two metabolites and five genes, integrated pathway analysis detected glycolysis/gluconeogenesis as a significantly different pathway between Mc1 and Mc2, with the latter consistently displaying higher glucose levels. Although the five genes detected could not be directly related to differences in glucose levels, they seem to be involved in directing pyruvate into the TCA cycle instead of lactate production in Mc1. This was inferred from alanine and lactate, the main end products of aerobic glycolysis formed from pyruvate, respectively displaying significantly or close to significant (p=0.056) higher levels in Mc1 compared to Mc2.

In both Papers III and IV, the clear metabolic changes observed as an effect of breast cancer therapy included a decreased glycolytic phenotype. In Paper III, glucose was elevated with increasing time of treatment with neoadjuvant chemotherapy, and was significantly higher in pMRD patients compared to pNRs by the end of treatment (TP3). This indicates an even greater drop in glucose consumption rate with treatment response. Similarly, in Paper IV, glucose was significantly higher in everolimus treated animals than untreated controls. PI3K inhibition has been found to lead to an increase in glucose and decrease in lactate concentrations in basal-like xenografts [186]. No significant differences in lactate, however, could be detected between the treatment groups in Paper IV. Nevertheless, the everolimus treated animals displayed a significantly lower lactate-to-glucose ratio, in accordance with a decline in aerobic glycolysis. Furthermore, in Paper IV, p53 mutation was associated with higher lactate levels. This is consistent with wild-type p53 promoting the conversion of pyruvate to Acetyl CoA by the pyruvate dehydrogenase complex (PDC) for its subsequent entrance into the TCA cycle (Figure 1.3). It does this by negatively regulating pyruvate dehydrogenase kinase-2, which inactivates PDC [187].

Interestingly, in Paper III, lactate did not behave as expected with respect to treatment progression and response groups. Levels for this metabolite significantly increased with treatment progression, and were significantly higher in pMRD patients compared to pNRs at TP3, i.e. displaying similar trends as glucose. Elevated lactate is not only usually an indicator of a glycolytic phenotype, but also of poor prognosis, as observed for ER positive breast cancer [92] as well as other cancer types [188-190]. In spite of this, the increase in lactate as an effect of neoadjuvant chemotherapy has been observed previously by our research group [160]. However, when dividing the patient cohort according to 5-year survival in the same study, a trend of higher lactate levels post-treatment in non-survivors compared to survivors was detected. Nevertheless, not all cancer cells exhibit the glycolytic phenotype; a better oxygenated sub-population of cancer cells recycles the lactate secreted by cells undergoing

aerobic glycolysis and preferentially utilizes it to fuel oxidative phosphorylation [5, 191, 192]. It has been suggested that the dominant phenotype of cancer cells depends on the environment, conferring these cells a dual metabolic nature [193]. Under conditions of lactic acidosis as an effect of the Warburg effect, a transition to a non-glycolytic phenotype is promoted. In this setting, a more economic use of glucose stimulated by higher lactate levels may result in glucose and lactate not behaving oppositely as in Paper III. Another possible explanation is accumulation of lactate due to morphological changes in tissue arising as an effect of chemotherapy and consequently interfering with cellular lactate excretion. One must also consider that in Paper III, the relative levels of lactate for 116 out of 270 samples could not be calculated by integration due to the presence of an overlapping lipid peak at 4.13 ppm. Imputation was therefore employed to calculate lactate values for these samples, and this can be considered a limitation of the study. Results for the validation of the imputation process, however, attest to the high certainty of the predicted values.

Glutamine metabolism

As glutamine can be synthesized from glucose, it is a non-essential amino acid for normal, non-proliferating cells. Cancer cells, however, require exogenous glutamine to survive, a condition which is referred to as glutamine addiction [63]. With glucose being shunted away from the TCA cycle in cancer cells, glutamine becomes a critical anaplerotic and source of carbon and nitrogen to replenish the TCA cycle intermediates and for nucleotide, lipid, and protein biosynthesis [64]. Increased glutaminolysis is therefore characteristic in cancer cells.

In Paper II, integrated pathway analysis identified D-glutamine and D-glutamate metabolism to be significantly different between Mc1 and Mc2. However, this was based on significant differences in only two molecules involved in the pathway: glutamate and glutaminase (GLS). Achieving significance with this low number of hits is unusual, but not unexpected, as there are only nine metabolites and genes within this pathway. GLS is an enzyme which catalyzes the first step in glutaminolysis, hydrolyzing glutamine into glutamate (Figure 1.3). Glutamate, in turn, serves as a precursor of non-essential amino acids and glutathione. Mc1 exhibited downregulated GLS and the lowest levels of glutamate. Since no significant differences in glutamine levels were identified between Mc1 and Mc2, these findings in Mc1 tumors may be a result of glutamine being diverted into other metabolic pathways. Alternatively, glutamate in these tumors may be metabolized more rapidly than the rest; this however, would not be consistent with GLS downregulation.

As for the effect of breast cancer therapy on glutamine metabolism, levels of glutamine were found to rise significantly in tumors during neoadjuvant chemotherapy in Paper III. Similarly, PDX models treated with everolimus in Paper IV displayed significantly higher levels of glutamine compared to untreated controls. These findings from both Papers III and IV are consistent with a decline in glutamine consumption/addiction as an effect of treatment. In addition, in Paper III, multilevel LMM identified a significant interaction between time and bevacizumab for glutathione. Essentially, this indicates that differences in glutathione levels between patients receiving and not receiving bevacizumab vary at different time points. Being one of the most important cellular antioxidants, glutathione provides cancer cells with yet another mean to avoid apoptosis which could ultimately be caused by ROS [67]. We found that chemotherapy-only patients displayed significantly higher glutathione levels than bevacizumab-receivers at TP3. This is consistent with findings from a previous study in glioblastoma [194], where reduction of glutathione levels with bevacizumab treatment was observed. This suggests that bevacizumab may promote cancer cell apoptosis through the disruption of redox homeostasis.

In Paper IV, however, while significant changes in glutamine were observed with treatment progression in both responding and non-responding PDX models, the same was not the case for metabolites involved in glycolysis for the non-responding group. This is in agreement with findings from a previous study [195] investigating the metabolic dependencies of cells with mutated PIK3CA, one of the genes driving PI3K signaling. While glutamine-dependent growth was observed in both mutant and wild-type cells, only the former exhibited glucose-dependent growth. In Paper IV, metabolic dependencies in responding PDX models were similar to those of the PIK3CA-mutated cells in the aforementioned study, while non-responding PDX models behaved similarly to the wild-type cells in this respect. This may reflect a higher dependency for PI3K/AKT/mTOR signaling in tumors from responding PDX models, consequently making these models more sensitive to treatment targeting this pathway. Nevertheless, when investigating the effect of everolimus on genes and proteins in the same cohort of animals studied in Paper IV [154], PIK3CA mutations were found to be rare and not predictive of everolimus treatment response.

Choline phospholipid metabolism

Abnormal choline metabolism can be considered an emerging hallmark of cancer, and HR MAS MRS detects the metabolites choline, phosphocholine, and glycerophosphocholine

(GPC). These choline-containing compounds have been associated with malignant transformation [66, 83].

In Paper II, the most different metabolic cluster, Mc1, was defined by significantly higher levels of GPC and phosphocholine. The expression of CHKA, the gene encoding for the enzyme choline kinase alpha that converts choline to phosphocholine (Figure 1.4), has been found to correlate with GPC and phosphocholine expression [81, 196]. Although differences in CHKA expression comparing Mc1 with the other two metabolic clusters could not be identified by SAM analysis, significantly higher expression levels for the gene in Mc1 were confirmed through univariate analysis. Furthermore, glycerophospholipid metabolism was identified as the most significantly different pathway between Mc1 and Mc2 by integrated pathway analysis. This was based on significantly higher levels of GPC and phosphocholine, as well as significantly downregulated genes LCAT, LPCAT2, PPAP2A, PPAP2B, PLD1, and AGPAT4 in Mc1 compared to Mc2. These genes act upon different steps of the phosphatidylcholine cycle, of which GPC and phosphocholine are intermediates (Figure 1.4). This cycle is linked to lipid turnover at the cell membrane, which is crucial for cell proliferation [197]. GPC and phosphocholine may therefore accumulate in Mc1 tumors due to lower phosphatidylcholine cycle activity. Integrated pathway analysis comparing Mc1 and Mc3 revealed the same trends in metabolites and genes in Mc1 when compared to Mc2, with additional downregulation of PLA2G5. This gene encodes for the phospholipase A2 enzyme that hydrolyzes phosphatidylcholine to acyl-GPC, the precursor of GPC (Figure 1.4). Altogether, these findings suggest that Mc1 tumors experience a higher degree of alteration in phosphatidylcholine metabolism than the rest.

The choline-containing compounds were also found to be affected by treatment in Papers III and IV. GPC, phosphocholine, and choline, i.e. all the constituents of tCho (Section 1.2.3), significantly decreased as an effect of neoadjuvant chemotherapy in Paper III. Of these, however, only choline was significantly lower in pMRD patients compared to pNRs. In Paper IV, while phosphocholine was found to be significantly lower in treated animals compared to untreated controls, the opposite was observed for GPC/PCh. GPC on its own was not significantly different between the treatment groups, and phosphocholine is thus assumed to be the main contributor of variation between treated animals and controls for the GPC/PCh ratio. In addition, phosphocholine was different between treated animals and controls within both responding and non-responding PDX, while GPC/PCh was different between treatment groups within responders only. Phosphocholine therefore seems to be the most affected tChoconstituent by everolimus treatment. All in all, these findings point to a decrease in choline

phospholipid metabolism as an effect of breast cancer therapy, which appears more prominent in responders. This decrease may reflect an attenuation of malignancy and aggressiveness in the treated tumors.

Other metabolic findings

In Paper III, other metabolites that were significantly lower in pMRD patients compared to pNRs at TP3 included succinate, tyrosine, and creatine. The latter two also decreased with time on therapy, while succinate was also significantly lower in pMRD patients compared to pNRs at TP2 and TP3. In addition to playing a key role in neurotransmitter and thyroid hormone synthesis, the amino acid tyrosine is present in the intracellular domain of receptor tyrosine kinases (RTKs). However, it is difficult to attribute the tyrosine pool within a cell to a single metabolic pathway. Thus, more studies are needed to investigate the relevance of this metabolite in breast cancer treatment.

Creatine promotes the rapid formation of ATP, thus aiding in supplying energy to all cells [198]. High levels of creatine before treatment and in pNRs may reflect an additional attempt by cancer cells in meeting their high energy requirements. In Paper IV, creatine was found to be associated with p53 mutation. The tumor suppressor p53 activates the expression of the enzyme that catalyzes creatine synthesis [199]. Dysregulated creatine synthesis in cancer cells with p53 mutation may result as a means of compensation for inefficient glycolytic energy metabolism. In breast cancer, creatine has been found to be higher in treatment naïve ER positive tumors when compared to ER negative [74], suggesting it may be associated with a better prognosis before treatment.

Succinate is a TCA cycle metabolite that is oxidized by succinate dehydrogenase (SDH) to form fumarate (Figure 1.3). SDH has been identified as a tumor suppressor; when this enzyme is inactivated, succinate is accumulated in the mitochondria and then leaks into the cytosol [200]. Cytosolic succinate subsequently inhibits prolyl hydroxylases involved in the degradation of the alpha subunit of the hypoxia-inducible factor (HIF alpha) [201]. HIF alpha is a transcription factor that activates mechanisms that promote survival, migration, and the glycolytic phenotype in cancer cells [57, 200]. Decreased succinate in pMRD patients compared to pNRs at TP2 and TP3 suggests a less malignant phenotype in responders after neoadjuvant chemotherapy.

Taurine is an osmolyte involved in cell volume and fluid balance maintenance. Findings regarding taurine vary with different types of cancer [69]. In breast cancer, it has been found to be increased in ER positive tumors and five year survivors compared to ER negative and

non-survivors, respectively [65, 74]. This suggests taurine to be associated with better prognosis in breast cancer. In Paper III, a significant increase in taurine in pMRD patients compared to pNRs was observed at TP3. However, multivariate analyses could not confirm this.

The increase of lipids with treatment progression observed in Paper III suggests a normalization to breast adipose tissue. Although lipid metabolism is known to mediate cancer cell apoptosis and necrosis induced by the administered treatment [202], most lipid signals in HR MAS MR spectra are assumed to originate from normal breast adipose cells. In accordance with this, TP3 and normal-like samples from Paper III corresponded well in the PCA scores plot of all samples. The normal-like subtype displays high expression of basal epithelial and adipose cell genes and is characterized as adipose-enriched [30].

5.2.2 Characterization of metabolic heterogeneity in breast cancer

Because heterogeneity influences disease progression and therapeutic response, its study is one of the most clinically-relevant areas of cancer research. The heterogeneous nature of breast cancer has been observed at different molecular levels within a tumor (Section 1.1.5). Metabolomics is downstream from the more familiar omics, and metabolites, being the end products of cellular processes, can be considered the closest link to the phenotype. However, the biological and clinical implications of metabolic heterogeneity in breast cancer are yet to be established.

Paper II aimed to derive subgroups of breast cancer based on metabolic differences, and to characterize them on the transcriptomic and proteomic levels. The division into metabolic subgroups was performed using HCA in a similar approach as performed by Perou *et al.* [30] to define the intrinsic subtypes based on gene expression, which have been found to correlate with clinical outcome. Three metabolic clusters were identified in Paper II: Mc1, Mc2, and Mc3. Metabolic diversity was confirmed between the Mcs by means of univariate comparisons of metabolite levels that revealed that 15 out of 18 metabolites measured were significantly different between at least two clusters. Furthermore, permutation testing after multivariate PLS-DA model building using metabolic profiles to predict the Mcs showed that all three of these clusters exhibited significantly different metabolic profiles (p<0.001).

To further characterize the metabolic clusters, their association with RPPA and intrinsic subtypes classified according to protein and gene expression, respectively, was investigated. The distribution of RPPA subtypes was found to be significantly different between all three clusters. This suggests that the metabolome reflects the expression of cancer-related proteins,

in this case those used for RPPA classification. In line with this, distinct metabolic signatures among protein expression subtypes have previously been reported by our research group; metabolic profiles have been found to be predictive of ER and PgR status [74] and to be capable of differentiating TNBC from ER+/PgR+/HER2+ tumors [91]. In Paper IV, however, the metabolic heterogeneity of TNBC was manifested, as PCA using metabolite information revealed clear groupings in the scores plot by PDX model type. Although findings from [91] indicate that metabolic variability within the TNBC subtype is lower than that between TNBC and ER+/PgR+/HER2+ breast cancer, the metabolic heterogeneity within TNBC is an important factor to be aware of when translating metabolomics findings related to this subtype to the clinic. Findings from studying one PDX model type may not be applicable to the whole TNBC subtype. This was exemplified in Paper IV, with initial metabolic differences between subjects hindering prediction of treatment response. Furthermore, the metabolic heterogeneity observed indicates that treatment stratification within TNBC may be beneficial. A variety of gene expression subtypes was represented in the cohort of PDX models examined in Paper IV, and a previous study in our research group found that basal-like breast cancer PDX responded to PI3K inhibitors, while this was not the case for luminal-like PDX [186]. However, sources of heterogeneity other than gene expression, e.g. at the metabolic level, are worth investigating for treatment optimization. This is supported by both responding and nonresponding groups of PDX in Paper IV consisting of a combination of basal-like, luminallike, and HER2-enriched tumors.

With regards to the relation between metabolic and transcriptomics molecular levels, no significant difference in distribution of intrinsic subtypes between the metabolic clusters in Paper II was detected. Similarly, in Paper III, PCA on metabolic profiles revealed no groupings by intrinsic subtype in the scores plot. This is an indication that the metabolic level contributes with additional information beyond the intrinsic subtypes as an innate component of breast cancer heterogeneity. Metabolite information could therefore be complimentary to improve breast cancer diagnosis and to further stratify patients to therapy. With regards to the genomics level, however, in Paper IV, p53 mutation status for PDX TNBC models could be discriminated based on metabolite information. In contrast, significant discrimination for the expression or no expression of key proteins involved in PI3K pathway regulation could not be achieved. This, together with the metabolic heterogeneity within intrinsic subtypes observed in Papers II and III, seems counterintuitive; the genome is at a level farther from the metabolome than the proteome and the transcriptome. One would therefore expect metabolite levels to be more dependent on proteins or mRNA than genes, with biological information

following a continuous flow between genomics, transcriptomics, proteomics, and metabolomics, and vice versa. However, since p53 is the most important tumor suppressor [203] and the most frequently mutated gene in human cancers (50% of all cases) [204], it should not come as a surprise that the information it holds is generally translated all the way to the metabolic level. In fact, p53 mutation has been found to influence energy metabolism at multiple levels [205].

In spite of each omic level providing different information, the benefit of combining this information for the elucidation of biological mechanisms was demonstrated in Paper II. Of the metabolically-derived Mcs, Mc1 was the most phenotypically different based on it being connected with Mc2 and Mc3 at a greater height in the HCA dendogram. At the protein level, the majority of Mc1 tumors (49%) were classified as RPPA-luminal, while only 12% were classified as RPPA-reactive I or II. The proteins characteristic of these reactive RPPA subtypes are thought to be a product of the tumor microenvironment [33], suggesting a less active tumor microenvironment in Mc1. At the gene expression level, gene sets related to the extracellular matrix, a component of the tumor microenvironment, were found to be downregulated in Mc1 compared to Mc2 and Mc3. Furthermore, the prognostic potential of the identified differences in extracellular matrix activity was investigated. Breast carcinomas have previously been stratified into four groups based on differences in expression of genes related to the extracellular matrix, termed ECM classification [206]. Although this classification was not performed for the cohort in Paper II, downregulation of several extracellular matrix-related genes in Mc1 matched those downregulated in the ECM2 group, which is associated with a better prognosis than ECM1 tumors [206].

5.2.3 Investigating the effect of breast cancer therapy on metabolic profiles

The metabolome is a highly dynamic entity that is not only influenced by physiological processes within a biological system, but also by external environmental stimuli. The genome, transcriptome, and proteome are much less prone to undergo changes due to environmental influences. Among these external environmental factors exerting modifications in metabolic profiles is medication. Following the administration of a certain therapy, changes in the metabolome occur as a result of the biological activity of said therapy. Pinpointing specific drug-related alterations in metabolite levels and pathways as an effect of a specific therapy can provide information related to mechanism of action and/or resistance, toxicity, interactions with other drugs, or even predict clinical outcome.

The effect of different breast cancer therapies on metabolic profiles was investigated in Papers III and IV. In Paper III, the effect of neoadjuvant chemotherapy with or without bevacizumab in patients was investigated, while that of the mTOR inhibitor everolimus was assessed in PDX models in Paper IV. In both Papers III and IV, the strongest finding was a conversion to a less malignant metabolic profile (Section 5.2.1) as an effect of the corresponding therapies.

In Paper III, all patients received FEC from TP1 to TP2 and taxane treatment from TP2 to TP3. Multilevel analyses of individual metabolites detected more significantly different metabolites between TP3 and TP2 than between TP2 and TP1, suggesting a higher metabolic effect due to taxanes compared to FEC. However, samples taken at TP2 had been exposed to FEC, which could influence the impact of the subsequent taxane treatment. A more unbiased comparison of the drug types would require a study design where patients were administered both types independently, without possible interaction effects from prior treatment.

The changes observed due to neoadjuvant chemotherapy in Paper III were independent of bevacizumab administration. Other than a subtle change in glutathione levels detected due to an interaction between the fixed effects of *time* and *bevacizumab*, changes in metabolic profiles due to the antiangiogenic drug were not detected. Nonetheless, the bevacizumab-treated group exhibited a slightly higher percentage of pCR than the control group (22 % vs 11 %, respectively). Both bevacizumab-treated and chemotherapy-only patients underwent pronounced metabolic changes as an effect of chemotherapy. Metabolic changes due to bevacizumab may be very slight compared to the potent chemotherapeutic effect, resulting in them being concealed, even to the multilevel approach employed in Paper III. Furthermore, an unexpected increase in lactate was observed with therapy progression. Lactate has been found to stimulate angiogenesis dependent on interleukin 8 (IL-8) [207], potentially counteracting the inhibitory effects of bevacizumab on VEGF-dependent angiogenesis. In fact, increased IL-8 signaling has been identified *in vitro* as a proangiogenic compensatory mechanism enabling bevacizumab resistance in head and neck squamous cell carcinoma [208]. Altered lactate metabolism may therefore play a role in the development of tumor resistance to bevacizumab.

In Paper IV, multivariate PLS-DA could discriminate everolimus treated animals and untreated controls, with six metabolites identified to have the most discriminatory power. Of these, the levels of five metabolites significantly differed between the treatment groups when assessed individually using multilevel LMM. Agreeing trends among the treatment groups for these metabolites were detected with both methods, pointing to reduced glycolytic lactate production and glutaminolysis after treatment (Section 5.2.1). Both techniques therefore

revealed the same metabolic differences between treated animals and controls, which were in accordance with PI3K/Akt signaling pathway inhibition.

As the metabolic clusters in Paper II were established from untreated tumors, the distinct metabolic traits observed for each of these clusters could provide a means to further stratify patients for treatment targeting different metabolic pathways. Mc1 tumors, exhibiting a more pronounced dysregulation in choline phospholipid metabolism, may benefit from choline kinase-targeted therapy, which has been shown to cause growth arrest and apoptosis in preclinical models [209]. Mc3 displayed significantly higher lactate than the rest and lower glucose along with Mc1, suggesting a higher sensitivity for treatment targeting glycolytic enzymes. The addition of glycolytic-targeted therapy to chemotherapy has been found to resensitize chemo-resistant cancer cells [210].

5.2.4 Assessment of breast cancer therapy response using HR MAS MRS metabolomics

Paper III included three different criteria to assess response to neoadjuvant chemotherapy with and without bevacizumab (Section 5.1.2). Metabolic profiles were unable to predict pathological response before treatment (TP1). By the end of treatment (TP3), however, a significant difference in metabolic profiles between pCR+ patients and pCR-, which was even clearer between pMRD patients and pNRs, was identified. pCR+ and pMRD patients exhibited similar metabolite trends compared to pCR- and pNRs, respectively. Metabolic profiles therefore show potential in providing complementary information to other omics levels for understanding the mechanism of treatment response in breast cancer. Nevertheless, the observed metabolic differences between pathological responders and non-responders may arise due to differences between tumor and normal tissue, since for the former most of the cancer cells will have responded to treatment. Still, in a previous study by our research group assessing metabolic response to neoadjuvant chemotherapy [160], HR MAS MRS metabolic profiles were more strongly associated to 5-year survival than to treatment response. The relation between metabolic profiles and the clinical outcome of 5-year survival will be followed-up on when this data is available for this cohort.

With regards to the response ratio criteria, significant metabolic differences between the good response and no response groups were detected at both TP1 and TP3. At TP1, the good response group exhibited higher levels of metabolites associated with a more malignant phenotype as described in Section 5.2.1, including the choline-containing metabolites, glutathione, glutamate, and succinate. At TP3, an apparent metabolic switch had occurred,

with the no response group now displaying a more malignant metabolic profile. Since a considerable number of patients, i.e. the intermediate response group, were excluded to build the model to discriminate the extreme response ratio groups at TP1, this model is not adequate for prediction of treatment response. Nonetheless, our findings suggest that patients with metabolic profiles that would be considered more unfavorable are more likely to experience tumor reduction with chemotherapy.

As for the utility of metabolite information predicting response to bevacizumab, this may be worth studying in the adjuvant setting. The randomized phase 3 trial NASBP B-40 investigated the benefit of adding neoadjuvant bevacizumab continued post-operatively to neoadjuvant chemotherapy in female patients with large, HER2 negative breast tumors [211]. A significant increase in overall survival (OS) was observed in bevacizumab receivers compared to those receiving chemotherapy only. The significant metabolic differences between pathological responders and non-responders we observed at surgery (TP3) in Paper III, may prove to be useful for clinical decision-making in terms of interrupting or continuing bevacizumab treatment after surgery.

In Paper IV, multivariate PLS-DA could not discriminate between metabolic information from responding and non-responding PDX models in either treated animals or untreated controls. This was attributed to metabolic heterogeneity among the 13 different PDX types used interfering with the prediction of treatment response based on metabolite information (Section 5.2.2). The between-PDX model heterogeneity should be accounted for when building LMM including the random effect *PDX model*; however, this technique could not detect differences between the response groups either. As an alternative approach, differences in treated animals and untreated controls were studied separately in responding and non-responding PDX models. This revealed a more prominent metabolic effect of everolimus in responding PDX models, with significant changes in metabolites involved in glycolysis being only detected in these models and not in the non-responders.

In an attempt to determine the clinical utility of the metabolic clusters of breast cancer established in Paper II, samples from Paper III were classified as Mc1, Mc2, or Mc3 based on metabolic profiles using the PLS-DA model established in Paper II. The purpose of this was to compare the rate of response to therapy among clusters. However, a large proportion of the samples (79%) were classified as Mc2 (Figure 5.3). This considerable imbalance in sample size among clusters did not allow for an appropriate comparison in response rate. For instance, at TP1 (Figure 5.3A), four, thirty-four, and three samples classified as Mc1, Mc2, and Mc3, respectively, belonged to pMRD patients. This results in a similar pMRD response

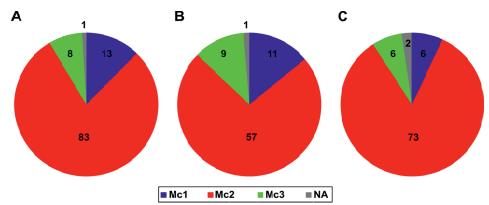


Figure 5.3. Number of samples in Paper III classified as Mc1, Mc2, and Mc3, at TP1 (A), TP2 (B), and TP3 (C). Mc: metabolic cluster; NA: not available.

rate (31 - 41 %) for all clusters at baseline, but cannot be considered representative for Mc1 and Mc3, due to the low number of samples in these subgroups. The association of the clusters to 5-year survival will therefore be investigated when this data is available for the cohort examined in Paper II.

Response criteria based on anatomical measurements of tumors, such as pMRD response and response ratio (Paper III) and RTV (Paper IV), as well as the more standardized RECIST criteria, are traditionally employed to assess cancer therapy response. In spite of significant metabolic changes as an effect of treatment being detected in both Papers III and IV, metabolic association to actual treatment response or resistance was more subtle in both studies. For some more recently developed treatment strategies, such as those targeting the immune system, anatomical criteria have been found inappropriate for measuring long-term treatment benefit [212].

The potential role of imaging biological and physiological changes in tissue for predicting cancer treatment response is of increasing interest in research [213, 214]. One such imaging modality is positron emission tomography (PET), a highly sensitive and specific clinical tool used to identify primary and metastatic lesions [215, 216]. This technique is employed to observe metabolic processes using positron-emitting radionuclide tracers. The glucose analogue tracer ¹⁸fluorodeoxyglucose (FDG) is commonly used in PET to image and quantify glucose uptake, which has been found to be correlated with poor prognosis and highly dependent on the glycolytic rate [215]. Detection of pathological response to neoadjuvant chemotherapy in stage II and III breast cancer patients has been shown to be more accurate based on glucose uptake measured by FDG PET than by assessment of tumor size [217]. A major disadvantage of PET is that it can only provide information on one

metabolite at a time. *In vivo* MRS, on the other hand, can measure several metabolites simultaneously. A significant decrease of the tCho peak (Section 1.2.3) measured *in vivo* using MRS has been suggested as an indicator of response to neoadjuvant chemotherapy in locally advanced breast cancer [86, 218]. The clinical use of *in vivo* MRS, however, is limited by its low sensitivity, and tCho cannot be detected in all tumors.

Hyperpolarization of atomic nuclei can increase MR sensitivity more than 10 000 fold [219]. Hyperpolarized MRS is a technique that facilitates the measurement of metabolism in real time [214]. This technique was employed in [220] for the assessment of glioma tumor radiotherapy in rats, where a positive response determined based on 2-month survival, renewed weight gain, and increased appetite and activity could be detected by reduced hyperpolarized pyruvate to lactate conversion in spite of an increase in tumor size. Such an increase, which simulates progressive disease and is thus termed pseudo-progression, can be observed in brain tumors after combined chemotherapy and radiotherapy. This technique, however, requires the injection of hyperpolarized tracers into the subject. The short lifetime of these tracers leads to a fast decay of the enhanced signal and is arguably the major limitation of hyperpolarized MRS. Nevertheless, a first clinical study has shown promise for the safety and feasibility of this technique to non-invasively characterize metabolic alterations in cancer [221].

The promising findings from metabolic imaging techniques strengthen the argument that changes in tumor metabolism are of clinical significance independent of changes in size. The metabolic changes as an effect of treatment in Papers III and IV may therefore be correlated with clinical outcomes other than anatomical measures of response. The association between metabolic response and 5-year PFS and OS from Paper III should be investigated once this data is available.

6 Concluding remarks and future perspectives

In this thesis, MR-based metabolomics was used to identify metabolic features contributing to breast cancer heterogeneity and to assess currently available therapies for the disease. For this, advanced statistical techniques were employed, including optimization of spectral preprocessing, and information from the four molecular levels of the omics cascade was utilized.

Metabolic heterogeneity was manifested as an additional component in the complex biology of breast cancer, and gave way to the establishment of three metabolic subgroups or clusters. These clusters displayed diversity not only at the metabolic level, but also in the expression of breast cancer-related proteins and genes linked to extracellular matrix. Notably, metabolic heterogeneity was found to affect the prediction of response to treatment in terms of reduction of tumor size. Moreover, therapies that target the metabolic attributes characteristic of the established clusters are currently available, attesting to the potential benefit of stratifying patients based on metabolic information. This, along with the prognostic value of the clusters in terms of predicting clinical outcomes such as 5-year survival, should be further investigated.

Metabolites involved in pathways known to be aberrant in cancer were found to be affected by breast cancer treatment in both patient-derived xenografts (PDX) and human subjects. Among the clear metabolic changes observed in patients, a decline in glucose consumption and a transition to normal adipose tissue seemed to occur as neoadjuvant treatment with chemotherapy progressed. Metabolic profiles could not predict pathological response before treatment was completed. Nevertheless, the significant discrimination between pathological responders and non-responders at surgery suggests potential for MRS metabolomics in complementing other molecular assays for the elucidation of the underlying mechanisms affecting pathological response. Importantly, metabolic profiles from Paper III may be correlated with survival, and will be evaluated once this data is available. Furthermore, treatment with the mTOR inhibitor everolimus appeared to decrease glycolytic lactate production and glutaminolysis in PDX, in accordance with PI3K/AKT/mTOR inhibition. This treatment-dependent decrease was more prominent in responding PDX models than in non-responders.

Although only a subtle change in glutathione as an effect of bevacizumab was detected, which indicated impairment in redox stability when treating with the antiangiogenic drug, metabolite information may be useful in predicting response to bevacizumab in the adjuvant

setting. The predictive potential of the distinct metabolic signatures identified for pathological responders and non-responders at surgery is worth exploring, as new evidence has emerged indicating that neoadjuvant bevacizumab continued post-operatively can increase overall survival in breast cancer patients. Furthermore, a possible resistance mechanism to bevacizumab was observed in the increase in lactate, as this promotes new vessel formation mediated by pro-angiogenic factors other than vascular endothelial growth factor (VEGF), the target of bevacizumab.

The clinical utility of imaging biochemical and physiological function in cancer is gaining increasing interest. Assessment of cancer treatment based on features of tumor metabolism has been shown to outperform anatomical or morphological criteria. The metabolic response to treatment observed in the studies included in this thesis may be indicative of other clinical outcomes, ultimately being useful for clinical decision-making during treatment monitoring. Metabolic signatures related to survival rates should be investigated, once five-year follow-up data has been collected for the clinical cohorts.

Overall, MRS metabolomics proved to be a valuable tool for further characterizing breast tumor heterogeneity and for identifying opportunities for improving treatment management. Furthermore, this thesis employed novel approaches for extracting biological meaning from clinical and preclinical data from different molecular levels. The findings of this thesis may contribute to a more refined stratification of breast cancer patients, as well as to a better understanding of the underlying mechanisms affecting response to treatment.

References

- Cooper GM. The Cell: A Molecular Approach. Second ed. Sunderland (MA): Sinauer Associates; 2000.
- 2. Lodish H, Berk A, Zipursky L, Matsudaira P, Baltimore D, Darnell J. Section 8.1, Mutations: Types and Causes. Molecular Cell Biology. 4th Edition. New York, NY, USA: W.H. Freeman; 2000.
- Turnbull C, Hodgson S. Genetic predisposition to cancer. Clin Med. 2005;5(5):491-8. doi:10.7861/clinmedicine.5-5-491.
- Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100(1):57-70. doi:http://dx.doi.org/10.1016/S0092-8674(00)81683-9.
- Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646-74. doi:http://dx.doi.org/10.1016/j.cell.2011.02.013.
- Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-E86. doi:10.1002/ijc.29210.
- Cancer Registry of Norway. Cancer in Norway 2014 Cancer incidence, mortality, survival and prevalence in Norway Oslo, Norway: Cancer Registry of Norway; 2015.
- 8. Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P et al. Genetic Heterogeneity and Penetrance Analysis of the BRCA1 and BRCA2 Genes in Breast Cancer Families. Am J Hum Genet. 1998;62(3):676-89. doi:http://dx.doi.org/10.1086/301749.
- American Cancer Society. Special Section: Female Breast Cancer. Global Cancer Facts & Figures. Third ed. Atlanta, GA, USA: American Cancer Society; 2015.
- 10. Visvader JE, Stingl J. Mammary stem cells and the differentiation hierarchy: current status and perspectives. Gene Dev. 2014;28(11):1143-58. doi:10.1101/gad.242511.114.
- Suryadevara A, Paruchuri LP, Banisaeed N, Dunnington G, Rao KA. The clinical behavior of mixed ductal/lobular carcinoma of the breast: a clinicopathologic analysis. World J Surg Oncol. 2010;8:51-. doi:10.1186/1477-7819-8-51.
- Norsk Bryst Cancer Gruppe (NBCG). Nasjonalt handlingsprogram med retningslinjer for diagnostikk, behandling og oppfølging av pasienter med brystkreft. Oslo, Norway: Helsedirektoratet; 2016.
- 13. Vetto J, Pommier R, Schmidt W, Wachtel M, DuBois P, Jones M et al. Use of the "Triple Test" for palpable breast lesions yields high diagnostic accuracy and cost savings. Am J Surg. 1995;169(5):519-22. doi:http://dx.doi.org/10.1016/S0002-9610(99)80209-8.
- AJCC Cancer Staging Manual. Sixth ed. Chicago, IL, USA: American Joint Committee of Cancer;
 2002
- 15. Cianfrocca M, Goldstein LJ. Prognostic and Predictive Factors in Early-Stage Breast Cancer. Oncologist. 2004;9(6):606-16. doi:10.1634/theoncologist.9-6-606.
- Soerjomataram I, Louwman MWJ, Ribot JG, Roukema JA, Coebergh JWW. An overview of prognostic factors for long-term survivors of breast cancer. Breast Cancer Res Treat. 2008;107(3):309-30. doi:10.1007/s10549-007-9556-1.

- 17. Lumachi F, Brunello A, Maruzzo M, Basso U, Basso SMM. Treatment of Estrogen Receptor-Positive Breast Cancer. Curr Med Chem. 2013;20(5):596-604. doi:http://dx.doi.org/10.2174/092986713804999303.
- Tokunaga E, Hisamatsu Y, Tanaka K, Yamashita N, Saeki H, Oki E et al. Molecular mechanisms regulating the hormone sensitivity of breast cancer. Cancer Sci. 2014;105(11):1377-83. doi:10.1111/cas.12521.
- 19. Anderson WF, Chatterjee N, Ershler WB, Brawley OW. Estrogen Receptor Breast Cancer Phenotypes in the Surveillance, Epidemiology, and End Results Database. Breast Cancer Res Treat. 2002;76(1):27-36. doi:10.1023/a:1020299707510.
- Liu S, Chia SK, Mehl E, Leung S, Rajput A, Cheang MC et al. Progesterone receptor is a significant factor associated with clinical outcomes and effect of adjuvant tamoxifen therapy in breast cancer patients. Breast Cancer Res Treat. 2010;119(1):53-61. doi:10.1007/s10549-009-0318-0.
- Natarajan L, Pu M, Parker BA, Thomson CA, Caan BJ, Flatt SW et al. Time-Varying Effects of Prognostic Factors Associated With Disease-Free Survival in Breast Cancer. Am J Epidemiol. 2009;169(12):1463-70. doi:10.1093/aje/kwp077.
- 22. Costa SD, Lange S, Klinga K, Merkle E, Kaufmann M. Factors influencing the prognostic role of oestrogen and progesterone receptor levels in breast cancer—results of the analysis of 670 patients with 11 years of follow-up. Eur J Cancer. 2002;38(10):1329-34. doi:http://dx.doi.org/10.1016/S0959-8049(02)00067-9.
- 23. Borg Å, Tandon AK, Sigurdsson H, Clark GM, Fernö M, Fuqua SAW et al. HER-2/neu Amplification Predicts Poor Survival in Node-positive Breast Cancer. Cancer Res. 1990;50(14):4332-7.
- 24. Ménard S, Balsari A, Casalini P, Tagliabue E, Campiglio M, Bufalino R et al. HER-2-positive Breast Carcinomas As a Particular Subset with Peculiar Clinical Behaviors. Clin Cancer Res. 2002;8(2):520-5.
- Winstanley J, Cooke T, Murray GD, Platt-Higgins A, George WD, Holt S et al. The long term prognostic significance of c-erbB-2 in primary breast cancer. Br J Cancer, BJC. 1991;63(3):447-50
- 26. Paik S, Bryant J, Park C, Fisher B, Tan-Chiu E, Hyams D et al. erbB-2 and Response to Doxorubicin in Patients With Axillary Lymph Node-Positive, Hormone Receptor- Negative Breast Cancer. Journal of the National Cancer Institute. 1998;90(18):1361-70. doi:10.1093/jnci/90.18.1361.
- 27. Carlomagno C, Perrone F, Gallo C, De Laurentiis M, Lauria R, Morabito A et al. c-erb B2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases. J Clin Oncol. 1996;14(10):2702-8.
- 28. Ismail-Khan R, Bui MM. A review of triple-negative breast cancer. Cancer Control. 2010;17(3):173-6.
- 29. Giordano SH. Update on Locally Advanced Breast Cancer. Oncologist. 2003;8(6):521-30. doi:10.1634/theoncologist.8-6-521.
- Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature. 2000;406. doi:10.1038/35021093.

- 31. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869-74. doi:10.1073/pnas.191367098.
- 32. Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, Loi S et al. Dissecting the Heterogeneity of Triple-Negative Breast Cancer. J Clin Oncol. 2012. doi:10.1200/jco.2011.38.2010.
- 33. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70. doi:http://www.nature.com/nature/journal/v490/n7418/abs/nature11412.html#supplementary-information.
- 34. Hennessy BT, Lu Y, Gonzalez-Angulo AM, Carey MS, Myhre S, Ju Z et al. A Technical Assessment of the Utility of Reverse Phase Protein Arrays for the Study of the Functional Proteome in Non-microdissected Human Breast Cancers. Clin Proteomics. 2010;6(4):129-51. doi:10.1007/s12014-010-9055-y.
- 35. Borgan E, Sitter B, Lingjærde OC, Johnsen H, Lundgren S, Bathen TF et al. Merging transcriptomics and metabolomics advances in breast cancer profiling. BMC Cancer. 2010;10(1):1-14. doi:10.1186/1471-2407-10-628.
- Yiannakopoulou EC. Breast Cancer Therapy-Classical Therapy, Drug Targets, and Targeted Therapy. In: Barh D, editor. Omics Approaches in Breast Cancer. New Delhi, India: Springer; 2014
- 37. Ninck S, Reisser C, Dyckhoff G, Helmke B, Bauer H, Herold-Mende C. Expression profiles of angiogenic growth factors in squamous cell carcinomas of the head and neck. Int J Cancer. 2003;106(1):34-44. doi:10.1002/ijc.11188.
- 38. Ferrara N, Hillan KJ, Gerber H-P, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3(5):391-400.
- 39. U.S. Food and Drug Administration. FDA Commissioner Removes Breast Cancer Indication from Avastin Label. U.S. Food and Drug Administration, Silver Spring, MD, USA. 2011. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm280536.htm. Accessed June 20 2016.
- 40. Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193-204. doi:http://dx.doi.org/10.1016/j.ctrv.2003.07.007.
- 41. Houghton PJ. Everolimus. Clin Cancer Res. 2010;16(5):1368-72. doi:10.1158/1078-0432.CCR-09-1314.
- 42. Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, Sahmoud T et al. Everolimus in Postmenopausal Hormone-Receptor–Positive Advanced Breast Cancer. N Engl J Med. 2012;366(6):520-9. doi:doi:10.1056/NEJMoa1109653.
- 43. Ejlertsen B, Heinrich G, Jerusalem M, Hurvitz SA, De Boer RH, Taran T et al. BOLERO-6: Phase II study of everolimus plus exemestane versus everolimus or capecitabine monotherapy in HR+, HER2- advanced breast cancer. J Clin Oncol; 2013.
- 44. André F, O'Regan R, Ozguroglu M, Toi M, Xu B, Jerusalem G et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised,

- double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15(6):580-91. doi:http://dx.doi.org/10.1016/S1470-2045(14)70138-X.
- 45. Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol. 1999;17(2):460-9.
- 46. von Minckwitz G, Untch M, Blohmer J-U, Costa SD, Eidtmann H, Fasching PA et al. Definition and Impact of Pathologic Complete Response on Prognosis After Neoadjuvant Chemotherapy in Various Intrinsic Breast Cancer Subtypes. J Clin Oncol. 2012;30(15):1796-804. doi:10.1200/jco.2011.38.8595.
- 47. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-47. doi:10.1016/j.ejca.2008.10.026.
- 48. Jensen MM, Jørgensen JT, Binderup T, Kjær A. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imaging. 2008;8(1):1-9. doi:10.1186/1471-2342-8-16.
- 49. Amundadottir LT, Merlino G, Dickson RB. Transgenic mouse models of breast cancer. Breast Cancer Res Treat. 1996;39(1):119-35. doi:10.1007/bf01806083.
- 50. Siolas D, Hannon GJ. Patient-Derived Tumor Xenografts: Transforming Clinical Samples into Mouse Models. Cancer Res. 2013;73(17):5315-9. doi:10.1158/0008-5472.can-13-1069.
- 51. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514-20. doi:10.1038/nm.2454.
- 52. Zhao X, Liu Z, Yu L, Zhang Y, Baxter P, Voicu H et al. Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro Oncol. 2012;14(5):574-83. doi:10.1093/neuonc/nos061.
- 53. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85-95.
- 54. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science (New York, NY). 2009;324(5930):1029-33. doi:10.1126/science.1160809.
- 55. Chen J-Q, Russo J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. BBA-Rev Cancer. 2012;1826(2):370-84. doi:http://dx.doi.org/10.1016/j.bbcan.2012.06.004.
- 56. Gottlieb E. p53 guards the metabolic pathway less travelled. Nat Cell Biol. 2011;13(3):195-7.
- 57. Brahimi-Horn MC, Bellot G, Pouyssegur J. Hypoxia and energetic tumour metabolism. Curr Opin Genet Dev. 2011;21(1):67-72. doi:10.1016/j.gde.2010.10.006.
- 58. Koukourakis MI, Giatromanolaki A, Sivridis E. Colorectal Cancer: Lactate Dehydrogenase (LDH) activity as a Prognostic Marker. In: Hayat MA, editor. Methods of Cancer Diagnosis, Therapy, and Prognosis. Union, NJ, USA: Springer Science+Business Media B.V; 2009.
- 59. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-14.

- 60. The metabolism of tumours: Investigations from the kaiser wilhelm institute for biology, berlindahlem. Journal of the American Medical Association. 1931;96(23):1982-. doi:10.1001/jama.1931.02720490062043.
- 61. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39(8):347-54. doi:http://dx.doi.org/10.1016/j.tibs.2014.06.005.
- 62. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427-33. doi:10.1016/j.tibs.2010.05.003.
- 63. Lukey MJ, Wilson KF, Cerione RA. Therapeutic strategies impacting cancer cell glutamine metabolism. Future Med Chem. 2013;5(14):1685-700. doi:10.4155/fmc.13.130.
- 64. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013;123(9):3678-84. doi:10.1172/jci69600.
- 65. Sitter B, Bathen TF, Singstad TE, Fjosne HE, Lundgren S, Halgunset J et al. Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR Biomed. 2010;23.
- 66. Sitter B, Lundgren S, Bathen TF, Halgunset J, Fjosne HE, Gribbestad IS. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed. 2006;19. doi:10.1002/nbm.992.
- 67. Franco R, Cidlowski JA. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ. 2009;16(10):1303-14. doi:10.1038/cdd.2009.107.
- Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007;129(1):111-22. doi:10.1016/j.cell.2007.01.047.
- 69. Moestue S, Sitter B, Bathen TF, Tessem MB, Gribbestad IS. HR MAS MR spectroscopy in metabolic characterization of cancer. Curr Top Med Chem. 2011;11(1):2-26.
- 70. Opstad KS, Bell BA, Griffiths JR, Howe FA. Taurine: a potential marker of apoptosis in gliomas. Br J Cancer, BJC. 2009;100(5):789-94.
- Swanson MG, Vigneron DB, Tabatabai ZL, Males RG, Schmitt L, Carroll PR et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med. 2003;50(5):944-54. doi:10.1002/mrm.10614.
- 72. Chan ECY, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A et al. Metabolic Profiling of Human Colorectal Cancer Using High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) Spectroscopy and Gas Chromatography Mass Spectrometry (GC/MS). J Proteome Res. 2009;8(1):352-61. doi:10.1021/pr8006232.
- 73. Righi V, Durante C, Cocchi M, Calabrese C, Di Febo G, Lecce F et al. Discrimination of Healthy and Neoplastic Human Colon Tissues by ex Vivo HR-MAS NMR Spectroscopy and Chemometric Analyses. J Proteome Res. 2009;8(4):1859-69. doi:10.1021/pr801094b.
- 74. Giskeødegård GF, Grinde MT, Sitter B, Axelson DE, Lundgren S, Fjosne HE et al. Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res. 2010;9(2):972-9. doi:10.1021/pr9008783.
- 75. Ridgway ND. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Crit Rev Biochem Mol Biol. 2013;48(1):20-38. doi:10.3109/10409238.2012.735643.

- 76. Katz-Brull R, Degani H. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res. 1996;16(3b):1375-80.
- 77. Iorio E, Mezzanzanica D, Alberti P, Spadaro F, Ramoni C, D'Ascenzo S et al. Alterations of Choline Phospholipid Metabolism in Ovarian Tumor Progression. Cancer Res. 2005;65(20):9369-76. doi:10.1158/0008-5472.can-05-1146.
- 78. Ramírez de Molina A, Rodríguez-González An, Gutiérrez R, Martínez-Piñeiro L, Sánchez JJ, Bonilla F et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun. 2002;296(3):580-3. doi:http://dx.doi.org/10.1016/S0006-291X(02)00920-8.
- Glunde K, Jie C, Bhujwalla ZM. Molecular Causes of the Aberrant Choline Phospholipid Metabolism in Breast Cancer. Cancer Res. 2004;64(12):4270-6. doi:10.1158/0008-5472.can-03-3829.
- 80. Noh DY, Ahn SJ, Lee RA, Park IA, Kim JH, Suh PG et al. Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Lett. 2000;161(2):207-14.
- 81. Cao MD, Dopkens M, Krishnamachary B, Vesuna F, Gadiya MM, Lonning PE et al. Glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) expression correlates with malignant choline phospholipid metabolite profiles in human breast cancer. NMR Biomed. 2012;25(9):1033-42. doi:10.1002/nbm.2766.
- 82. Stewart JD, Marchan R, Lesjak MS, Lambert J, Hergenroeder R, Ellis JK et al. Choline-releasing glycerophosphodiesterase EDI3 drives tumor cell migration and metastasis. Proc Natl Acad Sci USA. 2012;109(21):8155-60. doi:10.1073/pnas.1117654109.
- 83. Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999;59(1):80-4.
- 84. Moestue SA, Borgan E, Huuse EM, Lindholm EM, Sitter B, Borresen-Dale AL et al. Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models. BMC Cancer. 2010;10:433. doi:10.1186/1471-2407-10-433.
- 85. Galons JP, Job C, Gillies RJ. Increase of GPC levels in cultured mammalian cells during acidosis. A 31P MR spectroscopy study using a continuous bioreactor system. Magn Reson Med. 1995;33(3):422-6.
- 86. Jagannathan NR, Kumar M, Seenu V, Coshic O, Dwivedi SN, Julka PK et al. Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer, BJC. 2001;84(8):1016-22. doi:10.1054/bjoc.2000.1711.
- 87. Baek HM, Chen JH, Nalcioglu O, Su MY. Proton MR spectroscopy for monitoring early treatment response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol. 2008;19(5):1022-4. doi:10.1093/annonc/mdn121.
- 88. Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal. 2015;113:108-20. doi:http://dx.doi.org/10.1016/j.jpba.2014.12.017.
- 89. Fiehn O. Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol. 2002;48(1-2):155-71.

- Bathen TF, Geurts B, Sitter B, Fjøsne HE, Lundgren S, Buydens LM et al. Feasibility of MR Metabolomics for Immediate Analysis of Resection Margins during Breast Cancer Surgery. PLoS ONE. 2013;8(4):e61578. doi:10.1371/journal.pone.0061578.
- 91. Cao MD, Lamichhane S, Lundgren S, Bofin A, Fjøsne H, Giskeødegård GF et al. Metabolic characterization of triple negative breast cancer. BMC Cancer. 2014;14(1):1-12. doi:10.1186/1471-2407-14-941.
- 92. Giskeødegård GF, Lundgren S, Sitter B, Fjosne HE, Postma G, Buydens LM et al. Lactate and glycine-potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers. NMR Biomed. 2012;25(11):1271-9. doi:10.1002/nbm.2798.
- 93. Vande Velde G, Himmelreich U. Magnetic Resonance-Based Cell Imaging Using Contrast Media and Reporter Genes. In: Garrido L, Beckmann N, editors. New Applications of NMR in Drug Discovery and Development. Cambridge, UK: The Royal Society of Chemistry; 2013.
- Keeler J. Understanding NMR spectroscopy. Second ed. West Sussex, UK: John Wiley & Sons, Ltd; 2010.
- Sitter B, Bathen TF, Tessem M-B, Gribbestad IS. High resolution magic angle spinning (HR MAS) MR spectroscopy in metabolic characterization of human cancer. Prog Nucl Magn Reson Spectrosc. 2009;54:239-54.
- 96. Andrew ER. The narrowing of NMR spectra of solids by high-speed specimen rotation and the resolution of chemical shift and spin multiplet structures for solids. Prog Nucl Magn Reson Spectrosc. 1971;8(1):1-39. doi:http://dx.doi.org/10.1016/0079-6565(71)80001-8.
- 97. Lowe IJ. Free Induction Decays of Rotating Solids. Phys Rev Lett. 1959;2(7):285-7.
- 98. Sitter B, Sonnewald U, Spraul M, Fjosne HE, Gribbestad IS. High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed. 2002;15(5):327-37. doi:10.1002/nbm.775.
- 99. Eilers PHC. Parametric Time Warping. Anal Chem. 2004;76(2):404-11. doi:10.1021/ac034800e.
- 100. Savorani F, Tomasi G, Engelsen SB. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson. 2010;202(2):190-202. doi:http://dx.doi.org/10.1016/j.jmr.2009.11.012.
- 101. Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics. Anal Chem. 2006;78(13):4281-90. doi:10.1021/ac051632c.
- 102. Anzanello MJ, Ortiz RS, Limberger R, Mariotti K. Performance of some supervised and unsupervised multivariate techniques for grouping authentic and unauthentic Viagra and Cialis. EJFS. 2014;4(3):83-9. doi:http://dx.doi.org/10.1016/j.ejfs.2014.03.004.
- 103. Livingstone DJ. Building QSAR Models: A Practical Guide. In: Cronin MTD, Livingstone DJ, editors. Predicting Chemical Toxicity and Fate. Boca Raton, FL, USA: CRC Press; 2004.
- 104. Wold S, Esbensen K, Geladi P. Principal Component Analysis. Chemometr Intell Lab. 1987;2:37-52.
- 105. Vandeginste BGM, Massart DL, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J. Handbook of Chemometrics and Qualimetrics: Part B. Amsterdam, The Netherlands: Elsevier Science B.V.; 1998.

- 106. Yim O, Ramdeen KT. Hierarchical Cluster Analysis: Comparison of Three Linkage Measures and Application to Psychological Data. Tutor Quant Methods Psychol. 2015;11(1):8-21.
- 107. Mahalanobis PC, editor. On the generalised distance in statistics. Proceedings National Institute of Science, India; 1936.
- 108. Craw S. Manhattan Distance. In: Sammut C, Webb GI, editors. Encyclopedia of Machine Learning. Boston, MA: Springer US; 2010. p. 639-.
- 109. Cormack RM. A Review of Classification. J Roy Stat Soc A Sta. 1971;134(3):321-67. doi:citeulike-article-id:3039214 doi: 10.2307/2344237.
- 110. Ward JH. Hierarchical Grouping to Optimize an Objective Function. J Am Stat Assoc. 1963;58(301):236-44. doi:10.1080/01621459.1963.10500845.
- 111. Schafer W, Lin Z. The Laboratory Use of Computers. In: Cazes J, editor. Ewing's Analytical Instrumentation Handbook. Third ed. Boca Raton, FL, USA: Taylor & Francis Group; 2004.
- 112. Jackson JE. Linear Models I: Regression; PCA of Predictor Variables. A User's Guide to Principal Components. John Wiley & Sons, Inc.; 2004. p. 263-300.
- 113. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst. 2001;58(2):109-30. doi:http://dx.doi.org/10.1016/S0169-7439(01)00155-1.
- 114. Hill T, Lewicki P. Partial Least Squares (PLS). Statistics Methods and Applications, A Comprehensive Reference for Science Industry and Data Mining. First ed. Tulsa, OK, USA: StatSoft, Inc.; 2006.
- Wold H. Estimation of Principal Components and Related Models by Iterative Least squares. Multivariate Analysis.: Academic Press; 1966. p. 391-420.
- 116. Wold H. Path Models with latent variables: The NIPALS approach. Academic Press; 1975.
- 117. de Jong S. SIMPLS: An alternative approach to partial least squares regression. Chemometr Intell Lab Syst. 1993;18(3):251-63. doi:http://dx.doi.org/10.1016/0169-7439(93)85002-X.
- 118. Andersson M. A comparison of nine PLS1 algorithms. J Chemometrics. 2009;23(10):518-29. doi:10.1002/cem.1248.
- 119. Alin A. Comparison of PLS algorithms when number of objects is much larger than number of variables. Stat Pap. 2009;50(4):711-20. doi:10.1007/s00362-009-0251-7.
- 120. Szymańska E, Saccenti E, Smilde AK, Westerhuis JA. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics. 2012;8(Suppl 1):3-16. doi:10.1007/s11306-011-0330-3.
- Barker M, Rayens W. Partial least squares for discrimination. J Chemometrics. 2003;17(3):166-73. doi:10.1002/cem.785.
- 122. Fisher RA. The Use of Multiple Measurements in Taxonomic Problems. A Eug. 1936;7(2):179-88. doi:10.1111/j.1469-1809.1936.tb02137.x.
- Hawkins DM. The Problem of Overfitting. J Chem Inf Comput Sci. 2004;44(1):1-12. doi:10.1021/ci0342472.

- 124. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ et al. Assessment of PLSDA cross validation. Metabolomics. 2008;4(1):81-9. doi:10.1007/s11306-007-0099-6.
- 125. Eigenvector Research Inc. Using Cross-Validation. http://wiki.eigenvector.com/index.php?title=Using_Cross-Validation. Accessed June 27 2016.
- 126. Anderssen E, Dyrstad K, Westad F, Martens H. Reducing over-optimism in variable selection by cross-model validation. Chemometr Intell Lab Syst. 2006;84(1–2):69-74. doi:http://dx.doi.org/10.1016/j.chemolab.2006.04.021.
- 127. Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR et al. Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med. 2006;55(6):1257-64. doi:10.1002/mrm.20909.
- 128. Akoka S, Barantin L, Trierweiler M. Concentration Measurement by Proton NMR Using the ERETIC Method. Anal Chem. 1999;71(13):2554-7. doi:10.1021/ac981422i.
- 129. Albers MJ, Butler TN, Rahwa I, Bao N, Keshari KR, Swanson MG et al. Evaluation of the ERETIC method as an improved quantitative reference for 1H HR-MAS spectroscopy of prostate tissue. Magn Reson Med. 2009;61(3):525-32. doi:10.1002/mrm.21808.
- 130. Vinaixa M, Samino S, Saez I, Duran J, Guinovart JJ, Yanes O. A Guideline to Univariate Statistical Analysis for LC/MS-Based Untargeted Metabolomics-Derived Data. Metabolites. 2012;2(4):775-95. doi:10.3390/metabo2040775.
- Ghasemi A, Zahediasl S. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. Int J Endocrinol Metab. 2012;10(2):486-9. doi:10.5812/ijem.3505.
- 132. Pinheiro JC, Bates DM. Linear Mixed-Effects Models: Basic Concepts and Examples. Mixed-Effects Models in S and S-PLUS. Statistics and Computing. New York, NY, USA: Springer New York; 2000. p. 3-56.
- 133. Winter B. A very basic tutorial for performing linear mixed effects analyses (Tutorial 2). Merced, CA, USA. 2013. http://www.bodowinter.com/tutorial/bw LME tutorial2.pdf.
- 134. Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze. 1936;8:3-62. doi:citeulike-article-id:1778138.
- 135. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc B Met. 1995;57(1):289-300.
- 136. Benjamini Y, Yekutieli D. The Control of the False Discovery Rate in Multiple Testing under Dependency. Ann Stat. 2001;29(4):1165-88.
- 137. Tarca AL, Romero R, Draghici S. Analysis of microarray experiments of gene expression profiling. Am J Obstet Gynecol. 2006;195(2):373-88. doi:10.1016/j.ajog.2006.07.001.
- 138. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T et al. Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J Clin Oncol. 2009;27(8):1160-7. doi:10.1200/jco.2008.18.1370.
- 139. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA. 2002;99(10):6567-72. doi:10.1073/pnas.082099299.

- 140. Prasad TV. Gene Expression Data Analysis Suite (GEDAS). 2013. http://gedas.bizhat.com/dist.htm. Accessed June 28 2016.
- 141. Tusher VG, Tibshirani R, Chu G. Significance Analysis of Microarrays Applied to the Ionizing Radiation Response. Proc Natl Acad Sci USA. 2001;98(9):5116-21.
- 142. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545-50. doi:10.1073/pnas.0506580102.
- 143. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-9. doi:10.1038/75556.
- 144. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57. doi:10.1038/nprot.2008.211.
- 145. David Bioinformatic Team. Functional Annotation Tool. Laboratory of Human Retrovirology and Immunoinformatics, Frederick, MD, USA. 2003. https://david.ncifcrf.gov/content.jsp?file=functional annotation.html#E4. Accessed June 28 2016.
- 146. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 2015. doi:10.1093/nar/gkv380.
- 147. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30.
- 148. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457-62. doi:10.1093/nar/gkv1070.
- 149. Xia J, Wishart DS. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics. 2010;26(18):2342-4. doi:10.1093/bioinformatics/btq418.
- 150. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P et al. A New Model of Patient Tumor-Derived Breast Cancer Xenografts for Preclinical Assays. Clin Cancer Res. 2007;13(13):3989.
- 151. van Buuren S, Groothuis-Oudshoorn K. MICE: Multivariate Imputation by Chained Equations in R. J Stat Softw. 2011;45(3). doi:10.18637/jss.v045.i03.
- 152. R Core Team (2014). R: A language and environment for statistical computing. Vienna, Austria. http://www.R-project.org/: R Foundation for Statistical Computing.
- 153. Pinheiro JC, Bates DM, DebRoy S, Sarkar D, R Core Team (2014). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-117. http://CRAN.R-project.org/package=nlme.
- 154. Hatem R, Botty RE, Chateau-Joubert S, Servely J-L, Labiod D, Plater Ld et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. 2016. doi:10.18632/oncotarget.10195.
- 155. Monti S, Tamayo P, Mesirov J, Golub T. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Mach Learn. 2003;52(1):91-118. doi:10.1023/a:1023949509487.

- 156. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4(7):844-7.
- 157. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365-76. doi:10.1038/nrn3475.
- 158. Leon AC, Davis LL, Kraemer HC. The Role and Interpretation of Pilot Studies in Clinical Research. J Psychiat Res. 2011;45(5):626-9. doi:10.1016/j.jpsychires.2010.10.008.
- 159. Cao MD, Sitter B, Bathen TF, Bofin A, Lonning PE, Lundgren S et al. Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed. 2011;25. doi:10.1002/nbm.1762.
- 160. Cao MD, Giskeødegård GF, Bathen TF, Sitter B, Bofin A, Lonning PE et al. Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer. 2012;12. doi:10.1186/1471-2407-12-39.
- 161. van der Staay FJ. Animal models of behavioral dysfunctions: Basic concepts and classifications, and an evaluation strategy. Brain Res Rev. 2006;52(1):131-59. doi:http://dx.doi.org/10.1016/j.brainresrev.2006.01.006.
- 162. Mueller MM, Fusenig NE. Friends or foes bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4(11):839-49.
- 163. Ruggeri BA, Camp F, Miknyoczki S. Animal models of disease: Pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol. 2014;87(1):150-61. doi:http://dx.doi.org/10.1016/j.bcp.2013.06.020.
- 164. Haukaas TH, Moestue SA, Vettukattil R, Sitter B, Lamichhane S, Segura R et al. Impact of Freezing Delay Time on Tissue Samples for Metabolomic Studies. Front Oncol. 2016;6:17. doi:10.3389/fonc.2016.00017.
- 165. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet.384(9938):164-72. doi:10.1016/S0140-6736(13)62422-8.
- 166. Loibl S, Volz C, Mau C, Blohmer JU, Costa SD, Eidtmann H et al. Response and prognosis after neoadjuvant chemotherapy in 1,051 patients with infiltrating lobular breast carcinoma. Breast Cancer Res Treat. 2014;144(1):153-62. doi:10.1007/s10549-014-2861-6.
- 167. Earl H, Provenzano E, Abraham J, Dunn J, Vallier A-L, Gounaris I et al. Neoadjuvant trials in early breast cancer: pathological response at surgery and correlation to longer term outcomes what does it all mean? BMC Med. 2015;13(1):1-11. doi:10.1186/s12916-015-0472-7.
- 168. Teruel JR, Heldahl MG, Goa PE, Pickles M, Lundgren S, Bathen TF et al. Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. NMR Biomed. 2014;27(8):887-96. doi:10.1002/nbm.3132.
- Wu J. Statistical inference for tumor growth inhibition T/C ratio. J Biopharm Stat. 2010;20(5):954-64. doi:10.1080/10543401003618983.

- 170. Sanceau J, Poupon MF, Delattre O, Sastre-Garau X, Wietzerbin J. Strong inhibition of Ewing tumor xenograft growth by combination of human interferon-alpha or interferon-beta with ifosfamide. Oncogene. 2002;21(50):7700-9. doi:10.1038/sj.onc.1205881.
- 171. Tsukihara H, Nakagawa F, Sakamoto K, Ishida K, Tanaka N, Okabe H et al. Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts. Oncol Rep. 2015;33(5):2135-42. doi:10.3892/or.2015.3876.
- 172. Fang M, Ivanisevic J, Benton HP, Johnson CH, Patti GJ, Hoang LT et al. Thermal Degradation of Small Molecules: A Global Metabolomic Investigation. Anal Chem. 2015;87(21):10935-41. doi:10.1021/acs.analchem.5b03003.
- 173. Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Humpfer E, Spraul M et al. Metabolic Profiling of Human Lung Cancer Tissue by 1H High Resolution Magic Angle Spinning (HRMAS) NMR Spectroscopy. J Proteome Res. 2010;9(1):319-32. doi:10.1021/pr9006574.
- 174. Wang Y-Y, Lehuédé C, Laurent V, Dirat B, Dauvillier S, Bochet L et al. Adipose tissue and breast epithelial cells: A dangerous dynamic duo in breast cancer. Cancer Lett. 2012;324(2):142-51. doi:http://dx.doi.org/10.1016/j.canlet.2012.05.019.
- 175. Wright AJ, Fellows GA, Griffiths JR, Wilson M, Bell BA, Howe FA. Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers. Mol Cancer. 2010;9:66-. doi:10.1186/1476-4598-9-66.
- 176. Emir UE, Deelchand D, Henry P-G, Terpstra M. Noninvasive quantification of T2 and concentrations of ascorbate and glutathione in the human brain from the same double-edited spectra. NMR Biomed. 2011;24(3):263-9. doi:10.1002/nbm.1583.
- 177. Giskeødegård GF, Bertilsson H, Selnæs KM, Wright AJ, Bathen TF, Viset T et al. Spermine and Citrate as Metabolic Biomarkers for Assessing Prostate Cancer Aggressiveness. PLoS ONE. 2013;8(4):e62375. doi:10.1371/journal.pone.0062375.
- 178. Hansen AF, Sandsmark E, Rye MB, Wright AJ, Bertilsson H, Richardsen E et al. Presence of TMPRSS2-ERG is associated with alterations of the metabolic profile in human prostate cancer. Oncotarget. 2016. doi:10.18632/oncotarget.9817.
- 179. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672-9.
- 180. Chiu C-C, Chan S-Y, Wang C-C, Wu W-S. Missing value imputation for microarray data: a comprehensive comparison study and a web tool. BMC Syst Biol. 2013;7(Suppl 6):S12-S. doi:10.1186/1752-0509-7-S6-S12.
- 181. de Brevern AG, Hazout S, Malpertuy A. Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering. BMC Bioinform. 2004;5:114-. doi:10.1186/1471-2105-5-114.
- Provencher S. LCModel & LCMgui User's Manual. May 2016. http://s-provencher.com/pub/LCModel/manual/manual.pdf. Accessed September 9 2016.
- 183. van Velzen EJJ, Westerhuis JA, van Duynhoven JPM, van Dorsten FA, Hoefsloot HCJ, Jacobs DM et al. Multilevel Data Analysis of a Crossover Designed Human Nutritional Intervention Study. J Proteome Res. 2008;7(10):4483-91. doi:10.1021/pr800145j.

- 184. Rabinowitz GB. An Introduction to Nonmetric Multidimensional Scaling. Am J Polit Sci. 1975;19(2):343-90. doi:10.2307/2110441.
- 185. Bertilsson H, Tessem MB, Flatberg A, Viset T, Gribbestad I, Angelsen A et al. Changes in gene transcription underlying the aberrant citrate and choline metabolism in human prostate cancer samples. Clin Cancer Res. 2012;18. doi:10.1158/1078-0432.ccr-11-2929.
- 186. Moestue SA, Dam CG, Gorad SS, Kristian A, Bofin A, Maelandsmo GM et al. Metabolic biomarkers for response to PI3K inhibition in basal-like breast cancer. Breast Cancer Res. 2013;15(1):R16. doi:10.1186/bcr3391.
- 187. Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res. 2012;72(2):560-7. doi:10.1158/0008-5472.can-11-1215.
- 188. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000;60(4):916-21.
- 189. Walenta S, Mueller-Klieser WF. Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol. 2004;14(3):267-74. doi:10.1016/j.semradonc.2004.04.004.
- 190. Saraswathy S, Crawford FW, Lamborn KR, Pirzkall A, Chang S, Cha S et al. Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. J Neurooncol. 2009;91(1):69-81. doi:10.1007/s11060-008-9685-3.
- 191. Semenza GL. Tumor metabolism: cancer cells give and take lactate. J Clin Invest. 2008;118(12):3835-7. doi:10.1172/jci37373.
- 192. Feron O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 2009;92(3):329-33. doi:10.1016/j.radonc.2009.06.025.
- 193. Xie J, Wu H, Dai C, Pan Q, Ding Z, Hu D et al. Beyond Warburg effect dual metabolic nature of cancer cells. Sci Rep. 2014;4:4927. doi:10.1038/srep04927 http://www.nature.com/articles/srep04927#supplementary-information.
- 194. Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN et al. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol. 2015;129(1):115-31. doi:10.1007/s00401-014-1352-5.
- 195. Foster R, Griffin S, Grooby S, Feltell R, Christopherson C, Chang M et al. Multiple Metabolic Alterations Exist in Mutant PI3K Cancers, but Only Glucose Is Essential as a Nutrient Source. PLoS ONE. 2012;7(9):e45061. doi:10.1371/journal.pone.0045061.
- 196. Grinde MT, Skrbo N, Moestue SA, Rødland EA, Borgan E, Kristian A et al. Interplay of choline metabolites and genes in patient-derived breast cancer xenografts. Breast Cancer Res. 2014;16(1):1-16. doi:10.1186/bcr3597.
- 197. Fagone P, Jackowski S. Phosphatidylcholine and the CDP-choline cycle. BBA-Mol Cell Biol L. 2013;1831(3):523-32. doi:http://dx.doi.org/10.1016/j.bbalip.2012.09.009.
- Wyss M, Kaddurah-Daouk R. Creatine and Creatinine Metabolism. Physiol Rev. 2000;80(3):1107.
- 199. Ide T, Chu K, Aaronson SA, Lee SW. GAMT joins the p53 network: Branching into metabolism. Cell Cycle. 2010;9(9):1706-10. doi:10.4161/cc.9.9.11473.

- 200. King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006;25(34):4675-82.
- 201. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell. 2005;7(1):77-85. doi:http://dx.doi.org/10.1016/j.ccr.2004.11.022.
- 202. Huang C, Freter C. Lipid Metabolism, Apoptosis and Cancer Therapy. Int J Mol Sci. 2015;16(1):924.
- Sun W, Yang J. Functional Mechanisms for Human Tumor Suppressors. J Cancer. 2010;1:136-40
- 204. Cadwell C, Zambetti GP. The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene. 2001;277(1–2):15-30. doi:http://dx.doi.org/10.1016/S0378-1119(01)00696-5.
- 205. Harami-Papp H, Pongor LS, Munkacsy G, Horvath G, Nagy AM, Ambrus A et al. TP53 mutation hits energy metabolism and increases glycolysis in breast cancer. Oncotarget. 2016. doi:10.18632/oncotarget.11594.
- 206. Bergamaschi A, Tagliabue E, Sorlie T, Naume B, Triulzi T, Orlandi R et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol. 2008;214(3):357-67. doi:10.1002/path.2278.
- 207. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71(7):2550-60. doi:10.1158/0008-5472.can-10-2828.
- 208. Gyanchandani R, Sano D, Ortega Alves MV, Klein JD, Knapick BA, Oh S et al. Interleukin-8 as a modulator of response to bevacizumab in preclinical models of head and neck squamous cell carcinoma. Oral Oncol. 2013;49(8):761-70. doi:10.1016/j.oraloncology.2013.03.452.
- 209. Glunde K, Jiang L, Moestue SA, Gribbestad IS. MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed. 2011;24(6):673-90. doi:10.1002/nbm.1751.
- 210. Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013;4:e532.
- 211. Bear HD, Tang G, Rastogi P, Geyer CE, Jr., Liu Q, Robidoux A et al. Neoadjuvant plus adjuvant bevacizumab in early breast cancer (NSABP B-40 [NRG Oncology]): secondary outcomes of a phase 3, randomised controlled trial. Lancet Oncol.16(9):1037-48. doi:10.1016/S1470-2045(15)00041-8.
- 212. Ascierto PA, Marincola FM. What have we learned from cancer immunotherapy in the last 3 years? J Transl Med. 2014;12(1):1-11. doi:10.1186/1479-5876-12-141.
- 213. Juweid ME, Cheson BD. Positron-Emission Tomography and Assessment of Cancer Therapy. N Engl J Med. 2006;354(5):496-507. doi:doi:10.1056/NEJMra050276.
- 214. Gutte H, Hansen AE, Johannesen HH, Clemmensen AE, Ardenkjaer-Larsen JH, Nielsen CH et al. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer. Am J Nucl Med Mol Imaging. 2015;5(5):548-60.

- 215. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891-9. doi:10.1038/nrc1478.
- 216. Stokkel MP, Draisma A, Pauwels EK. Positron emission tomography with 2-[18F]-fluoro-2-deoxy-D-glucose in oncology. Part IIIb: Therapy response monitoring in colorectal and lung tumours, head and neck cancer, hepatocellular carcinoma and sarcoma. J Cancer Res Clin Oncol. 2001;127(5):278-85.
- 217. Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006;24(34):5366-72. doi:10.1200/jco.2006.05.7406.
- 218. Danishad KK, Sharma U, Sah RG, Seenu V, Parshad R, Jagannathan NR. Assessment of therapeutic response of locally advanced breast cancer (LABC) patients undergoing neoadjuvant chemotherapy (NACT) monitored using sequential magnetic resonance spectroscopic imaging (MRSI). NMR Biomed. 2010;23(3):233-41. doi:10.1002/nbm.1436.
- 219. Dzien P, Fages A, Jona G, Brindle KM, Schwaiger M, Frydman L. Following Metabolism in Living Microorganisms by Hyperpolarized 1H NMR. J Am Chem Soc. 2016. doi:10.1021/jacs.6b07483.
- 220. Day SE, Kettunen MI, Cherukuri MK, Mitchell JB, Lizak MJ, Morris HD et al. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1-13C]pyruvate and 13C magnetic resonance spectroscopic imaging. Magn Reson Med. 2011;65(2):557-63. doi:10.1002/mrm.22698.
- 221. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PEZ, Harzstark AL, Ferrone M et al. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-¹³C]Pyruvate. Sci Transl Med. 2013;5(198):198ra08.

Paper I

Date: 11 September 2016, At: 09:35

Scandinavian Journal of Clinical and Laboratory Investigation

ISSN: 0036-5513 (Print) 1502-7686 (Online) Journal homepage: http://www.tandfonline.com/loi/iclb20

Preprocessing of NMR metabolomics data

Leslie R. Euceda, Guro F. Giskeødegård & Tone F. Bathen

To cite this article: Leslie R. Euceda, Guro F. Giskeødegård & Tone F. Bathen (2015) Preprocessing of NMR metabolomics data, Scandinavian Journal of Clinical and Laboratory Investigation, 75:3, 193-203, DOI: 10.3109/00365513.2014.1003593

To link to this article: http://dx.doi.org/10.3109/00365513.2014.1003593

	Published online: 04 Mar 2015.
Ø.	Submit your article to this journal 🗹
ılıl	Article views: 641
ď	View related articles ☑
CrossMark	View Crossmark data 🗗
4	Citing articles: 1 View citing articles 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iclb20

Is not included due to copyright

Paper II

RESEARCH Open Access

CrossMark

Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes

Tonje H. Haukaas^{1,2}, Leslie R. Euceda¹, Guro F. Giskeødegård^{1,3}, Santosh Lamichhane^{1,4}, Marit Krohn^{2,5}, Sandra Jernström^{2,5}, Miriam R. Aure^{2,5}, Ole C. Lingjærde^{2,6,7}, Ellen Schlichting⁸, Øystein Garred⁹, Eldri U. Due^{2,5}, Gordon B. Mills¹⁰, Kristine K. Sahlberg^{2,11}, Anne-Lise Børresen-Dale^{2,5*}, Tone F. Bathen^{1,2*} and The Oslo Breast Cancer Consortium (OSBREAC)

Abstract

Background: The heterogeneous biology of breast cancer leads to high diversity in prognosis and response to treatment, even for patients with similar clinical diagnosis, histology, and stage of disease. Identifying mechanisms contributing to this heterogeneity may reveal new cancer targets or clinically relevant subgroups for treatment stratification. In this study, we have merged metabolite, protein, and gene expression data from breast cancer patients to examine the heterogeneity at a molecular level.

Methods: The study included primary tumor samples from 228 non-treated breast cancer patients. High-resolution magic-angle spinning magnetic resonance spectroscopy (HR MAS MRS) was performed to extract the tumors metabolic profiles further used for hierarchical cluster analysis resulting in three significantly different metabolic clusters (Mc1, Mc2, and Mc3). The clusters were further combined with gene and protein expression data.

Results: Our result revealed distinct differences in the metabolic profile of the three metabolic clusters. Among the most interesting differences, Mc1 had the highest levels of glycerophosphocholine (GPC) and phosphocholine (PCho), Mc2 had the highest levels of glucose, and Mc3 had the highest levels of lactate and alanine. Integrated pathway analysis of metabolite and gene expression data uncovered differences in glycolysis/gluconeogenesis and glycerophospholipid metabolism between the clusters. All three clusters had significant differences in the distribution of protein subtypes classified by the expression of breast cancer-related proteins. Genes related to collagens and extracellular matrix were downregulated in Mc1 and consequently upregulated in Mc2 and Mc3, underpinning the differences in protein subtypes within the metabolic clusters. Genetic subtypes were evenly distributed among the three metabolic clusters and could therefore contribute to additional explanation of breast cancer heterogeneity.

Conclusions: Three naturally occurring metabolic clusters of breast cancer were detected among primary tumors from non-treated breast cancer patients. The clusters expressed differences in breast cancer-related protein as well as genes related to extracellular matrix and metabolic pathways known to be aberrant in cancer. Analyses of metabolic activity combined with gene and protein expression provide new information about the heterogeneity of breast tumors and, importantly, the metabolic differences infer that the clusters may be susceptible to different metabolically targeted drugs.

Keywords: Metabolomics, HR MAS MRS, Breast cancer subgroups, Metabolic cluster, Extracellular matrix

^{*} Correspondence: a.l.borresen-dale@medisin.uio.no; tone.f.bathen@ntnu.no ²K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway ¹Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway Full list of author information is available at the end of the article

Background

Breast cancer accounts for 25 % of newly diagnosed cancers and 15 % of cancer deaths among women worldwide [1]. It is a heterogeneous disease [2] with high diversity in prognosis and response to treatment. Identification of underlying mechanisms contributing to this heterogeneity may reveal new cancer targets and clinically relevant subgroups and has thus been the focus of many recent studies [3–5].

Searching for genetic features causing the variation in breast cancers, Perou et al. used gene expression analyses followed by hierarchical clustering and defined naturally occurring molecular subtypes [4, 6]. These subtypes are named basal-like, luminal A, luminal B, Erb-B2+ (Her2 enriched), and normal-like, and are found to be associated with tumor characteristics and clinical outcome; patients with basal-like tumors having the shortest and luminal A the longest relapse-free survival [6]. A centroid-based method called prediction analysis of microarrays 50 (PAM50), which uses the expression of 50 genes to classify breast cancer into these five intrinsic subtypes was later established and is now broadly implemented [7].

Proteins are the ultimate cellular effectors of pathways and networks within cells, tissues, and organisms. Although protein levels are dependent on mRNA expression, not all mRNA will be translated into protein and further protein levels are also influenced by protein stability. In a study by Myhre et al. only 22 of 52 quantified breast cancer-related proteins were found to correlate with mRNA expression levels [8] and similar low levels of correlation have been seen in large scale studies [9, 10]. Protein expression subtypes of breast cancer could give further understanding of underlying mechanisms causing heterogeneity [11]. Based on the expression of 171 breast cancer-associated proteins detected by reverse phase protein array (RPPA), six breast cancer subtypes, called RPPA subtypes, have been defined [5]. Four of these subgroups were in high accordance with the gene expression profiles of the PAM50 subtypes and named accordingly; Basal, Her2, luminal A, and luminal A/B. In addition, two new subgroups were defined; reactive I and reactive II, based on expression of proteins possibly produced by the surrounding microenvironment.

The chemical processes controlled by proteins involve metabolites as intermediates or end-products. In metabolomics, metabolite levels are measured to gather the final downstream information of ongoing cellular processes. Which processes are active at a specific time point is strongly influenced by environmental factors like diet and drugs as well as disease state. Well-established metabolic differences have been observed when comparing cancer cells to normal cells. Cancer cell energy production frequently depends on increased glycolysis and

production of lactate from glucose regardless of access to oxygen, in contrast to normal cells which produce pyruvate and lactate in aerobic conditions [12]. Also, to produce macromolecules/biomass, mitochondrial metabolism is reprogrammed [13]. Altered metabolism has therefore been included as one of the emerging hallmarks of cancer [14]. In breast cancer, metabolic differences between cancer tissue and normal adjacent tissue have been studied by the magnetic resonance spectroscopy (MRS) method high-resolution magic-angle spinning (HRMAS) MRS [15]. Using this technique, metabolic profiles and biomarkers predicting longterm survival for locally advanced breast cancer [16], node involvement of patients with infiltrating ductal carcinoma [17], and 5-year survival for ER positive patients [18] have been identified.

Merging transcriptomics and metabolomics led to the discovery of three luminal A subgroups with distinct metabolic profiles and significant differences within gene set expression in a study by Borgan et al. [19]. The aim of the current study was to establish clusters of breast cancer based on the metabolic expression using an approach similar to Borgan et al., but in a larger cohort of patients including all PAM50 subgroups. This approach reveals the main metabolic differences between untreated breast tumors. In addition, the combination of the metabolic clusters with transcriptomics and protein expression data provide an opportunity for information gain from each -omics technology, giving further characterization of the defined metabolic clusters.

Methods

Patients and tissue samples

Primary breast carcinoma samples from 228 patients at the Oslo University Hospital (Radium Hospital and Ullevål Hospital) were collected in the time period 2006-2009 as part of the Oslo2 study. The samples were fresh frozen after surgery and stored at $-80\ ^{\circ}\text{C}.$ The tumors were divided into smaller pieces depending on their size, and one of them was selected for this study. The samples were cut into three sections where the edges of the two outer pieces were used for histological evaluation (including estrogen receptor (ER) status and tumor cell percentage), and an adequate part of the mid pieces were used for HR MAS MRS experiments to obtain metabolic profiles. The remnants of all three pieces were pooled and cut into smaller pieces with scalpel, depending on the size of the tumor and divided into fractions used for extraction of DNA, RNA, and protein. Due to high lipid content, HR MAS MRS was performed on a second piece from the same tumor for 13 of the samples. A total of 228 samples were analyzed by MR spectroscopy, of which 201 and 217 were analyzed for gene expression by arrays and protein expression using RPPA, respectively, leaving a total of 191 samples analyzed by all three methods. Patient and tumor characteristics are shown in Table 1.

HR MAS MRS spectra

HR MAS MRS spectra were acquired from tissue samples (mean sample weight 7.3 mg $\pm\,2.6$ mg) on a Bruker Avance III 600 MHz/54 mm US (Bruker, Biospin GmbH, Germany) equipped with a 1H/13C MAS probe with gradient aligned with the magic angle (Bruker, Biospin GmbH, Germany). Spin-echo spectra were recorded using a Carr-Purcell-Meiboom-Gill (cpmg) pulse sequence (cpmgpr1d; Bruker). For experimental details and information about data processing, see Additional file 1.

Forty-three samples were excluded from the original sample cohort of 271 samples due to large lipid content. The spectral region between 1.40 and 4.70 ppm was chosen for further analysis excluding lipid peaks at 4.36–4.27, 2.88–2.70, 2.30–2.20, 2.09–1.93, and 1.67–1.50 ppm. After removal of the lipid residuals, the spectra were mean normalized by dividing each spectral variable to the average spectral intensity. This is done to account for differences in tumor cell percentage and sample weight, as it can be assumed that most of the lipid signals from breast samples do not originate from cancer cells

Protein experiments and protein expression subtyping

Protein levels were determined using reverse phase protein array (RPPA), a platform where single protein levels can be measured across a series of samples simultaneously [20]. One hundred fifty primary antibodies were used to detect breast cancer-related proteins (Additional file 2: Table S1). For analytical details, see Additional file 1.

The samples underwent consensus clustering with an option for four or five groups. The best fit on consensus clustering identified five groups, luminal, HER2, basal, and reactive I and II subsets as defined in The Cancer Genome Atlas Network data set [5].

mRNA expression profiling and gene expression subtyping

Total RNA was isolated with TRIzol (Invitrogen, Carlsbad, CA, USA). Expression of mRNA was measured using SurePrint G3 Human GE 8x60K (Aglient Technologies) according to the manufactory's protocol (one-color microarray-based gene expression analysis, low input Quick Amp Labeling, v.6.5, May 2010) and 100 ng RNA was used as input for labeling. Arrays were log2-transformed, quantile normalized, and hospital adjusted [21]. Values corresponding to probes with identical Entrez ID were averaged to form a single expression value per gene.

The PAM50 subtype algorithm [7] was used to assign a subtype label to each sample as previously described [22].

Statistical analysis

Subgrouping with cluster analysis of metabolic data

Hierarchical cluster analysis (HCA) was performed with Euclidean distance as the distance parameter and Ward's method (furthest inner square distance) as the clustering distance (Statistical toolbox, Matlab R2013b, The Mathworks, Inc., USA) on the preprocessed metabolic spectra. Similar spectra based on the distance measures cluster together. The dendrogram was cut to give three clusters. To evaluate the robustness of the three HCA clusters, partial least square discriminant analysis (PLS-DA) model, using the cluster group for classification was carried out and classification accuracy was evaluated. For details, see Additional file 1.

Analysis of metabolic profiles

Metabolite assignments were performed based on literature values [23]. Relative metabolite quantification was performed by peak integration of fixed regions corresponding to the metabolite of interest. In total, the level of 18 metabolites were calculated. Kruskal-Wallis test was performed to compare metabolite levels between clusters. Calculated p values were corrected for multiple testing by The Benjamini Hochberg false discovery rate (FDR) in Matlab, and the differences were considered statistically significant for adjusted $p \leq 0.05$.

Analysis of subtype and clinical distributions

Differences in the distributions of RPPA and PAM50 subtype as well as that of other clinical characteristics of the tumors between the different metabolic clusters were tested for significance using Fisher's exact test for count data (R 2.15.2). Calculated p values were corrected for multiple testing by The Benjamini Hochberg FDR, and the differences were considered statistically significant for adjusted p < 0.05.

Analysis of gene expression data

Significance analysis of microarrays (SAM) was used to identify differentially expressed gene between the metabolic clusters [24]. SAM analysis was performed using 21851 genes from 42405 mRNA probes. The expression analysis was performed in R 2.15.2 [25] with the cluster group as the dependent variable and a total of 100 permutations. T statistics/Wilcoxon statistics were calculated using multiclass comparisons and two-class unpaired tests while comparing two clusters. The differences were considered statistically significant for adjusted p < 0.01.

DAVID, an online network analysis tool [26], was used to search for biological functions within gene sets. DAVID was performed on the gene list over for each of

Table 1 Patient and tumor characteristics

	Total	Mc1	Mc2	Mc3
Number of patients	228	58	58	112
Age (years), mean (range)	55.5 (31.8-81.1)	58.0 (33.2-80.8)	58.6 (40.9-81.1)	52.7 (31.8–73.9)
Clinical classification				
Histology				
Ductal	186	52	37	97
Lobular	21	4	11	6
Medullary	0	0	0	0
Ductal carsinoma in situ (DCIS)	4	0	4	0
Metaplastic	1	0	1	0
Mucinous	4	0	2	2
Tubular	4	1	1	2
Mixed	2	1	0	1
Papillary	0	0	0	0
NA	6	0	2	4
Primary tumor				
Tx or <i>NA</i>	9	1	3	5
ТО	0	0	0	0
pTis	4	0	4	0
T1	113	31	28	54
T2	93	24	21	48
T3	9	2	2	5
T4	0	0	0	0
Grade				
1	31	8	10	13
II	93	20	24	49
III	97	30	21	46
NA	7	0	3	4
Node status				
N0	133	34	36	63
N1(mi)	8	3	3	2
N1	59	17	13	29
N2	14	2	3	9
N3	8	2	1	5
NA	6	0	2	4
Receptor status				
HER2+	26	7	7	12
HER2—	192	51	45	96
ER+	178	49	42	87
ER-	40	9	10	21
PR+	155	39	36	80
PR—	63	19	16	28
NA	10	0	6	4

NA, not available

the class comparisons produced by SAM. Official gene symbol was selected as gene identifier. The functional annotation clustering report of this software reports similar annotations together, where the member of a cluster have similar biological meaning due to sharing of similar gene members.

Gene set enrichment analysis (GSEA) was used to identifying sets of genes that were enriched in the metabolic clusters [27, 28]. During each cluster comparison, genes were ranked depending on calculated absolute signal-to-noise ratio (Eq. 1), where μ and σ are the mean and standard deviation, respectively.

$$\operatorname{abs}\left(\frac{\mu_A - \mu_B}{\sigma_A + \sigma_B}\right) \tag{1}$$

High absolute signal-to-noise ratio will represent genes that are more likely to be "class markers" in the comparison because of high difference in expression.

The gene set C5 (gene ontology (GO) gene sets) available from the Molecular Signatures Database (MSigDB) [29] from The Broad Institute was chosen for evaluation of enrichment. One thousand four (of 1454) gene sets from this data base passed the filtering of lacking any gene from the expression data followed by minimum and maximum size of 15 and 500 genes, respectively. For each comparison, 1000 permutations on phenotypes were performed and FDR cutoff was set to 25 % (recommended in the manual).

Integrated pathway analysis

To combine transcriptomics and metabolic data the "Integrated pathway analysis" tool in MetaboAnalyst 3.0 software was used [30]. Genes with adjusted p < 0.05 from SAM analysis and metabolites differently expressed between the clusters were used as input. Pathways with p values ≤ 0.05 were interpreted as significant.

Results

Three main metabolic clusters of breast cancer

From the spectral data of 228 breast tumors, hierarchical clustering gave a dendrogram divided in three metabolic clusters (Mc) (Fig. 1a) Mc1, Mc2, and Mc3. The mean spectra of the clusters are illustrated in Fig. 1b.

The prediction of the metabolic clusters by PLS-DA resulted in a model with two valid latent variables LVs (Fig. 2a). The clusters Mc1 and Mc2 were well separated in the score plot of LV1 and LV2, while most Mc3 samples had low values of LV2. Classification accuracy was found to be 91.1, 88.7, and 69.9 %, respectively, for the three clusters. Permutation testing showed that all three clusters had significantly different metabolic profiles (p < 0.001). The regression vectors for each of the clusters (Fig. 2b) indicate each metabolite's influence

on the cluster prediction. The regression vector for Mc1 showed that high levels of glycerophosphocholine (GPC) and phosphocholine (PCho) and low levels of lactate (Lac), taurine (Tau), and alanine (Ala) were important for the class prediction result. For Mc2, high levels of βglucose (β-Glc) were important as well as low levels of Lac, creatine (Cr), glycine (Gly), Tau, GPC, PCho, and Ala. Mc3 had a regression profile with low β-Glc, GPC, and PCho levels, and high Lac, Gly, Tau, Cr, and Ala levels. Univariate comparison of metabolite levels (Additional file 2: Table S2) between the three clusters revealed that 15 out of 18 metabolites analyzed were found to be significantly different (adjusted p < 0.05) between at least two of the clusters (Table 2). A combination of metabolic cluster labels and heatmap of metabolite fold change further illustrate this (Fig. 3).

Clinical parameters (tumor size, histology, grade, node status, hormone receptor status) were analyzed for differences in distribution among the metabolic clusters. Only histology was found to be significantly different between the clusters (adjusted p = 0.0144), where 11 of 21 lobular tumors and all ductal carcinoma in situ (DCIS) (n = 4) were classified as Mc2 (Table 1).

Protein expression subtype (RPPA) distribution differs between the three metabolic clusters

The metabolic clusters were investigated for differences in distribution of PAM50 and RPPA subtypes. While PAM50 subtypes did not show increased frequency of occurrence in any of the metabolic clusters, (Fig. 3c, adjusted p=0.138), RPPA distribution was significantly different (Fig. 3d, adjusted p=1.43E-04) with only 9 % of the RPPA reactive I and II samples being classified as Mc1, and 44 % of Mc2 samples subtyped as reactive I. The complete distribution of PAM50 and RPPA subtypes is listed in Table 3.

SAM reveals only one metabolic cluster to have differences in gene expression

SAM was performed to identify expression differences between the metabolic clusters. Of the 21,851 genes, multiclass SAM showed that 696 were differently expressed between the metabolic clusters with adjusted p < 0.01 (Fig. 3e, Additional file 2: Table S3). Further investigation through two-class SAM revealed that Mc2 and Mc3 did not have significant differences in mRNA expression, while they had 413 and 617 genes upregulated, respectively, compared to Mc1 (Additional file 2: Tables S4 and S5, respectively). Out of these, 277 genes were found in both comparisons and upregulated compared to Mc1. DAVID software was used to investigate the biological interactions between genes that were found to be significantly differentially expressed between the metabolic clusters.

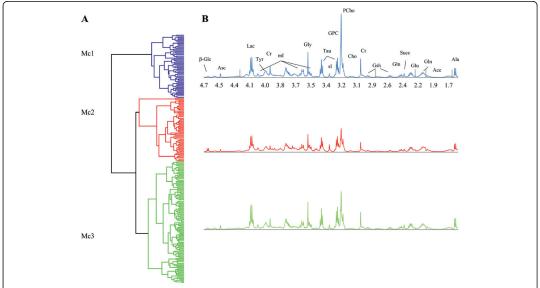
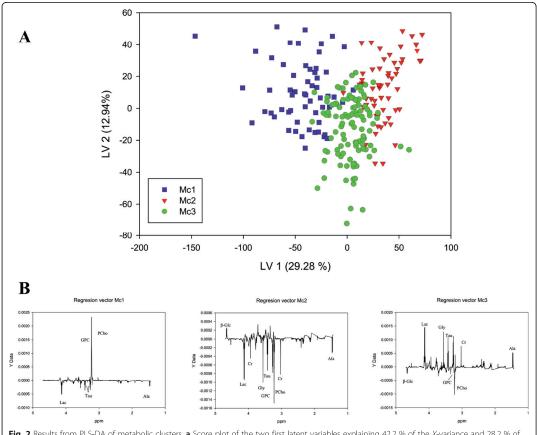


Fig. 1 Metabolic subtyping of breast cancer tissue samples using HCA. **a** The HR MAS MRS spectra for 228 samples was clustered using Euclidean distance and Wards linkage as similarity measure which separated the samples into three metabolic clusters (Mc); Mc1, Mc2, and Mc3. **b** Mean spectra for the three metabolic clusters. β-Glc β-glucose, Asc ascorbate, Lac lactate, Tyr tyrosine, Cr creatine, ml myoinositol, Gly glycine, Tau taurine, sl scylloinositol, GPC glycerophosphocholine, PCho phosphocholine, Cho choline, Gsh glutathione, Gln glutamine, Succ succinate, Glu glutamate, Ace acetate, Ala alanine. Grey bars indicate removed spectral regions (containing lipid peaks)

A total of 404 of the 413 significant genes from SAM between Mc1 and Mc2 were identified by DAVID. Functional Annotation Clustering resulted in 117 clusters (Top 10 in Additional file 2: Table S6), where the clusters with the highest enrichment scores were linked to signaling, extracellular region, and cell adhesion.

A total of 653 of the 671 significant genes from SAM between Mc1 and Mc3 were identified by DAVID. Functional Annotation Clustering resulted in 236 clusters (Top 10 in Additional file 2: Table S7), where the clusters with the highest enrichment scores were linked to extracellular matrix (ECM), cell adhesion, and basement membrane.


Enrichment analysis shows gene expression differences to be related to ECM activity

Since Mc1 was found to have a gene expression pattern different from both Mc2 and Mc3 and these two clusters lacked statistically significant gene expression differences, Mc1 was compared to Mc2 and Mc3 combined in GSEA. This resulted in 146 of the gene ontology gene sets altered in Mc1 compared to Mc2 and Mc3 (Additional file 2: Table S8). Gene sets with the highest significance were classified with functions within collagen, ECM, and integrin binding. None of the gene ontology sets were significantly different when comparing

Mc2 to Mc1 combined with Mc3, but 44 gene sets were significantly enriched when comparing Mc2 to Mc1 alone, with gene ontology terms relevant to ECM dominating the result (Additional file 2: Table S9). Eleven gene sets were significantly altered between Mc3 and Mc1 combined with Mc2 (Additional file 2: Table S10) and also here ECM-related findings were reported. One hundred fourteen gene sets were significantly different between Mc1 and Mc3, while none were significant between Mc2 and Mc3 (results not shown).

Joint analysis of gene and metabolite expression shows differences in metabolic pathways

Integrated pathway analysis resulted in 12 significantly different metabolic pathways (p value <0.05) between Mc1 and Mc2 (Additional file 2: Table S11). The most significant pathway was "tyrosine metabolism" with eight hits of genes and metabolites, but also "D-glutamine and D-glutamate metabolism," "glycolysis/gluconeogenesis" (Fig. 4a), and "glycerophospholipid metabolism" (Fig. 4b) were among the significant pathways. Integrated pathway analysis resulted in four significantly different metabolic pathways (p value <0.05) between Mc1 and Mc3 (Additional file 2: Table S12). The most significant pathway was glycerophospholipid metabolism with nine hits, succeeded by D-glutamine and D-glutamate metabolism.

Fig. 2 Results from PLS-DA of metabolic clusters. a Score plot of the two first latent variables explaining 42.2 % of the X-variance and 28.2 % of the Y-variance. (b) Regression vectors for the three metabolic clusters (Mc)

Discussion

In the present work, metabolite, protein, and gene expression data from 228 breast tumors were combined to search for new insight into the heterogeneity of breast cancer. MR metabolite data was used to derive naturally occurring metabolic clusters, which were further combined with data from the proteomics and transcriptomics levels. We identified three significantly different metabolic clusters, Mc1, Mc2, and Mc3, with significant differences in gene expression and protein expression profiles, but not within PAM50 subgroups. The metabolic clusters could therefore contribute with additional information beyond the intrinsic gene sets for understanding breast cancer heterogeneity.

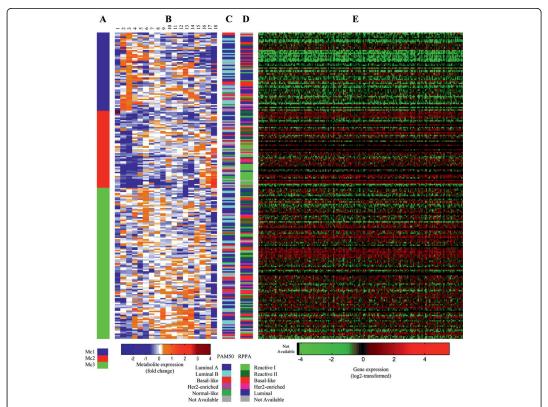
Of the three metabolic clusters, Mc1 was on a separate branch in the dendrogram indicating that the metabolic profile of this cluster was the most different. This cluster is defined by significantly higher levels of GPC and

PCho, two choline-containing metabolites involved in the synthesis and degradation of phosphatidylcholine (PtdCho), a major component of cell membranes [31]. Altered choline metabolism has been considered an emerging hallmark for malignant transformations and has been detected in several cancer types including breast cancer [32]. PCho in particular has been suggested a biomarker of breast cancer [33]. Both GPC and PCho are confirmed elevated in tumor tissue compared to adjacent non-involved tissue from breast cancer patients [17], and a higher GPC/PCho-ratio has been reported in ER negative tumors [34, 35]. The latter was also observed for our cohort (results not shown); however, there was no significant difference in ER status between the three metabolic clusters. Thus, the high level of GPC and PCho is not resulting from differences in the distribution of estrogen receptor (ER) status. Interestingly, integrated pathway analysis showed that

Table 2 Metabolite levels for the metabolic clusters

	Mc1 $(n = 58)$		Mc2 (n = 58)		Mc3 (n = 112)		Adjusted p value	Significant between
Metabolite name	Mean	SE	Mean	SE	Mean	SE		
Beta-D-glucose	30.0	27.7	71.7	55.2	32.3	16.3	3.62E-09	Mc2 vs rest
Ascorbate	40.0	17.1	28.8	8.6	38.3	13.6	1.02E-05	Mc2 vs rest
Lactate	259.5	73.0	229.4	57.6	303.6	76.7	4.98E-09	Mc3 vs rest
L-tyrosine	407.5	56.5	352.8	82.6	405.9	62.4	1.22E-04	Mc2 vs rest
Glycine	187.0	80.8	152.3	41.9	195.7	68.8	1.04E-04	Mc2 vs Mc3
Myoinositol	163.7	47.0	217.7	53.5	196.1	54.3	9.44E-07	all
Taurine	332.2	122.7	330.2	84.0	369.3	99.3	0.017	Mc1 vs Mc3
Scylloinositol	55.0	16.2	94.7	186.5	62.5	32.1	0.138	NS
Glycerophosphocholine	210.0	91.6	107.9	33.6	151.2	48.4	4.44E-12	all
Phosphocholine	552.0	131.1	216.8	66.8	327.2	69.9	9.59E-33	all
Choline	135.2	44.6	120.3	37.7	132.9	42.2	0.128	NS
Creatine	149.9	64.2	93.2	33.7	136.0	52.1	1.41E-09	Mc2 vs rest
Glutathione	57.5	13.8	50.9	13.9	58.1	14.5	0.011	Mc2 vs Mc3
Glutamine	134.4	41.3	134.3	30.2	145.4	43.6	0.223	NS
Succinate	58.0	15.7	53.6	10.6	62.2	15.7	0.003	Mc2 vs Mc3
Glutamate	237.9	61.3	266.2	63.3	277.5	61.2	1.95E-04	Mc1 vs rest
Acetate	32.7	9.0	48.4	17.2	40.3	13.1	7.89E-08	all
Alanine	82.6	36.6	66.0	24.9	95.1	33.8	6.56E-07	all

The values are calculated by integrated peak areas from normalized spectra to equal total areas. Kruskal-Wallis test was performed to compare metabolite levels between clusters, and *p* values were adjusted for multiple testing by The Benjamini Hochberg false discovery rate


NS not significant (adjusted *p* > 0.05)

glycerophospholipid metabolism was the most significant pathway, when comparing Mc1 to Mc2. This metabolic pathway had eight hits including the metabolites GPC and PCho and genes LCAT, LPCAT2, PPAP2A, PPAP2B, PLD1, and AGPAT4. Downregulation of the expression of these genes in Mc1 indicate a less active degradation of PtdCho causing an accumulation of GPC and PCho, thus explaining the higher levels of GPC and PCho in Mc1. Furthermore, LPCAT2 is involved in the reaction where the GPC precursor (acyl-GPC) is converted into PtdCho. Lower expression of this gene may explain why the GPC precursor is directed to the production of GPC instead of PtdCho. The same hits were obtained when Mc1 was compared to Mc3. In addition, PLA2G5, one of the enzymes degrading PtdCho to acyl-GPC, is downregulated in Mc1 compared to Mc3, further supporting that Mc1 has an altered PtdCho metabolism.

The levels of PCho and GPC were higher in Mc1 compared to the two other clusters, but no significant difference in the expression of choline kinase alpha (*CHKA*) could be detected in the SAM analysis. However, univariate analysis confirmed that *CHKA* expression was significantly higher in Mc1. This is in agreement with previous findings revealing a positive correlation between levels of PCho and GPC and expression of *CHKA* [34, 36].

For Mc1 compared to Mc2 through integrated pathway analysis, D-glutamine and D-glutamate metabolism has only two hits, but comes out as significant because of the small number of genes and metabolites within this pathway. Interestingly, the gene GLS which catalyzes the conversion of glutamine to glutamate is downregulated in Mc1, the cluster with lowest levels of glutamate. Glutamine metabolism is considered a therapeutic target as some cancer cells exhibit high uptake and addiction to this nonessential amino acid [37]. Since there were no differences in glutamine levels of Mc1 and Mc2, less glutamate in Mc1 could indicate that more glutamine is directed towards other metabolic pathways necessary for proliferation, glutathione needed for reducing power or further that glutamate is rapidly metabolized in cells through the TCA cycle or other mechanisms.

The distribution of protein subtypes (RPPA) was significantly different between the metabolic clusters, whereas no significant differences in the distribution of PAM50 subtypes were found. Thus, the metabolic difference between Mc1, Mc2, and Mc3 is not a result of intrinsic subtypes and might therefore contain additional information for understanding breast cancer heterogeneity. Among the tumors clustered in Mc1, 12 % were classified as RPPA-reactive (either I or II) while 49 % were classified as RPPA-luminal. The reactive RPPA

Fig. 3 Main differences between metabolic subtypes. **a** Metabolic cluster label from HCA with Euclidean distance and Wards linkage of HR MAS MR spectra of samples. The samples clustered in three groups called Mc1, Mc2, and Mc3. **b** Fold change in expression levels of (1) scylloinositol, (2) GPC, (3) PCho, (4) creatine, (5) ascorbate, (6) taurine, (7) GSH, (8) tyrosine, (9) lactate, (10) glutamate, (11) succinate, (12) glutamine, (13) glycine, (14) alanine, (15) choline, (16) myoinositol, (17) acetate, and (18) glucose. *Blue regions* in the heat map represent decreased levels while *red levels* represent increased metabolite levels. **c** PAM50-subtypes. **d** RPPA-subtype. **e** Gene expression levels (quantile normalized, log2-transformed) for the 277 overlapping significant genes (SAM, adjusted p < 0.01) between Mc1 and Mc3. The genes have been clustered

subtypes have a characteristic protein expression pattern probably produced by the microenvironment [5], indicating less microenvironmental activity within Mc1. Mc1 also had downregulation of several genes involved in processes within the ECM of the stroma compared to both Mc2 and Mc3. As ECM changes can drive cancer behavior [38], these genetic differences between Mc1 and Mc2 might be of prognostic relevance. In fact, differences in expression of ECM-related genes have been used to stratify breast carcinomas into four groups, where the subgroup ECM1 have the worst prognosis [39]. ECM classification was not performed on this cohort. However, 34 of 43 genes that clustered with a tendency of being downregulated in ECM1 and ECM2 were also found to be downregulated in Mc1. In addition, only 5 of 46 genes reported to be downregulated in ECM2 compared to ECM1 were downregulated in Mc1 (results extracted from SAM analyses, Additional file 2: Table S6–S7). These results support the contention that Mc1 tumors have an ECM signature similar to the reported ECM2 tumors. ECM2 did not show significant difference in disease outcome compared to ECM3 and ECM4, but had better prognosis than ECM1 tumors [39].

Mc2 has a metabolic profile with significant higher glucose level and at the same time lower levels of most of the other metabolites compared to one or both of the remaining clusters. High glucose level could reflect lower glucose consumption, inferring a lower demand for energy within these tumors. Glycolysis/gluconeogenesis came out as a significant pathway when Mc1 was compared to Mc2 during integrated pathway analysis with two metabolite

Table 3 Distribution of PAM50 and RPPA subtype among the metabolic clusters

		Metabolic cluster				
	Total	Mc1	Mc2	Mc3		
PAM50 subtype						
Luminal A	85	19 (35)	18 (43)	48 (46)		
Luminal B	56	23 (42)	5 (12)	28 (27)		
Basal	24	6 (11)	5 (12)	13 (13)		
Her2 enriched	22	5 (9)	7 (17)	10 (10)		
Normal-like	14	2 (4)	7 (17)	5 (5)		
NA	27	4	15	8		
Total	201	55	42	104		
RPPA subtype						
Reactive I	43	4 (7)	24 (44)	15 (14)		
Reactive II	36	3 (5)	8 (15)	25 (23)		
Basal	47	16 (29)	8 (15)	23 (21)		
Her2	18	5 (9)	4 (7)	9 (8)		
Luminal	73	27 (49)	11 (20)	35 (33)		
NA	11	3	3	5		
Total	217	55	55	107		

Values in brackets are each subtype's percentage distribution within the metabolic clusters NA not available

hits and five gene hits. For the most significant metabolite, glucose, the levels are higher in Mc2 compared to Mc1. Glucose is the main source of energy for mammalian cells, either through aerobic glycolysis (production of lactate even in the presence of oxygen) or tricarboxylic acid (TCA) cycle and oxidative phosphorylation. For normal proliferating cells and cancer cells, which both have an increased energy demand, a glycolytic switch is often observed (higher glycolytic rate) [12]. The increased glycolysis is followed by fermentation of the pyruvate to lactate (Warburg effect), in contrast to the conversion of acetyl CoA through the TCA cycle that occurs in normal non-proliferating cells. Increased glucose consumption is commonly used in tumor detection by using a glucose analogue and positron emission tomography (PET) [40] and has shown to correlate with poor prognosis and tumor aggressiveness [12]. However, not all breast cancers are detected by PET. Here, we expect lower sensitivity in detection of Mc2 tumors due to the possible difference in glycolytic rate. None of the genes with hits in glycolysis/ gluconeogenesis for the comparison of Mc1 and Mc2 could directly explain the high glucose levels of Mc2 tumors, but altered expression of the genes indicates pyruvate being guided towards the TCA cycle rather than lactate production. Two of the alternative fates of pyruvate showed significantly higher levels (alanine) or levels approaching significance (lactate, adjusted p = 0.056), supporting a higher glycolytic rate in Mc1 and that the

pyruvate produced is not directed to metabolism in the TCA cycle. The significantly lower acetate levels in Mc1 compared to Mc2 could be linked to *ALDH1A3* and *ALDH2* downregulation, since the enzymatic product of these genes catalyzes the reversible reaction where acetal-dehyde is converted to acetate.

Both DAVID and GSEA showed that many of the genes found to be downregulated in Mc1 and consequently upregulated in Mc2 were related to ECM activity. Mc2 had the highest percentage of RPPA-reactive I with 44 % of Mc2 tumors classified as this protein subtype, also related to stromal changes. Together with the metabolic finding, this implies that Mc2 tumors have cancer cells with low proliferating rate and at the same time ongoing changes within the ECM of the stroma. Mc2 tumors also had a higher frequency of lobular and ductal carcinoma in situ, indicating metabolic differences between histological subtypes of breast cancer which should be further investigated.

Mc3 has the highest lactate levels of all three clusters and higher glycine level than Mc2. These metabolites have been related to poor prognosis in ER positive patients [18], and higher levels of glycine is also associated with poor prognosis in a study irrespective of ER status [41]. Although the ER-positive patients are equally distributed among our reported metabolic clusters, Mc3 expressed higher levels of both of these metabolites compared to Mc2. Moestue et al. detected differences in the expression of genes involved in choline degradation that could explain higher glycine concentrations in the poor-prognosis basal-like breast cancer xenograft model compared to luminal-like [42]. Five of the genes described by Moestue et al. were significantly upregulated in Mc3 compared to Mc1; AGPAT4, PPAP2B, PPAP2A, LCAT, and PLD1. Of these, LCAT and PLD1 are directly involved in choline metabolism. LCAT catalyze the conversion of PtdCho to acyl-GPC while PLD1 catalyzes the conversion of PtdCho to choline. Higher GPC levels, but no difference in choline levels in Mc3 compared to Mc1 indicates that a higher amount of GPC is converted to choline in Mc3, and further contributing to higher glycine levels through choline degradation.

Mc3 shares similarities with a previously reported metabolic subgroup of luminal A tumors with significantly lower levels of glucose, higher levels of alanine, and nearly significantly higher lactate levels [19]. In Mc3, we also see a significant higher level of lactate. Since one of the main sources of alanine is pyruvate, which also is the source for lactate, it appears that Mc3 is a cluster with a switch in glycolytic activity.

The majority of Mc3 tumors were classified as RPPA-luminal, similar to Mc1. In contrast to Mc1, Mc3 had a higher percentage of RPPA-reactive II tumors, probably linked to changes in stromal content. Also,

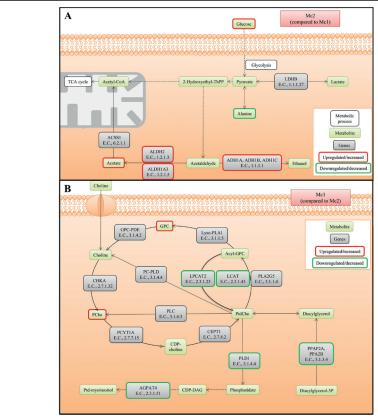


Fig. 4 Illustration of metabolic pathways reported to have altered gene and metabolite expression by integrated pathway analysis (MetaboAnalyst).

a Result within "glycolysis/glutaminolysis" genes and metabolites differently expressed in metabolic cluster (Mc) Mc2 compared to Mc1.

Adapted from KEGG ID: hsa00010. LDHB lactate dehydrogenase B; ADH1A/ADH1B/ADH1C alcohol dehydrogenase 1A/1B/1C; ALDH1A3: aldehyde dehydrogenase 1 family member A3; ALDH2 aldehyde dehydrogenase 2 family; ACSS1 acetate CoA ligase; TCA cycle trucarboxylic acid cycle. b Result within "glycerophospholipid metabolism" of genes and metabolites differently expressed in Mc1 compared to Mc2. Adapted from KEGG ID: hsa00564. CHKA choline kinase alpha; PCY11A phosphate cyclidylytransferase 1; CEPT1 choline/ethanolamine phosphotransferase 1; PLA2G5 phospholipase A2; LCAT lecithin-cholesterol acyltransferase; LPCAT2 lysophosphatidyl-choline acyltransferase; PC-PLD phospholipase D; Lyso-PLA1 lysophospholipase I; GPC-PDE glycerophos-phocholine phosphodiesterase; PLC phospholipase C; PLD1 phospholipidase D1; PPAP2A, PPAP2B phosphatidate phosphatase LPIN; AGPAT4 1-acylqlycerol-3-phosphate O-acyltransferase

gene expression wise, this was observed by significantly different gene expressions linked to ECM activity and the gene expression profile of Mc3 was found similar to the previously reported ECM3 or ECM4 subtypes [39].

In this study, information flow between the transcriptomics, proteomics, and metabolomics levels is illustrated; at the transcriptomics level, only one of the metabolic clusters shows difference in gene expression compared to the two others, while at the proteomics level, there is difference between all three clusters. Combining these findings, Mc1 is expected to have the worst

prognosis due to the distinct gene expression profile and the alterations in both glycerophospholipid metabolism and evidence of increased glycolytic rate. However, this has to be validated when 5-year follow-up of this cohort is available. The main metabolic characteristics, especially of Mc1 and Mc3, have been proposed as treatment targets that could improve the therapeutic effect [43]. Cancer therapy targeting *CHKA*, the enzyme responsible for PCho production from choline, causes tumor growth arrest and apoptosis in preclinical models [44], while treatment targeting glycolytic enzymes in combination with chemotherapy has been shown to re-sensitize

cancer cells that had become resistant to treatment [43]. Metabolic classification as illustrated here could therefore be relevant for developing a more targeted treatment plan. Importantly, the prognostic value of the clusters should be evaluated once 5-year follow-up is available.

Conclusions

We have here identified three metabolic clusters of breast cancer, also characterized with differences at the proteomic and transcriptomic level. The metabolic clusters are not reflecting the intrinsic genetic subtypes and may give important additional information for understanding breast cancer heterogeneity. Gene enrichment analysis revealed diverse ECM characteristics among these clusters in accordance with RPPA-subtyping. The approach of combining information from several -omics levels in the same tumor shows promise in improving the understanding of breast cancer heterogeneity potentially leading to more patient specific treatment.

Additional files

Additional file 1: Additional methods and references. Information of additional methods. (DOCX 22 kb)

Additional file 2: Table S1. Antibodies used for reverse phase protein array (RPPA). **Table S2.** Metabolite integrals for each of the samples included in the study. **Table S3.** Significantly different expressed genes between the three metabolic clusters. Table S4. Significantly differen expressed genes between the metabolic clusters Mc1 and Mc2. **Table S5.** Significantly different expressed genes between the metabolic clusters Mc1 and Mc3. **Table 6.** Statistically over-represented annotation terms, according to DAVID, of differently expressed genes between metabolic cluster Mc1 and Mc2. **Table S7.** Statistically over-represented annotation terms, according to DAVID, of differently expressed genes between metabolic cluster Mc1 and Mc3. **Table 58.** Gene set enrichment analysis (GSEA) result for gene ontology (GO) gene sets. Metabolic cluster Mc1 was compared with Mc2 and Mc3. **Table 59.** Gene set enrichment analysis (GSEA) result for gene ontology (GO) gene sets. Metabolic cluster Mc1 was compared with Mc2. **Table S10.** Gene set enrichment analysis (GSEA) result for gene ontology (GO) gene sets. Metabolic cluster Mc3 was compared with Mc1 and Mc2. **Table S11.** Integrated pathway analysis result from the comparison of the metabolic clusters Mc1 compared to Mc2. **Table S12.** Integrated pathway analysis result from the comparison of the metabolic clusters Mc1 compared to Mc3 (XLSX 337 kb)

Abbreviations

Ala, alanine; Cr, creatine; DCIS, ductal carcinoma in situ; ECM, extracellular matrix; ER, estrogen receptor; FDR, false discovery rate; Gly, glycine; GPC, glycerophosphocholine; GSEA, gene set enrichment analysis: HCA hierarchical cluster analysis; HR MAS MRS, high resolution magic angle spinning magnetic resonance spectroscopy; Lac, lactate; Mc, metabolic duster; MRS, magnetic resonance spectroscopy; MSigDB, molecular signatures database; PAM50, prediction analysis of microarrays 50; PCho, phosphocholine; PET, positron emission tomography; PLS-DA, partial least square discriminant analysis: PtdCho, phosphatidylcholine: RPPA, reverse phase protein array; SAM, significance analysis of microarrays; Tau, taurine; TCA, tricarboxylic acid; β-Glc, β-glucose

Acknowledgements

The HR MAS MRS analysis was performed at the MR Core Facility, Norwegian University of Science and Technology (NTNU). MR core facility is funded by the Faculty of Medicine at NTNU and Central Norway Regional Health Authority.

The Oslo Breast Cancer Research Consortium (OSBREAC).
Vessela N Kristensen^{1,2,3}, Torill Sauer^{4,5}, Elin Borgen⁶, Olav Engebråten^{7,8,9},
Øystein Fodstad^{7,9}, Rolf Kåresen^{9,10}, Bjørn Naume^{2,8}, Gunhild Mari Mælandsmo^{2,7,11},
Hege G Russnes^{1,2,1,2}, Therese Sørlie^{1,2}, Helle Kristine Skjerven^{1,3}, Britt Fritzman^{1,4},
¹Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. ²K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway. Department of Clinical Molecular Biology and Laboratory Science (EpiĜen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway.

Department of Pathology, Akershus University Hospital, Lørenskog, Norway. ⁵Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. ⁶Department of Pathology, Division of Diagnostics and Intervention, Oslo University Hospital, Oslo, Norway. ⁷Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. ⁸Department of Oncology, Division of Surgery and Cancer and Transplantation Medicine, Oslo University Hospital, Oslo, Norway. ⁹Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. 10 Department of Breast and Endocrine Surgery, Division of Surgery, Cancer and Transplantation, Oslo University Hospital, Oslo, Norway. ¹¹Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway. ¹²Department of Pathology, Oslo University Hospital, Oslo, Norway. ¹³Breast and Endocrine Surgery, Department of Breast and Endocrine Surgery, Vestre Viken Hospital, Drammen, Norway. 14Østfold Hospital, Østfold, Norway. Email: Vessela N Kristensen v.n.kristensen@medisin.uio.no, Torill Sauer Torill.sauer@medisin.uio.no, Elin Borgen ebg@ous-hf.no, Olav Engebråten Olav.engebraten@medisin.uio.no, Øystein Fodstad Oystein.Fodstad@rr research.no, Rolf Kåresen rolf.karesen@medisin.uio.no, Bjørn Naume bjorn.naume@medisin.uio.no, Gunhild Mari Mælandsmo Gunhild.Mari.Malandsmo@rr-research.no, Hege G Russnes Hege.russnes@rrresearch.no, Therese Sørlie therese.sorlie@rr-research.no, Helle Kristine Skjerven Helle.skjerven@vestreviken.no, Britt Fritzman Britt.Fritzman@so-hf.no

Funding

This work was supported by (1) K. G. Jebsen Center for Breast Cancer Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

(2) Cancer Society of Norway

(3) South-Eastern Norway Regional Health Authority (Project no 2011042, OSBREAC: Towards personalized therapy for breast cancer)

(4) The Research Council of Norway, Imaging the breast cancer metabolome, Project no 221879

(5) Liaison Committee between the Central Norway Regional Health Authority and NTNU Project no 46056615

(6) NCI grants P01CA0099031 and P30 CA016672 to GBM

Availability of data and materials

The datasets supporting the conclusions of this article are included within the Additional files and included in the article; "Integrated analysis reveals microRNA networks coordinately expressed with key proteins in breast cancer" Aure MR, Jernström S, Krohn M, Vollan HK, Due EU, Rødland E, Kåresen R; Oslo Breast Cancer Research Consortium (OSBREAC), Ram P, Lu Y, Mills GB, Sahlberg KK, Børresen-Dale AL, Lingjærde OC, Kristensen VN Genome Med. 2015 Feb 2; where mRNA expression data have been submitted to the Gene Expression Omnibus (GEO) database as a SuperSeries record with accession number GSE58215

Authors' contributions

THH, LRE, GFG, OLC, ES, ØG, OSBREAC, KKS, ALBD, and TFB participated in the design of the study. KKS, ALBD, and TFB conceived the study. THH, LRE, GFG, KKS, ALBD, and TFB interpreted the data. SL and THH performed the HR MAS MRS acquisition. THH performed the statistical analysis and drafted the manuscript. MK, SJ, MRA, OCL, ES, ØG, EUD, OSBREAC, GBM, KKS, ALBD, and TFB participated in acquisition of the data. All authors have read and helped to revise the manuscript. The final manuscript is approved by all the authors.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable

Ethics approval and consent to participate

The study is approved by the Norwegian Regional Committee for Medical Research Ethics (Biobank approval 1.2006.1607), and all patients have given written consent for the use of material for research purposes.

Author details

¹Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. ²K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. ³St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. ⁵Department of Food Science, Faculty of Science and Technology, Aarhus University, Årslev, Denmark. ⁵Department of Cancer Genetics, Institute for Cancer Research Oslo University Hospital, The Norwaya foliation of Science, University of Oslo, Oslo, Norway. ⁶Department of Computer Science, University of Oslo, Oslo, Norway. ⁷Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway. ⁸Section for Breast and Endocrine Surgery, Oslo University Hospital, Ullevål, Oslo, Norway. ⁹Department of Pathology, Oslo University Hospital, Oslo, Norway. ¹⁰Department of Systems Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA. ¹¹Department of Research, Vestre Viken, Drammen, Norway.

Received: 15 February 2016 Accepted: 6 June 2016 Published online: 27 June 2016

- Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0: Cancer incidence and mortality worldwide: IARC CancerBase No. 11. 2013. http://globocan.iarc.fr. Accessed: 04 Jan 2015.
- Polyak K. Heterogeneity in breast cancer. J Clin Invest. 2011;121(10):3786–8.
- Wang Y, Crampin E. Biclustering reveals breast cancer tumour subgroups with common clinical features and improves prediction of disease recurrence. BMC Genomics. 2013;14(1):102.
- Perou C, Sørlie T, Eisen M, van de Rijn M, Jeffrey S, Rees C, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.
- The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.
- Sørlie T, Perou C, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.
- Parker J, Mullins M, Cheang M, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.
- Myhre S, Lingjærde O-C, Hennessy B, Aure M, Carey M, Alsner J, et al. Influence of DNA copy number and mRNA levels on the expression of breast cancer related proteins. Mol Oncol. 2013;7(3):704–18.
- 9. Akbani R, Ng P, Werner H, Shahmoradgoli M, Zhang F, Ju Z, et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun. 2014;5.
- Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014; 513(7518):382–7.
- Hennessy B, Lu Y, Gonzalez-Angulo A, Carey M, Myhre S, Ju Z, et al. A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin Proteomics. 2010;6(4):129–51.
- Gatenby R, Gillies R. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.
- Ward P, Thompson C. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21(3):297–308.
- Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
- Bathen T, Geurts B, Sitter B, Fjøsne H, Lundgren S, Buydens L, et al. Feasibility of MR metabolomics for immediate analysis of resection margins during breast cancer surgery. PLoS One. 2013;8(4):e61578.
- Cao M, Sitter B, Bathen T, Bofin A, Lønning P, Lundgren S, et al. Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed. 2012;25(2):369–78.
- Sitter B, Lundgren S, Bathen T, Halgunset J, Fjosne H, Gribbestad I. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed. 2006;19(1):30–40.

- Giskeødegård G, Lundgren S, Sitter B, Fjøsne HE, Postma G, Buydens L, et al. Lactate and glycine—potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers. NMR Biomed. 2012;25(11):1271–9.
- Borgan E, Sitter B, Lingjærde O, Johnsen H, Lundgren S, Bathen T, et al. Merging transcriptomics and metabolomics-advances in breast cancer profiling. BMC Cancer. 2010;10(1):628.
- Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills G, et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther. 2006;5(10):2512–21.
- Aure M, Jernström S, Krohn M, Vollan H, Due E, Rødland E, et al. Integrated analysis reveals microRNA networks coordinately expressed with key proteins in breast cancer. Genome Med. 2015;7(1):1-17.
- Nilsen G, Vollan H, Pladsen A, Borgan Ø, Liestøl K, Vitelli V, et al. Dissecting genome aberration patterns in tumors, Submitted. 2015.
- Sitter B, Sonnewald U, Spraul M, Fjösne H, Gribbestad I. High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed. 2002;15(5):327–37.
- Tusher V, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116–21.
- 25. R Core Team. R: a language and environment for statistical computing. Viena: R Foundation for Statistical Computing; 2012.
- da Huang W, Sherman B, Lempicki R. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4(1):44–57.
- Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.
- Mootha V, Lindgren C, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.
- Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, and Mesirov J. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011; http://www.broadinstitute.org/gsea/msigdb/index.jsp. Accessed: 08 Oct 14.
- Xia J, Mandal R, Sinelnikov I, Broadhurst D, Wishart D. MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40(Web Server issue):W127–33.
- Gibellini F, Smith T. The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010;62(6):414–28.
- Glunde K, Bhujwalla Z, Ronen S. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11(12):835–48.
- Eliyahu G, Kreizman T, Degani H. Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer. 2007;120(8):1721–30.
 Grinde M, Skrbo N, Moestue S, Rødland E, Borgan E, Kristian A, et al.
- Grinde M, Skrbo N, Moestue S, Rødland E, Borgan E, Kristian A, et al. Interplay of choline metabolites and genes in patient-derived breast cancer xenografts. Breast Cancer Res. 2014;16:1-16.
- Giskeødegård G, Grinde M, Sitter B, Axelson D, Lundgren S, Fjøsne H, et al. Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res. 2010;9(2):972–9.
- Cao MD, Döpkens M, Krishnamachary B, Vesuna F, Gadiya M, Lønning P, et al. Glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) expression correlates with malignant choline phospholipid metabolite profiles in human breast cancer. NMR Biomed. 2012;25(9):1033–42.
- Wise D, Thompson C. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427–33.
- TIsty T, Hein P. Know thy neighbor: stromal cells can contribute oncogenic signals. Curr Opin Genet Dev. 2001;11(1):54–9.
- Bergamaschi A, Tagliabue E, Sørlie T, Naume B, Triulzi T, Orlandi R, et al Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol. 2008;214(3):357–67.
- Mankoff D, Eary J, Link J, Muzi M, Rajendran J, Spence A, et al. Tumorspecific positron emission tomography imaging in patients:[18F] fluorodeoxyglucose and beyond. Clin Cancer Res. 2007;13(12):3460–9.
- Sitter B, Báthen T, Singstad T, Fjøsne H, Lundgren S, Halgunset J, et al. Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR Biomed. 2010;23(4):424–31.
- Moestue S, Borgan E, Huuse E, Lindholm E, Sitter B, Børresen-Dale A-L, et al. Distinct choline metabolic profiles are associated with differences in gene

- expression for basal-like and luminal-like breast cancer xenograft models.
- expression for basal-like and luminal-like breast cancer xenograft models. BMC Cancer. 2010;10(1):433.

 43. Zhao Y, Butler E, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013;4(3):e532.

 44. Glunde K, Jiang L, Moestue S, Gribbestad I. MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed. 2011;24(6):673–90.

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- $\bullet\,$ We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit

Supplementary Information

Article Title: Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes

Cancer & Metabolism 2016 June 27; 4:12. DOI: 10.1186/s40170-016-0152-x

Additional File 1: Additional methods and references

Information on additional methods.

Additional File 2: Additional Tables

Additional Tables 1-12.

Additional Information:

2 Additional Methods

1

- 3 HR MAS MRS acquisition and data processing. Before HR MAS MRS experiments, 3 µL cold sodium
- 4 formate in D2O (24.29mM) was added to a leak-proof disposable 30μL insert (Bruker, Biospin GmbH,
- 5 Germany) as a chemical shift reference. Tissue samples were cut to fit the insert on a dedicated work
- 6 station designed to keep the samples frozen [1]. The insert containing the frozen sample was placed in a 4-
- 7 mm diameter zirconium rotor (Bruker, Biospin GmbH, Germany) and kept at -20 °C for maximum 8 hours
- 8 before the experiments. Samples were spun at 5000 Hz and experiments run at 5 °C. The samples were
- 9 allowed 5 minutes temperature acclimatization before shimming and spectral acquisition. Spin-echo
- spectra were recorded using a Carr-Purcell-Meiboom-Gill (cpmg) pulse sequence (cpmgpr1d; Bruker)
- 11 with 4s water suppression prior to a 90° excitation pulse. T2 filtering was obtained using a delay of 0.6 ms
- 12 between each 180° pulse to suppress macromolecules and lipid signals and enhance signal from small
- 13 molecules. This resulted in an effective TE of 77 ms. A total of 256 scans over a spectral region of 12 kHz
- was collected into 72k complex data points with an acquisition time of 3.07 s. The FIDs were multiplied
- by a 0.30 Hz exponential weighting function and Fourier transformed into 64k real points. Phase
- 16 correction was performed automatically for each spectrum using TopSpin 3.1 (Bruker). Further
- 17 preprocessing of the HR MAS spectra were performed in Matlab R2013b (The Mathworks, Inc., USA).
- 18 Chemical shifts were referenced to the creatine peak at 3.92 ppm. Baseline correction was performed
- using asymmetric least squares [2] with parameters $\lambda = 1e7$ and p = 0.0001, and baseline offset was
- 20 adjusted by setting the minimum value of each spectrum to zero by subtracting the lowest value. Peak
- 21 alignment was performed using icoshift [3].
- 22 Reverse Phase Protein Array (RPPA). Tumor tissue was lysed by homogenization in lysis buffer
- 23 containing proteinase inhibitors and phosphatase inhibitors. The tumor lysates were diluted in 1.33 mg/ml
- concentration as assessed by bicinchonic acid assay (BCA) and boiled in 1% SDS and 2-mercaptoethanol.

25 Supernatants were manually diluted in five serial 2-fold dilutions with lysis buffer. The samples were 26 spotted onto and immobilized on nitrocellulose-coated FAST slides. The slides were probed with 151 27 primary antibodies (Supplementary Table 1) in appropriate dilutions. The signal intensity was captured by 28 a biotin conjugated secondary antibody and was amplified by Dako Cytomation-catalysed system (Dako, 29 Glostrup, Denmark). Slides were scanned, analyzed and quantitated using MicroVigene software 30 (VigeneTech Inc., Carlise, MA, USA) to generate spot signal intensities. These were then processed by 31 the R package SuperCurve /version 1.01. The protein concentrations were derived from the supercurve for 32 each sample by curve fitting, log2-transformed, and the relative concentrations were normalized by 33 median centering of the samples for each of the antibodies [4]. 34 Statistical analysis. PLS-DA was performed on mean centered spectra using double cross validation [5]. 35 In the outer loop, the model was built on randomly chosen training samples (80 % of the spectra) and used 36 to predict the class of the remaining independent test samples (20 % of the spectra). The outer loop was 37 repeated 20 times in total. For each outer loop, 20 repetition of the inner loop was performed. Here, the 38 training set was again divided into an inner set of training (80 % of the samples) and test (20 % of the 39 samples) samples. The average classification result is calculated based on the outer loop, while the inner 40 loop was used to determine the optimal number of LVs. To validate that the result is not achieved simply 41 by random predictions, permutation testing was performed. Here Y-data (class labels for the samples) are 42 permutated to resemble random classification. For each permutation 20 random training and test sets are 43 chosen as described for the PLS-DA model. This was repeated 1000 times before the error distribution 44 was compared with the classification error for the original data. P values ≤ 0.01 were considered 45 significant. PCA and PLS-DA were performed in Matlab using PLS Toolbox 7.5.2 (Eigenvector 46 Research, Inc., Wenatchee, USA).

Additional References

49

61 62

- Giskeødegård, G.F., M.D. Cao, and T.F. Bathen, High-Resolution Magic-Angle-Spinning NMR
 Spectroscopy of Intact Tissue, in Metabonomics: Methods and Protocols, J.T. Bjerrum, Editor
 2015, Springer New York. p. 37-50.
- 53 2. Eilers, P.H., *Parametric time warping*. Anal Chem, 2004. **76**(2): p. 404-411.
- 54 3. Savorani, F., G. Tomasi, and S.B. Engelsen, *icoshift: A versatile tool for the rapid alignment of* 1D NMR spectra. J Magn Reson, 2010. **202**(2): p. 190-202.
- Aure, M.R., et al., *Integrated analysis reveals microRNA networks coordinately expressed with key proteins in breast cancer.* Genome Med, 2015. **7**(1).
- 58 Smilde, A.K., et al., *Data processing in metabolomics*, in *Metabolomics in practice: successful strategies to generate and analyze metabolic data*, M. Lämmerhofer and W. Weckwerth, Editors. 2013, John Wiley & Sons.

RPPA Antibody	Company	Catalog #	Dilution used	Validation status	Specie
14-3-3_epsilon	Santa Cruz	sc-2395		250 C- use with caution	Mouse
4E-BP1	CST	9452		100 V - validated	Rabbi
4E-BP1 pS65	CST	9456		250 V - validated	Rabbi
53BP1	CST	4937		400 C- use with caution	Rabbi
A-Raf pS299	CST	4431		100 NA	Rabbi
				200 V - validated	
ACC_pS79	CST	3661			Rabbi
ACC1	Epitomics	1768-1		300 C- use with caution	Rabbit
AIB1	BD	611105		100 V - validated	Mouse
Akt	CST	9272		250 V - validated	Rabbit
Akt_pS473	CST	9271		100 V - validated	Rabbit
Akt pT308	CST	9275		50 V - validated	Rabbit
alpha-Catenin	Calbiochem	CA1030		750 V - validated	Mouse
*					
AMPK_alpha	CST	2532		200 C- use with caution	Rabbit
AMPK_pT172	CST	2535		100 V - validated	Rabbit
Annexin_I	Invitrogen	71-3400	90	0000 V - validated	Rabbit
AR	Epitomics	1852-1		50 V - validated	Rabbit
B-Raf	Santa Cruz	sc-5284		500 NA	Mouse
Bak	Epitomics	1542-1		50 C- use with caution	Rabbit
Bax	CST	2772		300 V - validated	Rabbit
Bcl-2	Dako	M0887		50 V - validated	Mouse
Bcl-X	Epitomics	1018-1		100 C- use with caution	Rabbit
Bcl-xL	CST	2762		50 V - validated	Rabbit
Beclin	Santa Cruz	sc-10086		200 V - validated	Goat
beta-Catenin					
	CST	9562		800 V - validated	Rabbit
Bid	Epitomics	1008-1		50 C- use with caution	Rabbit
Bim	Epitomics	1036-1		50 V - validated	Rabbit
c-Jun_pS73	CST	9164		50 C- use with caution	Rabbit
c-Kit	Epitomics	1522		50 V - validated	Rabbit
c-Met	CST	3127		500 C- use with caution	Mouse
c-Met_pY1235	CST	3129		500 C- use with caution	Rabbit
c-Myc	CST	9402		200 C- use with caution	Rabbit
C-Raf	Millipore	05-739	1	000 V - validated	Rabbit
C-Raf_pS338	CST	9427		300 C- use with caution	Rabbit
Caspase-3_active	Epitomics	1476-1		200 C- use with caution	Rabbit
Caspase-7 cleavedD198	CST	9491		50 C- use with caution	Rabbit
. –					
Caspase-8	CST	9746		250 C- use with caution	Mouse
Caspase-9_cleavedD330	CST	9501		250 C- use with caution	Rabbit
Caveolin-1	CST	3238		500 V - validated	Rabbit
CD31	Dako	M0823		50 V - validated	Mouse
CDK1	CST	9112		250 V - validated	Rabbit
Chk1	CST	2345		100 C- use with caution	Rabbit
Chk1_pS345	CST	2348		50 C- use with caution	Rabbit
Chk2	CST	3440		300 C- use with caution	Mouse
Chk2_pT68	CST	2197		150 C- use with caution	Rabbit
cIAP	Millipore	07-759		250 V - validated	Rabbit
Claudin-7	Novus	NB100-91714	1	000 V - validated	Rabbit
Collagen_VI	Santa Cruz	sc-20649		250 V - validated	Rabbit
COX-2	Epitomics	2169-1		150 C- use with caution	Rabbit
Cyclin_B1	Epitomics	1495-1		500 V - validated	Rabbit
Cyclin_D1	Santa Cruz	sc-718		150 V - validated	Rabbit
Cyclin_E1	Santa Cruz	sc-247		150 V - validated	Mouse
DJ-1	Abcam	ab76008	10	0000 C- use with caution	Rabbit
Dvl3	CST	3218		000 V - validated	Rabbit
E-Cadherin	CST	4065		750 V - validated	Rabbit
eEF2	CST	2332		100 V - validated	Rabbit
eEF2K	CST	3692		250 V - validated	Rabbit
EGFR	Santa Cruz	sc-03		350 C- use with caution	Rabbit
EGFR_pY1068	CST	2234		50 V - validated	Rabbit
EGFR_pY1173	Epitomics	1124		50 C- use with caution	Rabbit
EGFR_pY992	CST	2235		50 V - validated	Rabbit
eIF4E	CST	9742		250 V - validated	Rabbit
ER-alpha	Lab Vision	RM-9101-S		200 V - validated	Rabbit
ER-alpha_pS118	Epitomics	1091-1		150 V - validated	Rabbit
ERCC1	Lab Vision	MS-671-PO		100 C- use with caution	Mouse
FAK	Epitomics	1700-1		75 C- use with caution	Rabbit
			_		
Fibronectin	Epitomics	1574-1	5	5000 C- use with caution	Rabbit
FOXO3a	CST	9467		50 C- use with caution	Rabbit
FOXO3a_pS318_S321	CST	9465		75 C- use with caution	Rabbit
GAB2	CST	3239		250 V - validated	Rabbit
GATA3					
	BD	558686		100 V - validated	Mouse
GSK3_pS9	CST	9336		250 V - validated	Rabbit
GSK3-alpha-beta	Santa Cruz	sc-7291	2	2000 V - validated	Mouse
GSK3-alpha-beta pS21 S9	CST	9331		250 V - validated	Rabbit
HER2	Lab Vision	MS-325-P1		250 V - validated	Mouse
	Luo + 131011	171U-U4U-11			Rabbit
HER2_pY1248	R&D	AF1768		350 NA	

RPPA Antibody	Company	Catalog #	Dilution used Validation status	Species
HER3	Santa Cruz	sc-285	250 V - validated	Rabbit
HER3 pY1298	CST	4791	250 C- use with caution	Rabbit
IGF-1R-beta	CST	3027	250 C- use with caution	Rabbit
IGFBP2	CST	3922	50 V - validated	Rabbit
INPP4B	Santa Cruz	sc-12318	250 C- use with caution	Goat
IRS1	Millipore	06-248	2000 V - validated	Rabbit
JNK2	CST	4672	50 C- use with caution	Rabbit
K-Ras	Santa Cruz	sc-30	75 C- use with caution	Mouse
MAPK_pT202_Y204	CST	4377	100 V - validated	Rabbit
MEK1	Epitomics	1235-1	5000 V - validated	Rabbit
MEK1_pS217_S221	CST	9121	500 V - validated	Rabbit
MIG-6	Sigma	WH0054206M1	100 V - validated	Mouse
Mre11	CST	4847	250 C- use with caution	Rabbit
MSH2	CST	2850	50 C- use with caution	Mouse
MSH6	SDI	2203.00.02	1000 C- use with caution	Rabbit
N-Cadherin	CST	4061	50 V - validated	Rabbit
NF-kB-p65 pS536	CST	3033	100 C- use with caution	Rabbit
1 =				
NF2	SDI	2271.00.02	500 C- use with caution	Rabbit
Notch1	CST	3268	50 V - validated	Rabbit
Notch3	Santa Cruz	sc-5593	600 C- use with caution	Rabbit
P-Cadherin	CST	2130	50 C- use with caution	Rabbit
p21	Santa Cruz	sc-397	100 C- use with caution	Rabbit
p27	Epitomics	1591-1	50 V - validated	Rabbit
p27_pT157	R&D	AF1555	500 C- use with caution	Rabbit
p27_pT198	Abcam	ab64949	75 V - validated	Rabbit
p38_MAPK	CST	9212	100 C- use with caution	Rabbit
p38_pT180_Y182	CST	9211	50 V - validated	Rabbit
p58_p1180_1182 p53	CST	9282	2500 V - validated	Rabbit
p70S6K	Epitomics	9282 1494-1	750 V - validated	Rabbit
*				
p70S6K_pT389	CST	9205	50 V - validated	Rabbit
p90RSK_pT359_S363	CST	9344	50 C- use with caution	Rabbit
PARP_cleaved	CST	9546	50 C- use with caution	Mouse
Paxillin	Epitomics	1500-1	500 V - validated	Rabbit
PCNA	Abcam	ab29	500 V - validated	Mouse
PDK1 pS241	CST	3061	500 V - validated	Rabbit
PI3K-p110-alpha	CST	4255	150 C- use with caution	Rabbit
PI3K-p85	Millipore	06-195	10000 V - validated	Rabbit
PKC-alpha	Millipore	05-154	1000 V - validated	Mouse
PKC-alpha pS657	Millipore	06-822	750 V - validated	Rabbit
PR	Epitomics	1483-1	200 V - validated	Rabbit
	Biosource		1000 V - validated	Rabbit
PRAS40_pT246		441100G		
PTCH	SDI	2113.00.02	1000 C- use with caution	Rabbit
PTEN	CST	9552	750 V - validated	Rabbit
Rab11	CST	3539	250 V - validated	Rabbit
Rab25	Covance	Custom	2500 C- use with caution	Rabbit
Rad50	Millipore	05-525	100 C- use with caution	Mouse
Rad51	Chem Biotech	na 71	125 C- use with caution	Mouse
Rb	CST	9309	200 V - validated	Mouse
Rb pS807 S811	CST	9308	250 V - validated	Rabbit
S6_pS235_S236	CST	2211	3000 V - validated	Rabbit
S6_pS240_S244	CST	2215	2000 V - validated	Rabbit
Shc_pY317	CST	2431	50 NA	Rabbit
Smac	CST	2954	250 V - validated	Mouse
Smad1	Epitomics	1649-1	250 V - validated	Rabbit
Smad3				
	Epitomics	1735-1	750 V - validated	Rabbit
Smad4	Santa Cruz	sc-7866	50 V - validated	Mouse
Snail	CST	3895	100 C- use with caution	Mouse
Src	Millipore	05-184	200 V - validated	Mouse
Src_pY416	CST	2101	125 C- use with caution	Rabbit
Src_pY527	CST	2105	250 V - validated	Rabbit
STAT3_pY705	CST	9131	50 V - validated	Rabbit
STAT5-alpha	Epitomics	1289-1	250 V - validated	Rabbit
Stathmin	Epitomics	1972-1	150 V - validated	Rabbit
Syk	Santa Cruz	sc-1240	250 V - validated	Mouse
Tau	Millipore	05-348	100 C- use with caution	Mouse
TAZ_pS89	Santa Cruz	sc-17610	75 C- use with caution	Rabbit
Tuberin	Epitomics	1613-1	500 C- use with caution	
	1			Rabbit
VASP	CST	3112	50 C- use with caution	Rabbit
VEGFR2	CST	2479	5000 V - validated	Rabbit
XIAP	CST	2042	50 C- use with caution	Rabbit
XRCC1	CST	2735	50 C- use with caution	Rabbit
YAP	Santa Cruz	sc-15407	300 V - validated	Rabbit
YAP_pS127	CST	4911	350 C- use with caution	Rabbit
YB-1	SDI	1725.00.02	200 V - validated	Rabbit
YB-1_pS102	CST	2900	150 V - validated	Rabbit
		2700	150 Y Validated	1440011

75.7 70.7 105.0	54.3	49.9	50.4	65.8	116.4	73.9	74.9 56.4	84.6	93.8	102.5	119.6	86.2	83.7	82.0	84.0	153.8	175.7	74.8	75.4	119.8	50.2	59.8	77.3	60.4	100.3	144.4	7 90	197.6	103.5	89.4	41.9	81.0 158.9	159.1	168.0	141.2	55.2	80.3	103.4	111.2	106.7	86.2	190.6	135.5	110.0	103.5	29.3
39.9 42.5 50.6	67.0	36.4	29.5 53.8	45.3	40.3	57.3	51.3	33.0	36.2	28.3	38.3	37.6	29.7	40.6	30.0	47.9	22.0	58.4	35.4	43.3	45.8	24.9	33.6	28.8	36.2 90.3	33.4	37.9	30.5	34.8	25.4	27.0	37.1 44.2	53.0 28.6	31.5	42.1	29.0	41.8	26.6	29.7	50.7	28.2	39.3	45.9 61.0	39.4	28.8	23.0 42.1
281.0 221.9 228.2	335.8	345.9	133.0	277.7	313.2	246.6	279.7	284.8	266.7	359.9	290.5	203.9	246.6	252.9	200.3	278.1	222.3	229.5	237.7	200.5	299.0	277.0	299.0	229.6	293.7	208.2	245.0	449.3	349.2	285.9	157.4	313.8	327.3	302.9	365.2	210.5	219.4 276.4	216.6	313.0	359.6	207.1	285.2	240.1	250.1	252.2	309.6
36.4 57.0	36.4	74.8	43.9	1.17	55.6	26.0	75.3 69.5	33.0	9.69 48.6	56.5	70.7	48.6	713	62.9	83.5	61.7	97.7	63.3	28.8	57.6	45.1	33.8	51.9	28.6	4 59.6 5.5	37.6	22.6	20.3	37.0	4.0	47.8 47.8	65.0 47.8	48.4	55.4	8. 6	69.2	S 55 5.3	57.1	54.5	74.4	8.8	9.60	\$4.2 \$7.2	70.5	96.2	43.6
201.4 139.1 131.8	127.2	109.4	151.4	183.4	140.1	132.1	180.1	138.6	138.5	102.6	166.0	134.3	111.4	143.5	163.6	195.8	223.6	134.8	105.7	170.8	79.6	99.0	122.7	86.3	125.7	134.6	127.0	136.3	87.1	114.4	100.4	148.4	214.1	133.8	200.9	126.8	204.6	209.7	124.1	349.6	149.5	232.1	139.4	207.2	1966	151.9
48.9 36.1 93.7	30.8	30.0	42.7 55.5	47.3	90.6	50.6	39.0 23.4	52.7	55.5	75.3	70.1	30.1	0.09	53.7	45.7	54.4	92.8	42.4	41.5	51.8	53.7	52.1	47.4	57.2	35.5	61.4	47.7	58.9	82.6	69.3	58.8 65.4	59.4 59.1	49.2 66.5	45.6	30.2	57.2	46.9 59.0	52.1	39.0	52.6 23.4	85.8	9.69	48.4 54.2	59.5	57.5	42.0
121.7 116.7 165.8	54.4 156.9	62.1 162.6	79.8	148.0	112.9	118.9	147.6	88.0	102.7	109.5	132.8	133.9	114.7	92.1	135.3	182.5	167.5	79.3	95.9	118.9	8.88	120.4	156.8	117.6	125.3	145.9	103.9	73.3	157.4	139.4	283.9	144.6	390.3	204.4	127.6	106.4	231.0	229.5	64.7	130.7	123.6	100.5	146.7	141.2	145.6	108.1
88.8 149.2 121.5	79.4	45.8 56.0	62.7	129.9	172.4	115.9	146.6	112.0	115.1	79.8	123.4	121.5	136.0	217.5	131.5	84.9	59.2	161.6	181.8	149.9	123.9	182.1	123.2	200.8	162.3	75.8	105.6	49.7	239.9	146.4	147.3	181.6 226.0	233.2	78.5	158.5	181.9	132.5	156.9	0.68	130.6	107.4	56.1	191.4	95.3	181.8	112.7
308.4 624.2 220.5	391.5	125.9 263.8	721.9	261.5	355.4	481.6	245.7	290.3	256.0	356.7	234.4	450.3	323.1	548.4	463.2 525.1	267.4	479.5	294.2	329.2	364.5	313.0	308.0	431.9	683.9	276.5	492.4	222.4	351.8	717.7	247.9	811.3	221.6 596.7	398.6	335.1	271.4	328.9	282.6	456.6	405.1	185.5	801.8	352.9	209.2	320.1	422.0	462.2
121.1 274.4 94.0	76.9	54.2	310.5	178.3	213.1	150.8	151.1	179.4	198.2	192.7	56.7	983	152.1	367.6	261.3	211.4	220.5	250.2	171.6	189.2	174.5	142.2	135.4	219.2	185.7	304.6	129.6	562	193.7	212.9	194.8	110.7	129.4	131.6	180.1	151.5	123.6	282.9	119.7	88.9	96.8	182.3	92.2 96.7	151.7	384.6	177.0 97.0
60.1 36.5 49.8	54.2	53.4	51.6	64.2	8.7.8	54.4	62.4	63.9	34.6	68.9	97.2	87.4	67.3	6.69	53.3	66.3	56.2	54.5	88.2	101.8	47.5	39.5	65.0	38.9	47.8	59.1	80.8	49.6	39.1	78.2	58.4	88.0	76.9	37.2	9111.9	89.7	63.6	57.4	83.0	72.4	27.5	36.5	85.2	68.7	46.5	51.5
314.1 186.8 484.9	324.7	217.8	408.9	376.7	418.4	365.6	367.5	479.0	245.3	281.4	283.0	267.9	389.9	293.9	214.0	374.9	145.1	411.5	375.7	382.4	369.9	218.1	466.5	637.1	673.9	300.2	242.1	289.9	345.7	606.7	468.9	396.3 401.8	245.0	462.7	302.8	492.9	391.4	331.1	144.0	420.2	248.0	231.7	374.9	245.6	375.6	363.4
241.8 135.3 143.0	238.4	169.6	153.4	303.3	153.7	167.7	299.6	181.6	105.6	217.4	325.0	222.2	156.0	215.1	217.7	157.1	123.2	199.6	233.7	279.8	195.0	189.8	129.9	106.8	139.8	170.0	276.0	11.4	130.8	186.6	126.7	259.9 130.0	162.1	182.5	221.8	293.6	214.8	163.2	253.9	277.6	140.8	178.5	217.6	179.8	227.5	242.5
130.7 145.4 544.6	108.5	156.1 360.3	136.7	175.2	167.2	267.8	185.8 208.2	222.2	139.0	311.8	224.1	346.2	106.3	6.691	408.8	246.9	216.8	159.4	291.9	157.0	103.0	136.2	201.4	117.6	123.0	143.6	144.4	187.1	312.7	187.2	123.5	155.9	234.0	183.4	275.4	184.0	219.8	153.4	177.6	187.8	153.8	303.3	181.8	370.0	260.0	123.7
349.7 374.2 396.7	245.8 401.6	349.7	371.8	388.9	473.9	375.5	408.3	404.9	475.2	418.6	419.8	435.5	304.7	365.9	321.8	480.3	453.0	447.8	442.0	377.4	404.9	430.5	365.6	544.3	374.5	512.2	457.6	431.3	359.6	413.0	440.7	365.9	523.3	410.9	382.1	440.3	306.2 421.6	410.2	537.7	372.8	359.1	448.1	366.7	410.7	430.2	217.8
238.7 186.7 337.1	172.3	220.2	242.2	281.1	259.1	242.2	281.2	309.3	263.7	290.4	303.7	283.3	2513	249.8	2/1.4	546.0	4343	166.8	296.2	347.6	180.6	238.8	373.6	223.6	329.4	311.7	305.7	527.1	244.7	275.5	180.2	242.9	391.1	416.4	338.9	240.6	281.3	334.8	340.5	371.4	162.5	424.4	236.8	539.9	288.9	298.2
25.6 26.3 50.1	20.4	38.9	31.8	25.4	45.5	41.8	23.1	19.8	26.9	31.2	69.0	46.0	31.5	55.7	31.6	32.9	83.1	30.1	50.0	50.7	43.8	41.8	37.4	65.8	40.1 26.0	34.2	35.1	29.2	35.6	43.4	43.6	39.1	30.7	39.0	20.7	43.5	50.3 76.6	62.9	21.8	32.3	51.9	59.4	42.8 30.1	37.6	42.0	37.9
65.0 39.4 12.5	160.4 8.6	122.7	43.8	46.5	29.2	34.8	42.6	9.5	11.4	25.2	38.8	23.1	40.9	46.8	191.5	11.9	15.6	63.2	42.9	33.0	16.7	34.1	46.0	14.3	31.2	33.4	35.0	12.9	15.9	51.2	17.5	11.1	26.8	22.9	19.5	35.0	30.6	12.8	27.6	28.0	5.9	18.0	83.8	15.8	12.5	27.9
Mc3 Mc3	Mc2 Mc3	Mc2 Mc3	Mc1 Mc1	Mc3	Mes	Mel	Mc3 Mc2	Mc3	Mc2	Mc3	Mc3	Mel	Mc3	Mc1	Mel	Mc3	McI	Mc3	Mc3	Mc3	Mc3	Mc2 Mc2	Mc3	Mel	Mc3 Mc2	Mc1 Mc3	Me3	Mc3	Mc1 Mc3	Mc3	Mc1 Mc1	Me2 Me1	Mc3 Mc3	Mc3	Mc3	Me3	Mc2 Mc3	Mc1 Mc3	Mc2	Mc2 Mc3	Mel	Mc3	Mc2 Mc2	Mc3	Mel	Mc3 Mc2
MCOS-1 MCOS-2 MCOS-3	MCOS-4 MCOS-5	MCOS-6 MCOS-7	MCOS-8 MCOS-9	MCOS-10	MCOS-12	MCOS-13	MCOS-15 MCOS-16	MCOS-17	MCOS-18 MCOS-19	MCOS-20	MCOS-21 MCOS-22	MCOS-23	MCOS-24	MCOS-26	MCOS-2/ MCOS-28	MCOS-29	MCOS-30 MCOS-31	MCOS-32	MCOS-33	MCOS-35	MCOS-37	MCOS-38 MCOS-39	MCOS-40	MCOS-42	MCOS-43 MCOS-44	MCOS-45	MCOS-47	MCOS-49	MCOS-50	MCOS-52	MCOS-53 MCOS-54	MCOS-55 MCOS-56	MCOS-57 MCOS-58	MCOS-59	MCOS-61	MCOS-63	MCOS-64 MCOS-65	MCOS-66	MCOS-69	MCOS-70	MCOS-71	MCOS-72	MCOS-74 MCOS-75	MCOS-76	MCOS-78	MCOS-79 MCOS-80

MALE AND ADDRESS OF STREET AND ADDRESS OF STREET	50 10 20 50 50 50 50 50 50 50 50 50 50 50 50 50
2	1219 1319 1319 1319 1319 1319 1319 1319
204 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19.7 215.7 215.7 215.7 225.8 226.0 226.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 237.0 236.0 2
2	6 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1984 1984	573.2 109.4 107.4 157.6 157.6 157.6 157.6 157.6 157.7 109.3
Part of the control o	838 739 739 740 750 750 750 750 750 750 750 75
80 17 17 17 17 17 17 17 17 17 17 17 17 17	137 5 1197 6 1197 6 1197 1 1197 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9.00	75.6 2213.9 2213.9 194.7 194.7 191.7 191.3 191.3 191.3 191.3 191.3 191.3 191.3 191.3 191.3 191.3 191.3
Hamman Market Ma	931 4 4 50 50 50 50 50 50 50 50 50 50 50 50 50
10 10 10 10 10 10 10 10	154.2 164.6 164.6 110.1 110.1 110.1 127.7 127.7 127.7 127.8 131.5 131.5 131.5 144.9 144.9 144.9 164.0
No. 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77.5 77.5 77.5 77.5 77.5 77.5 77.5 77.5
186 188	2818 2818 2825 2846 3392 3392 3392 3392 3392 3392 3392 339
288 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1173 3 2000 0 1073 2 2000 0 1074 2 2000 0 1074 2 2000 0 20
100 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	243.0 192.5 192.5 191.1 191.1 191.3
45.0 mg	3400 489.7 489.7 531.8 350.9 310.0 30.0 3
250 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2265 2265 2761 2761 2761 2762 2763 2763 2764 2765 2764 2765 2766 2766 2766 2766 2766 2766 2766
14 4 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	23.25 24.25 25.25 25.25 26.25
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	218.7 211.1 211.1 202.8 203.8
MAN	
MCOS-13 MCO	MCOS-145 MCOS-146 MCOS-146 MCOS-146 MCOS-146 MCOS-146 MCOS-156 MCOS-157 MCO

П																																																	
anine	2.0	4	01.4	6.6	4.7	==	8.0	33.9	7.4	8.1	9.1	1.9	3.1	70.4	43.5	9.2	0.9	× 1	2.1	01.4	3.4	3.0	4.7	1.6	6.4	8.6	1.0	2.00	4.2	0.0	1.6	6.8	3.2	7.2	8.0	0.3	4.2	0.0	0.9	0.1	e.3	9.8	6.7	8.8	0.0	9.3	0.0	47.5	44.4
7																																																	
Acetate	33.5	22.3	35.0	63.3	25.3	38.9	26.4	30.9	48.0	102.8	38.0	30.3	30.4	47.9	54.8	36.9	34.2	44.3	28.4	48.7	26.9	48.4	30.2	44.0	53.9	9.19	40.1	26.1	54.8	33.5	34.7	24.5	73.0	37.2	43.1	65.5	35.4	25.4	43.1	38.0	44.9	29.2	29.6	64.1	57.5	57.2	37.7	34.5	37.6
Glutamate	294.8	378.1	226.9	357.9	299.0	350.8	219.6	281.3	252.5	212.9	361.4	259.1	205.6	232.6	2883	328.8	223.7	288.0	191.4	265.7	259.5	291.6	167.7	259.0	238.7	255.2	346.1	236.6	284.5	224.1	401.1	466.6	369.8	194.5	208.7	234.5	270.4	314.1	323.9	241.7	248.9	316.6	227.7	201.3	248.5	340.8	233.8	325.8	280.9
Succinate	52.0	47.1	62.9	40.6	1.00	43.5	51.0	S 82	72.3	4.4	6.0	64.8	64.3	62.0	- 89	45.3	62.5	69.4	6.7	89.8	33.3	70.3	73.2	37.6	64.6	88.5	54.4	67.7	50.9	84.6	49.9	6.50	65.0	43.9	59.8	45.4	8.8	45.3	54.0	56.2	25 0. 4 0. 4	42.5	81.1	51.4	1.1/	102.8	4.4	28.0 46.9	54.0
Glutamine	125.6	108.3	219.8	88.6	192.6	91.7	103.4	125.5	174.0	144.5	162.2	237.7	218.9	143.1	80.4	114.6	94.0	138.0	107.6	167.3	94.6	200.6	131.3	138.4	122.2	150.0	129.9	160.3	116.3	204.9	110.2	113.8	128.5	101.0	163.5	88.7	160.1	27.8	92.6	138.3	172.6	95.1	157.9	139.4	185.8	197.3	143.2	152.0	127.1
Gutathione	63.6	78.2	0.99	46.2	57.9	63.0	50.7	57.6	50.1	34.0	41.1	74.5	78.0	50.4	25.2	27.6	50.1	49.1	23.7	57.8	47.3	8.04	51.3	8778	76.9	13.8	58.1	48.5	46.8	57.2	67.0	81.0	39.3	51.7	53.5	55.8	61.8	50.5	61.7	32.5	62.1	9009	62.5	52.2	22.9	28.0	35.1	50.2	62.7
Creatine	93.8	64.0	144.0	53.6	264.3	132.8	103.3	1001	102.7	47.1	168.0	121.9	9.66	115.0	101.4	83.5	162.4	95.5	290.5	113.7	104.0	82.8	125.8	9.8.4	64.6	107.3	82.3	104.5	67.7	214.3	87.1	143.5	7.67	100.4	65.2	84.1	207.0	88.6	129.0	93.7	150.3	90.3	65.2	58.0	205.8	131.4	173.8	85.1	139.4
R Choline	108.7	154.6	103.1	125.5	98.4	184.6	127.4	170.5	127.6	63.6	129.4	9.601	95.2	184.1	2587	171.6	111.5	145.1	112.2	70.1	165.2	184.4	131.6	106.7	137.9	107.1	148.7	51.4	136.7	157.8	152.8	107.9	112.7	124.7	104.3	119.1	129.2	153.2	154.5	8.66	8.911	108.8	124.4	78.6	129.3	199.7	153.3	141.3	140.0
bec belir Phosphech of it	288.6	362.7	171.6	165.1	242.7	254.6	434.1	331.6	232.9	107.4	107.6	315.2	304.5	376.7	235.2	255.9	510.9	283.7	200.7	231.4	396.6	9.809	389.9	453.8	239.0	311.5	256.1	511.5	160.1	315.3	343.2	360.6	174.0	315.8	173.0	257.5	216.0	8.18	399.9	387.5	295.0	595.6	378.2	86.2	281.4	316.7	472.4	735.4	323.3
Give repless	84.4 128.4	172.7	81.7	82.1	1410	127.0	250.7	271.8	63.3	55.5	68.6	79.7	167.5	265.3	127.1	103.9	220.0	107.4	1512	131.0	178.2	179.4	191.5	243.1	146.4	129.3	156.6	237.5	91.1	146.9	166.1	102.9	105.9	143.5	90.2	5.86	01110	206.4	231.5	136.1	102.7	133.1	141.9	63.5	164,4	173.6	342.3	172.4	208.5
Scribinositol	30.5	8 44 8	65.8	42.9	47.5	52.7	49.8	27.3	50.6	60.3	9.09	53.0	34.3	51.9	30.0	74.8	9.79	73.8	22.6	76.9	52.2	32.3	45.1	27.5	64.9	52.1	59.1	65.6	25.0	37.1	53.9	67.5	42.4	1001.3	66.0	711.7	78.1	5.85	48.3	1133.8	83.1	0.09	323.4	53.6	67.1	57.9	62.2	67.8	37.4
Taurine	284 9	347.8	379.7	354.3	512.8	524.1	403.7	286.6	209.8	350.6	210.7	347.2	224.5	294.4	350.0	397.7	512.0	270.3	500.5	231.4	469.9	275.9	381.9	238.1	327.5	377.5	338.0	246.9	277.9	311.2	325.1	214.7	259.3	272.1	278.5	423.7	378.7	185.4	292.1	240.0	274.0	187.5	263.6	244.2	345.7	282.5	369.9	290.2	417.9
Myoinositol	1868	190.4	232.3	202.9	137.3	208.7	310.5	320.0	175.7	223.7	133.8	308.2	139.2	274.5	171.4	259.2	140.0	350.2	185.7	184.8	225.2	150.5	129.1	120.1	151.9	9.991	257.8	103.2	212.7	178.9	191.5	225.3	197.0	243.9	215.8	211.7	248.9	290.4	147.4	152.3	211.6	157.1	255.1	191.3	100.6	207.7	138.2	277.2	149.0
Glycine	190 5	240.6	148.6	127.2	369.4 198.0	141.0	163.5	235.8	209.0	93.5	230.7	258.1	167.8	73.8.0	210.9	187.8	95.1	141.3	152.7	217.0	168.8	190.8	5.76	144.7	124.4	252.1	152.0	156.3	150.1	198.5	156.2	206.1	118.8	121.2	120.1	92.5	142.9	141.8	185.8	128.3	171.4	158.1	246.2	106.0	182.2	212.1	139.5	260.5	279.9
L-Tyrosine	429.7	527.6	362.9	368.6	367.9	408.7	490.0	455.4	481.4	172.3	268.3	435.3	496.8	385.7	448.0	370.7	388.8	375.0	363.1	344.8	383.3	366.4	335.0	320.0	431.4	317.6	372.2	349.1	324.1	352.9	349.1	388.4	354.4	280.1	268.5	306.7	387.4	3762	418.1	283.2	331.9	327.6	313.8	267.2	466.7	423.4	406.5	516.4	421.6
Lactric	344.4	303.0	314.0	204.8	2452	272.3	237.8	389.6	260.7	158.6	446.9	225.4	231.9	213.4	3015	250.4	249.3	138.1	245.1	342.9	395.8	172.8	177.4	1,604	213.4	351.9	215.6	203.7	247.7	273.6	240.7	288.6	295.3	175.1	158.5	208.2	242.1	253.6	337.8	235.7	282.6	245.9	286.7	195.6	7585.7	2993	246.8	303.2	285.7
e Ascorbate	22.0	41.5	25.4	35.3	36.6	47.4	24.1	37.8	27.9	14.1	27.6	36.4	33.9	32.6	23.3	31.8	47.3	48.2	36.0	31.0	29.2	25.3	29.9	32.3	29.0	22.7	22.3	45.8	19.9	33.4	22.5	20.2	21.8	18.1	22.6	21.6	27.5	29.2	24.6	19.3	21.6	17.9	20.2	33.2	34.0	30.5	34.7	36.7	35.4
kr Beta-D-glwos	19.0	26.4	64.6	54.6	19.5	30.6	27.4	87.6	55.2	200.5	25.0	26.7	35.2	37.0	17.1	55.5	34.3	64.4	18.9	58.0	14.0	7.1	75.0	32.8	48.1	24.9	20.5	51.9	70.5	11.7	23.0	14.1	21.9	14.4	96.0	60.7	42.1	13.3	17.5	31.1	18.9	16.5	31.1	124.9	37.0	23.7	31.2	37.0	29.0
Metabolic clus	Mc2 Mc3	Mc3	Mc2	Mc2	Mc3	Mc2	Mc3	Mc3	Mc2	Mc2	Mc3	Me3	Mc2	Mc3	Mea	Mc2	Mc3	Mc2	Mel	Mc3	Mc3	Mcl	Mel	Mc2	Mc2	Mc3	Mc2	Mel	Mc2	Mc3	Mc3	Mc3	Mc2	Mc2	Mc2	Mc2	Mc2	Mc	Mc3	Mc2	Mc3	Mel	Mc3	Mc2	Mel	Mc3	McI	Me1 Me3	Mc3
Sample number	MCOS-166 MCOS-167	MCOS-168	MCOS-169	MCOS-170	MCOS-171	MCOS-173	MCOS-174	MCOS-176	MCOS-177	MCOS-178	MCOS-179	MCOS-181	MCOS-182	MCOS-183	MCOS-184	MCOS-186	MCOS-187	MCOS-188	MCOS-189	MCOS-191	MCOS-192	MCOS-193	MCOS-194	MCOS-195	MCOS-197	MCOS-198	MCOS-199	MCOS-200	MCOS-202	MCOS-203	MCOS-204	MCOS-205	MCOS-207	MCOS-208	MCOS-209	MCOS-211	MCOS-212	MCOS-213	MCOS-215	MCOS-216	MCOS-217	MCOS-219	MCOS-220	MCOS-221	MCOS-222	MCOS-224	MCOS-225	MCOS-226 MCOS-227	MCOS-228

Add Table Property Add Table Property Add Table Property Add A										
Column						contrast 1	contrast 2	contrast 3	adjusted P value (%)	Direction
Tender			0.8							
SAME 1555										
COLD										
GRING 761										
MARCA 1944										
CLEAN 2889 0.277										Up
DPPSIAL SISO										
Care 70.5										
Collaborary										
SELC 2008										
Fig. 1999	TSHZ3	20086	0.715	0.118	0.165	-3.019	0.472	1.406	0	
Member 1776 0.705										
CYBRID C										
PASS 1235 67										
ACTACA 300 0.999										
SBECK 18-77 90-98										
GPT2										
CNSI 3901 0.961 0.14 0.364 -3.26 1.308 1.016 0 10										
TETE 9112										
NOBELIE 92-94 0.864										
FAP										
LMODI 9799 0.68										
Filial 1685 1697										
LOXIZ 1163										
COLARI 3933 0.675										Up
SIGNAID 17025										
DACT3										
GSS 7558 0673 0.104 0.155 0.298 1.934 0.704 0 Up SNDT 1.1646 0.677 0.129 0.129 0.129 0.294 0.244 0.754 0.754 0.170 SNTT 3.1646 0.677 0.129 0.129 0.129 0.294 0.244 0.754 0.754 0.120 SNTT 3.1636 0.656 0.142 0.129 0.298 0.298 1.131 0.071 0.701 0.159 SNTT 3.1636 0.666 0.162 0.132 0.288 0.281 1.291 0.721 0.071 0.071 ISM1 8060 0.666 0.162 0.132 0.288 0.281 1.291 0.721 0.071 0.071 ISM1 8060 0.666 0.162 0.132 0.288 0.276 0.134 1.291 0.071 0.071 0.071 ISM1 8060 0.666 0.162 0.132 0.288 0.288 1.298 0.0831 0.071 0.072 ISM1 8060 0.666 0.132 0.132 0.174 0.279 0.082 1.134 0.081										
MIDI 1346	GSN	7558	0.673	0.104	0.155	-2.808	1.934	0.704	0	Up
Salit3 18036 0.666 0.012 0.13 -2.31 1.721 0.017 0.15										Up
PDLIM4										
SSAIL \$996										
FSTIL 6776										
MIRORIGIC 12463	FSTL1	6776	0.662	0.143	0.217		0.862	1.127	0	
PDGFRR 14755										
MRNI 12739										
DIX 11680										
FURS 15203										
SPARC 18562 0.652 0.652 0.155 0.258 2.665 0.3 1.288 0 Up	PLK3	15203				-2.877	1.408	0.952		
CS-986 2599										
PODN 15296										
SKAP2 17648 0.648 0.095 0.147 2.714 1.876 0.677 0 Up RARBES2 16240 0.646 0.152 0.236 2.698 1.339 0.886 0 Up GLTB02 7182 0.646 0.079 0.123 2.2809 0.442 1.307 0 Up SHOXZ 17862 0.644 0.0028 0.148 2.2807 0.914 1.109 0 Up BERDINI 1 5250 0.644 0.028 0.148 2.2807 0.914 1.109 0 Up BERDINI 1 5250 0.644 0.028 0.148 0.152 2.279 0.091 1.109 0 Up MGC34108 1.2397 0.644 0.088 0.152 2.279 0.091 1.109 0 Up GERI 5396 0.64 0.177 0.276 2.2557 1.817 0.618 0 Up ANNAI 754 0.639 0.129 0.203 2.2627 1.175 0.688 0 Up ANNAI 754 0.639 0.129 0.203 2.2627 1.175 0.688 0 Up MXRAS 12901 0.057 0.092 0.148 2.279 0.878 1.122 0 Up DKXX 12901 0.057 0.092 0.148 2.279 0.878 1.123 0 Up DKXX 1491 0.058 0.019 0.159 0.158 0.159 0.158 0.159 0.158 0.159 0.159 0.158 0.159 0.1										
GILTSD2 7182 0.646 0.079 0.123 2.2809 0.442 1.307 0 Up EMILIN1 5:20 0.644 0.092 0.143 2.2807 0.931 1.109 0 Up EMILIN1 5:20 0.644 0.088 0.168 2.719 0.45 1.256 0 Up PODNLI 1.2997 0.644 0.088 0.152 2.79 0.45 1.256 0 Up MCCA103 12397 0.641 0.142 0.22 2.265 0.376 1.252 0 Up MCCA103 12397 0.641 0.142 0.22 2.265 0.376 1.252 0 Up MCCA103 12397 0.641 0.142 0.22 2.265 0.376 1.252 0 Up MCCA103 1.2917 0.641 0.142 0.22 2.265 0.376 1.252 0 Up MCCA103 1.2917 0.641 0.142 0.22 2.265 0.376 1.252 0 Up MCCA103 1.291 0.641 0.152 0.265 0.265 0.376 1.252 0 Up MCCA103 1.291 0.648 0.152 0.265 0.152 0.265 0.265 0.376 1.252 0 Up MCCA103 1.291 0.655 0.129 0.265 0.155 0.276 1.188 0.072 0 Up BCKS 492 0.636 0.1 0.158 2.2766 1.188 0.072 0 Up BCKS 492 0.636 0.1 0.158 2.2766 1.188 0.072 0 Up PDLIMT 1.4717 0.635 0.092 0.145 2.2763 1.15 0.0979 0 Up PDLIMT 1.4717 0.635 0.092 0.145 2.2763 1.15 0.0979 0 Up PDLIMT 1.4717 0.635 0.092 0.145 2.2763 1.15 0.0979 0 Up PDLIMT 1.4717 0.635 0.092 0.145 2.2763 1.15 0.0979 0 Up PDLIMT 1.4710 0.635 0.092 0.145 2.2763 1.15 0.0979 0 Up PDLIMT 1.4710 0.635 0.054 0.0099 0.14 2.2705 0.352 1.288 0 Up PDLIMT 1.4700 0.650 0.639 0.099 0.14 2.2763 1.15 0.097 0 Up PCKCUBP 1.5652 0.634 0.009 0.157 2.2761 0.352 1.288 0 Up PCKCUBP 1.5652 0.634 0.009 0.115 0.102 0.203 2.262 1.288 0 Up PCKCUBP 1.5652 0.628 0.107 0.171 2.2675 0.629 1.161 0.0 Up PCBLIA 2.2765 0.629 0.099 0.187 2.2711 0.82 1.02 0 Up PCBLIA 2.2765 0.629 0.099 0.187 2.2711 0.82 1.02 0 Up PCBLIA 2.2765 0.629 0.099 0.187 2.2711 0.82 1.02 0 Up PCBLIA 2.2765 0.629 0.0099 0.187 2.2711 0.82 1.02 0 Up PCBLIA 2.2765 0.629 0.0099 0.184 2.2676 0.379 1.166 0 Up PCBLIA 2.2765 0.629 0.0099 0.187 2.2711 0.82 1.02 0 Up PCBLIA 2.2765 0.629 0.0099 0.187 2.2711 0.82 1.02 0 Up PCBLIA 2.2767 0.0091 0.151 0.151 0.2719 0.075 1.164 0 Up PCBLIA 2.2767 0.0091 0.151 0.2719 0.075 1.164 0 Up PCBLIA 2.2767 0.0091 0.151 0.2719 0.075 1.164 0 Up PCBLIA 2.2767 0.0091 0.151 0.2719 0.075 1.164 0 Up PCBLIA 2.2767 0.0091 0.151 0.251 0.251 0.251 0.251 0.151 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.00										
SIROX2										
EMILIN 5520										
PODINL 15297										
EGR 5396										
MNXAI										
IMBA2200A										
MNRAS 1290 0.637 0.092 0.145 -2.737 0.52 1.237 0 Up DKK3 4932 0.636 0.1 0.158 -2.746 1.188 0.972 0 Up SERPINFI 17400 0.635 0.129 0.203 -2.692 1.101 0.979 0 Up Up CPR 14777 0.635 0.092 0.145 -2.763 1.15 0.997 0 Up Up CPR 14777 0.635 0.092 0.145 -2.763 1.15 0.997 0 Up Up CPR 14777 0.635 0.634 0.089 0.14 -2.705 0.352 1.288 0 Up DKR 14778 0.635 0.634 0.089 0.14 -2.705 0.352 1.288 0 Up CRN 1.399 0.63 0.102 0.162 -2.595 0.076 1.342 0 Up CNN 3900 0.629 0.185 0.295 -2.424 2.015 0.468 0 Up LTR 1.208 0.629 0.099 0.157 -2.711 0.82 1.102 0 Up LTR 1.208 0.628 0.107 0.171 -2.675 0.629 1.161 0 Up LTR 1.208 0.628 0.119 0.189 -2.43 -3.512 1.427 0 Up LTR 1.208 0.628 0.115 0.184 -2.676 0.879 1.06 0 Up LTR 1.588 0.627 0.094 0.151 0.184 -2.676 0.879 1.06 0 Up LTR 1.588 0.627 0.094 0.151 0.184 -2.676 0.879 1.06 0 Up LTR 1.588 0.627 0.094 0.151 0.184 -2.676 0.879 1.06 0 Up LTR 1.588 0.627 0.094 0.151 0.177 -2.63 1.566 0.759 0 Up Up 0.189 0.243 0.125 0.004 0.151 0.184 0.151 0.2719 0.975 0.104 0 Up 0.189 0.2514 0.151 0.2719 0.975 0.044 0.151 0.151 0.2719 0.975 0.044 0.151 0.151 0.2719 0.975 0.044 0.151 0.177 0.263 0.166 0.159 0.004 0.151 0.177 0.263 0.176 0.179 0.17										
SERPINE] 17400 0.635 0.129 0.203 2.692 1.110 0.979 0 Up										
PDIMAT		4932		0.1				0.972	0	
GPR124 7367 0.635 0.104 0.163 -2.2735 0.947 1.064 0 Up RNFIHAA 16633 0.634 0.089 0.14 -2.2705 0.352 1.288 0 Up CNISA1 3991 0.63 0.102 0.162 -2.2995 0.076 1.342 0 Up CNISA1 3990 0.629 0.185 0.295 -2.2424 2.015 0.468 0 Up CNISA1 3990 0.629 0.185 0.295 -2.2424 2.015 0.468 0 Up CNISA1 3990 0.629 0.185 0.295 -2.2424 2.015 0.468 0 Up ZEB1 21166 0.628 0.107 0.171 -2.675 0.629 1.161 0 Up JEB1 21166 0.628 0.107 0.171 -2.675 0.629 1.161 0 Up HTRA3 8272 0.628 0.119 0.189 -2.43 -0.352 1.1427 0 Up IGFBP3 8405 0.628 0.115 0.184 -2.676 0.879 1.06 0 Up POSIN 1.538 0.627 0.094 0.115 0.184 -2.676 0.879 1.06 0 Up TIPRIP 8761 0.627 0.094 0.151 -2.719 0.975 1.044 0 Up NDN 1.3282 0.626 0.111 0.177 -2.63 1.566 0.759 0 Up NOX 1.3603 0.624 0.125 0.201 -2.618 1.423 0.81 0 Up NOX 1.3603 0.624 0.093 0.149 -2.214 -0.195 1.408 0 Up COLLA2 3973 0.623 0.116 0.273 0.273 -2.2512 0.025 1.233 0 Up COLLA2 3973 0.623 0.17 0.273 -2.251 0.458 0 Up COLLA2 3973 0.623 0.17 0.273 -2.251 0.195 1.408 0 Up COLLA2 3973 0.623 0.17 0.273 -2.251 0.195 1.408 0 Up COLLA2 3973 0.623 0.17 0.273 -2.251 0.195 1.408 0 Up COLLA2 3972 0.623 0.116 0.251 -2.577 0.524 1.151 0 Up COLSA2 3992 0.621 0.167 0.269 -2.453 0.604 1.177 0.099 0.09										
RNFI44A										
PRECIBIP 15652										
COLÍSAI 3991 0.63 0.102 0.162 2.295 0.076 1.342 0 Up CNN 3990 0.629 0.185 0.295 2.424 2.015 0.468 0 Up VIM 20673 0.629 0.099 0.157 2.711 0.82 1.102 0 Up JEBI 21166 0.628 0.107 0.171 2.675 0.629 1.161 0 Up HTRA3 8272 0.628 0.119 0.189 2.243 4.352 1.427 0 Up GGFBP3 8405 0.628 0.115 0.184 2.2676 0.879 1.06 0 Up POSTN 15383 0.627 0.179 0.285 2.2532 0.246 1.239 0 Up ITPRUP 8761 0.627 0.094 0.151 2.2719 0.975 1.044 0 Up NDN 13282 0.626 0.111 0.177 2.63 1.566 0.759 0 Up MYL9 12956 0.624 0.125 0.201 2.2618 1.423 0.81 0 Up KOX4 13603 0.624 0.093 0.149 2.2514 4.0195 1.408 0 Up HTRAI 8270 0.623 0.176 0.273 2.252 0.251 1.833 0 Up HTRAI 8270 0.623 0.176 0.273 2.252 0.251 1.333 0 Up HTRAI 8270 0.623 0.156 0.251 2.2577 0.524 1.151 0 Up SCGS 17165 0.623 0.116 0.177 2.263 0.597 1.157 0 Up SCGS 17165 0.623 0.116 0.177 2.2643 0.597 1.157 0 Up LTBPE 11867 0.621 0.093 0.115 0.177 2.2643 0.597 1.157 0 Up SCGS 17165 0.623 0.156 0.251 2.257 0.524 1.151 0 Up LTBPE 11867 0.621 0.093 0.15 2.267 0.094 2.268 0.099 0	PRKCDBP									
VIM 20673 0.629 0.099 0.157 2-2711 0.82 1.102 0 Up ZEBI 21166 0.628 0.107 0.171 - 2.675 0.629 1.161 0 Up HTRA3 8272 0.628 0.119 0.189 - 2.43 - 0.352 1.427 0 Up IGFBP3 8405 0.628 0.115 0.184 - 2.676 0.879 1.06 0 Up POSITN 15383 0.627 0.179 0.285 - 2.532 0.246 1.239 0 Up HTRIP 8761 0.627 0.094 0.151 - 2.719 0.975 1.044 0 Up NDN 13282 0.626 0.111 0.177 - 2.63 1.566 0.759 0 Up MY1.9 12956 0.624 0.125 0.201 - 2.618 1.423 0.81 0 Up NOX4 13603 0.624 0.093 0.149 - 2.514 - 0.195 1.408 0 Up COLIA2 3973 0.623 0.17 0.273 - 2.522 0.25 1.233 0 Up HTRA1 8.8270 0.623 0.1156 0.251 1.257 0.524 1.151 0 Up SCG5 17165 0.623 0.11 0.177 - 2.63 0.997 1.157 0 Up PALLD 14490 0.623 0.078 0.126 - 2.732 0.661 1.178 0 Up COLIA2 3992 0.621 0.167 0.269 - 2.453 - 0.004 1.307 0 Up LTBP2 11867 0.621 0.093 0.15 - 2.691 1.199 0.999 0 Up DSE 5180 0.62 0.088 0.142 - 2.664 1.199 0.999 0 Up DSE 5180 0.62 0.088 0.142 - 2.666 0.486 1.213 0 Up EVERTIFIED 1.1867 0.621 0.099 0.15 - 2.691 1.199 0.999 0 Up TURBE 2.277 0.618 0.071 0.115 - 2.691 1.199 0.999 0 Up EVERTIFIED 1.1867 0.621 0.099 0.15 - 2.691 1.199 0.999 0 Up EVERTIFIED 1.1867 0.621 0.099 0.15 - 2.691 1.199 0.999 0 Up EVERTIFIED 1.1867 0.621 0.099 0.15 - 2.691 1.199 0.999 0 Up EVERTIFIED 1.1867 0.621 0.099 0.15 - 2.691 1.199 0.999 0 Up EVERTIFIED 1.1967 0.621 0.099 0.15 - 2.691 1.199 0.999 0 Up EVERTIFIED 1.1967 0.621 0.099 0.15 - 2.691 1.199 0.999 0 Up EVERTIFIED 1.1967 0.621 0.099 0.15 0.15 - 2.691 1.199 0.999 0 Up EVERTIFIED 1.1967 0.621 0.099 0.15 0.15 0.12 0.099										Up
ZEB 2166 0.628 0.107 0.171 -2.675 0.629 1.161 0 Up										
HTRA1 S272 0.628 0.119 0.189 2.43 -0.352 1.427 0 Up										
Georgia Geor										
POSIN 15383 0.627 0.179 0.285 -2.532 0.246 1.239 0 Up	IGFBP3			0.115	0.184					Up
NDN 13282 0.626 0.111 0.177 2.263 1.566 0.759 0 Up NOY19 12956 0.624 0.125 0.201 2.2618 1.423 0.81 0 Up NOX4 13603 0.624 0.093 0.149 2.514 -0.195 1.408 0 Up COLLA2 3973 0.623 0.17 0.273 2.252 0.25 1.233 0 Up HTRA1 8270 0.623 0.156 0.251 -2.577 0.524 1.151 0 Up SCG5 17165 0.623 0.11 0.177 2.263 0.597 1.157 0 Up PALLD 14490 0.623 0.078 0.126 2.273 0.661 1.178 0 Up COLSA2 3992 0.621 0.167 0.269 2.2453 -0.024 1.307 0 Up LTBP2 11867 0.621 0.093 0.15 2.2691 1.199 0.939 0 Up DSE 5180 0.62 0.088 0.142 2.2657 0.425 1.234 0 Up DZIPIL 5277 0.618 0.071 0.115 2.268 1.629 0.764 0 Up FEZI 6326 0.618 0.075 0.121 2.2688 1.629 0.764 0 Up TUBB6 20251 0.615 0.122 0.198 2.261 0.199 0.986 0 Up TUBB6 20251 0.615 0.122 0.198 2.261 0.998 0.131 2.2665 0.486 1.213 0 Up SERPINGI 17402 0.611 0.08 0.131 2.2669 0.822 1.074 0 Up SERPINGI 17410 0.611 0.08 0.131 2.2669 0.832 1.1074 0 Up SERPINGI 17410 0.611 0.08 0.131 2.2699 0.822 1.074 0 Up SERPINGI 17410 0.611 0.08 0.131 2.2699 0.822 1.074 0 Up SERPINGI 17410 0.611 0.08 0.131 2.2699 0.822 1.074 0 Up SERPINGI 17410 0.611 0.08 0.131 2.2699 0.822 1.074 0 Up SERPINGI 17410 0.611 0.08 0.131 2.2699 0.822 1.074 0 Up THYI 19311 0.61 0.121 0.198 2.277 0.081 1.277 0 Up TNSI 19782 0.609 0.077 0.127 0.209 2.3555 1.338 0.811 0 Up TNSI 19782 0.609 0.074 0.122 2.258 1.263 0.919 0.910 Up TNSI 19782 0.609 0.074 0.122 2.259 1.263 0.912 0 Up TNSI 19782 0.609 0.074 0.122 2.259 1.263 0.912 0 Up TNSI 19782 0.609 0.074 0.122 2.259 1.263 0.912 0 Up TNSI 19782 0.609 0.074 0.122 2.259 1.263 0.912 0 Up TNSI 19782 0.609 0.074 0.122 2.259 1.263 0.912 0 Up TNSI 19782 0.609 0.074 0.122 2.259 1.263 0.912 0 Up TNSI 19782 0.609 0.074 0.122 0.254 1.2554 1.265 0.84 0 Up TNSI 19782 0.609 0.074 0.122 0.259 1.258 0.849 0.995 0 Up GASI 6.642 0.608 0.154 0.254 0.254 1.259 0.434 0.995 0 Up GASI 6.642 0.608 0.154 0.254 0.254 1.259 0.434 0.995 0 Up										Up
MYL9										
NOXA 13603 0.624 0.093 0.149 2.514 -0.195 1.408 0 Up COLIAZ 3973 0.623 0.17 0.273 2.552 0.25 1.233 0 Up HTRAI 8270 0.623 0.156 0.251 -2.577 0.524 1.151 0 Up SCG5 17165 0.623 0.11 0.177 -2.43 0.597 1.157 0 Up PALLD 14490 0.623 0.078 0.126 -2.732 0.661 1.178 0 Up COLSA2 3992 0.621 0.167 0.269 -2.453 -0.024 1.307 0 Up LTBP2 11867 0.621 0.093 0.15 -2.691 1.199 0.939 0 Up DSE 5180 0.62 0.088 0.142 -2.657 0.425 1.234 0 Up DZIPIL 5277 0.618 0.071 0.115 -2.708 0.406 1.268 0 Up FEZI 6326 0.618 0.075 0.121 -2.688 1.629 0.764 0 Up FEZI 6326 0.616 0.082 0.133 -2.665 0.486 1.213 0 Up TUBB6 20251 0.615 0.122 0.198 -2.613 0.979 0.986 0 Up TRRCI 20038 0.613 0.09 0.147 -2.659 0.822 1.074 0 Up SERPINGI 17402 0.611 0.08 0.131 -2.669 0.822 1.074 0 Up CHADL 3389 0.609 0.127 0.209 2.555 1.088 0.933 0 Up THYI 19311 0.61 0.121 0.198 -2.477 0.081 1.277 0 Up FOXOI 6712 0.609 0.077 0.127 -2.478 1.622 0.709 0 Up TNSI 19782 0.609 0.077 0.127 -2.478 1.622 0.709 0 Up TNSI 19782 0.609 0.074 0.122 -2.595 1.088 0.933 0 Up TNSI 19782 0.609 0.074 0.122 -2.578 1.622 0.709 0 Up TNSI 19782 0.609 0.074 0.122 -2.578 1.622 0.709 0 Up TNSI 19782 0.609 0.074 0.122 -2.578 1.625 0.84 0 Up DACTI 4553 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up TNSI 19782 0.609 0.074 0.122 -2.578 1.625 0.84 0 Up TNSI 6942 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up DACTI 4553 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up TNSI 6942 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up TNSI 6942 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up										
COLIA2 3973 0.623 0.17 0.273 2.2522 0.25 1.233 0 Up	NOX4									
SCGS	COL1A2	3973	0.623	0.17	0.273	-2.522	0.25	1.233	0	Up
PALID										
COLSA2 3992 0.621 0.167 0.269 2.2453 -0.024 1.307 0 Up LTBP2 11867 0.621 0.093 0.15 -2.691 1.199 0.939 0 Up DSE 5180 0.62 0.088 0.142 -2.657 0.425 1.234 0 Up DZIPIL 5277 0.618 0.071 0.115 -2.708 0.406 1.268 0 Up FEZI 6326 0.618 0.075 0.121 -2.688 1.629 0.764 0 Up ARRIGAP28 926 0.616 0.082 0.133 -2.665 0.486 1.213 0 Up TUBB6 20251 0.615 0.122 0.198 -2.613 0.979 0.986 0 Up TRPC1 2038 0.613 0.09 0.147 -2.669 0.822 1.074 0 Up SERPING1 17402 0.611 0.08 0.131 -2.669 0.822 1.074 0 Up CLS 2133 0.611 0.118 0.193 -2.595 1.088 0.933 0 Up THY1 19311 0.61 0.121 0.198 -2.477 0.081 1.277 0 Up CHADL 3589 0.669 0.127 0.209 2.555 1.338 -0.811 0 Up RHOJ 16542 0.609 0.072 0.152 -2.578 1.622 0.0709 0 Up FOXOI 6712 0.669 0.077 0.127 -2.47 2.137 0.443 0 Up TNS1 19782 0.609 0.077 0.127 -2.47 2.137 0.443 0 Up TNS1 19782 0.609 0.074 0.122 -2.69 1.263 0.912 0 Up GAS1 6942 0.608 0.13 0.216 0.208 -2.555 0.44 0.099 0.092 GAS1 6942 0.608 0.154 0.225 -2.578 1.622 0.709 0 Up GAS1 6942 0.608 0.154 0.225 -2.578 1.625 0.84 0 Up AEBPI 364 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up DCN 4634 0.606 0.157 0.266 -2.253 0.849 0.995 0 Up TNFAIPB 19715 0.606 0.157 0.26 -2.253 0.849 0.995 0 Up TNFAIPB 6915 6883 0.605 0.099 0.163 0.214 0.2484 0.225 1.219 0 Up GAD1 1.288 0.259 1.228 0.873 0 Up										
LTBP2										
DSE 5180 0.62 0.088 0.142 -2.667 0.425 1.234 0 Up	LTBP2	11867	0.621	0.093	0.15	-2.691	1.199	0.939	0	
FEZI										Up
ARIGAP28 926 0.616 0.082 0.133 -2.2665 0.486 1.213 0 Up TUBB6 20251 0.615 0.122 0.198 -2.613 0.979 0.986 0 Up TRPCI 20038 0.613 0.09 0.147 -2.2659 0.822 1.074 0 Up SERPINGI 17402 0.611 0.08 0.131 -2.669 1.367 0.8559 0 Up CIS 2133 0.611 0.118 0.193 -2.595 1.088 0.933 0 Up THY1 19311 0.61 0.121 0.198 -2.477 0.081 1.277 0 Up CHADL 3589 0.669 0.127 0.269 2.555 1.338 -0.811 0 Up RHOI 16542 0.609 0.092 0.152 -2.578 1.622 0.709 0 Up FOXOI 6712 0.669 0.077 0.127 2.247 2.137 0.443 0 Up TNS1 19782 0.669 0.074 0.122 -2.59 1.263 0.912 0 Up DACTI 4553 0.608 0.126 0.208 2.2559 0.64 1.095 0 Up GASI 6942 0.608 0.13 0.215 -2.254 1.265 0.84 0 Up GASI 6942 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up AEBP1 364 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up DCN 4634 0.606 0.157 0.26 -2.53 0.849 0.995 0 Up TNFAIP6 19715 0.606 0.157 0.26 -2.53 0.849 0.995 0 Up TNFAIP6 19715 0.606 0.157 0.26 -2.53 0.849 0.995 0 Up TNFAIP6 19715 0.606 0.13 0.214 -2.484 0.225 1.219 0 Up GADD5B 6883 0.605 0.099 0.163 -2.597 1.238 0.873 0 Up										
TUBB6 20251 0.615 0.122 0.198 -2.613 0.979 0.986 0 Up TRPC1 20038 0.613 0.09 0.147 -2.659 0.822 1.074 0 Up SERPING1 17402 0.611 0.08 0.131 -2.669 1.367 0.859 0 Up CIS 2133 0.611 0.118 0.193 -2.595 1.088 0.933 0 Up THY1 19311 0.61 0.121 0.198 -2.477 0.081 1.277 0 Up CHADL 3589 0.609 0.127 0.209 2.555 -1.338 -0.811 0 Up CHADL 16542 0.609 0.092 0.152 -2.578 1.622 0.709 0 Up FOXO1 6712 0.609 0.077 0.127 -2.47 2.137 0.443 0 Up TNS1 19782 0.609 0.074 0.122 -2.69 1.263 0.912 0 Up DACT1 4553 0.608 0.126 0.208 -2.559 0.64 1.095 0 Up GAS1 6942 0.608 0.13 0.215 -2.578 0.69 1.69 0.79 GAS1 6942 0.608 0.154 0.254 1.255 0.84 0 Up AEBPI 364 0.608 0.154 0.254 1.255 0.84 0 Up DCN 4634 0.606 0.157 0.26 -2.53 0.849 0.995 0 Up TNFAIP6 19715 0.606 0.13 0.214 -2.484 0.235 1.219 0 Up TNFAIP6 19715 0.606 0.13 0.214 -2.484 0.235 1.219 0 Up TNFAIP6 19715 0.606 0.199 0.163 -2.297 1.238 0.873 0 Up										
TRPCI 2008 0.613 0.09 0.147 -2.669 0.822 1.074 0 Up										
SERPINGI 17402 0.611 0.08 0.131 -2.6669 1.367 0.889 0 Up	TRPC1	20038	0.613	0.09	0.147	-2.659	0.822	1.074	0	Up
THYI 1931I 0.61 0.121 0.198 -2.447 0.081 1.277 0 Up CHADL 3589 0.609 0.127 0.209 2.555 -1.338 -0.811 0 Up RHOJ 16542 0.609 0.092 0.152 -2.578 1.622 0.709 0 Up FOXOI 6712 0.609 0.077 0.127 -2.47 2.137 0.443 0 Up TNS1 19782 0.609 0.074 0.122 -2.69 1.263 0.912 0 Up DACT1 4553 0.608 0.126 0.208 -2.559 0.64 1.095 0 Up GASI 6942 0.608 0.13 0.215 -2.554 1.265 0.84 0 Up AEBPI 364 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up DCN 4634 0.606 0.157 0.26 -2.53 0.849 0.995 0 Up TNFAIRE 19715 0.606 0.13 0.214 -2.484 0.235 1.219 0 Up GADD45B 6883 0.605 0.099 0.163 -2.597 1.238 0.873 0 Up										Up
CHADL 3589 0.609 0.127 0.209 2.555 -1.338 -0.811 0 Up RHOI 16542 0.609 0.092 0.152 -2.555 1.622 0.709 0 Up FOXOI 6712 0.609 0.077 0.127 -2.47 2.137 0.443 0 Up TNS1 19782 0.609 0.074 0.122 -2.69 1.263 0.912 0 Up DACTI 4553 0.608 0.126 0.208 -2.559 0.64 1.095 0 Up GASI 6942 0.608 0.13 0.215 -2.554 1.265 0.84 0 Up AEBPI 364 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up DCN 4634 0.606 0.157 0.26 -2.53 0.849 0.995 0 Up TNFAIP6 19715 0.606 0.13 0.214 -2.484 0.235 1.219 0 Up TNFAIP6 19715 0.606 0.13 0.214 -2.484 0.225 1.219 0 Up GADD45B 6883 0.605 0.099 0.163 -2.597 1.238 0.873 0 Up										
RHOI 16542 0.609 0.092 0.152 2.2578 1.622 0.709 0 Up FOXOI 6712 0.609 0.077 0.127 2.47 2.137 0.443 0 Up TNSI 19782 0.609 0.074 0.122 2.69 1.263 0.912 0 Up DACTI 4553 0.608 0.126 0.208 2.2559 0.64 1.095 0 Up GASI 6942 0.608 0.13 0.215 2.254 1.265 0.84 0 Up AEBPI 364 0.608 0.154 0.254 2.250 0.431 1.149 0 Up DCN 4634 0.606 0.157 0.26 2.253 0.849 0.995 0 Up TNFAIP6 19715 0.606 0.13 0.214 2.484 0.225 1.219 0 Up GADD45B 6883 0.605 0.099 0.163 2.2597 1.238 0.873 0 Up										
FOXOI 6712 0.609 0.077 0.127 -2.47 2.137 0.443 0 Up										
TNSI 19782 0.609 0.074 0.122 2.69 1.263 0.912 0 Up DACTI 4553 0.608 0.126 0.208 2.2559 0.64 1.095 0 Up GASI 6942 0.608 0.13 0.215 2.254 1.265 0.84 0 Up AEBPI 364 0.608 0.154 0.254 2.502 0.431 1.149 0 Up DCN 4634 0.606 0.157 0.26 2.253 0.849 0.995 0 Up TNFAIP6 19715 0.606 0.13 0.214 2.484 0.225 1.219 0 Up GADD45B 6883 0.605 0.099 0.163 2.2597 1.238 0.873 0 Up	FOXO1	6712	0.609	0.077	0.127	-2.47	2.137	0.443	0	
GASI 6942 0.608 0.13 0.215 -2.554 1.265 0.84 0 Up AEBPI 364 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up DCN 4634 0.606 0.157 0.26 -2.53 0.849 0.995 0 Up TNFAIP6 19715 0.606 0.13 0.214 -2.484 0.225 1.219 0 Up GADD45B 6883 0.605 0.099 0.163 -2.597 1.238 0.873 0 Up	TNS1	19782	0.609	0.074	0.122	-2.69	1.263	0.912	0	Up
AEBPI 364 0.608 0.154 0.254 -2.502 0.431 1.149 0 Up DCN 4634 0.606 0.157 0.26 -2.53 0.849 0.995 0 Up TNFAIP6 19715 0.606 0.13 0.214 -2.484 0.235 1.219 0 Up GADD45B 6883 0.605 0.099 0.163 -2.597 1.238 0.873 0 Up										
DCN 4634 0.606 0.157 0.26 -2.53 0.849 0.995 0 Up TNFAIP6 19715 0.606 0.13 0.214 -2.484 0.235 1.219 0 Up GADD45B 6883 0.605 0.099 0.163 -2.597 1.238 0.873 0 Up										
TNFAIP6 19715 0.606 0.13 0.214 -2.484 0.235 1.219 0 Up GADD45B 6883 0.605 0.099 0.163 -2.597 1.238 0.873 0 Up										
GADD45B 6883 0.605 0.099 0.163 -2.597 1.238 0.873 0 Up	TNFAIP6			0.13		-2.484	0.235	1.219	0	
ANAT12 460 0.000 0.104 0.172 -2,430 1.928 0.509 0 Up										Up
	AKAP12	465	0.605	0.104	0.1/2	-2.435	1.928	0.509	U	Up

		e (1)		P 1				- Harted Davidson (0/)	n: .: 1
Gene ID LAMA4	Gene Name 9489	Score (d) 0.605	Numerator (r) 0.078	Denominator (s+s0) 0.129	-2.628	0.497	1.189	adjusted P value (%)	Direction Up
PRICKLEI	15627	0.604	0.137	0.226	-2.538	1.167	0.871	0	Up
MYLK	12958	0.604	0.138	0.229	-2.473	1.599	0.662	0	Up
PCSK5	14697	0.604	0.054	0.089	-2.788	0.801	1.151	0	Up
COLIAI	3972	0.604	0.165	0.273	-2.415	0.113	1.231	0	Up
TPM2 EGR2	19853 5397	0.602 0.602	0.109 0.127	0.181 0.21	-2.573 -2.449	0.928 1.711	0.986 0.604	0	Up Up
BGN	1500	0.601	0.103	0.172	-2.562	0.633	1.099	0	Up
FBN1	6202	0.601	0.108	0.179	-2.44	0.01	1.286	0	Up
BHLHE41	1507	0.6	0.133	0.222	-2.455	1.614	0.647	0	Up
CDH11	3348	0.6	0.089	0.148	-2.533	0.262	1.234	0	Up
UHMK1 INHBA	20465 8573	0.599 0.599	0.061 0.148	0.102 0.246	2.512 -2.303	-2.131 -0.261	-0.468 1.324	0	Up Up
CFH	3562	0.598	0.101	0.17	-2.565	1.098	0.913	0	Up
FIBIN	6389	0.598	0.12	0.2	-2.536	0.914	0.972	0	Up
GRASP	7484	0.597	0.094	0.157	-2.527	1.556	0.708	0	Up
KCNMB4	8924	0.597	0.122	0.205	-2.496	0.478	1.127	0	Up
ANTXR1 ISLR	750 8694	0.597 0.596	0.108 0.133	0.181 0.223	-2.537 -2.506	0.663 0.765	1.074 1.016	0	Up Up
SRPX	18546	0.596	0.123	0.206	-2.52	0.847	0.991	0	Up
MMP19	12536	0.594	0.062	0.104	-2.687	0.932	1.045	0	Up
SEMA5A	17317	0.593	0.115	0.194	-2.511	1.193	0.846	0	Up
PPIC	15449	0.593	0.098	0.166	-2.527	0.556	1.112	0	Up
C1R PRRX1	2131 15774	0.592 0.592	0.114 0.121	0.192 0.204	-2.516 -2.445	1.092 0.285	0.89 1.178	0	Up Up
ARL4C	996	0.592	0.106	0.179	-2.443	1.594	0.658	0	Up
RPRD2	16856	0.591	0.05	0.085	2.704	-1.656	-0.761	0	Up
DLC1	4936	0.59	0.059	0.1	-2.664	1.387	0.849	0	Up
MMP2	12537	0.589	0.126	0.213	-2.49	0.915	0.947	0	Up
THBS2 NAP1L3	19280 13066	0.588 0.588	0.146 0.074	0.248 0.127	-2.399 -2.447	0.274 1.901	1.158 0.526	0	Up Up
FBLN5	6200	0.586	0.074	0.205	-2.45	1.386	0.736	0	Up
PPAPDC3	15424	0.586	0.06	0.102	-2.609	0.418	1.211	0	Up
CCDC8	3099	0.585	0.114	0.194	-2.387	1.693	0.579	0	Up
TEAD1	19159	0.585	0.072	0.123	-2.294	-0.496	1.414	0	Up
PDGFRA MEG3	14754 12275	0.582 0.581	0.128 0.083	0.219 0.143	-2.453 -2.516	0.919 0.611	0.926 1.084	0	Up Up
COL6A3	3996	0.581	0.103	0.178	-2.283	-0.253	1.31	0	Up
RBMS1	16338	0.581	0.088	0.152	-2.516	0.868	0.98	0	Up
CXorf57	4437	0.58	0.09	0.154	-1.891	2.587	-0.045	0	Up
SFRP2	17448	0.58	0.164	0.283	-2.412	0.85	0.932	0	Up
MARVELD1 EMP1	12120 5529	0.58 0.579	0.103 0.105	0.179 0.182	-2.362 -2.25	0.038 2.007	1.234 0.379	0	Up
CYSI	4529	0.578	0.103	0.204	-2.414	0.447	1.096	0	Up Up
LHFP	9642	0.577	0.112	0.194	-2.431	1.293	0.764	0	Up
ADAMTS6	284	0.577	0.055	0.095	-2.571	0.27	1.251	0	Up
MMP14	12532	0.577	0.125	0.216	-2.36	0.218	1.16	0	Up
PTPN21	15959	0.576	0.098	0.171	-2.366	1.706	0.562	0	Up
PDLIM3 EHD2	14774 5403	0.576 0.575	0.103 0.087	0.179 0.151	-2.317 -2.486	1.817 1.178	0.492 0.839	0	Up Up
PRKD1	15660	0.575	0.073	0.127	-2.467	1.61	0.655	0	Up
RPUSD1	16914	0.575	0.065	0.113	2.397	-1.956	-0.478	0	Up
CAV2	2944	0.575	0.064	0.111	-2.24	2.289	0.26	0	Up
SPON1	18456	0.574	0.165	0.287	-2.382	0.714	0.971	0	Up
MXRA8	12903	0.574	0.121	0.211	-2.402	0.517	1.061	0	Up
APCDD1 CYTH3	809 4535	0.573 0.572	0.125 0.098	0.218 0.171	-2.314 -2.45	1.67 1.117	0.549 0.845	0	Up Up
COL6A1	3994	0.572	0.13	0.228	-2.271	-0.048	1.22	0	Up
EVC2	5727	0.571	0.045	0.078	-2.686	0.6	1.178	0	Up
FN1	6649	0.571	0.157	0.276	-2.064	-0.558	1.317	0	Up
C9orf125	2684	0.571	0.081	0.143	-2.449	1.422	0.721	0	Up
AGPAT4 FGF1	404 6341	0.57 0.568	0.065 0.043	0.113 0.075	-2.542 -2.691	0.752 0.561	1.04	0	Up
PROS1	15712	0.568	0.043	0.125	-2.481	1.387	0.752	0	Up Up
RGS2	16502	0.568	0.136	0.24	-2.071	2.112	0.242	0	Up
MGC4294	12410	0.567	0.101	0.179	-2.14	-0.485	1.327	0	Up
MDFIC	12218	0.567	0.071	0.124	-2.492	0.635	1.062	0	Up
sep.11	17342	0.566	0.09	0.159	-2.443	0.794	0.971	0	Up
CCDC80 EFHA2	3100 5366	0.566 0.565	0.114 0.071	0.201 0.126	-2.394 -2.496	1.102 0.891	0.821	0	Up Up
PSMD4	15868	0.565	0.071	0.120	2.515	-1.752	-0.623	0	Up
Clorf15-NBL1	2163	0.564	0.115	0.205	-2.375	0.605	1.011	0	Up
COL6A2	3995	0.562	0.118	0.21	-2.373	0.745	0.954	0	Up
PLXDC1	15224	0.561	0.066	0.118	-2.454	0.392	1.14	0	Up
LUM ADAM12	11879 247	0.56 0.56	0.155 0.072	0.276 0.128	-2.294 -2.384	0.379 0.16	1.06 1.196	0	Up Up
SVEP1	18824	0.56	0.066	0.118	-2.433	1.539	0.665	0	Up
FOXF2	6694	0.559	0.059	0.105	-2.446	1.638	0.632	0	Up
LCAT	9536	0.558	0.069	0.124	-2.469	0.878	0.951	0	Up
SERPINH1 LAYN	17403	0.558	0.113 0.084	0.203	-2.207 -2.322	-0.128 1.628	1.219 0.57	0	Up
RFX8	9528 16471	0.557 0.556	0.084	0.151 0.117	-2.322 -2.298	1.628 -0.177	1.287	0	Up Up
CD200	3228	0.556	0.067	0.117	-2.42	1.464	0.689	0	Up
DNAJB5	5018	0.555	0.065	0.116	-2.473	0.775	0.995	0	Up
SLC2A3	17831	0.555	0.045	0.08	-2.562	0.361	1.209	0	Up
PDPN HSPB2	14781 8233	0.555 0.554	0.107 0.123	0.193 0.222	-2.356 -2.212	0.772 1.686	0.934 0.489	0	Up
NID2	8233 13457	0.554	0.123	0.222	-2.212 -2.25	-0.303	1.312	0	Up Up
ZFP36	21191	0.552	0.107	0.193	-2.298	1.412	0.645	0	Up
SGCD	17470	0.552	0.082	0.148	-2.314	0.16	1.159	0	Up
DAB2	4549	0.551	0.082	0.149	-2.393	0.966	0.875	0	Up
VEGFC FOSB	20657 6676	0.551 0.55	0.078 0.182	0.142 0.331	-2.337 -2.048	1.517 1.891	0.624 0.319	0	Up Up
TBX15	19068	0.55	0.182	0.331	-2.048 -2.512	0.635	1.072	0	Up Up
SSPN	18583	0.55	0.032	0.182	-2.333	1.175	0.759	0	Up
PMEPA1	15241	0.549	0.103	0.188	-2.303	0.393	1.059	0	Up
PDGFRL	14756	0.549	0.145	0.264	-2.281	0.61	0.96	0	Up
CAVI SH3PXD2A	2943	0.549	0.11	0.2	-2.093	1.944	0.322	0	Up
SH3PXD2A HIF1A	17528 7874	0.548 0.548	0.085 0.083	0.154 0.151	-2.374 -2.362	0.876 0.583	0.901 1.014	0	Up Up
C12orf34	1798	0.547	0.097	0.178	2.336	-1.068	-0.804	0	Up
SLC2A14	17829	0.547	0.08	0.147	-2.358	0.54	1.029	0	Up
VGLL3	20667	0.547	0.05	0.092	-2.484	0.462	1.127	0	Up
CTSK TWIST2	4353 20278	0.546 0.546	0.133 0.113	0.243 0.207	-2.288 -2.304	0.767 1.061	0.901 0.79	0	Up
PRRX2	20278 15775	0.546	0.113	0.207	-2.304 -2.319	0.667	0.79	0	Up Up
			-					*	*r

Care ID	Cana Name	Score (d)	Numerator (n)	Denominator (c.t.c0)	contrast 1	contrast 2	contrast 3	adjusted P value (%)	Direction
Gene ID COPZ2	Gene Name 4039	Score (d) 0.545	Numerator (r) 0.108	Denominator (s+s0) 0.198	-2.267	0.319	contrast 3	adjusted P value (%)	Direction Up
C10orf10	1681	0.545	0.121	0.222	-2.207	1.553	0.54	0	Up
C14orf37	1892	0.545	0.076	0.139	-2.359	0.505	1.044	0	Up
CLIP3	3821	0.545	0.067	0.123	-2.407	0.697	0.991	0	Up
HABP4 IKBIP	7685 8438	0.545 0.545	0.073 0.05	0.133 0.092	-2.355 -2.273	1.36 -0.35	0.696 1.343	0	Up Up
Cllorf96	1787	0.544	0.106	0.196	-2.288	1.218	0.718	0	Up
CACNA2D1	2793	0.543	0.051	0.094	-2.438	0.311	1.164	0	Up
KIAA1462	9087	0.542	0.085	0.156	-2.328	0.584	0.995	0	Up
DDR2	4674	0.542	0.076	0.14	-2.366	0.907	0.885	0	Up
PCOLCE	14687	0.542	0.1	0.185	-2.276	0.409	1.038	0	Up
SFXN4 MARCKS	17466 12111	0.541 0.54	0.056 0.082	0.104 0.152	2.418 -2.315	-1.324 0.463	-0.744 1.037	0	Up Up
PVRL3	16018	0.54	0.062	0.114	-2.355	0.292	1.128	0	Up
MAP4K4	12065	0.54	0.058	0.108	-2.425	0.771	0.971	0	Up
SLC12A4	17666	0.538	0.06	0.112	-2.34	1.55	0.612	0	Up
CMTM3	3874	0.538	0.089	0.166	-2.3	1.17	0.744	0	Up
BNC2	1562	0.538	0.071	0.132	-2.327	0.388	1.074	0	Up
GRP PPFIBP1	7537 15442	0.537 0.537	0.177 0.065	0.329 0.122	-2.214 -2.329	1.026 0.302	0.756 1.109	0	Up Up
KLF12	9198	0.537	0.069	0.128	-2.308	1.462	0.63	0	Up
C7orf10	2582	0.537	0.077	0.144	-2.289	0.325	1.079	0	Up
MYO1B	12972	0.536	0.062	0.116	-2.35	1.394	0.68	0	Up
ADCK3	304	0.536	0.052	0.097	2.436	-1.237	-0.788	0	Up
CELF2 SOBP	3478 18276	0.536 0.536	0.069 0.054	0.129 0.1	-2.316 -2.419	1.397 1.244	0.661 0.777	0	Up
PLXDC2	15225	0.536	0.09	0.169	-2.183	-0.003	1.156	0	Up Up
PXDN	16027	0.535	0.116	0.217	-2.2	0.255	1.061	0	Up
ARAP3	887	0.535	0.077	0.144	-2.252	1.526	0.575	0	Up
LIMS1	9683	0.534	0.06	0.112	-2.361	0.434	1.073	0	Up
CFHR3	3565	0.534	0.086	0.162	-2.291	1.115	0.762	0	Up
RAB23 FOS	16092 6675	0.534 0.534	0.086 0.162	0.161 0.303	-2.26 -1.938	0.36 1.941	1.05 0.241	0	Up Up
MTIM	12797	0.534	0.162	0.268	-2.222	0.953	0.79	0	Up
LRP1	11735	0.533	0.051	0.096	-2.424	0.588	1.045	0	Up
MFAP5	12348	0.533	0.127	0.238	-2.155	0.142	1.082	0	Up
ETV1	5718	0.532	0.05	0.094	-2.436	0.683	1.012	0	Up
PSMB4 COL16A1	15847 3968	0.532 0.532	0.054 0.076	0.101 0.143	2.241 -2.318	-1.867 0.886	-0.431 0.868	0	Up
CSRP1	3968 4276	0.532	0.076	0.143	-2.318 -2.094	2.087	0.868	0	Up Up
COL8A2	4002	0.531	0.121	0.227	-2.158	0.151	1.081	0	Up
FOXQ1	6719	0.531	0.146	0.275	-2.197	1.097	0.719	0	Up
PPAPDC1A	15421	0.53	0.149	0.281	-2.113	0.084	1.083	0	Up
KIRREL	9182	0.53	0.072	0.135	-2.318	0.694	0.945	0	Up
ARSI SPON2	1056 18457	0.53 0.529	0.066 0.065	0.124 0.124	-2.294 -2.343	0.316 0.789	1.086 0.92	0	Up Up
PRKCA	15649	0.528	0.1	0.124	-2.103	1.697	0.427	0	Up
RASD1	16251	0.528	0.155	0.293	-1.846	2.036	0.154	0	Up
SCAMP3	17128	0.528	0.055	0.104	2.362	-1.284	-0.731	0	Up
SCARNA17	17147	0.527	0.107	0.202	-2.2	1.27	0.651	0	Up
PPP1R16A CLDN11	15494 3758	0.527 0.527	0.074 0.131	0.141 0.25	2.214 -1.985	-1.543 1.833	-0.548 0.31	0	Up
NITI	13476	0.526	0.055	0.104	2.313	-1.522	-0.609	0	Up Up
MTIX	12798	0.526	0.113	0.214	-2.199	1.189	0.683	0	Up
ARRDC3	1046	0.525	0.082	0.157	-2.113	1.74	0.415	0	Up
ADAMTS5	283	0.525	0.11	0.21	-2.22	0.803	0.85	0	Up
KLF2	9204	0.525	0.093	0.178	-2.208	1.295	0.645	0	Up
COL12A1 GXYLT2	3964 7646	0.524 0.524	0.141 0.137	0.269 0.261	-2.073 -2.165	-0.001 0.458	1.097 0.96	0	Up Up
FNDC4	6658	0.524	0.072	0.137	-2.103	1.763	0.415	0	Up
MB21D2	12148	0.524	0.067	0.127	-1.767	2.352	-0.016	0	Up
SLFN11	18026	0.523	0.084	0.161	-2.253	0.756	0.886	0	Up
FNDC1	6655	0.523	0.119	0.229	-2.19	0.613	0.911	0	Up
JDP2	8787	0.523	0.077	0.148	-2.265	0.668	0.928	0	Up
DOCK11 AIM1	5084 446	0.522 0.522	0.076 0.116	0.146 0.223	-2.169 -1.118	1.591 2.569	0.504 -0.446	0	Up Up
H19	7663	0.522	0.115	0.24	-2.038	1.676	0.401	0	Up
YY1AP1	21044	0.521	0.055	0.105	2.35	-1.031	-0.826	0	Up
C1QTNF5	2125	0.521	0.099	0.19	-2.218	0.848	0.831	0	Up
FLNA	6617	0.521	0.062	0.12	-2.278	1.329	0.668	0	Up
LRIG3 TMEM45A	11730 19610	0.521 0.521	0.094 0.131	0.181 0.252	-2.196 -2.17	1.235 0.607	0.662 0.902	0	Up
UACA	20323	0.521	0.131	0.252	-2.17 -2.282	0.607	0.902	0	Up Up
FMO2	6639	0.52	0.174	0.335	-1.91	1.835	0.269	0	Up
LPCAT2	11695	0.52	0.054	0.103	-2.32	1.347	0.683	0	Up
DPYSL2	5149	0.519	0.083	0.16	-1.976	1.941	0.261	0	Up
KDELC2 ARHGAP39	8968 934	0.519 0.519	0.062 0.072	0.119 0.139	-2.261 2.265	0.313 -0.722	1.069 -0.906	0	Up
SGK1	17475	0.519	0.072	0.139	-2.109	1.583	-0.906 0.476	0	Up Up
SGIP1	17474	0.518	0.072	0.14	-2.098	-0.165	1.176	0	Up
CLEC11A	3782	0.517	0.105	0.203	-2.141	0.274	1.022	0	Up
CES1	3545	0.517	0.084	0.163	-2.226	0.948	0.794	0	Up
CFI	3568	0.517	0.086	0.166	-2.074	1.691	0.414	0	Up
KLF7 PHLDB1	9209 14949	0.517 0.517	0.07 0.059	0.136 0.115	-2.263 -2.243	0.805 0.226	0.872 1.095	0	Up
ACTN1	14949 214	0.517	0.059	0.115	-2.243	0.226	0.81	0	Up Up
SFRP4	17449	0.516	0.129	0.25	-2.024	1.62	0.416	0	Up
NHS	13452	0.516	0.049	0.095	-2.341	1.263	0.728	0	Up
RECK	16395	0.515	0.065	0.125	-2.265	0.575	0.965	0	Up
GGT5 LRCH2	7072 11717	0.515 0.515	0.089 0.046	0.172 0.09	-2.187 -2.366	1.182	0.679 0.762	0	Up
PRDM1	11717	0.515	0.046 0.084	0.09 0.164	-2.366 -2.11	0.025	0.762 1.105	0	Up Up
HOXAll-ASI	8086	0.513	0.094	0.183	-2.118	0.023	1.036	0	Up
HEG1	7809	0.514	0.081	0.158	-2.174	1.341	0.608	0	Up
RUNX1T1	16999	0.514	0.1	0.194	-2.159	1.201	0.657	0	Up
BACH2	1366	0.514	0.043	0.084	-2.236	1.853	0.434	0	Up
LSP1	11857	0.513	0.07	0.136	-2.238	1.085	0.745	0	Up
LAMB1 F2RL1	9491 5787	0.513 0.512	0.04 0.078	0.078 0.153	-2.429 -2.033	0.696 1.769	1.003 0.361	0	Up Up
TSPO2	20120	0.512	0.058	0.114	-2.033	-0.194	1.197	0	Up
ZFHX4	21181	0.512	0.093	0.181	-2.184	0.936	0.777	0	Up
WDR86	20856	0.511	0.136	0.266	-2.115	1.108	0.671	0	Up
PKD2	15071	0.51	0.071	0.139	-2.186	1.324	0.621	0	Up
HOXA3 LOC645676	8089 11405	0.51 0.51	0.106 0.054	0.207 0.107	-2.022 2.295	1.616 -1.013	0.416 -0.805	0	Up
MALL	12005	0.51	0.054	0.107	-1.653	2.146	0.008	0	Up Up
								•	- F

TAMES	Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	contrast 1	contrast 2	contrast 3	adjusted P value (%)	Direction
TASK SIMP SASE	FAM89A	6139	0.51	0.086	0.169	-1.907	1.935	0.227	0	Up
SERNOWER 1984										
FAMALON 1988										
DOT COLOR										
Teacher 1988 0.507	ASPN		0.508	0.184	0.362	-1.976	-0.027	1.056		Up
BIRSTIN 1905										
COLDIAN 366										
SECOND 1989		3961		0.174			-0.595	1.175	0	
ADMAINS 13										
MANISH 173										
NETE 1 1331 0 0.500 0.007 0.012 0.213 0.615 0.860 0.414 0.007 0.00										
SIBPLOY BY 1759 0 894 0895 0815 0815 0.15 2.17 0.73 0.856 0.114 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	NEFH	13351	0.505	0.107	0.212	-2.131		0.868	0.214	Up
Fig. 1937										
EFS. 977 9394 9496 9415 9414 9496 9414 9414 9496 9414 9414 9496 9414 9414 9496 9414 9414 9414 9414 9414 9414 9414 9414 9496 9414 9414 9414 9414 9414 9414 9414 9414 9414 9414 9414 9414 9414 9414 9414 9414 9414 9414										
GLEMENT 1971										
DOPP 1576 0.503										
CCCCC 3933 6.902										
MPT22										
CNRP 925	MPZL2									
ACK 1974 0.982										
ZZURIZED 21103 0.500										Up
SPARCIL 1856]										Up
PPRIND 15462	SPARCL1		0.501	0.129	0.257	-2.023		0.513		
PFFRID 1972										
CFP										
SPINCY 18483										
TMBPSS 1969	SPRY2	18483	0.499	0.1	0.2	-1.991	1.565	0.421	0.214	Up
GREMI 792 0499 0997 0.955 2.2072 0.272 0.986 0.214 Up CLIPSCII 3097 0.498 082 0.144 2.13 1.106 0.679 0.2724 Up CLIPSCII 2000 0.498 0.073 0.157 2.2155 0.088 0.813 0.214 Up CLIPSCII 2000 0.498 0.073 0.157 2.2155 0.088 0.813 0.214 Up DISSE 0.498 0.078 0.078 0.157 2.2155 0.088 0.813 0.214 Up DISSE 0.498 0.098 0.098 0.013 2.209 1.098 0.084 0.214 Up DISSE 0.498 0.098 0.098 0.016 0.150 2.197 1.00 0.644 0.214 Up DISSE 0.498 0.098 0.098 0.015 0.157 0.214 0.099 0.014										
COLISAL 3967										
C1Pre5 2000										
TMEMS										
BIND										
ABHIGES -9 985										
JAJZF \$786		965		0.074	0.149	-2.163	0.749	0.841		
ZNY-869 21487 0.497										Up
RIMINS 16340 0.496										
BBNN6 1483										
PYCRL 16437 0.496 0.056 0.113 2.215 -1.015 -0.762 0.214 Up MXXDI 12603 0.495 0.04 0.06 0.215 -1.923 1.652 0.315 0.214 Up MXXDI 12603 0.495 0.098 0.18 -2.109 0.61 0.089 0.214 Up EXAL 513 0.495 0.089 0.18 -2.109 0.61 0.089 0.214 Up EXAL 513 0.495 0.099 0.18 -2.109 0.56 0.099 0.214 Up EXAL 513 0.495 0.099 0.153 0.113 -2.204 0.56 0.099 0.214 Up EXAL 513 0.495 0.099 0.153 0.118 -2.208 0.59 0.099 0.214 Up EXAL 513 0.495 0.099 0.158 -2.118 0.59 0.099 0.214 Up EXAL 513 0.495 0.099 0.158 -2.118 0.59 0.090 FAYDE 6823 0.494 0.078 0.157 -1.718 2.082 0.088 0.214 Up FAYDE 6823 0.494 0.078 0.157 -1.718 2.082 0.088 0.214 Up WTIP 20938 0.494 0.085 0.168 -2 1.577 0.429 0.214 Up WTIP 20938 0.494 0.083 0.188 -2 1.577 0.429 0.214 Up WTIP 20938 0.494 0.083 0.188 -2 1.577 0.429 0.214 Up WTIP 20938 0.493 0.093 0.123 0.253 0.214 Up ANKRIBITS 605 0.493 0.093 0.123 0.255 0.247 1.125 0.053 0.214 Up ANKRIBITS 607 0.493 0.093 0.123 0.255 0.297 0.081 0.014 0.044 Up LERCA 11774 0.492 0.089 0.182 2.102 0.885 0.754 0.214 Up LERCA 11774 0.492 0.089 0.182 2.102 0.885 0.754 0.214 Up LEPUEL 9047 0.491 0.088 0.127 -2.173 0.081 0.014 0.144 Up HEVL 7849 0.492 0.086 0.127 -2.173 0.202 0.082 0.214 Up LEPUEL 9047 0.491 0.088 0.164 0.107 0.207 0.202 0.092 0.214 Up LEPUEL 9047 0.491 0.088 0.164 0.164 0.107 0.108 0.007 0.214 Up PULL 14817 0.491 0.088 0.164 0.164 0.167 0.007 0.202 0.092 0.214 Up LEPUEL 9047 0.491 0.088 0.164 0.164 0.167 0.007 0.164 0.164 0.167 0.007 0.164 0.164 0.167 0.007 0.007										
TARS2										
MOXDI 12603 0.495 0.106 0.215 -1.923 1.652 0.35 0.214 Up ECN2 515 0.495 0.089 0.18 -2.109 0.61 0.869 0.214 Up ECN2 515 0.495 0.056 0.113 -2.201 0.536 0.047 0.214 Up ECN2 515 0.495 0.055 0.113 -2.201 0.536 0.047 0.214 Up 0.										
ECNZ 5316 0.495 0.056 0.013 -2.201 0.556 0.947 0.214 Up RABTLI 16138 0.494 0.078 0.158 -2.118 0.488 0.923 0.214 Up RABTLI 16138 0.494 0.078 0.158 -2.118 0.488 0.923 0.214 Up EXYDE 6423 0.494 0.078 0.157 1.718 0.488 0.923 0.214 Up EXYDE 6421 0.494 0.081 0.157 1.718 0.488 0.923 0.214 Up EXYDE 750 0.494 0.081 0.157 1.718 0.488 0.923 0.214 Up EXYDE 6436 0.493 0.101 0.205 1.70 0.481 0.77 1.718 0.491 0.718 0.71				0.106		-1.923				
ACSLI 188 0.495 0.053 0.108 -2.204 0.496 0.976 0.214 Up FYUD6 6821 0.494 0.078 0.157 1.718 2.082 0.068 0.213 Up FYUD6 6822 0.494 0.078 0.157 1.718 2.082 0.068 0.214 Up FYUD6 6823 0.494 0.081 0.124 1.707 -2.192 0.018 0.214 Up WITP 2038 0.494 0.083 0.168 -2.118 2.082 0.068 0.214 Up WITP 2038 0.494 0.083 0.168 -2.157 0.429 0.018 0.214 Up WITP 2038 0.494 0.083 0.168 -2.162 1.157 0.429 0.214 Up WITP 2038 0.494 0.083 0.168 -2.162 1.157 0.429 0.214 Up WITP 2038 0.494 0.083 0.168 -2.162 1.116 0.653 0.214 Up ANKRD15 695 0.493 0.123 0.255 -1.977 1.121 0.441 0.472 0.114 Up ANKRD15 695 0.493 0.123 0.255 -1.977 1.121 0.441 0.472 0.124 Up ANKRD15 1.174 0.492 0.089 0.182 0.210 0.885 0.754 0.214 Up LRRC32 11774 0.492 0.088 0.182 0.2102 0.885 0.754 0.214 Up HEVL 7849 0.492 0.086 0.175 0.2057 0.262 0.982 0.214 Up HEVL 7849 0.492 0.086 0.175 0.2057 0.262 0.982 0.214 Up HEVL 7849 0.492 0.086 0.175 0.2057 0.262 0.982 0.214 Up FEILIZ 48117 0.491 0.085 0.132 1.885 1.938 0.204 0.214 Up FILIZ 48117 0.491 0.085 0.132 1.885 1.938 0.204 0.214 Up FILIZ 48117 0.491 0.085 0.132 1.885 1.938 0.204 0.214 Up FILIZ 48117 0.491 0.085 0.152 0.152 0.153 0.202 0.982 0.214 Up FILIZ 48117 0.490 0.491 0.085 0.152 0.153 0.053 0.053 0.053 0.054 0.054 0.055 0.05										
RABTIL 1618 0.494										
Clorist										
WITP 209.8										
TICBH 8727										
FEDT										
LRRC12					0.205				0.214	
LREC2										
ANTXR2 751 0.492 0.048 0.098 -2.177 1.441 0.569 0.214 Up HEYL 7849 0.492 0.086 0.175 -2.057 0.262 0.982 0.214 Up LEPREI 9607 0.491 0.048 0.097 -2.104 -0.098 1.152 0.214 Up PELI2 14817 0.491 0.085 0.132 -1.865 1.938 0.024 0.214 Up PELI2 14817 0.491 0.081 0.164 -2.107 1.02 0.702 0.214 Up DLSPI 5217 0.491 0.115 0.235 -1.935 -0.073 1.053 0.214 Up SAL14 17067 0.491 0.115 0.235 -1.935 -0.073 1.053 0.214 Up CPXMI 4137 0.49 0.085 0.174 -2.034 1.348 0.532 0.363 Up ACVR2A 2.34 0.49 0.049 0.11 0.222 0.031 0.363 Up CFSMI 4346 0.489 0.076 0.156 1.194 0.331 1.141 0.363 Up CFSMI 4346 0.489 0.076 0.156 1.194 0.331 1.141 0.363 Up CFGF 6.360 0.489 0.076 0.156 1.194 0.064 0.031 1.141 0.363 Up ACTR3 1147 0.489 0.087 0.177 -2.092 0.844 0.766 0.363 Up FIGT 6.360 0.489 0.067 0.118 1.197 0.2092 0.844 0.766 0.363 Up NTM 13753 0.488 0.057 0.118 1.197 0.029 0.844 0.766 0.363 Up CTO36 3.255 0.488 0.167 0.342 1.198 0.225 0.087 1.097 0.363 Up CTO36 3.255 0.488 0.167 0.342 1.199 0.087 1.198 0.087 0.32 0.38 0.363 Up SNNN 1.3843 0.488 0.067 0.138 1.205 0.077 0.32 0.081 0.363 Up SNNN 1.3843 0.488 0.067 0.138 1.205 0.077 0.30 1.006 0.363 Up SNNN 1.3843 0.488 0.066 0.167 0.342 1.199 0.063 0.358 0.363 Up SNNN 1.3843 0.488 0.066 0.176 0.199 0.063 1.106 0.363 Up SNNN 1.3843 0.488 0.066 0.176 0.199 0.063 1.106 0.363 Up SNNN 1.3843 0.488 0.066 0.176 0.191 1.1067 0.32 0.363 Up SNNN 1.3843 0.488 0.066 0.176 0.191 1.106 0.358 0.363 Up SNNN 1.3843 0.488 0.066 0.176 0.125 0.214 0.506 0.927 0.363 Up SNNN 1.3843 0.488 0.066 0.176 0.191 1.190 1.1667 0.32 0.363 Up SNNN 1.3843 0.488 0.066 0.176 0.125 0.214 0.506 0.927 0.363 Up SNNN 1.3843 0.488 0.066 0.176 0.191 1.106 0.657 0.363 Up SNNN 1.3843 0.488 0.066 0.176 0.191 1.106 0.657 0.363 Up SNNN 1.3843 0.488 0.066 0.176 0.191 0.191 1.067 0.363 Up SNNN 1.3843 0.488 0.066 0.176 0.191 0.191 0.106 0.657 0.363 Up SNNN 1.3843 0.485 0.066 0.125 0.214 0.190 0.363 Up SNNN 1.3843 0.485 0.066 0.166 0.166 0.166 0.1676 0.657 0.363 Up SNNN 1.3845 0.485 0.066 0.168 0.178 0.090 0.188 0.090 0.191 0.191 0.191 0.191 0.090 0.363 Up										Up Un
LEPRI 9607 0.491 0.048 0.097 2.2104 -0.098 1.152 0.214 Up VCL 20646 0.491 0.065 0.132 -1.865 1.988 0.040 0.214 Up PELI2 14817 0.491 0.081 0.164 2.2107 1.02 0.702 0.214 Up PELI2 14817 0.491 0.104 0.211 -2.007 1.02 0.702 0.214 Up SALL4 17067 0.491 0.115 0.235 -1.935 -0.073 1.053 0.214 Up SALL4 17067 0.491 0.115 0.235 -1.935 -0.073 1.053 0.214 Up CPXMI 4137 0.49 0.095 0.174 -2.034 1.348 0.552 0.363 Up ACVR2A 2.34 0.49 0.049 0.11 2.2227 0.932 0.801 0.363 Up EDNI 5334 0.49 0.012 0.228 -1.874 1.673 0.316 0.363 Up CTSB 4346 0.489 0.076 0.156 -1.904 -0.331 1.141 0.363 Up CSwf33 2729 0.489 0.027 0.346 -2.048 0.664 0.815 0.363 Up ATT3 1147 0.489 0.087 0.177 -2.092 0.844 0.766 0.363 Up FGF7 6.550 0.489 0.067 0.177 -2.092 0.844 0.766 0.363 Up NTM 13733 0.488 0.057 0.118 -1.978 -0.28 1.159 0.363 Up CCI0129940 9999 0.488 0.067 0.138 -2.059 0.13 1.036 0.363 Up CD36 3.255 0.488 0.167 0.342 -1.492 2.094 -0.0871 0.363 Up CD36 3.255 0.488 0.167 0.342 -1.492 2.094 -0.0871 0.363 Up SNRNP35 18218 0.488 0.068 0.078 0.114 -2.125 0.627 0.871 0.363 Up SNRNP35 18218 0.488 0.068 0.078 0.114 0.2125 0.627 0.871 0.363 Up SNRNP35 18218 0.488 0.068 0.079 0.141 -2.125 0.627 0.871 0.363 Up SNRNP35 18218 0.488 0.068 0.076 0.138 -2.059 0.13 1.036 0.363 Up SNRNP35 18218 0.488 0.068 0.076 0.141 0.2125 0.627 0.871 0.363 Up SNRNP35 18218 0.488 0.068 0.075 0.114 0.2125 0.627 0.871 0.363 Up SNRNP35 18218 0.488 0.068 0.075 0.114 0.2125 0.627 0.871 0.363 Up SNRNP36 18218 0.488 0.068 0.076 0.124 0.215 0.066 0.027 0.363 Up SNRNP37 1.848 0.488 0.068 0.075 0.153 0.209 0.063 0.142 0.363 Up SNRNP37 1.848 0.488 0.068 0.075 0.154 0.056 0.027 0.363 Up SNRNP38 1.8218 0.488 0.068 0.076 0.014 0.025 0.006 0.007 0.006 0.0										Up
VCL 206-6 0.491 0.065 0.132 1.1865 1.938 0.204 0.214 Up PELLZ 14817 0.491 0.081 0.164 -2.107 1.02 0.702 0.214 Up DIUSP 5217 0.491 0.104 0.211 2.2007 1.361 0.511 0.214 Up CYMI 4.137 0.49 0.085 0.174 2.204 1.348 0.532 0.363 0.19 CYMI 4.137 0.49 0.085 0.174 2.204 1.348 0.532 0.363 Up CYMI 4.137 0.49 0.095 0.112 0.228 1.874 1.673 0.801 0.363 Up EDN1 5334 0.49 0.112 0.228 1.874 1.673 0.316 0.363 Up CTSB 4.345 0.489 0.076 0.156 1.904 4.0331 1.141 0.363 Up CTSB 4.345 0.489 0.076 0.156 1.904 4.0331 1.141 0.363 Up ATT3 1.147 0.489 0.087 0.177 2.206 0.801 0.363 Up ATT3 1.147 0.489 0.087 0.177 2.209 0.844 0.664 0.815 0.363 Up CISB 4.345 0.488 0.067 0.177 2.209 0.844 0.766 0.363 Up LICO10129940 9999 0.488 0.057 0.118 1.918 2.029 0.81 0.363 Up CISB 3.255 0.488 0.167 0.342 1.1492 0.294 4.0057 0.363 Up CISB 3.255 0.488 0.067 0.138 2.209 0.13 1.036 0.363 Up CISB 3.255 0.488 0.067 0.138 2.209 0.07 0.363 Up CISB 3.255 0.488 0.067 0.144 2.129 0.097 0.07 0.363 Up CISB 3.255 0.488 0.066 0.07 0.141 2.129 0.097 0.097 0.363 Up SNRNS1 1848 0.488 0.069 0.141 2.129 0.097 0.097 0.363 Up NNN 1.848 0.488 0.066 0.167 0.342 1.186 0.097 0.097 0.303 Up NNN 1.848 0.488 0.066 0.167 0.342 1.176 0.302 0.097 0.303 Up NNN 1.848 0.488 0.066 0.165 0.155 0.214 0.506 0.927 0.363 Up NNN 1.848 0.488 0.066 0.165 0.155 0.214 0.506 0.927 0.363 Up NNN 1.848 0.488 0.066 0.165 0.155 0.214 0.506 0.927 0.363 Up NNN 1.848 0.488 0.066 0.125 0.214 0.506 0.927 0.363 Up NNN 1.848 0.488 0.066 0.165 0.125 0.214 0.506 0.927 0.363 Up FIGAL STOP 0.487 0.064 0.132 0.208 0.1 1.048 0.363 Up NNN 1.848 0.488 0.066 0.165 0.125 0.214 0.506 0.927 0.363 Up NNN 1.848 0.488 0.066 0.165 0.125 0.214 0.506 0.927 0.363 Up NNN 1.848 0.488 0.066 0.195 0.195 0.195 0.195 0.195 0.133 0.045 0.065 0.006 0.0										
PEILIZ 14817										
DIISP S217 0.491 0.104 0.211 0.216 0.511 0.511 0.214 Up										
CPXMI 4137 0.49 0.085 0.174 2-2.034 1.348 0.532 0.363 Up ACVR2A 234 0.49 0.049 0.01 2-2.27 0.932 0.801 0.363 Up EDNI 5334 0.49 0.112 0.228 1.874 1.673 0.316 0.363 Up CTSB 4346 0.489 0.076 0.156 1.904 0.331 1.141 0.363 Up ATTS 1147 0.489 0.087 0.177 2-2.092 0.844 0.766 0.363 Up ATTS 1147 0.489 0.082 0.127 2-2.143 1.087 0.694 0.363 Up NTM 13753 0.488 0.062 0.127 2-2.143 1.087 0.694 0.363 Up CO136 3.255 0.488 0.067 0.118 1.978 0.28 1.159 0.363 Up CO36 3.255 0.488 0.067 0.138 2-2.09 0.13 1.036 0.363 Up SNRNP35 18218 0.488 0.069 0.141 2-2.125 0.627 0.871 0.363 Up SNRNP35 18218 0.488 0.069 0.141 2-2.125 0.627 0.871 0.363 Up MME 12.524 0.488 0.066 0.176 1.901 1.901 1.907 0.32 0.363 Up MTGA 1.384 0.488 0.066 0.176 1.901 1.907 0.32 0.363 Up MTGA 1.384 0.488 0.066 0.176 1.901 1.907 0.32 0.363 Up MTGA 1.390 0.487 0.064 0.132 2-2.08 0.1 1.097 0.32 0.363 Up MTGA 1.390 0.487 0.064 0.132 2-2.08 0.1 1.097 0.32 0.363 Up MTGA 1.390 0.487 0.064 0.132 2-2.08 0.1 1.098 0.363 Up MTGA 1.390 0.487 0.064 0.132 2-2.08 0.1 1.098 0.363 Up MAPIB 1203 0.487 0.064 0.132 2-2.08 0.1 1.042 0.363 Up MAPIB 1203 0.487 0.066 0.136 2.113 1.14 0.567 0.363 Up MAPIB 1203 0.487 0.066 0.136 2.113 1.14 0.567 0.363 Up MAPIB 1203 0.487 0.066 0.136 2.113 1.14 0.657 0.363 Up MAPIB 1203 0.485 0.092 0.188 1.189 0.064 1.190 0.113 0.065 0.063 0.065 0.	DUSPI	5217	0.491	0.104	0.211	-2.007	1.361	0.511	0.214	
ACNR2A 234 0.49 0.049 0.11 2.227 0.932 0.801 0.363 Up EDNI 5334 0.49 0.112 0.228 1.874 1.673 0.316 0.363 Up CTSB 4346 0.489 0.076 0.156 1.1904 -0.331 1.141 0.363 Up CS0rfS3 2729 0.489 0.121 0.246 2.048 0.664 0.815 0.363 Up FGG 3650 0.489 0.087 0.177 2.2092 0.844 0.766 0.363 Up FGG 3650 0.489 0.082 0.127 2.143 1.087 0.694 0.363 Up FGG 3650 0.489 0.057 0.118 1.1978 -0.28 1.159 0.365 Up LOCIO0129940 9999 0.488 0.057 0.118 1.1978 0.28 1.159 0.363 Up RASA3 16246 0.488 0.067 0.138 2.2099 0.13 1.036 0.363 Up RASA3 16246 0.488 0.069 0.141 2.125 0.627 0.871 0.363 Up SNRNP35 18218 0.488 0.069 0.141 2.125 0.627 0.871 0.363 Up MME 12524 0.488 0.068 0.076 1.1901 1.697 0.32 0.363 Up MME 12524 0.488 0.066 0.176 1.1901 1.697 0.32 0.363 Up WNX 13843 0.488 0.066 0.176 1.1901 1.697 0.32 0.363 Up WNT2 2091 0.487 0.064 0.132 2.058 0.1 Why TGG 389 0.487 0.064 0.132 2.058 0.1 Why MAPIB 12033 0.487 0.064 0.132 2.058 0.1 Why MAPIB 12033 0.487 0.066 0.136 2.113 1.14 0.657 0.363 Up FEXIS 1.18485 0.485 0.013 0.212 2.024 1.089 0.365 Up SUD										
EDN 5334 0.49 0.112 0.228 -1.874 1.673 0.316 0.363 Up										
CYSB 4346 0.489 0.076 0.156 1.904 -0.331 1.141 0.363 Up										
ATT3 1147 0.489 0.087 0.177 2.202 0.844 0.766 0.363 Up FGF 0.560 0.489 0.062 0.127 2.143 1.087 0.694 0.363 Up NTM 13753 0.488 0.057 0.118 1.978 4.28 1.159 0.363 Up NTM 0.0604 0.365 Up NTM 0.0604 0.488 0.069 0.141 0.2125 0.627 0.871 0.363 Up NTM 0.0604 0.488 0.069 0.141 0.2125 0.627 0.871 0.363 Up NTM 0.0604 0.185 0.0604 0.176 0.1901 0.667 0.32 0.363 Up NTM 0.0604 0.125 0.144 0.506 0.927 0.363 Up NTM 0.0604 0.125 0.144 0.506 0.927 0.363 Up NTM 0.0604 0.182 0.2098 0.144 0.506 0.927 0.363 Up NTM 0.0604 0.182 0.2098 0.184 0.0604 0.182 0.2098 0.184 0.066 0.927 0.363 Up NTM 0.0604 0.182 0.2098 0.184 0.0667 0.363 Up NTM 0.0604 0.182 0.2098 0.184 0.0667 0.363 Up NTM 0.0604 0.182 0.2098 0.184 0.0667 0.363 Up NTM 0.0604 0.182 0.0604 0.182 0.0604 0.182 0.0604 0.182 0.0604 0.182 0.0604 0.182 0.0604 0.182 0.0604 0.182 0.0604 0.182 0.0604 0.182 0.0604 0.182 0.0604 0.0	CTSB	4346	0.489		0.156					Up
FGF7 6360 0.489 0.062 0.127 -2.143 1.087 0.694 0.363 Up NTM 13753 0.488 0.067 0.118 1.978 -0.28 1.159 0.363 Up CD36 3255 0.488 0.067 0.342 1.492 2.094 -0.057 0.363 Up RASA3 16246 0.488 0.069 0.141 2.2125 0.627 0.871 0.363 Up SNRNP35 18218 0.488 0.069 0.141 2.2125 0.627 0.871 0.363 Up NME 12524 0.488 0.086 0.076 1.919 1.697 0.32 0.363 Up NXN 13843 0.488 0.086 0.176 1.919 1.697 0.32 0.363 Up NXN 13843 0.488 0.066 0.126 0.125 2.214 0.506 0.927 0.363 Up NXN 13843 0.488 0.066 0.156 0.125 2.214 0.506 0.927 0.363 Up TGA1 879 0.487 0.064 0.132 2.2088 0.1 1.048 0.363 Up MAP1B 12033 0.487 0.066 0.136 2.2113 1.14 0.657 0.363 Up MAP1B 12033 0.487 0.066 0.136 2.2113 1.14 0.657 0.363 Up COLSA3 3993 0.486 0.092 0.188 1.893 -0.24 1.098 0.363 Up COLSA3 3993 0.486 0.092 0.188 1.893 -0.24 1.098 0.363 Up SULF1 18774 0.486 0.118 0.244 1.76 0.501 1.133 0.363 Up FAT1 6188 0.485 0.013 0.212 2.2 1.22 1.257 0.546 0.363 Up SPOCK1 18453 0.485 0.06 0.124 2.144 0.937 0.756 0.363 Up SPOCK1 18453 0.485 0.06 0.124 2.144 0.937 0.756 0.363 Up SPOCK1 18453 0.485 0.06 0.124 2.144 0.937 0.756 0.363 Up FST 6775 0.484 0.086 0.179 2.209 1.332 0.524 0.363 Up SPST1 18482 0.484 0.086 0.179 2.209 1.332 0.524 0.363 Up SPST1 18482 0.484 0.086 0.179 2.209 1.332 0.524 0.363 Up SPSTN1 18482 0.484 0.086 0.179 2.209 1.332 0.524 0.363 Up RNF175 16670 0.484 0.086 0.179 2.209 1.332 0.524 0.363 Up RNF175 16670 0.484 0.088 0.182 2.201 1.076 0.677 0.363 Up RNF175 16670 0.484 0.088 0.182 2.201 1.076 0.677 0.363 Up RNF175 16670 0.484 0.048 0.096 2.209 1.629 0.447 0.363 Up RNF175 16670 0.484 0.048 0.096 2.209 1.629 0.447 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 1.18 0.647 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 1.18 0.647 0.363 Up RNF175 1679 0.483 0.133 0.276 2.203 0.554 0.835 0.363 Up RNF175 1679 0.483 0.133 0.276 2.203 0.554 0.835 0.363 Up RNF191 14982 0.484 0.066 0.125 2.2016 0.048 1.055 0.363 Up RNF191 14982 0.483 0.093 0.192 1.1816 1.768 0.247 0.363 Up										
NTM 13753 0.488 0.057 0.118 1.1978 -0.28 1.159 0.363 Up LOCI00129940 9999 0.488 0.067 0.138 2.059 0.13 1.036 0.363 Up CD36 3255 0.488 0.167 0.342 1.492 2.094 -0.057 0.363 Up RASA3 16246 0.488 0.048 0.069 0.141 2.125 0.627 0.871 0.363 Up SNRNP35 18218 0.488 0.048 0.097 2.04 1.786 0.358 0.363 Up MME 12524 0.488 0.086 0.176 1.901 1.697 0.32 0.363 Up NXN 13843 0.488 0.061 0.125 2-2.14 0.506 0.927 0.363 Up WNT2 2.0911 0.487 0.064 0.132 2.2058 0.1 1.042 0.363 Up ITGA1 8709 0.487 0.064 0.132 2.2058 0.1 1.048 0.363 Up MAPIB 12033 0.487 0.066 0.136 2.2113 1.14 0.657 0.363 Up PAYSL 1.4845 0.487 0.07 0.144 2.116 0.653 0.655 0.363 Up COLSA3 3993 0.486 0.092 0.188 1.893 -0.24 1.098 0.363 Up SULFI 18774 0.486 0.118 0.244 1.76 0.501 1.133 0.363 Up SULFI 18774 0.486 0.0118 0.244 1.76 0.501 1.133 0.363 Up FATI 6.188 0.485 0.103 0.212 2.2 1.267 0.546 0.363 Up SPOCKI 18453 0.485 0.066 0.124 2.214 0.97 0.596 0.363 Up FST 6.775 0.484 0.135 0.279 1.957 0.183 0.961 0.363 Up FST 6.775 0.484 0.086 0.179 2.209 1.322 0.52 1.267 0.546 0.363 Up SPRYI 18482 0.484 0.086 0.179 2.099 1.322 0.52 1.267 0.546 0.363 Up SPRYI 18482 0.484 0.086 0.179 2.099 1.322 0.52 1.367 0.363 Up SPRYI 18482 0.484 0.086 0.179 2.099 1.322 0.524 0.363 Up SRNP1 18482 0.484 0.086 0.179 2.099 1.322 0.524 0.363 Up SPRYI 18482 0.484 0.086 0.179 2.099 1.322 0.524 0.363 Up SRNP175 16670 0.484 0.088 0.182 2.201 1.203 0.589 0.363 Up SRNP175 16670 0.484 0.088 0.182 2.201 1.203 0.589 0.363 Up SRNP175 16670 0.484 0.088 0.182 2.201 1.202 1.076 0.677 0.363 Up SRLENBIPI 17293 0.484 0.046 0.096 2.2099 1.629 0.447 0.363 Up SRLENBIPI 1537 0.483 0.133 0.026 2.209 1.629 0.447 0.363 Up SRLENBIPI 1537 0.483 0.133 0.026 2.209 1.209 0.081 1.085 0.363 Up SRLENBIPI 15492 0.483 0.093 0.192 1.1816 1.768 0.247 0.363 Up SRLENBIPI 15492 0.483 0.093 0.192 1.1816 1.768 0.247 0.363 Up		,	0.107		0.177			0.700	0.505	Up
DCIOID2940 9999 0.488 0.067	NTM	13753	0.488	0.057	0.118	-1.978	-0.28	1.159	0.363	Up
RASA3 16246 0.488 0.069 0.141 2.125 0.627 0.871 0.363 Up SNRNP35 18218 0.488 0.048 0.097 2.04 1.786 -0.358\$ 0.363 Up MME 12524 0.488 0.086 0.176 -1.901 1.697 0.32 0.363 Up NXN 13843 0.488 0.061 0.125 -2.14 0.506 0.927 0.363 Up NXN 13843 0.487 0.075 0.153 -2.019 0.063 1.042 0.363 Up MXP12 20911 0.487 0.075 0.153 -2.019 0.063 1.042 0.363 Up MXP1B 12033 0.487 0.066 0.136 -2.113 1.14 0.657 0.363 Up MXP1B 12033 0.487 0.066 0.136 -2.113 1.14 0.657 0.363 Up MXP1B 12033 0.487 0.066 0.136 -2.113 1.14 0.657 0.363 Up MXP1B 12033 0.487 0.066 0.136 -2.113 1.14 0.657 0.363 Up MXP1B 1.0033 0.993 0.486 0.092 0.188 1.893 -0.24 1.098 0.363 Up MXP1B 1.874 0.486 0.118 0.244 -1.76 0.501 1.133 0.363 Up MXP1B 1.874 0.486 0.118 0.244 -1.76 0.501 1.133 0.363 Up MXP1B 1.874 0.485 0.103 0.212 -2 1.67 0.546 0.363 Up MXP1B 1.874 0.485 0.121 0.25 1.847 0.26 1.082 0.363 Up MXP1B 1.883 0.485 0.121 0.25 1.847 0.26 1.082 0.363 Up MXP1B 1.882 0.484 0.135 0.279 1.957 0.183 0.961 0.363 Up MXP1B 1.8482 0.484 0.086 0.179 2.009 1.332 0.524 0.363 Up MXP1B 1.8482 0.484 0.086 0.179 2.009 1.332 0.524 0.363 Up MXP1B 1.882 0.484 0.088 0.182 -2.013 1.203 0.589 0.363 Up MXP1B 1.884 0.084 0.088 0.182 -2.013 1.203 0.589 0.363 Up MXP1B 1.884 0.084 0.088 0.182 -2.013 1.203 0.589 0.363 Up MXP1B 1.205 0.484 0.048 0.096 0.125 -2.016 0.048 1.085 0.363 Up MXP1B 1.184 0.6676 0.363 Up MXP1B 1.184 0.6	LOC100129940	9999	0.488	0.067	0.138	-2.059	0.13	1.036	0.363	Up
SNRNP35 18218 0.488 0.048 0.097 2.04 -1.786 -0.358 0.363 Up										
MME 12524 0.488 0.086 0.176 1.1901 1.697 0.32 0.363 Up NXN 13843 0.488 0.0661 0.125 -2.14 0.506 0.927 0.363 Up WNT2 20911 0.487 0.075 0.153 -2.019 0.063 1.042 0.363 Up TIGAL 8709 0.487 0.064 0.135 -2.019 0.063 1.042 0.363 Up MAPIB 12033 0.487 0.066 0.136 -2.113 1.14 0.667 0.363 Up PEXSL 14845 0.487 0.07 0.144 2.116 -0.653 -0.855 0.363 Up COL5A3 3993 0.486 0.092 0.188 1.893 -0.24 1.098 0.363 Up SULFI 18774 0.486 0.118 0.244 1.176 -0.501 1.133 0.363 Up SPATI 6188 0.485 0.103 0.212 -2 1.267 0.546 0.363 Up SPOCKI 18453 0.485 0.101 0.25 1.487 -0.26 1.082 0.363 Up FST 6775 0.484 0.185 0.06 0.124 -2.144 0.937 0.756 0.363 Up FST 6775 0.484 0.135 0.279 1.957 0.183 0.961 0.363 Up SPRYI 18482 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up LIMSIL 9686 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up RNF175 16670 0.484 0.088 0.182 -2.011 1.205 1.306 0.577 0.363 Up RNF175 16660 0.484 0.088 0.182 -2.011 1.205 1.306 0.577 0.363 Up RNF175 16660 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up RNF175 16670 0.484 0.088 0.182 -2.011 1.203 0.589 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 1.18 4.067 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 1.18 4.18 4.0676 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 4.18 4.085 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 4.18 4.055 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 4.18 4.055 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 4.18 4.055 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 4.18 4.055 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 4.18 4.055 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 4.18 4.055 0.363 Up RNF175 1670 0.483 0.133 0.276 2.2016 0.048 1.085 0.363 Up DPT 5137 0.483 0.133 0.0276 2.2018 0.584 0.885 0.363 Up DPT 5137 0.483 0.133 0.0276 2.2018 1.118 0.647 0.363 Up DPT 5137 0.483 0.133 0.0276 2.2018 1.118 0.647 0.363 Up										Up
WNT2 2091 0.487 0.075 0.153 2-2.019 0.063 1.042 0.363 Up ITGAL 8709 0.487 0.064 0.132 2-2.058 0.1 1.048 0.363 Up MAPIB 12033 0.487 0.066 0.136 2-2.113 1.14 0.657 0.363 Up PASSLE 14845 0.487 0.07 0.144 2.116 -0.653 -0.855 0.363 Up COL5A3 3993 0.486 0.092 0.188 -1.893 -0.24 1.098 0.363 Up SULFI 18774 0.486 0.118 0.244 1.176 -0.501 1.133 0.363 Up SULFI 16187 0.485 0.103 0.212 -2 1.267 0.546 0.363 Up SPOCKI 18453 0.485 0.103 0.212 -2 1.267 0.546 0.363 Up SPOCKI 18453 0.485 0.06 0.124 -2.144 0.937 0.756 0.363 Up FST 6775 0.484 0.135 0.279 1.957 0.183 0.961 0.363 Up SPRYI 18482 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up LIMS3L 9686 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up SPRYI 18482 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up SPRYI 18482 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up SPRYI 18485 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up SPRYI 18485 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up SPRYI 18485 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up SPRYI 18485 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up SPRYI 18485 0.484 0.086 0.182 -2.011 1.203 0.589 0.363 Up SPRYI 18485 0.484 0.086 0.182 -2.011 1.203 0.589 0.363 Up SPRYI 18485 0.484 0.086 0.182 -2.011 1.203 0.589 0.363 Up SPRYI 18485 0.484 0.088 0.182 -2.011 1.203 0.589 0.363 Up SPRYI 18485 0.484 0.046 0.096 -2.089 1.629 0.447 0.363 Up SPRYI 18485 0.484 0.048 0.099 2.18 1.18 4.6676 0.363 Up SPRIENBPI 17293 0.484 0.048 0.099 2.18 1.18 4.6676 0.363 Up SPRIENBPI 17293 0.484 0.048 0.099 0.125 1.118 0.4676 0.363 Up DPT 5137 0.483 0.133 0.276 -2.003 0.554 0.835 0.363 Up DPT 5137 0.483 0.133 0.0276 -2.003 0.554 0.835 0.363 Up DPT 5137 0.483 0.133 0.0276 -2.003 0.554 0.835 0.363 Up DPT 5137 0.483 0.133 0.0276 -2.003 0.554 0.835 0.363 Up	MME	12524	0.488	0.086	0.176	-1.901	1.697	0.32	0.363	Up
TIGAL 8709										
MAPIB 1203 0.487 0.066 0.136 -2.113 1.14 0.657 0.363 Up PEXSL 14845 0.487 0.07 0.144 2.116 -0.653 -0.855 0.363 Up COL5A3 3993 0.486 0.092 0.188 -1.893 -0.24 1.098 0.363 Up SULFI 18774 0.486 0.118 0.244 -1.76 -0.501 1.133 0.363 Up FATT 6188 0.485 0.103 0.212 -2 1.267 0.546 0.363 Up SPOCKI 18453 0.485 0.121 0.25 -1.847 -0.26 1.082 0.363 Up JAM3 8784 0.485 0.06 0.124 -2.144 0.937 0.756 0.363 Up FST 6775 0.484 0.035 0.279 -1.957 0.183 0.961 0.363 Up SPRY1 18482 0.484										
PEXSL 14845 0.487 0.07 0.144 2.116 0.653 -0.855 0.363 Up COLSA3 3993 0.486 0.092 0.188 1.893 -0.24 1.098 0.363 Up SULFI 18774 0.486 0.118 0.244 -1.76 -0.501 1.133 0.363 Up FATI 6188 0.485 0.103 0.212 -2 1.267 0.546 0.363 Up SPOCKI 18453 0.485 0.121 0.25 -1.847 -0.26 1.082 0.363 Up JAM3 8784 0.485 0.06 0.124 -2.144 0.937 0.756 0.363 Up FST 6775 0.484 0.135 0.279 -1.957 0.183 0.961 0.363 Up SPNY1 18482 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up SIMSL 9686 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up LIMSL 9686 0.484 0.088 0.182 -2.031 1.203 0.589 0.363 Up RNF175 16670 0.484 0.088 0.182 -2.031 1.203 0.589 0.363 Up RNF175 16670 0.484 0.046 0.096 -2.089 1.629 0.447 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 -1.18 0.6676 0.363 Up PRDM6 15602 0.484 0.048 0.099 2.18 -1.18 -0.676 0.363 Up PRDM6 15602 0.484 0.048 0.099 2.18 -1.18 -0.676 0.363 Up PRDM6 15602 0.484 0.048 0.099 2.18 -1.18 -0.676 0.363 Up PRDM6 15602 0.484 0.048 0.099 2.18 -1.18 -0.676 0.363 Up PRDM6 15602 0.484 0.061 0.125 -2.016 0.048 1.085 0.363 Up PLDT 5137 0.483 0.133 0.276 -2.003 0.554 0.835 0.363 Up PDFT 5137 0.483 0.133 0.076 -2.003 0.554 0.835 0.363 Up PDFT 5137 0.483 0.133 0.076 -2.003 0.554 0.835 0.363 Up PMAGEL2 11991 0.482 0.07 0.146 -2.2078 1.118 0.647 0.365		12033	0.487		0.136					
SULF 18774 0.486 0.118 0.244 -1.76 -0.501 1.133 0.363 Up FATI 6188 0.485 0.103 0.212 -2 2.67 0.546 0.363 Up SPOCK1 18453 0.485 0.121 0.25 -1.847 -0.26 1.082 0.363 Up JAM3 8784 0.485 0.06 0.124 -2.144 0.937 0.756 0.363 Up FST 6775 0.484 0.135 0.279 -1.957 0.183 0.961 0.363 Up SPRY1 18482 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up SPRY1 18482 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up LIMS31 9.686 0.484 0.067 0.139 -2.102 1.076 0.677 0.363 Up ZNF300P1 21390 0.484 0.088 0.182 -2.031 1.203 0.589 0.363 Up RNF175 1.6670 0.484 0.046 0.096 -2.089 1.629 0.447 0.363 Up USP12 20558 0.484 0.048 0.099 2.18 -1.18 -0.676 0.363 Up PRDM6 15602 0.484 0.061 0.125 -2.016 -0.048 1.085 0.363 Up DPT 5137 0.483 0.133 0.276 -2.003 0.554 0.835 0.363 Up PID1 1.4982 0.483 0.093 0.192 -1.168 0.247 0.363 Up MAGEL2 11991 0.482 0.07 0.146 -2.078 1.118 0.647 0.365 Up	PEX5L	14845	0.487	0.07	0.144	2.116		-0.855		Up
FATI 6188 0.485 0.103 0.212 -2 1.267 0.546 0.363 Up SPOCKI 181453 0.485 0.121 0.25 1.387 -0.26 1.082 0.363 Up JAM3 8784 0.485 0.06 0.124 -2.144 0.937 0.756 0.363 Up FST 6775 0.484 0.135 0.279 1.957 0.83 0.961 0.363 Up SPRY1 18142 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up LIMS3I. 9686 0.484 0.086 0.179 -2.102 1.076 0.677 0.363 Up ZNF3001 21390 0.484 0.088 0.182 -2.031 1.203 0.589 0.363 Up RNF175 16670 0.484 0.048 0.096 2.209 1.629 0.447 0.363 Up RNF175 16670 0.484 0.048 0.099 2.18 1.18 -0.676 0.363 Up PDDM6 15602 0.484 0.061 0.125 -2.016 0.048 1.085 0.363 Up SELENBP1 17293 0.484 0.122 0.253 2.019 -0.891 1.095 0.363 Up DPT 5137 0.483 0.133 0.276 -2.203 0.554 0.835 0.363 Up PID1 14982 0.483 0.093 0.192 1.816 1.768 0.247 0.363 Up MAGEL2 11991 0.482 0.07 0.146 -2.278 1.118 0.647 0.363 Up										
SPOCKI 18453 0.485 0.121 0.25 -1.847 -0.26 1.082 0.363 Up JAM3 8784 0.485 0.06 0.124 -2.144 0.937 0.756 0.363 Up FST 6775 0.484 0.135 0.279 -1.957 0.183 0.961 0.363 Up SPRY1 118482 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up LIMS31 9686 0.484 0.066 0.199 -2.102 1.076 0.677 0.363 Up ZNP300P1 2.1390 0.484 0.088 0.182 -2.031 1.203 0.589 0.363 Up RNF175 16670 0.484 0.048 0.096 -2.089 1.629 0.447 0.363 Up VBP171 2.0258 0.484 0.048 0.099 2.18 -1.18 -0.676 0.363 Up PRDM6 15602										
JAM3 8784 0.485 0.06 0.124 -2.144 0.937 0.756 0.363 Up FST 6775 0.484 0.135 0.279 -1.957 0.183 0.961 0.363 Up SPRY1 18482 0.484 0.086 0.179 -2.009 1.332 0.524 0.363 Up LIMS3L 9686 0.484 0.067 0.139 -2.102 1.076 0.677 0.363 Up ZNF300P1 21390 0.484 0.088 0.182 -2.031 1.203 0.589 0.363 Up RNF175 16670 0.484 0.048 0.096 -2.089 1.629 0.447 0.363 Up USP21 20555 0.484 0.048 0.099 2.18 -1.18 -0.676 0.363 Up PRDM6 15602 0.484 0.061 0.125 -2.016 -0.048 1.085 0.363 Up SELENBBP 17293										
SPRYI 18482 0.484 0.086 0.179 2.2009 1.332 0.524 0.363 Up LIMS3L 9686 0.484 0.067 0.139 2.102 1.076 0.677 0.363 Up ZNF300P1 21390 0.484 0.088 0.182 -2.031 1.203 0.589 0.363 Up NFF175 16670 0.484 0.048 0.096 -2.089 1.629 0.447 0.363 Up USP21 20558 0.484 0.048 0.099 2.18 -1.18 -0.676 0.363 Up PRDM6 15602 0.484 0.061 0.125 -2.016 -0.048 1.085 0.363 Up SELENBBP 17293 0.484 0.122 0.253 2.019 -0.891 -0.708 0.363 Up DPT 5137 0.483 0.133 0.276 -2.003 0.554 0.835 0.363 Up PIDI 1.4982 <	JAM3	8784	0.485	0.06	0.124	-2.144	0.937	0.756	0.363	Up
LIMS3L 9686 0.484 0.067 0.139 -2.102 1.076 0.677 0.363 Up ZNP300P1 21390 0.484 0.088 0.182 2.031 1.203 0.589 0.363 Up RNF175 1.6670 0.484 0.048 0.096 2.089 1.629 0.447 0.363 Up USP21 2.0558 0.484 0.048 0.099 2.18 -1.18 -4.676 0.363 Up PRDM6 15602 0.484 0.061 0.125 2.016 -0.048 1.085 0.363 Up SELENBP1 17293 0.484 0.012 0.253 2.019 -0.891 -0.708 0.363 Up DPT 5137 0.483 0.133 0.276 -2.003 0.554 0.835 0.363 Up DPT 15137 0.483 0.093 0.192 -1.816 1.768 0.247 0.363 Up MAGEL2 11991 0.482 0.07 0.146 -2.278 1.118 0.647 0.363 Up										
ZNF300P1 21390 0.484 0.088 0.182 2.2.031 1.203 0.589 0.363 Up RNF175 16670 0.484 0.046 0.096 2.2.089 1.629 0.447 0.363 Up USP21 20558 0.484 0.048 0.099 2.18 -1.18 -0.676 0.363 Up PRDM6 15602 0.484 0.061 0.125 2.016 -0.048 1.085 0.363 Up SELENBBP 17293 0.484 0.122 0.253 2.019 0.891 -0.708 0.363 Up DPT 5137 0.483 0.133 0.276 2.2.016 0.554 0.355 0.363 Up DPT 1317 0.483 0.133 0.276 2.2.003 0.554 0.355 0.363 Up MAGEL2 11991 0.482 0.07 0.146 -2.2.078 1.118 0.647 0.363 Up										
USP21 20558 0.484 0.048 0.099 2.18 -1.18 -0.676 0.363 Up PRDM6 1 5602 0.484 0.061 0.125 -2.016 -0.048 1.085 0.363 Up SELENBP1 1 7293 0.484 0.122 0.253 2.019 -0.891 -0.708 0.363 Up DPT 5137 0.483 0.133 0.276 -2.003 0.554 0.835 0.363 Up PIDI 1.4982 0.483 0.093 0.192 -1.816 1.768 0.247 0.363 Up MAGEL2 11991 0.482 0.07 0.146 -2.2078 1.118 0.647 0.363 Up	ZNF300P1	21390	0.484	0.088	0.182	-2.031	1.203	0.589	0.363	Up
PRDM 15602 0.484 0.061 0.125 2.016 -0.048 1.085 0.363 Up SELENBBP 17293 0.484 0.122 0.253 2.019 -0.891 -0.708 0.363 Up DPT 5137 0.483 0.133 0.276 -2.003 0.554 0.835 0.363 Up PIDI 1.4982 0.483 0.093 0.192 -1.816 1.768 0.247 0.363 Up MAGEL2 11991 0.482 0.07 0.146 -2.278 1.118 0.647 0.363 Up										Up
SELENBPI 17293 0.484 0.122 0.253 2.019 -0.891 -0.708 0.363 Up DPT 5137 0.483 0.133 0.276 -2.203 0.554 0.835 0.363 Up PIDI 14982 0.483 0.093 0.192 -1.816 1.768 0.247 0.363 Up MAGEL2 11991 0.482 0.07 0.146 -2.078 1.118 0.647 0.363 Up										Up
DPT 5137 0.483 0.133 0.276 -2.003 0.554 0.835 0.363 Up PIDI 14982 0.483 0.093 0.192 -1.816 1.768 0.247 0.363 Up MAGEL2 11991 0.482 0.07 0.146 -2.2078 1.118 0.647 0.363 Up										Up
MAGEL2 11991 0.482 0.07 0.146 -2.078 1.118 0.647 0.363 Up	DPT	5137	0.483	0.133	0.276	-2.003	0.554	0.835	0.363	Up
	MAGEL2 FAM195A	11991 5990	0.482 0.482	0.07 0.056	0.146 0.117	-2.078 2.066	1.118 -1.453	0.647 -0.506	0.363 0.363	Up Up

G ID				P				directed B codes (8/)	n 1
Gene ID AOC3	Gene Name 770	Score (d) 0.482	Numerator (r) 0.109	Denominator (s+s0) 0.227	-1.872	1.592	0.347	adjusted P value (%) 0.363	Direction Up
LAMA1	9486	0.482	0.056	0.117	-2.147	0.846	0.794	0.363	Up
C5orf13	2477	0.482	0.065	0.135	-2.099	0.52	0.9	0.363	Up
KANK2	8818	0.481	0.067	0.14	-2.068	1.216	0.602	0.363	Up
AKAP13	466	0.481	0.049	0.101	-2.176	1.061	0.722	0.363	Up
TNFRSF10D PTGIR	19723 15922	0.481	0.075 0.063	0.155 0.131	-1.726 -2.096	1.967 0.495	0.119 0.909	0.363 0.363	Up Up
TSHZ2	20085	0.48	0.074	0.151	-1.944	1.556	0.4	0.363	Up
MAMDC2	12007	0.48	0.062	0.13	-2.112	0.75	0.814	0.363	Up
FABP4	5804	0.479	0.125	0.261	-1.372	2.169	-0.15	0.363	Up
WISP1	20897	0.479	0.055	0.114	-2.067	0.131	1.04	0.363	Up
SWAP70	18829 42	0.479 0.479	0.054	0.112	-1.574	2.249 0.988	-0.076	0.363	Up
ABCA6 ADAMTS1	269	0.479	0.091 0.101	0.19 0.211	-2.03 -1.933	1.413	0.675 0.452	0.363 0.363	Up Up
VSNL1	20740	0.479	0.108	0.226	-1.956	1.289	0.514	0.363	Up
LOC541471	11281	0.478	0.083	0.174	-1.619	-0.816	1.186	0.363	Up
KRT17	9319	0.478	0.228	0.477	-1.774	1.583	0.299	0.363	Up
DAP3	4567	0.478	0.049	0.104	2.162	-0.88	-0.788	0.363	Up
CR2 D4S234E	4142 4545	0.477 0.477	0.098 0.091	0.206 0.19	-0.932 -1.441	2.384 2.165	-0.47 -0.112	0.363 0.363	Up
PECAM1	14810	0.477	0.067	0.19	-1.884	1.721	0.301	0.363	Up Up
KRT16P2	9318	0.477	0.217	0.455	-1.729	1.671	0.24	0.363	Up
STARD8	18661	0.477	0.051	0.106	-2.149	0.913	0.768	0.363	Up
ADIPOR1	333	0.477	0.054	0.114	2.04	-1.473	-0.484	0.363	Up
JAM2	8783	0.477	0.069	0.144	-2.007	1.357	0.513	0.363	Up
MRPL9	12705	0.477	0.047	0.098	2.174	-0.737	-0.852	0.363	Up
COMP MT1E	4020 12791	0.476 0.476	0.153 0.107	0.32 0.224	-1.894 -2.006	0.096 0.751	0.963 0.758	0.363 0.363	Up Up
PARVA	14557	0.476	0.06	0.126	-2.073	1.185	0.618	0.363	Up
ST6GAL2	18617	0.476	0.083	0.174	-1.883	-0.183	1.069	0.363	Up
FAM20A	6009	0.476	0.073	0.154	-2.062	0.778	0.776	0.363	Up
C12orf70	1830	0.475	0.072	0.152	-1.987	0.129	0.999	0.363	Up
ROR1	16743	0.475	0.055	0.117	-2.118	0.753	0.816	0.363	Up
MXRA7 FAT4	12902 6191	0.475 0.475	0.058 0.037	0.121 0.077	-2.109 -2.236	0.818 1.206	0.785	0.363 0.363	Up
RND3	16628	0.475	0.037	0.241	-2.236 -1.494	2.053	-0.039	0.363	Up Up
ITGAV	8725	0.474	0.072	0.153	-2.036	1.075	0.643	0.381	Up
C20orf103	2234	0.474	0.129	0.272	-1.975	0.716	0.755	0.381	Up
RUSC1	17002	0.474	0.051	0.107	2.111	-1.161	-0.647	0.381	Up
ITGA5	8716	0.474	0.075	0.159	-2.012	0.343	0.926	0.381	Up
EIF5A2	5468	0.474	0.049	0.104	-2.097	0.29	0.992	0.381	Up
AKR1B15 CADM3	488 2813	0.473 0.473	0.118 0.058	0.249 0.123	-0.978 -1.255	2.321 2.373	-0.42 -0.295	0.381 0.381	Up Up
IGFBP7	8409	0.473	0.082	0.175	-2.007	1.06	0.633	0.381	Up
MAGIX	11996	0.472	0.04	0.084	2.193	-1.162	-0.69	0.381	Up
MT1L	12796	0.472	0.096	0.203	-1.999	0.869	0.706	0.381	Up
CCL14	3132	0.472	0.142	0.3	-1.391	2.087	-0.107	0.381	Up
FAM7A1	6115	0.472	0.046	0.097	-1.947	-0.324	1.161	0.381	Up
TROVE2	20036	0.472	0.045	0.095	2.149	-1.092	-0.696	0.381	Up
PDE2A CLIP4	14730 3822	0.472 0.472	0.088 0.07	0.187 0.149	-1.685 -2.041	1.88 0.972	0.132 0.687	0.381 0.381	Up Up
SPHK2	18419	0.472	0.039	0.083	2.207	-0.97	-0.775	0.381	Up
MMP23B	12540	0.471	0.092	0.196	-1.875	1.504	0.384	0.381	Up
CLDN5	3774	0.471	0.107	0.227	-1.721	1.767	0.196	0.381	Up
PRNP	15688	0.471	0.095	0.202	-1.986	1.004	0.645	0.381	Up
C20orf194	2258	0.471	0.054	0.115	-2.101	0.661	0.844	0.381	Up
ARHGAP20	918 5786	0.471 0.47	0.054 0.057	0.116 0.121	-2.073 -2.089	1.16 0.772	0.628 0.793	0.381 0.381	Up
F2R KRT14	9315	0.47	0.235	0.121	-2.089	1.571	0.793	0.381	Up Up
USP13	20548	0.47	0.062	0.131	2.06	-0.998	-0.686	0.381	Up
ANXA3	761	0.47	0.143	0.304	-1.289	2.143	-0.184	0.381	Up
NPR2	13642	0.47	0.071	0.151	-2.039	0.762	0.77	0.381	Up
LMCD1	9727	0.47	0.087	0.184	-1.93	0.111	0.976	0.381	Up
CECR5-AS1	3467	0.47	0.071	0.151	2.015	-1.095	-0.624	0.381	Up
KLF6 LOC150622	9208 10676	0.469 0.469	0.05 0.06	0.107 0.127	-2.062 -1.046	1.318 2.42	0.558 -0.424	0.381 0.381	Up Up
HOXA4	8090	0.469	0.057	0.127	-2.024	1.326	0.535	0.381	Up
ITGBL1	8739	0.469	0.117	0.249	-1.903	0.166	0.939	0.381	Up
EFNB2	5378	0.469	0.078	0.167	-2.007	0.989	0.662	0.381	Up
ZFPM2	21206	0.469	0.07	0.15	-2.031	0.922	0.702	0.381	Up
ECI1	5313	0.469	0.072	0.153	2 2 2 5 5	-1.158	-0.59	0.381	Up
Clorf27 CXCL12	2201 4398	0.469 0.468	0.056 0.072	0.119 0.155	2.055 -2.013	-1.168 0.996	-0.615 0.662	0.381 0.381	Up Up
VPS72	20728	0.468	0.072	0.103	2.096	-1.14	-0.648	0.381	Up
KIAA0408	9027	0.468	0.053	0.113	-2.003	1.442	0.477	0.381	Up
F3	5790	0.468	0.119	0.254	-1.895	1.258	0.494	0.381	Up
ZNF646	21624	0.467	0.026	0.055	2.23	-1.886	-0.418	0.381	Up
IGF2	8396	0.467	0.066	0.141	-1.99	1.25	0.548	0.381	Up
PEAK1 ADH1C	14806 324	0.467 0.466	0.053 0.153	0.114 0.328	-2.078 -1.265	1.01 2.126	0.691 -0.19	0.381 0.381	Up Up
C6orf145	2533	0.466	0.075	0.16	-1.789	1.716	0.253	0.381	Up
PTGFRN	15921	0.466	0.07	0.149	-1.983	0.298	0.928	0.381	Up
KIF26A	9151	0.466	0.054	0.116	-1.609	2.095	0.005	0.381	Up
KCTD12	8949	0.465	0.074	0.158	-1.984	1.108	0.602	0.381	Up
ADD3 TSNAX	321	0.465	0.104	0.223	-1.869	1.372	0.434	0.381	Up
TSNAX SPSB1	20094 18490	0.465 0.464	0.047 0.067	0.102 0.144	2.014 -2.018	-1.467 0.604	-0.472 0.823	0.381 0.381	Up Up
TMEM43	19608	0.464	0.067	0.108	-2.018	0.698	0.823	0.381	Up
MFAP4	12347	0.463	0.163	0.353	-1.788	1.434	0.366	0.381	Up
GLIS1	7157	0.463	0.075	0.161	-1.827	-0.228	1.058	0.381	Up
SYNPO	18864	0.463	0.054	0.117	-2.022	1.226	0.574	0.381	Up
KIAA0907	9049	0.463	0.044	0.096	2.062	-1.337	-0.551	0.381	Up
CERCAM	3536	0.463	0.061	0.131	-1.812	-0.37	1.108	0.381	Up
NKD2 ETHE1	13486 5713	0.462 0.462	0.068 0.056	0.147 0.121	-1.985 -1.899	0.383 1.594	0.895 0.36	0.381 0.381	Up Up
WISP2	20898	0.462	0.036	0.121	-1.833	0.124	0.919	0.381	Up
SPHK1	18418	0.462	0.067	0.146	-2.008	0.83	0.727	0.381	Up
EFEMP2	5364	0.461	0.073	0.159	-1.928	0.157	0.956	0.381	Up
PTGIS	15923	0.46	0.1	0.218	-1.716	1.675	0.231	0.381	Up
PTN	15939	0.46	0.155	0.337	-1.607	1.752	0.142	0.381	Up
LYSMD1 SCN3B	11921 17192	0.46 0.46	0.063 0.082	0.136 0.178	1.893 -1.935	-1.495 1.129	-0.398 0.567	0.381 0.554	Up
TCEAL7	19092	0.46	0.082	0.178	-1.935 -1.701	1.129	0.567	0.554	Up Up
SPIRE1	18445	0.459	0.051	0.112	0.952	-2.427	0.477	0.554	Up
RAB3A	16113	0.459	0.071	0.154	1.638	-1.89	-0.103	0.554	Up
NSUN7	13736	0.458	0.093	0.203	0.986	1.524	-1.137	0.554	Up

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	contrast 1	contrast 2	contrast 3	adjusted P value (%)	Direction
SLC26A10	17801	0.458	0.063	0.138	-1.88	-0.082	1.027	0.554	Up
LOC100132891	10294	0.458	0.028	0.062	-2.262	0.461	1.01	0.554	Up
PLSCR4	15219	0.458	0.074	0.162	-1.763	1.67	0.258	0.554	Up
TNFRSF18	19731	0.457	0.09 0.06	0.197	1.589	-1.863 0.912	-0.088	0.554	Up
C6orf174 SYNDIG1	2545 18851	0.457 0.457	0.06	0.131 0.284	-2.006 -1.833	0.912	0.692 0.919	0.554 0.554	Up Up
RECQL	16396	0.457	0.03	0.264	-2.213	0.379	1.017	0.554	Up
CDKN1C	3411	0.457	0.09	0.197	-1.81	1.47	0.364	0.554	Up
PANX2	14505	0.457	0.033	0.073	2.067	-1.614	-0.441	0.554	Up
ITGB3	8732	0.456	0.093	0.204	-1.918	0.441	0.836	0.554	Up
MYO1D	12974 1886	0.456	0.053 0.037	0.115	-2.029	0.566	0.844 -0.542	0.554 0.554	Up
C14orf21 CRISPLD2	4183	0.456 0.456	0.037	0.08 0.142	2.086 -1.985	-1.389 0.885	-0.542 0.692	0.554 0.554	Up Up
ADAMTS12	271	0.456	0.045	0.098	-1.858	-0.354	1.126	0.554	Up
OTUD7B	14397	0.455	0.055	0.12	1.922	-1.438	-0.436	0.554	Up
CDO1	3421	0.455	0.108	0.238	-1.553	1.845	0.076	0.554	Up
GOLGA7B	7287	0.454	0.064	0.141	-1.822	-0.206	1.047	0.554	Up
MITF AASS	12471 27	0.454 0.454	0.053 0.057	0.116 0.126	-1.98 -1.935	0.257 1.331	0.943 0.486	0.554 0.554	Up Up
AKR1C1	489	0.454	0.094	0.208	-1.291	2.1	-0.165	0.554	Up
CD248	3237	0.454	0.066	0.146	-1.969	0.542	0.822	0.554	Up
TP53I3	19830	0.454	0.067	0.147	-1.786	1.625	0.288	0.554	Up
RCAN2	16364	0.454	0.054	0.119	-1.922	1.422	0.442	0.554	Up
POTEF	15389	0.454	0.056	0.123	-1.98	1.149	0.583	0.554	Up
LRRN4CL WNK2	11831 20903	0.454 0.453	0.072 0.063	0.158 0.138	-1.84 1.97	1.462 -1.002	0.383 -0.637	0.554 0.554	Up
TMEM204	19560	0.453	0.003	0.158	-1.955	0.687	0.756	0.554	Up Up
LDB2	9574	0.453	0.051	0.113	-2.021	0.94	0.689	0.554	Up
GLIS2	7158	0.453	0.086	0.19	-1.872	0.189	0.914	0.554	Up
TSPAN18	20105	0.453	0.063	0.139	-1.977	0.821	0.714	0.554	Up
HHIPL1 EDIL3	7863 5333	0.452 0.452	0.061 0.118	0.135 0.26	-1.923 -1.388	0.173 -0.93	0.947 1.109	0.554 0.554	Up
EDIL3 CPZ	5333 4139	0.452 0.452	0.118	0.26 0.168	-1.388 -1.913	-0.93 1.108	0.564	0.554 0.554	Up Up
MAP4K5	12066	0.452	0.046	0.108	-2.052	0.801	0.762	0.554	Up
GNMT	7258	0.451	0.065	0.143	0.974	1.572	-1.15	0.554	Up
XG	20957	0.451	0.063	0.139	-1.949	0.372	0.88	0.554	Up
CASKINI	2915	0.451	0.055	0.123	1.856	-1.544	-0.358	0.554	Up
KLK8	9270	0.451	0.219	0.486	-1.237	2.011	-0.158	0.554	Up
MIPOL1 TMEM109	12462 19451	0.451 0.451	0.065 0.062	0.144 0.137	1.62 -1.307	-1.873 2.171	-0.1 -0.185	0.554 0.554	Up Up
PCSK7	14699	0.451	0.036	0.081	-2.068	1.339	0.553	0.554	Up
LOXL1	11682	0.451	0.104	0.23	-1.849	0.221	0.889	0.554	Up
COL8A1	4001	0.451	0.129	0.286	-1.749	-0.104	0.967	0.554	Up
PLAC9	15124	0.451	0.071	0.157	-1.908	1.171	0.536	0.554	Up
SNORA16B C11orf93	18173 1784	0.451 0.451	0.053 0.043	0.118 0.095	1.842 -1.68	-1.598 1.994	-0.329 0.083	0.554 0.554	Up
ZFAND5	21174	0.45	0.043	0.102	-1.06	0.282	0.944	0.554	Up Up
BAIAP3	1384	0.45	0.117	0.259	1.841	-1.129	-0.518	0.554	Up
MAP7D3	12072	0.45	0.041	0.091	-2.038	1.241	0.576	0.554	Up
SLC36A1	17880	0.45	0.062	0.139	-1.853	-0.056	1.002	0.554	Up
EMX2OS TRCE	5538	0.449	0.079	0.175	-1.915	0.943	0.632	0.554	Up
TBCE JUN	19050 8810	0.449 0.449	0.053 0.095	0.119 0.211	1.83 -1.756	-1.6 1.479	-0.322 0.331	0.554 0.554	Up Up
HOXA7	8093	0.449	0.126	0.211	-1.782	1.304	0.416	0.554	Up
PPP1R15A	15492	0.449	0.053	0.118	-1.748	1.754	0.216	0.554	Up
CAPN5	2876	0.449	0.078	0.174	-1.92	0.838	0.677	0.554	Up
ZFP36L1	21192	0.449	0.072	0.16	-1.854	1.333	0.442	0.554	Up
CYHR1 RCBTB2	4466 16367	0.449 0.449	0.051 0.052	0.114 0.115	1.947 -1.85	-1.283 1.566	-0.511 0.346	0.554 0.554	Up
C12orf75	1834	0.449	0.052	0.115 0.191	-1.85 -1.906	0.846	0.346	0.554 0.554	Up Up
CCDC82	3102	0.448	0.074	0.164	-1.905	1.064	0.578	0.554	Up
FKBP9	6419	0.448	0.033	0.073	-2.108	0.293	0.997	0.554	Up
PBX1	14585	0.448	0.059	0.131	1.97	-0.753	-0.738	0.554	Up
DECR2	4722	0.448	0.054	0.12	1.975	-1.013	-0.635	0.554	Up
PRELP GPC6	15614 7333	0.447 0.447	0.025 0.076	0.056 0.17	-2.113 -1.877	1.819 0.255	0.383	0.554 0.554	Up
IGFBP6	8408	0.447	0.076	0.17	-1.831	1.279	0.89	0.554	Up Up
SLIT2	18035	0.446	0.067	0.15	-1.936	0.741	0.725	0.554	Up
PGM5	14896	0.446	0.053	0.118	-1.756	1.713	0.237	0.554	Up
B4GALT3	1352	0.446	0.061	0.138	1.951	-0.744	-0.731	0.554	Up
KRT5	9347	0.446	0.197	0.443	-1.688	1.418	0.32	0.833	Up
MGC50722 SGMS2	12415 17483	0.446 0.446	0.067 0.057	0.151 0.128	1.851 -1.931	-1.328 0.317	-0.443 0.893	0.833 0.833	Up Up
ALDH1A3	513	0.446	0.106	0.238	-1.403	1.93	-0.038	0.833	Up
CSRP2	4277	0.445	0.084	0.189	-1.865	1.097	0.543	0.833	Up
FHAD1	6379	0.445	0.03	0.068	-1.986	1.746	0.345	0.833	Up
CTHRC1	4325	0.445	0.117	0.263	-1.833	0.339	0.832	0.833	Up
AKR1B1 TMEM119	486 19459	0.445 0.445	0.072 0.099	0.161 0.222	-1.585 -1.809	1.825 1.245	0.101 0.454	0.833 0.833	Up Up
SLC26A3	17804	0.445	0.085	0.222	-0.704	2.258	-0.539	0.833	Up
ALDH1L2	516	0.444	0.073	0.164	-1.814	-0.007	0.962	0.833	Up
CXCL2	4403	0.444	0.138	0.311	-1.695	1.452	0.31	0.833	Up
CYP2U1	4503	0.444	0.054	0.122	-1.943	1.103	0.582	0.833	Up
SETDB1	17425	0.444	0.038	0.084	1.952	-1.542	-0.41	0.833	Up
MEIS2 FMOD	12286 6645	0.444	0.065 0.111	0.145 0.249	-1.92 -1.825	0.477 1.081	0.823 0.529	0.833 0.833	Up Up
ARPC2	1032	0.444	0.046	0.104	-2.006	0.815	0.732	0.833	Up
EXOC8	5753	0.443	0.039	0.088	1.967	-1.42	-0.467	0.833	Up
STX6	18750	0.443	0.048	0.108	1.957	-1.178	-0.559	0.833	Up
CNIH3	3895	0.443	0.079	0.177	-1.887	0.514	0.79	0.833	Up
PEX19 NVL	14840 13837	0.443 0.443	0.057 0.069	0.128 0.156	1.952 1.896	-0.757 -1.021	-0.727 -0.59	0.833 0.833	Up
NVL SOD3	13837	0.443	0.069	0.156 0.288	1.896 -1.163	-1.021 2.05	-0.59 -0.213	0.833 0.833	Up Up
C22orf13	2313	0.442	0.039	0.288	2.015	-0.313	-0.213	0.833	Up
CNTNAP3	3940	0.442	0.082	0.185	-1.775	1.382	0.381	0.833	Up
CLDN8	3777	0.441	0.091	0.207	-1.216	2.066	-0.191	0.833	Up
NR2F1	13676	0.441	0.137	0.312	-1.587	1.625	0.183	0.833	Up
FBXO28	6241	0.441	0.054	0.121	1.95	-0.932	-0.655	0.833	Up
ENPP2 RPS6K A3	5562 16898	0.441 0.441	0.077 0.058	0.174	-1.544 -1.833	1.817 1.4	0.083 0.404	0.833 0.833	Up
RPS6KA3 PLD1	15152	0.441	0.058	0.133 0.109	-1.833 -1.976	0.907	0.404	0.833	Up Up
HSPG2	8245	0.44	0.048	0.109	-1.976	0.23	0.935	0.833	Up
GJB2	7120	0.44	0.145	0.329	-1.722	-0.017	0.918	0.833	Up
L3MBTL3	9473	0.44	0.048	0.109	-1.689	1.802	0.165	0.833	Up
MRAS	12639	0.44	0.087	0.197	-1.737	1.43	0.341	0.833	Up
APOD	846	0.44	0.181	0.413	-0.431	2.145	-0.638	0.833	Up

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	contrast 1	contrast 2	contrast 3	adjusted P value (%)	Direction
COG2	3953	0.44	0.052	0.118	1.933	-1.077	-0.587	0.833	Up
LHFPL2	9644	0.439	0.062	0.142	-1.913	0.864	0.663	0.833	Up
LY96	11899	0.439	0.072	0.163	-1.879	0.966	0.603	0.833	Up
OSGIN2	14363	0.439	0.047	0.107	1.98	-0.668	-0.777	0.833	Up
CDKL5	3408	0.439	0.065	0.147	-1.889	1.03	0.583	0.833	Up
ADPRH	346	0.439	0.058	0.132	-1.915	0.998	0.61	0.833	Up
PYGO2	16044	0.439	0.034	0.077	2.074	-1.06	-0.669	0.833	Up
sep.10	17341	0.439	0.065	0.148	-1.728	1.562	0.283	0.833	Up
EGFL6	5387	0.438	0.125	0.286	-1.821	0.771	0.652	0.833	Up
IQCJ-SCHIP1	8647	0.438	0.066	0.15	-1.768	1.46	0.345	0.833	Up
SPATS2L	18389	0.438	0.07	0.16	-1.831	0.155	0.905	0.833	Up
VEGFB	20656	0.438	0.047	0.108	-1.944	1.105	0.582	0.833	Up
P2RY1	14425	0.438	0.049	0.112	-1.938	1.069	0.593	0.833	Up
SV2B	18822	0.438	0.08	0.183	-1.558	1.754	0.116	0.833	Up
SLAMF9	17652	0.437	0.061	0.141	-1.708	-0.325	1.034	0.833	Up
COL14A1	3966	0.437	0.098	0.224	-1.731	1.363	0.365	0.833	Up
PLEKHH2	15184	0.437	0.051	0.116	-1.949	0.764	0.722	0.833	Up
KLHL12	9226	0.437	0.037	0.085	1.923	-1.508	-0.408	0.833	Up
NPC2	13617	0.437	0.061	0.14	-1.795	1.411	0.379	0.833	Up
COL4A2	3985	0.437	0.073	0.167	-1.874	0.556	0.766	0.833	Up
EBF1	5293	0.436	0.048	0.111	-1.899	1.248	0.501	0.833	Up
LGALS1	9618	0.436	0.075	0.172	-1.858	0.448	0.802	0.833	Up
TWIST1	20277	0.436	0.057	0.13	-1.866	1.211	0.498	0.833	Up
S1PR1	17046	0.436	0.071	0.162	-1.557	1.776	0.106	0.833	Up
DNA2	4986	0.436	0.046	0.105	1.965	-0.862	-0.691	0.833	Up
STK17B	18691	0.435	0.058	0.134	-1.864	1.181	0.509	0.833	Up
KLK4	9266	0.435	0.056	0.128	-1.917	0.611	0.767	0.833	Up
MMP7	12547	0.435	0.195	0.449	-1.766	0.914	0.564	0.833	Up
PKIA	15079	0.435	0.091	0.209	-1.341	1.934	-0.072	0.833	Up
SEMA4G	17316	0.435	0.033	0.077	2.063	-0.581	-0.856	0.833	Up
HYMAI	8289	0.435	0.071	0.162	-1.867	0.904	0.622	0.833	Up
FAM189B	5978	0.435	0.046	0.106	1.867	-1.396	-0.423	0.833	Up
FAM203A	6007	0.435	0.065	0.148	1.889	-0.765	-0.69	0.833	Up
CDH13	3350	0.435	0.067	0.154	-1.837	0.217	0.883	0.833	Up
SDHC	17243	0.435	0.047	0.108	1.931	-1.097	-0.578	0.833	Up
LOC728875	11559	0.435	0.082	0.189	-1.842	0.476	0.782	0.833	Up
GRID1	7502	0.435	0.023	0.053	-2.136	1.658	0.46	0.833	Up
FAM69A	6085	0.435	0.045	0.103	-1.921	0.236	0.921	0.833	Up
PDE1B	14728	0.434	0.042	0.097	-1.888	1.408	0.43	0.833	Up
PRR19	15746	0.434	0.056	0.129	1.816	-1.363	-0.41	0.833	Up
LIXIL	9715	0.434	0.04	0.092	-1.81	1.646	0.293	0.833	Up
PALMD	14494	0.434	0.073	0.167	-1.452	1.873	0.011	0.833	Up
DNM1P46	5067	0.434	0.053	0.123	-1.674	1.698	0.2	0.833	Up
LOC100131826	10220	0.434	0.048	0.123	-1.923	0.379	0.864	0.833	Up
C13orf33	1846	0.433	0.093	0.215	-1.768	1.197	0.451	0.833	Up
GABARAPL1	6854	0.433	0.055	0.126	-1.913	0.79	0.693	0.833	Up
ARFGAP2	897	0.433	0.035	0.126	2.026	-0.482	-0.877	0.833	Up
S1PR2	17047	0.433	0.054	0.125	-1.83	1.321	0.434	0.833	Up
ACTBL2	204	0.433	0.069	0.125	-1.801	1.321	0.452	0.833	Up
ANKH	647	0.433	0.069	0.159	-1.863	0.825	0.452	0.833	Up
EPB41L2	5587	0.432	0.069	0.16	-1.863 -1.884	0.825	0.652	0.833	Up Up
A2M	5587	0.432	0.058	0.133		0.975			
					-1.821		0.576	0.833	Up
TPST1	19874	0.432	0.067	0.155	-1.803	0.118	0.906	0.833	Up
SYPL2	18871	0.432	0.04	0.092	-1.744	1.747	0.217	0.833	Up
PCDH18	14608	0.432	0.052	0.12	-1.919	0.661	0.748	0.833	Up
MRPL21	12671	0.432	0.06	0.139	1.864	-0.363	-0.839	0.833	Up
LATS2	9526	0.432	0.043	0.1	-1.922	1.192	0.535	0.833	Up
FAM101B	5825	0.432	0.074	0.171	-1.836	0.417	0.803	0.833	Up
CSDC2	4233	0.432	0.042	0.097	-1.895	1.334	0.463	0.833	Up
HAX1	7724	0.431	0.045	0.105	1.949	-0.804	-0.706	0.833	Up
COL7A1	4000	0.431	0.093	0.216	-1.755	0.111	0.883	0.833	Up

Add. Table 4: Signit Gene ID	ficantly different expr Gene Name	Score (d)	Numerator (r)	S Mc1 and Mc2 Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
GEM	7035	5.207	0.921	0.177	-0.455	0	Up
PLS3	15215	4.912	0.883	0.18	-0.713	0	Up
SKAP2	17634	4.875	0.616	0.126	-0.474	0	Up
TAGLN	18949	4.872	1.01	0.207	-0.586	0	Up
LMOD1 PDLIM4	9739 14775	4.865 4.745	0.467 0.559	0.096 0.118	-0.444 -0.642	0	Up
EGR2	5397	4.735	0.822	0.174	-0.347	0	Up Up
CXorf57	4437	4.677	0.635	0.136	-1.253	0	Up
FERMT2	6321	4.645	0.588	0.127	-0.458	0	Up
ACTA2	202	4.631	1.035	0.224	-0.638	0	Up
GSN	7558	4.585	0.674	0.147	-0.368	0	Up
CYR61	4528	4.584	1.021	0.223	-0.451	0	Up
LIMS2 CALD1	9684 2825	4.544 4.528	0.604 0.783	0.133 0.173	-0.551 -0.442	0	Up Up
BHLHE41	1507	4.501	0.851	0.175	-0.439	0	Up
EGR1	5396	4.461	1.151	0.258	-0.42	0	Up
CAV2	2944	4.439	0.446	0.1	-0.652	0	Up
FOXO1	6712	4.435	0.525	0.118	-0.591	0	Up
ISM1	8696	4.4	0.931	0.212	-0.515	0	Up
CNN1 CTGF	3900 4323	4.382 4.362	1.252 0.963	0.286 0.221	-0.764 -0.484	0	Up Up
CD200	3228	4.351	0.417	0.096	-0.382	0	Up
FMO2	6639	4.303	1.205	0.28	-0.607	0	Up
CLDN11	3758	4.294	0.904	0.211	-0.611	0	Up
NEXN	13395	4.25	0.556	0.131	-0.384	0	Up
TGFB1I1	19244	4.226	0.601	0.142	-0.467	0	Up
PROS1	15712	4.222	0.433	0.103	-0.312	0	Up
AKAP12 MSRB3	465 12776	4.22 4.208	0.697 0.826	0.165 0.196	-0.582 -0.453	0	Up Up
LTBP2	11867	4.195	0.533	0.196	-0.367	0	Up
C10orf10	1681	4.186	0.788	0.188	-0.481	0	Up
CCDC8	3099	4.185	0.74	0.177	-0.617	0	Up
GRASP	7484	4.165	0.589	0.141	-0.415	0	Up
FEZ1	6326	4.158	0.468	0.113	-0.7	0	Up
RHOJ	16542	4.151	0.584	0.141	-0.402	0	Up
MYLK CSRP1	12958 4276	4.146 4.14	0.881 0.408	0.212 0.099	-0.513 -0.813	0	Up Up
ARRDC3	1046	4.14	0.408	0.135	-0.813 -0.683	0	Up Up
PTPN21	15959	4.113	0.644	0.156	-0.629	0	Up
CD36	3255	4.103	1.181	0.288	-0.591	0	Up
RGS2	16502	4.097	0.95	0.232	-0.935	0	Up
MRVI1	12739	4.097	0.683	0.167	-0.492	0	Up
ANXA1	754	4.094	0.828	0.202	-0.407	0	Up
NDN FXYD6	13282 6823	4.093 4.069	0.691 0.55	0.169 0.135	-0.499 -1.301	0	Up Up
C9orf125	2684	4.064	0.503	0.124	-0.409	0	Up
S100A10	17025	4.064	0.695	0.171	-0.475	0	Up
ETS2	5717	4.06	0.475	0.117	-0.95	0	Up
EMP1	5529	4.052	0.722	0.178	-0.643	0	Up
C5orf62	2509	4.049	0.721	0.178	-0.473	0	Up
FOSB	6676	4.047	1.253	0.31	-0.506	0	Up
PLK3 PTRF	15203 15990	4.044 4.038	0.499 0.421	0.123 0.104	-0.252 -0.309	0	Up
MIR100HG	12463	4.034	0.421	0.104	-0.309	0	Up Up
DPYSL3	5150	4.029	0.88	0.219	-0.414	0	Up
TCF4	19112	4.025	0.606	0.15	-0.35	0	Up
CAV1	2943	4.02	0.757	0.188	-0.59	0	Up
CLMP	3830	4.02	0.701	0.174	-0.146	0	Up
DLC1	4936	4.019	0.353	0.088	-0.324	0	Up
RASD1	16251	4.019 4.015	1.088	0.271	-0.972	0	Up
DKK3 CNN2	4932 3901	3.995	0.571 0.809	0.142 0.202	-0.434 -0.448	0	Up Up
FOS	6675	3.994	1.125	0.282	-0.618	0	Up
SVEP1	18824	3.99	0.418	0.105	-0.36	0	Up
GPX8	7474	3.987	0.697	0.175	-0.271	0	Up
NAP1L3	13066	3.984	0.496	0.124	-0.804	0	Up
DACT3	4555	3.969	0.78	0.197	-0.417	0	Up
RARRES2 APCDD1	16240 809	3.958 3.947	0.901 0.819	0.228 0.207	-0.376 -0.647	0	Up
PDLIM3	809 14774	3.947	0.819	0.207	-0.647 -0.718	0	Up Up
MB21D2	12148	3.937	0.473	0.12	-1.485	0	Up
PODN	15296	3.924	0.552	0.141	-0.395	0	Up
ADH1C	324	3.906	1.069	0.274	-0.719	0	Up
FNDC4	6658	3.904	0.485	0.124	-0.704	0	Up
MYL9	12956	3.901	0.759	0.195	-0.551	0	Up
SHOX2 ARL4C	17566 996	3.891 3.884	0.488 0.674	0.125 0.173	-0.334 -0.562	0	Up Un
HSPB2	8233	3.869	0.674	0.173	-0.562 -0.644	0	Up Up
GADD45B	6883	3.86	0.577	0.15	-0.418	0	Up
TNS1	19782	3.856	0.432	0.112	-0.133	0	Up
FBLN5	6200	3.845	0.737	0.192	-0.371	0	Up
FOXF2	6694	3.841	0.378	0.099	-0.809	0	Up
MPZL2	12634	3.839	0.726	0.189	-1.306	0	Up
DPYSL2	5149 13617	3.837	0.577	0.15	-0.93	0	Up
NPC2 H19	13617 7663	3.818 3.817	0.408 0.844	0.107 0.221	-0.642 -0.723	0	Up Up
PRKD1	15660	3.811	0.464	0.122	-0.723	0	Up
CELF2	3478	3.81	0.432	0.113	-0.288	0	Up
SGK1	17475	3.805	0.602	0.158	-0.437	0	Up
NNMT	13555	3.798	0.808	0.213	-0.253	0	Up
PGM5	14896	3.797	0.365	0.096	-0.6	0	Up
SERPING1	17402	3.796	0.478	0.126	-0.378	0	Up
FBLN2 SEMA5A	6199 17317	3.79 3.789	0.883 0.673	0.233 0.178	-0.392 -0.431	0	Up
SEMASA SNAI2	1/317	3.789	0.673	0.178	-0.431 -0.262	0	Up Up
	17449	3.777	0.866	0.134	-0.262	0	Up
SFRP4			0.401	0.107	-0.429	0	Up
SFRP4 LIMS3L	9686	3.762					
	9686 15649	3.758	0.67	0.178	-0.51	0	Up
LIMS3L PRKCA BACH2	15649 1366	3.758 3.756	0.67 0.29	0.178 0.077	-0.628	0	Up Up
LIMS3L PRKCA	15649	3.758	0.67	0.178		0	Up

Gene ID	Gene Name	Score (d)	Numerator (r) 0.332	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
MMP19 TNFRSF10D	12536 19723	3.747 3.743	0.332	0.089 0.14	-0.074 -0.781	0	Up Up
VEGFC	20657	3.738	0.499	0.133	-0.685	0	Up
IGFBP3	8405	3.737	0.608	0.163	-0.271	0	Up
PODNL1	15297	3.732	0.535	0.143	-0.585	0	Up
KRT17	9319	3.729	1.558	0.418	-0.797	0	Up
SV2B	18822	3.725	0.565	0.152	-0.662	0	Up
PTGIS CFI	15923 3568	3.723 3.722	0.697 0.577	0.187 0.155	-0.622 -0.55	0	Up
MOXD1	12603	3.722	0.577	0.155	-0.55 -0.621	0	Up Up
VCL	20646	3.712	0.454	0.122	-1.301	0	Up
KRT14	9315	3.711	1.613	0.435	-0.791	0	Up
KRT16P2	9318	3.705	1.503	0.406	-0.783	0	Up
DOCK11	5084	3.703	0.5	0.135	-0.406	0	Up
FAM89A	6139	3.702	0.602	0.163	-0.506	0	Up
PDLIM7	14777	3.701	0.519	0.14	-0.566	0	Up
RND3 PLSCR4	16628 15219	3.696 3.682	0.81 0.512	0.219 0.139	-1.154 -0.646	0	Up
LPCAT2	11695	3.679	0.312	0.09	-0.395	0	Up Up
DST	5189	3.677	0.611	0.166	-0.362	0	Up
CADM3	2813	3.673	0.401	0.109	-1.196	0	Up
RNF175	16670	3.666	0.308	0.084	-0.637	0	Up
LAYN	9528	3.665	0.545	0.149	-0.663	0	Up
SERPINF1	17400	3.663	0.722	0.197	-0.318	0	Up
FABP4	5804	3.662	0.88	0.24	-0.643	0	Up
KRT42P CXCL2	9346 4403	3.652 3.651	0.557 0.939	0.152 0.257	-0.924 -0.444	0	Up Up
CDO1	3421	3.65	0.766	0.21	-0.672	0	Up
ITPRIP	8761	3.649	0.509	0.14	-0.307	0	Up
KLF2	9204	3.649	0.579	0.159	-0.404	0	Up
SWAP70	18829	3.644	0.379	0.104	-1.081	0	Up
TGFBR2	19249	3.64	0.558	0.153	-0.634	0	Up
CCDC3	3053	3.638	0.713	0.196	-0.493	0	Up
SCN3B L3MBTL3	17192 9473	3.633 3.633	0.505 0.337	0.139 0.093	-0.372 -1.128	0	Up
SPARCL1	18363	3.632	0.337	0.093	-0.467	0	Up Up
FOXQ1	6719	3.629	0.865	0.238	-0.694	0	Up
AOC3	770	3.622	0.742	0.205	-0.418	0	Up
LHFP	9642	3.62	0.675	0.186	-0.291	0	Up
ARAP3	887	3.618	0.497	0.137	-0.462	0	Up
GAS1	6942	3.613	0.771	0.213	-0.526	0	Up
MALL	12005	3.61 3.602	0.923 0.775	0.256 0.215	-1.181	0	Up
AIM1 MFAP4	446 12347	3.602	1.096	0.304	-2.535 -0.508	0	Up Up
ZFP36	21191	3.602	0.669	0.186	-0.367	0	Up
TSC22D3	20069	3.6	0.458	0.127	-0.652	0	Up
TSHZ2	20085	3.595	0.498	0.138	-0.42	0	Up
SOBP	18276	3.595	0.321	0.089	-0.327	0	Up
HOXA3	8089	3.591	0.708	0.197	-0.438	0	Up
MMP23B	12540	3.583	0.618	0.172	-0.756	0	Up
PRKCDBP SPRY2	15652 18483	3.581 3.569	0.632 0.665	0.176 0.186	-0.449 -0.431	0	Up Up
MYO1B	12972	3.565	0.385	0.108	-0.497	0	Up
SLIT3	18036	3.563	0.709	0.199	-0.265	0	Up
LRRN4CL	11831	3.562	0.479	0.135	-0.418	0	Up
C6orf145	2533	3.56	0.517	0.145	-0.868	0	Up
CCL14	3132	3.557	0.998	0.281	-0.76	0	Up
CMTM3	3874	3.556	0.532	0.15	-0.588	0	Up
C1S ANXA3	2133 761	3.552 3.551	0.664 0.999	0.187 0.281	-0.309 -1.096	0	Up
HOXA4	8090	3.546	0.361	0.102	-0.309	0	Up Up
PECAM1	14810	3.546	0.457	0.129	-0.399	0	Up
F2RL1	5787	3.542	0.534	0.151	-0.718	0	Up
FAS	6180	3.541	0.355	0.1	-0.259	0	Up
METTL7A	12335	3.532	0.482	0.137	-1.15	0	Up
PRKD3	15662	3.524	0.518	0.147	-0.76	0	Up
ADH1A RBP4	322 16353	3.524 3.52	0.874 1.024	0.248 0.291	-0.594 -0.5	0	Up Up
TUBB6	20251	3.52	0.665	0.291	-0.5 -0.353	0	∪p Up
EDN1	5334	3.513	0.765	0.218	-0.772	0	Up
VSNL1	20740	3.511	0.692	0.197	-0.697	0	Up
MT1X	12798	3.51	0.682	0.194	-0.254	0	Up
CLDN8	3777	3.51	0.638	0.182	-1.386	0	Up
HIC1 GPR124	7872 7367	3.509 3.499	0.463 0.554	0.132 0.158	-0.65 -0.201	0	Up
CCDC80	3100	3.499	0.554	0.189	-0.201	0	Up Up
ADAMTS1	269	3.497	0.662	0.189	-0.566	0	Up
C1R	2131	3.496	0.648	0.185	-0.318	0	Up
FIBIN	6389	3.496	0.646	0.185	-0.383	0	Up
ARL4A	995	3.494	0.368	0.105	-1.084	0	Up
PRICKLE1	15627	3.488	0.79	0.226	-0.535	0	Up
TIMP2 PRELP	19344 15614	3.486 3.483	0.707 0.17	0.203 0.049	-0.281 -0.483	0	Up Up
EHD2	5403	3.472	0.506	0.146	-0.483	0	Up
CPXM1	4137	3.47	0.546	0.157	-0.545	0	Up
SSPN	18583	3.467	0.596	0.172	-0.398	0	Up
GNG11	7241	3.465	0.597	0.172	-0.337	0	Up
CFH	3562	3.461	0.575	0.166	-0.27	0	Up
IQCJ-SCHIP1	8647	3.456	0.444	0.128	-0.699	0	Up
TPM2 ADD3	19853 321	3.456 3.45	0.589 0.68	0.17 0.197	-0.403 -0.465	0	Up Up
KLF12	9198	3.442	0.436	0.197	-0.465 -0.652	0.324	Up Up
ANKRD35	695	3.44	0.805	0.234	-0.463	0.324	Up
NID1	13456	3.438	0.645	0.188	-0.254	0.324	Up
KRT5	9347	3.432	1.336	0.389	-0.648	0.324	Up
TMEM200A	19554	3.431	0.449	0.131	-0.355	0.324	Up
FAM43A TWIST2	6040 20278	3.43 3.43	0.485 0.655	0.141 0.191	-0.508 -0.288	0.324 0.324	Up
C11orf96	1787	3.426	0.655	0.191	-0.288 -0.414	0.324	Up Up
KIF26A	9151	3.425	0.382	0.112	-0.859	0.324	Up
HOXA7	8093	3.423	0.826	0.241	-0.47	0.324	Up
FSTL1	6776	3.422	0.745	0.218	-0.369	0.324	Up

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
ENPP2 GRP	5562 7537	3.418 3.415	0.541 1.026	0.158 0.3	-0.543 -0.79	0.324 0.324	Up Up
PDGFRA	14754	3.407	0.697	0.205	-0.232	0.324	Up
ZC3H12B	21103	3.407	0.253	0.074	-0.396	0.324	Up
WDR86	20856	3.406	0.817	0.24	-0.426	0.324	Up
PDE2A	14730	3.405	0.621	0.182	-0.516	0.324	Up
FLNA	6617	3.405	0.386	0.113	-0.554	0.324	Up
PKD2 CLDN5	15071 3774	3.404 3.401	0.442 0.749	0.13 0.22	-0.421 -0.668	0.324 0.324	Up Up
SOD3	18286	3.399	0.885	0.26	-1.124	0.324	Up
SLC12A4	17666	3.397	0.384	0.113	-0.572	0.324	Up
AKR1C1	489	3.396	0.661	0.195	-0.87	0.324	Úp
LRCH2	11717	3.394	0.275	0.081	-0.438	0.324	Up
PPP1R15A	15492	3.394	0.369	0.109	-0.957	0.324	Up
RUNX1T1 GRID1	16999 7502	3.393 3.391	0.608 0.155	0.179 0.046	-0.307 -0.431	0.324 0.324	Up
SCARNA17	17147	3.388	0.658	0.194	-0.373	0.324	Up Up
HEG1	7809	3.38	0.511	0.151	-0.519	0.324	Up
WTIP	20938	3.378	0.553	0.164	-0.89	0.324	Up
TCEAL7	19092	3.377	0.441	0.131	-1.161	0.324	Up
HABP4	7685	3.376	0.448	0.133	-0.347	0.324	Up
MME COL14A1	12524 3966	3.376 3.376	0.588 0.654	0.174 0.194	-0.393 -0.613	0.324 0.324	Up Up
NOV NOV	13598	3.375	0.734	0.194	-0.923	0.324	Up
KIAA0408	9027	3.373	0.346	0.103	-0.3	0.324	Up
ZNF300P1	21390	3.369	0.547	0.162	-0.396	0.324	Úp
DUSP1	5217	3.369	0.669	0.198	-0.37	0.324	Up
SNX3	18263	3.359	0.283	0.084	-1.924	0.324	Up
ARHGAP28 AKR1B1	926 486	3.359 3.358	0.379 0.506	0.113 0.151	-0.153 -0.939	0.324 0.324	Up Un
ODZ4	13894	3.358	0.255	0.151	-0.939	0.324	Up Up
SNCA	18152	3.349	0.344	0.103	-0.864	0.324	Up
CNTNAP3	3940	3.338	0.545	0.163	-0.438	0.324	Up
DNM1P46	5067	3.336	0.372	0.112	-0.542	0.324	Up
LRIG3	11730	3.336	0.578	0.173	-0.336	0.324	Up
DCN KLK8	4634 9270	3.335 3.335	0.835 1.536	0.25 0.461	-0.323 -1.787	0.324 0.324	Up Up
C11orf93	1784	3.332	0.304	0.461	-0.943	0.324	∪p Up
JUN	8810	3.325	0.641	0.193	-0.424	0.324	Up
NHS	13452	3.322	0.296	0.089	-0.472	0.324	Up
VIM	20673	3.321	0.51	0.154	-0.175	0.324	Up
ALPK2	569	3.32	0.282	0.085	-1.512	0.324	Up
TSHZ3	20086 3970	3.319 3.318	0.531	0.16	-0.084	0.324	Up
COL18A1 JAM2	8783	3.318	0.593 0.443	0.179 0.133	-0.16 -0.33	0.324 0.324	Up Up
ZEB1	21166	3.307	0.523	0.158	-0.55	0.324	Up
S1PR1	17046	3.306	0.497	0.15	-0.648	0.324	Up
SH3PXD2A	17528	3.302	0.46	0.139	-0.318	0.324	Úp
CDKN1C	3411	3.301	0.604	0.183	-0.577	0.324	Up
SCG5	17165	3.299	0.531	0.161	-0.094	0.324	Up
SCHIP1 KCNH8	17177 8885	3.293 3.292	0.611 0.464	0.185 0.141	-0.347 -0.775	0.536 0.536	Up Up
MMP2	12537	3.289	0.682	0.207	-0.446	0.536	Up
LOR	11679	3.287	0.225	0.068	-0.791	0.536	Up
CNRIP1	3925	3.285	0.274	0.083	-0.377	0.536	Úp
MRC2	12641	3.284	0.657	0.2	-0.169	0.536	Up
PTN	15939	3.283	1.088	0.332	-0.77	0.536	Up
CCND2 TRPC1	3163 20038	3.282 3.282	0.481 0.469	0.147 0.143	-0.669 -0.157	0.536 0.536	Up Up
ID3	8312	3.282	0.426	0.143	-0.581	0.536	Up
ETHE1	5713	3.28	0.378	0.115	-1.233	0.536	Up
LOC150622	10676	3.27	0.397	0.122	-2.746	0.536	Úp
FHAD1	6379	3.259	0.208	0.064	-0.882	0.536	Up
ISLR	8694	3.259	0.686	0.211	-0.316	0.536	Up
ALOX5	564	3.258	0.308	0.095	-1.365	0.536	Up
C14orf139 FGF1	1865 6341	3.256 3.252	0.424 0.202	0.13 0.062	-0.538 -0.266	0.536 0.536	Up Up
PCSK7	14699	3.248	0.231	0.071	-0.639	0.536	Up
PTGS2	15927	3.246	0.308	0.095	-0.776	0.536	Up
PKIA	15079	3.24	0.643	0.198	-1.226	0.536	Up
CYTH3	4535	3.24	0.565	0.174	-0.264	0.536	Up
EFHA2 KCNMB4	5366 8924	3.238 3.238	0.383 0.572	0.118 0.177	-0.044 -0.352	0.536 0.536	Up Up
SRPX	18546	3.238	0.651	0.201	-0.332	0.536	Up
CFHR3	3565	3.237	0.507	0.157	-0.311	0.536	Up
SYPL2	18871	3.236	0.277	0.085	-1.091	0.536	Up
GPX3	7469	3.236	0.635	0.196	-0.642	0.536	Up
JAG1 RPS6KA3	8774 16898	3.235 3.233	0.397 0.387	0.123 0.12	-0.372 -0.399	0.536 0.536	Up
CES1	3545	3.228	0.387	0.12	-0.157	0.536	Up Up
ITGB1	8727	3.227	0.364	0.113	-0.516	0.536	Up
PALMD	14494	3.226	0.514	0.159	-0.535	0.536	Up
FZD7	6836	3.226	0.639	0.198	-0.519	0.536	Up
NR2F1 COL15A1	13676	3.225	0.96	0.298	-0.664	0.536	Up
FXYD1	3967 6818	3.225 3.223	0.489 0.419	0.152 0.13	-0.267 -0.626	0.536 0.536	Up Up
RCBTB2	16367	3.223	0.351	0.109	-0.447	0.536	Up
C17orf51	2000	3.221	0.427	0.133	-0.235	0.536	Up
JAZF1	8786	3.22	0.356	0.111	-0.412	0.536	Up
IGFBP6	8408	3.22	0.538	0.167	-0.447	0.536	Up
PELI2	14817	3.218	0.473	0.147	-0.323	0.536	Up
CKMT2 VCAN	3734 20645	3.212 3.21	0.299 0.727	0.093 0.226	-0.391 -0.376	0.536 0.536	Up Up
MATN2	12138	3.209	0.611	0.19	-0.679	0.536	Up
AQP7P1	876	3.207	0.434	0.135	-0.448	0.536	Up
TMEM45B	19611	3.206	0.923	0.288	-1.778	0.536	Up
SLC2A14	17829	3.204	0.388	0.121	-0.086	0.536	Up
SFRP2	17448	3.203	0.882	0.275	-0.43	0.536	Up
KANK2 ANGPTL2	8818 633	3.203 3.202	0.418 0.608	0.131 0.19	-0.502 -0.138	0.536 0.536	Up Up
ANTXR2	751	3.202	0.31	0.097	-0.138	0.536	Up
GLI1	7149	3.198	0.515	0.161	-0.698	0.536	Up
•							- 1

				T	T 11 C		
Gene ID	Gene Name	Score (d)	Numerator (r) 0.274	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
LIX1L MAP7D3	9715 12072	3.197 3.196	0.274	0.086 0.08	-0.63 -0.325	0.536 0.536	Up
FAT4	6191	3.196	0.222	0.08	-0.309	0.536	Up Up
ALDH1A3	513	3.196	0.751	0.235	-0.743	0.536	Up
SLFN13	18029	3.195	0.512	0.16	-0.587	0.536	Up
FAT1	6188	3.194	0.653	0.204	-0.45	0.536	Up
PCSK5	14697	3.193	0.275	0.086	-0.211	0.536	Up
SMAD9	18062	3.192	0.238	0.075	-0.344	0.536	Up
C21orf34	2296	3.189	0.294	0.092	-0.148	0.536	Up
PDE1B	14728	3.186	0.277	0.087	-0.35	0.536	Up
TP53I3	19830	3.186	0.459	0.144	-0.808	0.536	Up
LSP1	11857	3.184	0.41	0.129	-0.218	0.536	Up
TMEM109	19451	3.184	0.433	0.136	-1.557	0.536	Up
F3	5790	3.182	0.76	0.239	-0.556	0.536	Up
FGF7	6360	3.18	0.368	0.116	-0.235	0.536	Up
LAMA4	9489	3.176	0.365	0.115	-0.156	0.536	Up
LCAT PLAC9	9536 15124	3.173 3.162	0.371 0.443	0.117 0.14	-0.192 -0.354	0.536 0.536	Up
COL16A1	3968	3.162	0.418	0.132	-0.321	0.536	Up Up
TRIM29	19958	3.155	0.943	0.299	-1.003	0.81	Up
IGF2	8396	3.153	0.415	0.132	-0.422	0.81	Up
DAB2	4549	3.149	0.458	0.145	-0.212	0.81	Up
MRGPRF	12648	3.148	0.293	0.093	-0.835	0.81	Up
BGN	1500	3.145	0.508	0.161	-0.47	0.81	Up
PDPN	14781	3.144	0.565	0.18	-0.451	0.81	Up
RNF144A	16653	3.144	0.39	0.124	-0.053	0.81	Up
LOC100190939	10363	3.143	0.477	0.152	-0.647	0.81	Up
CSDC2	4233	3.143	0.272	0.087	-0.932	0.81	Up
NMB	13533	3.142	0.599	0.191	-0.527	0.81	Up
TNNI2	19766	3.141	0.91	0.29	-0.59	0.81	Up
C3 JAM3	2389 8784	3.14 3.138	0.648 0.342	0.206 0.109	-0.823 -0.323	0.81 0.81	Up
ACTBL2	204	3.138	0.342	0.109	-0.323 -0.655	0.81	Up Up
RCAN2	16364	3.134	0.356	0.141	-0.456	0.81	Up
SLC38A2	17891	3.133	0.332	0.114	-0.555	0.81	Up
MRAS	12639	3.133	0.585	0.187	-0.421	0.81	Up
MAP1B	12033	3.132	0.401	0.128	-0.171	0.81	Up
SPRY1	18482	3.132	0.554	0.177	-0.453	0.81	Up
VPS36	20715	3.128	0.32	0.102	-0.983	0.81	Up
TMEM119	19459	3.128	0.64	0.205	-0.66	0.81	Up
CTSK	4353	3.128	0.704	0.225	-0.427	0.81	Up
SPNS2	18449	3.128	0.672	0.215	-0.806	0.81	Up
TMEM43	19608	3.126	0.266	0.085	-0.258	0.81	Up
NEFM	13353	3.125	0.282	0.09	-0.63	0.81	Up
RBMS1	16338	3.125	0.472	0.151	-0.189	0.81	Up
SDPR NEFH	17247 13351	3.125 3.124	0.61 0.552	0.195 0.177	-0.316 -0.22	0.81 0.81	Up Up
MAGEL2	11991	3.124	0.426	0.177	-0.503	0.81	Up
TCF7	19113	3.123	0.404	0.129	-1.431	0.81	Up
ABCA6	42	3.122	0.535	0.171	-0.095	0.81	Up
MT1M	12797	3.118	0.809	0.259	-0.129	0.81	Up
DNAJB5	5018	3.117	0.337	0.108	-0.299	0.81	Up
CH25H	3585	3.11	0.634	0.204	-0.333	0.81	Up
GGT5	7072	3.109	0.536	0.172	-0.333	0.81	Up
CXCL12	4398	3.106	0.427	0.138	-0.267	0.81	Up
ZFP36L2	21193	3.106	0.507	0.163	-0.556	0.81	Up
ARHGAP20	918	3.104	0.333	0.107	-0.296	0.81	Up
SRPX2	18547	3.103	0.631	0.203	-0.273	0.81	Up
sep.10	17341	3.103	0.445	0.143	-0.994	0.81 0.81	Up
ROBO3 IL8	16733 8535	3.102 3.086	0.316 0.244	0.102 0.079	-0.583 -1.134	0.81	Up Up
MXRA5	12901	3.085	0.43	0.139	-0.277	0.81	Up
AGPAT4	404	3.084	0.331	0.107	-0.174	0.81	Up
RSPO3	16963	3.082	0.405	0.131	-0.396	0.81	Up
GLT8D2	7182	3.082	0.357	0.116	-0.141	0.81	Up
AKR1B15	488	3.08	0.778	0.253	-2.532	0.81	Up
SHF	17550	3.08	0.257	0.083	-1.88	0.81	Up
AKAP13	466	3.078	0.286	0.093	-0.338	0.81	Up
MEG3	12275	3.07	0.408	0.133	-0.125	0.81	Up
PRNP	15688	3.07	0.566	0.184	-0.285	0.81	Up
TPM4 ADRB2	19855 356	3.069 3.069	0.453 0.535	0.147 0.174	-0.2 -0.868	0.81 0.81	Up
ADRB2 ANTXR1	750	3.069	0.535	0.174	-0.868 -0.481	0.81	Up Up
UACA	20323	3.064	0.353	0.176	-0.106	0.81	Up
ZFHX4	21181	3.064	0.525	0.171	-0.325	0.81	Up
DACT1	4553	3.062	0.624	0.204	-0.403	0.81	Up
EFNB2	5378	3.062	0.462	0.151	-0.583	0.81	Up
ZCCHC24	21130	3.06	0.512	0.167	-0.83	0.81	Up
PALLD	14490	3.06	0.384	0.126	-0.333	0.81	Up
MYOM1	12994	3.055	0.303	0.099	-0.375	0.81	Up
ROR1	16743	3.055	0.298	0.098	-0.227	0.81	Up
AASS KLF6	27 9208	3.053 3.053	0.371 0.318	0.121 0.104	-0.639 -0.467	0.81 0.81	Up
BHLHE22	9208 1504	3.053	0.518	0.167	-0.467 -0.439	0.81	Up Up
NT5E	13747	3.045	0.354	0.116	-0.682	0.81	Up
IER2	8328	3.045	0.447	0.147	-0.825	0.81	Up
PDGFRB	14755	3.045	0.524	0.172	-0.129	0.81	Up
MRAP2	12638	3.041	0.38	0.125	-1.119	0.81	Up
EPGN	5599	3.031	0.196	0.065	-0.87	0.81	Up
MDFIC	12218	3.027	0.349	0.115	-0.016	0.81	Up
A2M	5	3.027	0.506	0.167	-0.289	0.81	Up
COL6A2	3995	3.023	0.615	0.204	-0.465	0.81	Up
ATF3	1147	3.023	0.484	0.16	-0.228	0.81	Up
BBOX1	1410	3.022	0.849	0.281	-0.984	0.81	Up
ANGPTL4 FHL3	635 6384	3.022 3.022	0.872 0.248	0.288 0.082	-0.38 -1.279	0.81 0.81	Up
GPRASP1	7450	3.022	0.248	0.082	-0.738	0.81	Up Up
DDR2	4674	3.021	0.404	0.134	-0.738 -0.334	0.81	∪p Up
C1QTNF4	2124	3.019	0.34	0.113	-0.713	0.81	Up
CDKL5	3408	3.019	0.392	0.13	-0.656	0.81	Up
C20orf103	2234	3.018	0.697	0.231	-0.498	0.81	Up
CPZ	4139	3.017	0.471	0.156	-0.608	0.81	Up

			•		7.11.01		
Gene ID SPON1	Gene Name 18456	3.016	Numerator (r) 0.851	Denominator (s+s0) 0.282	Fold Change -0.345	adjusted P value (%) 0.81	Direction Up
LOC283392	10795	3.012	0.419	0.139	-0.209	0.81	Up
MGC24103	12397	3.012	0.628	0.209	-0.123	0.81	Up
CLIP3	3821	3.011	0.343	0.114	-0.154	0.81	Up
NGFR	13437	3.01	0.538	0.179	-0.733	0.81	Up
SAA1	17051	3.008	1.287	0.428	-0.707	0.81	Up
IGFBP7	8409	3.008	0.496	0.165	-0.503	1.213	Up
C13orf33 sep.11	1846 17342	3.005 3.004	0.601 0.474	0.2 0.158	-0.549 -0.33	1.213 1.213	Up Up
CYP2U1	4503	3.003	0.333	0.111	-0.205	1.213	Up
HLF	7999	3.002	0.651	0.217	-0.453	1.213	Up
RARB	16237	3.002	0.206	0.069	-1.064	1.213	Up
MET	12304	2.999	0.75	0.25	-0.475	1.213	Up
DSE	5180	2.999	0.399	0.133	-0.151	1.213	Up
ADAMTS5 FOXN3	283 6710	2.996 2.996	0.596 0.325	0.199 0.108	-0.121 -0.652	1.213 1.213	Up Up
PCOLCE2	14688	2.996	0.703	0.235	-0.36	1.213	Up
RNF39	16702	2.995	0.362	0.121	-0.804	1.213	Up
CCDC50	3068	2.994	0.262	0.088	-0.986	1.213	Up
LOC572558	11293	2.993	0.221	0.074	-0.754	1.213	Up
KLK7	9269	2.993	1.023	0.342	-1.347	1.213	Up
EBF1 LATS2	5293 9526	2.992 2.991	0.31 0.27	0.104 0.09	-0.274 -0.518	1.213 1.213	Up Up
KRT6C	9350	2.991	0.785	0.263	-1.191	1.213	Up
C3orf57	2423	2.988	0.378	0.127	-0.955	1.213	Up
SLC2A3	17831	2.987	0.198	0.066	0.016	1.213	Up
NPR2	13642	2.987	0.387	0.13	-0.252	1.213	Up
GFPT2	7054	2.986	0.503	0.169	-0.048	1.213	Up
KRT6B C9orf53	9349 2729	2.986 2.984	1.383 0.634	0.463 0.212	-0.787 -0.35	1.213 1.213	Up Up
ZEB2	2/29	2.984	0.634	0.212	-0.35 -0.097	1.213	Up Up
DZIP1	5276	2.98	0.411	0.113	-0.427	1.213	Up
MYH11	12932	2.98	0.967	0.324	-0.779	1.213	Up
CR2	4142	2.978	0.641	0.215	-2.027	1.213	Up
DZIP1L	5277	2.978	0.319	0.107	-0.14	1.213	Up
SYNPO EPHR6	18864	2.977 2.976	0.34	0.114	-0.424	1.213 1.213	Up
EPHB6 IGF1	5613 8394	2.976	0.438 0.614	0.147 0.206	-0.589 -0.406	1.213	Up Up
HIF1A	7874	2.976	0.406	0.136	-0.114	1.213	Up
CSRP2	4277	2.974	0.523	0.176	-0.475	1.213	Up
LAMA1	9486	2.972	0.312	0.105	-0.252	1.213	Up
ZFP36L1	21192	2.967	0.468	0.158	-0.547	1.213	Up
MMRN1	12550	2.965	0.461	0.155	-1.142	1.213	Up
GPIHBP1 FILIP1L	7344 6399	2.965 2.965	0.647 0.306	0.218 0.103	-0.259 -1.125	1.213 1.213	Up
DEFB1	4736	2.963	0.808	0.103	-0.687	1.213	Up Up
SOCS5	18281	2.963	0.307	0.104	-0.91	1.213	Up
KCTD12	8949	2.959	0.45	0.152	-0.227	1.213	Up
SH3PXD2B	17529	2.958	0.439	0.148	-0.439	1.213	Up
SNCAIP	18153	2.955	0.167	0.056	-0.825	1.213	Up
EMX2OS P2RY1	5538 14425	2.955 2.954	0.465 0.299	0.157 0.101	-0.356 -0.379	1.213 1.213	Up
TBX15	19068	2.934	0.255	0.087	-0.131	1.213	Up Up
SOCS2	18278	2.948	0.81	0.275	-0.965	1.213	Up
FAP	6172	2.947	0.692	0.235	-0.285	1.213	Up
FAM107A	5835	2.946	0.604	0.205	-0.648	1.213	Up
HOXA11-AS1	8086	2.945	0.404	0.137	-0.112	1.213	Up
KLF7	9209	2.941	0.38	0.129	-0.427	1.213	Up
PARVA MAP4K4	14557 12065	2.94 2.938	0.37 0.306	0.126 0.104	-0.558 -0.316	1.213 1.213	Up Up
COL3A1	3983	2.935	0.77	0.262	-0.226	1.213	Up
IL33	8517	2.935	0.599	0.204	-1.046	1.213	Up
ACTN1	214	2.934	0.484	0.165	-0.533	1.213	Up
CRISPLD2	4183	2.932	0.371	0.127	-0.502	1.213	Up
CRYAB LINGO2	4209 9696	2.929 2.926	1.02 0.31	0.348 0.106	-0.43 -1.445	1.213 1.213	Up
C1QTNF5	9696 2125	2.926	0.31	0.106 0.186	-1.445 -0.608	1.213	Up Up
JDP2	8787	2.923	0.396	0.135	-0.323	1.213	Up
STARD8	18661	2.92	0.287	0.098	-0.238	1.213	Up
ARHGAP10	910	2.919	0.359	0.123	-0.647	1.213	Up
CYLD STK17B	4469	2.916	0.272	0.093	-0.194	1.213	Up
STK17B PPAPDC3	18691 15424	2.915 2.914	0.368 0.271	0.126 0.093	-0.302 -0.079	1.213 1.213	Up Up
GNAI1	7220	2.914	0.271	0.093	-0.689	1.213	Up
C1orf15-NBL1	2163	2.913	0.572	0.196	-0.314	1.213	Up
TEK	19172	2.912	0.444	0.153	-0.456	1.213	Up
C1QTNF1	2121	2.91	0.31	0.107	-0.619	1.213	Up
HOXA9	8094	2.909 2.906	0.409 0.25	0.141	-0.35 -0.443	1.213	Up
STX7 C20orf194	18751 2258	2.906	0.25	0.086 0.097	-0.443 -0.22	1.213 1.213	Up Up
SLFN11	18026	2.904	0.447	0.154	-0.133	1.213	Up
LY96	11899	2.903	0.429	0.148	-0.338	1.213	Up
RCAN1	16363	2.903	0.619	0.213	-0.799	1.213	Up
CLIP4	3822	2.902	0.412	0.142	-0.219	1.213	Up
RASGRP2 TSPAN18	16260 20105	2.897 2.895	0.442 0.355	0.153 0.123	-1.221 -0.378	1.213 1.213	Up Up
SPON2	18457	2.893	0.333	0.123	-0.399	1.213	Up
ZMAT3	21243	2.893	0.264	0.091	-0.771	1.213	Up
NCOA7	13147	2.891	0.586	0.203	-0.751	1.213	Up
ADAMTS8	286	2.886	0.544	0.189	-0.639	1.213	Up
JUNB	8811	2.886	0.378	0.131	-0.745	1.213	Up
PPIC NUDT9P1	15449	2.885 2.882	0.471	0.163 0.095	-0.286 -0.592	1.213	Up
LMO2	13803 9735	2.882	0.275 0.406	0.095 0.141	-0.592 -0.685	1.213 1.213	Up Up
RGMA	16483	2.881	0.623	0.216	-0.676	1.213	Up
CLEC1A	3790	2.881	0.347	0.12	-0.394	1.213	Up
CD93	3295	2.876	0.39	0.136	-0.878	1.213	Up
MXRA8	12903	2.876	0.579	0.201	-0.253	1.213	Up
ACVR2A	234	2.875	0.275	0.096	-0.285	1.213	Up
C6orf174 RPL21P44	2545 16792	2.873 2.873	0.345 0.45	0.12 0.157	-0.064 -1.189	1.46 1.46	Up Up
SACS	17058	2.873	0.302	0.105	-0.258	1.46	Up
•							•

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Directio
MXRA7	12902	2.872	0.317	0.11	-0.43	1.46	Up
PRUNE2	15808	2.871	0.273	0.095	-0.51	1.46	Up
CLCA2	3742	2.871	0.762	0.266	-2.456	1.46	Up
MOBKL2B	12566	2.87	0.308	0.107	-0.338	1.46	Up
CCDC82	3102	2.87	0.449	0.157	-0.336	1.46	Up
EMILIN1	5520	2.869	0.494	0.172	-0.13	1.46	Up
EPAS1	5584	2.867	0.483	0.168	-0.55	1.46	Up
ITIH5	8744	2.866	0.128	0.045	-0.271	1.46	Up
PLD1	15152	2.865	0.278	0.097	-0.44	1.46	Up
ATL1	1174	2.864	0.403	0.141	-1.098	1.46	Up
HTRA1	8270	2.864	0.739	0.258	-0.247	1.46	Up
CAPN5	2876	2.862	0.444	0.155	-0.264	1.46	Up
LGALS3	9624	2.86	0.373	0.131	-0.722	1.46	Up
CIDEA	3706	2.859	0.581	0.203	-0.554	1.46	
							Up
EVC2	5727	2.858	0.215	0.075	-0.093	1.46	Up
ANKRD37	700	2.856	0.435	0.152	-0.822	1.46	Up
LIPE	9702	2.854	0.734	0.257	-0.44	1.46	Up
FNDC1	6655	2.853	0.605	0.212	-0.601	1.46	Up
LOC100505933	10461	2.852	0.224	0.078	-0.667	1.46	Up
SYDE1	18841	2.851	0.199	0.07	-0.52	1.46	Up
LDB2	9574	2.849	0.296	0.104	-0.159	1.46	Up
B3GAT1	1333	2.849	0.52	0.183	-0.545	1.46	Up
PDK4	14771	2.848	0.775	0.272	-0.437	1.46	Up
PDGFRL	14756	2.847	0.727	0.255	-0.237	1.46	Up
PRRX2	15775	2.847	0.519	0.182	-0.476	1.46	Up
SPARC	18362	2.847	0.669	0.235	-0.116	1.46	Up
MECOM	12236	2.844	0.317	0.112	-0.518	1.46	Up
NFIB	13413	2.844	0.571	0.201	-0.542	1.46	Up
PPAP2A	15418	2.843	0.371	0.137	-0.233	1.46	
	15418		0.377				Up
P2RY14		2.842		0.133	-0.7	1.46	Up
HSPA12B	8218	2.84	0.428	0.151	-0.377	1.46	Up
LOC100130776	10099	2.838	0.259	0.091	-0.658	1.46	Up
TPT1	19876	2.836	0.343	0.121	-0.854	1.46	Up
ETV1	5718	2.836	0.254	0.089	-0.219	1.46	Up
SFRP1	17447	2.833	0.972	0.343	-0.628	1.46	Up
CYS1	4529	2.833	0.547	0.193	-0.215	1.46	Up
PLXDC1	15224	2.832	0.301	0.106	-0.131	1.46	Up
PER1	14824	2.832	0.44	0.155	-0.366	1.46	Up
POTEF	15389	2.832	0.344	0.121	-0.541	1.46	Up
AEBP1	364	2.832	0.708	0.25	-0.371	1.46	Up
ANXA8L2	766	2.831	1.185	0.419	-0.64	1.46	Up
KIAA1462	9087	2.831	0.419	0.148	-0.271	1.46	Up
FREM1	6737	2.828	0.27	0.095	-0.397	1.46	Up
LOX	11680	2.828	0.576	0.204	-0.197	1.46	Up
RAB7L1	16138	2.826	0.378	0.134	-0.261	1.46	
							Up
KIRREL	9182	2.825	0.368	0.13	-0.151	1.46	Up
C14orf37	1892	2.825	0.361	0.128	-0.253	1.46	Up
DCLK2	4629	2.822	0.273	0.097	-0.405	1.46	Up
KLK5	9267	2.82	1.034	0.367	-1.642	1.46	Up
LYL1	11903	2.819	0.208	0.074	-1.314	1.46	Up
GLIPR1	7153	2.818	0.292	0.104	-0.506	1.46	Up
ACTN3	216	2.817	0.294	0.104	-0.686	1.46	Up
ITM2A	8749	2.815	0.639	0.227	-0.715	1.46	Up
S1PR2	17047	2.814	0.355	0.126	-0.456	1.46	Up
LOC339524	11001	2.813	0.241	0.086	-0.321	1.46	Up
TGM5	19259	2.811	0.144	0.051	-1.566	1.46	Up
C7orf10	2582	2.805	0.343	0.122	-0.218	1.46	
PLAGL1	15126	2.803	0.282	0.101	-0.331	1.46	Up
							Up
RECK	16395	2.802	0.32	0.114	-0.211	1.46	Up
MMP7	12547	2.801	1.168	0.417	-0.459	1.46	Up
CACNA2D1	2793	2.8	0.223	0.08	0.055	1.46	Up
BACH1	1365	2.799	0.208	0.074	-0.58	1.46	Up
ZFPM2	21206	2.796	0.405	0.145	-0.515	1.46	Up
ADPRH	346	2.796	0.346	0.124	-0.205	1.46	Up
PLEKHH2	15184	2.796	0.282	0.101	-0.023	1.46	Up
LRRC32	11774	2.795	0.504	0.18	-0.409	1.46	Up
SYN2	18847	2.794	0.33	0.118	-0.224	1.46	Up
NOTCH4	13595	2.794	0.38	0.136	-0.242	1.46	Up
LOC728392	11532	2.792	0.426	0.152	-0.564	1.46	Up
SLC7A10	17982	2.789	0.462	0.166	-0.515	1.46	Up
CDC14B	3306	2.786	0.196	0.07	-0.233	1.46	Up
PVRL3	16018	2.784	0.268	0.096	0.076	1.46	Up
GYPC	7653	2.781	0.221	0.079	-0.119	1.46	Up
			0.221	0.079		1.46	
VEGFB	20656	2.781			-0.436		Up
ADIPOQ	332	2.779	0.617	0.222	-0.404	1.46	Up
PAX1	14570	2.777	0.452	0.163	-0.59	1.46	Up
MEGF6	12279	2.775	0.46	0.166	-1.673	1.46	Up
RAB23	16092	2.774	0.389	0.14	-0.347	1.46	Up
SLC26A3	17804	2.77	0.527	0.19	-3.689	1.46	Up
DARC	4573	2.764	0.409	0.148	-1.126	1.46	Up
F2R	5786	2.764	0.309	0.112	-0.256	1.46	Up
TMEM204	19560	2.764	0.385	0.139	-0.342	1.46	Up
CYYR1	4539	2.762	0.308	0.111	-0.66	1.46	Up
EMX2	5537	2.761	0.269	0.097	-0.413	1.46	Up
SLC16A7	17695	2.761	0.201	0.073	-0.054	1.46	Up
DUSP6	5238	2.759	0.538	0.075	-0.344	1.46	Up
LOC100130876	10110	2.759	0.536	0.193	-0.184	1.46	
							Up
SCN2B	17190	2.758	0.264	0.096	-0.529	1.46	Up
TBC1D2	19021	2.757	0.367	0.133	-1.301	1.46	Up
ZDHHC3	21158	2.757	0.25	0.091	-1.215	1.46	Up
AKR1B10	487	2.756	0.729	0.264	-2.563	1.46	Up
MT1L	12796	2.756	0.545	0.198	-0.173	1.46	Up
HYMAI	8289	2.756	0.414	0.15	-0.188	1.46	Up
ARHGEF40	965	2.756	0.396	0.144	-0.165	1.46	Up
KLF10	9196	2.755	0.395	0.143	-0.453	1.46	Up
CCL23	3142	2.755	0.209	0.076	-1.068	1.46	Up
	5779	2.754	0.144	0.052	-0.724	1.46	
E10							Up
F10 TMEM100	19441	2.752	0.345	0.126	-0.807 -0.338	2.095 2.095	Up Up
TMEM100	20.60						
TMEM100 COL17A1	3969	2.748	0.697	0.254			
TMEM100 COL17A1 MAMDC2	12007	2.748	0.335	0.122	-0.147	2.095	Up
TMEM100 COL17A1							

C 10	C N	C (P	N ()	D : (() ()	EUG	P + 1 P + 1 (0/)	D: (*
Gene ID EFNB1	Gene Name 5377	Score (d) 2.747	Numerator (r) 0.385	Denominator (s+s0) 0.14	Fold Change -0.267	adjusted P value (%) 2.095	Direction Up
PLIN1	15195	2.746	0.718	0.261	-0.624	2.095	Up
AOX1	772	2.746	0.38	0.138	-0.545	2.095	Up
FAM20A	6009	2.746	0.401	0.146	-0.09	2.095	Up
C11orf75 ITGAV	1772 8725	2.745 2.744	0.486 0.436	0.177 0.159	-0.72 -0.651	2.095 2.095	Up Up
CUX2	4383	2.743	0.297	0.108	-1.712	2.095	Up
GRB10	7486	2.74	0.39	0.142	-0.666	2.095	Up
RPL21 CCL28	16791	2.739	0.377	0.138	-1.274	2.095	Up
FLRT2	3147 6623	2.738 2.738	0.844 0.249	0.308 0.091	-0.813 -0.702	2.095 2.095	Up Up
BTBD11	1637	2.738	0.384	0.14	-1.627	2.095	Up
FAM164A	5928	2.736	0.331	0.121	-0.749	2.095	Up
NXN	13843	2.736	0.297	0.109	-0.282	2.095	Up
GGTA1P SLIT2	7076 18035	2.735 2.735	0.401 0.367	0.146 0.134	-0.478 -0.287	2.095 2.095	Up Up
PHYHIP	14965	2.734	0.238	0.087	-1.041	2.095	Up
FLJ36031	6513	2.732	0.396	0.145	-0.444	2.095	Up
THSD7A	19305	2.731	0.345	0.126	-0.653	2.095	Up
CTNNB1 LAMB1	4332 9491	2.731 2.731	0.324 0.203	0.119 0.074	-0.806 -0.185	2.095 2.095	Up
ETS1	5716	2.73	0.251	0.074	-0.183	2.095	Up Up
VGLL3	20667	2.724	0.234	0.086	-0.082	2.095	Up
PPP1R13L	15487	2.724	0.363	0.133	-1.193	2.095	Up
ABCA8	44	2.723	0.349	0.128	-0.564	2.095	Up
AMOTL2 KIAA0922	606 9051	2.721 2.72	0.375 0.352	0.138 0.129	-0.55 -0.801	2.095 2.095	Up Up
CARD6	2898	2.719	0.399	0.147	-0.289	2.095	Up
FAM20C	6011	2.719	0.44	0.162	-0.472	2.095	Up
MAFB	11955	2.719	0.365	0.134	-0.488	2.095	Up
LOXL2 LPHN2	11683 11700	2.718 2.718	0.542 0.26	0.2 0.096	-0.113 -0.242	2.095 2.095	Up Up
TBC1D2B	19033	2.718	0.271	0.1	-0.377	2.095	Up
LONRF3	11678	2.716	0.385	0.142	-0.582	2.095	Up
ID1 FAM65B	8310	2.714	0.597	0.22	-0.468	2.095	Up
FAM65B DDX43	6080 4702	2.714 2.714	0.402 0.473	0.148 0.174	-1.606 -0.263	2.095 2.095	Up Up
ICAM5	8304	2.713	0.286	0.105	-0.797	2.095	Up
LEPR	9606	2.713	0.183	0.067	-0.542	2.095	Up
FLJ42709	6570	2.712	0.338	0.125	-0.46	2.095	Up
EGR3 DDX26B	5398 4691	2.708 2.708	0.692 0.312	0.255 0.115	-0.339 -0.766	2.095 2.095	Up Up
TFAP2B	19215	2.707	1.339	0.495	-1.887	2.095	Up
CPEB1	4099	2.707	0.447	0.165	-0.677	2.095	Up
F13A1	5783	2.705	0.422	0.156	-0.594	2.095	Up
LOC100127983 PRDM8	9769 15603	2.702 2.697	0.172 0.235	0.064 0.087	-0.199 -0.322	2.095 2.095	Up Up
BMP2	1544	2.697	0.279	0.103	-0.322	2.095	Up
CMAHP	3864	2.692	0.523	0.194	-1.055	2.095	Up
FZD4	6833	2.689	0.42	0.156	-0.554	2.095	Up
KRT6A MARCKS	9348 12111	2.688 2.687	0.909 0.386	0.338 0.144	-1.97 -0.152	2.095 2.095	Up Up
FMOD	6645	2.686	0.688	0.256	-0.335	2.095	Up
SELP	17298	2.686	0.389	0.145	-1.578	2.095	Up
C12orf75	1834	2.684	0.49	0.182	-0.47	2.095	Up
SPHK1 LRRC70	18418 11811	2.684 2.683	0.378 0.293	0.141 0.109	-0.469 -0.742	2.095 2.095	Up Up
BNC2	1562	2.681	0.323	0.109	-0.183	2.095	Up
CNTN1	3932	2.679	0.231	0.086	-0.329	2.095	Up
GSTP1	7578	2.675	0.716	0.267	-0.439	2.095	Up
KLF8 C13orf15	9210 1837	2.675 2.674	0.297 0.399	0.111 0.149	-0.513 -0.376	2.095 2.095	Up Up
VENTX	20658	2.674	0.226	0.084	-1.079	2.095	Up
TGFBR1	19248	2.671	0.333	0.124	-0.811	2.095	Up
BACE1	1363	2.67	0.261	0.098	-0.574	2.095	Up
HSD17B1 VDR	8180 20654	2.669 2.668	0.683 0.35	0.256 0.131	-3.07 -0.667	2.095 2.095	Up Up
HOXA6	8092	2.667	0.522	0.196	-0.223	2.095	Up
LOC401097	11164	2.667	0.231	0.087	-0.596	2.095	Up
MMD LAMA2	12522	2.664	0.396	0.149	-0.182	2.095	Up
MT1A	9487 12788	2.662 2.661	0.513 0.444	0.193 0.167	-0.526 -0.243	2.095 2.095	Up Up
LAMB3	9494	2.661	0.775	0.291	-0.334	2.095	Up
ZNF521	21525	2.66	0.447	0.168	-0.454	2.095	Up
SIRPA	17610	2.659	0.394	0.148	-0.391	2.095	Up
DIRAS3 GLI2	4887 7150	2.659 2.659	0.345 0.156	0.13 0.059	-0.267 -0.512	2.095 2.095	Up Up
LRP1	11735	2.658	0.25	0.094	-0.107	2.095	Up
CLIC2	3813	2.656	0.369	0.139	-0.449	2.095	Up
CPNE5	4113	2.655	0.459	0.173	-0.895	2.095	Up
DPT MT1E	5137 12791	2.653 2.653	0.673 0.582	0.254 0.219	-0.049 -0.099	2.095 2.095	Up Un
ITGA7	8718	2.653	0.486	0.183	-0.364	2.095	Up Up
NOTCH3	13594	2.653	0.371	0.14	-0.53	2.095	Up
TNFSF11	19742	2.652	0.249	0.094	-0.47	2.095	Up
PDE1C IL18R1	14729 8476	2.651 2.65	0.385 0.295	0.145 0.111	-0.897 -0.67	2.095 2.095	Up Up
ADAMTS6	284	2.65	0.235	0.089	-0.205	2.095	Up
GLG1	7148	2.646	0.272	0.103	-0.678	2.095	Up
ABCB1	46	2.646	0.241	0.091	-0.81	2.095	Up
VWF LGALS7	20765 9627	2.643 2.643	0.385 0.801	0.146 0.303	-0.53 -0.758	2.095 2.095	Up Up
CDH11	3348	2.643	0.379	0.143	-0.738	2.905	Up
PPL	15463	2.642	0.428	0.162	-1.473	2.905	Up
MYO1E	12975	2.641	0.35	0.132	-0.667	2.905	Up
LRMP GULP1	11734 7638	2.64 2.639	0.413 0.355	0.157 0.135	-0.877 -0.234	2.905 2.905	Up
TFPI	19235	2.639	0.355	0.133	-0.234	2.905	Up Up
EBF4	5296	2.637	0.497	0.189	-1.532	2.905	Up
THBS2	19280	2.636	0.628	0.238	-0.346	2.905	Up
FUT4 NAMPT	6807 13056	2.635 2.634	0.297 0.406	0.113 0.154	-0.562 -0.318	2.905 2.905	Up Un
DAME I	13030	2.034	0.400	0.134	-0.318	2.703	Up

Cor- ID	Cono N	Coop- (A)	Numarat(-)	Donoming ((-+-0)	Fold Character	adjusted B 1 (0/)	Dinc -4!
Gene ID PCDH18	Gene Name 14608	2.631	Numerator (r) 0.276	Denominator (s+s0) 0.105	Fold Change -0.048	adjusted P value (%) 2.905	Direction Up
FYN	6827	2.63	0.407	0.155	-0.414	2.905	Up
PCDHB6 BAMBI	14643 1386	2.63 2.63	0.227 0.978	0.086 0.372	-0.649 -2.666	2.905 2.905	Up Un
BEND6	1483	2.63	0.978	0.372	-0.299	2.905	Up Up
LIMA1	9676	2.626	0.406	0.154	-0.767	2.905	Up
ZYX RBMS3	21847 16340	2.623 2.623	0.366 0.209	0.139 0.08	-0.801 -0.037	2.905 2.905	Up Up
ACTG2	207	2.622	0.764	0.292	-0.557	2.905	Up
PRMT2	15681	2.621	0.231	0.088	-2.371	2.905	Up
SCN9A GALNTL2	17198 6919	2.621 2.62	0.164 0.499	0.063 0.191	-1.048 -0.451	2.905 2.905	Up Up
NCRNA00241	13204	2.62	0.395	0.151	-0.06	2.905	Up
PNMT	15276	2.616	1.135	0.434	-4.565 0.452	2.905	Up
FLI1 TNFAIP6	6430 19715	2.616 2.616	0.327 0.548	0.125 0.209	-0.453 -0.317	2.905 2.905	Up Up
ICAM2	8301	2.614	0.443	0.17	-0.368	2.905	Up
NRXN2 CASP5	13716 2924	2.612 2.612	0.277 0.344	0.106 0.132	-0.385 -0.844	2.905 2.905	Up Up
PLCL2	15147	2.611	0.217	0.083	-0.36	2.905	Up
ITM2B ACSL4	8750	2.609	0.31	0.119	-0.449	2.905	Up
RASIP1	189 16263	2.609 2.609	0.254 0.451	0.097 0.173	-0.008 -0.964	2.905 2.905	Up Up
ADM	336	2.608	0.631	0.242	-0.369	2.905	Up
FAM129C POSTN	5879 15383	2.606 2.605	0.249 0.756	0.096 0.29	-2.039 -0.254	2.905 2.905	Up
ADAMTS3	281	2.605	0.756	0.29	-0.254 -0.737	2.905 2.905	Up Up
ZNF699	21663	2.603	0.165	0.063	-0.38	2.905	Up
ID2 ANKH	8311 647	2.603 2.603	0.321 0.396	0.123 0.152	-0.903 -0.256	2.905 2.905	Up Up
EDN2	5335	2.602	0.812	0.312	-1.532	2.905	Up
CACNA1C	2785	2.602	0.244	0.094	-0.461	2.905	Up
LUM BANK1	11879 1389	2.602 2.598	0.704 0.478	0.27 0.184	-0.303 -1.618	2.905 2.905	Up Up
G0S2	6840	2.598	0.768	0.296	-0.264	2.905	Up
PABPC4L EPB41L2	14448 5587	2.597 2.596	0.288 0.345	0.111 0.133	-0.387 -0.225	2.905 2.905	Up
PPFIBP1	5587 15442	2.596	0.345 0.287	0.133	-0.225 -0.097	2.905 2.905	Up Up
RNF145	16655	2.593	0.282	0.109	-0.285	2.905	Up
MMP14 COL1A2	12532 3973	2.59 2.59	0.525 0.721	0.203 0.278	-0.222 -0.343	2.905 2.905	Up Up
CSDA	4232	2.59	0.514	0.198	-0.322	2.905	Up
ROBO4	16734	2.59	0.327	0.126	-0.445	2.905	Up
C5orf13 NIPAL4	2477 13470	2.589 2.588	0.32 0.304	0.123 0.117	-0.384 -0.565	2.905 2.905	Up Up
GXYLT2	7646	2.587	0.65	0.251	-0.357	2.905	Up
TJP1 KLK4	19355 9266	2.586 2.584	0.233 0.291	0.09 0.113	-0.884 -0.552	2.905 2.905	Up Up
ZBTB16	21064	2.584	0.606	0.113	-0.552 -2.378	2.905	Up Up
TTC28	20163	2.582	0.177	0.068	-0.768	2.905	Up
CD59 KLHL2	3274 9232	2.581 2.58	0.434 0.363	0.168 0.141	-0.604 -0.676	2.905 2.905	Up Up
CPNE8	4116	2.58	0.252	0.098	-0.382	2.905	Up
CLEC3B L1TD1	3797 9469	2.578 2.577	0.449 0.329	0.174 0.128	-0.2 -1.108	2.905 2.905	Up Un
CIDEC	3708	2.576	0.329	0.128	-0.285	2.905	Up Up
ANKRD57	716	2.576	0.485	0.188	-2.563	2.905	Up
APOD EFCAB1	846 5351	2.575 2.573	1.03 0.282	0.4 0.109	-2.165 -0.606	2.905 2.905	Up Up
GRRP1	7541	2.572	0.412	0.16	-0.883	2.905	Up
PCOLCE TNEADS	14687	2.572	0.463	0.18	-0.176 -0.395	2.905	Up
TNFAIP8 ECSCR	19716 5317	2.572 2.569	0.358 0.338	0.139 0.132	-0.395 -1.181	2.905 2.905	Up Up
ERG	5657	2.568	0.152	0.059	-0.432	2.905	Up
OXER1 LIMS1	14410 9683	2.566 2.565	0.448 0.277	0.175 0.108	-1.04 -0.205	2.905 2.905	Up Up
CHRDL1	3652	2.564	0.54	0.211	-0.424	2.905	Up
TAC1	18908	2.562	0.206	0.08	-0.39	2.905	Up
PRRX1 TMEM45A	15774 19610	2.562 2.56	0.523 0.665	0.204 0.26	-0.16 -0.327	2.905 2.905	Up Up
LHFPL2	9644	2.56	0.36	0.14	-0.272	2.905	Up
SOX17 MYO1D	18311 12974	2.558 2.558	0.415 0.266	0.162 0.104	-0.22 -0.395	2.905 2.905	Up Up
CXCL1	4395	2.558	0.676	0.264	-0.974	2.905	Up
NDRG1	13287	2.557	0.626	0.245	-2.834	2.905	Up
EMCN IFI16	5513 8335	2.555 2.555	0.434 0.409	0.17 0.16	-0.922 -0.455	2.905 2.905	Up Up
C1QTNF7	2127	2.555	0.256	0.1	-0.385	2.905	Up
SCN7A IL4R	17196 8527	2.552 2.55	0.296 0.321	0.116 0.126	-0.531 -0.405	2.905 2.905	Up Up
ANO6	739	2.549	0.177	0.069	-0.375	2.905	Up
ARHGEF4 ENTPD1	964 5570	2.549 2.548	0.248	0.097 0.101	-0.215	2.905 2.905	Up
CXorf36	5570 4429	2.548	0.258 0.146	0.101	-0.515 -0.793	2.905 2.905	Up Up
LOC100129940	9999	2.546	0.274	0.108	-0.065	2.905	Up
STK10 FMNL3	18686 6637	2.545 2.543	0.292 0.162	0.115 0.064	-1.146 -0.44	2.905 2.905	Up Up
C2orf40	2349	2.543	0.883	0.347	-0.471	2.905	Up
SLC9A9	18012	2.539	0.318	0.125	-0.349	2.905	Up
MT1B TMEM132C	12789 19474	2.538 2.538	0.498 0.287	0.196 0.113	-0.143 -0.297	2.905 2.905	Up Up
COL5A1	3991	2.537	0.399	0.157	-0.195	2.905	Up
FAM3D GALNT12	6035 6907	2.537 2.536	0.684 0.281	0.27 0.111	-1.271 -0.652	2.905 3.574	Up
DPP4	5126	2.534	0.439	0.111	-0.652 -0.484	3.574	Up Up
ECM2	5316	2.534	0.273	0.108	-0.193	3.574	Up
GLIPR2 DPEP2	7156 5112	2.534 2.533	0.455 0.267	0.179 0.105	-0.202 -1.284	3.574 3.574	Up Up
ZNF295	21384	2.532	0.184	0.073	-1.279	3.574	Up
IFFO1	8333	2.53	0.188	0.074	-0.127	3.574	Up
MAP4K5 ADH1B	12066 323	2.529 2.528	0.252 0.317	0.1 0.125	-0.375 -0.377	3.574 3.574	Up Up
							~P

Color	Cor- ID	Cono N	Canr- (A)	Numarat(-)	Donomins + (-1-0)	Fold Channel	adjusted B (0/)	Dinc-4!
SEUIL 1696 2-222	Gene ID LBH	Gene Name 9529	Score (d) 2.528	Numerator (r) 0.202	Denominator (s+s0) 0.08	Fold Change -0.631	adjusted P value (%) 3.574	Direction Up
BASAS 1656e 2-531 0.354 0.14 0.000 3.574 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.	RSU1	16968	2.528	0.158	0.063	-0.884	3.574	Up
DEDUCE 1779 2.522								
ZWINMA 21834 2251 0.00 0.07 0.07 0.07 0.07 0.07 0.07 0.0								
WINDS 2078] 2-231								
BISMS	WBP5	20783	2.521	0.452	0.179	-0.461	3.574	
SSCID 1877 2.517 0.462 0.223 0.223 0.225 0.224 0.066 0.122 0.127 0.128								
DNASELI 1935 2.517								
ARIS 1056 2.516 0.29 0.115 0.387 3.574 10								
TLEAL 19380 2:514								Up
Till								
EGFILE 5387 2.513 0.708 0.322 0.325 0.325 0.3274 0.506								
CD99 2298 2511 0.251 0.257 0.10 0.17 3.574 Up CARPAT 3.513 2.216 0.277 0.23 0.252 0.25								
EFEMP 5363 2.51 0.227								
COLAZA 9888 2.999 0.374 0.199 4.229 3.574 Up AIRCL 1022 2.296 0.258 0.118 4.075 3.574 Up PSP818 3.579 2.907 0.32 0.077 0.077 1.007 1.462 3.574 Up PSP818 3.579 2.907 0.77 0.077 0.077 1.462 3.574 Up INSCS 20273 2.207 0.777 0.077 1.007 1.462 3.574 Up INSCS 20273 2.207 0.777 0.077 1.007 1.462 3.574 Up INSCS 20273 2.207 0.228 0.113 1.1074 3.574 Up AIRCL 11561 2.208 0.228 0.228 0.113 1.1074 3.574 Up AIRCL 11561 2.208 0.208 0.208 0.113 1.1074 3.574 Up AIRCL 11561 2.208 0.208 0.108 0.108 0.108 3.574 Up AIRCL 11562 0.208 0.208 0.108 0.								
ABRC2 1002 2-209 0-228 0-000 -0-007 1-								
EPISSS 5379								Up
SRT16 9917 2.597 0.77 0.307 -1.462 3.574 Up Up CR CR CR CR CR CR CR C								
TURNS 20073 2.907 0.375 0.15 0.56 3.374 Up RCNI (0.746 1.256 0.01) 0.10 0.10 0.10 0.25 3.374 Up RCNI (0.746 1.256 0.01) 0.10 0.10 0.10 0.10 0.10 0.10 0.1								
BNC 156 2.904 0.282 0.113 -1.074 3.574 Up A7APILI 3.70 2.204 0.294 0.117 -0.994 3.574 Up AADALISOS 22.2 2.004 0.294 0.117 -0.996 3.574 Up AADALISOS 22.5 0.205 0.117 -0.996 3.574 Up 2.005 0.104 0.071 3.574 Up 2.005 0.104 0.072 0.105 0.005 3.574 Up 2.005 0.104 0.005 0.005 0.005 3.574 Up 2.005 0.	TUSC5	20273	2.507	0.375	0.15	-0.263	3.574	
APAPILI 570 2.904 0.294 0.177 0.994 3.574 Up LOCK-069 1153 2.263 0.022 0.177 0.994 3.574 Up LOCK-069 1153 2.263 0.022 0.177 0.071 0.071 3.574 Up LOCK-069 1153 2.263 0.022 0.177 0.071 3.574 Up LOCK-069 1153 2.263 0.022 0.177 0.071 3.574 Up LOCK-069 1153 2.263 0.022 0.017 0.065 3.574 Up LOCK-069 1153 2.264 0.022 0.024 0.066 0.076 3.574 Up LOCK-069 1153 2.264 0.022 0.024 0.025 3.574 Up LOCK-069 1153 2.264 0.022 0.026 0.026 0.077 3.574 Up LOCK-069 1153 2.264 0.022 0.028 0.0								
ADAMI2								
LOCALISON 11264 2.902 0.432 0.173 0.996 3.574 Up MAILK 1357 2.5	ADAM12	247	2.503	0.292		-0.121		
MARRE2 12977 2.5 0.348 0.139 0.625 3.574 Up RINNS 17000 2.249 0.502 0.116 0.177 3.573 Up 0.000 0.1	LOC441869	11264	2.502	0.432	0.173	-0.996	3.574	Up
III.K 8542 2.497								
RINN:2 17000 2.494								
MFGISE 12350 2.494	RUNX2	17000	2.494	0.262	0.105	0.173	3.574	Up
PICER 15916 2-94								
INCN \$280 2-92 0.289 0.116 -0.964 3.574 Up Up INNT3 19771 2-991 0.27 0.108 -0.201 3.574 Up INNT3 19771 0.108 -0.201 3.574 Up INNT3 19771 0.108 -0.201 3.574 Up INNT3 0.108 -0.201 3.574 Up 0.201 -0.201 3.574 Up 0.201 -0.201 3.574 Up 0.201 -0.201 3.574 Up 0.201 -0.201 -0.201 -0.201 3.574 Up 0.201 -0.201								
TNNT3								
FAM49A	TNNT3	19771		0.27	0.108	-0.201	3.574	Up
MYL2								
ALDIE 517								
CCL19 3137 2.488 0.862 0.347 -1.616 3.574 Up Meisz 12286 2.487 0.677 0.272 -0.564 3.574 Up Meisz 12286 2.487 0.677 0.272 -0.564 3.574 Up SIRON 1.5246 2.487 0.677 0.272 -0.564 3.574 Up SIRON 1.5246 2.487 0.677 0.272 -0.564 3.574 Up SIRON 1.5246 1.5246 2.487 0.674 0.197 -0.564 3.574 Up 1.5246 1.5246 1.5246 2.487 0.794 0.197 -0.525 3.574 Up 1.5246 1.52	ALDH2	517	2.489	0.475		-0.68	3.574	
MEISE								
MMB3								∪p Un
BILK 1529 2487 0.534 0.215 2.064 3.574 Up PREKELE2 15628 2.485 0.425 0.171 0.428 3.574 Up PREKELE2 15628 2.485 0.425 0.171 0.428 3.574 Up STONI 18717 2.48 0.377 0.152 0.447 3.574 Up STONI 18717 2.48 0.377 0.152 0.447 3.574 Up STONI 18717 2.48 0.377 0.152 0.447 3.574 Up CLDN14 3760 2.479 0.233 0.094 0.140 0.487 3.574 Up CLDN14 3760 2.479 0.336 0.14 0.487 3.574 Up 0.152 0.089 0.099 3.574 Up 0.1717 0.1818 0.141 0.087 0.152 0.099 0.099 3.574 Up 0.1717 0								
PRICKLE2								Up
GRAND2 7478 2483 0.309 0.124 -1.166 3.574 Up STONI 18717 248 0.377 0.152 0.447 3.574 Up CLDN14 3760 2479 0.233 0.094 -1.07 3.574 Up CLDN14 3760 2479 0.233 0.094 -1.07 3.574 Up CRNA00256B 13215 2.477 0.346 0.14 0.837 3.574 Up GRNNB 7352 2476 0.287 0.116 0.335 3.574 Up TMEMI32E 19476 2.476 0.222 0.089 0.099 3.574 Up THY1 19311 2473 0.474 0.192 0.172 3.574 Up FIGE 14883 2.471 0.361 0.146 0.628 3.574 Up GRICC 12572 2.47 0.436 0.146 0.628 3.574 Up GRICC 12572 2.47 0.436 0.171 1.107 3.574 Up ADAM23 256 2.469 0.137 0.055 1.1022 3.574 Up ADAM759 287 2.468 0.4 0.162 0.052 3.574 Up ADAM759 287 2.468 0.4 0.162 0.052 3.574 Up ACSL1 187 2.465 0.439 0.178 0.095 3.574 Up FREIGA 166 1666 4.246 0.204 0.083 1.033 3.574 Up FRILDA3 14948 2.464 0.354 0.144 0.289 3.574 Up FRILDA3 14948 2.464 0.354 0.144 0.289 3.574 Up FRILDA3 14948 2.464 0.142 0.058 1.193 3.574 Up FRILDA3 14948 2.464 0.134 0.172 0.055 3.574 Up FRILDA3 14948 2.464 0.134 0.178 0.058 1.193 3.574 Up FRILDA3 14948 2.464 0.134 0.178 0.058 3.191 3.574 Up FRILDA3 14948 2.464 0.354 0.144 0.289 3.574 Up FRILDA3 14948 2.464 0.354 0.144 0.289 3.574 Up FRILDA3 14948 2.464 0.354 0.144 0.289 3.574 Up FRILDA3 14948 2.464 0.354 0.147 0.058 1.191 3.574 Up FRILDA3 14948 2.464 0.134 0.179 0.055 3.574 Up FRILDA3 14948 2.464 0.142 0.058 3.191 3.574 Up FRILDA3 14948 2.464 0.144 0.164 0.164 0.229 3.574 Up FRILDA3 14948 2.464 0.144 0.164 0.164 0.229 3.574 Up FRILDA3								
STON 18717								
NCRNA00256B 13215 2 477 0 346 0.14 0.837 3.574 Up GFNMB 7352 2.476 0.287 0.116 -0.225 3.574 Up TMEMI32E 19476 2.476 0.22 0.089 0.099 3.574 Up PGF 14883 2.471 0.361 0.146 -0.628 3.574 Up PGF 14883 2.471 0.361 0.146 -0.628 3.574 Up CC 7 2581 2.47 0.421 0.171 -1.197 3.574 Up MEF2C 12272 2.47 0.336 0.136 -0.569 3.574 Up MEF2C 12272 2.47 0.336 0.136 -0.569 3.574 Up ADAM23 2.56 2.469 0.137 0.055 -1.022 3.574 Up SISNI 17410 2.468 0.314 0.127 -0.011 3.574 Up RNF166 16664 2.466 0.200 0.088 0.14 0.127 -0.011 3.574 Up RNF166 16664 2.466 0.200 0.088 0.162 -0.209 3.574 Up PMCH.1 1878 2.264 0.034 0.0183 -1.033 3.574 Up PMCH.1 1878 2.264 0.039 0.0183 -1.033 3.574 Up PMCH.1 1878 2.264 0.039 0.0183 -1.033 3.574 Up RNF166 16664 2.466 0.200 0.088 -1.033 3.574 Up RNF168 16564 2.266 0.200 0.088 -1.033 3.574 Up RNF169 1.6684 2.266 0.200 0.088 -1.033 3.574 Up RNF169 1.6684 2.466 0.300 0.078 -1.038 1.038			2.48			-0.447		
GPNMB								
TMEMI32E 19476 2.476 0.22 0.089 0.099 3.574 Up POF 14883 2.471 0.361 0.146 0.628 3.574 Up POF 14883 2.471 0.361 0.146 0.628 3.574 Up MEPC 12272 2.47 0.421 0.171 -1.197 3.574 Up MEPC 12272 2.47 0.326 0.136 0.136 0.569 3.574 Up ADAM23 2.56 2.469 0.137 0.055 -1.022 3.574 Up ADAM23 2.56 2.469 0.137 0.055 -1.022 3.574 Up ADAM3 2.56 2.469 0.137 0.055 -1.022 3.574 Up ADAMTS9 2.87 2.468 0.34 0.162 0.329 3.574 Up ADAMTS9 2.87 2.468 0.4 0.162 0.329 3.574 Up ACS.LI 187 2.465 0.439 0.178 0.095 3.103 3.574 Up PHLDA3 14948 2.464 0.354 0.144 0.289 3.574 Up PHLDA3 14948 2.464 0.354 0.144 0.289 3.574 Up PHLDA3 14948 2.464 0.354 0.144 0.289 3.574 Up PMCHLI 15239 2.464 0.142 0.058 1.191 3.574 Up CNIH 3895 2.462 0.395 0.161 0.254 3.574 Up SLC25A27 17774 2.462 0.395 0.161 0.254 3.574 Up RIPK4 16883 2.461 0.317 0.129 2.2015 3.574 Up RCLC25A27 17774 2.462 0.404 0.164 0.254 3.574 Up RCLC25A27 17774 2.465 0.395 0.161 0.254 3.574 Up RCLC3A27 17774 2.465 0.396 0.161 0.354 0.154 3.574 Up RCLC3A27 17774 2.465 0.396 0.161 0.354 0.154 3.574 Up RCLC3A27 17774 2.465 0.396 0.161 0.354 0.154 3.574 Up RCLC3A27 17774 2.465 0.396 0.161 3.574 Up RCLC3A27 17774 2.465 0.397 0.159 0.466 3.574 Up RCLC3A27 17774 2.465 0.397 0.159 0.466 3.574 Up RCLC3A27 17774 2.465 0.397 0.159 0.466 3.574 Up RCLC3A27 18774 2.465 0.397 0.159 0.159 0.466 3.574 Up RCLC3A27 18774 2.465 0.396 0.159 0.159 0.466 3.574 Up RCLC3A27 18774 2.465 0.396 0.159 0.159 0.466 3.574 Up RCLC3A27 18774 2.465 0.396 0.159 0.159 0.466 3.574 Up RCLC3A27 18784 0.390 0.159 0.159								
PGF 14883 2.471 0.361 0.146 0.058 3.574 Up MEPC C7 2581 2.47 0.421 0.171 1.197 3.574 Up MEPC 12272 2.47 0.336 0.136 0.569 3.574 Up CCCCSRA 3110 2.469 0.295 0.12 0.207 3.574 Up ADAM23 2.56 2.469 0.137 0.055 1.1022 3.574 Up SESNI 17410 2.468 0.314 0.127 0.991 3.574 Up ADAMTS9 287 2.468 0.4 0.162 0.329 3.574 Up ANNTS9 287 2.468 0.4 0.162 0.329 3.574 Up ACSL1 187 2.465 0.439 0.178 0.952 3.574 Up ACSL1 187 2.465 0.439 0.178 0.952 3.574 Up PMCH1 15239 2.464 0.142 0.058 1.191 3.574 Up BCIGB 1454 2.463 0.327 0.133 1.119 3.574 Up CNIH 3 3895 2.462 0.395 0.161 0.224 3.574 Up SICCSA27 17774 2.462 0.404 0.164 0.229 3.574 Up RIPK4 16583 2.461 0.317 0.129 2.2015 3.574 Up BACK 12178 2.461 0.392 0.118 0.404 3.574 Up BATF3 1402 2.458 0.290 0.118 0.407 3.574 Up BATF3 1402 2.458 0.290 0.118 0.407 3.574 Up ARGILII 908 2.455 0.298 0.121 0.053 3.574 Up ARGILII 908 2.455 0.298 0.121 0.053 3.574 Up BATF3 1402 2.458 0.290 0.118 0.407 3.574 Up ARGILII 908 2.455 0.298 0.121 0.053 3.574 Up ARGILII 908 2.455 0.298 0.121 0.053 3.574 Up ARGILII 908 2.455 0.298 0.121 0.533 3.574 Up ARGILII 908 2.455 0.298 0.121 0.533 3.574 Up ARGILII 908 2.455 0.298 0.121 0.533 3.574 Up THIBSI 19279 2.453 0.307 0.125 0.004 3.574 Up THIBSI 19279 2.453 0.306 0.147 0.41 3.574 Up CNIL 344 0.302 0.123 0.435 3.574 Up CNIL 344 0.302 0.123 0.435 3.574 Up THIBSI 19279 2.453 0.36 0.147 0.41 3.574 Up CNIL 344 0.302 0.123 0.435 3.574 Up THIBSI 19279 2.453 0.36 0.147 0.41 3.574 Up CNIL 344 0.302 0.123 0.435 3.574 Up CNIL 344 0.302 0.123 0.435 3.574 Up THIBSI 19279 2.453 0.36 0.147 0.041 3.574 Up CNIL 344 0.302 0.123 0.033 3.574 Up THIBSI 19279 2.453 0.36 0.147 0.041 3.574 Up CNIL 344 0.302 0.123 0.035 3.574 Up CNIL 344 0.303 0.303 0.003 0.003 3.574 Up CNIL 344 0.304 0.404 0.404 0.404 3.574 Up CNIL 354 0.404 0.404 0.404 0.404 3.574 Up CNIL 354 0.404 0.404 0.404 0.404 3.574 Up CNIL 354 0.404 0.404 0.404 0.404 3.574 Up CNI								
C7 258 2.47 0.42 0.171 1.197 3.574 Up MEPEC 12272 2.47 0.336 0.136 0.569 3.574 Up CCDC88A 3110 2.469 0.295 0.12 0.207 3.574 Up ADAM23 256 2.469 0.137 0.055 1.022 3.574 Up SESN1 17410 2.468 0.314 0.127 0.991 3.574 Up ADAMTS9 287 2.468 0.4 0.162 0.329 3.574 Up RNF166 1.6664 2.466 0.204 0.083 1.033 3.574 Up ACSL1 187 2.465 0.339 0.178 0.952 3.574 Up PMCHL1 15239 2.464 0.142 0.058 1.91 3.574 Up PMCHL1 15239 2.464 0.142 0.058 1.91 3.574 Up BCL6B 1454 2.463 0.327 0.133 1.139 3.574 Up BCL6B 1454 2.463 0.327 0.133 1.139 3.574 Up SLC25A27 17774 2.462 0.494 0.164 0.029 3.574 Up SLC25A27 17774 2.462 0.494 0.164 0.229 3.574 Up SLC25A27 17774 2.462 0.494 0.164 0.229 3.574 Up SLC25A27 17774 2.462 0.494 0.164 0.229 3.574 Up SLC3AA1 12178 2.461 0.392 0.159 0.466 3.574 Up SLC3AA1 12178 2.461 0.392 0.159 0.466 3.574 Up SLC3AA1 12178 2.461 0.392 0.159 0.466 3.574 Up SLC25A27 17774 2.462 0.494 0.164 0.229 3.574 Up SLC25A27 17774 2.462 0.494 0.164 0.229 3.574 Up SLC25A27 17774 2.462 0.494 0.164 3.574 Up SLC25A27 1.774 0.774 0.174 0.374 Up SLC25A27 1.774 0.77								
MEFCC 12272 247 0.336 0.136 0.569 3.574 Up CCDCSSA 3110 2.469 0.295 0.12 0.207 3.574 Up ADAM23 256 2.469 0.137 0.055 -1.022 3.574 Up ADAM23 256 2.469 0.137 0.055 -1.022 3.574 Up 2.5881 17410 2.468 0.314 0.127 -0.911 3.574 Up ADAMTS9 287 2.468 0.4 0.162 -0.329 3.574 Up ADAMTS9 287 2.468 0.4 0.162 -0.329 3.574 Up ADAMTS9 287 2.466 0.204 0.083 -1.033 3.574 Up ACSL1 187 2.465 0.449 0.178 -0.952 3.574 Up ACSL1 187 2.465 0.439 0.178 -0.952 3.574 Up ACSL1 15239 2.464 0.142 0.058 -1.91 3.574 Up ACSL1 15239 2.461 0.327 0.133 -1.139 3.574 Up ACSL2 0.395 0.161 0.254 3.574 Up 0.164 0.164 0.164 0.164 0.165								
CCDC88A 3110 2-469 0.295 0.12 -0.207 3.574 Up SESN1 17410 2-468 0.314 0.127 -0.911 3.574 Up 3.574 Up ADAMTS9 287 2-468 0.4 0.162 -0.329 3.574 Up ACSL1 187 2-465 0.439 0.178 -0.952 3.574 Up ACSL1 187 2-465 0.439 0.178 -0.952 3.574 Up ACSL1 187 2-465 0.439 0.178 -0.952 3.574 Up ACSL1 187 2-465 0.354 0.144 -0.289 3.574 Up ACSL1 187 2-463 0.327 0.133 -1.139 3.574 Up ACSL25A27 17774 2-462 0.395 0.161 -0.254 3.574 Up ACSL25A27 17774 2-462 0.395 0.161 -0.254 3.574 Up ACSL25A27 17774 2-462 0.395 0.161 -0.224 3.574 Up ACSL25A27 17774 2-462 0.395 0.169 0.164 -0.229 3.574 Up ACSL25A27 17774 2-462 0.395 0.169 0.164 -0.229 3.574 Up ACSL25A27 17774 2-462 0.392 0.159 0.446 3.574 Up ACSL25A27 17774 2-462 0.392 0.159 0.0446 3.574 Up ACSL25A27 17774 2-462 0.392 0.159 0.0446 3.574 Up ACSL25A27 17774 2-462 0.392 0.159 0.0446 3.574 Up ACSL25A27 17774 2-454 0.302 0.159 0.0446 3.574 Up ACSL25A27 1.444 0.392 0.159 0.0446 3.574 Up ACSL25A27 1.444 0.302 0.123 0.435 3.574 Up ACSL25A27 1.444 0.302 0.123 0.435 3.574 Up ACSL25A27 1.444 0.302 0.123 0.435 3.574 Up ACSL25A2 0.144 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.055 0.054 0.055 0.05								
SESNI	CCDC88A	3110	2.469	0.295	0.12	-0.207	3.574	Up
ADAMTS9								
RNF166 16664 2.466 0.204 0.083 -1.033 3.574 Up PHLDA3 14948 2.465 0.349 0.178 0.9952 3.574 Up PHLDA3 14948 2.464 0.354 0.144 0.289 3.574 Up PMCHLI 15239 2.464 0.142 0.058 -1.91 3.574 Up PMCHLI 15239 2.466 0.142 0.058 -1.91 3.574 Up SCL6B 1454 2.463 0.327 0.133 -1.139 3.574 Up CNIH3 3895 2.462 0.395 0.161 0.254 3.574 Up SLC25A27 17774 2.462 0.404 0.164 0.229 3.574 Up RIPK4 16583 2.461 0.317 0.129 2.2015 3.574 Up RIPK4 16583 2.461 0.317 0.129 2.2015 3.574 Up BATE3 1402 2.458 0.29 0.118 0.407 3.574 Up GABARAPLI 6854 2.457 0.307 0.125 0.404 3.574 Up ARGLUI 908 2.455 0.298 0.121 0.533 3.574 Up ELITD1 5511 2.454 0.302 0.123 0.435 3.574 Up THBS1 19279 2.453 0.36 0.147 0.41 3.574 Up PCDHB18 14638 2.452 0.194 0.079 0.811 3.574 Up FCERIA 6266 2.451 0.372 0.111 0.015 3.574 Up FCERIA 6276 2.451 0.531 0.217 -1.746 3.574 Up LOC732272 11649 2.451 1.034 0.422 0.655 3.574 Up TMBIM1 19408 2.451 1.034 0.422 0.665 3.574 Up COKL1 3404 2.449 0.225 0.092 0.093 3.574 Up COKL1 3404 2.449 0.225 0.092 0.009 3.574 Up COKL1 3404 2.449 0.225 0.092 0.009 3.574 Up COKL1 3404 2.449 0.225 0.092 0.0707 3.574 Up COKL1 3404 2.443 0.318 0.13 0.047 0.016 0.048 3.574 Up COKL1 3404 2.443 0.318 0.13 0.048 0.048 3.574 Up COKL1 3404 2.443 0.318 0.13 0.048 0.048 3.574 Up COKL1 3404 2.443 0.318 0.13 0.047 0.066 0.009 3.574 Up COKL1 3404 2.443 0.318 0.048 0.048 0.048 3.574 Up COKL1 3404 2.443 0.318 0.048 0.048 0.048 3.574 Up COKL1 341 0.045 0.046 0.048 0.048 0.048 3.574 Up COKL1 341 0.045 0.046 0.046 0.046 0.048 3.041 0.047 Up LOC554202 11289 2.433 0.435 0.234 0.096 0.106 0.00								
PHILDA3								
PMCHLI								Up
BCLGB								
CNIHS 3895 2.462 0.395 0.161 0.254 3.574 Up SLC25A27 17774 2.462 0.404 0.164 0.129 3.574 Up RIPK4 16583 2.461 0.317 0.129 2.015 3.574 Up MCAM 12178 2.461 0.392 0.159 0.446 3.574 Up BATT3 1402 2.458 0.29 0.118 0.407 3.574 Up GABARAPL1 6854 2.457 0.307 0.125 0.094 3.574 Up ARGLUI 908 2.455 0.298 0.121 0.533 3.574 Up ARGLUI 908 2.455 0.298 0.121 0.533 3.574 Up ELTDI 5511 2.454 0.302 0.123 0.435 3.574 Up THBS1 19279 2.453 0.36 0.147 -0.41 3.574 Up PCDHB18 14638 2.452 0.194 0.079 0.811 3.574 Up FCERIA 6276 2.451 0.272 0.111 0.105 3.574 Up FCERIA 6276 2.451 0.331 0.217 1.746 3.574 Up TMBIM1 19408 2.45 0.372 0.152 0.076 3.574 Up TMBIM1 19408 2.45 0.372 0.152 0.076 3.574 Up MYO9A 12987 2.446 0.225 0.092 0.707 3.574 Up MYO9A 12987 2.446 0.225 0.092 0.707 3.574 Up CDKL1 3404 2.449 0.225 0.092 0.707 3.574 Up CDK15 3382 2.442 0.118 0.048 0.948 0.948 3.574 Up CDK15 3382 2.442 0.118 0.048 0.948 0.948 3.574 Up CDK15 3382 2.442 0.118 0.048 0.948 0.948 3.574 Up CDK15 3382 2.442 0.118 0.048 0.948 0.948 0.948 0.948 0.948 0.								
RIPKA 16583 2.461 0.317 0.129 2.015 3.574 Up MCAM 12178 2.461 0.392 0.159 0.446 3.574 Up BATT3 1402 2.458 0.29 0.118 0.407 3.574 Up GABARAPLI 6854 2.457 0.307 0.125 0.094 3.574 Up ARGLUI 908 2.455 0.298 0.121 0.533 3.574 Up ELTD1 5511 2.454 0.302 0.123 0.435 3.574 Up THBS1 19279 2.453 0.36 0.147 0.41 3.574 Up PCDHB18 14638 2.452 0.194 0.079 0.811 3.574 Up KDELC2 8968 2.451 0.272 0.111 0.105 3.574 Up FCER1A 6276 2.451 0.531 0.217 1.746 3.574 Up FCER1A 6276 2.451 0.531 0.217 1.746 3.574 Up LICOT32272 11649 2.451 1.034 0.422 0.655 3.574 Up TMBIM1 19408 2.451 0.531 0.217 1.746 3.574 Up CDKL1 3404 2.449 0.225 0.092 0.020 3.574 Up MY09A 12987 2.446 0.225 0.092 0.020 3.574 Up ACAA2 116 2.446 0.395 0.161 0.454 3.574 Up CINN 3641 2.444 0.318 0.13 1.009 3.574 Up CDK15 3382 2.442 0.118 0.048 0.092 0.707 3.574 Up CDK16 3.352 2.441 0.318 0.13 1.009 3.574 Up CDK17 3.354 Up CINN 3641 2.444 0.318 0.13 1.009 3.574 Up CDK18 3.382 2.442 0.118 0.048 0.092 0.707 3.574 Up CDK19 3.382 2.442 0.118 0.048 0.092 0.707 3.574 Up CDK19 3.382 2.442 0.118 0.048 0.094 3.574 Up CDK19 3.382 2.441 0.318 0.13 1.009 3.574 Up CDK19 3.382 2.442 0.118 0.048 0.048 0.0948 3.574 Up CDK19 3.382 2.441 0.318 0.13 1.009 3.574 Up CDK19 3.382 2.442 0.118 0.048 0.048 0.0948 3.574 Up CDK19 3.382 2.441 0.318 0.048 0.048 0.0948 3.574 Up CDK19 3.382 2.441 0.307 0.126 0.293 3.574 Up CDK19 3.414 0.4318 0.048	CNIH3	3895	2.462	0.395	0.161	-0.254	3.574	Up
MCAM 12178 2.461 0.392 0.159 -0.446 3.574 Up BATF3 1402 2.458 0.29 0.118 -0.407 3.574 Up GABARAPLI 6854 2.457 0.307 0.125 -0.094 3.574 Up ARGLUI 908 2.455 0.298 0.121 -0.533 3.574 Up ELTD1 5511 2.454 0.302 0.123 -0.435 3.574 Up THBSI 19279 2.453 0.36 0.147 -0.41 3.574 Up PCDHB18 14638 2.452 0.194 0.079 -0.811 3.574 Up KDELC2 8968 2.451 0.272 0.111 -0.105 3.574 Up LOC732272 11649 2.451 0.531 0.217 -1.746 3.574 Up LOC732272 1169 2.451 1.034 0.422 -0.655 3.374 Up CDKL1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
BATF3 1402 2.458 0.29 0.118 -0.407 3.574 Up GABARAPLI 6854 2.457 0.307 0.125 -0.094 3.574 Up ARGLUI 908 2.455 0.298 0.121 -0.533 3.574 Up ELITDI 5511 2.454 0.302 0.123 -0.4355 3.574 Up THBSI 19279 2.453 0.36 0.147 -0.41 3.574 Up PCDHBIS 14638 2.452 0.194 0.079 -0.811 3.574 Up KDELC2 8968 2.451 0.272 0.111 -0.105 3.574 Up FCERIA 6276 2.451 0.531 0.217 -1.746 3.574 Up LOC732272 11649 2.451 0.531 0.217 -1.746 3.574 Up CDKL1 3404 2.449 0.225 0.092 -0.209 3.574 Up MYO9A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
ARGLUI 908 2.455 0.298 0.121 0.5333 3.574 Up ELTDI 5511 2.454 0.302 0.123 0.435 3.574 Up THBSI 19279 2.453 0.36 0.147 -0.41 3.574 Up PCDHBI8 14638 2.452 0.194 0.079 0.811 3.574 Up FCERIA 6276 2.451 0.531 0.272 0.111 0.105 3.574 Up FCERIA 6276 2.451 0.531 0.217 1.746 3.574 Up LOC732272 11649 2.451 0.531 0.217 1.746 3.574 Up TMBIMI 19408 2.45 0.372 0.152 0.655 3.574 Up CDKL1 3404 2.449 0.225 0.092 0.209 3.574 Up MY09A 12987 2.446 0.225 0.092 0.209 3.574 Up MY09A 12987 2.446 0.225 0.092 0.707 3.574 Up ACAA2 116 2.446 0.395 0.161 0.454 3.574 Up CINI 3641 2.444 0.318 0.13 1.009 3.574 Up CDKL1 3382 2.442 0.118 0.048 0.948 3.574 Up CDKL1 3382 2.442 0.118 0.048 0.948 3.574 Up CDKL12 9.241 0.307 0.126 0.293 3.574 Up CDKL19 9.241 2.441 0.307 0.126 0.293 3.574 Up CDK15 3382 2.442 0.118 0.048 0.948 3.574 Up CDK16 3.574 Up CDK17 3.574 Up CDK18 3.574 Up CDK19 3.5	BATF3	1402	2.458	0.29	0.118	-0.407	3.574	Up
ELTDI 5511 2.454 0.302 0.123 0.435 3.574 Up THBSI 19279 2.453 0.36 0.147 -0.41 3.574 Up PCDHB18 14638 2.452 0.194 0.079 -0.811 3.574 Up KDELC2 8968 2.451 0.272 0.111 -0.105 3.574 Up FCERIA 6276 2.451 0.531 0.217 -1.746 3.574 Up LOC732272 11649 2.451 1.034 0.422 0.655 3.574 Up TMBIM1 19408 2.45 0.372 0.152 -0.776 3.574 Up TMBIM1 19408 2.45 0.372 0.152 -0.776 3.574 Up CDK.L1 3404 2.449 0.225 0.092 -0.209 3.574 Up MYO9A 12987 2.446 0.225 0.092 -0.707 3.574 Up ACAA2 116 2.446 0.225 0.092 -0.707 3.574 Up CDK.L1 3404 2.444 0.318 0.13 -1.009 3.574 Up CDK.L3 3382 2.442 0.118 0.048 0.948 3.574 Up CDK.L5 3382 2.442 0.118 0.048 0.948 3.574 Up KLHL29 9241 2.441 0.307 0.126 -0.293 3.574 Up LOC554202 11289 2.439 0.25 0.103 -0.668 3.3574 Up LOC554202 11289 2.439 0.25 0.103 -0.668 3.3574 Up LOC554202 11289 2.439 0.25 0.103 -0.668 3.3574 Up KRTLS 9316 2.438 0.548 0.225 -0.354 3.574 Up KRTLS 9316 2.435 0.39 0.16 -0.321 3.574 Up KRTLS 9316 2.435 0.39 0.16 -0.321 3.574 Up KRTLS 9316 2.435 0.39 0.16 -0.321 3.574 Up KRTLS 9316 2.435 0.39 0.16 -0.109 4.317 Up KRTLS 9316 2.435 0.39 0.16 -0.109 4.317 Up Contains 92469 2.435 0.234 0.096 -1.108 4.317 Up COMFG 7206 2.431 0.447 0.448 0.182 -0.651 4.317 Up CMFG 7206 2.431 0.447 0.182 0.049 4.317 Up CMFG 7206 2.431 0.447 0.167 0.059 4.317 Up CMFG 7206 2.431 0.447 0.167 0.059 4.317 Up								
THBSI								
PCDHBI8	THBS1	19279	2.453	0.36	0.147	-0.41	3.574	
FCERIA 6276 2.451 0.531 0.217 1.746 3.574 Up LOC732272 11649 2.451 1.034 0.422 0.655 3.574 Up TMBIM1 19408 2.45 0.372 0.152 0.676 3.574 Up CDKL1 3404 2.449 0.225 0.092 0.209 3.574 Up MYO9A 12987 2.446 0.225 0.092 0.009 3.574 Up ACAA2 116 2.446 0.395 0.161 0.454 3.574 Up CIN1 3641 2.444 0.318 0.13 1.009 3.574 Up CDK15 3382 2.442 0.118 0.048 0.948 3.574 Up CDK15 3382 2.442 0.118 0.048 0.948 3.574 Up LOC554202 11289 2.491 0.25 0.103 0.683 3.574 Up LOC554202 11289 2.439 0.25 0.103 0.683 3.574 Up ZNF469 21487 2.438 0.548 0.225 0.354 3.574 Up ZNF469 21487 2.438 0.548 0.225 0.354 3.574 Up KRI15 9316 2.435 0.548 0.225 0.354 3.574 Up KRT15 9316 2.435 0.1015 0.417 0.714 4.317 Up PPAP2B 15419 2.435 0.39 0.16 0.099 4.317 Up CO6749 2469 2.435 0.234 0.096 1.108 4.317 Up FBN1 620 2.435 0.234 0.096 1.108 4.317 Up FBN1 620 2.433 0.352 0.145 0.0646 4.317 Up LOC100131541 10184 2.431 0.443 0.182 0.6616 4.317 Up EYA2 5772 2.431 0.545 0.224 0.384 4.317 Up EYA2 5772 2.431 0.545 0.224 0.384 4.317 Up EYA2 5772 2.431 0.447 0.167 0.0598 4.317 Up TMEM130 19470 2.431 0.440 0.204 0.0496 4.317 Up TMEM130 19470 2.431 0.447 0.0496 0.204 0.496 4.317 Up								Up
LOC732272								
TMBIMI	LOC732272							
MYO9A 12987 2.446 0.225 0.092 0.707 3.574 Up	TMBIM1	19408	2.45	0.372	0.152	-0.776	3.574	Up
ACAA2 116 2.446 0.395 0.161 0.454 3.574 Up CHN1 3641 2.444 0.318 0.13 1-1.009 3.574 Up CDK15 3382 2.442 0.118 0.048 0.048 0.948 3.574 Up KLHL29 9241 2.441 0.307 0.126 0.293 3.574 Up LOC554202 11289 2.439 0.25 0.103 0.683 3.574 Up ZNF469 21487 2.438 0.548 0.225 0.103 0.683 3.574 Up GREMI 7492 2.437 0.428 0.176 0.321 3.574 Up KRT15 9316 2.435 1.015 0.417 0.714 4.317 Up PAP2B 15419 2.435 0.39 0.16 0.0199 4.317 Up C40r49 2469 2.435 0.234 0.096 1.108 4.317 Up FBN1 6202 2.433 0.409 0.168 0.003 4.317 Up ALDH1A1 511 2.433 0.352 0.145 0.063 4.317 Up LOC100131541 10184 2.431 0.443 0.182 0.651 4.317 Up GMFG 7206 2.431 0.443 0.182 0.651 4.317 Up GMFG 7206 2.431 0.447 0.167 0.598 4.317 Up GMFG 7206 2.431 0.447 0.182 0.024 0.384 4.317 Up TMEM130 19470 2.431 0.407 0.167 0.598 4.317 Up								
CINI 3641 2.444 0.318 0.13 -1.009 3.574 Up CDK15 3382 2.442 0.118 0.048 -0.948 3.574 Up KLH129 9241 2.441 0.307 0.126 -0.293 3.574 Up LOCS54202 11289 2.439 0.25 0.103 -0.683 3.574 Up ZNF469 21487 2.438 0.548 0.225 -0.354 3.574 Up GREMI 7492 2.437 0.428 0.176 -0.321 3.574 Up KRT15 9316 2.435 1.015 0.417 -0.714 4.317 Up PPAP2B 15419 2.435 0.39 0.16 -0.199 4.317 Up Cdorf49 2469 2.435 0.234 0.096 -1.108 4.317 Up Cdorf49 2469 2.435 0.234 0.096 -1.108 4.317 Up LOC100131541 1018 4.243 0.352 0.145 0.063 4.317 Up LOC100131541 10184 2.431 0.443 0.182 -0.651 4.317 Up EYA2 5772 2.431 0.545 0.224 0.384 4.317 Up GMFG 7206 2.431 0.545 0.224 0.384 4.317 Up TMEM130 19470 2.431 0.407 0.167 -0.598 4.317 Up TMEM130 19470 2.431 0.496 0.204 -0.496 4.317 Up								
KLHL29 9241 2.441 0.307 0.126 0.293 3.574 Up	CHN1	3641	2.444	0.318	0.13	-1.009	3.574	Up
LOCS4202 11289 2.439 0.25 0.103 0.683 3.574 Up								
ZNF469 21487 2.438 0.548 0.225 0.354 3.574 Up GREM1 7492 2.437 0.428 0.176 0.321 3.574 Up KRT15 9316 2.435 1.015 0.417 0.417 0.714 4.317 Up PAP2B 15419 2.435 0.39 0.16 0.199 4.317 Up C40r49 2469 2.435 0.234 0.096 1.108 4.317 Up FBN1 6202 2.433 0.409 0.168 0.063 4.317 Up ALDHIAI 511 2.433 0.352 0.145 0.664 4.317 Up LOC100131541 10184 2.431 0.443 0.182 0.651 4.317 Up CFVA2 5772 2.431 0.545 0.224 0.384 4.317 Up GMFG 7206 2.431 0.407 0.167 0.598 4.317 Up TMEM130 19470 2.431 0.496 0.204 0.496 4.317 Up								
GREMI 7492 2.437 0.428 0.176 0.321 3.574 Up RKRTIS 9316 2.435 1.015 0.417 0.7114 4.317 Up PPAP2B 15419 2.435 0.39 0.16 0.199 4.317 Up C40rf49 2469 2.435 0.234 0.096 1.108 4.317 Up FBN1 6202 2.433 0.409 0.168 0.063 4.317 Up ALDHIAI 511 2.433 0.352 0.145 0.0646 4.317 Up LOCI00131541 10184 2.431 0.443 0.182 0.651 4.317 Up EYA2 5772 2.431 0.545 0.224 0.651 4.317 Up GMFG 7206 2.431 0.407 0.167 0.598 4.317 Up TMEM130 19470 2.431 0.496 0.204 0.496 4.317 Up								
PPAP2B 15419 2.435 0.39 0.16 -0.199 4.317 Up C4ort49 2469 2.435 0.234 0.096 -1.108 4.317 Up FBN1 6202 2.433 0.409 0.168 -0.063 4.317 Up ALDH1A1 511 2.433 0.352 0.145 -0.646 4.317 Up LOC100131541 10184 2.431 0.443 0.182 -0.651 4.317 Up EYA2 5772 2.431 0.545 0.224 -0.384 4.317 Up GMFG 7206 2.431 0.407 0.167 -0.598 4.317 Up TMEM130 19470 2.431 0.496 0.204 -0.496 4.317 Up	GREM1	7492	2.437	0.428	0.176	-0.321	3.574	Up
C4orf49 2469 2.435 0.234 0.096 -1.108 4.317 Up FBN1 6202 2.433 0.409 0.168 -0.063 4.317 Up ALDHIA1 511 2.433 0.352 0.145 -0.646 4.317 Up LOC100131541 10184 2.431 0.443 0.182 -0.651 4.317 Up EYA2 5772 2.431 0.545 0.224 -0.384 4.317 Up GMFG 7206 2.431 0.407 0.167 -0.598 4.317 Up TMEM130 19470 2.431 0.496 0.204 -0.496 4.317 Up								
FBN1 6202 2.433 0.409 0.168 -0.063 4.317 Up ALDHIAI 511 2.433 0.352 0.145 -0.666 4.317 Up LOC100131541 10184 2.431 0.443 0.182 -0.651 4.317 Up EYA2 5772 2.431 0.545 0.224 -0.384 4.317 Up GMFG 7206 2.431 0.407 0.167 -0.598 4.317 Up TMEM130 19470 2.431 0.496 0.204 -0.496 4.317 Up								∪p Un
ALDHIAI 511 2.433 0.352 0.145 0.646 4.317 Up LOC100131541 01184 2.431 0.443 0.182 0.651 4.317 Up EYA2 5772 2.431 0.545 0.224 0.384 4.317 Up GMFG 7206 2.431 0.407 0.167 0.598 4.317 Up TMEM130 19470 2.431 0.496 0.204 0.496 4.317 Up	FBN1	6202	2.433	0.409	0.168	-0.063	4.317	
EYA2 5772 2.431 0.545 0.224 0.384 4.317 Up GMFG 7206 2.431 0.407 0.167 0.598 4.317 Up TMEM130 19470 2.431 0.496 0.204 -0.496 4.317 Up								Up
GMFG 7206 2.431 0.407 0.167 -0.598 4.317 Up TMEM130 19470 2.431 0.496 0.204 -0.496 4.317 Up								
TMEM130 19470 2.431 0.496 0.204 -0.496 4.317 Up								
CANP4 2923 2.429 0.338 0.139 -0.514 4.317 Up	TMEM130	19470	2.431	0.496	0.204	-0.496	4.317	Up
	CASP4	2923	2.429	0.338	0.139	-0.514	4.317	Up

Cart				•		7.11.01		
Fig. 19	Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
BACE2								
GASS						-0.234		
GOLIMA 7391 2-423 0.233 0.133 0.139								
P. NOCI 1233 2-219 0.259 0.19 0.259 0.19 0.259 0.19 0.251 0.19								
No.								
PNLTPROP 15267 2.469								∪p Up
CNTMAPB SPII 2.419 0.198 0.092 0.092 0.092 0.093 0.092 0.093 0.092 0.093 0.09								
ASSN 12772 2-448								
DPNSS 6804 2.418 0.225 0.096 -1.007 4.317 Up 1.008 0.327 1.416 0.655 0.116 4.229 4.317 Up 1.008 0.327 1.416 0.095 0.096 0.007 1.417 Up 0.007								Up
TRIGID 1977								
THEO								
ALPK								
Increase 100,000 24,15 0.176 0.022 -1.171 4.317 Up Up Up Up Up Up Up U		570						
CTIF 4326 2414 0.319 0.132 4.308 4.317 0.50								
GIS 77:75 2-412 0-294 0-125 -0-439 4-317 Up CAMPZEN 2581 2-312 0-141 0-144 0-155 4-050 4-317 Up CAMPZEN 2581 2-312 0-141 0-144 0-155 4-050 4-317 Up TROAS 87:16 2-41 0-44 0-183 4-025 4-317 Up TROAS 87:16 2-41 0-44 0-183 4-025 4-317 Up UBELEZ 2003 1 2-40 0-244 0-144 0-183 4-025 4-317 Up UBELEZ 2003 1 2-40 0-244 0-144 0-183 4-025 4-317 Up UBELEZ 2003 1 2-40 0-244 0-144 0-183 4-025 4-317 Up UBELEZ 2003 1 2-40 0-244 0-124 1-317 Up UBELEZ 2003 1 2-40 0-246 0-322 0-159 0-174 1-317 Up UBELEZ 2003 1-248 2-405 0-318 0-125 0-138 1-307 Up UBELEZ 2003 1-248 2-405 0-318 0-125 0-138 1-307 Up UBELEZ 2003 1-248 2-405 0-318 0-125 0-138 1-307 Up UBELEZ 2003 1-249 0-325 0-318 0-125 0-138 1-307 Up UBELEZ 2003 1-307 0-328 0-328 0-328 1-30						-0.308		Up
CAMENI 288 2412 0.654 0.255 -0.885 4.317 Up CXSCLI 4392 2.2411 0.844 0.255 -0.805 4.317 Up ITICAS 8716 2.411 0.344 0.143 -0.252 4.317 Up UBEEZE 20533 2.409 0.324 0.122 -0.89 4.317 Up NPRI 11641 2.406 0.356 0.321 0.009 -0.222 4.317 Up NPRI 11641 2.406 0.356 0.321 0.009 -0.222 4.317 Up NPRI 11641 2.406 0.356 0.321 0.009 -0.222 4.317 Up NPRI 11641 2.406 0.356 0.321 0.009 -0.222 4.317 Up NPRI 11641 2.406 0.356 0.321 0.009 -0.222 4.317 Up NPRI 11641 2.406 0.356 0.323 0.018 0.309 -0.236 4.317 Up NPRI 11641 2.406 0.356 0.323 0.018 0.309 -0.326 4.317 Up NPRI 11641 2.406 0.325 0.036 0.009 0.4022 4.317 Up NPRI 11641 0.366 0.328 0.328 0.018 0.309 0.306 0.4002 4.317 Up NPRI 11641 0.366 0.328 0.328 0.018 0.309 0.306 0.4002 4.317 Up NPRI 11641 0.366 0.328 0.328 0.018 0.309 0.324 4.317 Up NPRI 11641 0.366 0.366 0.366 0.4002 4.317 Up NPRI 11641 0.366 0.366 0.366 0.360 0.366 0								
CXCIL 492 2411 0.469 0.194 -0.637 4.317 Up DAGPB 16137 241 0.44 0.183 -0.262 4.317 Up DAGPB 16137 241 0.44 0.183 -0.262 4.317 Up DAGPB 1549 2.408 0.263 0.109 -0.252 4.317 Up DAGPB 1549 2.408 0.323 0.199 -0.242 4.317 Up DAGPB 1549 2.408 0.323 0.159 -0.734 4.317 Up DAGPB 1549 2.404 0.212 0.006 -0.001 4.317 Up DAGPB 1549 2.404 0.212 0.006 -0.001 4.317 Up DAGPB 1549 1.504 0.212 0.006 -0.001 4.317 Up DAGPB 1.504 0.102 0.006 0.006 0.001 4.317 Up DAGPB 1.504 0.102 0.006 0.006 0.001 4.317 Up DAGPB 1.504 0.002 0.006 0.006 0.006 0.001 4.317 Up DAGPB 1.504 0.002 0.006								
RASPR 10137 2-41								
THOMS								
NiR 13441 2-408								
BMP6								Up
MFAPS 1248								
Cherks 2424 2-405								
MITE 12471 2.404 0.232 0.096 0.001 4.317 Up RN1930 16659 2.403 0.71 0.336 0.161 -0.32 4.317 Up RN1930 16659 2.403 0.71 0.355 0.714 4.317 Up RN1930 16659 2.200 0.71 0.356 0.151 0.231 RCCN12 18893 2.239 0.368 0.151 0.231 -1.236 4.317 Up SICI6A2 17670 2.398 0.511 0.231 -1.236 4.317 Up RNCR0312 1370 2.398 0.511 0.231 -1.236 4.317 Up RNCR0312 1370 2.398 0.051 0.233 0.188 0.333 4.317 Up RNCR0312 1370 2.398 0.051 0.233 0.188 0.333 4.317 Up RNCR0312 1370 2.392 0.366 0.192 0.383 4.317 Up ANKS6 729 2.391 0.598 0.212 4.3 3 4.317 Up ANKS6 729 2.391 0.598 0.212 4.3 3 4.317 Up ANKS6 729 2.391 0.598 0.17 0.057 0.057 0.353 4.317 Up COMM16 0.16 2.389 0.233 0.097 1.1742 4.317 Up COMM16 0.16 2.389 0.233 0.097 1.1742 4.317 Up CDP98 1.3852 2.386 0.309 0.129 2.2816 4.317 Up DMD 4969 2.288 0.211 0.088 0.012 4.317 Up DMD 4969 2.288 0.211 0.088 0.013 1.4742 4.317 Up COMM16 1.606 2.389 0.233 0.097 1.1742 4.317 Up COMM16 1.606 2.389 0.017 0.089 1.1740 0.318 1.317 Up FRRG 1.6066 2.379 0.111 0.088 0.0317 0.044 1.317 Up FRRG 1.6066 2.379 0.111 0.046 0.201 4.317 Up FRRG 1.6066 2.379 0.111 0.046 0.201 4.317 Up FRRG 1.6066 2.379 0.111 0.046 0.021 4.317 Up FRRG 1.6066 2.379 0.033 0.066 0.033 4.317 Up FRRG 1.6066 2.379 0.033 0.066 0.033 4.317 Up FRRG 1.6066 2.379 0.033 0.066 0.033 0.066 0.033 4.317 Up FRRG 1.6066 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.								
OLFML2B 1917 2.403 0.386 0.161 0.32 4.317 Up PRIME 1920 2.403 0.711 0.295 0.721 4.317 Up PRIME 1920 2.44 0.228 0.093 0.424 4.317 Up PRIME 1920 2.44 0.228 0.093 0.424 4.317 Up SICHAR 1970 2.398 0.238 0.118 0.213 1.226 4.317 Up INKRI 8372 2.398 0.233 0.118 0.338 4.317 Up CRIZ 1760 2.398 0.341 0.142 0.238 4.317 Up CRIZ 3702 2.392 0.444 0.192 1.408 1.408 1.417 Up CRIZ 3702 2.398 0.341 0.142 0.281 4.317 Up CRIZ 3702 2.398 0.341 0.142 0.281 4.317 Up CRIZ 3702 2.399 0.548 0.192 1.408 1.408 1.417 Up CRIZ 3702 2.399 0.548 0.192 1.408 1.408 1.417 Up CRIZ 3702 2.399 0.548 0.192 1.408 1.408 1.417 Up CRIZ 3702 2.399 0.548 0.192 1.408 1.408 1.417 Up CRIZ 3702 2.399 0.548 0.122 1.408 1.408 1.417 Up CRIZ 3702 2.399 0.548 0.122 1.408 1.408 1.417 Up CRIZ 3702 2.399 0.548 0.212 1.408 1.408 1.417 Up CRIZ 3702 2.399 0.137 0.057 0.558 4.317 Up CRIZ 3244 2.39 0.98 0.239 0.097 1.1724 4.317 Up CRIZ 3244 2.39 0.98 0.239 0.097 1.1724 4.317 Up CRIZ 3244 2.39 0.98 0.239 0.097 1.1724 4.317 Up CRIZ 3244 2.39 0.68 0.239 0.097 1.1724 4.317 Up CRIZ 3702 1.3882 0.233 0.513 0.097 1.1724 4.317 Up CRIZ 3702 1.3882 0.233 0.513 0.097 1.1724 4.317 Up CRIZ 3702 1.3882 0.238 0.513 0.215 0.149 4.317 Up FAIRE 1.0222 2.383 0.666 0.283 0.097 0.088 4.317 Up FAIRE 1.0222 2.383 0.667 0.292 0.093 4.317 Up FAIRE 1.0222 2.383 0.676 0.092 0.093 4.317 Up FAIRE 1.0222 2.383 0.096 0.097 0.025 4.317 Up STIGAL1 38610 2.372 0.23 0.097 0.025 4.317 Up STIGAL2 3861 0.372 0.023 0.097 0.025 4.317 Up STIGAL2 3861 0.372 0.023 0.097 0.025 4.317 Up FAIRE 1.0224 2.372 0.03 0.097 0.025 4.317 Up STIGAL3 3.381 0.317 0.084 0.099 0.099 0.094 4.317 Up FAIRE 1.009 0.094 0.094 0.094 0.094 4.317 Up FAIRE 1.009 0.094 0								
RNF	OLFML2B	13917	2.403	0.386	0.161	-0.32	4.317	Up
KCNI12								
SICIGAZ 17690 2.398 0.511 0.213 -1.226 4.317 Up SINGRI 8372 2.398 0.233 0.118 0.233 4.317 Up SINGRAMODIZ 13250 2.398 0.344 0.142 0.228 4.317 Up SINGRAMODIZ 13250 2.399 0.344 0.142 0.288 4.317 Up ANSS6 729 2.391 0.598 0.212 0.34 0.14 0.14 0.08 4.317 Up ANSS6 729 2.391 0.598 0.212 0.3 4.317 Up CD24 3234 2.39 0.98 0.317 0.057 0.358 4.317 Up CD24 3234 2.39 0.98 0.417 1.200 4.317 Up CD24 3234 2.39 0.98 0.417 1.200 4.317 Up CD25 1892 2.383 0.513 0.215 0.088 0.327 0.355 0.3417 Up CD26 1892 2.383 0.513 0.215 0.088 0.3559 0.417 Up CD27 1892 2.383 0.513 0.215 0.088 0.3559 0.417 Up THIBS 1922 2.383 0.666 0.292 0.283 0.317 Up PALNE 14462 2.372 0.193 0.081 0.097 0.205 0.328 4.317 Up PALNE 14462 2.372 0.193 0.081 0.097 0.205 4.317 Up ANOI 733 2.37 0.423 0.077 0.077 0.205 4.317 Up ANOI 733 2.37 0.423 0.178 0.097 0.092 4.317 Up ANOI 733 2.37 0.423 0.178 0.097 0.092 4.317 Up ANOI 733 2.37 0.423 0.178 0.098 0.4317 Up ANOI 733 2.37 0.423 0.178 0.099 0.099 0.4317 Up ANOI 733 2.37 0.423 0.178 0.099 0.099 0.4317 Up ANOI 733 2.37 0.423 0.178 0.099 0.099 0.4317 Up ANOI 733 2.37 0.423 0.178 0.099 0.099 0.4317 Up ANOI 733 2.37 0.423 0.178 0.099 0.099 0.4317 Up ANOI 733 2.37 0.423 0.178 0.099 0.0								
IFFIGRE 8372 2.398								
NCRNO0312 13250 2398 0.341 0.142 -0.281 4.317 Up CIR2 3702 2392 0.46 0.192 -0.483 4.317 Up SCCD 17470 2.392 0.334 0.14 4.008 4.317 Up SCCD 17470 2.392 0.334 0.14 4.008 4.317 Up SCCD 17470 2.392 0.334 0.14 4.008 4.317 Up CO24 3234 2.39 0.98 0.41 -1.203 4.317 Up CO24 3234 2.39 0.98 0.41 -1.203 4.317 Up CO34 2.324 2.39 0.98 0.41 -1.203 4.317 Up CD79B 3285 2.386 0.300 0.129 -2.816 4.317 Up DMD 4090 2.385 0.313 0.097 -1.722 4.317 Up DMD 4090 2.385 0.310 0.088 3.099 4.317 Up CD79B 3285 2.388 0.311 0.088 3.399 4.317 Up CD79B 3285 2.388 0.311 0.088 3.399 4.317 Up CD79B 3285 2.388 0.313 0.097 0.202 4.317 Up CD79B 3285 2.388 0.313 0.097 0.202 4.317 Up CD79B 3285 2.388 0.313 0.097 0.202 4.317 Up CD79B 3285 2.388 0.311 0.002 4.302 4.317 Up CD79B 3285 2.388 0.310 0.097 0.202 4.317 Up CD79B 3285 2.388 0.310 0.098 0.002 4.317 Up CD79B 3285 2.388 0.310 0.002 0.002 4.317 Up CD79B 3285 2.388 0.310 0.002								
CHIR 3702 2.392 0.46 0.192 -0.483 4.317 Up ANKS6 729 2.391 0.508 0.212 -0.33 4.317 Up COMMD6 4016 2.389 0.233 0.097 -1.742 4.317 Up COMMD6 4016 2.389 0.233 0.097 -1.742 4.317 Up DMD 4909 2.385 0.21 0.088 -0.359 4.317 Up DMD 4909 2.385 0.21 0.088 -0.359 4.317 Up DMD 4909 2.383 0.513 0.215 0.088 -0.359 4.317 Up THIBS4 1932 2.383 0.696 0.292 -0.283 4.317 Up THIBS4 1932 2.383 0.696 0.292 -0.283 4.317 Up PALM2 14492 2.272 0.193 0.081 -0.284 4.317 Up PALM2 14492 2.272 0.193 0.081 -0.285 4.317 Up PALM2 14492 2.372 0.23 0.097 -0.205 4.317 Up ANO1 733 2.37 0.423 0.178 -0.684 4.317 Up PALM2 14594 2.369 0.475 0.199 -0.205 4.317 Up PALM2 15244 2.369 0.475 0.199 -0.205 4.317 Up PALM2 15244 2.369 0.475 0.199 -0.205 4.317 Up PALM3 15244 2.369 0.475 0.199 -0.205 4.317 Up PALM2 15244 2.369 0.475 0.199 -0.205 4.317 Up PALM2 15244 2.369 0.475 0.199 -0.205 4.317 Up PALM3 1497 2.365 0.488 0.189 -0.494 4.317 Up PALM3 1498 2.365 0.254 0.005 0.305 0.303 4.317 Up PALM3 1498 2.365 0.264 0.264 0.264 0.346 0.3317 Up PALM3 1499 2.365 0.488 0.389 0.389 0.381 0.317 Up P								
ANKS6	CIB2	3702	2.392	0.46	0.192	-0.483	4.317	Up
NAALADLI 13032 2.39 0.137 0.057 -0.588 4.317 Up CD24 3324 2.39 0.98 0.41 -1.203 4.317 Up COMMD6 4016 2.889 0.235 0.097 -1.742 4.317 Up CDMD6 4016 2.889 0.235 0.097 -1.742 4.317 Up CDWD6 328.2 2.886 0.329 0.072 -2.466 4.317 Up DD2 1892 2.383 0.313 0.015 -4.469 4.317 Up DD2 1892 2.383 0.313 0.015 -4.449 4.317 Up DD2 1892 2.383 0.313 0.015 -4.449 4.317 Up FABR5 5865 2.38 0.517 0.217 -0.217 -0.246 4.317 Up PURG 16006 2.379 0.11 0.046 -0.201 4.317 Up PURG 16006 2.379 0.11 0.046 -0.201 4.317 Up FALM2 14492 2.372 0.193 0.081 -0.982 4.317 Up FALM2 14492 2.372 0.193 0.081 -0.982 4.317 Up FALM2 14492 2.373 0.25 0.097 -0.058 4.058 4.317 Up FARM5 1.5241 2.369 0.472 0.199 0.081 -0.982 4.317 Up FMEPAI 1.5241 2.369 0.472 0.199 0.021 -0.058 4.317 Up SCS3 18279 2.567 0.425 0.18 -0.201 4.317 Up SCS3 18279 2.567 0.425 0.18 -0.201 4.317 Up FALM3 14492 2.365 0.126 0.053 -0.93 4.317 Up SCS3 18279 2.565 0.126 0.053 -0.93 4.317 Up SCS3 18279 2.565 0.126 0.053 -0.93 4.317 Up TW. 19710 2.565 0.126 0.053 -0.93 4.317 Up SCS3 18279 2.567 0.425 0.18 -0.201 4.317 Up TW. 19710 2.565 0.126 0.053 -0.93 4.317 Up TW. 19710 2.565 0.126 0.054 0								
COMMING 4016 2.389 0.98 0.41 -1.203 4.317 Up COMMING 4016 2.389 0.233 0.097 -1.742 4.317 Up CD70B 3285 2.386 0.309 0.129 -2.816 4.317 Up DMD 4969 2.385 0.21 0.088 4.059 4.317 Up CD70B 1302 2.383 0.21 0.088 4.059 4.317 Up CD70B 1302 2.383 0.21 0.088 4.059 4.317 Up CD70B 1302 2.383 0.21 0.089 4.019 4.313 4.317 Up PMEM 1506 2.379 0.11 0.046 4.023 4.317 Up PMEM 16066 2.379 0.11 0.046 4.020 4.313 4.317 Up PMEM 16406 2.379 0.11 0.046 4.020 4.317 Up PMEM 16407 2.372 0.23 0.097 4.026 4.317 Up ST3GAL2 18610 2.372 0.23 0.097 4.026 4.317 Up ST3GAL2 18610 2.372 0.23 0.097 4.026 4.317 Up PMEM 1534 2.307 0.393 0.166 4.063 4.317 Up PMEM 1534 2.367 0.323 0.097 4.0684 4.317 Up PMEM 1534 2.367 0.393 0.088 4.017 Up PMEM 1534 2.367 0.393 0.089 4.017 Up PMEM 1534 2.367 0.393 0.097 4.026 4.317 Up PMEM 1534 2.367 0.393 0.095 4.317 Up PMEM 1534 2.367 0.324 0.095 4.317 Up PMEM 1534 2.367 0.324 0.095 4.317 Up PMEM 1534 2.367 0.324 0.095 4.317 Up PMEM 1534 2.366 0.244 0.096 4.317 Up PMEM 1534 2.366 0.365 0.224 0.095 4.317 Up PMEM 14407 2.365 0.448 0.189 4.0469 4.317 Up PMEM 14407 2.365 0.448 0.189 4.0469 4.317 Up AKRCG 490 2.364 0.62 0.362 0.362 4.066 4.317 Up AKRCG 490 2.364 0.62 0.365 0.304 4.317 Up AKRCG 490 2.364 0.62 0.365 0.304 4.317 Up AKRCG 490 2.364 0.62 0.365 0.304 4.317 Up AKRCG 490 2.365 0.448 0.189 4.0469 4.317 Up AKRCG 490 2.366 0.095 0.21 0.128 4.317 Up AKRCG 490 2.366 0.095 0.31 0.128 4.317 Up AKRCG 490 2.365 0.094 0.095 0.21 0.128 4.317 Up AKRCG 490 2.365 0.094 0.095 0.21 0.128 4.317 Up AKRCG 490 2.365 0.094 0.095 0.21 0.128 4.317 Up AKRCG 490 2.365 0.094 0.095 0.21 0.129 0.313 4.317 Up AKRCG 490 2.365 0.094 0.095 0.21 0.129 0.313 4.317 Up AKRCG 490 2.365 0.094 0.095 0.21 0.129 0.313 4.317 Up AKRCG 490 2.365 0.094 0.095 0.21 0.129 0.313 4.317 Up AKRCG 490 2.365 0.094 0.095 0.21 0.129 0.313 4.317 Up AKRCG 490 2.365 0.094 0.095 0.21 0.129 0.313 4.317 Up AKRCG 490 2.365 0.094 0.095 0.21 0.094 4.317 Up AKRCG 490 2.3								
COMINDS 4016 2.889 0.233 0.097 -1.742 4.317 Up CD798 3285 2.886 0.309 0.129 -2.816 4.317 Up DMD 4969 2.885 0.21 0.088 -0.359 4.317 Up DMD 4969 2.885 0.21 0.088 -0.359 4.317 Up TIRISA 1928 2.883 0.0666 0.022 4.0283 4.317 Up TIRISA 1928 2.883 0.0667 0.022 4.0283 4.317 Up FRIES 500 2.283 0.0967 0.022 4.0283 4.317 Up FRIES 500 2.283 0.0667 0.022 4.0283 4.317 Up FRIES 500 2.287 0.193 0.081 4.028 4.317 Up FRIES 500 2.372 0.193 0.081 4.0982 4.317 Up FRIES 500 2.372 0.193 0.081 4.0982 4.317 Up FRIES 515GAL2 18610 2.372 0.23 0.097 4.026 4.317 Up ANOI 733 2.37 0.423 0.178 4.0684 4.317 Up FRIES 20901 2.37 0.0393 0.166 4.0633 4.317 Up FRIES 500 3.887 0.087 0.098 0.081 4.0982 4.317 Up FRIES 500 50 50 50 50 50 50 50 50 50 50 50 50				0.137				
CD79B 3285 2.886 0.390 0.129 -2.816 4.317 Up DMD 4969 2.885 0.21 0.088 -0.559 4.317 Up DMD 2.18892 2.883 0.513 0.215 -0.149 4.317 Up DMD 4969 2.885 0.513 0.215 -0.149 4.317 Up FAIRES 5006 2.87 0.517 0.017 -0.2885 4.317 Up FAIRES 5006 2.87 0.517 0.017 0.016 -0.2885 4.317 Up FAIRES 5006 2.87 0.517 0.017 0.016 -0.2885 4.317 Up FAIRES 5006 2.87 0.281 0.017 0.016 -0.285 4.317 Up FAIRES 5006 2.372 0.23 0.097 -0.205 4.317 Up FAIRES 5006 2.372 0.23 0.097 -0.205 4.317 Up STGGAL2 18610 2.372 0.23 0.097 -0.205 4.317 Up STGGAL2 18610 2.377 0.393 0.166 -0.633 4.317 Up WLS 20901 2.37 0.393 0.166 -0.633 4.317 Up MESA 15241 1.5241 2.369 0.472 0.199 -0.117 4.317 Up SOCS3 18279 2.267 0.423 0.18 -0.085 -0.417 4.317 Up SOCS3 18279 2.265 0.422 0.18 -0.201 4.317 Up TNC 19710 2.365 0.448 0.189 -0.469 4.317 Up AKRIC3 490 2.564 0.62 0.262 -1.668 4.317 Up AKRIC3 490 2.564 0.62 0.262 -1.668 4.317 Up GIBS 7123 2.563 0.302 0.128 -1.334 4.317 Up GIBS 7123 2.563 0.302 0.128 -1.334 4.317 Up RIOQ 1.6643 2.36 0.071 0.0								
ODIZ2		3285	2.386		0.129			
THISS								
FABPS								
PMR								
PALM2 14492 2.372 0.193 0.081								
STSGAL2								
WIS 20901 2.37 0.393 0.166 -0.633 4.317 Up SOCS3 18279 2.267 0.425 0.18 -0.201 4.317 Up SOCS3 18279 2.267 0.425 0.18 -0.201 4.317 Up MISI3 10220 2.365 0.224 0.095 -0.16 4.317 Up MISI3 12766 2.365 0.126 0.053 -0.93 4.317 Up MISI3 12766 2.365 0.448 0.189 -0.469 4.317 Up MISI3 12766 0.265 0.624 0.624 0.624 -0.416 4.317 Up MISI3 0.097 0.2365 0.624 0.62 0.262 -1.668 4.317 Up MISI3 0.098 0.369 0.317 Up MISI3 0.098 0.369 0.318 0.0141 0.169 0.4317 Up 0.098								Up
PMEPA1 15241 2.369 0.472 0.199 -0.217 4.317 Up SOCS3 18279 2.367 0.425 0.18 -0.201 4.317 Up LOCIO0131826 10220 2.365 0.224 0.095 -0.16 4.317 Up MISI.3 12766 2.365 0.126 0.053 -0.93 4.317 Up LOCIO0131826 1.265 0.126 0.053 -0.93 4.317 Up LOCIO0131826 0.065 0.064 0.064 0.069 -0.166 4.317 Up LOCIO248 3237 2.364 0.62 0.264 0.264 -0.416 4.317 Up LOCIO248 3237 2.364 0.333 0.141 -0.169 4.317 Up GIBS 7.123 2.363 0.302 0.128 -1.834 4.317 Up LEVN LIFN 11713 2.362 0.38 0.161 -0.476 4.317 Up LEVN LIFN 11713 2.362 0.38 0.161 -0.476 4.317 Up LIRN LIRN 8482 2.361 0.376 0.159 -0.851 4.317 Up LIRN 8482 2.361 0.376 0.159 -0.851 4.317 Up LIRN 8482 2.361 0.376 0.159 -0.851 4.317 Up LOCIO30806 10454 2.36 0.224 0.095 0.21 0.161 4.317 Up LOCIO030806 10454 2.36 0.249 0.19 4.053 4.317 Up LOCIO030806 10454 2.36 0.253 0.107 4.0207 4.317 Up LOCIO032801 10454 2.35 0.253 0.107 4.0207 4.317 Up LOCIO032801 10294 2.359 0.139 0.059 4.317 Up 4.317 Up LOCIO032801 10294 2.359 0.134 0.057 -0.19 4.317 Up LOCIO032801 12579 2.359 0.121 0.09 4.053 4.317 Up LOCIO032801 12579 2.359 0.121 0.09 4.053 4.317 Up LOCIO032801 12579 2.359 0.159 0.076 4.093 4.317 Up LOCIO032801 12579 2.359 0.159 0.076 4.093 4.317 Up LOCIO032801 12579 2.359 0.159 0.076 4.093 4.317 Up LOCIO032801 1294 2.359 0.159 0.076 4.093 4.317 Up LOCIO032801 12579 2.359 0.259 0.0166 4.044 4.048 4.317 Up LOCIO032801 12599 2.359 0.025 0.0166 4.044 4.048 4.317 Up LOCIO032801 12599 2.359 0.025 0.0166 4.044 4.048 4.317 Up LOCIO032801 1.366 4.317 Up LOCIO032801 1.366 4.317 Up LOCIO032801 1.366 4.317 Up LO								
SOCS3 18279 2.267 0.425 0.18 0.201 4.317 Up MSI3 12766 2.365 0.224 0.095 -0.16 4.317 Up MSI3 12766 2.365 0.126 0.053 -0.93 4.317 Up PAMR1 14497 2.365 0.448 0.189 -0.469 4.317 Up TNC 19710 2.365 0.624 0.264 -0.416 4.317 Up TNC 19710 2.365 0.624 0.264 -0.416 4.317 Up CD248 3.237 2.364 0.62 0.262 -1.668 4.317 Up CD248 3.237 2.364 0.333 0.141 -0.169 4.317 Up GJB5 7123 2.363 0.300 0.128 -1.18 4.317 Up SLC02A1 18018 2.362 0.371 0.157 -1.18 4.317 Up COLSA2 4002 2.361 0.495 0.21 -0.161 4.476 4.317 Up COLSA2 4002 2.361 0.495 0.21 -0.161 4.477 Up RHOQ 1643 2.36 0.214 0.091 -0.023 4.317 Up RHOQ 1643 2.36 0.214 0.091 -0.023 4.317 Up LOC10036886 10454 2.36 0.449 0.19 -0.503 4.317 Up LOC10036886 10454 2.36 0.449 0.19 -0.503 4.317 Up CAST 2934 2.36 0.223 0.014 0.091 -0.023 4.317 Up LOC10312891 10294 2.359 0.211 0.09 -0.324 4.317 Up MOCS1 12571 2.359 0.25 0.106 -1.091 4.317 Up MAGED4B 11986 2.358 0.355 0.106 -1.091 4.317 Up MAGED4B 11986 2.358 0.345 0.146 -0.047 4.317 Up SPSB1 18490 2.358 0.345 0.146 -0.047 4.317 Up SPSB1 18490 2.358 0.345 0.146 -0.048 4.317 Up MAGED4B 11986 2.358 0.345 0.146 -0.047 4.317 Up SPSB1 18490 2.355 0.355 0.016 0.106 4.317 Up SPSB1 18490 2.355 0.345 0.146 -0.044 4.317 Up SPSB1 18490 2.355 0.345 0.146 -0.044 4.317 Up SPNA3 2.923 2.355 0.175 0.074 -0.609 4.317 Up MAGED4B 11986 2.358 0.345 0.146 -0.044 -0.082 4.317 Up SPNA3 2.923 2.355 0.075 0.074 -0.069 4.317 Up SPNA3 2.923 2.355 0.075 0.074 -0.069 4.317 Up SPNA1 3.667 2.349 0.025 0.055								
LOCI0031826 10220 2.365 0.224 0.095 -0.16 4.317 Up								
MSI.3 12766 2.365 0.126 0.053 -0.93 4.317 Up PAMRI 14497 2.365 0.448 0.189 -0.469 4.317 Up TNC 19710 2.365 0.624 0.264 -0.416 4.317 Up CD248 3237 2.364 0.62 0.262 -1.668 4.317 Up CD248 3237 2.363 0.302 0.128 -1.814 4.317 Up SICO2A1 18018 2.362 0.371 0.157 -1.18 4.317 Up CD248 0.262 0.371 0.157 -1.18 4.317 Up CD248 0.262 0.371 0.157 -1.18 4.317 Up CD248 0.262 0.38 0.161 0.476 4.317 Up CD248 0.262 0.362 0.376 0.159 0.881 4.317 Up CD248 0.262 0.376 0.159 0.881 4.317 Up CD248 0.262 0.376 0.159 0.881 4.317 Up CD248 0.262 0.376 0.159 0.381 4.317 Up CD248 0.262 0.262 0.262 0.107 0.023 4.317 Up CD248 0.262 0.262 0.262 0.109 0.053 4.317 Up CD248 0.262 0.262 0.109 0.203 4.317 Up CD248 0.262 0.262 0.107 0.207 4.317 Up 0.262 0.262 0.107 0.262								
TNC 19710 2.365 0.624 0.264 -0.416 4.317 Up AKRIC3 490 2.364 0.02 0.262 -1.668 4.317 Up CD248 3237 2.364 0.333 0.141 -0.169 4.317 Up GIBS 7123 2.363 0.302 0.128 -1.834 4.317 Up SICO2A1 18018 2.362 0.371 0.157 -1.18 4.317 Up SICO2A1 18018 2.362 0.371 0.157 -1.18 4.317 Up COL8A2 4002 2.361 0.495 0.21 -0.161 4.317 Up LPXN 11713 2.362 0.38 0.161 -0.476 4.317 Up GIBR 7123 2.361 0.376 0.159 -0.851 4.317 Up RHOQ 16543 2.36 0.214 0.091 -0.023 4.317 Up RHOQ 16543 2.36 0.327 0.139 -0.39 4.317 Up ATP11B 1188 2.36 0.327 0.139 -0.39 4.317 Up COL8A2 4002 2.361 0.376 0.159 -0.851 4.317 Up ACVRIC 2.33 2.359 0.211 0.091 -0.023 4.317 Up CAST 2.934 2.36 0.449 0.19 -0.503 4.317 Up ACVRIC 2.33 2.359 0.211 0.09 -0.324 4.317 Up MOCS1 12571 2.359 0.25 0.106 1.001 4.317 Up HIDB1 14949 2.358 0.252 0.107 0.08 4.317 Up PHIDB1 14949 2.358 0.252 0.106 1.001 4.317 Up HISDI7B11 8182 2.358 0.344 0.146 -0.093 4.317 Up TSPAN11 2.098 2.358 0.344 0.146 -0.08 4.317 Up TSPSN11 2.0998 2.358 0.344 0.146 -0.047 4.317 Up TSPSN11 2.0998 2.355 0.378 0.019 0.09 0.371 4.317 Up TSPSN11 2.0998 2.355 0.378 0.016 0.09 0.371 4.317 Up TSPSN11 2.0998 2.355 0.378 0.016 0.090 4.317 Up TSPSN11 2.0998 2.355 0.378 0.016 0.090 4.317 Up TSPSN11 2.0998 2.355 0.075 0.094 0.090 0.371 4.317 Up TSPSN11 2.0998 2.355 0.094 0.090 0.371 4.317 Up TSPSN11 2.0998 2.355 0.096 0.090 0.371 4.317 Up TSPSN11 2.0998 2.355 0.090 0.090 0.371 4.317 Up TSPSN11 2.0908 2.355 0.090 0.090 0.371 4.317 Up TSPSN11 2.0908 2.355 0.090 0.090 0.371 4.317 Up TSPSN11 2.0908 2.355 0.090 0.090 0.371 4.317 Up TSPSN11 2.0909 2.355 0.090 0.090 0.371 4.317 Up TSPSN11 2.348 0.090 0.000 0.000 0.000 0.371 4.317 Up TSPSN11 2.090 0.0000								
AKRIC3								
CD248 3237 2.364 0.333 0.141 -0.169 4.317 Up GIBS 7123 2.363 0.302 0.128 -1.834 4.317 Up SICO2A1 18018 2.362 0.371 0.157 -1.18 4.317 Up COL8A2 4002 2.361 0.495 0.21 -0.161 4.317 Up COL8A2 4002 2.361 0.495 0.21 -0.161 4.317 Up RIOQ 16543 2.36 0.214 0.091 -0.023 4.317 Up RIOQ 16543 2.36 0.327 0.139 -0.039 4.317 Up ATP11B 1188 2.36 0.327 0.139 -0.039 4.317 Up LOC100505806 10454 2.36 0.449 0.19 -0.503 4.317 Up CAST 2934 2.36 0.233 0.107 -0.503 4.317 Up CAST 2934 2.36 0.233 0.107 -0.39 4.317 Up LOC10012891 10294 2.359 0.211 0.09 -0.324 4.317 Up MOCS1 12571 2.359 0.25 0.106 -1.091 4.317 Up FIHLDB1 14949 2.358 0.25 0.106 -1.091 4.317 Up FIHLDB1 14949 2.358 0.525 0.106 -0.093 4.317 Up HISDI7B11 8182 2.358 0.541 0.23 -0.08 4.311 Up MAGED4B 11986 2.358 0.541 0.23 -0.08 4.311 Up SPSB1 18490 2.358 0.345 0.146 -0.347 4.317 Up SPSB1 18490 2.358 0.345 0.146 -0.347 4.317 Up TSPAN11 20098 2.357 0.194 0.082 -0.174 4.317 Up TSPAN11 20098 2.355 0.346 0.146 -0.347 4.317 Up TSPAN11 20098 2.355 0.346 0.345 0.146 -0.347 4.317 Up TSPAN11 20098 2.355 0.378 0.161 -0.989 4.3317 Up TSPAN11 20098 2.355 0.378 0.161 -0.989 4.3317 Up DTD1 5193 2.355 0.378 0.161 -0.989 4.3317 Up MAF 11952 2.352 0.252 0.1075 0.074 4.084 4.317 Up TSPAN11 18875 2.349 0.221 0.175 0.074 4.084 4.317 Up TSPAN11 18875 2.349 0.235 0.378 0.161 -0.989 4.3317 Up DTD1 5193 2.355 0.378 0.161 -0.989 4.3317 Up DRISS 2.351 0.348 0.075 0.074 4.069 4.317 Up DRISS 2.444 0.349 0.22 0.094 -0.371 4.3317 Up DRISS 2.444 0.349 0.22 0.094 -1.188 4.317 Up DRISS 2.449 0.237 0.110 -1.362 4.3317 Up DRISS 2.449 0.237 0.110 -1.362 4.3317 Up DRISS 2.449 0.237 0.010 -1.362 4.3317 Up DRISS 2.449 0.247 0.491 0.092 0.336 0.029 4.3317 Up DRISS 2.441 0.349 0.22 0.094 -1.407 4.317 Up DRISS 2.441 0.349 0.22 0.094 -1.326 4.317 Up DRISS 2.441 0.349 0.22 0.094 -1.326 4.317 Up DRISS 2.441 0.349 0.325 0.338 0.331 Up DRISS 2.441 0.								
GIBS 7123 2.362 0.302 0.128 -1.834 4.317 Up SICOZAI 18018 2.362 0.371 0.157 -1.18 4.317 Up LPXN 11713 2.362 0.38 0.161 -0.476 4.317 Up LPXN 11713 2.362 0.38 0.161 -0.476 4.317 Up LILIRI 8482 2.361 0.495 0.21 -0.161 4.317 Up ILIRI 8482 2.361 0.376 0.159 -0.851 4.317 Up RIGOQ 16543 2.36 0.214 0.091 -0.023 4.317 Up ATPILIB 1188 2.36 0.327 0.139 -0.39 4.317 Up LOC10050806 10454 2.36 0.449 0.19 4.053 4.317 Up CAST 2934 2.36 0.253 0.107 4.0207 4.3117 Up LOC100132891 10294 2.359 0.211 0.09 4.324 4.317 Up MOCS1 12571 2.359 0.25 0.166 -1.091 4.317 Up MOCS1 12571 2.359 0.25 0.106 -1.091 4.317 Up MAGED4B 11986 2.358 0.252 0.107 0.08 4.317 Up MAGED4B 11986 2.358 0.344 0.146 -0.108 4.317 Up HDBI 1818 2.358 0.344 0.146 -0.108 4.317 Up SPSB1 18490 2.358 0.344 0.146 -0.108 4.317 Up SPSB1 18490 2.358 0.344 0.146 -0.108 4.317 Up ADAMTS18 277 2.356 0.493 0.209 -0.371 4.317 Up ADAMTS18 277 2.356 0.493 0.299 -0.371 4.317 Up ADAMTS18 277 2.356 0.493 0.209 -0.371 4.317 Up DTD1 5193 2.355 0.175 0.074 -0.082 -0.174 4.317 Up ADAMTS18 277 2.356 0.493 0.209 -0.371 4.317 Up DTD1 5193 2.355 0.175 0.074 -0.609 4.311 Up ADAMTS18 277 2.356 0.493 0.209 -0.371 4.317 Up ADAMTS18 277 2.356 0.493 0.209 -0.371 4.317 Up DTD1 5193 2.355 0.175 0.074 -0.609 4.311 Up ADAMTS18 277 2.356 0.493 0.209 -0.371 4.317 Up ADAMTS18 277 2.356 0.493 0.209 -0.371 4.317 Up SPSB1 18490 2.358 0.345 0.116 -0.082 -0.174 4.317 Up ADAMTS18 277 2.356 0.493 0.209 -0.371 4.317 Up SPSN11 2.352 0.658 0.175 0.074 -0.609 4.317 Up SPSN11 2.352 0.658 0.175 0.074 -0.609 4.317 Up SPSN11 3.657 2.349 0.023 0.055 0.074 -0.609 4.317 Up SPSN11 3.875 2.349 0.023 0.056 0.094 -1.107 4.317 Up SPSN11 3.875 2.349 0.023 0.056 0.019 -0.371 4.317 Up SPSN11 3.875 2.349 0.024 0.024 0.094 -1.107 4.317 Up SPSN11 3.8863 2.347 0.890 0.291 0.331 Up SPSN1 3.8863 2.347 0.890 0.291 0.336 4.3317 Up SPSNN 3.8863 2.347 0.890 0.395 0.393 0.291 4.3317 Up SPSNN 3.8863 2.347 0.890 0.395 0.393 0.393 0.291 4.317 Up SPSNN 3.8863 2.347 0.890 0.395 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393								
SECOZAI 18018 2.362 0.371 0.157 -1.18 4.317 Up								
LPXN 11713 2.362 0.38 0.161 0.476 4.317 Up								
ILIRI	LPXN	11713		0.38				
RHOQ 16543 2.36 0.214 0.091 -0.023 4.317 Up LOC100505806 10454 2.36 0.327 0.139 -0.39 4.317 Up LOC100505806 10454 2.36 0.449 0.19 -0.503 4.317 Up CAST 2934 2.36 0.253 0.107 -0.207 4.317 Up ACVRIC 2.33 2.359 0.211 0.09 -0.324 4.317 Up LOC100132891 10294 2.359 0.134 0.057 -0.19 4.317 Up MOCS1 12571 2.359 0.25 0.106 -1.091 4.317 Up TNAP 19709 2.359 0.179 0.076 -0.093 4.317 Up PHLDB1 14949 2.358 0.252 0.107 0.08 4.317 Up PHLDB1 14949 2.358 0.252 0.107 0.08 4.317 Up SSPSB1 18490 2.358 0.344 0.146 -0.108 4.317 Up SSPSB1 18490 2.358 0.344 0.146 -0.108 4.317 Up ADAMTS18 2.77 2.356 0.493 0.209 -0.371 4.317 Up KPNA3 9293 2.355 0.175 0.074 -0.082 -0.174 4.317 Up KPNA3 9293 2.355 0.175 0.074 -0.609 4.317 Up DTD1 5193 2.355 0.378 0.161 -0.989 4.317 Up MAF 11952 2.352 0.572 0.116 -0.989 4.317 Up MAF 11952 2.352 0.272 0.116 -0.454 4.317 Up MAF 11952 2.352 0.568 0.28 0.381 -1.188 4.317 Up SSPT11 1.8875 2.349 0.237 0.101 -1.362 4.317 Up CALCRL 2824 2.351 0.258 0.11 0.058 0.11 -1.362 4.317 Up SKPNA1 1.8875 2.349 0.237 0.101 -1.362 4.317 Up COLSA2 3992 2.349 0.623 0.265 -0.179 4.317 Up SKPNI1 1.8875 2.349 0.237 0.101 -1.362 4.317 Up SKPNI1 1.8875 2.349 0.237 0.101 -1.362 4.317 Up SKPNI1 1.8875 2.349 0.327 0.101 -1.362 4.317 Up CALCRL 2824 2.351 0.258 0.11 0.258 0.311 -1.188 4.317 Up SKPNI 1.8875 2.349 0.327 0.101 -1.362 4.317 Up SKPNI 1.8875 2.349 0.327 0.101 -1.362 4.317 Up SKPNI 1.8875 2.349 0.323 0.265 0.1179 4.317 Up SKPNI 1.8876 2.348 0.79 0.336 0.062 4.317 Up SKPNI 1.799 2.348 0.476 0.203 0.265 -0.179 4.317 Up SKPNI 1.799 2.348 0.466 0.105 0.336 0.041 4.317 Up SKPNI 1.799 2.348 0.466 0.105 0.336 0.041 4.317 Up SKPNI 1.799 2.348 0.346 0.105 0.336 0.041 4.317 Up SKPNI 1.799 2.348 0.346 0.355 0.13 0.13 0.13 0.291 4.317 Up SKPNI 1.799 2.348 0.346 0.356 0.13 0.13 0.13 0.291 4.317 Up SKPNI 1.799 2.348 0.366 0.10 0.336 0.041 4.317 Up SKPNI 1.799 2.348 0.346 0.356 0.13 0.353 0.041 4.317 Up SKPNI 1.790 2.348 0.346 0.356 0.13 0.353 0.041 4.317 Up SKPNI 1.790 2.348 0.346 0.356 0.13 0.973 4.317 U								
ATPIIB 1188 2.36 0.327 0.139 -0.39 4.317 Up LOCIOS05806 10454 2.26 0.449 0.19 -0.503 4.317 Up CAST 2934 2.36 0.253 0.107 -0.207 4.317 Up ACVRIC 233 2.359 0.211 0.09 -0.324 4.317 Up LOCIO0132891 10294 2.359 0.134 0.057 -0.19 4.317 Up MOCS1 12571 2.359 0.25 0.106 -1.091 4.317 Up MOCS1 12571 2.359 0.25 0.106 -1.091 4.317 Up PHLDB1 14949 2.358 0.252 0.179 0.076 -0.093 4.317 Up PHLDB1 14949 2.358 0.252 0.107 0.08 4.317 Up MAGED4B 11986 2.358 0.344 0.146 -0.08 4.317 Up SFSB1 18490 2.358 0.344 0.146 -0.108 4.317 Up SFSB1 18490 2.358 0.344 0.146 -0.347 4.317 Up SFSB1 18490 2.358 0.345 0.146 -0.347 4.317 Up ADAMTS1B 277 2.356 0.493 0.209 0.371 4.317 Up DTD1 5193 2.355 0.175 0.074 0.609 4.317 Up DTD1 5193 2.355 0.378 0.161 0.989 4.317 Up MAF 11952 2.352 0.658 0.28 0.38 0.341 4.317 Up COLIA1 3972 2.352 0.658 0.28 0.38 0.31 4.317 Up COLIA1 3972 2.352 0.658 0.29 0.28 0.381 4.317 Up COLIA1 3972 2.352 0.658 0.21 0.16 0.989 4.317 Up COLIA1 3972 2.352 0.658 0.21 0.16 0.989 4.317 Up COLIA1 3972 2.352 0.658 0.21 0.16 0.454 4.317 Up COLIA1 3972 2.352 0.658 0.21 0.16 0.454 4.317 Up COLIA1 3972 2.352 0.658 0.21 0.16 0.454 4.317 Up COLIA1 3972 2.352 0.658 0.11 0.346 4.317 Up COLIA1 3972 2.352 0.658 0.11 0.346 4.317 Up COLIA1 3972 2.352 0.558 0.11 0.366 4.317 Up COLIA1 3972 2.349 0.623 0.265 0.119 4.317 Up COLIA1 3972 2.349 0.623 0.265 0.119 4.317 Up COLIA1 3972 2.348 0.466 0.105 0.336 4.317 Up COLIA1 3982 2.349 0.623 0.265 0.119 4.317 Up COLIA2 3992 2.348 0.476 0.203 0.265 0.119 4.317 Up SFRINEI 4841 2.349 0.22 0.094 1.407 4.317 Up GABRE 6871 2.348 0.346 0.105 0.336 4.317 Up SFRINEI 17397 2.348 0.246 0.105 0.336 4.317 Up SFRINEI 17597 2.348 0.246 0.105 0.336 4.317 Up SFRINEI 17597 2.348 0.246 0.105 0.036 0.22 4.317 Up SFRINEI 17507 2.348 0.246 0.105 0.036 0.22 4.317 Up SFRINEI 17507 2.348 0.246 0.109 1.326 4.317 Up SFRINEI 17507 2.348 0.346 0.256 0.								
LOCI0050806 10454 2.36 0.449 0.19 0.503 4.317 Up CAST 2934 2.36 0.253 0.107 0.207 4.317 Up LOCI00132891 10294 2.359 0.134 0.057 0.119 4.317 Up MOCS1 12571 2.359 0.25 0.106 -1.091 4.317 Up MOCS1 12571 2.359 0.179 0.076 0.093 4.317 Up MDCS1 12571 2.358 0.252 0.107 0.08 4.317 Up MDCS1 14494 2.358 0.252 0.107 0.08 4.317 Up MAGED4B 11986 2.358 0.541 0.23 0.472 4.317 Up MAGED4B 11986 2.358 0.344 0.146 0.108 4.317 Up MAGED4B 11986 2.358 0.344 0.146 0.108 4.317 Up MAGED4B 11986 2.358 0.344 0.146 0.0108 4.317 Up MAGED4B 11986 2.358 0.345 0.146 0.0347 4.317 Up MAGED4B 120098 2.357 0.194 0.082 0.174 4.317 Up MAGED4B 120098 2.357 0.194 0.082 0.174 4.317 Up MAGED4B 120098 2.355 0.175 0.074 0.609 4.317 Up MAGED4B 120098 2.355 0.175 0.074 0.609 4.317 Up MAGED4B 120098 2.355 0.378 0.161 0.989 4.317 Up MAF 11952 2.352 0.272 0.116 0.454 4.317 Up MAF 11952 2.352 0.588 0.28 0.381 4.317 Up MAF 11952 2.352 0.272 0.116 0.454 4.317 Up MAF 11952 2.352 0.272 0.116 0.454 4.317 Up MAF 11952 2.354 0.258 0.11 0.346 4.317 Up MAF 11952 2.354 0.258 0.11 0.346 4.317 Up MAF 11952 2.349 0.237 0.101 1.362 4.317 Up MAF 13657 2.349 0.237 0.101 1.362 4.317 Up MTZA 12799 2.348 0.79 0.336 0.623 0.265 0.179 4.317 Up MTZA 12799 2.348 0.79 0.336 0.622 4.317 Up MAFF 11956 2.345 0.325 0.138 0.442 4.317 Up MAFF 11956								
CAST 2934 2.36 0.253 0.107 0.207 4.317 Up ACVRIC 233 2.359 0.211 0.09 0.324 4.317 Up LOC100132891 10294 2.359 0.134 0.057 -0.19 4.317 Up MOCSI 12571 2.359 0.25 0.106 -1.091 4.317 Up MOCSI 12571 2.359 0.25 0.106 -1.091 4.317 Up PHLDB1 14949 2.358 0.252 0.107 0.08 4.317 Up PHLDB1 14949 2.358 0.252 0.107 0.08 4.317 Up MAGED4B 11986 2.358 0.541 0.23 0.472 4.317 Up HSD17B11 8182 2.358 0.344 0.146 0.108 4.317 Up SPSB1 18490 2.358 0.345 0.146 0.347 4.317 Up TSPAN11 2.0098 2.357 0.194 0.082 -0.174 4.317 Up ADAMTS18 277 2.356 0.493 0.209 0.371 4.317 Up KPNA3 9293 2.355 0.175 0.074 -0.609 4.317 Up DTD1 5193 2.355 0.378 0.161 0.989 4.317 Up MAF 11952 2.352 0.558 0.28 0.28 0.381 4.317 Up COLLA1 3972 2.352 0.658 0.28 0.381 4.317 Up CALCRL 2824 2.351 0.258 0.11 -0.0454 4.317 Up SYT11 18875 2.349 0.237 0.101 -0.346 4.317 Up COLSA2 3992 2.349 0.623 0.265 0.179 4.317 Up COLSA2 3992 2.349 0.623 0.265 0.179 4.317 Up DHRS12 4.44 2.349 0.22 0.094 1.1407 4.317 Up DHRS12 4.44 2.349 0.22 0.094 1.1407 4.317 Up SEPPINEI 17397 2.348 0.246 0.105 -0.336 4.317 Up SERPINEI 17397 2.348 0.246 0.105 -0.336 4.317 Up SERMAJD 17307 2.343 0.366 0.13 -0.973 4.317 Up SERMAJD 17307 2.343 0.366 0.13 -0.973 4.317 Up SERMAJD 17307 2.343 0.366 0								
ACVRIC 233 2,359 0,211 0,09 0,324 4,317 Up LOC100132891 10294 2,359 0,134 0,057 -0.19 4,317 Up MOCS1 12571 2,359 0,25 0,106 -1.091 4,317 Up TNAP 19709 2,359 0,179 0,076 -0.093 4,317 Up PHLDBI 14949 2,358 0,252 0,107 0,08 4,317 Up MAGED4B 11986 2,358 0,541 0,23 -0.472 4,317 Up HSD17B11 8182 2,358 0,344 0,146 0,108 4,317 Up SPSB1 18490 2,358 0,344 0,146 0,082 -0.174 4,317 Up TSPAN11 2,0098 2,357 0,194 0,082 -0.174 4,317 Up ADAMTS18 277 2,356 0,493 0,209 0,371 4,317 Up KPNA3 9293 2,355 0,175 0,074 0,609 4,317 Up TDTD1 5193 2,355 0,378 0,161 0,989 4,317 Up COLIA1 3972 2,352 0,658 0,28 0,381 4,317 Up CALCRL 2824 2,351 0,258 0,116 -0.454 4,317 Up SYT11 18875 2,349 0,623 0,265 0,119 4,317 Up COLSA2 3992 2,349 0,623 0,265 0,179 4,317 Up DHRS12 4841 2,349 0,227 0,094 1,407 4,317 Up DHRS12 4841 2,349 0,227 0,094 1,407 4,317 Up DHRS12 4841 2,349 0,227 0,094 1,407 4,317 Up DHRS12 4841 2,349 0,22 0,094 1,407 4,317 Up DHRS12 4841 2,349 0,227 0,094 1,407 4,317 Up SERPINEI 17397 2,348 0,476 0,203 0,0291 4,317 Up SERPINEI 17397 2,348 0,476 0,203 0,0291 4,317 Up SERPINEI 17397 2,348 0,476 0,203 0,0291 4,317 Up SYNM 18863 2,347 0,491 0,209 0,628 4,317 Up SYNM 18760 2,345 0,325 0,138 0,0442 4,317 Up SERPINEI 17397 2,348 0,476 0,203 0,091 0,336 4,317 Up SERPINEI 17397 2,348 0,476 0,203 0,091 0,326 4,317 Up SYNM 18863 2,347 0,491 0,209 0,628 4,317 Up SERPINEI 17397 2,348 0,476 0,203 0,091 0,326 4,317 Up SERPINEI 17397 2,348 0,476 0,203 0,091 0,326 4,317 Up SERPINEI 17397 2,348 0,476 0,203 0,091 0,326 4,317 Up SERPINEI 17397 2,348 0,476 0,203 0,091 0,326 4,317 Up SERPINEI 17397 2,348 0,476 0,203 0,091 0,326 4,317 Up SERPINEI 17397 2,348 0,476 0,203 0,091 0,326 4,317 Up SERPINEI 17397	CAST	2934	2.36	0.253	0.107	-0.207	4.317	
MOCSI 12571 2.359 0.25 0.106 -1.091 4.317 Up PHLDBI 14949 2.358 0.252 0.107 0.08 4.317 Up PHLDBI 14949 2.358 0.252 0.107 0.08 4.317 Up MAGED4B 11986 2.358 0.341 0.23 -0.472 4.317 Up HSD17B11 8182 2.358 0.344 0.146 -0.108 4.317 Up SPSBI 18490 2.358 0.344 0.146 -0.108 4.317 Up TSPAN11 20098 2.357 0.194 0.082 -0.174 4.317 Up ADAMTS18 277 2.356 0.493 0.209 -0.371 4.317 Up EVENTAL 2029 2.355 0.175 0.074 -0.609 4.317 Up DTD1 5193 2.355 0.378 0.161 0.989 4.317 Up COL1A1 3972 2.352 0.658 0.28 -0.381 4.317 Up COL1A1 3972 2.352 0.658 0.28 -0.381 4.317 Up SYT11 18575 2.349 0.237 0.101 -0.346 4.317 Up SYT11 18575 2.349 0.237 0.101 -1.362 4.317 Up DHRS12 4841 2.349 0.227 0.094 -0.379 4.317 Up DHRS12 4841 2.349 0.227 0.094 -1.407 4.317 Up DHRS12 4841 2.349 0.227 0.094 -1.179 4.317 Up MT2A 12799 2.348 0.476 0.203 -0.265 -0.179 4.317 Up MT2A 12799 2.348 0.476 0.203 -0.203 -0.291 4.317 Up SYNM 1863 2.347 0.391 -1.188 4.317 Up SYNM 1863 2.347 0.391 0.101 -1.362 4.317 Up MT2A 12799 2.348 0.476 0.203 -0.209 4.317 Up SYNM 1863 2.347 0.391 0.305 0.13 -1.188 4.317 Up SYNM 1863 2.347 0.391 0.293 -0.336 4.317 Up SYNM 1863 2.347 0.491 0.209 -0.628 4.317 Up SYNM 1870 2.345 0.325 0.336 0.13 -1.188 4.317 Up SYNM 1870 2.345 0.325 0.336 0.13 -1.38 4.317 Up SYNM 1870 2.345 0.345 0.356 0.109 -1.326 4.317 Up SYNM 1870 2.345 0.345 0.356 0.13 -1.384 0.442 4.317 Up SYNM 1870 2.345 0.325 0.338 0.442 4.317 Up SYNM 1870 2.345 0.325 0.338 0.442 4.317 Up SYNM 1870 2.345 0.325 0.338 0.442 4.317 Up SYNI 1870 2.345 0.325 0.138 0.442 4.317 Up SYNI 1870 2.345 0.325 0.336 0.13 1.426 4.317 Up SYNI 1870 2.345 0.325 0.336 0.13 1.426 4.317 Up SYNI 1870 2.345 0.325 0.336 0.13 1.436 0.442 4.317 Up SYNI 1870 2.345 0.325 0.336 0.13 1.436 0.442 4.317 Up SYNI 1870 2.345 0.325 0.336 0.336 0.344 4.317 Up SYNI 1870 2.345 0.325 0.336 0.336 0.344 4.317 Up SYNI 1870 2.345 0.325 0.336 0.344 4.317 Up SYNI 1870 2.345 0.325 0.336 0.344 0.337 Up SYN								Up
TNAP 19709 2.359 0.179 0.076 0.093 4.317 Up PHLDBI 14949 2.358 0.252 0.107 0.08 4.317 Up MAGED4B 11986 2.358 0.541 0.23 -0.472 4.317 Up BNDTBII 8182 2.358 0.344 0.146 -0.108 4.317 Up SPSBII 18490 2.358 0.345 0.146 -0.108 4.317 Up TSPAN11 2.0098 2.357 0.194 0.082 -0.174 4.317 Up ADAMTS18 2.77 2.356 0.493 0.209 -0.371 4.317 Up KPNA3 9293 2.355 0.175 0.074 -0.609 4.317 Up DTDI 5193 2.355 0.378 0.161 -0.989 4.317 Up DTDI 5193 2.355 0.378 0.161 -0.989 4.317 Up COLIA1 3972 2.352 0.658 0.28 -0.381 4.317 Up MAF 11952 2.352 0.272 0.116 -0.454 4.317 Up SYT11 18875 2.349 0.237 0.101 -1.362 4.317 Up COLSA2 3992 2.349 0.623 0.265 -0.179 4.317 Up COLSA2 3992 2.349 0.623 0.265 -0.179 4.317 Up DHRS12 4841 2.349 0.22 0.094 -1.407 4.317 Up NPY2R 13657 2.349 0.305 0.13 -1.188 4.317 Up MT2A 12799 2.348 0.476 0.203 -0.291 4.317 Up SRPINEI 17397 2.348 0.79 0.336 -0.622 4.317 Up SRPINEI 17397 2.348 0.79 0.336 -0.622 4.317 Up SRPINEI 17397 2.348 0.79 0.336 -0.622 4.317 Up SRPINEI 17397 2.348 0.246 0.105 -0.336 4.317 Up SRPINEI 17397 2.348 0.325 0.138 -0.442 4.317 Up SRPINEI 17397 2.348 0.325 0								
PHILDBI								
MAGED4B								
HSD17B11	MAGED4B	11986	2.358	0.541	0.23	-0.472	4.317	
TSPANII 20098 2.357 0.194 0.082 0.174 4.317 Up ADAMTS18 277 2.356 0.493 0.209 0.371 4.317 Up KPNA3 9293 2.355 0.175 0.074 0.609 4.317 Up DTD1 5193 2.355 0.378 0.161 0.989 4.317 Up MTD1 5193 2.352 0.588 0.28 0.381 4.317 Up MAF 11952 2.352 0.272 0.116 0.454 4.317 Up STYL1 18875 2.349 0.237 0.101 0.346 4.317 Up SYT11 18875 2.349 0.237 0.101 0.346 4.317 Up COLSA2 3992 2.349 0.623 0.265 0.179 4.317 Up COLSA2 3992 2.349 0.623 0.265 0.179 4.317 Up DHRS12 4841 2.349 0.22 0.094 1.407 4.317 Up NPY2R 13657 2.349 0.305 0.13 1.188 4.317 Up MT2A 12799 2.348 0.476 0.203 0.291 4.317 Up GABRE 6871 2.348 0.79 0.336 0.622 4.317 Up SEPPINEI 17397 2.348 0.246 0.105 0.356 4.317 Up SEPPINEI 17397 2.348 0.246 0.105 0.336 0.622 4.317 Up SYNM 18863 2.347 0.829 0.353 0.0841 4.317 Up TGFB3 19246 2.347 0.829 0.353 0.0841 4.317 Up TGFB3 19246 2.347 0.491 0.209 0.628 4.317 Up MAFF 11956 2.345 0.325 0.138 0.442 4.317 Up MAFF 11956 2.345 0.325 0.138 0.442 4.317 Up STYNI 18760 2.345 0.325 0.138 0.442 4.317 Up STYLI 18760 2.345 0.325 0.138 0.442 4.317 Up STYLI 18760 2.345 0.325 0.181 0.426 4.317 Up STYLI 18760 2.345 0.325 0.181 0.426 4.317 Up SERNAJD 17307 2.343 0.516 0.22 0.798 4.317 Up SERNAJD 17307 2.343 0.516 0.22 0.798 4.317 Up SCRIC 4285 2.341 0.712 0.304 -1.086 4.317 Up								Up
ADAMTS18 277 2.356 0.493 0.209 0.371 4.317 Up RPNA3 9293 2.355 0.175 0.074 0.609 4.317 Up DTD1 5193 2.355 0.378 0.161 0.989 4.317 Up COLIA1 3972 2.352 0.658 0.28 0.381 4.317 Up CALCRL 2824 2.351 0.258 0.116 0.454 4.317 Up SYT11 18875 2.349 0.237 0.101 1.362 4.317 Up COLSA2 3992 2.349 0.623 0.265 0.179 4.317 Up DHRS12 4841 2.349 0.623 0.265 0.179 4.317 Up NPY2R 13657 2.349 0.305 0.13 1.188 4.317 Up NPY2R 13657 2.349 0.305 0.13 1.188 4.317 Up SERPINEI 17397 2.348 0.476 0.203 0.201 4.317 Up GABRE 6871 2.348 0.79 0.336 0.622 4.317 Up SERPINEI 17397 2.348 0.476 0.203 0.201 4.317 Up SERPINEI 17397 2.348 0.476 0.203 0.201 4.317 Up SYNM 18863 2.347 0.491 0.203 0.202 4.317 Up SYNM 18863 2.347 0.491 0.209 0.628 4.317 Up TGFBS 19246 2.347 0.491 0.209 0.628 4.317 Up STYKI 18760 2.345 0.325 0.138 0.442 4.317 Up STYKI 18760 2.345 0.325 0.138 0.442 4.317 Up STYKI 18760 2.345 0.325 0.138 0.442 4.317 Up SYNI 18760 2.345 0.325 0.138 0.442 4.317 Up SERMAJD 17307 2.343 0.516 0.22 0.0798 4.317 Up SCNI 4285 2.341 0.712 0.304 1.086 4.317 Up								
RPNA3 9293 2.355 0.175 0.074 -0.609 4.317 Up DTD1 5193 2.355 0.378 0.161 -0.989 4.317 Up COLIAI 3972 2.352 0.658 0.28 -0.381 4.317 Up MAF 11952 2.352 0.272 0.116 -0.454 4.317 Up CALCRL 2824 2.351 0.258 0.11 -0.346 4.317 Up SYT11 1887.5 2.349 0.237 0.101 -1.362 4.317 Up COL5A2 3992 2.349 0.623 0.265 0.179 4.317 Up DHRS12 4841 2.349 0.22 0.094 -1.407 4.317 Up MT2A 12799 2.348 0.305 0.13 -1.188 4.317 Up GABRE 6871 2.348 0.79 0.336 -0.622 4.317 Up SFRPINE1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
DTD1 5193 2.355 0.378 0.161 0.989 4.317 Up COLIA1 3972 2.352 0.658 0.28 0.28 1.311 4.317 Up MAF 11952 2.352 0.272 0.116 0.454 4.317 Up CALCRL 2824 2.351 0.258 0.11 0.346 4.317 Up SYT11 18875 2.349 0.237 0.101 1.362 4.317 Up COLSA2 3992 2.349 0.623 0.265 0.179 4.317 Up DHRS12 4841 2.349 0.22 0.094 1.407 4.317 Up NPY2R 13657 2.349 0.305 0.13 1.188 4.317 Up NPY2R 13657 2.349 0.305 0.13 1.188 4.317 Up GABRE 6871 2.348 0.476 0.203 0.291 4.317 Up GABRE 6871 2.348 0.79 0.336 0.622 4.317 Up SFRINGI 17397 2.348 0.246 0.105 0.336 4.317 Up SYNM 18863 2.347 0.491 0.209 0.366 4.317 Up TGFBS 19246 2.347 0.491 0.209 0.628 4.317 Up TGFBS 19246 2.347 0.491 0.209 0.628 4.317 Up STYNI 18760 2.345 0.325 0.138 0.442 4.317 Up MAFF 11956 2.345 0.325 0.138 0.442 4.317 Up STYKI 18760 2.345 0.325 0.181 0.442 4.317 Up SYNI 18760 2.345 0.325 0.181 1.426 4.317 Up SYNI 18760 2.345 0.325 0.181 1.426 4.317 Up SYNI 18760 2.345 0.325 0.181 1.426 4.317 Up SERMAJD 17307 2.343 0.516 0.22 0.0798 4.317 Up SCNIG 4285 2.341 0.712 0.304 1.086 4.317 Up								
COLIAI 3972 2.352 0.658 0.28 0.381 4.317 Up MAF 11952 2.352 0.272 0.116 0.454 4.317 Up CALCRL 2824 2.351 0.258 0.11 -0.346 4.317 Up SYT11 18875 2.349 0.237 0.101 -1.362 4.317 Up COLIA2 3992 2.349 0.623 0.265 -0.179 4.317 Up DHRS12 4841 2.349 0.22 0.094 -1.407 4.317 Up NPY2R 13657 2.349 0.305 0.13 -1.188 4.317 Up NPY2R 13657 2.349 0.305 0.13 -1.188 4.317 Up STPAPINET 1799 2.348 0.476 0.203 -0.291 4.317 Up GABRE 6871 2.348 0.79 0.336 -0.622 4.317 Up SERPINET 17397 2.348 0.246 0.105 -0.336 4.317 Up STRYNM 18863 2.347 0.829 0.353 0.841 4.317 Up TGFB3 19246 2.347 0.829 0.353 0.841 4.317 Up TGFB3 19246 2.347 0.829 0.533 0.841 4.317 Up TGFB3 19256 2.345 0.325 0.188 0.442 4.317 Up STYNI 18760 2.345 0.325 0.188 0.442 4.317 Up STYNI 18760 2.345 0.325 0.188 0.442 4.317 Up SEMAJD 17307 2.343 0.516 0.22 0.798 4.317 Up	DTD1	5193	2.355	0.378	0.161	-0.989	4.317	
CALCRL 2824 2.351 0.258 0.11 -0.346 4.317 Up SYT11 18875 2.349 0.237 0.101 -1.362 4.317 Up COL5A2 3992 2.349 0.623 0.265 -0.179 4.317 Up DHRS12 4841 2.349 0.22 0.094 -1.407 4.317 Up NPY2R 13657 2.349 0.305 0.13 -1.188 4.317 Up MT2A 12799 2.348 0.476 0.203 -0.291 4.317 Up GABRE 6871 2.348 0.79 0.336 -0.622 4.317 Up SERPINEI 17397 2.348 0.246 0.105 -0.336 4.317 Up SYNM 18863 2.347 0.829 0.353 -0.841 4.317 Up TGFB3 19246 2.347 0.491 0.209 -0.628 4.317 Up CHL1								
SYT11 18875 2.349 0.237 0.101 -1.362 4.317 Up COL5A2 3992 2.349 0.623 0.265 -0.179 4.317 Up DHRS12 4841 2.349 0.22 0.094 -1.407 4.317 Up NPY2R 13657 2.349 0.305 0.13 -1.188 4.317 Up MT2A 12799 2.348 0.476 0.203 -0.291 4.317 Up GABRE 6871 2.348 0.79 0.336 -0.622 4.317 Up SFRPINE1 17397 2.348 0.299 0.336 -0.622 4.317 Up SYNM 18863 2.347 0.829 0.353 -0.841 4.317 Up TGFB3 19246 2.347 0.491 0.209 -0.628 4.317 Up CHL1 3628 2.346 0.256 0.109 -1.326 4.317 Up MAFF								
COLSA2 3992 2.349 0.623 0.265 0.179 4.317 Up DHRS12 4841 2.349 0.22 0.094 1.407 4.317 Up NPY2R 13657 2.349 0.305 0.13 1.188 4.317 Up MT2A 12799 2.348 0.476 0.203 0.291 4.317 Up GABRE 6871 2.348 0.79 0.336 0.622 4.317 Up SERPINEI 17397 2.348 0.246 0.105 0.336 4.317 Up SYNM 18863 2.347 0.491 0.209 0.628 4.317 Up TGFB3 19246 2.347 0.491 0.209 0.628 4.317 Up CHL1 3628 2.346 0.256 0.109 1.326 4.317 Up MAFF 11956 2.345 0.325 0.138 0.442 4.317 Up STYKI 18760 2.345 0.325 0.181 0.442 4.317 Up CORIN 4.049 2.345 0.306 0.13 0.042 4.317 Up SERMAJD 17307 2.343 0.516 0.22 0.0798 4.317 Up SERMAJD 17307 2.343 0.516 0.22 0.0798 4.317 Up CCST6 4285 2.341 0.712 0.304 1.086 4.317 Up								
DHRS12								
NPY2R 13657 2.349 0.305 0.13 1.188 4.317 Up MT2A 12799 2.348 0.476 0.203 0.291 4.317 Up GABRE 6871 2.348 0.79 0.336 -0.622 4.317 Up SERPINEI 17397 2.348 0.246 0.105 -0.336 4.317 Up SYNM 18863 2.347 0.829 0.353 -0.841 4.317 Up TGFB3 19246 2.347 0.491 0.209 0.628 4.317 Up CHIL1 3628 2.346 0.256 0.109 1.326 4.317 Up MAFF 11956 2.345 0.325 0.138 0.442 4.317 Up STYKI 18760 2.345 0.325 0.181 1.426 4.317 Up CORIN 4049 2.345 0.306 0.13 0.973 4.317 Up SEMA3D 17307 2.343 0.516 0.22 0.978 4.317 Up CST6 4285 2.341 0.712 0.304 1.086 4.317 Up								
GABRE 6871 2.348 0.79 0.336 -0.622 4.317 Up SERPINEI 17397 2.348 0.246 0.105 -0.336 4.317 Up SYNM 18863 2.347 0.829 0.353 -0.841 4.317 Up TGFB3 19246 2.347 0.491 0.209 -0.628 4.317 Up CHLI 3628 2.346 0.256 0.109 -1.326 4.317 Up MAFF 11956 2.345 0.325 0.138 -0.442 4.317 Up STYKI 18760 2.345 0.425 0.181 -1.426 4.317 Up CORIN 4049 2.345 0.306 0.13 -0.973 4.317 Up SEMA3D 17307 2.343 0.516 0.22 -0.798 4.317 Up CST6 4285 2.341 0.712 0.304 -1.086 4.317 Up	NPY2R	13657	2.349	0.305	0.13	-1.188	4.317	Up
SERPINEI 17397 2.348 0.246 0.105 -0.336 4.317 Up SYNM 18863 2.347 0.829 0.353 -0.841 4.317 Up TGFB3 19246 2.347 0.491 0.209 -0.628 4.317 Up CHL1 3628 2.346 0.256 0.109 -1.326 4.317 Up MAFF 11956 2.345 0.325 0.138 -0.442 4.317 Up STYKI 18760 2.345 0.425 0.181 -1.426 4.317 Up CORIN 4049 2.345 0.306 0.13 -0.973 4.317 Up SEMA3D 17307 2.343 0.516 0.22 -0.798 4.317 Up CST6 4285 2.341 0.712 0.304 -1.086 4.317 Up								
SVNM 18863 2.347 0.829 0.353 -0.841 4.317 Up TGFB3 19246 2.347 0.491 0.209 -0.628 4.317 Up CHL1 3628 2.346 0.256 0.109 -1.326 4.317 Up MAFF 11956 2.345 0.325 0.138 -0.442 4.317 Up STYK1 18760 2.345 0.425 0.181 -1.426 4.317 Up CORIN 4049 2.345 0.306 0.13 -0.973 4.317 Up SEMA3D 17307 2.343 0.516 0.22 -0.798 4.317 Up CST6 4285 2.341 0.712 0.304 -1.086 4.317 Up								
TGFB3 19246 2.347 0.491 0.209 -0.628 4.317 Up CHL1 3628 2.346 0.256 0.109 -1.326 4.317 Up MAFF 11956 2.345 0.325 0.138 -0.442 4.317 Up STYK1 18760 2.345 0.425 0.181 -1.426 4.317 Up CORIN 4049 2.345 0.306 0.13 -0.973 4.317 Up SEMA3D 17307 2.343 0.516 0.22 -0.798 4.317 Up CST6 4285 2.341 0.712 0.304 -1.086 4.317 Up								
CHLI 3628 2.346 0.256 0.109 -1.326 4.317 Up MAFF 11956 2.345 0.325 0.138 -0.442 4.317 Up STYKI 18760 2.345 0.425 0.181 -1.426 4.317 Up CORIN 4049 2.345 0.306 0.13 -0.973 4.317 Up SEMA3D 17307 2.343 0.516 0.22 -0.798 4.317 Up CST6 4285 2.341 0.712 0.304 -1.086 4.317 Up								
MAFF 11956 2.345 0.325 0.138 -0.442 4.317 Up STYK1 18760 2.345 0.425 0.181 -1.426 4.317 Up CORIN 4049 2.345 0.306 0.13 -0.973 4.317 Up SEMA3D 17307 2.343 0.516 0.22 -0.798 4.317 Up CST6 4285 2.341 0.712 0.304 -1.086 4.317 Up								
CORIN 4049 2.345 0.306 0.13 -0.973 4.317 Up SEMA3D 17307 2.343 0.516 0.22 -0.798 4.317 Up CST6 4285 2.341 0.712 0.304 -1.086 4.317 Up								
SEMA3D 17307 2.343 0.516 0.22 -0.798 4.317 Up CST6 4285 2.341 0.712 0.304 -1.086 4.317 Up								
CST6 4285 2.341 0.712 0.304 -1.086 4.317 Up								
	1							-

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
UHMK1	20465	-4.276	-0.414	0.097	-0.619	1.46	Down
CHADL	3589	-4.249	-0.765	0.18	-0.625	1.46	Down
RPUSD1	16914	-4.174	-0.439	0.105	-0.57	1.46	Down
PSMD4	15868	-4.166	-0.329	0.079	-0.699	1.46	Down
RPRD2	16856	-4.04	-0.315	0.078	-0.782	2.095	Down
KRTCAP3	9459	-3.953	-0.641	0.162	-0.588	2.095	Down
PYCR2	16036	-3.937	-0.325	0.083	-0.762	2.095	Down
Clorf182	2177	-3.936	-0.432	0.11	-0.97	2.095	Down
PSMB4	15847	-3.883	-0.364	0.094	-0.926	2.905	Down
TMPRSS6	19690	-3.842	-0.555	0.145	-0.809	2.905	Down
SNRNP35	18218	-3.747	-0.324	0.087	-0.635	3.574	Down
LOC284939	10890	-3.657	-0.704	0.192	-1.424	3.574	Down
NIT1	13476	-3.609	-0.349	0.097	-0.638	3.574	Down
LYSMD1	11921	-3.605	-0.419	0.116	-0.704	3.574	Down
TARS2	18972	-3.572	-0.262	0.073	-0.931	3.574	Down
Clorf97	2231	-3.554	-0.484	0.136	-0.968	3.574	Down
SCAMP3	17128	-3.55	-0.334	0.094	-0.517	3.574	Down
TNFRSF18	19731	-3.547	-0.638	0.18	-1.194	3.574	Down
ZNF646	21624	-3.543	-0.174	0.049	-0.768	3.574	Down

			n the metabolic clusters				
Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
CALD1 MRC2	2825 12641	5.825 5.811	0.746 0.837	0.128 0.144	-0.375 -0.49	0	Up Up
NNMT	13555	5.757	0.921	0.14	-0.427	0	Up
RUNX2	17000	5.748	0.491	0.085	-0.552	0	Up
COL18A1	3970	5.674	0.727	0.128	-0.421	0	Up
FERMT2	6321	5.668	0.53	0.094	-0.315	0	Up
DPYSL3	5150	5.577	0.874	0.157	-0.404	0	Up
TAGLN	18949	5.537	0.875	0.158	-0.374	0	Up
CTGF	4323	5.527	0.896	0.162	-0.38	0	Up
GFPT2	7054	5.507	0.71	0.129	-0.478	0	Up
TSHZ3 GPX8	20086 7474	5.502 5.474	0.674 0.772	0.122 0.141	-0.374 -0.408	0	Up
SRPX2	18547	5.458	0.812	0.141	-0.639	0	Up Up
CLMP	3830	5.457	0.758	0.139	-0.239	0	Up
FAP	6172	5.376	0.924	0.172	-0.716	0	Up
VCAN	20645	5.365	0.895	0.167	-0.694	0	Up
LOXL2	11683	5.345	0.794	0.149	-0.629	0	Up
NEXN	13395	5.336	0.525	0.098	-0.306	0	Up
TIMP2	19344	5.294	0.79	0.149	-0.432	0	Up
LOX	11680	5.232	0.811	0.155	-0.687	0	Up
COL3A1	3983	5.23	1.031	0.197	-0.641	0	Up
PTRF	15990	5.185	0.425	0.082	-0.321	0	Up
EMILIN1 ANGPTL2	5520 633	5.184 5.165	0.619 0.763	0.119 0.148	-0.417 -0.428	0	Up
SLIT3	18036	5.16	0.799	0.148	-0.428	0	Up Up
PDGFRB	14755	5.141	0.658	0.128	-0.416	0	Up
MSRB3	12776	5.141	0.746	0.145	-0.313	0	Up
SPARC	18362	5.14	0.892	0.174	-0.488	0	Up
NID1	13456	5.132	0.725	0.141	-0.41	0	Up
DACT3	4555	5.087	0.75	0.147	-0.362	0	Up
FBLN2	6199	5.087	0.897	0.176	-0.414	0	Up
NOX4	13603	5.067	0.536	0.106	-0.789	0	Up
CNN2	3901	5.057	0.753	0.149	-0.348	0	Up
TGFB111	19244	5.029	0.555	0.11	-0.354	0	Up
TCF4	19112	5.018	0.586	0.117	-0.306	0	Up
HTRA3	8272	5.008	0.679	0.136	-0.816	0	Up
MGC24103	12397	5.003	0.81	0.162	-0.448	0	Up
PDLIM7 TPM4	14777 19855	4.991 4.988	0.499 0.575	0.1 0.115	-0.504 -0.525	0	Up Up
TMEM200A	19554	4.971	0.479	0.096	-0.446	0	Up
MXRA5	12901	4.966	0.524	0.106	-0.559	0	Up
GLT8D2	7182	4.958	0.452	0.091	-0.444	0	Up
SHOX2	17566	4.956	0.511	0.103	-0.397	0	Up
COL5A1	3991	4.95	0.587	0.119	-0.762	0	Up
GEM	7035	4.95	0.723	0.146	-0.142	0	Up
PALLD	14490	4.946	0.443	0.09	-0.536	0	Up
INHBA	8573	4.937	0.847	0.172	-1.272	0	Up
SNAI2	18133	4.92	0.534	0.108	-0.327	0	Up
FSTL1	6776	4.909	0.799	0.163	-0.468	0	Up
PODNL1	15297	4.908	0.534	0.109	-0.58	0	Up
COL1A2 COL5A2	3973 3992	4.882 4.881	0.976 0.964	0.2 0.198	-0.818 -0.824	0	Up
ZEB1	21166	4.873	0.608	0.125	-0.824	0	Up Up
RNF144A	16653	4.871	0.51	0.105	-0.375	0	Up
PODN	15296	4.868	0.538	0.111	-0.36	0	Up
DSE	5180	4.845	0.503	0.104	-0.452	0	Up
SCG5	17165	4.836	0.623	0.129	-0.282	0	Up
THY1	19311	4.828	0.696	0.144	-0.72	0	Up
DZIP1L	5277	4.828	0.407	0.084	-0.456	0	Up
TNFAIP6	19715	4.826	0.746	0.155	-0.793	0	Up
AEBP1	364	4.811	0.881	0.183	-0.707	0	Up
POSTN	15383	4.805	1.026	0.214	-0.703	0	Up
PLK3	15203	4.791	0.446	0.093	-0.119	0	Up
BGN HTRA1	1500 8270	4.784 4.782	0.582 0.888	0.122 0.186	-0.684 -0.499	0	Up Up
MIR100HG	12463	4.778	0.7	0.147	-0.499	0	Up
DACT1	4553	4.766	0.713	0.15	-0.603	0	Up
CDH11	3348	4.748	0.51	0.107	-0.61	0	Up
TEAD1	19159	4.746	0.41	0.086	-0.534	0	Up
SERPINF1	17400	4.745	0.699	0.147	-0.276	0	Up
ACTA2	202	4.738	0.802	0.169	-0.269	0	Up
FBN1	6202	4.734	0.621	0.131	-0.616	0	Up
TRPC1	20038	4.732	0.503	0.106	-0.24	0	Up
IGFBP3	8405	4.731	0.639	0.135	-0.336	0	Up
ARHGAP28	926 9761	4.724	0.466	0.099	-0.419	0	Up
ITPRIP LMOD1	8761 9739	4.722 4.719	0.519 0.381	0.11 0.081	-0.332 -0.178	0	Up Up
S100A10	17025	4.712	0.61	0.129	-0.178	0	Up
GPR124	7367	4.711	0.571	0.121	-0.24	0	Up
VIM	20673	4.703	0.551	0.117	-0.269	0	Up
COL1A1	3972	4.695	0.949	0.202	-0.993	0	Up
THBS2	19280	4.69	0.835	0.178	-0.792	0	Up
ADAMTS6	284	4.669	0.316	0.068	-0.62	0	Up
CYR61	4528	4.664	0.823	0.176	-0.17	0	Up
DKK3	4932	4.657	0.54	0.116	-0.355	0	Up
PRKCDBP	15652	4.638	0.589	0.127	-0.352	0	Up
PRRX1	15774	4.633	0.695	0.15	-0.54	0	Up
PLS3	15215	4.624	0.651	0.141	-0.262	0	Up
LAMA4	9489	4.616	0.445	0.096	-0.412	0	Up
MARVELD1	12120	4.615	0.596	0.129	-0.561	0	Up
MMP14 LIMS2	12532	4.604	0.717	0.156	-0.669	0	Up
	9684	4.603	0.449	0.097	-0.151	0	Up
	6200	4 600	0.657	0.142	0.404	Λ.	
FIBIN MRVII	6389 12739	4.602 4.597	0.657 0.595	0.143 0.129	-0.406 -0.299	0	Up Up

G ID		G (P	•	B 1 (() 0)	E 11 61		D1 11
Gene ID DCN	Gene Name 4634	Score (d) 4.579	Numerator (r) 0.871	Denominator (s+s0) 0.19	Fold Change -0.381	adjusted P value (%)	Direction Up
ISM1	8696	4.579	0.774	0.169	-0.26	0	Up
PCSK5	14697	4.573	0.302	0.066	-0.329	0	Up
RARRES2	16240	4.558	0.8	0.175	-0.221	0	Up
KCNMB4	8924	4.557	0.697	0.153	-0.647	0	Up
SRPX	18546	4.545	0.679	0.149	-0.167	0	Up
ANTXR1	750	4.544	0.609	0.134	-0.671	0	Up
ISLR	8694	4.542	0.739	0.163	-0.417	0	Up
MMP19	12536	4.525	0.343	0.076	-0.107	0	Up
TPM2	19853	4.518	0.599	0.132	-0.426	0	Up
CYS1	4529	4.518	0.671	0.149	-0.491	0	Up
PDLIM4	14775	4.507	0.418	0.093	-0.227	0	Up
SERPING1	17402	4.493	0.418	0.093	-0.204	0	Up
LTBP2	11867	4.485	0.497	0.111	-0.275	0	Up
PPAPDC3	15424	4.477	0.342	0.076	-0.362	0	Up
MYL9	12956	4.471	0.644	0.144	-0.316	0	Up
PPIC	15449 3996	4.471 4.468	0.556	0.124	-0.518	0	Up
COL6A3			0.594	0.133	-0.751	0	Up
MXRA8	12903	4.466	0.687	0.154	-0.487	0	Up
GSN CFH	7558 3562	4.46 4.452	0.499 0.546	0.112 0.123	-0.013 -0.206	0	Up
TUBB6	20251	4.446	0.666	0.123	-0.356	0	Up Up
MMP2	12537	4.444	0.689	0.155	-0.459	0	Up
COL6A1	3994	4.435	0.75	0.169	-0.645	0	Up
PRICKLEI	15627	4.425	0.727	0.164	-0.413	0	
SPONI	18456	4.423	0.921	0.209	-0.413	0	Up Up
MEG3	12275	4.418	0.47	0.107	-0.295	0	Up
CIS	2133	4.412	0.636	0.107	-0.254	0	Up
FGF1	6341	4.401	0.242	0.055	-0.513	0	Up
MDFIC	12218	4.386	0.397	0.091	-0.154	0	Up
RBMS1	16338	4.385	0.488	0.111	-0.228	0	Up
ADAM12	247	4.384	0.412	0.094	-0.577	0	Up
SLC2A3	17831	4.372	0.255	0.058	-0.27	0	Up
FN1	6649	4.369	0.89	0.204	-0.954	0	Up
GAS1	6942	4.364	0.685	0.157	-0.356	0	Up
MGC4294	12410	4.359	0.577	0.132	-0.835	0	Up
sep.11	17342	4.357	0.499	0.115	-0.403	0	Up
SGCD	17470	4.353	0.469	0.108	-0.515	0	Up
TNS1	19782	4.352	0.393	0.09	-0.033	0	Up
LIMS1	9683	4.343	0.34	0.078	-0.481	0	Up
LUM	11879	4.342	0.883	0.203	-0.635	0	Up
EVC2	5727	4.33	0.253	0.058	-0.285	0	Up
LCAT	9536	4.32	0.379	0.088	-0.218	0	Up
FEZ1	6326	4.316	0.374	0.087	-0.36	0	Up
TBX15	19068	4.314	0.291	0.067	-0.288	0	Up
EFHA2	5366	4.305	0.391	0.091	-0.065	0	Up
CIR	2131	4.303	0.612	0.142	-0.245	0	Up
SFRP2	17448	4.301	0.904	0.21	-0.466	0	Up
Clorf15-NBL1	2163	4.297	0.65	0.151	-0.493	0	Up
CLIP3	3821	4.29	0.375	0.087	-0.264	0	Up
ANXAI	754	4.289	0.63	0.147	-0.069	0	Up
NID2	13457	4.288	0.362	0.084	-0.653	0	Up
KIAA1462	9087	4.288	0.478	0.111	-0.45	0	Up
COPZ2	4039	4.282	0.62	0.145	-0.538	0	Up
PPAPDC1A	15421	4.281	0.857	0.2	-1.053	0	Up
GADD45B	6883	4.28	0.522	0.122	-0.283	0	Up
AGPAT4	404	4.279	0.36	0.084	-0.276	0	Up
PMEPA1	15241	4.273	0.588	0.138	-0.517	0	Up
RHOJ SERPINH1	16542	4.259	0.457	0.107	-0.097	0	Up
COL6A2	17403 3995	4.256 4.254	0.652	0.153 0.154	-0.704 -0.563	0	Up
RFX8	3995 16471	4.254	0.657 0.375	0.154	-0.563 -0.614	0	Up
PLXDC1	15224	4.249	0.375	0.089	-0.614 -0.428	0	Up Up
ARSI	1056	4.249	0.375	0.089	-0.796	0	Up
VGLL3	20667	4.231	0.287	0.068	-0.326	0	Up
PCOLCE	14687	4.223	0.572	0.135	-0.326	0	Up
PDGFRA	14754	4.224	0.699	0.155	-0.432	0	Up
COL12A1	3964	4.219	0.813	0.193	-0.757	0	Up
DNAJB5	5018	4.216	0.359	0.085	-0.387	0	Up
MFAP5	12348	4.213	0.73	0.173	-0.869	0	Up
IKBIP	8438	4.213	0.288	0.068	-0.514	0	Up
NDN	13282	4.208	0.558	0.133	-0.21	0	Up
BNC2	1562	4.195	0.404	0.096	-0.481	0	Up
HIF1A	7874	4.195	0.465	0.111	-0.277	0	Up
PRRX2	15775	4.191	0.569	0.136	-0.619	0	Up
CYTH3	4535	4.186	0.522	0.125	-0.168	0	Up
PDGFRL	14756	4.185	0.815	0.195	-0.387	0	Up
RAB23	16092	4.181	0.491	0.117	-0.701	0	Up
PDPN	14781	4.18	0.594	0.142	-0.526	0	Up
C14orf37	1892	4.179	0.429	0.103	-0.489	0	Up
LRP1	11735	4.179	0.288	0.069	-0.275	0	Up
SEMA5A	17317	4.175	0.61	0.146	-0.297	0	Up
COL8A2	4002	4.17	0.695	0.167	-0.629	0	Up
SKAP2	17634	4.17	0.455	0.109	-0.089	0	Up
MAP4K4	12065	4.154	0.325	0.078	-0.398	0	Up
PXDN	16027	4.153	0.668	0.161	-0.709	0	Up
DAB2	4549	4.147	0.446	0.107	-0.179	0	Up
ASPN	1122	4.137	1.058	0.256	-0.92	0	Up
CCDC80	3100	4.136	0.607	0.147	-0.242	0	Up
SLC2A14	17829	4.136	0.454	0.11	-0.27	0	Up
MARCKS	12111	4.13	0.466	0.113	-0.391	0	Up
EHD2	5403	4.129	0.46	0.111	-0.257	0	Up
DLC1	4936	4.128	0.306	0.074	-0.148	0	Up
PVRL3	16018	4.127	0.353	0.086	-0.215	0	Up
	12066	4.125	0.339	0.003	-0.233		
NAP1L3 GRASP	13066 7484	4.123	0.466	0.082 0.113	-0.121	0	Up Up

PHILDRID 19409	Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
PHEBIR 1499		3782		0.601	0.146	-0.58	0	
SERVEND 1975 4105	PHLDB1			0.34	0.083	-0.244	0	Up
SISPENDEA 17528								
PFINITED 1542								
Table 9662 4.092 0.579 0.141 -0.107 0 1.59	PPFIBP1	15442	4.102	0.375	0.091	-0.433	0	Up
ETVI 5788 4.089 0.281 0.066 -0.347 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1								
CXYLT2								
SELECTION 19020 4.988 0.467								
SEREEL 9182 4.056	SLFN11		4.058	0.467	0.115	-0.182		
OLFALIS 1997 4.055								
CTSK								
TSTOC 20120								
PREMM								
FNICL 6655 4.006								
CUIDNIS 2125 4.034 0.54 0.134 -0.6 0 Up COLIDATI 39673 4.0026 0.072 0.07								
COLIOSI 3961 4.026 0.774 0.322 1.477 0 Up CACXADD 2792 1.774 4.028 0.272 1.077 0.253 1.0 Up ADMORPH 1.774 4.028 0.027 1.077 0.023 1.0 Up CACXADD 2793 1.0 Up ADMORPH 1.774 4.028 0.0427 0.0101 0.043 0.0 Up UCACA 2023 4.006 0.384 0.006 0.384 0.006 0.013 0.0 Up UCACA 2023 4.006 0.384 0.006 0.006 0.001 0.014 0.0 Up EEMS 3316 4.006 4.008 0.147 0.007 0.007 0.018 0.0 Up EEMS 3316 0.007 0.007 0.007 0.007 0.007 0.0 Up EEMS 3316 0.007 0.007 0.007 0.007 0.0 Up INECKS 3316 0.007 0.007 0.007 0.0 Up INECKS 1.001 0.007 0.007 0.0 Up INECKS 1.001 0.007 0.007 0.0 Up INECKS 1.001 0.0 Up SPONZ 0.007 0.0 Up SPONZ 0.0 0.0 Up INECKS 1.0 0.0								
ADMINISTAL 273 4.024 0.712 0.177 0.714 0 Up	COL10A1			0.974	0.242	-1.47		
SGIP 17474 4.018								
CSMP125 2684 4.008 0.412 0.103 0.0154 0 Up								
UACA 2023 4,006 0.384 0.996 -0.204 0 Up								
FHINS								
IMENIX 8005 3.995 0.612 0.153 -0.555 0 Up								Up
TMMM5A5 19610 3 944 0 736 0 185								
FEMAL 7492 3.979 0.599								
FOXIZ								
SFON2	FOXF2	6694	3.97	0.285	0.072	-0.364	0	Up
NEFH 1353 3999 0.597 0.151 0.151 0.190 0 Up								Up
BEND6								
RECK								
SSCSD							0	
LEPREI 9607 3.944 0.275 0.07 -0.666 0 Up								
ADAMTSS 283 3.942 0.065 0.154 -0.139 0 Up								
COLIGAL 3968 3942 0.415 0.105 -0.314 0 Up								
RVEHC2								
ARTLAC 996 3.927 0.518 0.132 -0.202 0 Up DDR2 4674 3.925 0.47 0.12 -0.489 0 Up DDR2 4674 3.919 0.415 0.106 -0.326 0 Up DDR3 4674 1.3919 0.415 0.106 -0.326 0 Up HOXAII-ASI 8086 3.907 0.541 0.138 -0.488 0 Up WNT2 2.0911 3.902 0.431 0.11 -0.645 0 Up FTPRD 15972 3.902 0.592 0.152 -0.519 0 Up FTRRD 15972 3.806 0.355 0.091 -0.595 0 Up FTRR 15922 3.886 0.355 0.091 -0.595 0 Up TMEM2 1952 3.888 0.388 0.085 0.005 -0.106 0 Up TMEM2 1952 3.888 0.321 0.083 -0.588 0 0.005 -0.106 0 Up KNRCH 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	KDELC2	8968					0	
ACTN								
DDR2								
HOXAII-ASI 8086 3 907								
PTPRD								
PTGIR 15922 3,896 0.355 0.091 0.595 0 Up HABP4 7685 3,889 0.454 0.117 0.175 0 Up HABP4 7685 3,888 0.368 0.095 0.106 0 Up TMEM2 19552 3,888 0.321 0.083 0.0568 0 Up LAMBI 19491 3,888 0.223 0.057 0.301 0 Up NCRNA00241 13204 3,888 0.223 0.057 0.301 0 Up SSPN 18583 3,879 0.525 0.135 0.232 0 Up SSPN 18583 3,876 0.04 0.243 0.641 0 Up PROS1 15712 3,872 0.362 0.093 0.096 0 Up CD99 3298 3,869 0.303 0.078 0.309 0 Up CCD99 3298 3,869 0.303 0.078 0.309 0 Up CCDC8 3099 3,866 0.538 0.139 0.0176 0 Up PRDM6 15602 3,851 0.349 0.091 0.738 0 Up SPOCKI 18453 3,847 0.695 0.181 0.802 0 Up SPOCKI 18453 3,847 0.695 0.181 0.802 0 Up CERI 3874 3,837 0.467 0.122 0.393 0 Up CERI 3874 3,837 0.467 0.122 0.393 0 Up CERI 3874 3,837 0.467 0.122 0.333 0 Up SPOCKI 18453 3,847 0.695 0.181 0.802 0 Up CENTIN 3,831 0.469 0.169 0.0077 0 Up CENTIN 3,831 0.469 0.169 0.0077 0 Up CENTIN 3,831 0.469 0.169 0.0077 0 Up CENTIN 3,831 0.469 0.157 0.011 0 Up CENTIN 3,831 0.469 0.157 0.111 0 Up CENTIN 3,800 3,831 0.815 0.213 0.149 0 Up CENTIN 3,800 3,831 0.815 0.213 0.149 0 Up LISPI 11857 3,807 0.388 0.017 0.013 0.019 0 Up SIBPAD2D 17529 3,804 0.464 0.129 0.797 0.093 0 Up SIBPAD2D 17529 3,804 0.466 0.121 0.506 0 Up SIBPAD2D 17529 3,804 0.466 0.121 0.506 0 Up SIBPAD2D 17529 3,804 0.466 0.121 0.506 0 Up SIBPAD2D 17529 3,804 0.466 0.127 0.048 0.009 0.009 0.009 0.009 SIBPAD2D 17529 3,804 0.466 0.175 0.938 0 Up SIBPAD2D 17529 3,804 0.466 0.175 0.938 0 Up SIBPAD2D 17								
CFIR3 3565 3.88 0.484 0.117 -0.175 0 Up TMEM2 19552 3.888 0.321 0.083 -0.568 0 Up TMEM1 9491 3.888 0.223 0.087 -0.301 0 Up NCRNA00241 1.3204 3.887 0.436 0.112 -0.17 0 Up NCRNA00241 1.3204 3.887 0.436 0.112 -0.17 0 Up SSPN 18583 3.879 0.525 0.135 -0.232 0 Up GRP 7537 3.876 0.94 0.243 -0.641 0 Up PROSI 15712 3.872 0.362 0.093 -0.096 -0.444 0 Up TIGA1 8709 3.87 0.362 0.093 -0.096 -0.444 0 Up CD99 3.298 3.869 0.303 0.078 -0.399 0 Up CCIS1 3.345 3.867 0.453 0.117 -0.101 0 Up CCICC3 3.399 3.866 0.538 0.139 -0.071 0 Up PRIM6 1.5602 3.851 0.349 0.091 -0.738 0 Up SPOCK1 18453 3.847 0.695 0.181 -0.802 0 Up SPOCK1 18453 3.347 0.695 0.181 -0.802 0 Up CMTM3 3874 3.837 0.695 0.181 -0.802 0 Up CMTM3 3874 3.837 0.695 0.181 -0.802 0 Up CMTM3 3874 3.837 0.696 0.157 0.111 0 Up CNN1 3900 3.831 0.815 0.213 -0.149 0 Up LOCIO129940 9999 3.82 0.388 0.101 -0.506 0 Up LOCIO12941 11857 3.807 0.368 0.097 -0.093 0 Up LOCIO12940 9999 3.82 0.388 0.101 -0.506 0 Up LOCIO12940 9999 3.82 0.388 0.101 -0.506 0 Up LOCIO12940 3.899 3.806 0.302 0.079 -0.199 0 Up LOCIO12940 9999 3.82 0.388 0.101 -0.506 0 Up LOCIO12940 3.899 3.806 0.526 0.188 0.895 0 Up LOCIO12940 3.899 3.806 0.526 0.188 0.895 0 Up LOCIO12940 3.793 0.314 0.063 -0.793 0.093 0 Up LOCIO12940 2.1477 3.785 0.445 0.115 0.063 0.179 0 Up LOCIO12940 2.1477 3.785 0.445 0.063 0.177 0.0425 0								
HABP4								
TMEMZ								
NCRNA0024 13204 3.887 0.436 0.112 -0.17 0 Up								
SSPN 18883 3.879 0.525 0.135 0.0232 0 Up								
GRP 7537 3.876 0.94 0.243 -0.641 0 Up PROSI 15712 3.872 0.362 0.093 -0.096 0 Up ITGA1 8709 3.87 0.37 0.096 -0.444 0 Up CD99 3.298 3.869 0.303 0.078 -0.399 0 Up CES1 3545 3.867 0.453 0.117 -0.101 0 Up CCDC8 3099 3.866 0.538 0.139 -0.176 0 Up MTIM 12797 3.865 0.768 0.199 -0.071 0 Up PRDM6 15602 3.851 0.349 0.091 -0.738 0 Up BH.HE41 1507 3.851 0.499 0.091 -0.738 0 Up SPOCK1 18453 3.847 0.695 0.181 -0.802 0 Up CGMTM3 3874 3.837 0.695 0.181 -0.802 0 Up CMTM3 3874 3.837 0.467 0.122 -0.303 0 Up HEVL 7849 3.835 0.494 0.129 -0.727 0 Up CNN1 3900 3.831 0.815 0.213 -0.149 0 Up TWIST2 20278 3.827 0.603 0.157 -0.184 0 Up LCO10129940 9999 3.82 0.388 0.101 -0.506 0 Up LSP1 11857 3.807 0.368 0.097 -0.093 0 Up LSP1 11857 3.807 0.368 0.097 -0.093 0 Up COLSA3 3.993 3.806 0.526 0.138 -0.895 0 Up SHEPENDE 17529 3.804 0.46 0.121 -0.506 0 Up SHEPENDE 17529 3.804 0.46 0.122 -0.506 0 Up SHEPENDE 17529 3.804 0.46 0.121 -0.506 0 Up SHEPENDE 17529 3.804 0.46 0.175 -0.093 0 Up SHEPENDE 17529 3.804 0.46 0.175 -0.096 0 Up SHEPENDE 20897 3.793 0.314 0.083 -0.664 0 Up SHEPENDE 20897 3.793 0.314 0.083 -0.664 0 Up SHEPENDE 20897 3.793 0.314 0.083 -0.660 0 Up SHEPENDE 20898 3.766 0.982 0.264 0.056 0 Up SHEPENDE 20898 3.766 0.982 0.264 0.056 0 Up SHEPENDE 20898 3.766 0.9								
PROSI								
CD99 3298 3.869 0.303 0.078 -0.399 0 Up CESI 3545 3.867 0.453 0.117 -0.101 0 Up CCDCC 3099 3.866 0.538 0.139 -0.176 0 Up MTIM 12797 3.865 0.768 0.199 -0.071 0 Up PRDM6 15602 3.851 0.349 0.091 -0.738 0 Up BHLHE41 1507 3.851 0.649 0.169 -0.097 0 Up SPOCKI 18453 3.847 0.695 0.181 -0.802 0 Up EGR2 5397 3.845 0.603 0.157 0.011 0 Up CMTM3 3874 3.837 0.467 0.122 -0.393 0 Up CMTM3 3874 3.835 0.494 0.129 -0.727 0 Up CNNI 3900 3.831 0.815 0.213 -0.149 0 Up CNNI 3900 3.831 0.815 0.213 -0.149 0 Up LOCIO0129940 9999 3.82 0.388 0.101 -0.506 0 Up LSP1 11857 3.807 0.368 0.097 -0.199 0 Up CCISA3 3993 3.806 0.302 0.079 -0.199 0 Up SH3PXD2B 17529 3.804 0.466 0.121 -0.506 0 Up SALL4 17067 3.8 0.664 0.175 -0.938 0 Up SOBP 18276 3.799 0.43 0.113 -0.56 0 Up SCISB 4346 3.799 0.43 0.113 -0.56 0 Up SCISB 4346 3.799 0.43 0.115 -0.662 0 Up SCISB 4346 3.799 0.43 0.115 -0.662 0 Up SCISB 4346 3.799 0.43 0.115 -0.662 0 Up SCISB 4346 3.799 0.379 0.314 0.083 -0.694 0 Up SCISB 4346 3.799 0.38 0.66 0.174 -0.632 0 Up SCISB 4346 3.799 0.378 0.047 -0.158 0 Up SCISB 4346 3.799 0.315 0.083 -0.694 0 Up SCISB 4346 3.799 0.378 0.047 -0.158 0 Up SCISB 4346 3.799 0.315 0.083 0.066 0.177 0.0425 0 Up SCISB 4346 3.799 0.378 0.0482 0.077 0.083 0.089 0.099 0.	PROS1							
CCSI 3545 3,867 0,453 0,117 -0,101 0 Up CCDCS 3099 3,866 0,538 0,139 -0,176 0 Up PRDM6 15602 3,851 0,349 0,091 -0,738 0 Up PRDM6 15602 3,851 0,349 0,091 -0,738 0 Up SPOCKI 18453 3,847 0,695 0,181 -0,802 0 Up SPOCKI 18453 3,847 0,695 0,181 -0,802 0 Up CMTM3 3874 3,837 0,467 0,122 -0,393 0 Up HEYL 7849 3,835 0,494 0,129 -0,727 0 Up CMTM3 3874 3,837 0,467 0,122 -0,393 0 Up HEYL 7849 3,835 0,494 0,129 -0,727 0 Up CNN1 3900 3,831 0,815 0,213 -0,149 0 Up TWIST2 20278 3,827 0,603 0,157 -0,1184 0 Up LOCIO0129940 999 3,82 0,388 0,101 -0,506 0 Up LSP1 11857 3,807 0,368 0,097 -0,093 0 Up ACSL4 189 3,806 0,302 0,079 -0,199 0 Up COL5A3 3993 3,806 0,526 0,138 -0,895 0 Up SHEYCDB 17529 3,804 0,46 0,121 -0,506 0 Up SALL4 17067 3,8 0,664 0,175 -0,184 0 Up SALL4 17067 3,8 0,664 0,175 -0,938 0 Up SALL4 17067 3,8 0,666 0,776 0,938 0 Up SALC4 1774 3,785 0,431 0,115 -0,662 0 Up KLF7 9,209 3,786 0,388 0,102 -0,458 0 Up LRRC32 11774 3,785 0,441 0,063 -0,065 0 Up LRRC32 11774 3,785 0,441 0,064 -0,257 0 Up LRRC32 11794 3,763 0,531 0,141 -0,085 0 Up LRRC32 11791 3,763 0,531 0,141 -0,085 0 Up LRRC32 1191 3,								
CCDCS 3099 3,866 0,538 0,139 -0,176 0 Up MTIM 12797 3,865 0,768 0,199 -0,071 0 Up PRDM6 15602 3,851 0,349 0,091 -0,738 0 Up BHLHE41 1507 3,851 0,649 0,169 -0,097 0 Up SPOCK1 18453 3,847 0,695 0,181 -0,802 0 Up EGR2 5397 3,845 0,603 0,157 0,011 0 Up CMTM3 3874 3,837 0,467 0,122 -0,393 0 Up CMTM3 3874 3,837 0,467 0,122 -0,393 0 Up CMTM3 3874 3,835 0,494 0,129 -0,727 0 Up CNN1 3900 3,831 0,815 0,213 -0,149 0 Up TWIST2 20278 3,827 0,603 0,157 -0,184 0 Up LOC100129940 9999 3,82 0,388 0,101 -0,506 0 Up LSP1 11857 3,807 0,368 0,097 -0,093 0 Up LSP1 11857 3,807 0,368 0,097 -0,093 0 Up COL5A3 3993 3,806 0,526 0,138 -0,895 0 Up SHEYDZB 17529 3,804 0,46 0,121 -0,506 0 Up SALL4 17067 3,8 0,664 0,175 -0,938 0 Up SMEYNDZB 17529 3,804 0,46 0,121 -0,506 0 Up SALL4 17067 3,8 0,664 0,175 -0,938 0 Up SMEYNDZB 17529 3,804 0,46 0,121 -0,506 0 Up SALL4 17067 3,8 0,664 0,175 -0,938 0 Up SMEYNDZB 17529 3,804 0,46 0,121 -0,506 0 Up SALL4 17067 3,8 0,664 0,175 -0,938 0 Up SMEYNDZB 17529 3,804 0,46 0,46 0,121 -0,506 0 Up SMEX 1876 3,799 0,28 0,074 -0,158 0 Up TIGAS 8716 3,799 0,43 0,115 -0,662 0 Up REMS3 16340 3,791 0,238 0,063 -0,179 0 Up REMS3 16340 3,791 0,238 0,063 -0,179 0 Up FINA 6617 3,79 0,315 0,083 -0,662 0 Up LRRC32 11774 3,785 0,487 0,115 -0,488 0 Up LRRC32 11774 3,785 0,482 0,127 -0,488 0 Up LRRC32 11774 3,785 0,481 0,064 -0,257 0 Up LRRC32 11774 3,785 0,482 0,127 -0,488 0 Up LRRC32 11774 3,785 0,481 0,064 -0,257 0 Up LRRC32 11774 3,785 0,481 0,064 -0,257 0 Up LRRC32 1179 3,786 0,690 0,776 0,206 0,206 0 Up LFSTE 6,775 3,766								
MTIM 12797 3.865 0.768 0.199 -0.071 0 Up PRDM6 15602 3.851 0.349 0.091 -0.738 0 Up BHLHE41 1507 3.851 0.649 0.169 -0.097 0 Up SPOCKI 18453 3.847 0.695 0.181 -0.802 0 Up CMTM3 3.874 3.837 0.667 0.122 -0.393 0 Up CMTM3 3.874 3.837 0.467 0.122 -0.393 0 Up CMTM3 3.874 3.837 0.467 0.122 -0.393 0 Up CNN1 3900 3.831 0.815 0.213 -0.149 0 Up TWIST2 20278 3.827 0.603 0.157 -0.184 0 Up TWIST2 20278 3.827 0.603 0.157 -0.184 0 Up LSP1 11857 3.807 0.368 0.0157 -0.184 0 Up LSP1 11857 3.807 0.368 0.097 -0.093 0 Up COL5A3 3.993 3.806 0.526 0.138 -0.895 0 Up SH3PXD2B 17529 3.804 0.466 0.121 -0.506 0 Up SALL4 17067 3.8 0.664 0.175 -0.938 0 Up SALL4 17067 3.8 0.666 0.131 -0.566 0 Up SMSP 18276 3.799 0.28 0.074 -0.158 0 Up SMSP 18276 3.799 0.28 0.074 -0.158 0 Up CTSB 4346 3.795 0.437 0.115 -0.662 0 Up WISP1 2.0897 3.793 0.314 0.083 -0.662 0 Up RISMS 16340 3.791 0.238 0.063 -0.179 0 Up FINA 6617 3.79 0.315 0.083 -0.669 0 Up KLFT 9209 3.786 0.388 0.102 -0.458 0 Up FINA 6617 3.79 0.315 0.083 -0.269 0 Up KLFT 9209 3.786 0.388 0.102 -0.458 0 Up LIRC32 11774 3.785 0.482 0.127 -0.348 0 Up LIRC32 11774 3.785 0.482 0.127 -0.348 0 Up LIRC32 11774 3.785 0.482 0.127 -0.348 0 Up FIST 6775 3.766 0.776 0.206 -0.506 0 Up SVEPI 18824 3.762 0.326 0.087 -0.066 0 Up SVEPI 18824 3.762 0.3266 0.087 -0.066 0 Up								
BHILHE41 1507 3.881 0.649 0.169 -0.097 0 Up SPOCK1 18453 3.847 0.695 0.181 -0.802 0 Up EGR2 5397 3.845 0.603 0.157 0.011 0 Up CMTM3 3874 3.837 0.467 0.122 -0.393 0 Up HEYL 7849 3.835 0.494 0.129 -0.727 0 Up CNN1 3900 3.831 0.815 0.213 -0.149 0 Up TWIST2 20278 3.827 0.603 0.157 -0.184 0 Up LOC100129940 9999 3.82 0.388 0.101 -0.506 0 Up LSP1 11857 3.807 0.368 0.097 -0.093 0 Up ACSLA 189 3.806 0.302 0.079 -0.199 0 Up COL5A3 3993 3.806 0.526 0.138 -0.895 0 Up SH3PXD2B 17529 3.804 0.46 0.121 -0.506 0 Up SALLA 17067 3.8 0.664 0.175 -0.938 0 Up SOBP 18276 3.799 0.28 0.074 -0.158 0 Up UTGA5 8716 3.799 0.43 0.113 -0.56 0 Up UTGA5 8716 3.799 0.43 0.113 -0.56 0 Up WISP1 20897 3.793 0.314 0.083 -0.694 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up KLF7 9209 3.786 0.388 0.062 -0.174 -0.158 0 Up LRRC32 11774 3.785 0.482 0.063 -0.174 -0.632 0 Up LRRC32 11774 3.785 0.482 0.177 -0.348 0 Up LRRC32 11774 3.785 0.482 0.127 -0.348 0 Up LRCC15 0.00 Up LRC1 11717 3.785 0.482 0.127 -0.348 0 Up LRC2 11717 3.785 0.482 0.127 -0.348 0 Up LRCC1 11717 3.785 0.482 0.233 -0.709 0 Up LRCC1 11717 3.785 0.482 0.235 0.067 -0.060 0 Up LRCC1 11717 3.763 0.376 0.336 0.331 0.141 -0.085 0 Up LRCC1 11717 3.763 0.376 0.336 0.331 0.141 -0.085 0 Up LRCC1 11717 3.763 0.376 0.336 0.331 0.141 -0.085 0 Up LRCC1 11824 3.762 0.336 0.087 -0.06 0 Up	MT1M	12797	3.865	0.768	0.199	-0.071	0	Up
SPOCK1								
EGR2 5397 3,845 0.603 0.157 0.011 0 Up CMTM3 3874 3.837 0.467 0.122 -0.393 0 Up HEYL 7849 3.835 0.494 0.129 -0.727 0 Up CNN1 3900 3.831 0.815 0.213 -0.149 0 Up TWIST2 20278 3.827 0.603 0.157 -0.184 0 Up LOC100129940 9999 3.82 0.388 0.101 -0.506 0 Up LSP1 11857 3.807 0.368 0.097 -0.093 0 Up COL5A3 3993 3.806 0.526 0.138 -0.895 0 Up COL5A3 3993 3.806 0.526 0.138 -0.895 0 Up SHIPYD2B 17529 3.804 0.46 0.121 -0.506 0 Up SALL4 17067 3.8 0.664 0.175 -0.938 0 Up SALL4 17067 3.8 0.664 0.175 -0.938 0 Up SOBP 18276 3.799 0.28 0.074 -0.158 0 Up CTSB 4346 3.795 0.437 0.115 -0.66 0 Up CTSB 4346 3.795 0.437 0.115 -0.662 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up FLNA 6617 3.79 0.315 0.083 -0.669 0 Up FLNA 6617 3.79 0.314 0.083 -0.669 0 Up KLF7 9209 3.786 0.388 0.102 -0.458 0 Up LRC32 11774 3.785 0.482 0.177 -0.425 0 Up LRC32 11774 3.785 0.482 0.177 -0.425 0 Up LRC32 11774 3.785 0.241 0.064 -0.257 0 Up LRC32 11774 3.785 0.241 0.064 -0.257 0 Up LRC32 11774 3.785 0.241 0.064 -0.257 0 Up LRC42 11717 3.785 0.241 0.064 -0.257 0 Up LRC54 2.191 3.763 0.531 0.141 -0.085 0 Up LFFT 6775 3.766 0.982 0.266 -0.506 0 Up LFFT 6775 3.766 0.982 0.266 -0.506 0 Up LFFT 6775 3.766 0.982 0.266 -0.506 0 Up LFFT 6775 3.766 0.982 0.266 0.559 0 Up LFFT 6775 3.766 0.982 0.266 0.506 0 Up LFFT 6775 3.766 0.98								
CMTM3 3874 3.837 0.467 0.122 -0.393 0 Up HEYL 7849 3.835 0.494 0.129 -0.727 0 Up TWIST2 20278 3.827 0.603 0.157 -0.184 0 Up LOC100129940 9999 3.82 0.5888 0.101 -0.506 0 Up LSP1 11857 3.807 0.368 0.097 -0.093 0 Up ACSLA 189 3.806 0.302 0.079 -0.199 0 Up COL5A3 3993 3.806 0.526 0.138 -0.895 0 Up SH3PXD2B 17529 3.804 0.46 0.121 -0.506 0 Up SALLA 17067 3.8 0.664 0.175 -0.938 0 Up SCISS 8716 3.799 0.28 0.074 -0.158 0 Up UTGA5 8716 3.799 0.43 0.113 -0.56 0 Up UTGA5 8716 3.799 0.43 0.113 -0.56 0 Up WISP1 20897 3.793 0.314 0.083 -0.662 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up ZNP469 2.1487 3.788 0.66 0.174 -0.632 0 Up ZNP469 2.1487 3.788 0.666 0.174 -0.632 0 Up ZNP469 2.1487 3.785 0.482 0.102 -0.458 0 Up LRC32 11774 3.785 0.482 0.177 -0.348 0 Up COMP 4020 3.773 0.878 0.241 0.064 0.257 0.099 0 Up LRCC1 11717 3.785 0.482 0.177 -0.348 0 Up COMP 4020 3.773 0.878 0.233 -0.206 0 Up LRCC1 11717 3.785 0.482 0.127 -0.348 0 Up LRCC2 11717 3.785 0.482 0.127 -0.348 0 Up LRCC2 11717 3.785 0.482 0.127 -0.348 0 Up LRCC1 11717 3.785 0.482 0.127 -0.348 0 Up LRCC1 11717 3.785 0.482 0.257 0 Up LRCC1 11717 3.785 0.482 0.257 0 Up LRCC1 11717 3.785 0.241 0.064 -0.257 0 Up LRCC1 11717 3.785 0.241 0.064 -0.257 0 Up LRCC1 11717 3.785 0.241 0.064 -0.255 0 Up LRCC1 11717 3.785 0.3766 0.982 0.261 0.0559 0 Up LRCC1 11717 3.763 0.376 0.336 0.331 0.141 0.085 0 Up LRCC1 11717 3.763 0.376 0.336 0.331 0.141 0.085 0 Up LRCC1 11717 3.763 0.376 0.336 0.331 0.141 0.085 0 Up LRCC1 11717 3.763 0.376 0.336 0.331 0.141 0.085 0 Up LRCC1 11717 3.761 0.431 0.115 0.044 0 Up								
CNNI 3900 3.831 0.815 0.213 -0.149 0 Up TWIST2 20278 3.827 0.603 0.157 -0.184 0 Up LOCI00129940 9999 3.82 0.388 0.101 -0.506 0 Up LSPI 11857 3.807 0.368 0.097 -0.093 0 Up ACSL4 189 3.806 0.302 0.079 -0.199 0 Up COL5A3 3993 3.806 0.526 0.138 -0.895 0 Up SHBPXD2B 17529 3.804 0.46 0.121 -0.506 0 Up SALL4 17067 3.8 0.664 0.175 -0.938 0 Up SOBP 18276 3.799 0.28 0.074 -0.158 0 Up TIGA5 8716 3.799 0.43 0.113 -0.56 0 Up USSPI 20897 3.793 0.314 0.083 -0.662 0 Up WISPI 20897 3.793 0.314 0.083 -0.662 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up FLNA 6617 3.79 0.315 0.083 -0.269 0 Up ZNP469 21487 3.788 0.66 0.174 -0.632 0 Up ZNP469 21487 3.788 0.66 0.174 -0.632 0 Up LIRC32 11774 3.785 0.482 0.127 -0.348 0 Up LIRC32 11774 3.785 0.482 0.127 -0.348 0 Up LIRC32 11774 3.785 0.482 0.127 -0.348 0 Up COMP 4020 3.773 0.878 0.233 -0.269 0 Up LIRCC3 11717 3.785 0.482 0.127 -0.348 0 Up COMP 4020 3.773 0.878 0.233 -0.709 0 Up LIRCC3 11717 3.785 0.482 0.127 -0.348 0 Up LIRCC3 11717 3.785 0.482 0.261 -0.559 0 Up LIRCC3 2.191 3.763 0.531 0.141 -0.085 0 Up LIRCC4 2.191 3.763 0.531 0.141 -0.085 0 Up LIRCC5 2.191 3.763 0.531 0.141 -0.085 0 Up LIRCC9 2.191 3.763 0.336 0.331 0.141 -0.085 0 Up LIRCC9 2.191 3.763 0.336 0.331 0.141 -0.085 0 Up LIRCC9 2.191 3.763 0.336 0.331 0.141 -0.085 0 Up LIRCC9 2.191 3.760 0.336 0.331 0.141 -0.085 0 Up LIRCC9 2.191 3.763 0.336 0.331 0.141 -0.085 0 Up	CMTM3	3874	3.837	0.467	0.122	-0.393	0	Up
TWIST2 20278 3.827 0.603 0.157 -0.184 0 Up LOCI00129940 9999 3.82 0.388 0.101 -0.506 0 Up LSP1 11857 3.807 0.368 0.097 -0.093 0 Up ACSL4 189 3.806 0.302 0.079 -0.199 0 Up COL5.A3 3993 3.806 0.526 0.138 -0.895 0 Up SH3PXD2B 17529 3.804 0.46 0.121 -0.506 0 Up SALL4 17067 3.8 0.664 0.175 -0.938 0 Up SALL4 17067 3.8 0.664 0.175 -0.938 0 Up SALL4 17067 3.8 0.064 0.175 -0.938 0 Up TIGA5 8716 3.799 0.28 0.074 -0.158 0 Up CTSB 4346 3.795 0.437 0.115 -0.662 0 Up CTSB 4346 3.793 0.314 0.083 -0.662 0 Up WISP1 20897 3.793 0.314 0.083 -0.694 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up FLNA 6617 3.79 0.315 0.083 -0.269 0 Up ZNP469 2.1487 3.788 0.66 0.174 -0.632 0 Up KLF7 9209 3.786 0.388 0.102 -0.458 0 Up LRRC32 11774 3.785 0.482 0.127 -0.348 0 Up LRRC32 11774 3.785 0.482 0.127 -0.348 0 Up LRCC12 11717 3.785 0.482 0.127 -0.348 0 Up LRCC12 11717 3.785 0.482 0.233 -0.709 0 Up LRCC12 11717 3.785 0.241 0.064 -0.257 0 Up LRCC12 11717 3.785 0.376 0.982 0.233 -0.709 0 Up LRCC12 11717 3.785 0.376 0.982 0.231 -0.559 0 Up LRCC12 1191 3.763 0.531 0.141 -0.085 0 Up LFP SVEP1 18824 3.762 0.336 0.087 -0.06 0 Up SVEP1 18824 3.762 0.336 0.087 -0.06 0 Up								
LOC100129940 9999 3.82 0.388 0.101 -0.506 0 Up LSP1								
LSPI 11857 3.807 0.368 0.097 -0.093 0 Up ACSL4 189 3.806 0.302 0.079 -0.199 0 Up COL5A3 3993 3.806 0.526 0.138 -0.895 0 Up SH3PXD2B 17529 3.804 0.46 0.121 -0.506 0 Up SALL4 17067 3.8 0.664 0.175 -0.938 0 Up SOBP 18276 3.799 0.28 0.074 -0.158 0 Up TIGA5 8716 3.799 0.28 0.074 -0.158 0 Up UP CTSB 4346 3.799 0.43 0.113 -0.56 0 Up WISPI 20897 3.793 0.314 0.083 -0.662 0 Up WISPI 20897 3.793 0.314 0.083 -0.662 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up FLNA 6617 3.79 0.315 0.083 -0.269 0 Up ZNP469 21487 3.788 0.66 0.174 -0.632 0 Up KLF7 9209 3.786 0.388 0.102 -0.458 0 Up LRRC32 11774 3.785 0.482 0.127 -0.348 0 Up COMP 4020 3.773 0.878 0.241 0.064 0.257 0 Up LRCCH2 111717 3.785 0.482 0.127 -0.348 0 Up COMP 4020 3.773 0.878 0.233 -0.209 0 Up LRCH2 11717 3.785 0.482 0.127 -0.348 0 Up COMP 4020 3.773 0.878 0.233 -0.709 0 Up EST 6775 3.766 0.776 0.206 -0.506 0 Up EST 6775 3.766 0.982 0.231 0.141 -0.085 0 Up ZFP36 21191 3.763 0.531 0.141 -0.085 0 Up SVEP1 18824 3.762 0.336 0.087 -0.06 0 Up SVEP1 18824 3.762 0.336 0.087 -0.06 0 Up								
ACSL4 189 3.806 0.302 0.079 -0.199 0 Up COL5A3 3993 3.806 0.526 0.138 -0.895 0 Up SH3PXD2B 17529 3.804 0.46 0.121 -0.506 0 Up SALL4 17067 3.8 0.664 0.175 -0.938 0 Up SOBP 18276 3.799 0.28 0.074 -0.158 0 Up ITGA5 8716 3.799 0.43 0.113 -0.56 0 Up CTSB 4346 3.795 0.437 0.115 -0.662 0 Up CTSB 4346 3.795 0.437 0.115 -0.662 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up FLNA 6617 3.79 0.315 0.083 -0.269 0 Up ZNF469 21487 3.788 0.66 0.174 -0.632 0 Up KLF7 9209 3.786 0.388 0.102 -0.458 0 Up LRRC32 11774 3.785 0.482 0.127 -0.348 0 Up LRC32 11774 3.785 0.482 0.127 -0.348 0 Up LRCH2 11717 3.785 0.669 0.177 -0.425 0 Up LRCH2 11717 3.785 0.241 0.064 -0.257 0 Up LRCH2 11717 3.785 0.241 0.064 -0.257 0 Up EST 6775 3.766 0.776 0.206 -0.506 0 Up SVEP1 18824 3.762 0.336 0.381 0.141 -0.085 0 Up ZFP36 21191 3.763 0.531 0.141 -0.085 0 Up ZFP36 21191 3.763 0.531 0.141 -0.085 0 Up SVEP1 18824 3.762 0.336 0.087 -0.06 0 Up	LSP1	11857	3.807	0.368	0.097	-0.093	0	Up
SH3PXD2B 17529 3.804 0.46 0.121 -0.506 0 Up SALL4 17067 3.8 0.664 0.175 -0.938 0 Up SOBP 18276 3.799 0.28 0.074 -0.158 0 Up ITGA5 8716 3.799 0.43 0.113 -0.56 0 Up CTSB 4346 3.795 0.437 0.115 -0.662 0 Up WISP1 20897 3.793 0.314 0.083 -0.664 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up FLNA 6617 3.79 0.315 0.083 -0.694 0 Up ZNP469 2.1487 3.788 0.66 0.174 -0.632 0 Up KLF7 9209 3.786 0.388 0.102 -0.458 0 Up LRCH2 11774 3.785								Up
SALL4 17067 3.8 0.664 0.175 -0.938 0 Up SOBP 18276 3.799 0.28 0.074 -0.158 0 Up ITGA5 8716 3.799 0.43 0.113 -0.56 0 Up CTSB 4346 3.795 0.437 0.115 -0.662 0 Up WISP1 20897 3.793 0.314 0.083 -0.694 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up FLNA 6617 3.79 0.315 0.083 -0.269 0 Up ZNF469 21487 3.788 0.66 0.174 -0.632 0 Up KLF7 9209 3.786 0.388 0.102 -0.458 0 Up LRC32 11774 3.785 0.669 0.177 -0.425 0 Up C9orf53 2729 3.785 <								
SOBP 18276 3.799 0.28 0.074 -0.158 0 Up ITGA5 8716 3.799 0.43 0.113 -0.56 0 Up CTSB 4346 3.795 0.437 0.115 -0.662 0 Up WISP1 20897 3.793 0.314 0.083 -0.694 0 Up RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up FLNA 6617 3.79 0.315 0.083 -0.269 0 Up ZNF469 21487 3.788 0.66 0.174 -0.632 0 Up LRC9 2174 3.785 0.482 0.127 -0.348 0 Up LRC12 1174 3.785 0.482 0.127 -0.348 0 Up COMF3 2729 3.785 0.669 0.177 -0.425 0 Up LRC12 11717 3.785 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
TIGA5			3.799					
WISP1 20897 3,793 0,314 0,083 -0,694 0 Up RBMS3 16340 3,791 0,238 0,063 -0,179 0 Up FLNA 6617 3,79 0,315 0,083 -0,269 0 Up ZNF469 21487 3,788 0,66 0,174 -0,632 0 Up KLF7 9209 3,786 0,388 0,102 -0,458 0 Up LRC32 11774 3,785 0,482 0,127 -0,348 0 Up C9orf33 2729 3,785 0,669 0,177 -0,425 0 Up LRCH2 11717 3,785 0,241 0,064 -0,257 0 Up COMP 4020 3,773 0,878 0,233 -0,709 0 Up FST 6775 3,766 0,776 0,206 -0,506 0 Up WISP2 20898 3,763								Up
RBMS3 16340 3.791 0.238 0.063 -0.179 0 Up FLNA 6617 3.79 0.315 0.083 -0.269 0 Up ZNF469 21487 3.788 0.66 0.174 -0.632 0 Up KLF7 9209 3.786 0.388 0.102 -0.458 0 Up LRRC32 11774 3.785 0.482 0.127 -0.348 0 Up C9orfS3 2729 3.785 0.669 0.177 -0.425 0 Up LRCH2 11717 3.785 0.241 0.064 -0.257 0 Up LRCH2 11717 3.785 0.241 0.064 -0.257 0 Up COMP 4020 3.773 0.878 0.233 -0.709 0 Up FST 6775 3.766 0.776 0.206 -0.506 0 Up KSP2 20898 3.766 0.982 0.261 -0.559 0 Up ZFP36 21191 3.763 0.531 0.141 -0.085 0 Up SVEP1 18824 3.762 0.326 0.087 -0.06 0 Up SVEP1 18824 3.762 0.326 0.087 -0.06 0 Up JDP2 8787 3.761 0.431 0.115 -0.44 0 Up								
FLNA 6617 3.79 0.315 0.083 -0.269 0 Up ZNF469 21487 3.788 0.66 0.174 -0.632 0 Up KLF7 9209 3.786 0.388 0.102 -0.458 0 Up LRRC32 11774 3.785 0.482 0.127 -0.348 0 Up C9orf53 2729 3.785 0.669 0.177 -0.425 0 Up LRCH2 11717 3.785 0.241 0.064 -0.257 0 Up COMP 4020 3.773 0.878 0.233 -0.709 0 Up FST 6775 3.766 0.776 0.206 -0.506 0 Up FST 6775 3.766 0.982 0.261 -0.559 0 Up ZFP36 21191 3.763 0.531 0.141 -0.085 0 Up SVEP1 18824 3.762 0.326 0.087 -0.06 0 Up JDP SVEP1 18824 3.762 0.326 0.087 -0.06 0 Up JDP SVEP1 18824 3.761 0.431 0.115 -0.44 0 Up								
ZNF469								
LRRC32 11774 3.785 0.482 0.127 -0.348 0 Up C9orf33 2729 3.785 0.6669 0.177 -0.425 0 Up LRCH2 11717 3.785 0.241 0.064 -0.257 0 Up COMP 4020 3.773 0.878 0.233 -0.709 0 Up FST 6775 3.766 0.776 0.206 -0.506 0 Up WISP2 20898 3.766 0.982 0.261 -0.559 0 Up ZFP36 21191 3.763 0.531 0.141 -0.085 0 Up SVEP1 18824 3.762 0.326 0.087 -0.06 0 Up JDP2 8787 3.761 0.431 0.115 -0.44 0 Up	ZNF469	21487	3.788	0.66	0.174	-0.632	0	Up
C9orf83 2729 3,785 0,669 0,177 -0,425 0 Up LRCH2 11717 3,785 0,241 0,064 -0,257 0 Up COMP 4020 3,773 0,878 0,233 -0,709 0 Up EST 6775 3,766 0,776 0,206 -0,506 0 Up WISP2 20898 3,766 0,982 0,261 -0,559 0 Up ZFP36 21191 3,763 0,531 0,141 -0,085 0 Up SVEP1 18824 3,762 0,326 0,087 -0,06 0 Up JDP2 8787 3,761 0,431 0,115 -0,44 0 Up								
LRCH2 11717 3.785 0.241 0.064 -0.257 0 Up COMP 4020 3.773 0.878 0.2333 -0.709 0 Up FST 6775 3.766 0.776 0.206 -0.506 0 Up WISP2 20898 3.766 0.982 0.261 -0.559 0 Up ZFP36 21191 3.763 0.531 0.141 -0.085 0 Up SVEP1 18824 3.762 0.326 0.087 -0.06 0 Up JDP2 8787 3.761 0.431 0.115 -0.44 0 Up								
COMP 4020 3.773 0.878 0.233 -0.709 0 Up FST 6775 3.766 0.776 0.206 -0.506 0 Up WISP2 20898 3.766 0.982 0.261 -0.559 0 Up ZFP36 21191 3.763 0.531 0.141 -0.085 0 Up SVEP1 18824 3.762 0.326 0.087 -0.06 0 Up JDP2 8787 3.761 0.431 0.115 -0.44 0 Up								
WISP2 20898 3.766 0.982 0.261 -0.559 0 Up ZFP36 21191 3.763 0.531 0.141 -0.085 0 Up SVEP1 18824 3.762 0.326 0.087 -0.06 0 Up JDP2 8787 3.761 0.431 0.115 -0.44 0 Up	COMP	4020	3.773	0.878	0.233	-0.709	0	Up
ZFP36 21191 3.763 0.531 0.141 -0.085 0 Up SVEP1 18824 3.762 0.326 0.087 -0.06 0 Up JDP2 8787 3.761 0.431 0.115 -0.44 0 Up								
SVEP1 18824 3.762 0.326 0.087 -0.06 0 Up JDP2 8787 3.761 0.431 0.115 -0.44 0 Up								
JDP2 8787 3.761 0.431 0.115 -0.44 0 Up								
	JDP2	8787	3.761	0.431	0.115	-0.44	0	Up
	FOXQ1	6719	3.76	0.765	0.204	-0.499	0	

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
SCARNA17	17147	3.758 3.758	0.54 0.441	0.144	-0.128 -0.471	0	Up
RAB7L1 RASA3	16138 16246	3.757	0.385	0.117 0.103	-0.471	0	Up Up
NTM	13753	3.755	0.329	0.088	-0.183	0	Up
LMCD1	9727	3.747	0.499	0.133	-0.456	0	Up
GLIPR2	7156	3.742	0.498	0.133	-0.316	0	Up
ZFHX4	21181	3.737	0.498	0.133	-0.258	0	Up
ST6GAL2	18617	3.736	0.477	0.128	-0.775	0	Up
LOC100132891	10294	3.725	0.161	0.043	-0.43	0	Up
DPT	5137	3.725	0.747	0.201	-0.164	0	Up
APCDD1	809	3.722	0.588	0.158	-0.183	0	Up
JAG1	8774	3.719	0.407	0.109	-0.404	0	Up
SULF1	18774	3.718	0.668	0.18	-0.945	0	Up
EIF5A2	5468	3.717	0.283	0.076	-0.3	0	Up
C12orf70	1830	3.708	0.415	0.112	-0.575	0	Up
LOXL1	11682	3.708	0.594	0.16	-0.63	0	Up
NXN	13843	3.707	0.344	0.093	-0.486	0	Up
ATF3	1147	3.692	0.471	0.128	-0.196	0	Up
XG NHS	20957	3.69	0.356	0.097	-0.491	0	Up
VEGFC	13452 20657	3.688 3.687	0.252 0.383	0.068 0.104	-0.254 -0.294	0	Up Up
ZEB2	21168	3.677	0.342	0.104	-0.294	0	Up
ITGBL1	8739	3.677	0.672	0.183	-0.522	0	Up
COL8A1	4001	3.674	0.742	0.202	-0.959	0	Up
ARHGEF40	965	3.673	0.408	0.111	-0.201	0	Up
C21orf34	2296	3.67	0.272	0.074	-0.062	0	Up
MT1X	12798	3.669	0.58	0.158	-0.067	0	Up
MYO1B	12972	3.664	0.312	0.085	-0.212	0	Up
EFEMP2	5364	3.659	0.422	0.115	-0.488	0	Up
PDLIM3	14774	3.658	0.467	0.128	-0.167	0	Up
ITGB3	8732	3.657	0.526	0.144	-0.437	0	Up
SLC12A4	17666	3.656	0.292	0.08	-0.193	0	Up
ACVR2A	234	3.655	0.264	0.072	-0.232	0	Up
LOC100130876	10110	3.647	0.578	0.159	-0.277	0	Up
MAMDC2	12007	3.647	0.342	0.094	-0.173	0	Up
FKBP9	6419	3.642	0.188	0.052	-0.455	0	Up
LPCAT2	11695	3.639	0.271	0.074	-0.142	0	Up
C5orf13	2477	3.639	0.366	0.101	-0.584	0	Up
LRIG3	11730	3.638	0.482	0.132	-0.113	0	Up
CD200	3228	3.635	0.334	0.092	-0.106	0	Up
SPSB1	18490	3.624	0.373	0.103	-0.46	0	Up
MXRA7 PTPN21	12902	3.62	0.314	0.087	-0.414	0	Up
C17orf51	15959 2000	3.618 3.612	0.463 0.428	0.128 0.118	-0.172 -0.237	0	Up
KLF12	9198	3.611	0.34	0.094	-0.287	0	Up
CELF2	3478	3.608	0.346	0.094	-0.033	0	Up Up
FAM7A1	6115	3.607	0.261	0.072	-0.473	0	Up
LAYN	9528	3.6	0.399	0.111	-0.218	0	Up
PTGFRN	15921	3.6	0.398	0.11	-0.598	0	Up
SYNDIGI	18851	3.599	0.746	0.207	-0.833	0	Up
SCHIP1	17177	3.584	0.508	0.142	-0.121	0	Up
RECQL	16396	3.58	0.171	0.048	-0.398	0	Up
GGT5	7072	3.577	0.456	0.128	-0.134	0	Up
FGF7	6360	3.577	0.324	0.09	-0.085	0	Up
FOXO1	6712	3.57	0.332	0.093	-0.006	0	Up
FAM20A	6009	3.57	0.401	0.112	-0.089	0	Up
WDR86	20856	3.567	0.707	0.198	-0.233	0	Up
ZFPM2	21206	3.565	0.375	0.105	-0.402	0	Up
LOC541471	11281	3.564	0.452	0.127	-0.771	0	Up
MT1E	12791	3.56	0.584	0.164	-0.102	0	Up
KLF2	9204	3.559	0.471	0.132	-0.144	0	Up
LAMAI	9486	3.557	0.307	0.086	-0.23	0	Up
MAP4K5	12066	3.556	0.249	0.07	-0.356	0	Up
CERCAM DZIP1	3536 5276	3.554 3.552	0.347	0.098	-0.772 -0.29	0	Up
DZIP1 GLIS1	5276 7157	3.552 3.55	0.372 0.429	0.105 0.121	-0.29 -0.496	0	Up
JAM3	715 / 8784	3.55	0.429	0.121	-0.496 -0.245	0	Up Up
SLC26A10	17801	3.547	0.322	0.103	-0.243	0	Up
ROR1	16743	3.545	0.305	0.086	-0.254	0	Up
CTHRC1	4325	3.542	0.667	0.188	-0.924	0	Up
PKD2	15071	3.542	0.354	0.1	-0.136	0	Up
SLC36A1	17880	3.536	0.359	0.102	-0.529	0	Up
GLIS2	7158	3.535	0.495	0.14	-0.534	0	Up
MITF	12471	3.532	0.303	0.086	-0.308	0	Up
NPR2	13642	3.526	0.388	0.11	-0.256	0	Up
GJB2	7120	3.526	0.836	0.237	-0.948	0	Up
ZFAND5	21174	3.522	0.263	0.075	-0.152	0	Up
GPC6	7333	3.519	0.435	0.124	-0.587	0	Up
CNRIP1	3925	3.519	0.227	0.065	-0.145	0	Up
CNIH3	3895	3.516	0.441	0.125	-0.399	0	Up
SGMS2	17483	3.514	0.326	0.093	-0.473	0	Up
STARD8	18661	3.514	0.273 0.252	0.078	-0.179	0	Up
P2RY1 RUNX1T1	14425 16999	3.514 3.514	0.252	0.072 0.145	-0.161 -0.095	0	Up Up
JAZF1	8786	3.514	0.312	0.143	-0.235	0	Up
HSPB2	8233	3.507	0.564	0.161	-0.233	0	Up
NKD2	13486	3.506	0.386	0.11	-0.487	0	Up
COL15A1	3967	3.505	0.425	0.121	-0.1	0	Up
	3237	3.504	0.371	0.106	-0.3	0	Up
CD248	7809	3.502	0.404	0.115	-0.202	0	Up
CD248 HEG1	/809						Up
	12974	3.502	0.294	0.084	-0.544	0	Op
HEG1			0.294 0.312	0.084	-0.265	0	Up
HEG1 MYO1D	12974	3.502					
HEG1 MYO1D F2R	12974 5786	3.502 3.499	0.312	0.089	-0.265	0	Up
HEG1 MYO1D F2R PELI2	12974 5786 14817	3.502 3.499 3.497	0.312 0.425	0.089 0.121	-0.265 -0.189	0 0	Up Up

CID	G N	C (1)	N	D	E-H-Cl	P - (-1 P - 1 - (0/)	D't'
Gene ID ZC3H12B	Gene Name 21103	Score (d) 3.475	Numerator (r) 0.196	Denominator (s+s0) 0.056	Fold Change -0.082	adjusted P value (%)	Direction Up
ABCA6	42	3.461	0.479	0.138	0.019	0	Up
MT1L	12796	3.456	0.514	0.149	-0.106	0	Up
ARAP3	887	3.456	0.372	0.108	-0.094	0	Up
ADAMTS12	271	3.451	0.256	0.074	-0.91	0	Up
PRKCA FAS	15649 6180	3.451 3.442	0.446 0.29	0.129 0.084	-0.005 -0.03	0	Up
BMP1	1541	3.442	0.196	0.084	-0.03 -0.798	0	Up Up
GOLGA7B	7287	3.44	0.367	0.107	-0.558	0	Up
CLIP4	3822	3.44	0.373	0.108	-0.104	0	Up
LGALS1	9618	3.427	0.423	0.124	-0.513	0	Up
C20orf103	2234	3.425	0.707	0.206	-0.519	0	Up
MEIS2	12286	3.417	0.364	0.107	-0.16	0	Up
FAM43A KANK2	6040 8818	3.416 3.413	0.373 0.34	0.109 0.1	-0.16 -0.221	0	Up Up
AKAP13	466	3.412	0.256	0.075	-0.221	0	Up
SLAMF9	17652	3.406	0.351	0.103	-0.873	0	Up
HSPG2	8245	3.402	0.263	0.077	-0.429	0	Up
TMEM43	19608	3.399	0.278	0.082	-0.315	0.17	Up
EGFL6	5387	3.396	0.675	0.199	-0.297	0.17	Up
C10orf10	1681	3.395	0.576	0.17	-0.082	0.17	Up
MAGEL2 FAT4	11991 6191	3.393	0.363 0.189	0.107 0.056	-0.281 -0.115	0.17 0.17	Up
HIC1	7872	3.389 3.386	0.189	0.103	-0.115 -0.244	0.17	Up Up
C20orf194	2258	3.385	0.301	0.089	-0.301	0.17	Up
ID3	8312	3.385	0.339	0.1	-0.259	0.17	Up
CXCL12	4398	3.384	0.38	0.112	-0.127	0.17	Up
SPATS2L	18389	3.382	0.404	0.119	-0.273	0.17	Up
MMP11	12529	3.381	0.816	0.241	-1.676	0.17	Up
TPST1	19874	3.378	0.385	0.114	-0.51	0.17	Up
MAP1B LOC100131826	12033 10220	3.372 3.372	0.341 0.271	0.101 0.08	0.003 -0.404	0.17 0.17	Up
ANTXR2	751	3.372	0.271	0.08	-0.404 -0.047	0.17	Up Up
KLK4	9266	3.366	0.309	0.092	-0.648	0.17	Up
PEAK1	14806	3.359	0.28	0.083	-0.097	0.17	Up
ARHGAP20	918	3.351	0.278	0.083	-0.083	0.17	Up
DOCK11	5084	3.347	0.355	0.106	0	0.17	Up
SPECC1	18404	3.341	0.261	0.078	-0.242	0.17	Up
SPHK1	18418	3.34	0.364	0.109	-0.416	0.17	Up
NUAKI TMEM204	13767 19560	3.339 3.333	0.303 0.395	0.091 0.119	-0.658 -0.377	0.17 0.17	Up
COL7A1	4000	3.329	0.535	0.119	-0.523	0.17	Up Up
FZD7	6836	3.325	0.501	0.151	-0.193	0.17	Up
HOMER1	8072	3.321	0.243	0.073	-0.501	0.17	Up
DST	5189	3.321	0.452	0.136	-0.007	0.17	Up
ADAM19	251	3.32	0.272	0.082	-0.638	0.17	Up
GNG11	7241	3.318	0.451	0.136	-0.01	0.17	Up
SFRP4 BACH2	17449 1366	3.313 3.311	0.58 0.19	0.175 0.057	-0.294 -0.063	0.17 0.17	Up
LOC286068	10952	3.309	0.19	0.037	-0.521	0.17	Up Up
TIMP3	19345	3.309	0.58	0.175	-0.666	0.17	Up
EFNB2	5378	3.306	0.412	0.125	-0.411	0.17	Up
ITGB1	8727	3.304	0.303	0.092	-0.264	0.17	Up
FAM101B	5825	3.303	0.418	0.127	-0.504	0.17	Up
P4HA3	14436	3.303	0.27	0.082	-0.928	0.17	Up
ARPC2	1032	3.297	0.25 0.422	0.076	-0.432	0.17	Up
SGK1 ZNF300P1	17475 21390	3.297 3.292	0.422	0.128 0.135	-0.006 -0.131	0.17 0.17	Up Up
KCTD12	8949	3.291	0.376	0.114	-0.026	0.17	Up
FOSB	6676	3.291	0.753	0.229	0.095	0.17	Up
MMP13	12531	3.29	0.744	0.226	-0.813	0.17	Up
SLIT2	18035	3.289	0.365	0.111	-0.279	0.17	Up
EDNRA	5337	3.286	0.31	0.094	-0.592	0.17	Up
CDR1 LZTS1	3423 11934	3.281 3.278	0.227 0.221	0.069 0.068	-0.256 -0.475	0.17 0.17	Up Up
CDH13	3350	3.278	0.221	0.068	-0.475	0.17	Up Up
FAM69A	6085	3.272	0.258	0.079	-0.247	0.17	Up
IGFBP7	8409	3.272	0.427	0.131	-0.294	0.17	Up
BMPR2	1556	3.271	0.205	0.063	-0.378	0.17	Up
PLXNC1	15233	3.271	0.36	0.11	-0.559	0.17	Up
PRNP SEC23A	15688 17270	3.27 3.27	0.498 0.342	0.152 0.105	-0.131 -0.571	0.17	Up Up
C12orf75	1834	3.266	0.342	0.105	-0.374	0.17 0.17	Up Up
STGC3	18680	3.263	0.231	0.071	-0.374	0.17	Up
CRISPLD2	4183	3.262	0.346	0.106	-0.401	0.17	Up
PLEKHG2	15176	3.257	0.258	0.079	-0.522	0.17	Up
ITGAV	8725	3.256	0.375	0.115	-0.422	0.17	Up
COL4A2 TSPAN18	3985 20105	3.25 3.249	0.407 0.341	0.125 0.105	-0.336 -0.325	0.17 0.17	Up Up
LDB2	9574	3.249	0.341	0.105	-0.325 -0.061	0.17	Up Up
AHNAK2	431	3.247	0.455	0.14	-0.832	0.17	Up
DUSP1	5217	3.246	0.5	0.154	-0.024	0.17	Up
CPXM1	4137	3.245	0.414	0.128	-0.172	0.17	Up
PLD1	15152	3.243	0.256	0.079	-0.326	0.17	Up
DDX43	4702	3.242	0.481	0.148	-0.283	0.17	Up
C6orf174 EMX2OS	2545 5538	3.241 3.238	0.319 0.414	0.098 0.128	0.016 -0.208	0.17 0.17	Up Up
KLKP1	9273	3.236	0.414	0.128	-0.208 -0.752	0.17	Up Up
EDIL3	5333	3.23	0.618	0.191	-1.289	0.17	Up
EMP1	5529	3.228	0.446	0.138	-0.015	0.17	Up
CCDC88A	3110	3.225	0.292	0.09	-0.192	0.17	Up
CDKN1A	3409	3.225	0.233	0.072	-0.35	0.17	Up
LHFPL2	9644	3.219	0.334	0.104	-0.18	0.17	Up
PCDH18 PLEKHH2	14608 15184	3.217 3.209	0.285 0.277	0.089 0.086	-0.083 -0.007	0.17 0.17	Up Up
SPARCL1	18363	3.209	0.277	0.193	-0.093	0.17	Up Up
			/			/	~P

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
CCRL1	3196	3.209	0.426	0.133	-0.728	0.17	Up
ANKH PENK	647 14822	3.207 3.207	0.37 0.258	0.116 0.08	-0.175 -0.535	0.17 0.17	Up Up
LOC728875	11559	3.2	0.463	0.145	-0.23	0.17	Up
PARVA	14557	3.199	0.306	0.096	-0.286	0.17	Up
CAPN5	2876	3.199	0.418	0.131	-0.191	0.17	Up
POTEF	15389	3.198 3.194	0.282 0.325	0.088 0.102	-0.263 -0.114	0.17 0.17	Up
IGF2 UCN2	8396 20436	3.194	0.323	0.149	-0.596	0.17	Up Up
SYNPO	18864	3.193	0.272	0.085	-0.138	0.17	Up
FNDC4	6658	3.193	0.317	0.099	-0.114	0.17	Up
PLAT	15128	3.19	0.817	0.256	-0.349	0.17	Up
JAM2	8783	3.19	0.332	0.104	0.003	0.17	Up
IFFO1 FAT1	8333 6188	3.186 3.184	0.202 0.509	0.064 0.16	-0.212 -0.13	0.17 0.17	Up Up
LOC100287221	10387	3.18	0.373	0.117	-0.907	0.17	Up
RNF175	16670	3.179	0.21	0.066	-0.116	0.17	Up
RFX2	16465	3.177	0.318	0.1	-0.31	0.17	Up
LRRC17	11759	3.176	0.574	0.181	-0.452	0.17	Up
VSNL1	20740	3.176	0.526	0.166	-0.291	0.17	Up
LY96 MT1B	11899 12789	3.167 3.165	0.374 0.472	0.118 0.149	-0.167 -0.084	0.314 0.314	Up Up
PHACTR2	14906	3.163	0.262	0.083	-0.179	0.314	Up
SPRY2	18483	3.161	0.451	0.143	0.03	0.314	Up
KLF6	9208	3.155	0.247	0.078	-0.137	0.314	Up
EFNB1	5377	3.151	0.35	0.111	-0.149	0.314	Up
CPZ PYGO1	4139 16043	3.146 3.145	0.386 0.266	0.123 0.085	-0.318 -0.387	0.314 0.314	Up
THBS1	16043 19279	3.145	0.266	0.085	-0.587 -0.537	0.314	Up Up
SPRY1	18482	3.134	0.42	0.134	-0.101	0.314	Up
ADAMTS1	269	3.132	0.472	0.151	-0.116	0.314	Up
ANGPT2	630	3.131	0.399	0.127	-0.908	0.314	Up
RHOQ	16543	3.13	0.226	0.072	-0.081	0.314	Up
CAV2 PCSK7	2944 14699	3.129 3.127	0.246 0.178	0.079 0.057	0.088 -0.261	0.314 0.314	Up Up
CCDC82	3102	3.127	0.178	0.037	-0.117	0.314	Up
PLAC9	15124	3.115	0.352	0.113	-0.075	0.314	Up
MSN	12772	3.106	0.358	0.115	-0.204	0.314	Up
CYP2U1	4503	3.103	0.276	0.089	0.001	0.314	Up
ANKRD35	695 12309	3.102	0.582 0.324	0.188	-0.058	0.314	Up
METRNL MFGE8	12350	3.096 3.094	0.54	0.105 0.175	-0.84 -0.29	0.314 0.314	Up Up
GAS6	6948	3.094	0.378	0.173	-0.256	0.314	Up
CFI	3568	3.09	0.381	0.123	-0.024	0.314	Up
DCLK2	4629	3.089	0.254	0.082	-0.31	0.314	Up
NEFM	13353	3.085	0.26	0.084	-0.501	0.314	Up
RGS2 ROCK2	16502 16736	3.081 3.081	0.525 0.244	0.171 0.079	-0.07 -0.26	0.314 0.314	Up
HYMAI	8289	3.081	0.372	0.121	-0.067	0.314	Up Up
VMP1	20685	3.08	0.39	0.127	-0.762	0.314	Up
F13A1	5783	3.078	0.377	0.122	-0.422	0.314	Up
HOXA4	8090	3.077	0.276	0.09	0	0.314	Up
STK17B	18691	3.073	0.287	0.093	-0.015	0.314	Up
LOC401097 ARRDC3	11164 1046	3.063 3.061	0.204 0.364	0.067 0.119	-0.413 -0.104	0.314 0.314	Up Up
LOC100128905	9881	3.061	0.364	0.038	-0.104	0.314	Up
S100A4	17033	3.06	0.435	0.142	-0.445	0.314	Up
TNFSF11	19742	3.06	0.236	0.077	-0.395	0.314	Up
HOXA3	8089	3.059	0.474	0.155	0.036	0.314	Up
RNF122	16639	3.054	0.312	0.102	-0.292	0.563	Up
H19 NRP2	7663 13711	3.053 3.053	0.554 0.206	0.182 0.068	-0.132 -0.734	0.563 0.563	Up Up
FMOD	6645	3.052	0.557	0.183	-0.734	0.563	Up
GABARAPLI	6854	3.051	0.296	0.097	-0.055	0.563	Up
MMP7	12547	3.051	1.016	0.333	-0.268	0.563	Up
WTIP	20938	3.05	0.378	0.124	-0.291	0.563	Up
TSHZ2 ACTBL2	20085 204	3.046 3.042	0.333 0.329	0.109 0.108	0.049 -0.226	0.563 0.563	Up
SCN3B	204 17192	3.042	0.329	0.108	-0.226 -0.12	0.563	Up Up
SULF2	18775	3.041	0.538	0.177	-0.706	0.563	Up
DNAJB4	5017	3.041	0.28	0.092	-0.486	0.563	Up
BACE2	1364	3.04	0.55	0.181	-0.229	0.563	Up
FSCN1	6765	3.039	0.455	0.15	-0.468	0.563	Up
PRKD3	15662	3.038	0.344 0.313	0.113	-0.169 -0.347	0.563	Up
GOLIM4 PHLDA3	7293 14948	3.037 3.037	0.313	0.103 0.106	-0.347 -0.169	0.563 0.563	Up Up
TWSG1	20280	3.037	0.294	0.097	-0.109	0.563	Up
RASL11B	16267	3.036	0.459	0.151	-0.413	0.563	Up
F3	5790	3.032	0.576	0.19	-0.179	0.563	Up
COL4A1	3984	3.03	0.396	0.131	-0.48	0.563	Up
CAV1 VEGFB	2943 20656	3.029 3.024	0.453 0.241	0.15 0.08	0.049 -0.19	0.563 0.563	Up Up
ARSE	1052	3.024	0.241	0.08	-0.19 -0.845	0.563	Up
PLAU	15129	3.018	0.549	0.182	-0.879	0.563	Up
BCAT1	1431	3.014	0.326	0.108	-0.869	0.563	Up
QKI	16054	3.013	0.225	0.075	-0.178	0.563	Up
SYDE1	18841	3.006	0.157	0.052	-0.202	0.563	Up
FNDC3B	6657	3.004	0.271	0.09	-0.358	0.563	Up
MAP7D3 CSRP2	12072 4277	3.002 3.001	0.203 0.425	0.068 0.142	-0.056 -0.199	0.563 0.563	Up Up
CSRP2 OLFML2A	13916	3.001	0.425	0.142	-0.733	0.563	Up Up
MOXD1	12603	3	0.46	0.08	-0.733	0.563	Up
CDKL5	3408	2.999	0.332	0.111	-0.403	0.563	Up
	0526	2.998	0.213	0.071	-0.198	0.563	Up
LATS2	9526						
	3053 4570	2.995 2.995	0.465 0.254	0.155 0.085	0.026 -0.967	0.563 0.563	Up Up

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
CDK6	3399	2.99	0.497	0.166	-0.178	0.563	Up
DOCK4	5087	2.99	0.299	0.1	-0.416	0.563	Up
ADPRH MMD	346 12522	2.988 2.986	0.3 0.371	0.1 0.124	-0.044 -0.108	0.563 0.563	Up Up
RFPL1-AS1	16453	2.982	0.235	0.079	-0.284	0.563	Up
TGFBR1	19248	2.981	0.275	0.092	-0.496	0.563	Up
LPHN2 LOC401164	11700 11168	2.977 2.976	0.225 0.233	0.075 0.078	-0.073 -0.373	0.563 0.563	Up
CLDN11	3758	2.973	0.544	0.078	0.032	0.563	Up Up
LAMC1	9496	2.968	0.378	0.127	-0.419	0.563	Up
IGFBP6	8408	2.964	0.395	0.133	-0.062	0.563	Up
MME LRRC15	12524 11756	2.964 2.957	0.363 0.71	0.122 0.24	0.14 -1.313	0.563 0.563	Up Up
S100A2	17031	2.957	0.715	0.242	-0.381	0.563	Up
GULP1	7638	2.953	0.304	0.103	-0.055	0.563	Up
ZNF521 TMEM119	21525 19459	2.953 2.949	0.403 0.474	0.136 0.161	-0.31 -0.23	0.563 0.563	Up Up
NAMPT	13056	2.948	0.385	0.131	-0.251	0.563	Up
KDELC1	8967	2.948	0.29	0.098	-0.581	0.563	Up
LOC100129397 FOXL1	994 <u>2</u> 6705	2.947 2.945	0.229 0.335	0.078 0.114	-0.564 -0.364	0.563 0.563	Up
GUCY1B3	7630	2.943	0.333	0.072	-0.364	0.563	Up Up
KIAA0408	9027	2.939	0.249	0.085	0.064	0.563	Up
CILP	3711	2.938	0.837	0.285	-0.46	0.563	Up
GLIPR1 NRP1	7153 13710	2.936 2.936	0.24 0.283	0.082 0.097	-0.235 -0.147	0.563 0.563	Up Up
PDLIM2	14773	2.936	0.153	0.052	-0.527	0.563	Up
FLJ42709	6570	2.933	0.268	0.092	-0.16	0.758	Up
LEPREL1 A2M	9608	2.933 2.932	0.457	0.156	-0.136 -0.111	0.758 0.758	Up
CDKL1	5 3404	2.932	0.436 0.221	0.149 0.075	-0.111 -0.187	0.758	Up Up
ADM	336	2.928	0.599	0.204	-0.298	0.758	Up
FLJ41170	6550 5334	2.928 2.926	0.177	0.06 0.161	-0.191	0.758	Up
EDN1 AFAP1L1	5334 370	2.926	0.473 0.271	0.161	-0.094 -0.286	0.758 0.758	Up Up
TMEM217	19572	2.924	0.32	0.11	-0.785	0.758	Up
CARD6	2898	2.92	0.326	0.111	-0.051	0.758	Up
CAPZB ACTB	2891 203	2.92 2.919	0.136 0.194	0.047 0.067	-0.428 -0.658	0.758 0.758	Up
ADC	301	2.919	0.194	0.089	-0.516	0.758	Up Up
BACE1	1363	2.915	0.239	0.082	-0.442	0.758	Up
TWISTI	20277	2.915	0.278	0.095	-0.177	0.758	Up
EPB41L2 PAX1	5587 14570	2.914 2.912	0.3 0.458	0.103 0.157	-0.065 -0.609	0.758 0.758	Up Up
FZD1	6829	2.909	0.386	0.133	-0.27	0.758	Up
GPNMB	7352	2.908	0.261	0.09	-0.201	0.758	Up
RAB3IL1 ADD3	16119 321	2.907 2.907	0.236 0.483	0.081 0.166	-0.448 -0.042	0.758 0.758	Up Up
HSPA12B	8218	2.906	0.354	0.122	-0.137	0.758	Up
ICAM4	8303	2.904	0.21	0.072	-0.194	0.758	Up
F2RL1 GLI2	5787	2.904	0.336	0.116	-0.081	0.758	Up
LOC100134240	7150 10340	2.903 2.901	0.135 0.377	0.046 0.13	-0.306 -1.111	0.758 0.758	Up Up
NINJ2	13462	2.9	0.38	0.131	-0.502	0.758	Up
ANXA2P3	760	2.9	0.347	0.12	-0.369	0.758	Up
PITX2 P4HA2	15059 14435	2.898 2.894	0.324 0.268	0.112 0.092	-0.655 -0.761	0.758 0.758	Up Up
ODZ4	13894	2.894	0.256	0.089	-0.502	0.758	Up
ANKRD37	700	2.892	0.334	0.115	-0.398	0.758	Up
GPX7 ROBO1	7473 16731	2.891 2.888	0.312 0.219	0.108 0.076	-0.39 -0.466	0.758 0.758	Up
CSDC2	4233	2.886	0.199	0.069	-0.411	0.758	Up Up
FOS	6675	2.882	0.632	0.219	0.091	0.758	Up
MFAP2	12344	2.878	0.488	0.169	-1.208	0.758	Up
EBF1 AASS	5293 27	2.877 2.876	0.236 0.275	0.082 0.096	0.028 -0.215	0.758 0.758	Up Up
ST5	18615	2.872	0.264	0.092	-0.464	0.758	Up
FKBP7	6417	2.868	0.317	0.111	-0.451	0.758	Up
LOC645166 PDE1B	11387 14728	2.867 2.863	0.353 0.195	0.123 0.068	-0.41 0.051	0.758 0.758	Up Up
MMP23B	12540	2.863	0.413	0.144	-0.174	0.758	Up
LOC100130776	10099	2.861	0.198	0.069	-0.272	0.758	Up
RAB7B CSRP1	16137 4276	2.858 2.857	0.446 0.23	0.156 0.081	-0.28 -0.023	0.758 0.758	Up
TGFBI	19247	2.857	0.23	0.081	-0.023 -0.922	0.758	Up Up
C1QTNF6	2126	2.856	0.223	0.078	-0.949	0.758	Up
STON1	18717	2.856	0.327	0.115	-0.256	0.758	Up
FMNL3 NOTCH3	6637 13594	2.854 2.853	0.151 0.317	0.053 0.111	-0.347 -0.306	0.758 0.758	Up Up
SACS	17058	2.85	0.261	0.092	-0.087	0.758	Up
AOC3	770	2.849	0.475	0.167	0.091	0.758	Up
ACTN3 DKFZP586K1520	216 4912	2.847 2.847	0.249 0.177	0.087 0.062	-0.426 -0.366	0.758 0.758	Up Up
FBLN1	6198	2.842	0.447	0.062	-0.276	0.758	Up
DSEL	5181	2.841	0.345	0.121	-0.355	0.758	Up
SH3KBP1	17527	2.84	0.26	0.092	-0.122 0.537	0.758	Up
TRO PTH1R	20034 15929	2.837 2.834	0.373 0.109	0.131 0.038	-0.537 -0.089	0.758 0.758	Up Up
EGR3	5398	2.834	0.59	0.208	-0.142	0.758	Up
SERPINE1	17397	2.831	0.232	0.082	-0.262	0.758	Up
PLOD2 TMEM158	15209 19502	2.83 2.827	0.439 0.518	0.155 0.183	-0.523 -0.637	0.758 0.758	Up Up
ANXA2	758	2.827	0.342	0.183	-0.183	0.758	Up
FMO2	6639	2.827	0.701	0.248	0.065	0.758	Up
LRCH1 DPYSL2	11716 5149	2.825 2.823	0.154 0.33	0.055 0.117	-0.391 -0.103	0.758 0.758	Up
I Di i SL2	3149	2.023	0.33	U.11/	-0.103	0.738	Up

Gene ID Gene N	Name Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
MMP3 1254		0.637	0.226	-0.474	1.096	Up
HOXA7 809	93 2.821	0.588	0.209	-0.047	1.096	Up
MT1A 1278		0.366	0.13	-0.025	1.096	Up
ROBO3 1673		0.203	0.072	-0.017	1.096	Up
NDEL1 132' KRT17 931		0.182 0.962	0.065 0.342	-0.376 -0.11	1.096 1.096	Up Up
NCKAP5L 1313		0.121	0.043	-0.314	1.096	Up
RCAN2 1636		0.252	0.089	-0.029	1.096	Up
LRRN4CL 1183		0.323	0.115	0.045	1.096	Up
LOC283867 1083		0.42	0.15	-0.641	1.096	Up
DOCK6 508		0.261	0.093	-0.311	1.096	Up
AKT3 502 TNFRSF12A 1972		0.356 0.458	0.127 0.163	-0.191 -0.486	1.096 1.096	Up Up
C13orf33 184		0.45	0.16	-0.480	1.096	Up
CAST 293		0.235	0.084	-0.119	1.096	Up
PRICKLE2 1562		0.357	0.128	-0.2	1.096	Up
RNF145 1665		0.264	0.094	-0.199	1.096	Up
TMEM132E 1947		0.315	0.113	-0.288	1.096	Up
ZFP36L1 2119 MYO5A 1298		0.337 0.244	0.121 0.087	-0.115 -0.7	1.096 1.096	Up Up
PTPRG 159°		0.146	0.052	-0.242	1.096	Up
CSDA 423		0.476	0.171	-0.224	1.096	Up
TNFRSF1A 1973	33 2.782	0.212	0.076	-0.514	1.096	Up
CDC14B 330		0.168	0.061	-0.058	1.096	Up
MOBKL2B 1256		0.246	0.089	-0.071	1.096	Up
ZNF532 2153		0.278	0.1	-0.32	1.096	Up
DPP4 512 C8orf4 263		0.401 0.74	0.145 0.267	-0.356 -0.606	1.096 1.096	Up Up
TBX5 190°		0.158	0.057	-0.396	1.096	Up
HS3ST3A1 816		0.168	0.061	-0.588	1.096	Up
ANO6 739	9 2.769	0.143	0.052	-0.114	1.096	Up
PECAM1 148		0.277	0.1	0.152	1.096	Up
TGFB3 1924		0.451	0.163	-0.493	1.096	Up
CNTNAP3 394 C1QTNF1 212		0.372 0.242	0.135 0.088	0.018 -0.264	1.096	Up
CIQTNF7 212		0.242	0.088	-0.264 -0.115	1.096 1.096	Up Up
DIO2 487		0.267	0.097	-0.293	1.096	Up
EYA2 577	72 2.759	0.487	0.177	-0.237	1.096	Up
MFAP4 1234		0.732	0.265	-0.008	1.096	Up
HAS2 771		0.147	0.053	-0.344	1.096	Up
MYO1E 129° CCDC36 305		0.283 0.198	0.103 0.072	-0.35 -0.341	1.096 1.096	Up Up
HOXA9 809		0.338	0.123	-0.116	1.096	Up
UST 2059		0.256	0.093	-0.254	1.096	Up
FHAD1 637	79 2.748	0.13	0.047	-0.176	1.096	Up
SCN2B 1719		0.209	0.076	-0.21	1.096	Up
NT5E 1374		0.263	0.096	-0.252	1.096	Up
SNAI1 1813 CORIN 404		0.312 0.261	0.114 0.095	-0.499 -0.687	1.096 1.096	Up Up
ATP11B 118		0.309	0.113	-0.311	1.096	Up
ST3GAL2 186		0.226	0.082	-0.184	1.096	Up
KRT5 934		0.864	0.316	-0.065	1.096	Up
NKX3-2 1350		0.38	0.139	-1.129	1.096	Up
ACOT9 16		0.254	0.093	-0.21	1.096	Up
S1PR2 1704 DRD4 516		0.255 0.396	0.093 0.145	-0.046 -1.028	1.096 1.096	Up Up
BHMT2 150		0.235	0.086	-0.062	1.096	Up
ETHE1 571		0.244	0.09	-0.445	1.096	Up
PARP4 1455		0.164	0.06	-0.303	1.096	Up
GJC1 712		0.379	0.139	-0.579	1.096	Up
PRELP 156		0.108	0.04	0.059	1.096	Up
RALB 1619 MT1H 1279		0.245 0.307	0.09 0.113	-0.5 -0.12	1.096 1.096	Up Up
CH25H 358		0.468	0.172	0.017	1.096	Up
KRT14 931		0.986	0.362	-0.095	1.096	Up
CHRNA7 366		0.22	0.081	-0.365	1.096	Up
ANXA8L2 766		0.931	0.342	-0.288	1.096	Up
GOLGASE 728		0.252	0.093	-0.18	1.096	Up
SERPINE2 1739 KRT16P2 931		0.401 0.87	0.148 0.32	-0.396 -0.032	1.096 1.096	Up Up
Clorf54 221		0.239	0.088	-0.136	1.096	Up
CCNO 317		0.831	0.306	-0.487	1.096	Up
CDKN1C 341	11 2.712	0.4	0.148	-0.045	1.096	Up
HSD17B11 818		0.32	0.118	-0.031	1.096	Up
SLC16A7 1769		0.18	0.066	0.057	1.642	Up
RPS6KA3 1689 COL14A1 396		0.268 0.443	0.099 0.164	0.032 -0.092	1.642 1.642	Up Up
NEDD9 1333		0.294	0.104	-0.092	1.642	Up
ARHGEF4 964		0.234	0.086	-0.148	1.642	Up
KANK4 882		0.595	0.22	-0.612	1.642	Up
FILIP1L 639		0.208	0.077	-0.448	1.642	Up
		0.523	0.194	-0.051	1.642	Up
GSTP1 757	60 2.00	0.263	0.098	-0.243 -0.571	1.642	Up
GSTP1 757 MEF2A 1220						
GSTP1 757 MEF2A 1220 LRP12 1173	38 2.692	0.316	0.118 0.073		1.642 1.642	Up Up
GSTP1 757 MEF2A 1220	38 2.692 52 2.691		0.118 0.073 0.108	-0.136 -0.112	1.642 1.642	Up Up
GSTP1 757 MEF2A 1220 LRP12 117: PCDHGA8 146: IQCJ-SCHIP1 864 PID1 1498	38 2.692 52 2.691 47 2.691 82 2.691	0.316 0.196 0.291 0.371	0.073 0.108 0.138	-0.136 -0.112 0.003	1.642 1.642 1.642	Up Up Up
GSTP1 757 MEF2A 122c LRP12 117: PCDHGA8 146: IQCJ-SCHIP1 864 PID1 1499 MECOM 122:	38 2.692 52 2.691 47 2.691 82 2.691 36 2.689	0.316 0.196 0.291 0.371 0.209	0.073 0.108 0.138 0.078	-0.136 -0.112 0.003 0	1.642 1.642 1.642 1.642	Up Up Up Up
GSTP1 757 MEP2A 122c LRP12 117: PCDHGA8 146: IQCI-SCHIP1 864 PID1 1499 MECOM 122: CTIF 432	38 2.692 52 2.691 47 2.691 82 2.691 36 2.689 26 2.687	0.316 0.196 0.291 0.371 0.209 0.292	0.073 0.108 0.138 0.078 0.109	-0.136 -0.112 0.003 0 -0.197	1.642 1.642 1.642 1.642 1.642	Up Up Up Up Up
GSTP1 757 MEF2A 122c LRP12 117: PCDHGA8 146: IQCJ-SCHIP1 864 PID1 149: MECOM 122: CTIF 432 ITGB6 873	38 2.692 52 2.691 47 2.691 82 2.691 36 2.689 26 2.687 36 2.686	0.316 0.196 0.291 0.371 0.209 0.292 0.538	0.073 0.108 0.138 0.078 0.109 0.2	-0.136 -0.112 0.003 0 -0.197 -0.264	1.642 1.642 1.642 1.642 1.642 1.642	Up Up Up Up Up Up
GSTP1 757 MEP2A 122c LRP12 117: PCDHGA8 146: IQCI-SCHIP1 864 PID1 1499 MECOM 122: CTIF 432	38 2.692 52 2.691 47 2.691 82 2.691 36 2.689 26 2.687 36 2.686 59 2.686	0.316 0.196 0.291 0.371 0.209 0.292 0.538 0.215	0.073 0.108 0.138 0.078 0.109 0.2 0.08	-0.136 -0.112 0.003 0 -0.197	1.642 1.642 1.642 1.642 1.642 1.642 1.642	Up Up Up Up Up Up Up
GSTP1 757 MEF2A 122 LRP12 117. PCDHGA8 146. IQCJ-SCHIP1 864 IQCJ-SCHIP1 149 MECOM 122: CTIF 432 ITG66 873 CYLD 446	38 2.692 52 2.691 47 2.691 82 2.691 36 2.689 26 2.687 36 2.686 59 2.686 11 2.683	0.316 0.196 0.291 0.371 0.209 0.292 0.538 0.215 0.361	0.073 0.108 0.138 0.078 0.109 0.2	-0.136 -0.112 0.003 0 -0.197 -0.264 0.056	1.642 1.642 1.642 1.642 1.642 1.642	Up Up Up Up Up Up
GSTP1 757 MEF2A 122¢ LRP12 117. PCDHGA8 146• IQCJ-SCHIP1 86• IQCJ-SCHIP1 86• IQCJ-SCHIP1 149• MECOM 122; CTIF 432 ITGB6 873 ITGB6 873 CYLD 446 KLF9 921 PDE7B 147- ZNF880 217	38 2.692 52 2.691 47 2.691 82 2.691 36 2.689 26 2.687 26 2.686 59 2.686 11 2.683 46 2.682 83 2.681	0.316 0.196 0.291 0.371 0.209 0.292 0.538 0.215 0.361 0.224	0.073 0.108 0.138 0.078 0.109 0.2 0.08 0.134 0.083	-0.136 -0.112 0.003 0 -0.197 -0.264 0.056 -0.149 -0.351	1.642 1.642 1.642 1.642 1.642 1.642 1.642 1.642 1.642	Up Up Up Up Up Up Up Up Up
GSTP1 757 MEF2A 122 LRP12 117: PCDHGA8 146: IQCJ-SCHIP1 864 PID1 149: MECOM 122: CTIF 432 ITGB6 873 CYLD 446 KLF9 921 PDETB 147	38 2.692 52 2.691 47 2.691 82 2.691 36 2.689 26 2.687 36 2.686 59 2.686 11 2.683 46 2.682 83 2.681 10 2.68	0.316 0.196 0.291 0.371 0.209 0.292 0.538 0.215 0.361	0.073 0.108 0.138 0.078 0.109 0.2 0.08 0.134	-0.136 -0.112 0.003 0 -0.197 -0.264 0.056 -0.149 -0.149	1.642 1.642 1.642 1.642 1.642 1.642 1.642 1.642	Up Up Up Up Up Up Up Up

Gene ID SGCB	Gene Name 17469	Score (d) 2.675	Numerator (r) 0.254	Denominator (s+s0) 0.095	Fold Change -0.398	adjusted P value (%)	Direction
MAFB	11955	2.675	0.294	0.095	-0.398 -0.196	1.642	Up Up
ZNF699	21663	2.674	0.137	0.051	-0.141	1.642	Up
LOC100505806	10454	2.673	0.425	0.159	-0.422	1.642	Up
KLF10	9196	2.672	0.316	0.118	-0.162	1.642	Up
GOLGA6L10	7281	2.671	0.306	0.114	-0.528	1.642	Up
GRID1	7502	2.669	0.106	0.04	0.021	1.642	Up
CDHR2	3370	2.668	0.224	0.084	-0.565	1.642	Up
SLC38A2	17891	2.667	0.235	0.088	-0.101	1.642	Up
EMX2	5537	2.667	0.217	0.081	-0.141	1.642	Up
NOTCH4	13595	2.666	0.308	0.116	-0.008	1.642	Up
RCBTB2	16367	2.666	0.225	0.085	0.07	1.642	Up
ODZ2	13892	2.664	0.525	0.197	-0.176	1.642	Up
LOC728061	11506	2.661	0.381	0.143	-0.493	1.642	Up
NRN1	13708	2.661	0.332	0.125	-0.239	1.642	Up
SPATA9	18385	2.661	0.132	0.05	-0.328	1.642	Up
MRAS	12639	2.659	0.384 0.362	0.144	0.067	1.642	Up
PTPN14	15954 8810	2.659 2.657	0.362	0.136	-0.272 0.082	1.642 1.642	Up
JUN RORA	16745	2.657	0.413	0.156 0.09	-0.203	1.642	Up
CILP2	3712	2.656	0.478	0.18	-0.848	1.642	Up Up
VDR	20654	2.653	0.293	0.11	-0.394	1.642	Up
TNFAIP8	19716	2.647	0.272	0.103	-0.062	1.642	Up
CDH2	3356	2.647	0.485	0.103	-1.018	1.642	Up
RASD1	16251	2.643	0.56	0.212	-0.016	1.642	
UBE2Q2P1	20373	2.636	0.239	0.091	-0.105	1.642	Up Up
SMAD9	18062	2.636	0.162	0.062	0.083	1.642	Up
XYLTI	20996	2.634	0.162	0.087	-0.308	1.642	Up
DNAJC18	5032	2.634	0.179	0.068	-0.068	1.642	Up
LOC400464	11131	2.63	0.194	0.074	-0.094	1.642	Up
PER1	14824	2.628	0.349	0.133	-0.083	1.642	Up
RUNX1	16998	2.626	0.294	0.112	-0.723	1.642	Up
FAM20C	6011	2.625	0.328	0.125	-0.096	1.642	Up
LARP6	9517	2.625	0.335	0.128	-0.188	1.642	Up
PURG	16006	2.623	0.128	0.049	-0.404	1.642	Up
FABP5	5805	2.621	0.431	0.164	-0.037	1.642	Up
C13orf15	1837	2.618	0.314	0.12	-0.081	1.642	Up
ADAMTSL2	289	2.617	0.271	0.104	-0.975	1.642	Up
EHD3	5404	2.617	0.197	0.075	-0.329	1.642	Up
SDC1	17226	2.615	0.448	0.171	-0.817	1.642	Up
TSC22D3	20069	2.615	0.323	0.123	-0.164	1.642	Up
PCNX	14684	2.615	0.23	0.088	-0.309	1.642	Up
FAM43B	6041	2.611	0.268	0.103	-0.301	1.642	Up
CHST12	3679	2.611	0.202	0.077	-0.136	1.642	Up
RCN1	16374	2.61	0.314	0.12	-0.123	1.642	Up
FAM89A	6139	2.609	0.334	0.128	0.164	1.642	Up
CXCL2	4403	2.607	0.598	0.229	0.08	1.642	Up
MIAT	12430	2.606	0.468	0.18	-0.516	1.642	Up
KCNJ15	8896	2.605	0.112	0.043	-0.733	1.642	Up
NPHP3	13626	2.603	0.203	0.078	-0.306	2.4	Up
LOC100190939	10363	2.601	0.347	0.133	-0.197	2.4 2.4	Up
IFI16	8335	2.599	0.324	0.124	-0.151		Up
EMILIN2	5521	2.598	0.335	0.129	-0.133	2.4	Up
CPE .OC100130000	4098 10005	2.598 2.597	0.525 0.668	0.202 0.257	-0.193 -0.297	2.4 2.4	Up
IL4R	8527	2.594	0.245	0.237	-0.297	2.4	Up Up
COX7A1	4079	2.593	0.459	0.177	-0.187	2.4	Up
ZCCHC11	21121	2.592	0.216	0.083	-0.133	2.4	Up
C6orf145	2533	2.59	0.301	0.116	-0.088	2.4	Up
PLAGL1	15126	2.589	0.212	0.082	-0.002	2.4	Up
AFAP1	368	2.589	0.186	0.072	-0.5	2.4	Up
CSPG4	4268	2.588	0.339	0.131	-0.52	2.4	Up
CD99P1	3300	2.588	0.212	0.082	-0.895	2.4	Up
ANKS6	729	2.587	0.417	0.161	-0.067	2.4	Up
UBTD2	20414	2.587	0.217	0.084	-1.039	2.4	Up
MAGEH1	11990	2.585	0.302	0.117	-0.225	2.4	Up
TP53I3	19830	2.585	0.279	0.108	-0.1	2.4	Up
CHST11	3678	2.585	0.264	0.102	-0.649	2.4	Up
ARHGAP10	910	2.583	0.274	0.106	-0.257	2.4	Up
GOPC	7300	2.58	0.189	0.073	-0.453	2.4	Up
C9orf3	2716	2.58	0.181	0.07	-0.525	2.4	Up
KATNAL1	8830	2.579	0.244	0.095	-0.407	2.4	Up
BACH1	1365	2.579	0.163	0.063	-0.239	2.4	Up
LBH	9529	2.579	0.169	0.065	-0.365	2.4	Up
IGDCC4	8393	2.579	0.295	0.114	-0.142	2.4	Up
TTC23	20157	2.579	0.239	0.093	-0.199	2.4	Up
HOOK3	8078	2.578	0.241	0.094	-0.239	2.4	Up
ENTPD1	5570 13915	2.577	0.201	0.078	-0.179	2.4	Up
OLFML1 LMNA	9731	2.577 2.576	0.176 0.216	0.068 0.084	-0.238 -0.356	2.4 2.4	Up
MYH9	12944	2.576	0.216	0.084	-0.363	2.4	Up Up
MYH9 HIVEP2	7964	2.576	0.208	0.081	-0.363 -0.46	2.4	
PAPPA	14516	2.575	0.283	0.11	-0.46	2.4	Up Up
FHOD3	6387	2.571	0.404	0.114	-0.342	2.4	Up
CLEC3B	3797	2.568	0.378	0.137	-0.009	2.4	Up
ADCY7	314	2.567	0.273	0.147	-0.502	2.4	Up
TGFBR2	19249	2.563	0.296	0.115	0.134	2.4	Up
IL11	8451	2.56	0.23	0.09	-1.293	2.4	Up
AREG	890	2.56	0.815	0.318	-0.133	2.4	Up
WDR63	20837	2.556	0.172	0.067	-0.011	2.4	Up
BHLHE22	1504	2.555	0.35	0.137	0.008	2.4	Up
ASNS	1113	2.554	0.301	0.118	-0.498	2.4	Up
GALNTL2	6919	2.554	0.386	0.151	-0.12	2.4	Up
WIPF1	20892	2.549	0.207	0.081	-0.171	2.4	Up
			0.200	0.115	0.261	2.4	
STX2 MT2A	18746 12799	2.549 2.548	0.298 0.396	0.117 0.155	-0.361 -0.074	2.4 2.4	Up

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
DUSP6	5238	2.548	0.383	0.151	0.042	2.4	Up
ZNF438 AFAP1L2	21469 371	2.546 2.544	0.185 0.332	0.073 0.131	-0.237 -0.214	2.4 2.4	Up Up
BNIP3L	1566	2.543	0.235	0.093	-0.62	2.4	Up
NPC2	13617	2.54	0.277	0.109	-0.113	2.4	Up
GABRB2	6868	2.54	0.156	0.062	-0.559	2.4	Up
PRR5L	15759	2.532	0.228	0.09	-0.815	2.4	Up
PCDHB14 FOXN3	14634 6710	2.531 2.529	0.353 0.222	0.139 0.088	-0.217 -0.131	2.4 2.4	Up Up
LOC100507507	10534	2.528	0.237	0.094	-0.511	2.4	Up
LOC145694	10642	2.52	0.313	0.124	-0.698	2.4	Up
CLIC4	3815	2.518	0.256	0.102	-0.555	2.4	Up
UNC5B	20491	2.518	0.382	0.152	-1.797	2.4	Up
CLDN5	3774	2.517	0.411	0.163	0.084	2.4	Up
LOC653075 CPNE8	11484 4116	2.51 2.51	0.312 0.187	0.124 0.075	-0.04 -0.029	2.4 2.4	Up Up
TFPI	19235	2.508	0.283	0.113	0.056	2.4	Up
ERMN	5670	2.504	0.16	0.064	-0.37	3.164	Up
VCL	20646	2.503	0.247	0.099	-0.251	3.164	Up
PCDHB16	14636	2.503	0.375	0.15	-0.069	3.164	Up
ARHGAP31 PPP3CC	929 15533	2.502 2.501	0.147 0.196	0.059 0.079	-0.345 -0.376	3.164 3.164	Up Up
TNAP	19709	2.501	0.157	0.063	0.042	3.164	Up
KRT42P	9346	2.499	0.33	0.132	-0.14	3.164	Up
C3orf64	2427	2.499	0.143	0.057	-0.295	3.164	Up
TSPAN2	20107	2.497	0.179	0.072	-0.197	3.164	Up
GLG1	7148	2.496	0.2	0.08	-0.237	3.164	Up
PLEKHG1 SYN2	15175 18847	2.495 2.494	0.248 0.263	0.099 0.106	-0.09 0.024	3.164 3.164	Up Up
TMEM117	19458	2.494	0.218	0.088	-0.408	3.164	Up
RAP2B	16225	2.493	0.171	0.069	-0.362	3.164	Up
SLC39A13	17903	2.49	0.179	0.072	-0.532	3.164	Up
C3orf57	2423	2.487	0.188	0.076	0.027	3.164	Up
ZSWIM4 PLSCR4	21834 15219	2.487 2.487	0.348 0.301	0.14	-0.271 0.031	3.164	Up
PLSCR4 RAPGEF2	16228	2.487	0.301	0.121 0.064	-0.042	3.164 3.164	Up Up
CYP27C1	4488	2.484	0.375	0.151	-0.495	3.164	Up
TBC1D2	19021	2.484	0.243	0.098	-0.526	3.164	Up
ARSB	1050	2.483	0.171	0.069	-0.682	3.164	Up
NIPAL4	13470	2.483	0.338	0.136	-0.739	3.164	Up
BTBD19 ZBTB1	1641 21060	2.482 2.481	0.114 0.201	0.046 0.081	-0.895 -0.639	3.164 3.164	Up Up
FLRT2	6623	2.481	0.17	0.068	-0.158	3.164	Up
PDGFA	14750	2.481	0.22	0.089	-0.197	3.164	Up
sep.10	17341	2.478	0.272	0.11	-0.219	3.164	Up
PTGIS	15923	2.473	0.4	0.162	0.069	3.164	Up
PABPC4L	14448	2.472	0.228	0.092	-0.098	3.164	Up
RABAC1 CTNNB1	16144 4332	2.47 2.469	0.19 0.239	0.077 0.097	-0.901 -0.329	3.164 3.164	Up Up
THSD7A	19305	2.467	0.246	0.097	-0.182	3.164	Up
VPS36	20715	2.465	0.208	0.084	-0.286	3.164	Up
PTTG1IP	15996	2.464	0.182	0.074	-0.535	3.164	Up
TCEAL7	19092	2.462	0.23	0.093	-0.125	3.164	Up
CHN1	3641	2.461	0.266	0.108	-0.68	3.164	Up
CXorf57 PPP1R13L	4437 15487	2.461 2.458	0.262 0.241	0.106 0.098	0.071 -0.456	3.164 3.164	Up Up
FLJ36031	6513	2.458	0.275	0.112	-0.430	3.164	Up
LGALS7	9627	2.458	0.605	0.246	-0.329	3.164	Up
FYN	6827	2.456	0.313	0.127	-0.087	3.164	Up
ZCCHC9	21137	2.455	0.126	0.051	-0.231	3.164	Up
WDR41 SPG20	20817 18414	2.454 2.454	0.19 0.222	0.077 0.09	-0.585 -0.177	3.164 3.164	Up Up
GLS	7175	2.454	0.222	0.09	-0.177 -0.171	3.164	Up
STX7	18751	2.453	0.177	0.072	-0.022	3.164	Up
IL16	8462	2.45	0.154	0.063	-0.167	3.164	Up
PPAP2B	15419	2.449	0.327	0.134	-0.006	3.164	Up
STMN2 SLC20A1	18710 17720	2.447 2.446	0.471 0.199	0.193 0.081	-0.52	3.164	Up
ID1	8310	2.446	0.199	0.081	-1.141 -0.014	3.164 3.164	Up Up
PPP1R15A	15492	2.442	0.207	0.085	-0.014	3.164	Up
MATN3	12139	2.441	0.428	0.175	-0.958	3.164	Up
ANGPTL4	635	2.44	0.587	0.24	0.071	3.164	Up
PGM5	14896	2.44	0.21	0.086	0.08	3.164	Up
CCDC102A RASGRF2	2982 16258	2.439 2.439	0.257 0.229	0.105 0.094	-0.239 -0.466	3.164 3.164	Up
HECW2	7808	2.439	0.229	0.094	-0.428	3.164	Up Up
PPAP2A	15418	2.436	0.273	0.112	0.139	3.164	Up
ACAA2	116	2.435	0.289	0.119	-0.063	3.164	Up
CLIP2	3820	2.435	0.163	0.067	-0.466	3.164	Up
MYL12B	12948	2.434	0.173	0.071	-0.703	3.164	Up
COG6 LOC100127983	3957 9769	2.434 2.432	0.121 0.194	0.05 0.08	-0.323 -0.353	3.164 3.164	Up Up
LOC100127983 LOC100128252	9801	2.432	0.194	0.08	-0.229	3.164	Up Up
IL1RAP	8484	2.432	0.227	0.094	-0.22	3.164	Up
LIX1L	9715	2.43	0.167	0.069	0.008	3.164	Up
CRYAB	4209	2.429	0.684	0.282	0.041	3.164	Up
LRRC8A	11813	2.429	0.191	0.079	-0.575	3.164	Up
ZYX	21847	2.427	0.253	0.104	-0.248	3.164	Up
FLNC KLHL28	6619 9240	2.423 2.421	0.146 0.196	0.06 0.081	-0.467 -0.759	3.164 3.164	Up Up
HOXA6	8092	2.418	0.432	0.178	-0.011	3.164	Up
ELK3	5487	2.417	0.145	0.06	-0.425	3.164	Up
COL11A1	3962	2.414	0.234	0.097	-1.074	3.164	Up
LOC375196	11053	2.413	0.312	0.129	-0.423	3.164	Up
PLTP SIRPA	15221 17610	2.412 2.409	0.304 0.279	0.126 0.116	-0.008 0.015	3.164 3.164	Up Up

I	OXT LOC100129675 ADAMTS9 PLA2G5	14416 9969 287	2.409 2.408	0.178	0.074	-0.738	3.164	Up	
1	ADAMTS9						2.164		
			2.408	0.207 0.309	0.086 0.128	-0.163 -0.026	3.164 3.164	Up Up	
		15113	2.405	0.201	0.084	-0.476	4.418	Up	
	ARL15	988	2.404	0.213	0.089	-0.225	4.418	Up	
	BAG2	1369	2.403	0.305	0.127	-0.884	4.418	Up	
	PCDH7	14611	2.403	0.299	0.124	-0.646	4.418	Up	
	GYPC TTC7A	7653 20183	2.401 2.401	0.163 0.219	0.068 0.091	0.174 -0.232	4.418 4.418	Up Up	
	PDE4DIP	14737	2.401	0.172	0.072	-0.232	4.418	Up	
	ANXA5	763	2.4	0.221	0.092	-0.144	4.418	Up	
	TNNI2	19766	2.398	0.519	0.216	0.094	4.418	Up	
	MALL	12005	2.398	0.403	0.168	0.047	4.418	Up	
	CCIN WBP5	3125 20783	2.398 2.397	0.144 0.339	0.06 0.141	-0.553 -0.096	4.418 4.418	Up Up	
	TTC28	20163	2.396	0.132	0.055	-0.321	4.418	Up	
	COL17A1	3969	2.396	0.544	0.227	-0.044	4.418	Up	
	CXCR7	4415	2.396	0.393	0.164	-0.845	4.418	Up	
	SOCS3	18279	2.394	0.364	0.152	-0.03	4.418	Up	
	SALL1 ZNF575	17064 21570	2.393 2.392	0.097 0.168	0.041 0.07	-0.469 -0.606	4.418 4.418	Up Up	
	CALU	2839	2.391	0.266	0.111	-1.039	4.418	Up	
	SGTB	17494	2.391	0.18	0.075	-0.164	4.418	Up	
	CACNAIC	2785	2.391	0.184	0.077	-0.099	4.418	Up	
	NAALADL1	13032	2.391	0.111	0.046	-0.106	4.418	Up	
	CLEC2B SLC38A5	3793 17894	2.39 2.388	0.272 0.247	0.114 0.103	-0.119 -1.293	4.418 4.418	Up Up	
1	PTPRB	15969	2.387	0.229	0.103	-0.029	4.418	Up	
1	MYL12A	12947	2.387	0.236	0.099	-0.432	4.418	Up	
1	CHSY3	3693	2.387	0.131	0.055	-0.621	4.418	Up	
1	ZNF555	21549	2.386	0.184	0.077	-0.437	4.418	Up	
1	PPM1K PIWII 4	15472	2.384	0.353	0.148	-0.725	4.418	Up	
1	PIWIL4 SYPL2	15064 18871	2.383 2.382	0.275 0.155	0.115 0.065	-0.089 -0.174	4.418 4.418	Up Up	
	ADAMTS16	275	2.378	0.326	0.137	-0.575	4.418	Up	
1	C6orf204	2553	2.378	0.121	0.051	0.002	4.418	Up	
1	MAN1A1	12014	2.378	0.308	0.129	-0.11	4.418	Up	
1	Clorf123	2147	2.378	0.17	0.071	-0.287	4.418	Up	
1	EDA2R KIAA0922	5322 9051	2.375 2.375	0.175 0.256	0.074 0.108	-0.129 -0.312	4.418 4.418	Up Up	
	IL8	8535	2.374	0.256	0.108	-0.312 -0.169	4.418	Up	
	LEPREL2	9609	2.373	0.378	0.159	-0.634	4.418	Up	
	PHC2	14913	2.372	0.143	0.06	-0.319	4.418	Up	
	SLC35B4	17864	2.369	0.187	0.079	-0.443	4.418	Up	
	PLK2 EVI2A	15202 5728	2.369 2.368	0.412 0.282	0.174 0.119	-0.398 -0.246	4.418 4.418	Up	
	ADAMTS10	270	2.366	0.282	0.119	-0.246	4.418	Up Up	
	GNPTAB	7264	2.366	0.188	0.079	-0.303	4.418	Up	
	RAB24	16093	2.363	0.221	0.093	-0.593	4.418	Up	
	STARD9	18662	2.362	0.134	0.057	-0.145	4.418	Up	
	CNTN1	3932	2.361	0.212	0.09	-0.217	4.418	Up	
	GAS7 WLS	6949 20901	2.36 2.36	0.226 0.313	0.096 0.132	-0.144 -0.297	4.418 4.418	Up Up	
	CREB3L2	4157	2.359	0.23	0.132	-0.281	4.418	Up	
	KPNA3	9293	2.359	0.156	0.066	-0.435	4.418	Up	
	TBX18	19069	2.358	0.152	0.065	-0.065	4.418	Up	
	MMP10	12528	2.356	0.465	0.198	-0.691	4.418	Up	
	PRDM8 CYP1B1	15603	2.355	0.17	0.072	0.045	4.418 4.418	Up	
1	OC100288615	4478 10406	2.351 2.35	0.454 0.208	0.193 0.089	-0.169 -0.087	4.418 4.418	Up Up	
-	B3GALTL	1332	2.35	0.237	0.101	-0.898	4.418	Up	
	SLC39A14	17904	2.348	0.182	0.078	-0.752	4.418	Up	
	CORO1C	4052	2.347	0.223	0.095	-0.322	4.418	Up	
	LOC283392	10795	2.346	0.346	0.148	0.002	4.418	Up	
	DNM1P46 RAB31	5067 16102	2.346 2.345	0.207 0.428	0.088 0.183	0.143 -0.644	4.418 4.418	Up Up	
	ARRDC4	1047	2.343	0.428	0.183	-0.044	4.418	Up	
	FLJ22536	6456	2.342	0.387	0.165	-0.358	4.418	Up	
	LAMB3	9494	2.341	0.558	0.238	0.039	4.418	Up	
	HEY1	7847	2.34	0.312	0.133	-0.335	4.418	Up	
	PTN GNG2	15939 7244	2.339 2.333	0.567 0.179	0.242 0.077	0.078 0.049	4.418 4.418	Up Up	
	CYB5R3	4453	2.333	0.179	0.067	-0.407	4.418	Up	
	DLX5	4962	2.332	0.329	0.141	-0.539	4.418	Up	
	SLC24A3	17751	2.331	0.501	0.215	-0.652	4.418	Up	
	RGL1	16479	2.331	0.272	0.117	0.101	4.418	Up	
	AVPR1A	1308	2.328	0.173	0.074	-0.076	4.418	Up	
	PDE2A SOX17	14730 18311	2.328 2.328	0.317 0.306	0.136 0.131	0.227 0.103	4.418 4.418	Up Up	
	MYH10	12931	2.328	0.194	0.084	-0.536	4.418	Up	
	LOC643650	11336	2.327	0.409	0.176	-0.11	4.418	Up	
	DEPDC7	4793	2.325	0.233	0.1	-1.047	4.418	Up	
	ZNF423	21457	2.325	0.213	0.092	-0.26	4.418	Up	
	SLC16A3	17691	2.324	0.394	0.169	-1.342	4.418	Up	
	CCND2 KIF26B	3163 9152	2.323 2.322	0.28 0.155	0.121 0.067	0.028 -1.102	4.418 4.418	Up Up	
	FHL2	6383	2.321	0.324	0.139	-0.201	4.418	Up	
	TTC37	20175	2.32	0.169	0.073	-0.315	4.418	Up	
	LOR	11679	2.32	0.137	0.059	-0.092	4.418	Up	
	CUBN	4369	2.319	0.082	0.035	-0.034	4.418	Up	
	ATP10A	1184	2.317	0.189	0.082	-0.752	4.418	Up	
	COL13A1 CAMK2N1	3965 2848	2.316 2.316	0.308 0.461	0.133 0.199	-0.555 -0.354	4.418 4.418	Up	
	HAPLN3	2848 7702	2.316	0.461	0.199	-0.354 -0.332	4.418 4.418	Up Up	
	MPZL3	12635	2.315	0.179	0.077	-0.332	4.418	Up	
	C5orf46	2497	2.313	0.32	0.138	-0.783	4.418	Up	

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
DOCK5	5088	2.312	0.21	0.091	-0.756	4.418	Up
LOC283143	10787	2.312	0.113	0.049	-0.289	4.418	Up
RAI14	16192	2.31	0.251	0.109	-1.22	4.418	Up
SDPR	17247	2.309	0.373	0.161	0.196	4.418	Up
GOLGA8A	7288	2.308	0.249	0.108	-0.04	4.418	Up
FAM49A	6054	2.308	0.233	0.101	-0.021	4.418	Up

Annotation Cluster 1	y over-represented annotation	terms, according to DAVID, of differently expressed genes between me Enrichment Score: 12.55	Count P Value Benjamini
Minotation Cluster 1	SP PIR KEYWORDS	signal	139 3.60E-19 1.40E-
	UP_SEQ_FEATURE	signal peptide	139 6.30E-19 9.00E-
	GOTERM CC FAT	extracellular region part	71 1.60E-18 4.00E-
	SP PIR KEYWORDS	Secreted	83 6.40E-14 1.30E-
	GOTERM CC FAT	extracellular region	99 6.70E-14 8.30E-
	SP_PIR_KEYWORDS	disulfide bond	113 5.50E-12 7.30E-
	UP SEQ FEATURE	disulfide bond	109 2.30E-11 1.70E-
	GOTERM_CC_FAT	extracellular space	43 7.10E-09 3.50E-
	SP PIR KEYWORDS	glycoprotein	137 1.30E-08 1.00E-
	UP SEQ FEATURE	glycosylation site:N-linked (GlcNAc)	129 1.70E-07 8.40E
annotation Cluster 2	UI_SEQ_IEATURE	Enrichment Score: 10.65	Count P_Value Benjamini
illiotation Cluster 2	GOTERM_CC_FAT	extracellular region part	71 1.60E-18 4.00E
	GOTERM_CC_FAT	extracellular matrix	34 4.40E-12 3.70E-
	SP_PIR_KEYWORDS	extracellular matrix	26 2.70E-11 2.70E
	GOTERM_CC_FAT	proteinaceous extracellular matrix	31 7.30E-11 4.50E
	GOTERM_CC_FAT	extracellular matrix part	11 3.90E-04 6.40E
nnotation Cluster 3	GOTTON AND THE	Enrichment Score: 8.78	Count P_Value Benjamin
	GOTERM_BP_FAT	cell adhesion	46 8.80E-11 9.00E
	GOTERM_BP_FAT	biological adhesion	46 9.10E-11 6.20E
	SP_PIR_KEYWORDS	cell adhesion	27 5.90E-07 3.90E
nnotation Cluster 4		Enrichment Score: 7.45	Count P_Value Benjamin
	GOTERM_BP_FAT	vasculature development	25 1.60E-09 6.70E
	GOTERM_BP_FAT	blood vessel development	23 2.50E-08 7.50E
	GOTERM_BP_FAT	angiogenesis	17 1.70E-07 2.90E
	GOTERM_BP_FAT	blood vessel morphogenesis	20 2.20E-07 3.50E
nnotation Cluster 5		Enrichment Score: 6.23	Count P_Value Benjamin
	GOTERM_BP_FAT	regulation of locomotion	22 1.60E-09 8.10E
	GOTERM_BP_FAT	regulation of cell migration	19 3.60E-08 9.30E
	GOTERM BP FAT	regulation of cell motion	19 2.80E-07 4.10E
	GOTERM BP FAT	positive regulation of locomotion	13 1.60E-06 2.00E
	GOTERM BP FAT	positive regulation of cell migration	11 2.60E-05 2.30E
	GOTERM_BP_FAT	positive regulation of cell motion	11 6.00E-05 4.30E
nnotation Cluster 6	GOTERNI_BI_IATI	Enrichment Score: 6.11	Count P Value Benjamin
illiotation Ciustei o	GOTERM BP FAT	regulation of response to external stimulus	23 6.00E-12 1.20E
	GOTERM_BF_FAT	regulation of inflammatory response	
			13 9.60E-08 2.00E 9 9.20E-07 1.20E
	GOTERM_BP_FAT	negative regulation of defense response	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	GOTERM_BP_FAT	negative regulation of inflammatory response	7 5.10E-05 3.90E
	GOTERM_BP_FAT	negative regulation of response to stimulus	11 7.20E-05 4.90E
	GOTERM_BP_FAT	negative regulation of response to external stimulus	8 1.10E-04 6.00E
annotation Cluster 7		Enrichment Score: 5.56	Count P_Value Benjamin
	GOTERM_MF_FAT	polysaccharide binding	18 8.00E-08 4.00E
	GOTERM_MF_FAT	pattern binding	18 8.00E-08 4.00E
	GOTERM_MF_FAT	glycosaminoglycan binding	17 1.20E-07 3.00E
	GOTERM_MF_FAT	heparin binding	12 2.20E-05 1.60E
	SP_PIR_KEYWORDS	heparin-binding	9 5.00E-05 1.80E
	GOTERM_MF_FAT	carbohydrate binding	20 5.00E-04 2.30E
nnotation Cluster 8		Enrichment Score: 5.22	Count P_Value Benjamin
	GOTERM CC FAT	actin cytoskeleton	22 1.20E-06 5.10E
	GOTERM MF FAT	cytoskeletal protein binding	30 4.40E-06 7.40E
	SP PIR KEYWORDS	actin-binding	18 1.30E-05 6.50E
	GOTERM_MF_FAT	actin binding	22 1.90E-05 1.90E
nnotation Cluster 9		Enrichment Score: 4.96	Count P_Value Benjamin
iniotation Citation)	GOTERM BP FAT	cytoskeleton organization	27 4.40E-06 4.70E
	GOTERM_BP_FAT	actin cytoskeleton organization	18 1.10E-05 1.10E
	GOTERM_BP_FAT	actin filament-based process	18 2.60E-05 2.40E
nnotation Cluster 10	GOTERM_BI_FAT	Enrichment Score: 4.2	Count P_Value Benjamin
illiotation Ciustei 10	INTERDRO		
	INTERPRO	EGF-like calcium-binding EGF-like calcium-binding, conserved site	
	INTERPRO		14 1.40E-07 9.10E
	INTERPRO	EGF-type aspartate/asparagine hydroxylation conserved site	14 1.60E-07 5.20E
	SMART	EGF_CA	14 1.10E-06 1.80E
	INTERPRO	EGF	14 3.60E-06 7.90E
	INTERPRO	EGF-like, type 3	17 4.90E-06 7.90E
	SP_PIR_KEYWORDS	egf-like domain	18 5.10E-06 2.90E
	INTERPRO	EGF-like region, conserved site	21 6.00E-06 7.80E
	INTERPRO	EGF-like	16 3.10E-05 3.40E
	UP_SEQ_FEATURE	domain:EGF-like 1	12 3.60E-05 1.00E
	UP_SEQ_FEATURE	domain:EGF-like 3; calcium-binding	7 9.60E-05 2.00E
	INTERPRO	EGF calcium-binding	9 1.50E-04 1.30E
	SMART	EGF	16 2.40E-04 1.90E
	UP_SEQ_FEATURE	domain:EGF-like 2	9 4.40E-04 6.20E
	UP SEQ FEATURE	domain:EGF-like 5; calcium-binding	6 8.90E-04 9.40E
	UP_SEQ_FEATURE	domain:EGF-like 4	7 1.20E-03 1.10E
		domain:EGF-like 4 domain:EGF-like 6; calcium-binding	
	UP_SEQ_FEATURE		
	UP_SEQ_FEATURE	domain:EGF-like 4; calcium-binding	5 4.40E-03 2.00E
	UP SEQ FEATURE	domain:EGF-like 2; calcium-binding	6 6.10E-03 2.30E
	LID GEO PELITERE		
	UP_SEQ_FEATURE UP_SEQ_FEATURE	domain:EGF-like 7; calcium-binding domain:EGF-like 10; calcium-binding	4 1.70E-02 4.10E 3 2.80E-02 5.00E

Add. Table 7: Statistically over-represented annotation terms, according to DAVID, of differently expressed genes between metabolic cluster Mc1 and Mc3

Annotation Cluster 1 Enrichment Score: 39.49 Count SP_PIR_KEYWORDS signal

SP_PIR_KEYWORDS signal

270 8.60E-56 Benjamini 3.90E-53 UP_SEQ_FEATURE SP_PIR_KEYWORDS signal peptide 270 3 10E-55 6 70E-52 4.20E-54 9.60E-52 extracellular matrix GOTERM CC FAT extracellular matrix 90 3 40E-50 1.10E-47 GOTERM_CC_FAT GOTERM_CC_FAT 86 132 5.30E-49 5.90E-41 8.50E-47 6.30E-39 proteinaceous extracellular matrix extracellular region part SP PIR KEYWORDS Secreted 166 3.00E-40 4.60E-38 GOTERM_CC_FAT extracellular region 1.40E-37 SP PIR KEYWORDS glycoprotein 272 5.90E-33 6.70E-31 GOTERM_CC_FAT UP_SEQ_FEATURE extracellular matrix part glycosylation site:N-linked (GlcNAc...) 42 4.00E-29 2.60E-27 8.10E-27 8.70E-24 SP PIR KEYWORDS disulfide bond 197 1.20E-25 1.10E-23 SEQ FEATURE disulfide bond 3.90E-25 Annotation Cluster 2 Enrichment Score: 29.11 P Value Benjamini GOTERM_BP_FAT GOTERM_BP_FAT cell adhesion biological adhesion 1 40E-33 SP PIR KEYWORDS cell adhesion 61 2.00E-2 1.50E-2 GOTERM_CC_FAT 4.00E-29 extracellular matrix part GOTERM CC FAT basement membrane 27 2.90E-18 1.60E-16 SP_PIR_KEYWORDS basement membrane Annotation Cluster 4 Enrichment Score: 17. Count Benjamini extracellular matrix organization extracellular structure organization GOTERM BP FAT 2 50E-23 1 90E-20 GOTERM_BP_FAT collagen fibril organization Enrichment Score: 15.2 GOTERM BP FAT 3.40E-12 7 00E-10 Annotation Cluster P_Valu 4.80E-2 vasculature developmen GOTERM BP FAT blood vessel development 44 5.30E-19 2.40E-16 GOTERM_BP_FAT blood vessel morphogenesis GOTERM BP FAT angiogenesis 2.40E-10 2.80E-08 Enrichment Score: 11.76 extracellular matrix part Annotation Cluster 6 P_Value 4.00E-29 GOTERM_CC_FAT GOTERM MF FAT extracellular matrix structural constituent 28 1.00E-18 5.80E-16 SP_PIR_KEYWORDS GOTERM_CC_FAT hydroxylation 24 19 2.10E-17 1.30E-15 4.50E-17 2.10E-15 collagen SP PIR KEYWORDS collagen 25 2.50E-15 1.30E-13 INTERPRO Collagen triple helix repeat 4.60E-14 5.40E-12 SP PIR KEYWORDS 2.60E-13 9.90E-12 trimer 1.50E-10 SP_PIR_KEYWORDS SP_PIR_KEYWORDS triple helix 14 4.50E-12 4.50E-12 1.50E-10 hydroxylysine region of interest: Triple-helical region UP SEQ FEATURE 12 3.80E-11 1.30E-08 SP_PIR_KEYWORDS SP_PIR_KEYWORDS 6.50E-11 1.00E-04 2.00E-09 1.30E-03 hydroxyproline pyroglutamic acid anchoring collagen domain:VWFA 1 GOTERM CC FAT 2.20E-04 2 90E-03 UP_SEQ_FEATURE UP SEQ FEATURE domain:VWFA 2 1.90E-03 6.70E-02 Enrichment Score: 11.42 skeletal system developmen P_Value 5.60E-1 Annotation Cluster 7 GOTERM BP FAT bone development 21 7.20E-09 7.10E-07 GOTERM_BP_FAT ossification .30E-08 Annotation Cluster 8 Enrichment Score: 11.3 Count Benjamini GOTERM BP FAT 7.40E-15 2 10E-12 GOTERM_BP_FAT cell migration GOTERM BP FAT localization of cell 37 1.20E-10 1.70E-08 GOTERM_BP_FAT cell motility .20E-10 .70E-08 Annotation Cluster 9 INTERPRO EGF-like calcium-binding, conserved site EGF-like region, conserved site 28 7.10E-18 5.90E-15 INTERPRO INTERPRO 45 27 7.40E-17 8.10E-17 EGF-like calcium-binding 3.10E-14 egf-like domain EGF-type aspartate/asparagine hydroxylation conserved site SP PIR KEYWORDS 38 6.20E-16 3.80E-14 INTERPRO 1.30E-14 2.60E-12 22 INTERPRO EGF calcium-binding 1.60E-14 2.70E-12 INTERPRO EGF-like, type 3 34 27 1.80E-14 7.60E-14 2.50E-12 SMART EGF_CA 1.50E-11 INTERPRO EGF 25 6 90E-12 7.20E-10 INTERPRO INTERPRO UP_SEQ_FEATURE UP_SEQ_FEATURE UP_SEQ_FEATURE EGF-like domain:EGF-like 3; calcium-binding 31 14 7.00E-11 2.20E-08 domain:EGF-like 2; calcium-binding domain:EGF-like 1 16 2 60F-10 6 90F-08 2.80E-10 6.80E-08 UP_SEQ_FEATURE UP_SEQ_FEATURE SMART domain:EGF-like 5: calcium-binding 13 1.10E-09 2.40E-07 domain:EGF-like 4; calcium-binding 4 00E-09 7 80E-07 8.40E-09 8.40E-07 EGF 31 UP_SEQ_FEATURE UP_SEQ_FEATURE domain EGF-like 6: calcium-binding 8 00E-07 1 30E-04 domain:EGF-like 4 1.60E-05 1.80E-03 UP SEQ FEATURE domain:EGF-like 2 13 2.70E-05 2.70E-03 UP_SEQ_FEATURE UP_SEQ_FEATURE domain:EGF-like 3 domain:EGF-like 7; calciur 2.90E-05 1.90E-04 2 70E-03 1.10E-02 Annotation Cluster 10 Enrichment Score: 9.06 domain:VWFC P Value Beniamini UP_SEQ_FEATURE

von Willebrand factor, type C

VWC

3.90E-07

6.40E-06

13 5.10E-09

1.30E-07

INTERPRO

SMART

COLLAGEN EXTRACELLULAR MATRIX	SIZE	ES	NES	NOM p-val	FDR q-val	th Mc2 and Mc3 FWER p-val	RANK AT MAX	LEADING EDGE
	23	0.7818	2.0623	0.0011	0.0020	0.0070	2064 2225	tags=70%, list=9%, signal=77%
PROTEINACEOUS_EXTRACELLULAR_MATRIX	96 94	0.6880 0.6915	2.0895 2.1008	0.0000	0.0020 0.0025	0.0050 0.0040	2225 2225	tags=49%, list=10%, signal=54% tags=49%, list=10%, signal=54%
XTRACELLULAR MATRIX PART	55	0.7282	2.1008	0.0000	0.0023	0.0040	2129	tags=51%, list=10%, signal=56%
NTEGRIN BINDING	30	0.7220	1.9686	0.0000	0.0080	0.0270	3129	tags=63%, list=14%, signal=74%
ELL_SUBSTRATE_ADHESION XTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUE	37	0.6891	1.9336	0.0000	0.0109	0.0420	3380	tags=57%, list=15%, signal=67%
T	26	0.6938	1.9012	0.0000	0.0110	0.0550	1226	tags=46%, list=6%, signal=49%
ELL_MATRIX_ADHESION ELL MATRIX JUNCTION	36 16	0.6843 0.7306	1.9120 1.8324	0.0000	0.0112 0.0257	0.0470 0.1290	3380 2484	tags=56%, list=15%, signal=66%
ASEMENT_MEMBRANE	35	0.7306	1.8324	0.0000	0.0257	0.1290	2684	tags=56%, list=11%, signal=63% tags=43%, list=12%, signal=49%
RANSMEMBRANE_RECEPTOR_PROTEIN_KINASE_ACT				0.0000	0.0276			
XON GUIDANCE	51 22	0.6166	1.8115	0.0000	0.0276 0.0323	0.1540 0.1990	3983 933	tags=49%, list=18%, signal=60% tags=27%, list=4%, signal=28%
ASAL_LAMINA	19	0.6938	1.7897	0.0020	0.0330	0.1900	2684	tags=42%, list=12%, signal=48%
KELETAL_DEVELOPMENT	99	0.5846	1.7745	0.0000	0.0338	0.2130	2762	tags=37%, list=13%, signal=43%
EGULATION_OF_CELL_MIGRATION	27	0.6465	1.7558	0.0000	0.0393	0.2490	2952	tags=44%, list=14%, signal=51%
ASOLATERAL_PLASMA_MEMBRANE LOOD COAGULATION	31 42	0.6225 0.6010	1.7124 1.7209	0.0000	0.0539	0.3680 0.3420	2798 3903	tags=42%, list=13%, signal=48%
DHERENS JUNCTION	21	0.6590	1.7209	0.0000	0.0549	0.3420	2484	tags=48%, list=18%, signal=58% tags=48%, list=11%, signal=54%
EMOSTASIS	47	0.5966	1.7230	0.0000	0.0556	0.3340	3903	tags=47%, list=18%, signal=57%
DAGULATION	43	0.5950	1.7030	0.0000	0.0570	0.4060	3903	tags=47%, list=18%, signal=57%
JLFURIC_ESTER_HYDROLASE_ACTIVITY	16	0.6727	1.6963	0.0010	0.0584	0.4200	3141	tags=50%, list=14%, signal=58%
PID_HOMEOSTASIS	16	0.6690	1.6824	0.0010	0.0611	0.4790	3348	tags=44%, list=15%, signal=52%
NATOMICAL_STRUCTURE_FORMATION	52	0.5763	1.6844	0.0000	0.0618	0.4690	5237	tags=52%, list=24%, signal=68%
OUND_HEALING ONE REMODELING	53 28	0.5772 0.6094	1.6865 1.6632	0.0000 0.0010	0.0623 0.0668	0.4610 0.5410	4715 3983	tags=51%, list=22%, signal=65% tags=39%, list=18%, signal=48%
SSUE REMODELING	29	0.6081	1.6635	0.0000	0.0691	0.5410	3983	tags=38%, list=18%, signal=46%
XTRACELLULAR REGION PART	322	0.5296	1.6665	0.0000	0.0696	0.5260	4482	tags=39%, list=21%, signal=49%
EGULATION_OF_BODY_FLUID_LEVELS	56	0.5625	1.6467	0.0000	0.0728	0.6060	4183	tags=45%, list=19%, signal=55%
RANSMEMBRANE_RECEPTOR_PROTEIN_TYROSINE_K IASE_ACTIVITY	43	0.5705	1.6498	0.0000	0.0750	0.5920	3856	tags=42%, list=18%, signal=51%
OSITIVE REGULATION OF CELL DIFFERENTIATION	23	0.6161	1 6470	0.0000	0.0751	0.6060	2762	tags=43%, list=13%, signal=50%
JSTIVE_REGULATION_OF_CELL_DIFFERENTIATION LYCOSAMINOGLYCAN BINDING	30	0.6161	1.6470	0.0000	0.0751	0.6060	2762 3108	tags=43%, list=13%, signal=50% tags=40%, list=14%, signal=47%
OMEOSTASIS_OF_NUMBER_OF_CELLS	19	0.5890	1.6235	0.0040	0.0826	0.7060	1949	tags=40%, fist=14%, signal=47% tags=37%, list=9%, signal=40%
DLYSACCHARIDE_BINDING	32	0.5863	1.6326	0.0020	0.0830	0.6730	3108	tags=38%, list=14%, signal=44%
ELL_MIGRATION	92	0.5447	1.6261	0.0000	0.0830	0.6990	2952	tags=35%, list=14%, signal=40%
USCLE_DEVELOPMENT	89	0.5369	1.6113	0.0000	0.0831	0.7460	5238	tags=46%, list=24%, signal=60%
UFFLE	27 135	0.5885	1.6170	0.0000	0.0839	0.7260	3309 5011	tags=37%, list=15%, signal=44%
SSUE_DEVELOPMENT TP DEPENDENT HELICASE ACTIVITY	22	0.5301	1.6127 1.6190	0.0000	0.0840 0.0844	0.7360 0.7200	6660	tags=42%, list=23%, signal=54% tags=68%, list=30%, signal=98%
EGULATION_OF_CYTOSKELETON_ORGANIZATION_A								
D_BIOGENESIS	28	0.5915	1.6140	0.0010	0.0849	0.7330	2952	tags=36%, list=14%, signal=41%
EPARIN_BINDING	22	0.5979	1.6041	0.0020	0.0870	0.7710	3108	tags=41%, list=14%, signal=48%
CTIN_BINDING	72	0.5291	1.5901	0.0000	0.0880	0.8240	4089	tags=38%, list=19%, signal=46%
ELL_CORTEX_PART EGULATION_OF_ORGANELLE_ORGANIZATION_AND_	23	0.5909	1.5937	0.0030	0.0885	0.8110	3160	tags=35%, list=14%, signal=41%
IOGENESIS ROTEIN_COMPLEX_BINDING	37 54	0.5654 0.5464	1.5914 1.5850	0.0010 0.0010	0.0886 0.0887	0.8210 0.8400	2952 3232	tags=32%, list=14%, signal=37% tags=39%, list=15%, signal=46%
EGULATION_OF_RESPONSE_TO_EXTERNAL_STIMULU	15	0.6496	1.5822	0.0092	0.0895	0.8460	3525	tags=53%, list=16%, signal=64%
NGIOGENESIS	44	0.5509	1.5822	0.0092	0.0893	0.8380	5625	tags=52%, list=26%, signal=70%
XTRACELLULAR REGION	423	0.5050	1.5985	0.0000	0.0901	0.7930	4482	tags=37%, list=21%, signal=45%
IUSCLE_CELL_DIFFERENTIATION	20	0.6121	1.5939	0.0061	0.0904	0.8090	5130	tags=60%, list=23%, signal=78%
VTEGRIN_COMPLEX CTIN POLYMERIZATION AND OR DEPOLYMERIZATI	19	0.6200	1.5960	0.0040	0.0908	0.8040	4500	tags=58%, list=21%, signal=73%
N	23	0.5846	1.5773	0.0010	0.0924	0.8600	2848	tags=35%, list=13%, signal=40%
EURON_PROJECTION	19	0.6090	1.5706	0.0060	0.0933	0.8780	5094	tags=58%, list=23%, signal=75%
ALMODULIN_BINDING	25	0.5821	1.5712	0.0030	0.0944	0.8760	7178	tags=64%, list=33%, signal=95%
ODIUM_CHANNEL_ACTIVITY	16	0.6191	1.5722	0.0061	0.0950	0.8740	1909	tags=38%, list=9%, signal=41%
ASCULATURE DEVELOPMENT	51	0.5379	1.5645	0.0010	0.0975	0.9000	5188	tags=49%, list=24%, signal=64%
INASE_INHIBITOR_ACTIVITY CTODERM DEVELOPMENT	25 79	0.5854 0.5307	1.5627 1.5594	0.0040 0.0050	0.0978	0.9010 0.9090	3734 5011	tags=40%, list=17%, signal=48% tags=42%, list=23%, signal=54%
ROTEIN KINASE INHIBITOR ACTIVITY	24	0.5865	1.5561	0.0050	0.1004	0.9140	3734	tags=42%, list=17%, signal=50%
NERGY RESERVE METABOLIC PROCESS	15	0.6309	1.5537	0.0082	0.1009	0.9160	5542	tags=60%, list=25%, signal=80%
CTIN_FILAMENT_BINDING	23	0.5747	1.5501	0.0030	0.1009	0.9250	4089	tags=48%, list=19%, signal=59%
EGATIVE_REGULATION_OF_DNA_BINDING XTRACELLULAR_STRUCTURE_ORGANIZATION_AND_	16	0.6063	1.5511	0.0112	0.1018	0.9240	4951	tags=56%, list=23%, signal=73%
IOGENESIS	29	0.5641	1.5443	0.0261	0.1046	0.9410	2999	tags=41%, list=14%, signal=48%
CTIN_CYTOSKELETON	122	0.4982	1.5355	0.0000	0.1114	0.9560	3302	tags=30%, list=15%, signal=35%
ARBOHYDRATE_BIOSYNTHETIC_PROCESS	45	0.5400	1.5369	0.0030	0.1115	0.9540	5302	tags=44%, list=24%, signal=59%
RGAN_MORPHOGENESIS IETALLOENDOPEPTIDASE_ACTIVITY	136 27	0.4979 0.5639	1.5320 1.5297	0.0000	0.1137 0.1144	0.9580 0.9600	6037 5134	tags=48%, list=28%, signal=66% tags=44%, list=23%, signal=58%
FRUCTURAL_CONSTITUENT_OF_CYTOSKELETON PIDERMIS DEVELOPMENT	55 70	0.5283 0.5233	1.5242 1.5215	0.0030 0.0060	0.1187 0.1205	0.9670 0.9680	5240 5011	tags=44%, list=24%, signal=57% tags=40%, list=23%, signal=52%
RANSMEMBRANE_RECEPTOR_PROTEIN_SERINE_THR								
ONINE_KINASE_SIGNALING_PATHWAY	47	0.5270	1.5184	0.0020	0.1226	0.9710	5843	tags=49%, list=27%, signal=67%
	44	0.5325	1.5073	0.0060	0.1352	0.9810	2788	tags=30%, list=13%, signal=34%
	16	0.5972 0.5283	1.4970 1.4978	0.0215 0.0020	0.1419 0.1428	0.9870 0.9870	2772 4367	tags=31%, list=13%, signal=36% tags=41%, list=20%, signal=51%
ULFUR_COMPOUND_BIOSYNTHETIC_PROCESS		0.5744	1.4978	0.0020	0.1428	0.9850	3160	tags=32%, list=14%, signal=37%
ULFUR_COMPOUND_BIOSYNTHETIC_PROCESS HOSPHORIC_DIESTER_HYDROLASE_ACTIVITY	39 19							tags=53%, list=23%, signal=68%
ULFUR_COMPOUND_BIOSYNTHETIC_PROCESS HOSPHORIC_DIESTER_HYDROLASE_ACTIVITY ORTICAL_CYTOSKELETON	19 17	0.5775	1.4941	0.0153	0.1441	0.9880	4951	
JLFUR_COMPOUND_BIOSYNTHETIC_PROCESS HOSPHORIC_DIESTER_HYDROLASE_ACTIVITY ORTICAL_CYTOSKELETON EGATIVE_REGULATION_OF_BINDING ETALLOPEPTIDASE_ACTIVITY	19 17 46	0.5775 0.5251	1.4996	0.0010	0.1444	0.9850	5789	tags=46%, list=26%, signal=62%
JLFUR COMPOUND BIOSYNTHETIC PROCESS HOSPHORIC DIESTER HYDROLASE ACTIVITY ORTICAL CYTOSKELETON EGATIVE REGULATION OF BINDING ETALLOPEPTIDASE ACTIVITY YOBLAST DIFFERENTIATION	19 17 46 17	0.5775 0.5251 0.5818	1.4996 1.4862	0.0010 0.0295	0.1444 0.1479	0.9850 0.9900	5789 3890	tags=46%, list=26%, signal=62% tags=47%, list=18%, signal=57%
LIFUR COMPOUND BIOSYNTHETIC PROCESS HOSPHORED (BESTER HYDROLASE ACTIVITY ORTICAL CYTOSKELETON EGATIVE REGULATION OF BINDING BETALLOPEPIDASE ACTIVITY YOBLAST DIFFERENTIATION GROWTH FACTOR BINDING	19 17 46 17 32	0.5775 0.5251 0.5818 0.5301	1.4996 1.4862 1.4874	0.0010 0.0295 0.0220	0.1444 0.1479 0.1480	0.9850 0.9900 0.9900	5789 3890 5197	tags=46%, list=26%, signal=62% tags=47%, list=18%, signal=57% tags=50%, list=24%, signal=66%
JLFUR_COMPOUND_BIOSYNTHETIC_PROCESS HOSPHORIC_DIESTER_HYDROLASE_ACTIVITY ORTICAL_CYTOSKELETON EGATIVE_REGULATION_OF_BINDING ETALLOPEPTIDASE_ACTIVITY YOBLAST_DIFFERENTIATION ROOTHIF_FACTOR_BINDING ENDRITE	19 17 46 17 32 16	0.5775 0.5251 0.5818	1.4996 1.4862	0.0010 0.0295	0.1444 0.1479	0.9850 0.9900	5789 3890	tags=46%, list=26%, signal=62% tags=47%, list=18%, signal=57%
JEUR COMPOUND BIOSYNTHETIC PROCESS 10SPHORIC DIESTER HYDROLASE ACTIVITY ORTICAL CYTOSKELETON EGATIVE REGULATION OF BINDING ETALLOPEPTIDASE ACTIVITY YOBLAST DIFFERENTIATION ROWTH FACTOR BINDING ENDRITE ENERATION, OF A_SIGNAL_INVOLVED_IN_CELL_CEL	19 17 46 17 32 16	0.5775 0.5251 0.5818 0.5301	1.4996 1.4862 1.4874	0.0010 0.0295 0.0220	0.1444 0.1479 0.1480	0.9850 0.9900 0.9900	5789 3890 5197	tags=46%, list=26%, signal=62% tags=47%, list=18%, signal=57% tags=50%, list=24%, signal=66% tags=44%, list=19%, signal=54%
JIEUR COMPOUND BIOSYNTHETIC PROCESS 10SPHORIC DIESTER HYDROLASE_ACTIVITY ORTICAL_CYTOSKELETON GGATIVE REGULATION OF BINDING ETALLOPPETIDASE_ACTIVITY YOBLAST_DIFFERENTIATION ROWTH FACTOR_BINDING ENDRITE ENERATION_OF_A_SIGNAL_INVOLVED_IN_CELL_CEL. SIGNALING	19 17 46 17 32 16	0.5775 0.5251 0.5818 0.5301 0.5891	1.4996 1.4862 1.4874 1.4885	0.0010 0.0295 0.0220 0.0163	0.1444 0.1479 0.1480 0.1486	0.9850 0.9900 0.9900 0.9900	5789 3890 5197 4156	tags=46%, list=26%, signal=62% tags=47%, list=18%, signal=57% tags=50%, list=24%, signal=66% tags=44%, list=19%, signal=54%
JLFUE, COMPOUND, BIOSYNTHETIC, PROCESS HOSPHORIC, DIESTER, HYDROLASE_ACTIVITY ORTICAL_CYTOSKELETON BEGATIVE REGULATION OF_BINDING ETALLOPEPTIDASE_ACTIVITY YOBLAST_DIFFERENTIATION ROWHIF FACTOR_BINDING ENDRITE ENERATION_OF_A_SIGNAL_INVOLVED_IN_CELL_CEL_ SIGNALING EGULATION_OF_INTRACELLULAR_TRANSPORT AS_GTPASE_ACTIVATOR_ACTIVITY	19 17 46 17 32 16 27 22 26	0.5775 0.5251 0.5818 0.5301 0.5891 0.5619 0.5552 0.5449	1.4996 1.4862 1.4874 1.4885 1.4894 1.4797 1.4743	0.0010 0.0295 0.0220 0.0163 0.0151 0.0190 0.0130	0.1444 0.1479 0.1480 0.1486 0.1490 0.1556 0.1628	0.9850 0.9900 0.9900 0.9900 0.9900 0.9910 0.9920	5789 3890 5197 4156 5004 4825 6320	tags=46%, list=26%, signal=62% tags=47%, list=18%, signal=67% tags=50%, list=24%, signal=65% tags=44%, list=19%, signal=54% tags=44%, list=23%, signal=58% tags=46%, list=22%, signal=52% tags=46%, list=29%, signal=52%
JLEUR, COMPOUND, BIOSYNTHETIC, PROCESS HOSPHORIC, DIESTER, HYDROLASE, ACTIVITY ORTICAL, CYTOSKELETON BEATIVE REGULATION OF BINDING ETAILOPEPTIDASE, ACTIVITY YOBLAST, DIFFERENTIATION ROWTH, FACTOR, BINDING ENDRITE ENERATION, OF, A. SIGNAL, INVOLVED_IN_CELL_CEL. SIGNALING EGULATION OF, INTRACELLULAR, TRANSPORT AS, GTPASE, ACTIVATOR, ACTIVITY ECEPTOR, COMPLEX	19 17 46 17 32 16 27 22 26 56	0.5775 0.5251 0.5818 0.5301 0.5891 0.5619 0.5552 0.5449 0.5100	1.4996 1.4862 1.4874 1.4885 1.4894 1.4797 1.4743 1.4702	0.0010 0.0295 0.0220 0.0163 0.0151 0.0190 0.0130 0.0040	0.1444 0.1479 0.1480 0.1486 0.1490 0.1556 0.1628 0.1630	0.9850 0.9900 0.9900 0.9900 0.9900 0.9910 0.9920 0.9940	5789 3890 5197 4156 5004 4825 6320 4969	tags=46%, list=26%, signal=62% tags=47%, list=18%, signal=67% tags=50%, list=24%, signal=66% tags=44%, list=19%, signal=54% tags=44%, list=23%, signal=58% tags=46%, list=22%, signal=52% tags=45%, list=23%, signal=58%
LIFUE, COMPOUND, BIOSYNTHETIC, PROCESS HOSPHORIC DIESTER, HYDROCLASE, ACTIVITY ORTICAL, CYTOSKELETON EGATIVE REGULATION OF BINDING ETAILLOPEPTIDASE, ACTIVITY YOBLAST, DIFFERENTIATION ROWITH, FACTOR, BINDING ENDRITE ENERATION, OF A, SIGNAL, INVOLVED, IN, CELL, CEL, SIGNALINO EGULATION, OF, INTRACELLULAR, TRANSPORT AS, GTPASE, ACTIVATOR, ACTIVITY ECEPTOR, COMPLEX ERINE, TYPE, PEPTIDASE, ACTIVITY	19 17 46 17 32 16 27 22 26 56 43	0.5775 0.5251 0.5818 0.5301 0.5891 0.5619 0.5552 0.5449 0.5100 0.5200	1.4996 1.4862 1.4874 1.4885 1.4894 1.4797 1.4743 1.4702 1.4686	0.0010 0.0295 0.0220 0.0163 0.0151 0.0190 0.0130 0.0040 0.0100	0.1444 0.1479 0.1480 0.1486 0.1490 0.1556 0.1628 0.1630 0.1635	0.9850 0.9900 0.9900 0.9900 0.9900 0.9910 0.9920 0.9940	5789 3890 5197 4156 5004 4825 6320 4969 2788	ngs=46%, list=26%, signal=62% ngs=47%, list=18%, signal=67% ngs=50%, list=24%, signal=66% ngs=44%, list=19%, signal=64% tags=44%, list=23%, signal=52% ngs=41%, list=22%, signal=52% ngs=45%, list=29%, signal=55% ngs=28%, signal=58%
JLEUE, COMPOUND, BIOSYNTHETIC, PROCESS HOSPHORIC, DIESTER, HYDROLASE, ACTIVITY ORTICAL, CYTOSKELETON BEATIVE REGULATION OF BINDING ETALLOPEPTIDASE, ACTIVITY YOBLAST, DIFFERENTIATION ROWTH FACTOR, BINDING ENDRITE ENERATION, OF, SIGNAL, INVOLVED, IN, CELL, CEL, SIGNALING GEOLATION, OF, INTRACELLULAR, TRANSPORT AS, GIPASE, ACTIVATOR, ACTIVITY ECEPTOR, COMPLEX, ERNE, TYPE, PEPTIDASE, ACTIVITY FIREUTRALE, CONSTITUENT, OF, MUSCLE	19 17 46 17 32 16 27 22 26 56 43 32	0.5775 0.5251 0.5818 0.5301 0.5891 0.5619 0.5552 0.5449 0.5100 0.5200 0.5360	1.4996 1.4862 1.4874 1.4885 1.4894 1.4797 1.4743 1.4702 1.4686 1.4709	0.0010 0.0295 0.0220 0.0163 0.0151 0.0190 0.0130 0.0040 0.0100 0.0090	0.1444 0.1479 0.1480 0.1486 0.1490 0.1556 0.1628 0.1630 0.1635 0.1639	0.9850 0.9900 0.9900 0.9900 0.9910 0.9920 0.9940 0.9940 0.9930	5789 3890 5197 4156 5004 4825 6320 4969 2788 5250	ngs=46%, list=26%, signal+62% ngs=47%, list=18%, signal+57% ngs=50%, list=18%, signal+56% ngs=44%, list=19%, signal+54% ngs=44%, list=23%, signal+52% ngs=46%, list=23%, signal+52% ngs=46%, list=23%, signal+52% ngs=45%, list=33%, signal+52% ngs=45%, list=33%, signal+32% ngs=44%, list=24%, signal+32%
LIFUE COMPOUND BIOSYNTHETIC PROCESS HOSPHORIC DIESTER HYDROLASE ACTIVITY ORTICAL CYTOSKELETON EGATIVE REGULATION OF BINDING BETALLOPEPIDASE ACTIVITY YOBLAST DIFFERENTIATION ROWTH FACTOR BINDING ENDRITE ENERATION OF A SIGNAL INVOLVED IN CELL CELL SIGNALING EGULATION OF INTRACELLULAR TRANSPORT AS GTPASE ACTIVATOR ACTIVITY ECEPTOR COMPLEX ERINE TYPE PEPTIDASE ACTIVITY IRUCTURAL CONSTITUENT OF MUSCLE ROTEN, SOR OSCIEN, PROCESSING	19 17 46 17 32 16 27 22 26 56 43 32 45	0.5775 0.5251 0.5818 0.5301 0.5891 0.5619 0.5552 0.5449 0.5100 0.5200 0.5360 0.5146	1.4996 1.4862 1.4874 1.4885 1.4894 1.4797 1.4743 1.4702 1.4686 1.4709 1.4720	0.0010 0.0295 0.0220 0.0163 0.0151 0.0190 0.0130 0.0040 0.0100 0.0090 0.0020	0.1444 0.1479 0.1480 0.1486 0.1490 0.1556 0.1628 0.1630 0.1635 0.1639 0.1640	0.9850 0.9900 0.9900 0.9900 0.9900 0.9910 0.9920 0.9940 0.9940 0.9930	5789 3890 5197 4156 5004 4825 6320 4969 2788 5250 4954	ngs=46%, list=26%, signal=62% ngs=47%, list=18%, signal=75% ngs=50%, list=18%, signal=66% ngs=44%, list=19%, signal=66% ngs=44%, list=23%, signal=58% ngs=46%, list=29%, signal=58% ngs=45%, list=23%, signal=58% ngs=45%, list=23%, signal=58% ngs=28%, list=23%, signal=65% ngs=28%, list=23%, signal=58% ngs=28%, list=23%, signal=58%
JLFUE, COMPOUND, BIOSYNTHETIC, PROCESS HOSPHORIC, DIESTER, HYDROLASE_ACTIVITY ORTICAL_CYTOSKELETON BEGATIVE REGULATION OF BINDING ETALLOPEPTIDASE_ACTIVITY YOBLAST DIFFERENTIATION ROWHIF FACTOR BINDING ENDRITE ENERATION_OF_A_SIGNAL_INVOLVED_IN_CELL_CEL_ SIGNALING EGULATION_OF_INITRACELLULAR_TRANSPORT AS_GTPASE_ACTIVATOR_ACTIVITY ECEPTOR_COMPLEX ESTINE_TYPE_PEPTIDASE_ACTIVITY IRUCTURAL_CONSTITUENT_OF_MUSCLE KOTENT PROCESSING KNOPPETIDASE_ACTIVITY	19 17 46 17 32 16 27 22 26 56 43 32 45 111	0.5775 0.5251 0.5818 0.5301 0.5891 0.5619 0.5552 0.5449 0.5100 0.5200 0.5360	1.4996 1.4862 1.4874 1.4885 1.4894 1.4797 1.4743 1.4702 1.4686 1.4709	0.0010 0.0295 0.0220 0.0163 0.0151 0.0190 0.0130 0.0040 0.0100 0.0090	0.1444 0.1479 0.1480 0.1486 0.1490 0.1556 0.1628 0.1630 0.1635 0.1639	0.9850 0.9900 0.9900 0.9900 0.9910 0.9920 0.9940 0.9940 0.9930 0.9930	5789 3890 5197 4156 5004 4825 6320 4969 2788 5250	ngs=46%, list=26%, signal=62% ngs=47%, list=18%, signal=57% tags=50%, list=18%, signal=56% tags=44%, list=19%, signal=54% ngs=44%, list=23%, signal=52% ngs=46%, list=23%, signal=52% tags=46%, list=23%, signal=52% tags=45%, list=23%, signal=52% tags=45%, list=23%, signal=58% tags=45%, list=23%, signal=58% tags=35%, list=23%, signal=58% tags=35%, list=23%, signal=68%
LIFUE COMPOUND BIOSYNTHETIC PROCESS HOSPHORIC DIESTER HYDROLASE ACTIVITY ORTICAL CYTOSKELETON EGATIVE REGULATION OF BINDING EGATIVE REGULATION OF BINDING BETALLOPEPIDASE ACTIVITY YOBLAST DIFFERENTIATION ROWTH FACTOR BINDING ENDRITE ENERATION OF A SIGNAL INVOLVED IN CELL CELL SIGNALING EGULATION OF INTRACELLULAR TRANSPORT AS GIPASE ACTIVATOR ACTIVITY ECEPTOR COMPLEX ERINE TYPE PEPTIDASE ACTIVITY RICCURAL CONSTITUENT_OF MUSCLE ROTEN PROCESSING NODOPETIDASE ACTIVITY	19 17 46 17 32 16 27 22 26 56 43 32 45	0.5775 0.5251 0.5818 0.5301 0.5891 0.5619 0.5552 0.5449 0.5100 0.5200 0.5360 0.5146 0.4832	1.4996 1.4862 1.4874 1.4885 1.4894 1.4797 1.4743 1.4702 1.4686 1.4709 1.4720 1.4645	0.0010 0.0295 0.0220 0.0163 0.0151 0.0190 0.0130 0.0040 0.0100 0.0090 0.0020 0.0000	0.1444 0.1479 0.1480 0.1486 0.1490 0.1556 0.1628 0.1630 0.1635 0.1639 0.1640 0.1681	0.9850 0.9900 0.9900 0.9900 0.9900 0.9910 0.9920 0.9940 0.9940 0.9930	5789 3890 5197 4156 5004 4825 6320 4969 2788 5250 4954 5238	ngs=46%, list=26%, signal=62% ngs=47%, list=18%, signal=57% ngs=50%, list=18%, signal=54% ngs=50%, list=21%, signal=66% ngs=44%, list=23%, signal=58% ngs=46%, list=22%, signal=58% ngs=46%, list=29%, signal=58% ngs=45%, list=23%, signal=58% ngs=45%, list=23%, signal=58% ngs=45%, list=23%, signal=58% ngs=28%, list=23%, signal=58% ngs=28%, list=23%, signal=58%
LIFUE COMPOUND BIOSYNTHETIC PROCESS HOSPHORE DIESTER HYDROLASE ACTIVITY ORTICAL CYTOSKELETON EGATIVE REGULATION OF BINDING EGATIVE REGULATION OF BINDING EGATIVE REGULATION OF BINDING ROWH FACTOR BINDING ROWH FACTOR BINDING ENDRITE ENERATION OF A SIGNAL INVOLVED IN CELL CELL SIGNALING EGULATION OF INTRACELLULAR TRANSPORT AS GIPASE ACTIVATOR ACTIVITY ECEPTOR COMPLEX ERINE TYPE PEPTIDASE ACTIVITY INICITY INCLUDED TO SIGNAL SIGNA	19 17 46 17 32 16 27 22 26 56 43 32 45 111 45 40	0.5775 0.5251 0.5818 0.5301 0.5891 0.5619 0.5552 0.5449 0.5100 0.5200 0.5360 0.5146 0.4832 0.5127 0.5187	1.4996 1.4862 1.4874 1.4885 1.4894 1.4797 1.4743 1.4702 1.4686 1.4709 1.4720 1.4645 1.4631 1.4584	0.0010 0.0295 0.0220 0.0163 0.0151 0.0190 0.0130 0.0040 0.0100 0.0090 0.0020 0.0000 0.0070 0.0050	0.1444 0.1479 0.1480 0.1486 0.1490 0.1556 0.1628 0.1630 0.1635 0.1639 0.1640 0.1681 0.1687	0.9850 0.9900 0.9900 0.9900 0.9910 0.9920 0.9940 0.9940 0.9930 0.9930 0.9950 0.9960	5789 3890 5197 4156 5004 4825 6320 4969 2788 5250 4954 5238 8005 681	ngs=46%, isr=26%, signal=62% ngs=47%, lisr=24%, signal=66% ngs=44%, isr=19%, signal=66% ngs=44%, isr=19%, signal=54% tags=44%, isr=23%, signal=58% ngs=44%, isr=23%, signal=58% ngs=45%, isr=23%, signal=68% ngs=45%, isr=23%, signal=68% ngs=25%, isr=33%, signal=68% ngs=25%, isr=35%, signal=46% ngs=35%, isr=37%, signal=46% ngs=62%, isr=37%, signal=46% ngs=62%, isr=37%, signal=86% ngs=62%, isr=37%, signal=86%
LIFUE COMPOUND BIOSYNTHETIC PROCESS HOSPHORE DISESTER HYDROLASE ACTIVITY ORTICAL CYTOSKELETON EGATIVE REGATIVE REQUIATION OF BINDING EGATIVE REQUIATION OF BINDING ROWHIF ACTOR BINDING ROWHIF ACTOR BINDING ROWHIF ACTOR BINDING ENDRITE ENREATION OF A SIGNAL INVOLVED IN CELL CELL SIGNALING EQUIATION OF INTRACELLULAR TRANSPORT AS GIPASE ACTIVATOR ACTIVITY ECEPTOR COMPLEX ERINE TYPE PEPTIDASE ACTIVITY RIVCUTURAL CONSTITUENT OF MUSCLE ROTEIN PROCESSING NOPPETIDASE ACTIVITY RICCUTURAL CONSTITUENT OF MUSCLE ROTEIN PROCESSING NOPPETIDASE ACTIVITY RICCUTURAL CONSTITUENT OF MUSCLE ROTEIN PROCESSING NOPPETIDASE ACTIVITY RICCUTURAL CONSTITUENT OF MUSCLE ROTEIN PROCESSING NOPPETIDASE ACTIVITY ROTEASE INHIBITOR ACTIVITY ROTEASE INHIBITOR ACTIVITY ROTEASE INHIBITOR ACTIVITY ACTIVITY OF MYELOID CELL DIFFERENTIATION ATTERN BINDING	19 17 46 17 32 16 27 22 26 56 43 32 45 111 45	0.5775 0.5251 0.5818 0.5301 0.5891 0.5619 0.5552 0.5449 0.5100 0.5200 0.5360 0.5146 0.4832 0.5127	1.4996 1.4862 1.4874 1.4885 1.4894 1.4797 1.4743 1.4702 1.4686 1.4709 1.4720 1.4645 1.4631	0.0010 0.0295 0.0220 0.0163 0.0151 0.0190 0.0130 0.0040 0.0100 0.0090 0.0020 0.0020 0.0070	0.1444 0.1479 0.1480 0.1486 0.1490 0.1556 0.1628 0.1630 0.1635 0.1639 0.1640 0.1681 0.1687	0.9850 0.9900 0.9900 0.9900 0.9910 0.9910 0.9940 0.9940 0.9930 0.9940 0.9950	5789 3890 5197 4156 5004 4825 6320 4969 2788 5250 4954 5238 8005	ngs=46%, ist=26%, signal=62% ngs=47%, list=28%, signal=76% ngs=50%, ist=24%, signal=66% tngs=44%, list=19%, signal=56% tngs=44%, list=23%, signal=58% ngs=46%, list=29%, signal=58% ngs=46%, list=29%, signal=58% ngs=46%, list=29%, signal=58% ngs=45%, list=33%, signal=58% ngs=28%, list=33%, signal=58% ngs=36%, list=23%, signal=58% ngs=36%, list=37%, signal=68% ngs=36%, list=37%, signal=68% ngs=36%, list=37%, signal=68% ngs=36%, list=37%, signal=68%
ULFUR, COMPOUND, BIOSYNTHETIC, PROCESS HOSPHORICA DIESTER HYDROCLASE, ACTIVITY ORTICAL, CYTOSKELETON EGATIVE REGULATION OF BINDING HETALLOPEPTIDASE, ACTIVITY HYDBLAST, DIFFERENTIATION ROWTH FACTOR, BINDING ENDRITE ENERATION OF A, SIGNAL, INVOLVED, IN, CELL, CEL, SIGNALING EGULATION, OF, INTRACELIULAR, TRANSPORT AS, GIPASE, ACTIVATOR, ACTIVITY ECUPTOR, COMPLEX ESINE, TYPE, PEPTIDASE, ACTIVITY IRUCTURAL, CONSTITUENT, OF, MUSCLE ROTEIN, PROCESSING NOOPEPTIDASE, ACTIVITY ELICASE, ACTIVITY ROTEASE, INHIBITOR, ACTIVITY EGULATION, OF, MYELOID, CELL, DIFFERENTIATION ATTERN, BINDING EPTIDASE, ACTIVITY EGULATION, OF, MYELOID, CELL, DIFFERENTIATION ATTERN, BINDING EPTIDASE, ACTIVITY EFULDASE, ACTIVITY	19 17 46 17 32 16 27 22 26 56 43 32 45 111 45 40 18 38 164	0.5775 0.5251 0.5818 0.5818 0.5301 0.5891 0.5619 0.5552 0.5449 0.5100 0.5360 0.5146 0.4832 0.5127 0.5187	1.4996 1.4862 1.4874 1.4885 1.4894 1.4797 1.4743 1.4702 1.4686 1.4709 1.4729 1.4645 1.4631 1.4584 1.4584	0.0010 0.0295 0.0220 0.0163 0.0151 0.0190 0.0130 0.0040 0.0100 0.0090 0.0020 0.0020 0.0050 0.0234 0.0110 0.0000	0.1444 0.1479 0.1486 0.1486 0.1556 0.1628 0.1635 0.1635 0.1639 0.1640 0.1681 0.1687 0.1723	0.9850 0.9900 0.9900 0.9900 0.9910 0.9920 0.9940 0.9930 0.9930 0.9930 0.9950 0.9950 0.9950	5789 3890 5197 4156 5004 4825 6320 4969 2788 5250 4954 5238 8005 681 1949 4908 5789	ngs=46%, list=26%, signal=62% ngs=47%, list=18%, signal=57% ngs=50%, list=18%, signal=54% ngs=50%, list=24%, signal=66% tags=44%, list=19%, signal=58% ngs=41%, list=22%, signal=58% ngs=46%, list=29%, signal=58% ngs=45%, list=29%, signal=58% ngs=45%, list=29%, signal=65% ngs=45%, list=29%, signal=65% ngs=35%, list=24%, signal=58% ngs=35%, list=24%, signal=46% ngs=35%, list=24%, signal=46% ngs=52%, list=25%, signal=46% ngs=52%, list=25%, signal=46% ngs=35%, list=25%, signal=54% ngs=33%, list=25%, signal=54% ngs=37%, list=25%, signal=54%
ERINE HYDROLASE ACTIVITY LUFUR, COMPOUND, BIOSYNTHETIC, PROCESS HOSPHORIC, DIESTER, HYDROLASE, ACTIVITY ORTICAL, CYTOSKELETON EGATIVE, REGULATION OF, BINDING HETALLOPEPTIDASE, ACTIVITY YOGHLAST, DIFFERENTIATION ROWTH, FACTOR, BINDING HENDRITE HENERATION, OF, A. SIGNAL, INVOLVED, IN, CELL, CEL, SIGNALING EGULATION, OF, INTRACELLULAR, TRANSPORT AS, GIFASE, ACTIVATOR, ACTIVITY ECPITOR, COMPLEX ERINE, TYPE, PEPTIDASE, ACTIVITY TRUCTURAL, CONSTITUENT, OF, MUSCLE ROTEIN, PROCESSING NDOPEPTIDASE, ACTIVITY ROTEASE, INHIBITOR, ACTIVITY EGULATION, OF, MYELOID, CELL, DIFFERENTIATION ATTIERN, BINDING EPTIDASE, ACTIVITY EGULATION, OF, SECRETION MINTER BINDING EPTIDASE, ACTIVITY EGULATION, OF, SECRETION MINTER BINDING EPTIDASE, ACTIVITY EGULATION, OF, SECRETION MINTERIOR, STATIFIETIC, PROCESS	19 17 46 17 32 16 27 22 26 56 43 32 45 111 45 40	0.5775 0.5251 0.5818 0.5818 0.5301 0.5891 0.5619 0.5552 0.5449 0.5100 0.5200 0.5360 0.5146 0.4832 0.5127 0.5187	1.4996 1.4862 1.4874 1.4885 1.4894 1.4797 1.4743 1.4702 1.4686 1.4709 1.4720 1.4645 1.4631 1.4584 1.4591 1.4517	0.0010 0.0295 0.0220 0.0163 0.0151 0.0190 0.0130 0.0040 0.0100 0.0090 0.0020 0.0000 0.0070 0.0050	0.1444 0.1479 0.1480 0.1486 0.1490 0.1556 0.1628 0.1630 0.1635 0.1639 0.1640 0.1681 0.1687 0.1723	0.9850 0.9900 0.9900 0.9900 0.9910 0.9920 0.9940 0.9940 0.9930 0.9930 0.9950 0.9950	5789 3890 5197 4156 5004 4825 6320 4969 2788 5250 4954 5238 8005 681	ngs=46%, list=26%, signal=62% ngs=47%, list=24%, signal=76% ngs=50%, list=24%, signal=66% ngs=44%, list=19%, signal=54% list=12%, signal=52% ngs=46%, list=23%, signal=58% ngs=46%, list=23%, signal=58% ngs=46%, list=29%, signal=65% ngs=45%, list=33%, signal=58% ngs=25%, list=33%, signal=36% ngs=36%, list=33%, signal=36% ngs=36%, list=33%, signal=18% ngs=35%, list=35%, signal=18% ngs=35%, list=35%, signal=18% ngs=35%, list=35%, signal=18%

NAME	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX	LEADING EDGE
OXIDOREDUCTASE_ACTIVITY_ACTING_ON_NADH_OR NADPH	25	0.5327	1.4416	0.0221	0.1921	0.9990	6672	tags=64%, list=31%, signal=92%
NEGATIVE REGULATION OF CELLULAR COMPONENT		0.0027	1.1110	0.0221	0.1721	0.,,,,0	0072	mg, 0170, 1131 3170, 31gmi 7270
ORGANIZATION AND BIOGENESIS	26	0.5243	1.4385	0.0190	0.1958	0.9990	2745	tags=31%, list=13%, signal=35%
POSITIVE_REGULATION_OF_TRANSCRIPTION_FROM_R								
NA_POLYMERASE_II_PROMOTER	57	0.4909	1.4355	0.0040	0.1998	1.0000	4266	tags=35%, list=20%, signal=43%
TRANSPORT_VESICLE	29	0.5150	1.4181	0.0180	0.2030	1.0000	4937	tags=38%, list=23%, signal=49%
REGULATION_OF_NUCLEOCYTOPLASMIC_TRANSPORT		0.5413	1.4151	0.0322	0.2031	1.0000	4825	tags=37%, list=22%, signal=47%
DNA_HELICASE_ACTIVITY	22	0.5435	1.4325	0.0332	0.2036	1.0000	6302	tags=55%, list=29%, signal=77%
ELECTRON_CARRIER_ACTIVITY	75	0.4780	1.4185	0.0020	0.2040	1.0000	5315	tags=44%, list=24%, signal=58%
NEGATIVE_REGULATION_OF_TRANSCRIPTION_FROM_	70	0.451.4	1 4165	0.0000	0.2042	1 0000	7400	. 4000 10 - 2400 10 1 7000
RNA_POLYMERASE_II_PROMOTER KERATINOCYTE DIFFERENTIATION	78 15	0.4714 0.5781	1.4165 1.4152	0.0000 0.0462	0.2042 0.2048	1.0000	7409 6886	tags=46%, list=34%, signal=70% tags=53%, list=32%, signal=78%
TUBE DEVELOPMENT	18	0.5542	1.4104	0.0462	0.2048	1.0000	1962	tags=33%, list=9%, signal=37%
COPPER ION BINDING	15	0.5645	1.4189	0.0324	0.2052	1.0000	1565	tags=27%, list=7%, signal=29%
NUCLEOTIDE BIOSYNTHETIC PROCESS	19	0.5430	1.4090	0.0456	0.2052	1.0000	4828	tags=42%, list=72%, signal=54%
MEMBRANE FUSION	27	0.5163	1.4128	0.0320	0.2058	1.0000	3927	tags=37%, list=18%, signal=45%
TRANSFORMING_GROWTH_FACTOR_BETA_RECEPTOR		0.5105	1.1120	0.0520	0.2000	1.0000	3721	angs 3770, 113t 1070, 31g1ati 1370
SIGNALING PATHWAY	36	0.5086	1.4288	0.0130	0.2063	1.0000	7420	tags=56%, list=34%, signal=84%
PROTEIN BINDING BRIDGING	59	0.4886	1.4106	0.0070	0.2065	1.0000	7526	tags=46%, list=34%, signal=70%
REGULATION_OF_CELL_DIFFERENTIATION	55	0.4901	1.4189	0.0040	0.2070	1.0000	2911	tags=29%, list=13%, signal=33%
PROTEIN_DNA_COMPLEX_ASSEMBLY	37	0.4978	1.4111	0.0171	0.2071	1.0000	8969	tags=68%, list=41%, signal=114%
CONTRACTILE_FIBER_PART	23	0.5362	1.4196	0.0332	0.2076	1.0000	1468	tags=26%, list=7%, signal=28%
SERINE_TYPE_ENDOPEPTIDASE_ACTIVITY	39	0.5094	1.4268	0.0190	0.2080	1.0000	2788	tags=28%, list=13%, signal=32%
RESPONSE_TO_HYPOXIA	27	0.5217	1.4289	0.0100	0.2083	1.0000	7014	tags=59%, list=32%, signal=87%
AXONOGENESIS	43	0.5047	1.4210	0.0070	0.2087	1.0000	3671	tags=30%, list=17%, signal=36%
ACTIN_FILAMENT	17	0.5527	1.4200	0.0515	0.2088	1.0000	4742	tags=35%, list=22%, signal=45%
RNA_DEPENDENT_ATPASE_ACTIVITY	15	0.5695	1.4246	0.0483	0.2099	1.0000	7365	tags=73%, list=34%, signal=111%
ENZYME_INHIBITOR_ACTIVITY	115	0.4685	1.4211	0.0000	0.2107	1.0000	4713	tags=34%, list=22%, signal=43%
REGULATION_OF_ANATOMICAL_STRUCTURE_MORPH								
OGENESIS	23	0.5341	1.4227	0.0272	0.2119	1.0000	3035	tags=35%, list=14%, signal=40%
CELL_CELL_ADHESION CELL PROJECTION PART	81 18	0.4783 0.5419	1.4215	0.0020 0.0406	0.2120 0.2174	1.0000	6050 6415	tags=44%, list=28%, signal=61%
POSITIVE REGULATION OF RNA METABOLIC PROCE	18	0.5419	1.3900	0.0406	0.21/4	1.0000	0413	tags=56%, list=29%, signal=79%
SS	102	0.4592	1.3983	0.0010	0.2175	1.0000	4266	tags=32%, list=20%, signal=40%
ENZYME LINKED RECEPTOR PROTEIN SIGNALING P	102	0.4372	1.5765	0.0010	0.2175	1.0000	4200	tags=3276, fist=2076, signal=4076
ATHWAY	135	0.4501	1 3957	0.0000	0.2175	1 0000	4274	tags=34%, list=20%, signal=42%
CELL JUNCTION	76	0.4747	1.3998	0.0050	0.2183	1.0000	6471	tags=47%, list=30%, signal=67%
NEGATIVE_REGULATION_OF_TRANSCRIPTION	167	0.4474	1.4007	0.0000	0.2183	1.0000	7227	tags=43%, list=33%, signal=64%
BIOGENIC AMINE METABOLIC PROCESS	16	0.5563	1.4015	0.0427	0.2184	1.0000	4828	tags=44%, list=22%, signal=56%
CELLULAR MORPHOGENESIS DURING DIFFERENTIAT								
ION	49	0.4909	1.3987	0.0090	0.2186	1.0000	3035	tags=27%, list=14%, signal=31%
LEADING_EDGE	42	0.4842	1.3966	0.0190	0.2191	1.0000	3309	tags=29%, list=15%, signal=34%
PHOSPHOLIPID_BINDING	39	0.4973	1.3925	0.0240	0.2224	1.0000	4460	tags=38%, list=20%, signal=48%
POSITIVE_REGULATION_OF_TRANSCRIPTIONDNA_DEP								
ENDENT	100	0.4568	1.3902	0.0010	0.2253	1.0000	4266	tags=32%, list=20%, signal=40%
ANATOMICAL_STRUCTURE_MORPHOGENESIS	356	0.4361	1.3832	0.0000	0.2258	1.0000	5963	tags=39%, list=27%, signal=53%
CELL_SURFACE	72	0.4643	1.3855	0.0040	0.2264	1.0000	7241	tags=49%, list=33%, signal=72%
RESPONSE_TO_WOUNDING	178	0.4479	1.3821	0.0080	0.2264	1.0000	6311	tags=41%, list=29%, signal=57%
RECEPTOR_SIGNALING_PROTEIN_SERINE_THREONINE	34	0.4972	1.3887	0.0150	0.2267	1.0000	5214	tags=41%, list=24%, signal=54%
_KINASE_ACTIVITY ACTIN CYTOSKELETON ORGANIZATION AND BIOGE	54	0.4972	1.3887	0.0150	0.2267	1.0000	5214	tags=41%, list=24%, signal=54%
NESIS	101	0.4543	1.3869	0.0010	0.2268	1.0000	3500	+200/ list-160/ siss-1-250/
POSITIVE REGULATION OF JNK ACTIVITY	18	0.4343	1.3834	0.0010	0.2268	1.0000	4705	tags=30%, list=16%, signal=35% tags=44%, list=22%, signal=57%
POSITIVE REGULATION OF TRANSCRIPTION	120	0.3382	1.3875	0.0010	0.2271	1.0000	6739	tags=43%, list=31%, signal=62%
TUBE MORPHOGENESIS	15	0.5559	1.3856	0.0462	0.2278	1.0000	1962	tags=33%, list=9%, signal=37%
TODE_MORE TOOLS LOND	15	0.5557	1.5050	0.0102	0.2270	1.0000	1702	mgs 5570, 1151 770, 31giai 5770
REGULATION OF TRANSCRIPTION FACTOR ACTIVITY	36	0.4904	1.3838	0.0200	0.2278	1.0000	4951	tags=39%, list=23%, signal=50%
CELL PROJECTION	98	0.4512	1.3749	0.0040	0.2311	1.0000	2978	tags=27%, list=14%, signal=31%
GTPASE ACTIVATOR ACTIVITY	56	0.4723	1.3791	0.0100	0.2311	1.0000	6484	tags=45%, list=30%, signal=63%
DNA DEPENDENT ATPASE ACTIVITY	19	0.5307	1.3755	0.0676	0.2316	1.0000	4923	tags=47%, list=23%, signal=61%
EXTRACELLULAR SPACE	233	0.4436	1.3766	0.0000	0.2326	1.0000	3568	tags=28%, list=16%, signal=33%
NEGATIVE REGULATION OF MULTICELLULAR ORGA								
NISMAL_PROCESS	30	0.5084	1.3773	0.0311	0.2329	1.0000	4878	tags=40%, list=22%, signal=51%
REGULATION_OF_ANGIOGENESIS	25	0.5071	1.3756	0.0302	0.2330	1.0000	5625	tags=44%, list=26%, signal=59%
NEGATIVE_REGULATION_OF_CELL_DIFFERENTIATION		0.5095	1.3679	0.0340	0.2434	1.0000	1501	tags=26%, list=7%, signal=28%
REGULATION_OF_NEUROTRANSMITTER_LEVELS	22	0.5257	1.3657	0.0493	0.2463	1.0000	4964	tags=45%, list=23%, signal=59%
TRANSCRIPTION_INITIATION_FROM_RNA_POLYMERAS								
E_II_PROMOTER	18	0.5264	1.3646	0.0487	0.2470	1.0000	5685	tags=56%, list=26%, signal=75%

7	
Mc.	
II.	
≥	
pared	
comps	
8	
vas	
-	
Mc	
ster	
clus	
2	
ogı	
let:	
S.	
sets	
gene	
) ge	
3	
ogy (GO)	
ntolog	
ř	
ne (
3	
tor	
esult t	
=	
ξ	
(GSEA)	
1S (
Jys	
ana	
ent	
Ē	
nrıc	
i e	
e se	
cene	
9: G	
ple	
I a	
Add.	
¥	

the control of the co		i I		- and	· · · · · · · · · · · · · · · · · · ·	A CONTRACTOR OF THE PARTY OF TH	П
N AME	π)	1	ž	FDR q-val	FWER p-val	KANK AT MAX	
INTEGRIN_BINDING	30 0.736	_		0.0110	0.0110	2319	tags=60%, list=11%, signal=67%
CELL_MATRIX_JUNCTION		_	_	0.0360	0.0460	1814	tags=56%, list=8%, signal=61%
ADHERENS_JUNCTION	21 0.6979	79 1.8518	0.0000	0.0620	0.1030	1814	tags=48%, list=8%, signal=52%
PROTEINACEOUS_EXTRACELLULAR_MATRIX	94 0.5694	_	0.0050	0.0954	0.2720	5379	tags=55%, list=25%, signal=73%
EXTRACELLULAR_MATRIX		_	_	0.1095	0.2680	3162	tags=45%, list=14%, signal=52%
	23 0.6382	82 1.7129	0.0384	0.1243	0.3630	6011	tags=78%, list=28%, signal=108%
TRANSMEMBRANE_RECEPTOR_PROTEIN_KINASE_ACTIVITY	51 0.5924	24 1.7532	0.0010	0.1253	0.2550	3358	tags=45%, list=15%, signal=53%
EXTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUENT	26 0.6175	75 1.7028	0.0051	0.1254	0.3980	2994	tags=50%, list=14%, signal=58%
EXTRACELLULAR_MATRIX_PART	55 0.5969	69 1.7696		0.1265	0.2220	5379	tags=58%, list=25%, signal=77%
GROWTH_FACTOR_BINDING	32 0.6009	_		0.1309	0.5230	5615	tags=66%, list=26%, signal=88%
CELL_SUBSTRATE_ADHESION		11 1.6695		0.1383	0.5160	3072	tags=46%, list=14%, signal=53%
LIPID_HOMEOSTASIS		_	_	0.1391	0.5820	2598	tags=44%, list=12%, signal=50%
SERINE_TYPE_ENDOPEPTIDASE_ACTIVITY		_		0.1393	0.5630	3056	tags=36%, list=14%, signal=42%
BASEMENT_MEMBRANE		_		0.1458	0.4990	5379	tags=54%, list=25%, signal=72%
NEGATIVE_REGULATION_OF_DNA_BINDING		_		0.1503	0.6830	3270	tags=44%, list=15%, signal=51%
BASOLATERAL_PLASMA_MEMBRANE				0.1532	0.6660	1814	tags=35%, list=8%, signal=39%
SERINE_HYDROLASE_ACTIVITY				0.1541	0.7100	3056	tags=34%, list=14%, signal=40%
PROTEIN_COMPLEX_BINDING		_		0.1541	0.7320	3878	tags=43%, list=18%, signal=52%
SERINE_TYPE_PEPTIDASE_ACTIVITY				0.1565	0.4930	3056	tags=35%, list=14%, signal=40%
HEMOSTASIS		_		0.1582	0.7580	2123	tags=36%, list=10%, signal=40%
CELL_MATRIX_ADHESION		_		0.1606	0.6600	3072	tags=44%, list=14%, signal=52%
EPIDERMIS_DEVELOPMENT		_	_	0.1666	0.8300	3565	tags=37%, list=16%, signal=44%
NEURON_PROJECTION		_		0.1711	0.8270	2527	tags=42%, list=12%, signal=48%
TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSINE_KINASE_ACTIVITY		_		0.1735	0.8050	3358	tags=40%, list=15%, signal=47%
REGULATION_OF_MAPKKK_CASCADE		_		0.1757	0.8230	3372	tags=42%, list=15%, signal=50%
NEGATIVE_REGULATION_OF_BINDING		_		0.1798	0.8970	3270	tags=41%, list=15%, signal=48%
MUSCLE_DEVELOPMENT		_	_	0.1826	0.8690	4652	tags=47%, list=21%, signal=60%
COAGULATION		_		0.1857	0.8950	2123	tags=35%, list=10%, signal=39%
BLOOD_COAGULATION		_	_	0.1924	0.8950	2123	tags=36%, list=10%, signal=39%
ECTODERM_DEVELOPMENT		_		0.2059	0.9310	3173	tags=34%, list=15%, signal=40%
STRUCTURAL_CONSTITUENT_OF_CYTOSKELETON		_		0.2068	0.9260	5410	tags=45%, list=25%, signal=60%
ACTIVATION_OF_PROTEIN_KINASE_ACTIVITY		_	_	0.2084	0.9700	2429	tags=38%, list=11%, signal=42%
CELL_MIGRATION		_		0.2102	0.9640	2625	tags=34%, list=12%, signal=38%
KINASE_INHIBITOR_ACTIVITY		_		0.2134	0.9700	5182	tags=44%, list=24%, signal=58%
SKELETAL_DEVELOPMENT		_		0.2156	0.9640	4851	tags=42%, list=22%, signal=54%
REGULATION_OF_BODY_FLUID_LEVELS		_	_	0.2168	0.9560	2123	tags=34%, list=10%, signal=37%
PROTEIN_KINASE_INHIBITOR_ACTIVITY	24 0.5736	36 1.5351	0.0030	0.2175	0.9530	5182	tags=46%, list=24%, signal=60%
TRANSFORMING_GROWTH_FACTOR_BETA_RECEPTOR_SIGNALING_PATHWAY	36 0.5409	09 1.5151	090000	0.2186	0.9780	7287	tags=58%, list=33%, signal=87%
TRANSMEMBRANE_RECEPTOR_PROTEIN_SERINE_THREONINE_KINASE_SIGNALING_PATHWAY	47 0.5338			0.2205	0.9620	7287	tags=57%, list=33%, signal=86%
STRUCTURAL_CONSTITUENT_OF_MUSCLE				0.2242	0.9530	2760	tags=41%, list=13%, signal=46%
EXTRACELLULAR_REGION_PART		_		0.2281	0.9810	6443	tags=46%, list=29%, signal=64%
WOUND_HEALING				0.2328	0.9810	2935	tags=38%, list=13%, signal=43%
EXTRACELLULAR_STRUCTURE_ORGANIZATION_AND_BIOGENESIS	29 0.5388			0.2359	0.9840	4817	tags=48%, list=22%, signal=62%
LIPID_TRANSPORT	28 0.5511	11 1.4774	0800.0	0.2488	0.9940	7203	tags=54%, list=33%, signal=80%

Add. Table 10: Gene set enrichment analysis (GSEA) result for Gene Ontology (GO) gene sets. Metabolic cluster Mc3 was compared with Mc1 and Mc2.

Add. Table 10: Gene set enrichment analysis (GSEA) result for Gene Ontology (GO) gene sets. Metabolic cluster Mc3 was compared with Mc1 and Mc2.	iO) gene s	ets. Metar	onic cluste	r Mc3 was con	mpared with McI	and Mc2.	
NAME	SIZE	ES	NES]	NOM p-val	FDR q-val	FWER p-val	FWER p-val RANK AT MAX LEADING EDGE
EXTRACELLULAR_MATRIX_PART	25	0.7515	2.1854	0.0000	0.0020	0.0040	1682 tags=47%, list=8%, signal=51%
COLLAGEN	23	0.8417	2.2165	0.000	0.0040	0.0040	1682 tags=70%, list=8%, signal=75%
EXTRACELLULAR_MATRIX	96	0.6787	2.0428	0.000	0.0055	0.0170	1682 tags=43%, list=8%, signal=46%
PROTEINACEOUS_EXTRACELLULAR_MATRIX	94	0.6836	2.0553	0.000	0.0063	0.0160	1682 tags=43%, list=8%, signal=46%
INTEGRIN_BINDING	30	0.7168	1.9587	0.000	0.0098	0.0330	2692 tags=50%, list=12%, signal=57%
EXTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUENT	26	0.7268	1.9400	0.0000	0.0113	0.0440	1997 tags=54%, list=9%, signal=59%
BASEMENT_MEMBRANE	35	0.6598	1.8425	0.0000	0.0345	0.1170	703 tags=31%, list=3%, signal=32%
BASAL_LAMINA	19	6999.0	1.7255	0.000	0.1232	0.3500	703 tags=32%, list=3%, signal=33%
CELL_MATRIX_ADHESION	36	0.5977	1.6720	0.0000	0.1718	0.5340	2695 tags=39%, list=12%, signal=44%
CELL_SUBSTRATE_ADHESION	37	0.5963	1.6740	0.0010	0.1877	0.5230	2695 tags=38%, list=12%, signal=43%
PROTEASE_INHIBITOR_ACTIVITY	40	0.5840	1.6425	0.0000	0.2111	0.6390	1497 tags=20%, list=7%, signal=21%

Pathway	Total	Expected	Hits	Total Expected Hits P.Value Metabolite hits	olite hits	Gene hits
Tyrosine metabolism	08	1.9872	∞	3 0.00066125 L-Tyrosine	sine	AOC3, ALDHIA3, AOXI, ADHIC, MAOA, MAOB, PNMT
Glycerolipid metabolism	72	1.7885	7	0.0017364		AKRIBI, AKRIBIO, ALDH2, AGPAT4, PPAP2A, PPAP2B, PNLIPRP3
Fatty acid metabolism	83	2.0617	7	0.003944		ACSL4, ACSL1, ACAA2, ADH1A, ADH1B, ADH1C, ALDH2
Glycolysis / Gluconeogenesis	16	2.2604	7	0.0065727 Beta-D-glucose, Acetate	-glucose, Acetate	ADHIA, ADHIB, ADHIC, ALDH2, ALDHIA3
Ether lipid metabolism	51	1.2668	5	0.0078844		LPCAT2, ENPP2, PLD1, PPAP2A, PPAP2B
Glycerophospholipid metabolism	119	2.956	00	0.0082917 Glycer	0.0082917 Glycerophosphocholine, Phosphocholine	LCAT, LPCAT2, PPAP2A, PPAP2B, PLD1, AGPAT4
Arachidonic acid metabolism	100	2.484	7	0.010899		CYP2U1, ALOX5, GPX3, GGT5, PTGS2, PTGIS, AKR1C3
Nicotinate and nicotinamide metabolism	39	0.96876	4	0.014869		AOXI, NNMT, NAMPT, NTSE
D-Glutamine and D-glutamate metabolism	6	0.22356	2	0.01955 Glutamate	nate	STD
Phenylalanine metabolism	29	0.72036	33	0.033755 L-Tyrosine	sine	AOC3, ALDHIA3
Drug metabolism - cytochrome P450	127	3.1547	7	0.035916		AOXI, ALDHIA3, ADHIA, ADHIB, ADHIC, GSTPI, FMO2
Mucin type O-Glycan biosynthesis	32	0.79488	3	0.043479		ST3GAL2, GALNTL2, GALNT12

Add. Table 12: Integrated pathway analysis result from comparison of the metabolic clusters Mc1 compared to Mc3

Add: Lable 12: Integrated pathway analysis result from comparise	on or the mer	e metabolic ciusters inci compared to inco	ici combr	ired to Mic3	
Pathway	Total	Expected	Hits P.Value	P.Value Metabolite hits	Gene hits
Glycerophospholipid metabolism	119	779577	6	0.0009 Glycerophosphocholine, Phosphocholine	LCAT, PLA2G5, LPCAT2, PPAP2A, PPAP2B, PLDI, AGPAT4
Ether lipid metabolism	51	1.1133	5	0.0045	PPAP2A, PPAP2B, PLA2G5, PLD1, LPCAT2
D-Glutamine and D-glutamate metabolism	6	0.19646	2	0.0153 Glutamate	STS
Glycosaminoglycan biosynthesis - chondroitin sulfate	14	1 0.30561	2	0.0360	XYLT1, CHSY3

Paper III

Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy

Leslie R. Euceda¹, Tonje H. Haukaas^{1,2}, Guro F. Giskeødegård^{1,3}, Riyas Vettukattil¹, Jasper Engel⁴, Laxmi Silwal-Pandit^{2,5}, Steinar Lundgren^{6,7}, Elin Borgen^{2,8}, Øystein Garred^{2,8}, Geert Postma⁹, Lutgarde M.C. Buydens⁹, Anne-Lise Børresen-Dale^{2,5}, Olav Engebraaten^{2,10}, Tone F. Bathen^{1,2}

¹Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway

²K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway

³St. Olavs University Hospital, Trondheim, Norway

⁴NERC Biomolecular Analysis Facility Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Birmingham, UK

⁵Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway

⁶Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway

⁷Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway

⁸Department of Pathology, Division of Diagnostics and Intervention, Oslo University Hospital, Oslo, Norway

⁹Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands

¹⁰Department of Oncology and Department of Tumor Biology, Oslo University Hospital, and Department of Clinical Medicine, University of Oslo, Norway

Corresponding author: Leslie R. Euceda, Department of Circulation and Medical Imaging - MR Center, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Postboks 8905, Medisinsk Teknisk Forskningssenter, 7491 Trondheim, Norway; Phone: +47 73597449, Fax: +47 73598613, E.mail: leslie.e.wood@ntnu.no.

Acknowledgements: The authors would like to thank Øyvind Salvesen for useful discussions regarding linear mixed-effects models and Santosh Lamichhane for technical support during HR MAS MRS acquisition. The HR MAS MRS analysis was performed at the MR Core Facility, Norwegian University of Science and Technology (NTNU), which is funded by the Faculty of Medicine at NTNU and Central Norway Regional Health Authority.

The study was funded in part by generous grants from:

- (1) The Research Council of Norway, Imaging the breast cancer metabolome, Project no 221879
- (2) The Pink Ribbon Movement and Norwegian Breast Cancer Society
- (3) K. G. Jebsen Center for Breast Cancer Research
- (4) Roche Norway
- (5) Sanofi-Aventis Norway

Abstract

Introduction: Metabolomics investigates biochemical processes directly, potentially complementing

transcriptomics and proteomics in providing insight into treatment outcome.

Objectives: This study aimed to use magnetic resonance (MR) spectroscopy on breast tumor tissue to

explore the effect of neoadjuvant therapy on metabolic profiles, determine metabolic effects of the

antiangiogenic drug bevacizumab, and investigate metabolic differences between responders and non-

responders.

Methods: Breast tumors from 122 patients were profiled using high resolution magic angle spinning

MR spectroscopy. All patients received neoadjuvant chemotherapy, and were randomized to receive

bevacizumab or not. Tumors were biopsied prior, during, and after treatment.

Results: Principal component analysis showed clear metabolic changes indicating a decline in glucose

consumption and a transition to normal breast adipose tissue as an effect of chemotherapy. Partial least

squares-discriminant analysis revealed metabolic differences between pathological minimal residual

disease patients and pathological non-responders after treatment (accuracy of 77%, p<0.001), but not

before or during treatment. Lower glucose and higher lactate was observed in patients exhibiting a

good response (≥90% tumor reduction) compared to those with no response (≤10% tumor reduction)

before treatment, while the opposite was observed after treatment. Bevacizumab-receiving and chemotherapy-only patients could not be discriminated at any time point. Linear mixed-effects models

revealed a significant interaction between time and bevacizumab for glutathione, indicating higher

levels of this antioxidant in chemotherapy-only patients than in bevacizumab receivers after treatment.

Conclusion: MR spectroscopy showed potential in detecting metabolic response to treatment and

complementing other molecular assays for the elucidation of underlying mechanisms affecting

pathological response.

Keywords: bevacizumab, breast cancer, chemotherapy, HR MAS MRS, metabolomics, neoadjuvant

3

INTRODUCTION

Breast cancer prognosis has improved during the past decades (Ferlay et al. 2013), attributed to earlier detection through effective mammography screening and improved therapy (American Cancer Society 2011; Malmgren et al. 2014; Giordano et al. 2004). However, with the disease still being the leading cause of cancer death in women (Ferlay et al. 2013; American Cancer Society 2011), defining new tools to stratify patients to targeted therapy and to detect early response is warranted.

Neoadjuvant or preoperative therapy is used to treat locally advanced breast tumors where size is too large for surgical mastectomy with acceptable margins or to allow for breast conserving surgery (Miller et al. 2014). The effect of neoadjuvant treatment on progression-free survival (PFS) and overall survival (OS) is comparable to adjuvant or post-operative therapy (van der Hage et al. 2001), enabling the possibility for molecular analyses on tumor samples before, during, and after therapy, and a direct visualization of the treatment effect by pathological examination after removal of the tumor.

Angiogenesis, the formation of new blood vessels from existing vasculature, is a hallmark of cancer needed for the supply of nutrients and oxygen to the tumor (Hanahan and Weinberg 2000) and may be therapeutically targeted. Vascular endothelial growth factor (VEGF), a proangiogenic factor, can be inhibited by bevacizumab, a humanized monoclonal antibody (Ferrara et al. 2004). Addition of neoadjuvant bevacizumab to chemotherapy has resulted in better responses or increase in PFS, but has not increased OS (Miller et al. 2007). As for all targeted anticancer agents used in breast cancer, a reliable marker for the selection of patients who benefit from antiangiogenic therapy is needed.

Much of the variability in breast cancer treatment response has been attributed to tumor heterogeneity (Ng et al. 2012). Breast cancer has been divided into five molecular subtypes based on gene expression patterns found to have significant differences in clinical outcome (Perou et al. 2000; Sørlie et al. 2003). Metabolites are downstream of gene expression in the biochemical information flow known as the omics cascade, and altered metabolism is an emerging hallmark of cancer (Hanahan and Weinberg 2011). High resolution (HR) magic angle spinning (MAS) magnetic resonance spectroscopy (MRS) of intact tissue has been applied to study metabolites involved in important pathways in different cancers (Moestue et al. 2011; Bathen et al. 2010) . HR MAS MRS has been employed to relate metabolic changes after treatment to 5-year survival in breast cancer patients receiving neoadjuvant single agent chemotherapy followed by endocrine adjuvant therapy (Cao et al. 2012) and to reveal variability in metabolic profiles of breast tumors within the same gene-expression subtype (Borgan et al. 2010; Haukaas et al. in press). Thus, MR metabolomics can provide complimentary insight into breast cancer treatment outcome. This study aimed to use MRS to explore the metabolic changes in breast tumor tissue occurring as an effect of overall neoadjuvant therapy, to investigate metabolic differences between therapy responders and non-responders, and to determine the metabolic effects of antiangiogenic treatment with bevacizumab. Particular focus was given to metabolites involved in the pathways of glycolysis, choline phospholipid metabolism, and glutaminolysis, due to their high relevance for cancer.

METHODS

Patient and tumor characteristics

Tumor tissue from 122 breast cancer patients included in the NeoAva study, a phase 2 randomized clinical trial, were examined. Women (age \geq 18 years) with large (size \geq 2.5 cm), non-metastatic, human epidermal growth factor receptor 2 (HER2) negative tumors were recruited in the period of November 2008 – July 2012. All patients received neoadjuvant chemotherapy in the form of FEC100 (5-fluorouracil 600 mg/m2, epirubicin 100 mg/m2, cyclophosphamide 600 mg/m2) followed by taxane-based therapy, while they were randomized to receive bevacizumab or not (See Online Resource 1). Ultrasound-guided needle biopsies were sampled prior to treatment (TP1) and 12 weeks into treatment (TP2), while biopsies at 24 weeks (TP3) were obtained from the surgically removed tumor. For details on sample handling, see Online Resource 1. The study was registered in the http://www.ClinicalTrials.gov/ database with the identifier NCT00773695. Patient and tumor characteristics are shown in Table 1, and the study design is illustrated in Fig. S1 (Online Resource 2).

Evaluation of treatment response

Analysis of only cases with pathological complete response (pCR) (20/122 patients) would result in a loss of information from the patients experiencing a good response, but not achieving pCR (44/122). Therefore, in addition to the pCR endpoint, we introduced a cut-off value of 1 cm for the tumor diameter measured pathologically at the time of surgery (TP3) to classify patients as having pathological minimal residual disease (pMRD) or as pathological non-responders (pNRs) (diameter <1cm and >1cm, respectively). Furthermore, a 'response ratio' inversely proportional to tumor reduction was calculated as: tumor diameter at TP3/tumor diameter at TP1. Response ratio >1 indicates an increase in tumor size with treatment. At TP1, the diameter was measured using magnetic resonance imaging (MRI). For patients with no available MRI measurement at TP1 (21/122 patients), the maximum value from ultrasound and/or mammography-measured diameters was used. Patients were categorized as having good, intermediate, or no response (GR, IR, NR) based on response ratio (\le 0.10, >0.10 - <0.90, or \ge 0.90, respectively).

Gene expression subtyping

Gene expression microarray data was acquired and processed as described in Online Resource 1. The PAM50 algorithm (Parker et al. 2009) was used to classify samples by gene expression subtype. Gene expression microarray data is available in the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-4439.

HR MAS MRS Experiments and Data preprocessing

Tissue samples (4.1 ± 1.3 mg) were analyzed by HR MAS MRS in accordance with (Giskeødegård et al. 2015) as described in Online Resource 1.Sample availability at each time point varied for each patient (n=325 total analyzed samples). Samples with high lipid content (n=23) and giving spectra of poor quality, i.e. poor shimming and insufficient water suppression (n=17), were excluded. Additionally, fifteen samples collected from patients with tumors not evaluable for pathological measurement of diameter at TP3 were excluded, resulting in 270 samples for subsequent statistical analysis. Preprocessing before selection of spectral regions for further analysis was carried out in Matlab R2013b (The Mathworks, Inc., USA) as described in Online Resource 1. Lipid peaks at 4.37-4.27, 2.97-2.70, 2.31-2.23, 2.11-1.92, 1.64-1.49 ppm, and the contaminant peaks for ethanol and acetone at 3.71-3.63 and 2.23-2.21 ppm, respectively, were excluded. Regions containing peaks from lidocaine, a local anesthetic used for sampling biopsies at TP1 and TP2, at 3.38-3.30 and 2.21-2.17 ppm, were also excluded. The spectra were subsequently PQN (Dieterle et al. 2006) normalized. Normalization after lipid removal corrects for differences in sample size and tumor cell content, as it can be assumed that the majority of the lipid signals arise from normal adipose cells within the tumor specimen obtained.

Statistical analysis

Multivariate analyses

Multivariate analysis was carried out in Matlab R2013b (The Mathworks, Inc., USA) using PLS Toolbox 7.8.2 (Eigenvector Research Inc., U.S.A). Spectra were mean-centered prior to multivariate modelling. Principal component analysis (PCA) (Wold et al. 1987) was employed using residual explained variance plots to select the number of principal components (PCs). Partial least squares-discriminant analysis (PLS-DA) (Wold et al. 2001) models were built for each separate time point to discriminate between pCR+ and pCR-, pMRD and pNR, the two extreme response ratio groups of GR and NR, bevacizumab-treated and chemotherapy-only patients, and bevacizumab-treated pMRD and chemotherapy-only pMRD. PLS-DA models were validated using double-layered cross validation (CV) (Westerhuis et al. 2008) and permutation testing (Westerhuis et al. 2008) as described in Online Resource 1. For PLS-DA plots, y-variance was condensed into the first latent variable (LV) through orthogonal-PLS (OPLS) (Eigenvector Research 2013) when the number of optimal LVs >1.

Univariate analyses

Metabolites were assigned based on previous identification (Sitter et al. 2002) and relative levels were calculated by integrating fixed regions of preprocessed spectra (prior to normalization) corresponding to each metabolite in Matlab R2013b. The integrals were then subsequently PQN normalized to

correct for differences in sample weight. The integral of the metabolite lactate (Lac) was not calculable in 116 samples due to presence of an overlapping peak originating from the C_1H_2 of the glycerol backbone of phospholipids and triglycerides at 4.13 ppm. For these samples, the Lac levels were imputed in R 3.1.1 (R Core Team 2014) using the package for the method of multivariate imputation by chained equations (MICE) (Buuren and Groothuis-Oudshoorn 2011) set to predictive mean matching and 10 imputations (Rubin 1987). This procedure was validated as described in Online Resource 1. All metabolite integrals were log10 transformed before univariate tests were conducted to satisfy prerequisite assumptions of normality (Matlab R2013b). Student's t-tests were conducted to compare metabolite levels between different groups. Pearson correlations between metabolite relative levels and response ratio for each separate time point were calculated in SPSS Statistics 22.0, (IBM Corp., U.S.A.).

Linear mixed-effects models (LMM) (Pinheiro and Bates 2000) for individual metabolite multilevel analysis of data grouped according to different classification factors were built in R 3.1.1 using the function *lme* from the 'nlme' package (Pinheiro et al. 2014) employing the method of restricted maximum likelihood. LMM describe relationships between a response variable and these factors incorporating two types of effects: fixed which are controlled and random which depend on each individual. Here, the response variable was the metabolite level while the fixed effects were *time* (TP1, TP2, or TP3), *pMRD response* (pMRD or pNR), and *bevacizumab* (bevacizumab-treated or chemotherapy-only) and the random effect was the patient ID. Significance of interactions between fixed effects was evaluated as described in Online Resource 1. Visual inspection of residual q-q plots and histograms did not reveal obvious deviations from normality.

Multiple testing correction of the p-values resulting from Pearson correlations and LMM was performed by the Benjamini Hochberg method for false discovery rate (FDR) adjustment in R 3.1.1 using the 'stats' package (R Core Team 2014). Statistical significance was considered for adjusted p $(q\text{-value}) \leq 0.05$.

RESULTS

Metabolic effects of neoadjuvant chemotherapy

The sample composition of the cohort according to gene expression subtype, time point, pMRD response group, and bevacizumab randomization group is summarized in Fig. S2 in Online Resource 2. PCA was employed on all spectra to investigate trends in the sample cohort as a whole (Fig. 1). Clear changes in metabolic profiles were observed with time (Fig. 1A). The scores plot labeled by gene-expression subtype (Fig. 1C) revealed a separation of the metabolic profiles of normal-like subtype samples from the rest. Comparing Fig. 1A and Fig. 1C, most TP3 samples were of the normal-

like gene expression subtype, also observed in Fig. S2F (Online Resource 2). The loadings plot (Fig. 1D) clearly indicated elevated phosphocholine (PCh), glycerophosphocholine (GPC), and taurine (Tau) at TP1, while glucose (Glc) and lipids were higher with increasing time of treatment and in normal-like samples.

Sixteen metabolites were identified as measurable, and their relative intensities were calculated by peak integration and log10 transformed (See Online Resource 3).

LMM revealed significant differences after multiple testing correction in 11/16 metabolites for the factor *time* (Table 2), including the metabolites detected in PCA with the exception of Tau. Four out of these 11 metabolites were significantly different for TP2 vs TP1, while all 11 of them were significant for TP3 vs TP2. Seven metabolites exhibited a significant interaction between *time* and *pMRD* response, while a significant interaction between *time* and *bevacizumab* was detected only for glutathione (GSH) (Supplementary Table 3 in Online Resource 4).

Metabolic differences between responders and non-responders

Results from PLS-DA discrimination of patients at each time point based on three different response criteria using metabolic profiles are summarized in Supplementary Table 4 in Online Resource 4. Metabolic differences between pCR+ and pCR- were detected at TP3 (Fig. 2A), but not TP1 or TP2, with an accuracy of 69% (p=0.018). Similarly, a significant discrimination between pMRD and pNRs was achieved only at TP3 (Fig. 2C), with PLS-DA model performance improving greatly (accuracy=77%, p<0.001). Compared to pCR- and pNR, both pCR+ and pMRD, respectively, showed elevated Glc and Lac and decreased creatine (Cr), glycine (Gly), Tau, GPC, PCh, choline (Cho), succinate (Succ), and alanine (Ala) levels (Fig. 2B, Fig. 2D).

PLS-DA significantly discriminated spectra from patients in the extreme response ratio groups of GR and NR at TP1 and TP3, but not TP2, with an accuracy of 76% (p=0.001) and 75% (p=0.002), respectively. The GR group showed lower levels of Glc and higher levels of ascorbate (Asc), Lac, Tyr, Cr, Gly, Tau, GPC, PCh, Cho, GSH, Succ, glutamate (Glu), and Ala compared to the NR group at TP1 (Fig. 3A-3B), while the opposite was observed at TP3 (Fig. 3C-3D). In addition, relative levels of two and eight metabolites were significantly correlated with the response ratio at TP1 and TP3, respectively (Supplementary Table 5 in Online Resource 4, Fig. S3 in Online Resource 2), but not at TP2. A switch in the direction of the correlation trend (positive or negative) was observed in the two metabolites with significant correlations at both time points (Glc and Tau).

Applying the multilevel approach of LMM, Lac was the only significant metabolite for the factor *pMRD response* (Table 2). However, the interaction between *time* and *pMRD response* was significant for seven metabolites (Supplementary Table 3 in Online Resource 4), indicating that the effect of the

pMRD response factor varies at different time points. *pMRD response* was significant at TP2 for Glc, Tyr, and Succ, while all seven metabolites were significant for this factor at TP3.

The most relevant results pertinent to treatment effect and comparison between responders and non-responders are summarized by pathway in Fig. 4, complemented by Supplementary Table 6 in Online Resource 4.

Glutathione metabolism identified as possibly affected by bevacizumab

PLS-DA could not discriminate bevacizumab-treated from chemotherapy-only patients at any time point. Both multivariate PLS-DA and univariate t-tests were employed to investigate differences between responding patients that were treated with additional bevacizumab and chemotherapy only. Significant metabolic differences between these groups could not be detected by either method at any time point (see Supplementary Table 7 and 8 in Online Resource 4).

For the multilevel LMM, *bevacizumab* was the only factor for which no metabolite was significant after multiple testing correction. However, a significant interaction between *time* and *bevacizumab* was detected for GSH (Table 2). GSH was significantly higher in controls than in bevacizumab-treated patients at TP3 (p< 0.001) (Supplementary Table 3 in Online Resource 4).

DISCUSSION

In this study we used MR based metabolic profiling of breast cancer tissue to investigate the effect of neoadjuvant chemotherapy in a large cohort of HER2 negative breast cancer patients randomized to receive additional bevacizumab treatment or not. The study design included three sampling time points over the treatment course, which allowed for a multilevel approach to investigate metabolic differences between patient groups.

Despite metabolic profiles not being able to predict pCR prior to treatment, a significant metabolic difference in pCR+ patients compared to pCR- was detected after neoadjuvant chemotherapy. This metabolic difference was even clearer when comparing pMRD patients and pNRs, with the former displaying similar metabolite trends as pCR+ patients. Moreover, a metabolic difference both before and after treatment was identified comparing patients with good response and no response. However, since the majority of cancer cells in pathological responders have responded to treatment, when comparing pMRD and pNRs at TP3, findings may also reflect metabolic differences between tumor and normal tissue. Previous studies using HR MAS MRS metabolic profiles of intact breast tumor tissue have successfully identified patients with more than 5-year survival, while association to treatment response was more subtle (Cao et al. 2012; Cao et al. 2011). Findings from the NASBP B-40 trial report a significant increase in OS of HER2 negative breast cancer patients receiving

chemotherapy with addition of neoadjuvant bevacizumab continued post-operatively (Bear et al. 2015). The significant discrimination of pathological response at surgery (TP3) based on metabolic profiles may be predictive of patients who would benefit from post-operative bevacizumab treatment. Metabolic signatures in patients with 5-year DFS, PFS and OS for this cohort will be investigated in due course.

Clear metabolic differences between time points in accordance with tumor reduction were observed. The increase in glucose with treatment progression points to a decline in glucose consumption, which is characteristically rapid in cancer cells, referred to as a glycolytic phenotype, to fulfill their high energy demands (Vander Heiden et al. 2009). Glucose was also found to be significantly higher in pMRD patients compared to pNRs after completion of neoadjuvant therapy, indicating an even greater decline in the consumption of glucose in the former group. The increase of lipids towards TP3 suggests a transition to normal breast adipose tissue. Lipid metabolism plays an important role in tumor cell apoptosis and necrosis resulting from treatment (Huang and Freter 2015). However, it can be assumed that most lipid signals arise from normal breast adipose cells. This is supported by samples at TP3 and of the normal-like subtype, which displays high expression of adipose cell genes (Perou et al. 2000), corresponding well in the PCA scores plot (Fig. 1A and 1C).

Metabolites that significantly decreased with treatment progression include glycerophosphocholine, phosphocholine, and choline, with the latter two also being significantly lower in pMRD patients compared to pNRs at TP3. These metabolites are involved in the metabolism of phosphatidylcholine, the most abundant phospholipid in eukaryote cell membranes (Gibellini and Smith 2010). Although the underlying mechanisms governing abnormal choline metabolism in cancer are still not fully understood (Glunde et al. 2011; Moestue et al. 2012), increase in the levels of choline containing metabolites are thought to be an indicator of malignant transformation and cancer aggressiveness (Aboagye and Bhujwalla 1999). Decreased phospholipid metabolism may be an indicator of a reduction in tumor malignancy and aggressiveness due to neoadjuvant chemotherapy. Further, studies showing that the behavior of choline metabolites varies between breast cancer subtypes (Giskeødegård et al. 2010; Grinde et al. 2014) indicate that the stratification of patients for treatment targeting phospholipid metabolism may be beneficial. This is further supported by our recent study (Haukaas et al. in press) in which we used metabolic profiles to derive naturally-occurring metabolic subgroups, revealing that one of these contained significantly higher phosphocholine and glycerophosphocholine levels and less active degradation of phosphatidylcholine determined by integrative pathway analysis.

LMM additionally revealed increased glutamine with treatment progression indicating a decrease in glutaminolysis. The normally non-essential amino acid glutamine becomes an important alternative source of carbon and nitrogen for glucose-deprived cancer cells, replenishing the TCA cycle and providing substrates for nucleotide, lipid, and protein biosynthesis (Hensley et al. 2013). Glutamine is

converted to glutamate, a precursor of non-essential amino acids and glutathione. Glutathione is a major cellular antioxidant which protects cancer cells against apoptosis caused by reactive oxygen species (ROS) (Franco and Cidlowski 2009). A significant interaction between *time* and *bevacizumab* was detected for glutathione, with chemotherapy-only patients exhibiting significantly higher levels than patients receiving bevacizumab at TP3. This is coherent with previously reported reduced levels of glutathione with bevacizumab treatment of glioblastoma (Fack et al. 2015). Bevacizumab may thus play a redox destabilizing role in cancer cells, promoting apoptosis.

A significant LMM interaction between *time* and *response* was detected for succinate, showing significantly lower levels in pMRD patients compared to pNRs at TP2 and TP3. Succinate is the substrate of succinate dehydrogenase (SDH), a tricarboxylic acid (TCA) cycle enzyme which has been identified as a tumor suppressor (Selak et al. 2005). Inactivation of SDH leads to accumulation of succinate, which mediates signaling pathways promoting resistance to apoptotic signals and inhibits the degradation of HIF alpha, a transcription factor that promotes the glycolytic phenotype characteristic of cancer cells (King et al. 2006). Decreased succinate in responders, observed at both TP2 and TP3, is therefore in accordance with a less malignant phenotype.

Unexpectedly, a significant increase in lactate with treatment progression and in pMRD patients compared to pNRs was detected, similarly as for glucose. Both increased lactate production and rapid glucose consumption are characteristic of the Warburg effect, which is the metabolic switch from anaerobic to aerobic glycolysis observed in most cancer cells (Vander Heiden et al. 2009). Lactate has been associated with poor prognosis in ER positive breast cancer (Giskeødegård et al. 2012) as well as in other cancers (Saraswathy et al. 2009; Walenta and Mueller-Klieser 2004; Walenta et al. 2000). Still, the glycolytic phenotype is not absolute in cancer cells, as a better-oxygenated subpopulation uses lactate as the main energy source fueling oxidative phosphorylation (Hanahan and Weinberg 2011; Semenza 2008; Feron 2009). A dual metabolic effect in cancer cells has been suggested (Xie et al. 2014), where lactic acidosis, although a consequence of the Warburg effect, can convert the usually dominant Warburg effect to a non-glycolytic phenotype, decreasing glucose consumption. Elevated lactate promoting this non-glycolytic phenotype is a possible explanation for glucose and lactate not behaving oppositely as expected. Another possibility is that chemotherapy may produce morphological changes in tissue that impede adequate lactate cellular excretion, leading to its accumulation. An issue to be kept in mind is that imputation was employed to calculate the relative levels of lactate for 116/270, which can be considered a limitation of this study. However, the imputation process was validated achieving a root mean square error (RMSE) of 0.006 and a coefficient of determination (R²) of 0.9996, indicating high confidence for the predicted lactate values.

Regarding the multivariate comparison between good response and no response groups based on the response ratio, glucose and lactate behaved oppositely in both groups at both TP1 and TP3, contrary to

them exhibiting trends in the same direction in pMRD patients and pNRs at TP3. However, when including samples from all three response ratio groups, glucose and lactate were both significantly negatively correlated with tumor size increase at TP3. The contradictory lactate/glucose behavior using different response criteria may therefore be due to the exclusion of 69/122 patients when comparing the two extreme response ratio groups. Lower glucose and higher lactate in the good response group before treatment points to a higher Warburg effect compared to the no response group, which is subsequently reversed in these groups by the end of treatment. In the same way, compounds associated with a more malignant phenotype including the choline containing metabolites, glutathione, glutamate, and succinate were elevated in the good response group before treatment, while the opposite was observed at the end of treatment. Although models built with these extreme groups cannot be used for prediction of treatment response, since a large part of the population has been excluded, these findings suggest that patients with a more malignant metabolic profile are more prone to benefit from treatment in terms of tumor reduction.

Changes in glutathione metabolism were identified as a possible effect of bevacizumab based on a significant interaction between *time* and *bevacizumab* using LMM for this metabolite. A substantial metabolic effect due to chemotherapy in both bevacizumab-treated and chemotherapy-only patients was evidenced, suggesting the potent chemotherapeutic effect may mask many of the effects of bevacizumab. In addition, the increase in lactate observed with increasing time on therapy may counteract VEGF inhibition by bevacizumab, as it has been found that excreted lactate from tumor cells stimulates angiogenesis dependent of a different proangiogenic factor: interleukin 8 (IL-8) (Végran et al. 2011). IL-8 signaling has been found to compensate for inhibition of VEGF-dependent angiogenesis in bevacizumab-resistant cells of head and neck squamous cell carcinoma (Gyanchandani et al. 2013). Altered lactate metabolism as a mechanism of bevacizumab resistance should therefore be further investigated.

Conclusion

MR based metabolic profiles of non-metastatic breast tumor tissue reflected changes in all patient groups as an effect of chemotherapy. Metabolic profiles discriminated pNRs from pMRD patients after neoadjuvant chemotherapy, which may complement other molecular assays for the elucidation of the underlying mechanisms affecting pathological response. Although metabolic differences based on bevacizumab administration were not prominent, glutathione was identified to be possibly affected by the antiangiogenic drug.

Abbreviations

Ala: alanine; Asc: ascorbate; ATP: adenosine triphosphate; Cho: choline; Cr: creatine; CV: cross validation; ER: estrogen receptor; FDR: false discovery rate; FEC: 5-fluorouracil-epirubicin-cyclophosphamide; Glc: glucose; Glu: glutamate; Gly: glycine; GPC: glycerophosphocholine; GR: good response; GSH: glutathione; HER2: human epidermal growth factor receptor 2; HIF: hypoxia-inducible factor; HR MAS MRS: high resolution magic angle spinning magnetic resonance spectroscopy; IL-8: interleukin 8; IR: intermediate response; Lac: lactate; LMM: linear mixed-effects model; LV: latent variable; MICE: multiple imputation by chained equations; MR: magnetic resonance; MRI: magnetic resonance imaging; NR: no response; OPLS: orthogonal partial least squares; OS: overall survival; PAM50: prediction analysis of microarrays 50; PC: principal component; PCA: principal component analysis; PCh: phosphocholine; pCR: pathological complete response; PFS: progression-free survival; PLS-DA: partial least squares-discriminant analysis; pMRD: pathological minimal residual disease; pNR: pathological non-responder; PQN: probabilistic quotient normalization; q-q: quantile-quantile; RMSE: root mean square error; ROS: reactive oxygen species; R²: coefficient of determination; SDH: succinate dehydrogenase; Succ: succinate; Tau: taurine; TCA: tricarboxylic acid; TP: time point; VEGF: vascular endothelial growth factor.

Authors' contributions

LRE, THH, GFG, RV, JE, LSP, GP, LMCB, ALBD, OE, and TFB participated in the design of the study. ALBD, OE, and TFB conceived the study. LRE, THH, GFG, RV, JE, GP, LMCB, ALBD, OE, and TFB interpreted the data. LRE performed the HR MAS MRS acquisition, statistical analysis, and drafted the manuscript. LSP, SL, EB, OG, ALBD, OE, and TFB participated in acquisition of the data. All authors have read and helped to revise the manuscript. The final manuscript is approved by all the authors.

Acknowledgements

The authors would like to thank Øyvind Salvesen for useful discussions regarding linear mixed-effects models and Santosh Lamichhane for technical support during HR MAS MRS acquisition. The HR MAS MRS analysis was performed at the MR Core Facility, Norwegian University of Science and Technology (NTNU), which is funded by the Faculty of Medicine at NTNU and Central Norway Regional Health Authority.

- (1) The Research Council of Norway, Imaging the breast cancer metabolome, Project no 221879
- (2) The Pink Ribbon Movement and Norwegian Breast Cancer Society
- (3) K. G. Jebsen Center for Breast Cancer Research

- (4) Roche Norway
- (5) Sanofi-Aventis Norway

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests

The NeoAva study was co-sponsored by Roche Norway and Sanofi-Aventis Norway. Oslo University Hospital is the main sponsor for the NeoAva study.

Compliance with ethical requirement

The study was approved for all centers involved by the Regional Ethics Committee (Approval number S-08354a) and the Norwegian Medical Agency. All procedures performed in studies involving human participants were in accordance with the Declaration of Helsinki, International Conference on Harmony/Good Clinical practice. Informed written consent was obtained from all patients.

References

- Aboagye, E. O., & Bhujwalla, Z. M. (1999). Malignant Transformation Alters Membrane Choline Phospholipid Metabolism of Human Mammary Epithelial Cells. Cancer Research, 59(1), 80-84
- American Cancer Society (2011). Global Cancer Facts & Figures 2nd Edition. Atlanta: American Cancer Society.
- Bathen, T. F., Sitter, B., Sjøbakk, T. E., Tessem, M.-B., & Gribbestad, I. S. (2010). Magnetic Resonance Metabolomics of Intact Tissue: A Biotechnological Tool in Cancer Diagnostics and Treatment Evaluation. *Cancer Research*, 70(17), 6692-6696, doi:10.1158/0008-5472.can-10-0437.
- Bear, H. D., Tang, G., Rastogi, P., Geyer Jr, C. E., Liu, Q., Robidoux, A., et al. (2015). Neoadjuvant plus adjuvant bevacizumab in early breast cancer (NSABP B-40 [NRG Oncology]): secondary outcomes of a phase 3, randomised controlled trial. *The Lancet Oncology*, *16*(9), 1037-1048, doi:http://dx.doi.org/10.1016/S1470-2045(15)00041-8.
- Borgan, E., Sitter, B., Lingjærde, O. C., Johnsen, H., Lundgren, S., Bathen, T. F., et al. (2010). Merging trancriptomics and metaboloimics - advances in breast cancer profiling. BMC Cancer, 10, 628, doi:10.1186/1471-2407-10-628.
- Buuren, S. v., & Groothuis-Oudshoorn, K. (2011). Journal of Statistical Software, 45(3), 1-67.
- Cao, M. D., Giskeodegard, G. F., Bathen, T. F., Sitter, B., Bofin, A., Lonning, P. E., et al. (2012). Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy. *BMC Cancer*, 12, doi:10.1186/1471-2407-12-39.
- Cao, M. D., Sitter, B., Bathen, T. F., Bofin, A., Lonning, P. E., Lundgren, S., et al. (2011). Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed, 25, doi:10.1002/nbm.1762.
- Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics. *Analytical Chemistry*, 78(13), 4281-4290, doi:10.1021/ac051632c.
- Eigenvector Research (2013). Orthogonalizepls. http://wiki.eigenvector.com/index.php?title=Orthogonalizepls. Accessed August 2015.

- Fack, F., Espedal, H., Keunen, O., Golebiewska, A., Obad, N., Harter, P., et al. (2015). Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. *Acta Neuropathologica*, 129(1), 115-131, doi:10.1007/s00401-014-1352-5.
- Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., et al. (2013). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Accessed July 21 2015.
- Feron, O. (2009). Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. *Radiotherapy and Oncology*, 92(3), 329-333, doi:http://dx.doi.org/10.1016/j.radonc.2009.06.025.
- Ferrara, N., Hillan, K. J., Gerber, H.-P., & Novotny, W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. [10.1038/nrd1381]. Nat Rev Drug Discov, 3(5), 391-400.
- Franco, R., & Cidlowski, J. A. (2009). Apoptosis and glutathione: beyond an antioxidant. *Cell Death Differ*, 16(10), 1303-1314, doi:http://www.nature.com/cdd/journal/v16/n10/suppinfo/cdd2009107s1.html.
- Gibellini, F., & Smith, T. K. (2010). The Kennedy pathway—De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. *IUBMB Life*, 62(6), 414-428, doi:10.1002/iub.337.
- Giordano, S. H., Buzdar, A. U., Smith, T. L., Kau, S.-W., Yang, Y., & Hortobagyi, G. N. (2004). Is breast cancer survival improving? *Cancer*, 100(1), 44-52, doi:10.1002/cncr.11859.
- Giskeødegård, G., Cao, M., & Bathen, T. (2015). High-Resolution Magic-Angle-Spinning NMR Spectroscopy of Intact Tissue. In J. T. Bjerrum (Ed.), *Metabonomics* (Vol. 1277, pp. 37-50, Methods in Molecular Biology): Springer New York.
- Giskeødegård, G. F., Grinde, M. T., Sitter, B., Axelson, D. E., Lundgren, S., Fjøsne, H. E., et al. (2010). Multivariate Modeling and Prediction of Breast Cancer Prognostic Factors Using MR Metabolomics. *Journal of Proteome Research*, 9(2), 972-979, doi:10.1021/pr9008783.
- Giskeødegård, G. F., Lundgren, S., Sitter, B., Fjøsne, H. E., Postma, G., Buydens, L. M. C., et al. (2012). Lactate and glycine—potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers. *NMR in Biomedicine*, 25(11), 1271-1279, doi:10.1002/nbm.2798.
- Glunde, K., Bhujwalla, Z. M., & Ronen, S. M. (2011). Choline metabolism in malignant transformation. [10.1038/nrc3162]. *Nat Rev Cancer*, 11(12), 835-848.
- Grinde, M. T., Skrbo, N., Moestue, S. A., Rødland, E. A., Borgan, E., Kristian, A., et al. (2014). Interplay of choline metabolites and genes in patient-derived breast cancer xenografts. *Breast Cancer Research*, 16, R5, doi:10.1186/bcr3597.
- Gyanchandani, R., Sano, D., Ortega Alves, M. V., Klein, J. D., Knapick, B. A., Oh, S., et al. (2013). Interleukin-8 as a modulator of response to bevacizumab in preclinical models of head and neck squamous cell carcinoma. *Oral Oncology*, 49(8), 761-770, doi:http://dx.doi.org/10.1016/j.oraloncology.2013.03.452.
- Hanahan, D., & Weinberg, R. A. (2000). The Hallmarks of Cancer. *Cell*, 100(1), 57-70, doi:http://dx.doi.org/10.1016/S0092-8674(00)81683-9.
- Hanahan, D., & Weinberg, Robert A. (2011). Hallmarks of Cancer: The Next Generation. *Cell*, 144(5), 646-674, doi:http://dx.doi.org/10.1016/j.cell.2011.02.013.
- Haukaas, T., Euceda, L., Giskeødegård, G., Lamichhane, S., Krohn, M., Jernström, S., et al. (in press).
 Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes
 Cancer & Metabolism.
- Hensley, C. T., Wasti, A. T., & DeBerardinis, R. J. (2013). Glutamine and cancer: cell biology, physiology, and clinical opportunities. *The Journal of Clinical Investigation*, 123(9), 3678-3684, doi:10.1172/JCI69600.
- Huang, C., & Freter, C. (2015). Lipid Metabolism, Apoptosis and Cancer Therapy. *International Journal of Molecular Sciences*, 16(1), 924.
- King, A., Selak, M. A., & Gottlieb, E. (2006). Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. *Oncogene*, 25(34), 4675-4682.
- Malmgren, J. A., Parikh, J., Atwood, M. K., & Kaplan, H. G. (2014). Improved Prognosis of Women Aged 75 and Older with Mammography-detected Breast Cancer. *Radiology*, 273(3), 686-694, doi:doi:10.1148/radiol.14140209.

- Miller, E., Lee, H., Lulla, A., Hernandez, L., Gokare, P., & Lim, B. (2014). Current treatment of early breast cancer: adjuvant and neoadjuvant therapy [v1; ref status: indexed, http://f1000r.es/312] (Vol. 3, Vol. 198): F1000Research.
- Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh, M., Perez, E. A., et al. (2007). Paclitaxel plus Bevacizumab versus Paclitaxel Alone for Metastatic Breast Cancer. *New England Journal of Medicine*, 357(26), 2666-2676, doi:doi:10.1056/NEJMoa072113.
- Moestue, S., Sitter, B., Bathen, T. F., Tessem, M.-B., & Gribbestad, I. S. (2011). HR MAS MR spectroscopy in metabolic characterization of cancer. *Current Topics in Medicinal Chemistry*, 11(1), 2-26.
- Moestue, S. A., Giskeødegård, G. F., Cao, M. D., Bathen, T. F., & Gribbestad, I. S. (2012). Glycerophosphocholine (GPC) is a poorly understood biomarker in breast cancer. *Proceedings of the National Academy of Sciences*, 109(38), E2506, doi:10.1073/pnas.1208226109.
- Ng, C. K., Pemberton, H. N., & Reis-Filho, J. S. (2012). Breast cancer intratumor genetic heterogeneity: causes and implications. *Expert Review of Anticancer Therapy*, 12(8), 1021-1032, doi:doi:10.1586/era.12.85.
- Parker, J. S., Mullins, M., Cheang, M. C. U., Leung, S., Voduc, D., Vickery, T., et al. (2009). Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. *Journal of Clinical Oncology*, 27(8), 1160-1167, doi:10.1200/jco.2008.18.1370.
- Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. [10.1038/35021093]. *Nature*, 406(6797), 747-752, doi:http://www.nature.com/nature/journal/v406/n6797/suppinfo/406747a0 S1.html.
- Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team (2014) (2014). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-117, URL: http://CRAN.R-project.org/package=nlme.
- Pinheiro, J. C., & Bates, D. M. (2000). Linear Mixed-Effects Models: Basic Concepts and Examples. In *Mixed-Effects Models in S and S-PLUS* (pp. 3-56, Statistics and Computing). New York, NY, USA: Springer New York.
- R Core Team (2014). R: A language and environment for statistical computing. Viena, Austria. URL http://www.R-project.org/; R Foundation for Statistical Computing.
- Rubin, D. B. (1987). Mulitiple Imputation for Nonresponse in Surveys. New York, USA: John Wiley & Sons.
- Saraswathy, S., Crawford, F., Lamborn, K., Pirzkall, A., Chang, S., Cha, S., et al. (2009). Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. *Journal of Neuro-Oncology*, 91(1), 69-81, doi:10.1007/s11060-008-9685-3.
- Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., et al. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. *Cancer Cell*, 7(1), 77-85, doi:http://dx.doi.org/10.1016/j.ccr.2004.11.022.
- Semenza, G. L. (2008). Tumor metabolism: cancer cells give and take lactate. *The Journal of Clinical Investigation*, 118(12), 3835-3837, doi:10.1172/JCI37373.
- Sitter, B., Sonnewald, U., Spraul, M., Fjösne, H. E., & Gribbestad, I. S. (2002). High-resolution magic angle spinning MRS of breast cancer tissue. *NMR in Biomedicine*, 15(5), 327-337, doi:10.1002/nbm.775.
- Sørlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. *Proceedings of the National Academy of Sciences*, 100(14), 8418-8423, doi:10.1073/pnas.0932692100.
- van der Hage, J. A., van de Velde, C. J. H., Julien, J.-P., Tubiana-Hulin, M., Vandervelden, C., Duchateau, L., et al. (2001). Preoperative Chemotherapy in Primary Operable Breast Cancer: Results From the European Organization for Research and Treatment of Cancer Trial 10902. *Journal of Clinical Oncology, 19*(22), 4224-4237.
- Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. *Science*, *324*(5930), 1029-1033, doi:10.1126/science.1160809.
- Végran, F., Boidot, R., Michiels, C., Sonveaux, P., & Feron, O. (2011). Lactate Influx through the Endothelial Cell Monocarboxylate Transporter MCT1 Supports an NF-κB/IL-8 Pathway that

- Drives Tumor Angiogenesis. Cancer Research, 71(7), 2550-2560, doi:10.1158/0008-5472.can-10-2828.
- Walenta, S., & Mueller-Klieser, W. F. (2004). Lactate: mirror and motor of tumor malignancy. Seminars Radiation Oncology, 14(3), in doi:http://dx.doi.org/10.1016/j.semradonc.2004.04.004.
- Walenta, S., Wetterling, M., Lehrke, M., Schwickert, G., Sundfør, K., Rofstad, E. K., et al. (2000). High Lactate Levels Predict Likelihood of Metastases, Tumor Recurrence, and Restricted Patient Survival in Human Cervical Cancers. Cancer Research, 60(4), 916-921.
- Westerhuis, J., Hoefsloot, H. J., Smit, S., Vis, D., Smilde, A., van Velzen, E. J., et al. (2008). Assessment of PLSDA cross validation. Metabolomics, 4(1), 81-89, doi:10.1007/s11306-007-
- Wold, S., Esbensen, K., & Geladi, P. (1987). Principal Component Analysis. Chemometr Intell Lab, 2, 37-52.
- Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Intelligent Chemometrics and Laboratory Systems, 58(2), 109-130, doi:http://dx.doi.org/10.1016/S0169-7439(01)00155-1.
- Xie, J., Wu, H., Dai, C., Pan, Q., Ding, Z., Hu, D., et al. (2014). Beyond Warburg effect dual metabolic nature of cancer cells. [Article]. *Sci. Rep., 4*, doi:10.1038/srep04927 http://www.nature.com/srep/2014/140513/srep04927/abs/srep04927.html#supplementary-information.

Tables

		Total	Bevacizumab- treated	Chemotherapy Only
Number of patients		122	60	62
Mean age (range)	years	49.0 (25 – 70)	49.6 (27-70)	48.4 (25-68)
Therapy Response				
Pathological complete	pCR	20	13	7
response (pCR)	No pCR	102	47	55
Pathological minimal	pMRD	44	24	20
residual disease (pMRD)	Pathological non- responder (pNR)	78	36	42
Response ratio	Good response (GR)	31	18	13
_	Intermediate response (IR)	69	32	37
	No response (NR)	22	10	12
Histology	Ductal	98	47	51
<i>6v</i>	Lobular	21	12	9
	Other	3	1	2
Γ status at TP1	T1	0	0	0
	T2	36	17	19
	T3	74	37	37
	T4	11	5	6
	NA	1	1	0
Γ status at TP3	T1	49	21	28
	T2	36	20	16
	T3	14	5	9
	T4	0	0	0
	NA	23	14	9
Node status at TP3	N0	45	23	22
	N1	30	14	16
	N2	14	5	9
	N3	4	0	4
	NA	29	18	11
ER status	+	101	48	53
	-	21	12	9
PgR status	+	70	32	38
	-	51	27	24
	NA	1	1	0

Table 2. LMM results for the fixed effects of time, pMRD response, and bevacizumab.								
	TP2 vs TP1	TP3 vs TP2	pMRD vs pNR	Bev-treated vs Chemo-only	Significant Interactions [#]			
Glc	0.130* (0.065)	0.309** (0.064)	-0.155 (0.078)	0.096 (0.055)	Time × Response			
Asc	-0.036* (0.015)	-0.107** (0.014)	-0.016 (0.017)	0.005 (0.017)	None			
Lac	0.173** (0.050)	0.398** (0.048)	0.157** (0.049)	0.053 (0.047)	None			
Tyr	-0.047* (0.023)	-0.121** (0.022)	0.052* (0.026)	-0.023 (0.016)	Time × Response			
mI	0.050** (0.016)	0.035** (0.015)	-0.014 (0.021)	-0.003 (0.020)	None			
Gly	-0.029 (0.017)	0.004 (0.016)	0.011 (0.021)	0.018 (0.020)	None			
Tau	<0.001 (0.021)	0.042* (0.021)	-0.059* (0.026)	0.014 (0.018)	Time × Response			
GPC	-0.032 (0.018)	-0.057** (0.017)	-0.001 (0.022)	-0.022 (0.021)	None			
PCh	-0.061** (0.023)	-0.101** (0.023)	0.057 (0.029)	-0.024 (0.021)	Time × Response			
Cho	-0.055** (0.018)	-0.043** (0.018)	0.051* (0.022)	-0.034* (0.015)	Time × Response			
Cr	-0.015 (0.017)	-0.048** (0.016)	-0.034 (0.018)	0.007 (0.017)	None			
GSH	0.022 (0.030)	-0.045 (0.030)	0.044 (0.029)	0.057* (0.029)	Time × Response; Time × Bevacizumab			
Gln	0.021 (0.022)	0.119** (0.021)	-0.011 (0.026)	-0.007 (0.025)	None			
Succ	-0.035 (0.037)	0.035 (0.036)	0.048 (0.042)	-0.032 (0.027)	Time × Response			
Glu	0.018 (0.021)	0.014 (0.020)	0.064* (0.025)	0.045 (0.024)	None			
Ala	0.042 (0.029)	0.096** (0.028)	-0.016 (0.028)	0.039 (0.026)	None			

Metabolite increase (positive estimate) or decrease (negative estimate) is shown for TP2, TP3, pMRD, and bevacizumab-treated patients in relation to TP1,TP2, pNR, and chemotherapy-only patients, respectively. Standard errors are shown in parenthesis. * and ** indicate significance ($p \le 0.05$) before and after multiple testing correction, respectively.

[#]Final LMMs shown here were built including significant interaction terms, but interaction results are presented separately in Table 3.

pMRD: pathological minimal residual disease; pNR: pathological non-responder; Bev-treated: Bevacizumab-treated; Chemo-only: Chemotherapy-only; Glc: glucose; Asc: ascorbate; Lac: lactate; Tyr: tyrosine; ml: myo-inositol; Gly: glycine; Tau: taurine; GPC: glycerophosphocholine; PCh: phosphoscholine; Cho: choline; Cr: creatine; GSH: glutathione; Gln: glutamine; Succ: succinate; Glu: glutamate; Ala: alanine.

Figures

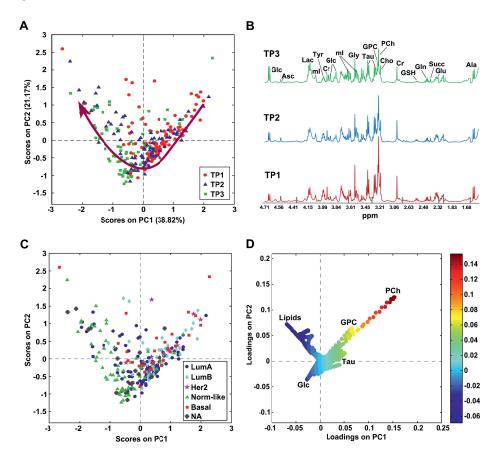


Fig. 1. PCA including all samples. (A) The scores plot shows a trend in the direction of the arrow with increasing time point. (B) PQN-normalized mean spectra at each time point. Gray bars indicate removed spectral regions. (C) The normal-like gene expression subtype is most clearly separated from the rest in the scores plot, showing a similar distribution as TP3 in A. (D) The loadings plot indicates higher phosphocholine, glycerophosphocholine, and taurine at TP1 and increasing glucose and lipids with increasing time of treatment and in normal-like samples. Loadings are colored according to LV1. LumA=luminal A; LumB=luminal B; Norm-like=normal-like; NA=not available; Glc=glucose; Asc=ascorbate; Lac=lactate; ml=myo-inositol; Tyr=tyrosine; Cr=creatine; Gly=glycine; Tau=taurine; GPC=glycerophosphocholine; PCh=phosphoscholine; Cho=choline; GSH=glutathione; Gln=glutamine; Succ=succinate; Glu=glutamate; Ala=alanine.

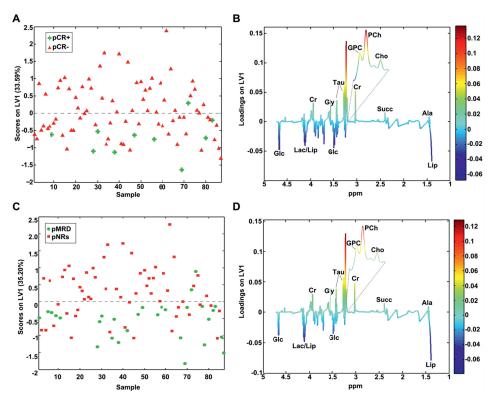


Fig. 2. PLS-DA scores (A) and loadings (B) plots of pathological complete responders (pCR+) vs patients with no pathological complete response (pCR-) at TP3, and PLS-DA scores (C) and loadings (D) plots of pathological minimal residual disease patients (pMRD) vs pathological non-responders (pNRs) at TP3. Both pCR+ (A) and pMRD (C) display lower scores along LV1 than pCR- and pNRs, respectively. Loadings show pCR+ (B) and pMRD (D) having higher glucose and lactate compared to pCR- and pNRs, respectively, and lower levels of the choline containing metabolites, creatine, glycine, taurine, succinate, and alanine. Loadings are colored according to LV1. Glc=glucose; Lac=lactate; Lip=lipids; Cr=creatine; Gly=glycine; Tau=taurine; GPC=glycerophosphocholine; PCh=phosphoscholine; Cho=choline; Succ=succinate; Ala=alanine.

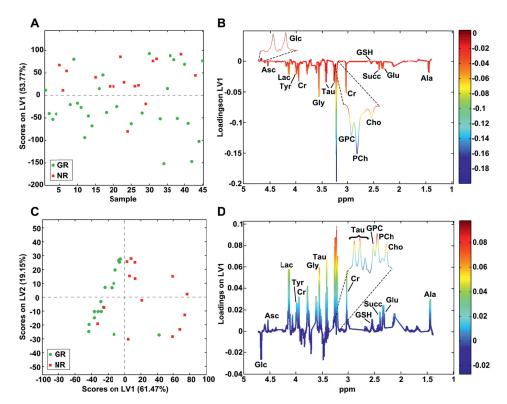
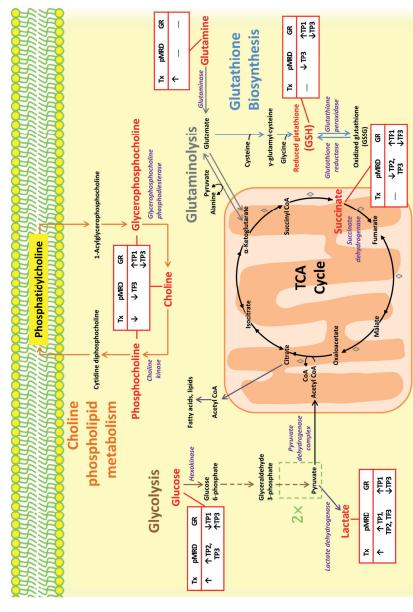



Fig. 3. PLS-DA scores and loadings plots of good response (GR) vs no response (NR) patient groups at TP1 (A-B) and TP3 (C-D). (A) At TP1, the GR group displays lower scores along LV1 than the NR group, with loadings showing the former group having lower glucose, and higher levels of lactate, taurine, the choline containing metabolites, glutathione, and succinate, among others (B). (C) At TP3, the GR group also displays lower scores along LV1, but the loading profile (D) is inverted when compared to TP1, indicating a metabolic switch related to tumor reduction with treatment time. Loadings are colored according to LV1. Glc=glucose; Asc=ascorbate; Lac=lactate; Tyr=tyrosine; Cr=creatine; Gly=glycine; Tau=taurine; GPC=glycerophosphocholine; PCh=phosphoscholine; Cho=choline; GSH=glutathione; Succ=succinate; Glu=glutamate; Ala=alanine.

tricarboxylic acid (TCA) cycle (black), choline phospholipid metabolism (orange), glutaminolysis (gray), and glutathione biosynthesis (blue), with altered metabolities and related enzymes marked in red and purple, respectively. General trends in metabolite levels with increasing treatment time (Tx) and differences in pathological minimal residual disease patients compared to pathological non-responders (pMRD) and in the response ratio group of good response compared to the no response group (GR) at each time point (TP) indicated with arrows are shown in red boxes. TCA cycle reactions that are recruited by glutaminolysis are marked δ . Fig. 4. Illustration of treatment effect and differences between responders and non-responders. Cancer-relevant pathways shown include glycolysis (brown),

Supplementary Information

Article Title: Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy

Supplementary File 1: Supplementary methods and references

Information on supplementary methods.

Supplementary File 2: Supplementary Figures

Supplementary Figures S1-S3.

Supplementary File 3: Supplementary Table 2

Supplementary Table 2.

Supplementary File 4: Supplementary Tables 3-8

Supplementary Tables 3-8.

Article Title: Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy

Journal Name: Metabolomics

Authors: Leslie R. Euceda, Tonje H. Haukaas, Guro F. Giskeødegård, Riyas Vettukattil, Jasper Engel, Laxmi Silwal-Pandit, Steinar Lundgren, Elin Borgen, Øystein Garred, Geert Postma, Lutgarde M.C. Buydens, Anne-Lise Børresen-Dale, Olav Engebraaten, Tone F. Bathen

Corresponding author: Leslie R. Euceda, Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway, E.mail: leslie.e.wood@ntnu.no.

Supplementary Methods

Patient treatment. All patients received neoadjuvant chemotherapy with four three-weekly cycles of anthracyclines in the form of FEC100 (5-fluorouracil 600 mg/m2, epirubicin 100 mg/m2, cyclophosphamide 600 mg/m2) followed by taxane-based therapy, (12 weekly infusion with paclitaxel 80 mg/m2 or four three-weekly cycles of docetaxel 100 mg/m2). Patients randomized to receive bevacizumab were all given 15 mg/kg every three weeks. After 12 weeks of FEC100, most patients were started on docetaxel, and received 15 mg/kg with this therapy. However, due to toxicity, a majority of the patients thereafter received paclitaxel with bevacizumab dosing 10 mg/kg every other week.

Sample handling. Biopsies were immediately snap-frozen after collection and stored at -80°C. At TP1 and TP2, three core needle biopsies were sampled. The middle section of the first biopsy was used for histopathological analysis, and approximately 4 mg were used for high resolution (HR) magic angle spinning (MAS) magnetic resonance (MR) analysis. The rest of the first needle biopsy was blended with the second needle biopsy, and divided equally for DNA and gene expression profiling. The third needle biopsy was used for protein expression analysis. At TP3, a piece between 80-100 mg was cut from the surgically removed tumor. One or two additional pieces were cut when the first piece had a mass lower than 80 mg. The two lateral sections of the first piece were used for histopathological analysis, and approximately 4 mg was used for HR MAS MR analysis. The rest of the first piece was blended, together with additional pieces, if any. 10-16 mg and 25-30 mg of the blended tumor material was used for protein expression analysis and DNA profiling, respectively, with the remaining material being used for gene expression profiling.

Acquisition and processing of gene expression microarray data. Total RNA was extracted using TRIzol® reagent (Carlsbad, CA, USA). Gene expression profiling was performed using one color Sureprint G3 Human GE 8x60k Microarrays (Agilent Technologies) according to the manufacturer's protocol (One-Color Microarray-Based Gene expression Analysis, Low Input Quick Amp Labeling, v.6.5, May 2010). The microarray data was log2 transformed, quantile normalized, and mean centered on both rows and columns.

High resolution (HR) magic angle spinning (MAS) magnetic resonance spectroscopy (MRS) experiments and spectral preprocessing. Samples were prepared within a short period (< 5min) on a dedicated work station designed to keep the samples frozen. Biopsies $(4.1 \pm 1.3 \text{ mg})$ were cut to fit into 30 μ L disposable inserts containing 3.0 μ L of 24.29 mM sodium formate (VWR BDH Prolabo, France) in D2O (Armar Chemicals, Switzerland) for shimming and locking purposes. Each insert was set tightly into a 4 mm o.d. MAS zirconium rotor. HR MAS MR spectra were acquired on a Bruker Avance DRX600 spectrometer (Bruker Biospin GmbH, Germany) equipped with a ¹H/¹³C MAS probe. The run order of the samples was randomized and samples were blindly analyzed. Samples were spun at 5 kHz while kept at a temperature of 5°C to minimize tissue degradation. A spin-echo one dimensional experiment with presaturation (cpmgprld, Bruker BioSpin, Germany) was recorded for all samples, with effective echo time of 77 ms, a spectral width of 20 ppm (-5 to 15 ppm), and 256 scans. The free induction decays (FIDs) were multiplied by a 0.30 Hz exponential weighting function and Fourier transformed into 64K real points. Phase correction was performed automatically for each spectrum using TopSpin 3.1 (Bruker BioSpin GmbH). Further spectral preprocessing was carried out in Matlab R2013b (The Mathworks, Inc., USA). Chemical shifts were referenced to the creatine peak at 3.03 ppm. The spectral region between 1.40 - 4.70 ppm, containing the majority of low-molecular weight metabolites, was selected as the region of interest. The spectra were baseline corrected using asymmetric least squares (Eilers 2004) with parameters $\lambda = 1e7$ and p = 0.0001. Additionally, the mean value of the noise regions at 4.52-4.49, 3.10-3.06, 2.63-2.58, and 1.84-1.75 ppm were subtracted from each spectrum so that the baseline varied around zero. The spectra were peak aligned using icoshift (Savorani et al. 2010). Lipid peaks at 4.37-4.27, 2.97-2.70, 2.31-2.23, 2.11-1.92, 1.64-1.49 ppm, and the contaminant peaks for ethanol and acetone at 3.71-3.63 and 2.23-2.21 ppm, respectively, were excluded for further analysis. Regions containing peaks from lidocaine, a local anesthetic used for sampling biopsies at TP1 and TP2, at 3.38-3.30 and 2.21-2.17 ppm, were also excluded. The spectra were subsequently PQN (Dieterle et al. 2006) normalized. Normalization after lipid removal corrects for differences in sample size and tumor cell content, as it can be assumed that most of the lipid signals from breast biopsies do not originate from cancer cells but from adjacent adipose tissue.

Validation of partial least squares-discriminant analysis (PLS-DA) models. Double-layered cross validation (CV) (Westerhuis et al. 2008) was used to optimize the number of PLS LVs in the inner layer and to assess model performance in the outer layer, using 10% randomly selected samples as a test set and repeating the splitting until each sample had been used for testing once at each layer. The maximum number of LVs tested was 10. The final classification results and optimal number of LVs resulted from the average and mode, respectively, of 20 repetitions of the whole double CV procedure. An additional validation was carried out through permutation testing (Westerhuis et al. 2008) set to 1000 permutations. Models were considered significant if the final accuracy obtained from non-permuted double CV was higher than 95% of the permuted accuracy values (p≤0.05).

Lactate imputation validation. A resampling-type procedure was employed to validate the imputation of lactate (Lac) relative levels using the package for the method of multivariate imputation by chained equations (MICE) set to 10 imputations and predictive mean matching. From the original sample cohort of 325 breast tumor tissue samples analyzed with high resolution (HR) magic angle spinning (MAS) magnetic resonance (MR) spectroscopy, 40 were excluded due to high lipid content or poor spectral quality, resulting in 285 samples. Of these, 124 exhibited a peak originating from the C₁H₂ of the glycerol backbone of phospholipids and triglycerides at 4.13 ppm, which overlapped with the area integrated for Lac. The remaining 161 samples with Lac values successfully calculated were used as a training set. The imputation procedure was repeated 20 times, without sample normalization. Five per cent of the samples from the training set ($n\approx8$) were randomly left out as a test set at each imputation repetition. This resulted in the unknown samples being predicted 20 times and each training set sample included in the test set only once. The mean of the 20 predicted values for the unknown samples was used as their final Lac value. Comparison between the predicted and real value for the training set yielded a range-normalized root mean squared error (RMSE) of 0.006 and a coefficient of determination (\mathbb{R}^2) of 0.9996.

Evaluation of significance of interactions between LMM fixed effects. The significance of interactions between LMM fixed effects was evaluated by comparing a series of models, with the first, null model (M₀) including no interactions, and subsequent, more complex models incorporating an additional interacting factor. Models in the form MANB were the three possible single-interaction models: time interacting with pMRD response (M_{T×R}) or bevacizumab (M_{T×B}), and pMRD response interacting with bevacizumab (M_{R×B}). The final, full model (M_F) incorporated all possible interactions (M_{T×R×B}). Likelihood ratio tests using the anova function from the 'stats' package (R Core Team 2014) in R 3.1.1 were employed to perform two comparisons for each single-interaction model: 1) M_0 versus $M_{A\times B}$ and 2) $M_{A\times B}$ versus M_F. The former model in both comparisons was the reduced model containing fewer interactions, while the latter was the more complex model. Differences between reduced and complex models were considered significant for multiple testing corrected p-value (q) ≤ 0.05 , which indicated that the interaction excluded in the reduced model provided important information and should be included in the final LMM. If the first comparison (M₀ versus M_{A×B}) did not yield a significant difference between the models, the second comparison (M_{A×B} versus M_F) was not considered significant, independently of the q-value. The comparison between M_0 and $M_{T\times R}$ was significant for seven metabolites, while M_0 versus $M_{T \times B}$ was significant for glutathione (GSH) only, and M_0 versus $M_{R \times B}$ for none (Supplementary Table 1). No significant q-values were detected for $M_{A\times B}$ versus M_F in those eight cases with significant M_0 versus $M_{A \times B}$. Therefore, no three-factor interactions were found to be significant.

Supplementary Table 1. q-values resulting from likelihood ratio tests to compare LMMs to determine interaction significance.

	Time poir	nt × pMRD	Time point ×	bevacizumab	pMRD r	esponse ×
	resp	onse			bevaci	izumab
Metabolite	M_0 vs $M_{T\times R}$	$M_{T\times R}$ vs M_F	M_0 vs $M_{T \times B}$	$M_{T \times B}$ vs M_F	M ₀ vs M _{R×B}	$M_{R\times B}$ vs M_F
Gle	**9.28E-05	7.86E-01	2.56E-01	*1.99E-03	7.82E-01	*8.05E-04
Asc	4.40E-01	7.86E-01	6.44E-01	4.97E-01	7.82E-01	4.24E-01
Lac	7.11E-02	7.86E-01	5.37E-01	1.95E-01	7.82E-01	1.41E-01
Tyr	**9.40E-06	7.86E-01	6.74E-01	*1.68E-04	7.82E-01	*3.54E-04
mI	8.73E-02	7.86E-01	5.37E-01	3.17E-01	7.82E-01	2.38E-01
Gly	1.59E-01	7.86E-01	5.37E-01	3.67E-01	7.82E-01	3.61E-01
Tau	**3.49E-04	7.86E-01	4.64E-01	*1.08E-02	7.82E-01	*3.79E-03
GPC	6.71E-01	7.86E-01	5.37E-01	7.96E-01	7.82E-01	7.59E-01
PCh	**4.33E-02	7.86E-01	2.52E-01	2.72E-01	7.82E-01	7.63E-02
Cho	**1.91E-02	7.86E-01	6.74E-01	9.77E-02	7.82E-01	1.50E-01
Cr	4.32E-01	9.51E-01	6.74E-01	7.96E-01	7.82E-01	7.77E-01
GSH	**1.52E-02	2.45E-01	**1.80E-02	1.89E-01	7.82E-01	*3.43E-03
Gln	2.60E-01	9.51E-01	8.36E-01	6.90E-01	7.82E-01	7.59E-01
Succ	**1.25E-02	7.86E-01	5.37E-01	9.77E-02	7.82E-01	7.54E-02
Glu	7.22E-01	7.86E-01	5.37E-01	7.59E-01	7.82E-01	7.59E-01
Ala	6.86E-01	2.45E-01	7.04E-02	7.24E-01	7.82E-01	9.84E-02

Significant q-value (\leq 0.05) and interaction is indicated with ** and bold values. Significant q-value but not significant interaction is indicated with *. M_0 : null model without interactions; M_F : full model with all interactions; \times : interaction; \times : factor time point; \times : factor pMRD response; \times : factor bevacizumab; Gle:glucose; Asc:ascorbate; Lac:lactate; Tyr:tyrosine; mI:myo-inositol; Gly:glycine; Tau:taurine; GPC:glycerophosphocholine; PCh:phosphocholine; Cho:choline; Cr:creatine; GSH:glutathione; Gln:glutamine; Succ:succinate; Glu:glutamate; Ala:alanine.

Supplementary References

- Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics. *Analytical Chemistry*, 78(13), 4281-4290, doi:10.1021/ac051632c.
- Eilers, P. H. C. (2004). Parametric Time Warping. *Analytical Chemistry*, 76(2), 404-411, doi:10.1021/ac034800e.
- R Core Team (2014). R: A language and environment for statistical computing. Viena, Austria. URL http://www.R-project.org/: R Foundation for Statistical Computing.
- Savorani, F., Tomasi, G., & Engelsen, S. B. (2010). icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. *Journal of Magnetic Resonance*, 202(2), 190-202, doi:http://dx.doi.org/10.1016/j.jmr.2009.11.012.
- Westerhuis, J., Hoefsloot, H. J., Smit, S., Vis, D., Smilde, A., van Velzen, E. J., et al. (2008). Assessment of PLSDA cross validation. *Metabolomics*, 4(1), 81-89, doi:10.1007/s11306-007-0099-6.

Article Title: Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy

Journal Name: Metabolomics

Authors: Leslie R. Euceda, Tonje H. Haukaas, Guro F. Giskeødegård, Riyas Vettukattil, Jasper Engel, Laxmi Silwal-Pandit, Steinar Lundgren, Elin Borgen, Øystein Garred, Geert Postma, Lutgarde M.C. Buydens, Anne-Lise Børresen-Dale, Olav Engebraaten, Tone F. Bathen

Corresponding author: Leslie R. Euceda, Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway, E.mail: leslie.e.wood@ntnu.no.

Supplementary Figures

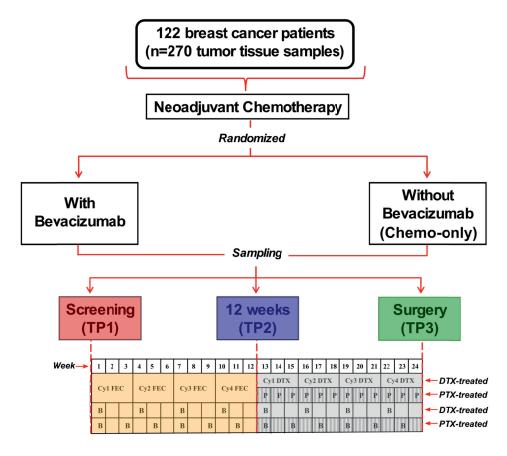
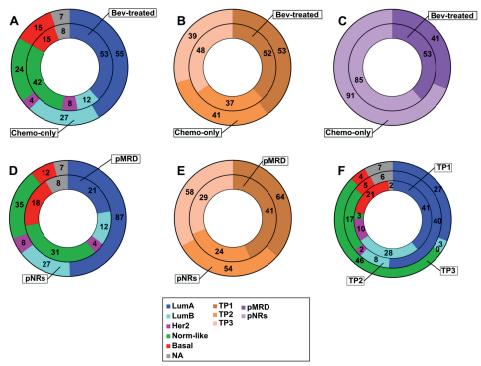



Fig. S1. Study Design. 122 patients receiving neoadjuvant chemotherapy (Chemo) were randomized to receive bevacizumab or not. Tissue biopsies were sampled at three time points

(TP): before (screening), during (after 12 weeks), and after treatment (during surgery). The lower box illustrates the treatment schedule: four three-weekly cycles (Cy) of FEC followed by 12 weeks of taxane-based treatment. For those patients receiving bevacizumab (B), this was administered once every three weeks and every other week for docetaxel (DTX) and paclitaxel (PTX) receivers, respectively. P:Paclitaxel administration.

Fig. S2. Sample composition of the cohort (n=270). Each chart shows number of patients encompassing a pair of characteristics: bevacizumab randomization group combined with (A) gene expression subtype, (B) time point, and (C) pathological minimal residual disease (pMRD) response group; pMRD response group combined with (D) gene expression subtype and (E) time point; and (F) time point combined with gene expression subtype. Each ring in the charts represents an individual level of one characteristic with different shading indicating the numerical proportion of samples from the levels of the second characteristic within it. Chemo-only=chemotherapy only; Bevtreated=bevacizumab-treated; pNRs=pathological non-responders; LumA=luminal A; LumB=luminal B; Norm-like=normal-like; NA=not available.

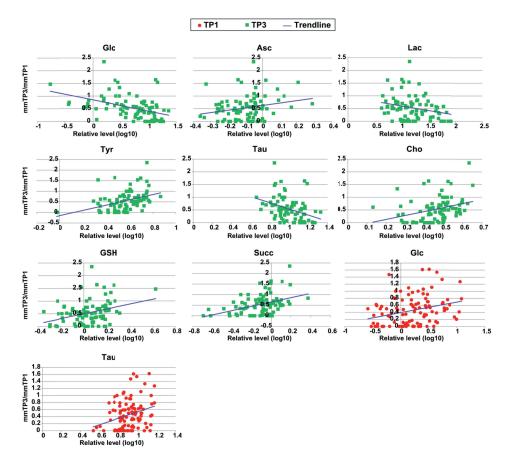


Fig. S3. Correlation trend between metabolite relative levels and response ratio. Only significantly correlated metabolites ($q \le 0.05$) are shown. Glc=glucose; Asc=ascorbate; Lac=lactate; Tyr=tyrosine; Tau=taurine; Cho=choline; GSH=glutathione; Succ=succinate.

Article Title: Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy

Authors: Lesie R. Euceda, Tonje H. Hankaas, Guo F. Giskewdegaled, Ryas Vettudattil, Jasper Engel, Laxmi Silwal-Pandit, Steinar Lundgren, Elin Borgen, Oystein Garred, Geert Postma, Lungarde M.C. Buydens, Anne-Lise Borresen-Dale, Olav Engebraaten, Tone F. Bathen Journal Name: Metabolomics

	Identification Level: 2	2	2	2	2	2		2		2	2	2	2	2	2		2	
	Human Metabolome Database ID HMDB00122 HMI	00122 HMDB	10044 HMDE	100190 HMD	B00158 HMDI	100211 HMD	1123	HMDB00251 HMC	9800080	Not available	HMDB0008	7 HMDB000	64 HMDB0012	0125 HMDB0	00641 HMDB	HMDB00254 HMDB03339	03339 HMDE	00161
	Bevacizumab randomization group Glucos	5	ate Lactate	e Iyros	ine iniyo-	nositol Glycine	o cco.	ine Gryc	eropnospnocnoline	Prosphocholine		S Creatine	e Giurathi	Glutar 4.1	nine sucon	nate Giutar	nate Alanır O 7172	0.107/
1 IPI 2 TPI	-		0.0012	0.001/	0.7304	0.6295	0.3394	1 0048	0.3628							-0.090.0-	0.7173	0.1974
2 TP1 2		0.0045	0.1423	1 4190	0.000	0.0230	0.317.0	00000	0.01010						11433	0.0000	0.0038	21000
3 IPI 4 TB1		0.0845	0.2176	1.4180	0.6092	0.6700	0.5888	0.8388	0.958			7.4961 U.:	0.333/ 0	0.3085	. 2621.0	0.0400	0.00.0	0.2815
11 t		0.1257	0.4500	0.050.0	0.7018	0.3204	0.5057	0.9334	0.4900						2760	0.0438	0.6769	0.2924
6 TP1	-	0.1373	0.0063	0.6303	0.7283	0.5622	0.7306	0.8542	0.6125	1 0041					- 1221	-0.0853	0.7395	0.2760
7 TP1	_	. ~	0.0754	1.0415	0.7475	0.7199	0.4614	0.6387	1.181						0.1144	0.0274	0.6626	0.0811
8 TP1	Chemotherapy only (0.3974	0.0359	0.4174	0.8236	0.5339	0.6952	0.8482	0.7840						0.1512	0.2147	0.3150	0.2738
9 TP1			0.0034	0.3191	0.5544	0.4674	0.5291	1.1428	0.764	_		_	0.4294 0		0.2997	-0.1553	0.4558	0.1106
10 TP1			0.0697	0.3745	0.7431	0.6322	0.5383	1.0094	0.5203		_		_			-0.0293	0.6984	0.1680
11 TP1	p		0.0252	0.7477	0.6633	0.6108	0.6656	1.0301	0.5359	9 0.7010	_		0.4014 0			-0.3051	0.6791	0.2902
12 TP1			0.0984	0.6342	0.8239	0.4978	0.4384	1.0008	0.7414		_			0.2873 0		-0.2185	0.6761	-0.0268
13 TP1	_	•	-0.0335	0.6139	0.6867	0.6637	0.4805	0.9870	0.5654		_					-0.1389	0.4937	0.2217
14 TP1	P		9600.0	1.0074	0.6279	0.5807	0.3396	1.1705	0.6186		_					-0.2217	0.7731	0.4202
15 TP1			-0.0431	1.2221	0.6226	0.5495	0.4814	1.0791	0.7440	0 0.9524		0.3962 0.3	0.3881 -0			-0.2045	0.6962	0.3352
16 TP1			0.0774	0.6368	0.8439	0.6038	0.9404	0.8099	0.659							0.0629	0.9142	0.4982
17 TP1	р		-0.0409	0.5154	0.6883	0.6727	0.5837	1.0707	0.5498		_					-0.0882	0.7316	0.2148
18 TP1			-0.0731	0.4543	0.7502	0.7100	0.5016	0.8117	0.4824	4 1.0128		0.4817 0.4	0.4303 0	0.1290		0.0057	0.6210	0.3524
19 TP1			0.0407	0.6876	0.7008	0.6590	0.4115	1.0037	0.537							-0.0050	0.7199	0.1628
20 TP1			0.0967	1.3434	0.5796	0.5857	0.4365	0.7012	0.921							-0.0563	0.7252	0.1770
21 TP1	_	0.1028	0.1739	0.8220	0.7710	0.4993	0.8243	0.9545	0.4347		_					-0.0125	0.8040	0.2793
22 TP1	р	0.4410	0.0559	0.6902	0.6939	0.6170	0.6672	0.8131	0.5526	6 0.8520			0.5431 0			8660.0	0.5822	0.3125
23 TP1			0.0056	0.7301	0.7335	0.6960	0.3665	0.9401	0.7340			0.5462 0.4				-0.1712	0.5634	0.1138
24 TP1			0.1280	0.9168	0.9181	0.4721	0.6128	0.8663	0.978							0.0647	0.5984	0.2603
25 TP1	Р	0.3950	0.0663	0.2573	0.7271	0.7535	0.4279	0.8775	0.6349		_					-0.0963	0.6590	0.2437
26 TP1		0.3816	0.0537	0.3477	0.7148	0.6743	0.4532	0.9539	0.7208	8 0.7954		0.5080 0.3	0.3798 0	0.1785	0.3014	-0.0223	0.5906	0.1170
27 TP1	0	-0.0308	0.2201	0.8501	0.9339	0.7064	0.7328	0.8047	0.7340							0.0116	0.9219	0.2487
28 TP1		0.2575	0.0680	0.7590	0.7386	0.5937	0.5216	1.0385	0.7040		_					0.0028	0.7417	0.1850
29 TP1		-0.2137	0.1852	1.1398	0.9087	0.3832	0.6391	0.9248	0.7073							-0.0071	1.1490	0.4952
30 TP1			0.1485	1.3107	0.5886	0.7036	0.4591	0.8629	0.581			0.3305 0.				-0.2794	0.7322	0.3699
31 TP1			0.0341	0.8791	0.7753	0.5147	0.7776	0.5323	0.7728				0.5354 0			0.1181	0.8447	0.2714
32 IPI			0.0253	0.8136	0.6660	0.6879	0.2475	0.8151	0.801							0.0357	0.7122	0.2390
33 TP1			0.0186	0.5136	0.6454	0.6864	0.5133	0.9455	0.5929							-0.0235	0.6684	0.3877
34 IPI			0.1614	1.0292	0.8496	0.4275	0.7041	0.7517	0.6457	7 0.7322		0.7908 0.7				0.0681	0.9367	0.2619
35 IPI		0.7367	0.0750	1.6919	0.5040	0.6025	0.5///	0.9461	0.514							-0.5297	1.0236	0.4325
36 IPI	Bevacizumab treated	0.2054	0.0055	1.3898	0.6030	0.5052	0.4531	0.7543	0.658			0.4365				-0.0379	0.7356	0.2390
37 IFI		0.0467	0.000	1.1/32	0.6214	0.8837	0.4074	1 1333	0.4432							0.000	0.7274	0.3210
39 TP1		-0.0566	0.0338	0.7683	0.7027	0.7464	0.3256	0.9721	0.6079	0.8228		0.4729	0.4019 0	0.3136	0.2609	0.0072	0.6699	0.2771
40 TP1		-0.1983	0.1428	0.7115	0.8306	0.6392	0.5919	0.8168	0.7011							0.0737	0.6137	0.0910
41 TP1		0.4343	0.0272	0.6218	0.8106	0.6183	0.5949	0.8460	0.6255		_		0.3937 0			0.0531	0.5653	0.3264
42 TP1	Bevacizumab treated	-0.2032	0.0013	0.7223	0.7120	0.7591	0.4041	0.7836	0.9001	1.2244	_					-0.0929	0.7166	0.0832
43 TP1		-0.3283	0.1948	0.7767	0.8406	0.4740	0.6960	0.9392	0.4111		_					0.0059	0.6951	0.1248
44 TP1		0.2367	0.0689	0.3630	0.7115	0.6622	0.4304	0.9248	0.5072		_	_				0.0354	0.6716	0.2640
45 TP1		-0.3339	0.0207	1.1654	0.8018	0.3364	0.3610	0.9434	0.3094		_	_				-0.2528	0.6934	-0.5619
46 TP1	D	0.0245	0.0618	0.3256	0.7455	0.4550	0.3113	0.9522	0.781	6 0.9269			0.6413 0	0.2434	0.3460	-0.0882	0.5667	0.0951
47 TP1		0.0312	0.1088	1.4446	0.7490	0.6108	0.4639	0.8631	0.5978							0.0591	0.8127	0.3449
48 TP1	P	0.2407	0.0840	0.6046	0.7849	0.2923	0.1980	1.0313	0.8371		_	_	0.4182 0		0.2910	-0.0056	0.6807	0.1565
49 TP1		0.2919	0.0924	0.6975	0.7320	0.3439	0.4752	1.0917	0.7328		_	_	_	_	0.3326	0.0570	0.9225	0.2342
50 TP1		0.4212	0.0861	0.6379	0.6315	0.6270	0.4235	1.0217	0.5208	8 0.5752	0 0				0.4218	0.0378	0.9118	0.3458
51 lP1	D	0.4710	0.0297	1.0460	0.5994	0.6/49	0.4400	0.9148	0.5083			، د			. 97.16	-0.1288	0.6321	0.3918
52 lP1		0.448/	0.0390	0.5086	0.7272	0.6134	0.5479	0.93/3	0.446			-			0.3432	-0.1198	0.6899	0.3591
53 IP1		0.7457	0.0919	1.8729	0.5033	0.6983	0.3794	0.9317	0.6928	0.7207		1.5395 0.3	0.34/4 0	7.1528 -0	0.5534	-1.9498	1.2228	0.4891
24 IPI	chemotherapy only	0.0344	0.2297	1.2/31	0.7323	0.4000	0.4420	0.03/9	0.01		_				- +000	-0.2469	0.0515	0.34/4

Article Title: Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevæzizumab in breast cancer using MR spectroscopy

Journal Name: Metabolomics

Authors: Lesie R. Euceda, Tonje H. Hankaas, Guo F. Giskewdegaled, Ryas Vettudattil, Jasper Engel, Laxmi Silwal-Pandit, Steinar Lundgren, Elin Borgen, Oystein Garred, Geert Postma, Lungarde M.C. Buydens, Anne-Lise Borresen-Dale, Olav Engebraaten, Tone F. Bathen

Supplementary Table 2. Relative metabolite levels for each sample after log10 transformation. Samples are ordered according to time point (TP).

	Identification Level: 2 2	2		2				2						2 2	2 2		
	Human Metabolome Database ID Hi	MDB00122 HM	DB00044	0190	28		0123	0251			200	064	1MDB00125	=	24		HMD800161
Patient Number IIme Point	tion group		Ascorbate Lactate	000	lyrosine Myo-	Myo-inositol Glycine	ie iaurine	ne Gracial Grace Company Control	1		Choline		Glurathione	Glutamine			Alanine
55 IPI 56 TP1	Cnemotherapy only Bevacizumab treated	-0.3368	0.0138	0.7581	0.8889	0.794	0.3927	0.8920	0.7570	1.216/	0.4890	0.5552	0.3390	0.2510	-0.1058	0.7898	0.3536
57 TP1	Chemotherapy only	0.2127	-0.1089	1.4448	0.7271	0.5362	0.6332	0.8538	0.7890	0.7199	0.4975	0.4675	0.0542	0.5681	0.0396	0.9622	0.4775
58 TP1	Bevacizumab treated	0.3466	0.1149	0.5659	0.7330	0.6153	0.5176	0.8293	0.6079	0.8508	0.5063	0.6123	0.1094	0.3264	0.0060	0.6287	0.2764
59 TP1	Chemotherapy only	0.5014	0.1381	0.5389	0.7917	0.5423	0.4575	1.1162	0.5453	0.6901	0.5459	0.6625	0.3495	0.2857	-0.0828	0.8416	0.2521
60 TP1 61 TB1	Chemotherapy only	0.3058	0.1448	1.5898	0.5697	0.6112	0.4676	0.7826	0.7718	1.0959	0.3107	0.5035	0.2803	0.1929	0.4915	0.9225	0.4798
62 TP1	Bevacizumab treated	1.0853	-0.0648	0.4803	0.6515	0.3426	0.4326	1.1697	0.7521	0.8356	0.4691	0.4002	0.2872	0.4987	-0.2819	0.4419	0.2865
63 TP1	Chemotherapy only	0.4820	0.0266	0.4121	0.8255	0.5891	0.4152	1.0307	0.6680	0.8605	0.6399	0.4018	0.1613	0.1765	-0.1259	0.7417	0.2071
64 TP1	Chemotherapy only	0.1371	-0.0076	0.4227	0.7109	0.6327	0.7969	0.9244	0.6499	0.6498	0.5265	0.4401	0.1790	0.1545	-0.0808	0.5926	0.0517
65 TP1	Bevacizumab treated	-0.4192	-0.1147	0.7557	0.7841	0.7899	0.5388	0.8267	0.5416	1.2107	0.5248	0.3748	0.2267	0.5140	0.1318	0.8612	0.4101
66 TP1	Bevacizumab treated	0.3485	-0.0207	0.3787	0.7758	0.7635	0.4822	0.8209	0.6767	0.8420	0.4854	0.3271	0.1384	0.2129	-0.2136	0.6046	0.3028
67 TP1	Chemotherapy only	0.3477	-0.0084	0.2928	0.7157	0.7012	0.3686	0.8911	0.6589	0.8825	0.6534	0.5742	0.1023	0.2698	-0.1172	0.5203	0.1312
69 IPI 69 TD1	Chemotherapy only Beverizumsh treated	0.788	-0.0123	0.4751	0.6983	0.6034	0.5552	0.9791	0.6266	0.6/81	0.5170	0.2397	0.1775	0.3216	-0.1/53	0.6922	0.31/3
70 TP1	Chemotherapy only	-0.1183	0.2716	0.5488	0.9994	0.2924	0.6936	0,6019	0.4704	0.7650	0.5708	0.4249	0.3583		-0.0581	0.5669	0.3961
71 TP1	Bevacizumab treated	-0.0045	0.4082	0.6343	0.9071	0.5836	0.2551	1.1368	0.5979	0.9785	0.5469	0.6190	0.1830	0.0156	0.0020	0.4189	0.1511
72 TP1	Bevacizumab treated	0.1877	0.0703	0.9396	0.7905	0.9134	0.5760	0.8770	0.7494	1.3303	0.6639	0.2108	0.1368		-0.1938	0.6813	0.0664
73 TP1	Bevacizumab treated	0.5025	-0.0473	1.2902	0.6344	0.6079	0.3934	0.7371	0.7663	0.7622	0.3822	0.4005	0.3732	0.4341	-0.0102	0.8847	0.3910
74 TP1	Bevacizumab treated	-0.5903	0.0899	0.8033	0.7213	0.5796	0.5108	0.9021	0.9738	0.8734	0.5696		-0.2431		0.1266	0.4829	0.1990
75 IPI	Chemotherapy only	-0.1003	0.0382	1.0990 0.770	0.7929	0.5/30	0.4188	0.6942	0.6104	0.8688	0.4948		0.1//9		-0.0402	0.6/46	0.2826
77 TP1	Chemotherapy only Bevacizumah treated	0.5115	0.0420	0.7230	0.0933	0.3472	0.4555	0.0273	0.7878	0.9521	0.4760	0.6500	-0.0376		0.0861	0.6737	0.1221
78 TP1	Chemotherapy only	0.8176	-0.0519	1.1373	0.5214	0.2270	0.4011	1.0330	0.7395	0.7501	0.5872	0.3070	0.0734	0.3245	-0.0194	0.6957	0.2810
79 TP1	Chemotherapy only	0.8675	-0.1286	0.7596	0.6512	0.3859	0.5212	1.0551	0.6401	0.7959	0.4787	0.3725	0.1939		-0.2373	0.6351	0.1715
80 TP1	Chemotherapy only	0.4623	0.1047	0.6842	0.9425	0.3984	0.5717	1.0657	0.5827	0.9472	0.6872	0.2290	0.3801		-0.0912	0.8783	0.2570
81 TP1	Chemotherapy only	1.0427	-0.1985	0.9128	0.5183	0.3226	0.5270	1.1320	0.6191	0.7252	0.5047	0.3967	0.1386		-0.1261	0.5587	0.4804
82 TP1	Bevacizumab treated	0.7697	-0.0345	0.2877	0.8007	0.6020	0.5165	1.1434	0.5700	0.8371	0.3649	0.3946	0.1463		-0.1308	0.6302	0.1711
83 TP1	Chemotherapy only	-0.4925	-0.1503	0.8670	0.7830	0.6674	0.4963	0.5653	1.1767	1.0908	0.4952	0.5097	0.0837		0.1542	0.6954	0.1893
84 TP1	Chemotherapy only	0.2672	-0.0139	0.8122	0.6725	0.6089	0.3582	0.9646	0.6047	1.0506	0.4282	0.4030	0.2601		-0.0658	0.6783	0.1466
85 IPI 96 TB1	Chemotherapy only	-0.5299	0.1051	1.05//	0.9942	0.7478	0.2899	0.7891	0.9631	1.0b/3	0.8022	0.4516	0.2080		0.0471	0.5906	0.0567
87 TP1	Bevacizumab treated	0.0120	-0.0052	0.6984	0.8401	0.5496	0.5546	0.7314	0.453	0.7679	0.5158	0.0341	0.3297		0.0198	0.5387	0.2333
88 TP1	Chemotherapy only	-0.4170	-0.1272	0.8213	0.7946	0.5629	0.3668	1.0017	0.3497	0.9088	0.5818	0.4888	0.2501	0.2751	0.0904	0.8480	0.2189
89 TP1	Chemotherapy only	-0.4419	-0.1851	0.8577	0.9207	0.3646	0.8627	0.9007	0.7378	0.7009	0.7746	0.5593	0.1944		0.1903	0.7460	0.2654
90 TP1	Chemotherapy only	-0.0970	0.0776	0.7890	0.7854	0.6089	0.4905	0.9282	0.5081	0.7706	0.5122	0.4582	0.3582		-0.0091	0.7795	0.2452
91 TP1	Chemotherapy only	0.9578	-0.0567	1.1648	1.1582	0.7107	0.4376	0.8598	0.6551	0.8352	0.4602	0.3489	0.2584	0.1738	-0.2378	0.6944	0.2021
92 TP1	Bevacizumab treated	0.0887	0.1633	0.5714	0.9387	0.3500	0.1813	0.9415	0.8245	0.7176	0.5804	0.4055	0.2439		0.0560	0.4900	0.0620
93 IFI 94 TP1	Bevacizumab treated	0.3137	0.0324	0.4746	0.9094	0.7624	0.4394	1.1259	0.6056	1.1071	0.6276	0.2844	0.1762	0.1584	-0.1423	0.5264	0.0599
95 TP1	Chemotherapy only	-0.3449	-0.0768	1.0947	0.8125	0.7464	0.4510	0.7624	0.8456	0.9713	0.7675	0.2910	-0.0079		0.0389	0.7711	0.2480
96 TP1	Bevacizumab treated	-0.3094	-0.0366	0.8265	0.7416	0.5801	0.5016	0.7597	0.6322	1.3177	0.8315	0.3978	0.2457		0.0362	0.8834	0.1121
97 TP1	Bevacizumab treated	0.5543	-0.0133	0.6902	0.7477	0.5142	0.4583	0.8507	0.7799	0.8132	0.4846	0.3541	0.3103	0.3023	-0.5220	0.7067	0.3213
98 TP1	Bevacizumab treated	0.1517	0.0355	0.6251	0.7256	0.5684	0.6561	0.9012	0.5545	0.9418	0.4444	0.5134	0.1924	0.5096	-0.0038	0.6791	0.3349
100 TB1	Ciellottierapy Olly	0.3023	0.0271	1.3030 0.0464	0.0366	0.0749	0.5302	0.7006	0.3334	0.6347	0.57.90	0.4273	0.2429	0.2397	0.3439	0.0301	-0.2000
100 IFI 101 TP1	Bevacizumab treated	0.4498	-0.0400	0.3196	0.8201	0.5733	0.6309	0.9562	0.5234	0.8014	0.4742	0.3846	0.1851	0.5495	-0.1199	0.7938	0.3094
102 TP1	Chemotherapy only	0.0416	0.1741	0.3700	0.8062	0.5148	0.8291	0.8442	0.5288	0.9339	0.5692	0.4177	0.1838	0.4017	-0.1945	0.8064	0.3726
103 TP1	Bevacizumab treated	0.6313	-0.0599	1.0963	0.7095	0.6279	0.4434	0.8797	0.5596	0.7131	0.4013	0.3982	0.4503	0.3468	-0.3576	0.4586	0.3979
104 TP1	Bevacizumab treated	0.2178	-0.0427	0.3387	0.8692	0.6827	0.5541	0.7893	0.7826	1.0294	0.5652	0.2712	0.2402	0.3416	-0.1366	0.7869	0.0683
105 TP1	Chemotherapy only	0.0947	0.0179	0.4614	0.7445	0.8194	0.4651	0.7594	0.7741	1.1718	0.5206	0.4015	0.0983	0.1232	-0.0559	0.6869	0.0893
106 IP2	Chemotherapy only	0.664/	0.2389	1.3825	0.6248	0.6053	0.4094	0.9534	0.7193	0.6640	0.4885	0.3848	0.0765	0.4582	-0.1559	0.4701	0.4268
1 IP2 2 TD3	Chemotherapy only Beverizumsh treated	0.5044	0.0728	1.4248	0.5316	0.6729	0.4879	0.7897	0.4662	0.6085	0.5491	0.4085	0.15/8	0.1981	-0.1885	0.9127	0.3822
1	200000000000000000000000000000000000000)	2	1000	2		200	1)	2	1		1	1	-	1	

Article Title: Evaluation of metabolomic changes during noxidjuvant chemotherapy combined with beværizumab in breast cancer using MR spectroscopy

Authors: Lesie R. Euceda, Tonje H. Hankaas, Guo F. Giskewdegaled, Ryas Vettudattil, Jasper Engel, Laxmi Silwal-Pandit, Steinar Lundgren, Elin Borgen, Oystein Garred, Geert Postma, Lungarde M.C. Buydens, Anne-Lise Borresen-Dale, Olav Engebraaten, Tone F. Bathen Journal Name: Metabolomics

	Identification Level: 2	2	2					2	2								2
Patient Number Time Point	Human Metabolome Database ID HMDB00122 Bevacizumab randomization group Glucose	Glucose Asco	B00044 HM	HMDB00190 HMI	Tyrosine Myo	HMDB00211 HMDB0 Mvo-inositol Glycine	0123	0251 HF	VDB00086 Not	Not available	Choline C	Creatine 6	HMDB00125 HR	HMDB00641 HM Glutamine Suc	Succinate Glut	HMDB03339 HMDB0 Glutamate Alanine	800161
107 TP2		0.7165	-0.1625	1.7528	5977	49	.5616	9111	0.5421	0.5800	.4111	3178	46	617	373	804	0.3615
108 TP2	Chemotherapy only	-0.3313	-0.0221	0.8969	0.6977	0.5990	0.4904	0.5567	0.6000	0.8874	0.5335	0.5142	0.0392	0.1736	0.0797	0.8219	0.3042
7 TP2	Bevacizumab treated	0.2560	0.0696	0.8099	0.7046	0.7339	0.5710	0.8420	0.6756	0.6143	0.6045	03060	0.3399	0.2334	-0.0383	0.7418	0.0941
8 TP2	Chemotherapy only	0.8672	-0.1490	1.5328	0.5601	0.6362	0.5404	0.9735	0.5748	0.6809	0.3989	0.3410	0.1472	0.2560	-0.6734	0.8983	0.3934
9 TP2 10 TP2	Chemotherapy only	0.9715	-0.1003	0.4638	0.5934	0.5251	0.5649	1.0837	0.6676	0.7884	0.6013	0.2656	-0.2950	0.4661	-0.1583	0.4789	0.3440
109 TP2	Bevacizumab treated	0.4675	-0.0774	0.5146	0.6465	0.6874	0.3605	0.9337	0.6641	0.8121	0.4969	0.4413	0.1252	0.2924	-0.0590	0.6883	0.3216
110 TP2	Chemotherapy only	-0.3490	-0.0386	0.8170	0.7748	0.6148	0.4907	0.8414	0.9522	0.9734	0.4789	0.7042	0.2975	0.2569	0.1184	0.6899	0.2105
12 TP2	Chemotherapy only	0.1138	-0.0329	0.9568	0.8224	0.5630	0.4168	1.0115	0.8426	0.8105	0.4830	0.4808	0.3332	0.2108	-0.2968	0.6202	0.1471
111 TP2 15 TD2	Bevacizumab treated	0.6911	-0.0165	1.0975	0.6582	0.6523	0.4483	0.9450	0.5990	0.6225	0.5615	0.3939	0.0280	0.1985	-0.1254	0.8272	0.2151
112 TP2	Chemotherapy only	0.9902	-0.0402	0.9042	0.5680	0.7014	0.5524	1.0181	0.5022	0.5304	0.2430	0.3402	0.2872	0.1327	-0.3446	0.5210	0.3415
17 TP2	Bevacizumab treated	0.4072	-0.0230	1.0358	0.6335	0.6714	0.9764	1.1344	0.4838	0.7476	0.4140	0.3756	0.4666	0.3488	-0.0913	0.7699	0.1988
19 TP2	Bevacizumab treated	0.9766	-0.0467	0.8254	0.6276	0.7266	0.5244	1.0203	0.6013	0.7085	0.4965	0.3248	0.1627	0.3825	-0.2818	0.7351	0.2660
21 TP2	Bevacizumab treated	0.0615	0.0833	0.7745	0.8228	0.6277	0.4755	0.9514	0.5921	0.7069	0.5894	0.3889	0.2384	-0.0380	-0.0116	0.7258	0.1398
23 TP2	Chemotherapy only	0.3597	-0.0423	0.9990	0.6924	0.7019	0.4277	0.9319	0.6919	0.7555	0.4930	0.4264	0.2782	0.4114	-0.0810	0.6445	0.2354
24 IP2 28 TP2	Chemotherapy only	0.1160	0.1176	0.6889	0.8355	0.3544	0.6382	1 0209	0.81//	0.7622	0.6061	0.5207	0.2986	0.3151	-0.0366	0.6132	0.0530
29 TP2	Chemotherapy only	0.0693	-0.1701	0.9848	0.7749	0.4265	0.3865	0.9389	0.8428	0.8614	0.7483	0.1532	0.6076	0.2233	-0.0791	1.1283	0.3453
113 TP2	Bevacizumab treated	0.5187	-0.0591	0.8857	0.6773	0.6912	0.6316	0.9120	0.5720	0.8878	0.4654	0.4488	0.1673	0.4483	-0.0964	0.7265	0.3521
33 TP2	Chemotherapy only	0.5847	-0.0821	1.4747	0.5141	0.7436	0.8167	0.7920	0.6697	0.6642	0.4207	0.3555	0.3462	0.2312	-0.2266	0.6877	0.2881
114 TP2	Chemotherapy only	0.2971	-0.0478	0.1743	0.7523	0.8230	0.2171	1.0495	0.6096	0.9474	0.5043	0.3774	0.0473	0.0681	-0.0350	0.4681	0.1205
36 TP2	Bevacizumab treated	0.7827	-0.0349	0.6743	0.7075	0.6020	0.3745	1.0906	0.5017	0.7217	0.5001	0.3607	0.1561	0.4992	0.0110	0.6250	0.2445
115 TP2 37 TB3	Bevacizumab treated	0.8165	-0.1914	1.9086	0.3437	0.5914	0.6439	0.8457	0.6167	0.7272	0.3075	0.4998	0.4020	-0.0675	-0.3143	1.2645	0.4241
37 IP2 39 TP2	bevacizumab treated Chemotherapy only	0.0706	0.2658	0.5513	0.4767	0.7149	0.2730	0.9500	0.5941	0.6914	0.3487	0.5033	0.3811	0.2450	0.0541	1.0888 0.5573	-0.0308
40 TP2	Chemotherapy only	-0.5611	-0.0913	0.7300	0.8232	0.6657	0.5358	0.6634	0.7171	1.0601	0.5765	0.4825	-0.3695	0.3974	0.1129	0.5134	0.1796
41 TP2	Chemotherapy only	0.2842	-0.0349	0.4579	0.7407	0.8734	0.4714	0.9100	0.4331	0.8564	0.4488	0.4307	0.1800	0.2990	0.1230	0.4746	0.0646
42 TP2	Bevacizumab treated	0.5062	-0.0410	0.8614	0.6922	0.7380	0.3676	9098.0	0.6517	0.7988	0.4890	0.2932	0.1919	0.1420	-0.3190	0.7251	0.2096
46 TP2	Bevacizumab treated	0.5274	-0.0598	0.7780	0.5737	0.8248	0.6001	0.9722	0.4326	0.7160	0.4012	0.4003	0.2288	0.5012	-0.1014	0.7822	0.2865
48 IP2 50 TP2	Sevacizumab treated	0.670	-0.0608	0.7860	0.8122	0.4214 0.7404	0.4681	0.9021	0.7937	0.7334	0.5547	0.5944	0.2997	0.3996	0.0096	0.5831	0.2144
51 TP2	Bevacizumab treated	0.4207	-0.1353	1.7874	0.4489	0.8159	0.3653	0.7214	0.7910	0.7529	0.4298	0.7029	0.3591	0.2387	-0.1444	0.9778	0.3473
52 TP2	Chemotherapy only	0.4866	-0.1810	1.4298	0.5964	0.6392	0.4701	0.7839	0.4139	0.7685	0.3581	0.5517	0.2154	0.3783	-0.3188	0.6970	0.4906
54 TP2	Chemotherapy only	0.4881	0.0978	1.3261	0.6246	0.5786	0.3182	0.9314	0.5946	0.7745	0.2835	0.4363	0.1781	0.3087	-0.2982	0.7897	0.3402
55 TP2	Chemotherapy only	-0.0238	-0.0744	0.4741	0.7039	0.8252	0.3553	0.8425	0.7709	1.1689	0.5908	0.4868	0.2748	0.1377	-0.1030	0.6325	0.0376
116 TP2	Bevacizumab treated	0.5050	0.0193	1.4225	0.5621	0.6104	0.1909	0.9248	0.7496	0.5959	0.2837	0.5618	0.2516	0.1137	-0.2616	0.6910	0.2662
59 TP2	bevacizumab treated Chemotherapy only	0.6934	-0.0249	0.3774	0.7116	0.5355	0.6244	0.9408	0.4514	0.6591	0.4548	0.4605	0.1274	0.3106	-0.0551	0.7105	0.3420
60 TP2	Chemotherapy only	-0.2713	0.0974	0.6631	0.8281	0.7093	0.4689	0.8107	0.8781	1.1959	0.4990	0.5368	0.2262	0.2907	0.0360	0.5943	0.2523
62 TP2	Bevacizumab treated	0.9059	-0.0754	0.5284	0.5035	0.5937	0.4815	1.0539	0.6421	0.7246	0.5609	0.3571	-0.0361	0.4805	-0.2685	0.5222	0.3942
63 TP2	Chemotherapy only	0.0029	-0.1074	0.8959	0.7125	0.7462	0.4640	0.8808	0.3664	0.7677	0.5009	0.4102	0.1862	0.3089	-0.0512	0.8253	0.3768
65 TP2	Bevacizumab treated	1.0002	0.1629	0.7416	0.2754	0.5822	0.4299	1.1260	0.5464	0.6342	0.7050	0.4273	-0.2692	0.1898	-0.3492	0.8490	0.4345
50 IP2 67 TP2	bevacizumab treated Chemotherapy only	0.2165	0.0811	0.5122	0.5873	0.8031	0.5241	0.8656	0.5794	1.0458	0.3932	0.5857	0.2415	0.3178	0.0065	0.5030	0.2249
68 TP2	Chemotherapy only	0.5159	-0.0188	0.9087	0,6111	0.6500	0.5514	0.8692	0.5952	0.6539	0.3449	0,4007	0.2013	0.2203	-0.3724	0.7870	0.2888
70 TP2	Chemotherapy only	0.6661	-0.0912	1.5556	0.4561	0.4050	0.4253	0.7722	0.5799	0.8124	0.2979	0.4980	0.1978	0.0993	-0.4336	0.8983	0.5596
71 TP2	Bevacizumab treated	-0.1767	0.3530	0.5919	0.8648	0.6683	0.2763	1.0921	0.6019	0.9383	0.5555	0.5979	0.1795	0.1639	-0.1222	0.4630	0.1921
72 TP2	Bevacizumab treated	0.7377	-0.0596	0.9115	0.5977	0.5979	0.5337	0.9406	0.6270	0.8639	0.4172	0.2756	0.0108	0.4524	-0.2423	0.6148	0.2383
73 TP2	Bevacizumab treated	0.1818	-0.0700	0.9061	0.7338	0.5847	0.4699	0.6326	0.6953	0.7316	0.5247	0.5640	0.2086	0.3625	-0.0170	0.7096	0.3213
74 TP2	Bevacizumab treated	0.4740	0.0261	0.5668	0.6976	0.4447	0.4544	1.1201	0.7467	0.8030	0.5089	0.6799	0.0085	0.2465	-0.1771	0.6928	0.2192
73 IPZ 117 TB3	Chemotherapy only	1.0686	0.0221	0.5248	0.5396	0.6203	0.5510	1 1/31	0.636	0.7976	0.3504	0.0104	0.5127	0.5222	0.2146	0.0309	0.3849
76 TP2	Chemotherapy only	0.6367	-0.2321	0.4294	0.6554	0.6232	0.2183	1.1691	0.5433	0.6668	0.4029	0.4155	0.1916	0.2218	-0.3786	0.8189	0.2976
1																	

Article Title: Evaluation of metabolomic changes during notadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy

Journal Name: Metabolomics

Authors: Lesite R. Euceda, Tonje H. Hankaas, Guro F. Giskeodegård, Ryas Vettukatril, Jasper Engel, Laxmi Silwal-Pandit, Steinar Lundgran, Elin Borgen, Oystein Garred, Geert Postma, Lugarde M.C. Buydens, Anne-Lise Borresen-Dale, Olav Engebraaten, Tone F. Bathen

appropriate years		י במבון אמווילוני	organ in me	2000			110000	2								•	ſ
	Human Mactaholomo Dashases of Marine Monta 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IMDRO0122 HM	DROUGH HM	DB00190 HMI	DROOTER HMD	ROO211 HMID	ROO123 HAND	ROOTS 1 HAAD		Z Not available	Z HMDB00097	HMADROODEA	AMDRO0125 F	Z Z	L L L L L L L L L L L L L L L L L L L	Z DR03339 HM	DR00161
atient Number Time Point	Bevacizumab randomization group G	Glucose Ascr	Ascorbate Lact	Lactate Tyro	Tyrosine Myo-	Myo-inositol Glycine	ine Taurine	ne Glyce	phocholine	e	Choline	Creatine (Glutathione G	Glutamine Su	Succinate Glut	Glutamate Alanine	ine
∞		0564	717	8472	959	12	.6078	8956	299	8	0.7612	0.3323	0.0719	187	808	760	0.2982
81 TP2	Chemotherapy only	1.2016	-0.0544	1.6588	0.5564	0.5812	0.4780	1.2006	0.6791	0.7668	0.4319		-0.0466	0.4040	-0.7767	0.6264	0.3564
82 TP2	Bevacizumab treated	0.9168	-0.1839	0.9239	0.5557	0.3143	0.5170	1.0306	0.5411	0.7613	0.0294		0.1891	0.4866	-0.3444	0.6178	0.2562
83 TP2	Chemotherapy only	0.0332	-0.0005	0.7995	0.7691	0.5498	0.4070	0.8269	0.8859	_	0.6723	0.4293	0.2881	0.2501	-0.0471	0.7256	0.1695
84 TP2	Chemotherapy only	0.3429	-0.0513	0.6423	0.6917	0.6449	0.2441	0.9985	0.7895	1.0626	0.6636	0.4731	0.0817	0.2950	0.1914	0.7285	0.2425
86 IP2	Bevacizumab treated	0.65/4	0.0189	0.9386	0.6380	0.4050	0.4672	0.9545	0.4641	0.5234	0.5007	0.3448	0.2490	0.4513	0.2617	0.7738	0.3869
89 TP2	Chemotherapy only	0.2682	0.0012	0.5092	0.9622	0.0063	0.8103	0.9177	0.6729	0.6836	0.6029	0.6756	0.0365	0.3838	0.0720	0.6712	0.2458
90 TP2	Chemotherapy only	0.4667	-0.0324	0.5763	0.6782	0.7393	0.5073	0.8767	0.5679	0.6702	0.5702	0.3680	0.1759	0.3485	-0.1290	0.7630	0.2853
91 TP2	Chemotherapy only	0.1170	0.0477	0.4619	0.8469	0.6741	0.3508	1.0233	0.5835	0.8706	0.6122	0.1615	0.2541	0.0767	-0.0899	0.8117	0.0898
92 TP2	Bevacizumab treated	0.6179	0.0320	0.5046	0.8507	0.6680	0.2266	0.8951	0.8614	0.7430	0.4853		0.2511	0.3076	-0.1213	0.5693	0.1868
93 TP2	Bevacizumab treated	0.5526	0.0782	0.9751	0.6574	0.5250	0.3821	1.0291	0.5394	0.5447			0.2019	0.4457	-0.0829	0.6975	0.2563
94 TP2	Bevacizumab treated	0.5084	-0.2084	1.8007	0.2277	0.6542	0.2087	0.7188	0.6652	0.6019			0.3677	0.0954	-0.7215	1.2043	0.1628
97 TP2	Bevacizumab treated	0.2508	0.0034	1.3455	0.7327	0.6055	0.3350	0.7967	0.5874	0.6849	0.6420	0.3833	0.1833	0.0446	-0.3243	0.9466	0.3372
98 IP2 99 TP2	Chemotherapy only	0.7169	-0.1132	1 4204	0.6313	1.0357	0.4308	0.8698	0.44/3	0.6349			0.2730	0.3090	-0.2962	0.6373	0.3734
100 TP2	Bevacizumab treated	0,0490	0.0060	0.6521	0.8222	0.7467	0.7311	0.9077	0.4626	0.7738	0.5681		0.2205	0.3046	0.0828	0.9549	0.1828
101 TP2	Bevacizumab treated	0.8598	-0.1262	1.1383	0.5551	0.5633	0.5426	0.9628	0.6114	0.6463	0.2706		0.0399	0.3826	-0.3702	0.6852	0.3721
102 TP2	Chemotherapy only	0.4642	0.1192	1.0645	0.6567	0.6133	0.6882	0.9214	0.6311	0.8410			0.3620	0.4337	-0.2270	0.5549	0.3423
103 TP2	Bevacizumab treated	0.7895	-0.1532	1.7681	0.4991	0.5601	0.4551	0.9176	0.6531	0.7903			0.4306	0.2684	-0.4875	0.8021	0.5177
104 TP2	Bevacizumab treated	0.1374	-0.0387	0.6714	0.9481	0.7418	0.5782	0.7923	0.6672				0.3146	0.4379	-0.1483	0.8120	0.2755
106 TP3	Chemotherapy only	1.0986	-0.3596	1.0626	0.4711	0.6455	0.5200	1.1277	0.5626				-0.1762	0.5573	-0.0929	0.4852	0.3910
2 IP3	Bevacizumab treated	0.9500	-0.1991	1.5544	0.3484	0.5528	0.5508	1.0259	0.5665	0.6418			-0.0978	0.3664	-0.2939	0.9356	0.4149
118 IP3	Chemotherapy only	0.1493	0.0138	1.2561	0.5/46	0.7205	0.1898	0.6579	0.8143	0.9562	0.5399		0.2699	0.0007	0.0113	0.61/0	0.2181
3 TP3	Chemotherapy only Beverizumah treated	1 1120	-0.12/1	1.1146	0.4412	0.7092	0.4104	1 1201	0.4239	0.5757	0.3070	0.4163	-0.2968	0.2674	-0.0113	0.0003	0.4057
4 TP3	Bevacizumab treated	0.5965	0.0621	0.6764	0.7237	0.7069	0.4633	0.9059	0.4891	0.7547	0.4196		0.1581	0.4272	0.0666	0.6942	0.2684
5 TP3	Chemotherapy only	1,1331	-0.1551	1.0275	0.4688	0.5735	0.5163	1.1567	0.7020	0.7463	0.4967	0,3600	-0.0182	0,6151	-0.0886	0.6357	0.4165
6 TP3	Bevacizumab treated	0.6500	-0.0489	1.4406	0.6052	0.7052	0.5921	0.8948	0.5125	0.7381	0.4769		0.0509	0.3439	-0.0075	0.8404	0.8708
7 TP3	Bevacizumab treated	1.0839	-0.0553	1.2115	0.5800	0.6085	0.5350	1.1549	0.5129	0.7013	0.4939	_	-0.0692	0.5638	-0.2032	0.6702	0.4289
9 TP3	Chemotherapy only	1.0593	-0.2344	0.9121	0.5172	0.5984	0.5078	1.1447	0.5649	0.7200	0.5078		-0.1698	0.5579	-0.0475	0.5357	0.3586
10 TP3	Chemotherapy only	0.5000	-0.0428	1.3808	0.5773	0.7330	0.5210	0.8535	0.4588	0.6783	0.4965		0.1840	0.2433	-0.0822	0.7313	0.6837
109 TP3	Bevacizumab treated	0.2541	-0.1285	0.8883	0.7191	0.7135	0.6083	0.7576	0.5555	0.6599	0.5072	0.4203	-0.0954	0.3611	0.0192	0.6897	0.4117
110 IP3 13 TP3	Chemotherapy only Revacizingsh treated	0.1929	-0.0518	1 1342	0.7485	0.4982	0.5158	1 1892	0.6968	0.8941	0.0327	0.5809	-0.0212	0.3312	0.1901	0.6795	0.2861
14 TP3	Bevacizumab treated	0.2831	0.0852	0.8176	0.7648	0.6824	0.3014	0.9613	0.5004	0.7810			0.1863	0.3096	-0.0222	0.6589	0.2421
111 TP3	Bevacizumab treated	1.1413	-0.2341	1.6357	0.4246	0.4522	0.4621	1.1668	0.5966	0.6789			0.0194	0.5236	-0.2630	0.8394	0.5252
119 TP3	Chemotherapy only	0.4479	0.2070	1.0328	0.6699	0.7117	0.5326	0.8545	0.5608	0.8385			0.1752	0.3607	-0.0056	0.6975	0.2172
16 TP3	Bevacizumab treated	1.0256	-0.0363	1.3735	0.5679	0.6278	0.5616	1.0873	0.5371	0.6186	0.4824	0.3829	0.1077	0.5308	-0.2557	0.6866	0.3546
112 IP3	Chemotherapy only	0.4783	-0.1409	1.0035 0.0076	0.4723	0.5404	0.4939	1.1517	0.6007	0.7337	0.4201		0.1120	0.6753	-0.0030	0.4018	0.3201
18 TP3	Chemotherapy only	0.9035	-0.0408	0.8962	0.6444	0.7944	0.5976	1.0493	0.3926	0.6722			0.1363	0.5409	-0.0824	0.6343	0.2886
19 TP3	Bevacizumab treated	1.0877	-0.1405	0.7460	0.6652	0.7531	0.4351	1.1626	0.5946	0.7582	0.4901	0.4103	-0.1836	0.5561	-0.0822	0.6964	0.3846
20 TP3	Bevacizumab treated	0.6169	-0.0521	0.6232	0.6363	0.7672	0.5869	0.9030	0.5050	0.8257	0.5015	_	-0.1461	0.3545	-0.0818	0.5942	0.2176
22 TP3	Bevacizumab treated	0.9115	-0.0106	0.8857	0.6762	0.7387	0.4733	1.0757	0.5621	0.6583	0.4946	0.3738	-0.1667	0.3279	-0.0955	0.7401	0.4460
23 TP3	Chemotherapy only	0.8309	-0.1154	1.0766	0.6170	0.7586	0.4795	0.9222	0.6569	0.6086	0.4883	0.3898	0.0970	0.5000	-0.0242	0.6210	0.2639
28 TP3	Chemotherapy only	0.2350	0.0241	0.9535	0.7718	0.6103	0.5598	0.9826	0.6924	0.8830			-0.1882	0.2867	0.0423	0.6503	0.1807
29 TP3	Chemotherapy only	-0.7706	-0.3258	1.3207	0.7481	0.3421	0.4110	0.8448	0.8792	0.7816		0.2163	0.6228	0.4089	0.1955	1.1742	0.4507
30 TP3	Bevacizumab treated	0.5889	-0.3365	1.5334	0.5606	0.5799	0.6138	0.9464	0.3976	0.8657	0.4034	0.4593	0.0132	0.0483	-0.0849	0.8834	0.5386
31 TP3	Bevacizumab treated	1.0137	-0.1844	1.2514	0.4141	0.5915	0.5841	1.1131	0.4841	0.6411	0.4278	0.3424	-0.2984	0.4393	0.0076	0.5915	0.3797
120 TP3	Bevacizumab treated	-0.1645	-0.1145	1.1054	0.6831	0.6175	0.4784	0.9351	0.6161	1.0176	0.5646	0.6373	0.1446	0.3034	0.1902	0.6501	0.2386
34 TP3	Bevacizumab treated	0.1875	-0.0663	1.2772	0.7192	0.4421	9602.0	0.8037	0.5977	0.6817	0.5194	0.4888	0.1831	0.3781	0.0532	0.9197	0.4643
114 TP3	Chemotherapy only	-0.1213	-0.0737	0.8210	0.7613	0.7637	0.3868	0.9544	0.4739	1.0090	0.5471	0.4873	-0.0636	0.1480	0.0041	0.4449	0.1042

Article Title: Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy

Journal Name: Metabolomics

Authors; Lesie R. Euceda, Tonje H. Hankaas, Gur F. Giskeedegird, Ryas Vettukatril, Jasper Engel, Laxmi Silwal-Pandit, Steinar Lundgron, Elin Burgen, Oystein Garred, Geert Postma, Lugarde M.C. Buydens, Ame-Lise Borresan-Dale, Olas Engebraaten; Tone F. Bathen

	Identification Level: 2	2						2					2	2	2		
Designation of the second	se ID	1DB00122 HM	4	0100	158		1123	0251	the state of the		2000	064		MDB00641 HN	24		HMDB00161
Patient Number Ilme Point	on group	Glucose Ascr	Ascorbate Lac		lyrosine My		Glycine lau		Glycerophosphocholine Pho	Prosprocholine			Glutathione Gl		Succinate Glut	Silutamate Alanine	ne 0.4423
35 IP3 37 TP3	Bevacizumab treated Bevacizumab treated	0.8119	-0.0915	1.6785	0.3852	0.6878	0.3920	0.9378	0.5435	0.7641	0.2756	0.4744	-0.0004	0.2330	-0.3794	1.1077	0.2466
38 TP3	Bevacizumab treated	0.7571	-0.0759	1.5751	0.5714	0.7648	0.4417	0.9202	0.5134	0.5959	0.3909	0.4241	0.0832	0.1966	0.0207	1.0596	0.4551
41 TP3	Chemotherapy only	0.7227	-0.0382	0.7354	0.6900	0.8308	0.5782	0.9305	0.5929	0.6750	0.4430	0.3787	-0.3504	0.3900	-0.0408	0.7078	0.0813
44 TP3	Bevacizumab treated	0.9435	-0.1927	1.7276	0.3469	0.6286	0.5016	1.0478	0.6773	0.6927	0.4731	0.3640	0.0306	0.2865	-0.1679	0.9128	0.4029
46 TP3	Bevacizumab treated	0.8723	0.0438	0.9289	0.5564	0.6237	0.4742	1.0389	0.5800	0.7414	0.4380	0.3252	0.0141	0.4562	0.1565	0.5712	0.4871
48 TP3	Bevacizumab treated	1.3487	-0.2291	1.4400	0.3278	0.3939	0.6736	1.3284	0.5363	0.9049	0.4540	0.3699	-0.0404	0.4313	-0.3554	0.5555	0.6858
49 TP3	Chemotherapy only	1.2265	-0.0855	1.3091	0.3367	0.3405	0.6745	1.2046	0.8258	0.6279	0.2803	0.4039	-0.0785	0.6423	-0.3023	0.5210	0.4677
122 TP3	Chemotherapy only	1.0605	0.1681	0.7327	0.5561	0.6149	0.5317	1.1309	0.5528	0.7834	0.4229	0.3684	0.0362	0.6094	-0.0783	0.6022	0.3243
53 TP3	Chemotherapy only	-0.4333	-0.2484	1.2034	0.6790	0.6857	0.4069	0.8214	0.8685	0.9810	0.4831	0.8965	0.2173	0.1827	0.1760	0.7586	0.2933
54 TP3	Chemotherapy only	1.0891	-0.1497	1.6796	0.4357	0.5702	0.4426	1.1511	0.6305	0.6709	0.2875	0.3454	-0.0102	0.5536	-0.4791	0.9874	0.4238
55 IP3 56 TB2	Chemotherapy only	1 2029	0.630	1 0569	0.5333	0.5892	0.4041	1.1152	0.6101	0.7547	0.5038	0.4163	0.0673	0.170	0.1206	0.6587	0.3598
36 IP3 116 TP3	Bevacizumab treated	-0.0774	0.0912	1.2933	0.5481	0.7587	0.2788	0.8784	0.6961	0.6760	0.3292	0.6034	0.1880	0.1666	0.3738	0.5232	0.3988
58 TP3	Bevacizumab treated	1.0568	-0.1356	0.9767	0.5061	0.6206	0.5163	1.1125	0.5166	0.6928	0.4659	0.2331	-0.0029	0.5343	-0.0751	0.6420	0.2903
59 TP3	Chemotherapy only	0.3926	0.0185	0.7344	0.6956	0.6731	0.5238	0.9123	0.4391	0.7871	0.5203	0.5657	0.2615	0.2882	0.1109	0.6552	0.2492
60 TP3	Chemotherapy only	0.7868	-0.0891	0.6448	0.6177	0.7588	0.5242	0.9214	0.5662	0.8053	0.5038	0.3932	-0.2293	0.4232	-0.0536	0.6702	0.3314
61 TP3	Chemotherapy only	0.5725	-0.0521	0.7274	0.6992	0.6601	0.4687	0.9070	0.6687	0.8736	0.4301	0.4404	0.0160	0.3932	-0.0097	0.6193	0.2177
62 TP3	Bevacizumab treated	0.9220	-0.1521	0.7009	0.5957	0.6578	0.4649	1.0393	0.6384	0.7648	0.5942	0.4563	0.0765	0.5335	-0.2313	0.5703	0.2640
63 IP3	Chemotherapy only	0.4332	-0.0935	1.0101	0.6562	0.7340	0.4593	0.8542	0.3/13	0.8512	0.5145	0.3781	0.1905	0.3576	0.0254	0.7542	0.3393
65 TP3	Chemotherapy only Bevarizing treated	1 2009	-0.0493	0.0450	0.7443	0.7340	0.3000	1 2469	0.5777	0.7560	0.3570	0.4039	0.2230	0.27.00	-0.0016	0.5570	0.1519
66 TP3	Bevacizumab treated	0.8105	-0.1310	1 1971	0.4378	0.2087	0.5349	0.9088	0.007	0.7344	0.4243	0.3345	0.1417	0.0103	-0.1646	0.5528	0.3598
67 TP3	Chemotherapy only	1.0822	-0.0715	1.0029	0.4683	0.6137	0.4651	1.1642	0.6275	0.7556	0.4420	0.3726	0.0248	0.5405	-0.2002	0.5787	0.3250
68 TP3	Chemotherapy only	-0.1675	-0.1597	0.9819	0.6574	0.5549	0.5624	0.7044	0.5690	0.7919	0.5837	0.6033	0.3136	0.4021	0.1058	0.8470	0.2917
69 TP3	Bevacizumab treated	1.1773	-0.0122	1.0401	0.5510	0.6059	0.6203	1.2437	0.8496	0.7244	0.3408	0.2961	-0.2459	0.6704	-0.0957	0.6942	0.2244
71 TP3	Bevacizumab treated	0.4731	0.1245	1.1352	0.7493	0.6093	0.4979	0.9541	0.5322	0.6799	0.4930	0.5266	0.0244	0.1949	-0.3064	0.4898	0.2877
72 TP3	Bevacizumab treated	-0.4229	-0.1287	1.1714	0.8645	0.8992	0.5266	0.7211	1.1130	1.3523	0.6253	0.5717	0.0290	0.2760	0.1001	0.5427	0.2114
73 TP3	Bevacizumab treated	0.7741	-0.0556	1.7699	0.4953	0.7899	0.4481	0.8929	0.6623	0.7212	0.4704	0.3784	0.2876	0.1778	-0.1474	1.0829	0.5394
75 TB3	Sevacizumab treated	0.0533	0.0030	1 4969	0.6/0/	0.3428	0.5065	0.9748	0.7/50	0.6831	0.5229	0.7008	0.1643	0.251/	0.1141	0.3515	0.2862
76 TP3	Chemotherapy only	0.5067	-0.2045	1 3373	0.5442	0.7010	0.4244	0.8036	0.3066	0.3037	0.5969	0.4211	0.1831	0.2330	-0.1226	1 0112	0.4552
77 TP3	Bevacizumab treated	1.0073	-0.0409	1.6610	0.2892	0.6048	0.7303	1.0129	0.5085	0.6474	0.4302	0.3043	-0.0353	0.3857	-0.0933	1.0279	0.4732
78 TP3	Chemotherapy only	1.0176	-0.0486	0.8505	0.4939	0.7205	0.4765	1.1262	0.5785	0.6950	0.4913	0.2754	-0.0032	0.5997	-0.0297	0.5511	0.2869
80 TP3	Chemotherapy only	1.0632	-0.2587	1.9183	-0.0216	0.4251	0.4446	1.1169	0.6569	0.6861	0.3994	0.2637	0.1777	0.3866	-0.6866	1.0388	0.6703
81 TP3	Chemotherapy only	0.8976	-0.2532	1.2752	0.6513	0.6412	0.5125	1.0309	0.5159	0.7126	0.4777	0.3434	0.0233	0.3926	-0.2420	0.7129	0.3159
82 TP3	Bevacizumab treated	1.2658	-0.1656	0.9173	0.4926	0.4799	0.6803	1.2753	0.6682	0.7592	0.3770	0.3661	-0.0295	0.6807	-0.1713	0.5797	0.3203
86 IP3	Bevacizumab treated	0.7262	0.0114	0.8197	0.468/	0.5//4	0.4609	0.9018	0.6840	0.6285	0.4053	0.2809	0.0183	0.5322	0.0214	0.7064	0.3425
88 TP3	Bevacizumab treated Chemotherapy only	0.0638	-0.2509	0.9760	0.0033	0.6904	0.3342	0.9775	0.5196	0.8221	0.3797	0.6009	0.2242	0.4195	-0.0143	0.7995	0.2832
89 TP3	Chemotherapy only	0.3847	0.0015	1.1803	0.7233	0.3185	0.5792	1.0309	0.5729	0.5617	0.4107	0.4977	0.2133	0.4534	0.0819	0.6445	0.2045
90 TP3	Chemotherapy only	0.4031	-0.0326	1.4085	0.5932	0.8179	0.4414	0.8362	0.4384	0.6362	0.5164	0.4367	0.2064	0.2028	-0.1074	0.6961	0.2840
91 TP3	Chemotherapy only	0.7658	-0.0859	1.2665	0.5157	0.6114	0.5754	0.9063	0.4783	0.5963	0.5650	0.4196	-0.0565	0.2440	-0.0523	0.7416	-2.1078
92 TP3	Bevacizumab treated	0.9169	-0.2649	1.8283	0.4681	0.5924	0.5437	0.9929	0.5784	0.5978	0.5873	0.4183	0.0982	0.2849	-0.3126	1.0223	0.4838
93 TP3 96 TB3	Bevacizumab treated	0.5460	-0.0907	1.0699	0.4929	0.6498	0.5837	0.9089	0.4429	0.4946	0.1307	0.4363	0.1862	0.3916	0.0189	0.6306	0.2745
90 IF3	Boyacizumah troated	0.0403	0.1460	1 2714	0.5375	0.5577	0.5233	0.0609	0.6009	0.7043	0.3370	0.3440	0.0135	0.2745	0.2459	0.3773	0.3702
97 IF3	Bevacizumab treated	0.8594	-0.0529	1.2891	0.6072	0.6207	0.6774	1.0653	0.5038	0.7133	0.4512	0.2653	-0.0321	0.1425	-0.3007	0.7940	0.4070
99 TP3	Chemotherapy only	0.9589	-0.0666	1.1429	0.5635	0.6055	0.4731	1.0559	0.7091	0.7575	0.3378	0.3764	0.1262	0.4914	-0.1122	0.5815	0.3030
100 TP3	Bevacizumab treated	0.7928	-0.1963	1.6957	0.3452	0.3946	0.4978	0.9555	0.6324	0.7091	0.2634	0.3923	0.0697	-0.2079	-0.6329	1.1179	0.4942
101 TP3	Bevacizumab treated	0.9945	-0.0677	1.1753	0.5257	0.6344	9099.0	1.0674	0.6367	0.6246	0.4317	0.3769	0.0627	0.4958	-0.2778	0.6246	0.3711
104 TP3	Bevacizumab treated	1.0962	-0.0815	1.5287	0.3512	0.4678	0.5932	1.1224	0.6427	0.6778	0.2884	0.3217	0.0755	0.5063	-0.3420	0.7746	0.5633
TOD IND	Chemotrierapy oriny	1.0733	-U.1220	1.7020	-U.0300	U:474T	0.4912	1.11/0	0.0345	U.3003	0.307.3	U.1324	OC0T:0	U.4 134	-0.4162	1.11/5	0.4734

Article Title: Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy

Journal Name: Metabolomics

Authors: Leslie R. Euceda, Tonje H. Haukaas, Guro F. Giskeødegård, Riyas Vettukattil, Jasper Engel, Laxmi Silwal-Pandit, Steinar Lundgren, Elin Borgen, Øystein Garred, Geert Postma, Lutgarde M.C. Buydens, Anne-Lise Børresen-Dale, Olav Engebraaten, Tone F. Bathen

Corresponding author: Leslie R. Euceda, Department of Circulation and Medical Imaging - MR Center, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Postboks 8905, Medisinsk Teknisk Forskningssenter, 7491 Trondheim, Norway; Phone: +47 73597449, Fax: +47 73598613, E.mail: leslie.e.wood@ntnu.no.

respon	ise, and time and		MDD	D 441	D 441	D 441
	pMRD vs pNRs (TP1)	pMRD vs pNRs (TP2)	pMRD vs pNRs (TP3)	Bev-treated vs Chemo-only (TP1)	Bev-treated vs Chemo-only (TP2)	Bev-treated vs Chemo-only (TP3)
Glc	-0.155 (0.078)	0.286** (0.112)	0.508** (0.106)	0.096 (0.055)	Not App.	Not App.
Tyr	0.052* (0.026)	-0.097** (0.039)	-0.206** (0.038)	-0.023 (0.016)	Not App.	Not App.
Tau	-0.059* (0.026)	0.040 (0.037)	0.152** (0.035)	0.014 (0.018)	Not App.	Not App.
PCh	0.057 (0.029)	-0.073 (0.040)	-0.102** (0.038)	-0.024 (0.021)	Not App.	Not App.
Cho	0.051* (0.022)	-0.047 (0.031)	-0.093** (0.030)	-0.034* (0.015)	Not App.	Not App.
GSH	0.044 (0.029)	0.008 (0.041)	-0.106** (0.039)	0.057* (0.029)	-0.034 (0.039)	-0.129* [#] (0.038)
Succ	0.048 (0.042)	-0.171** (0.063)	-0.180** (0.060)	-0.032 (0.027)	Not App.	Not App.

Metabolite increase (positive estimate) or decrease (negative estimate) is shown at each time point for pMRD and bevacizumab-treated patients in relation to pNR and chemotherapy-only patients, respectively. Standard errors are shown in parenthesis.* and ** indicate significance ($p \le 0.05$) before and after multiple testing correction, respectively.

*Multiple testing does not apply since GSH was the only metabolite for which the *Time* × *Bevacizumab* interaction term was included in the LMM.

Not App.: not applicable; pMRD: pathological minimal residual disease; pNR: pathological non-responder; Bevtreated: Bevacizumab-treated; Chemo-only: Chemotherapy only; Glc: glucose; Asc: ascorbate; Lac: lactate; Tyr: tyrosine; mI: myo-inositol; Gly: glycine; Tau: taurine; GPC: glycerophosphocholine; PCh: phosphoscholine; Cho: choline; Cr: creatine; GSH: glutathione; Gln: glutamine; Succ: succinate; Glu: glutamate; Ala: alanine.

Supplementary Tab	ole 4. Classification r	esults f	rom PLS-	DA.		
Samples included in the model	Discriminated Classes	n	No. of LVs	Class. Accuracy (%)	Sensitivity/ Specifcity (%)	Permutation p-value
TP1	pCR + vs pCR-	105	1	59	42/77	0.105
TP2	pCR + vs pCR-	78	1	54	31/77	0.418
TP3	pCR + vs pCR-	87	1	69	71/67	0.018*
TP1	pMRD vs pNRs	105	1	57	45/70	0.112
TP2	pMRD vs pNRs	78	1	59	38/81	0.096
TP3	pMRD vs pNRs	87	1	77	88/67	<0.001*
TP1	GR vs NR	45	1	76	65/88	0.001*
TP2	GR vs NR	27	1	49	51/76	0.573
TP3	GR vs NR	33	2	75	94/57	0.002*
TP1	Bev-treated vs Chemo-only	105	1	55	36/54	0.792
TP2	Bev-treated vs Chemo-only	78	1	46	66/41	0.340
TP3	Bev-treated vs Chemo-only	87	1	44	62/48	0.262

n: number of patients; pCR: pathological complete responders; pMRD: pathological minimal residual disease; pNRs: pathological non-responders; GR: good response; NR: no response; Bev: Bevacizumab; Chemo: Chemotherapy; Class.: classification; Sensitivity/Specificity are reported for pMRD/GR/Bevtreated.

* indicates significant p-values (≤0.05).

Supplementary Table 5. Pearson correlation between metabolite relative levels (log10) and response ratio.

	TP1	TP2	TP3
Glc	0.250**	0.038	-0.425**
Asc	0.017	-0.026	0.252**
Lac	0.008	-0.16	-0.276**
Tyr	-0.171*	0.033	0.448**
mI	-0.069	-0.064	0.165
Gly	-0.04	0.148	-0.125
Tau	0.291**	0.207*	-0.363**
GPC	-0.094	0.166	-0.011
PCh	-0.196*	0.045	0.159
Cho	-0.167*	-0.002	0.364**
Cr	0.063	-0.037	0.201*
GSH	-0.098	0.04	0.360**
Gln	0.021	0.044	-0.187*
Succ	-0.104	0.169	0.423**
Glu	-0.048	-0.102	-0.111
Ala	0.13	0.002	-0.16

* and ** indicate significance (p≤0.05) before and after multiple testing correction, respectively. Glc: glucose; Asc: ascorbate; Lac: lactate; Tyr: tyrosine; mI: myo-inositol; Gly: glycine; Tau: taurine; GPC: glycerophosphocholine; PCh: phosphoscholine; Cho: choline; Cr: creatine; GSH: glutathione; Gln: glutamine; Succ: succinate; Glu: glutamate; Ala: alanine.

		mary of results regarding ers by pathway.	treatment effect and diff	erences between
Pathway	Metabolite	Effect with treatment progression	pMRD compared to pNRs	GR group compared to NR group
Glycolysis	Glc	General increasing trend, significant from TP2 to TP3.	Significantly higher at TP2 and TP3.	-Lower at TP1 -Higher at TP3
Glyculysis	Lac	Significant increase from TP1 to TP2 and from TP2 to TP3.	Significantly higher at all time points.	-Higher at TP1 -Lower at TP3
	Cho	Significant decrease from TP1 to TP2 and from TP2 to TP3.	Significantly lower at TP3.	-Higher at TP1 -Lower at TP3
Choline phospholipid metabolism	PCh	General decreasing trend, significant from TP1 to TP2 and from TP2 to TP3.	Significantly lower at TP3.	-Higher at TP1 -Lower at TP3
	GPC	General decreasing trend, significant from TP2 to TP3.	Lower at TP3.	-Higher at TP1 -Lower at TP3
Glutamine metabolism	Gln	Significant increase from TP2 to TP3.	None.	None.
	GSH	None.	Significantly lower at TP3.	-Higher at TP1 -Lower at TP3
TCA cycle	Succ	None.	Significantly lower at TP2 and TP3	-Higher at TP1 -Lower at TP3
Others	Tau	General decreasing trend.	Lower at TP3 (multivariate), significantly higher at TP3 (univariate) [#] .	-Higher at TP1 -Lower at TP3
Others	Tyr	Significant decrease from TP2 to TP3.	Significantly lower at TP2 and TP3.	-Higher at TP1 -Lower at TP3
	Cr	Significant decrease from TP2 to TP3.	Significantly lower at TP3.	-Higher at TP1 -Lower at TP3

#Tau was the only metabolite for which multivariate and univariate results were not in accordance. pMRD: pathological minimal residual disease; pNRs: pathological non-responders; GR: good response; NR: no response; TCA: tricarboxylic acid; Glc: glucose; Lac: lactate; Cho: choline; PCh: phosphoscholine; GPC: glycerophosphocholine; Gln: glutamine; GSH: glutathione; Succ: succinate; Tau: taurine; Tyr: tyrosine; Cr: creatine.

Supplementary Table treated responders versions. Samples included in the model				Sensitivity/ Specifcity (%)
TP1	22/19	1	34	27/42
TP2	13.nov	2	55	63/47
TP3	18.nov	2	43	7/80
	amples; Bev: Bevacization. Sensitivity/Specifi			

Supplementary Table 8. Student t-test p-values when comparing metabolite relative levels (log10 transformed) of bevacizumab (Bev)-treated responders vs chemotherapy (Chemo)-only responders (no multiple testing correction).

	TP1	TP2	TP3
n Bev-treated/ n Chemo-only	22/19	13/11	18/11
Gle	0.279	0.698	0.372
Asc	0.632	0.205	0.4
Lac	0.85	0.67	0.619
Tyr	0.725	0.833	0.618
mI	0.473	0.527	0.755
Gly	0.855	0.216	0.247
Tau	0.661	0.783	0.871
GPC	0.786	0.436	0.678
PCh	0.516	0.181	0.95
Cho	0.954	0.94	0.88
Cr	0.436	0.602	0.956
GSH	0.364	0.453	0.057
Gln	0.552	0.847	0.655
Succ	0.796	0.62	0.849
Glu	0.293	0.032	0.213
Ala	0.517	0.204	0.248

n:number of samples; Glc: glucose; Asc: ascorbate; Lac: lactate; Tyr: tyrosine; mI: myoinositol; Gly: glycine; Tau: taurine; GPC: glycerophosphocholine; PCh: phosphocholine; Cho: choline; Cr: creatine; GSH: glutathione; Gln: glutamine; Succ: succinate; Glu: glutamate; Ala: alanine.

Paper IV

Metabolic response to everolimus in patient-derived xenografts of triple negative breast cancer

Leslie R. Euceda¹, Deborah K. Hill^{1,2}, Endre Stokke¹, Rana Hatem^{3,4}, Rania El Botty⁵, Ivan Bièche^{3,6}, Elisabetta Marangoni⁵, Tone F. Bathen¹, Siver A. Moestue^{1,7}

¹Department of Circulation and Medical Imaging, NTNU, The Norwegian University of Science and Technology, Trondheim, Norway

²Department of Medical Imaging, St Olavs University Hospital, Trondheim, Norway

³Institut Curie, PSL Research University, Genetics Department, Paris, France

⁴Faculty of Pharmacy, Aleppo University, Aleppo, Syria

⁵Institut Curie, PSL Research University, Translational Research Department, Paris, France

⁶EA7331, University of Paris Descartes, Paris, France

⁷Department of Laboratory Medicine, Children's and Women's Health, NTNU, The Norwegian University of Science and Technology, Trondheim, Norway

ABSTRACT

Triple negative breast cancer (TNBC) patients are unresponsive to both endocrine and anti-HER2 pharmacotherapy, limiting their therapeutic options to chemotherapy. TNBC is frequently associated with abnormalities in the PI3K signaling pathway, and drugs targeting this pathway are currently being evaluated in patients with TNBC. However, response is variable, partly due to heterogeneity within TNBC, and there is a need to identify biomarkers predicting response and resistance to targeted therapies. In this study, we used a metabolomics approach to assess response to the mTOR inhibitor everolimus in a panel of TNBC patient-derived xenografts (PDX) (n=103 animals). Metabolic profiles were acquired using high-resolution magic angle spinning magnetic resonance spectroscopy. Partial least squares-discriminant analysis (PLS-DA) on relative metabolite concentrations discriminated treated animals from untreated controls with an accuracy of 67% (p=0.003). Multilevel linear mixedeffects models (LMM) revealed similar treatment group trends observed by PLS-DA, strongly indicating reduced glycolytic lactate production and glutaminolysis after treatment, consistent with PI3K/AKT pathway inhibition. Although inherent metabolic heterogeneity between different PDX models seemed to hinder prediction of treatment response, the metabolic effects following treatment were more pronounced in responding xenografts compared to non-responders. Additionally, the metabolic information predicted p53 mutation status, which may provide complimentary insight into the interplay between PI3K signaling and other drivers of disease progression.

BACKGROUND

Pharmacological treatment of breast cancer has progressed notably in the past decades, accounting for much of the improvement in patient survival [1, 2]. Currently available systemic treatments include chemotherapy, endocrine therapy, and novel targeted therapies. Chemotherapy has been shown to be the most potent of these treatments [3], but severe adverse effects may limit its use. Endocrine treatment was the first targeted therapy for breast cancer; it is considered to be safe and effective, but is only useful for the treatment of hormone (estrogen and progesterone) receptor positive patients [3]. Novel targeted therapies include the human epidermal growth factor receptor 2 (HER2) inhibitor trastuzumab, which can provide additional benefit to patients overexpressing the cell growth-promoting HER2 (ERBB2) protein [3].

Triple negative breast cancer (TNBC) refers to any breast cancer lacking expression of estrogen receptors (ER), progesterone receptors (PgR), and HER2 protein. These cancers are consequently unresponsive to both endocrine and anti-HER2 therapy, limiting the therapeutic option for these patients to chemotherapy alone. Breast tumor heterogeneity is not only found at the protein level; Perou and Sørlie *et al.* divided the disease into five naturally-occurring, clinically relevant subtypes based on gene expression [4, 5]. TNBC displays a high degree of overlap with the basal-like gene expression subtype, which is associated with the worst prognosis and a high frequency of abnormalities in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway [6, 7] (Figure 1). This pathway is involved in cell survival, proliferation, and growth, and has been shown to be deregulated in various human cancers [8].

PI3K inhibitors have been developed for use as cancer therapies, many of which act upon the mammalian target of rapamycin (mTOR), one of the major effectors downstream of Akt. One such inhibitor is everolimus, a rapamycin analog that binds to the FKBP-12 protein of which mTOR complex 1 (mTORC1) is a direct target [9]. This blocks FKBP-12 binding to mTORC1, inhibiting further downstream signaling of the PI3K/Akt pathway. Everolimus is approved for treatment of hormone receptor positive [10, 11] and HER2 positive [12] breast cancer in combination with hormonal or anti-HER2 therapy, respectively, with the addition of the mTOR inhibitor significantly prolonging progression-free survival (PFS). However, with abnormal PI3K signaling occurring very frequently in TNBC compared to the other breast cancer subtypes, everolimus has been considered a potential candidate for targeted therapy of this breast cancer subtype.

TNBC, however, is a heterogeneous disease in terms of clinical, histological, and molecular aspects [13]. Tumor heterogeneity contributes greatly to the variability in breast cancer treatment response. Therefore, it is important to define reliable markers that can predict the outcome of treatment with targeted drugs. Previous studies have demonstrated variable responses to everolimus in TNBC, and robust molecular biomarkers for prediction of response/resistance to treatment are not yet identified [14]. Metabolites provide information at a level closer to the phenotype compared to genes and proteins, and altered metabolism is one of the more recently acknowledged hallmarks of cancer [15]. Consequently, it has been suggested that metabolic biomarkers or global metabolic profiles can guide patient selection for targeted drug treatment, and detect response/resistance to therapy [16]. High resolution (HR) magic angle spinning (MAS) magnetic resonance spectroscopy (MRS) allows for nondestructive, ex-vivo analysis of biological tissue samples and has been applied to study cancer-related metabolic pathways [17, 18]. Cao et al. [19] applied this technique to metabolically characterize TNBC and demonstrated that it was metabolically different from ER+/Pgr+/HER2+ breast cancer. In addition, tumors from the same gene expression subtype have been shown to have a variety of different metabolic profiles, as assessed by HR MAS MRS [20, 21]. The potential of HR MAS MRS in assessing response to therapy on a metabolic level has also been studied, with metabolic profiles discriminating responders from non-responders and relating metabolic changes after treatment in 5-year survival [22, 23] [submitted manuscript Euceda et al.]. Moestue et al. have demonstrated how response to treatment with a dual PI3K/mTOR inhibitor, BEZ235, was associated with altered levels of choline-containing metabolites as well as altered glucose and lactate levels in basal-like breast cancer xenografts [7].

In this study, we have assessed the metabolic responses to treatment with everolimus in a heterogeneous panel of TNBC patient-derived xenografts (PDX) using HR MAS MRS, aiming to identify metabolic biomarkers for response/resistance. We additionally explored whether the expression, phosphorylation, or mutation status of molecules regulating PI3K/Akt signaling could be determined based on metabolite information.

METHODS

Ethics

All procedures and experiments involving animals were carried out according to the institutional guidelines of the French Ethical Committee and the European Convention for the Protection of Vertebrates used for Scientific Purposes.

Animal Models

Thirteen TNBC PDX were previously established in female Swiss nude mice (Charles River, Les Arbresles, France) from primary surgical specimens with patient written informed consent, as described in [24]. Based on gene expression profiles, the models have been further subclassified (Table 1). Treated animals (n \approx 4 per PDX model, n_{treated}=50) received everolimus (Novartis, Basel, Switzerland) at an oral dose of 2.5 mg/kg three times a week for 4-5 weeks; fifty three animals (n \approx 4 per PDX model) were untreated controls, resulting in tumor tissue samples from a total of 103 animals (Figure 2). The tumor tissue was harvested on the last day of treatment, snap-frozen immediately, and stored at -80°C. The tumor material was divided for mutation screening, immunohistochemistry analysis, western blotting, and metabolic profiling. TNBC xenograft molecular and histological traits, previously characterized, are summarized in Table 1; for further information on the effect of everolimus treatment on protein and gene expression for this cohort, refer to [25].

Evaluation of Treatment Response

Response was classified based on relative tumor volume (RTV) measured using external calipers. For each PDX model, a Student's t test was performed comparing the RTV of treated tumors with that of the untreated tumors at the end of the treatment period. PDX models exhibiting a significant difference ($p \le 0.05$) in RTVs of treated and untreated animals were classified as responders, while those not meeting this criterion were classified as non-responders.

HR MAS MRS analysis

Tumor tissue samples (12.29 ± 2.97 mg) were prepared and analyzed as described in the HR MAS MRS protocol by Giskeødegård *et al.* [26]. In short, samples were cut on a dedicated, cooled work station to fit into 30 µL disposable inserts containing 3.0 µL of 24.29 mM sodium formate (VWR BDH Prolabo, France) in D2O (Armar Chemicals, Switzerland) for shimming and locking purposes. Each insert was set tightly into a 4 mm MAS zirconium rotor. Each sample was prepared within five minutes, and HR MAS MR spectra were subsequently acquired on a Bruker Avance DRX600 spectrometer (Bruker Biospin GmbH, Germany) equipped with a 1 H/ 13 C MAS probe. Samples were spun at 5 kHz while maintaining the probe temperature at 5°C to minimize tissue degradation. Proton spectra were acquired using a spin-echo Carr-Purcell Meiboom-Gill (CPMG) sequence (cpmgpr1d, Bruker

BioSpin, Germany) as previously described in [21], with effective echo time of 77 ms, a spectral width of 20 ppm (-5 to 15 ppm), and 256 scans.

Immunohistochemical staining and mutation screening

Formalin-fixed, paraffin-embedded samples were analyzed by immunohistochemistry for the expression of phosphatase and tensin homolog (PTEN), which negatively regulates mTOR, and for the expression of the PI3K downstream member pAKT, as described in [25]. Furthermore, mutations in the tumor suppressor gene p53 were screened for as described in [25]. This gene has been found to negatively regulate mTOR and its downstream targets [27, 28].

Data preprocessing

From the original sample cohort of 108 samples, four were excluded due to high levels of an unknown contaminant at 3.70 ppm and one for poor spectral quality, resulting in 103 samples for subsequent statistical analysis. Following acquisition, the free induction decays (FIDs) were Fourier transformed into 64k real points after 0.30 Hz line broadening. Phase correction was performed automatically for each spectrum using TopSpin 3.1 (Bruker BioSpin GmbH, Germany).

The following spectral preprocessing steps were performed in Matlab R2013b (The Mathworks, Inc., USA). The spectral region between 1.40-4.70 ppm, containing the majority of low-molecular weight metabolites, was selected for further processing. Chemical shifts were referenced to the creatine peak at 3.03 ppm. The spectra were baseline corrected using asymmetric least squares [29] with parameters $\lambda = 1e7$ and p = 0.0001, after setting the lowest point in each spectrum to zero. Peak alignment was carried out using icoshift [30]. Lipid peaks at 4.33–4.28, 4.18–4.13, 2.88–2.72, 2.30–2.21, 2.11–2.00, 1.65–1.55 ppm, and the contaminant peaks for the previously mentioned unknown compound and ethanol at 3.73–3.69 and 3.67–3.62 ppm, respectively, were excluded from further analysis. The resulting spectra were normalized to total area to correct for differences in sample size and tumor cell content.

Statistical Analysis

Metabolite peak assignment was performed based on previous identification [31]. Relative levels of 17 metabolites were calculated by integrating fixed regions of preprocessed spectra

corresponding to the metabolite of interest in Matlab R2013b. The metabolite ratios of lactate/glucose, taurine/creatine, and glycerophosphocholine/phosphocholine were determined, and were combined with the relative levels of individual metabolites to make a single dataset which will be referred to as 'metabolite integrals'. All metabolite integrals were log10 transformed prior to analysis (Supplementary Table 1).

Multivariate analysis

Multivariate analysis was carried out for metabolite integrals in Matlab R2013b (The Mathworks, Inc., USA) using PLS Toolbox 7.8.2 (Eigenvector Research Inc., U.S.A). Integrals were autoscaled prior to multivariate model building. Principal component analysis (PCA) [32] was performed on metabolite data from untreated controls and treated animals separately, to explore naturally-occurring trends. The optimal number of principle components (PCs) was selected based on visual inspection of residual explained variance plots. Partial least squares-discriminant analysis (PLS-DA) [33] was used to build a classification model of all samples to discriminate treated animals from untreated controls. Additional classification models were also built for treated animals and untreated controls separately, to discriminate between responding and non-responding PDX models. Finally, PLS-DA was employed to build models of untreated controls discriminating tumors expressing (+) or not expressing (-) PTEN and pAKT, as well as tumors with mutant or wild type p53. PCA and PLS-DA loadings plots were employed to relate variables or metabolites to samples or animals in the scores plots.

The PLS-DA classification performance parameters of accuracy, sensitivity, and specificity were obtained by employing double-layered cross validation (CV) [34] to avoid model overfitting. This method optimizes the number of PLS latent variables (LVs) in the inner CV layer and assesses model performance in the outer layer. The procedure consisted of splitting the samples into a training and test set in each layer; this was performed by randomly selecting 20% of the samples to be excluded from model building, or training, for subsequent testing of the model built. The splitting was repeated until each sample was used for testing once and only once, keeping all animals of the same PDX model type together in either the training or test set. A maximum of ten LVs were considered for optimization. The whole double CV procedure was repeated 20 times, with the final classification results and optimal number of LVs resulting from the mean and mode, respectively. Permutation testing [34] was carried out as an additional model validation. For this, the sample class labels were randomly

shuffled (permuted) before PLS-DA model building. Single-layered CV leaving out 20% of samples as a test set at each data split, using all spectra of the same PDX model type for either training or testing, was used to assess permuted models. The number of LVs used was the optimal number determined from double CV. A thousand permutations were performed for each non-permuted model being validated, obtaining a permuted accuracy distribution. Models were considered significant if the final accuracy obtained from non-permuted double CV was higher than 95% of the permuted accuracy values ($p \le 0.05$).

Univariate analysis

To compare treated animals versus untreated controls and responding versus non-responding PDX models simultaneously, linear mixed-effects models (LMM) [35] were employed as a multilevel approach. LMMs incorporate two types of effects to describe relationships between a response variable and different categorical factors. Fixed effects are controlled and systematic, originating from differences between factor levels, while random effects originate from the between-PDX model variation, each being derived from a different patient. Here, a LMM was built in R 3.1.1 [36] using the function *lme* from the 'nlme' package [37] and the method of restricted maximum likelihood. The response variable was the metabolite level, the fixed effects were *treatment group* (treated or untreated) and *response group* (responding or non-responding PDX), and the random effect was the PDX model.

LMM was additionally employed to correct for repeated PDX model measurements while determining individual metabolite differences between treated animals and untreated controls in responding and non-responding PDX models separately. These two LMM were built as described above, except that only the *treatment group* fixed effect was included, as samples were divided to perform the analysis on each individual *response group*. All LMM were built without interaction terms after determining that interactions were not significant, as described in [submitted manuscript Euceda *et al.*]. Obvious deviations from normality were not observed from LMM residual q-q plots and histograms.

LMM p-values were corrected for multiple testing by the Benjamini Hochberg method for false discovery rate (FDR) adjustment in R 3.1.1 using the 'stats' package [36]. Adjusted p (q-value) ≤ 0.05 was considered to be statistically significant.

RESULTS

Metabolic effects of everolimus treatment

PLS-DA of 20 metabolite integrals from all samples was performed to discriminate between treated animals and untreated controls (Figure 3A), achieving an accuracy of 67% (p=0.003) (Table 2). Treated animals exhibited higher glucose (Glc), glutamine (Gln), and alanine (Ala) levels, and lower phosphocholine (PCh), glycerophosphocholine (GPC), and lactate/glucose (Lac/Glc) (Figure 3B). When employing LMM as a multilevel approach, the same metabolites, with the exception of GPC/PCh instead of GPC, were found to be significantly different for the fixed effect of *treatment group* after multiple testing correction (Table 3), with estimates agreeing with PLS-DA loading trends; this indicates that both techniques revealed the same metabolic differences between treated animals and untreated controls.

Metabolic differences between responding and non-responding PDX models

Responding and non-responding PDX models could not be discriminated by multivariate PLS-DA, neither using metabolic information from untreated controls nor treated animals (Table 2). Similarly, for the multilevel LMM, no metabolites were significantly different for the *response group* fixed effect. In addition, PCA of untreated controls (Figure 4A) and treated animals (Figure 5A) did not reveal any separation between responding and non-responding PDX models. Separate PCA models of untreated controls including only responding (n=37) (Figure 4B) or only non-responding models (n=16) (Figure 4C) showed clear groupings in the scores plot by PDX model, reflecting the metabolic heterogeneity among the PDX models. Initial metabolic differences within the two groups may thus hinder prediction of response to everolimus treatment. PDX model heterogeneity persisted after everolimus treatment, as evidenced by the groupings in separate PCA models of treated animals including only responding (n=36) (Figure 5B) or only non-responding PDX models (n=14) (Figure 5C).

Metabolite information from responding PDX models (n=73) and non-responding PDX models (n=30) were analyzed separately using LMM to correct for repeated PDX model measurements, individual metabolite differences between treated animals and controls were determined within these two groups. For responding models, treated animals exhibited significantly higher Glc, Gln, and Ala, and significantly lower PCh, GPC/PCh, and Lac/Glc compared to untreated controls (Figure 6), which was similar to the findings from LMM of the whole cohort simultaneously (Table 3). For non-responding models, however, only PCh

and Gln were significantly lower and higher, respectively, with treatment (Figure 6). Collectively, these results indicate that the metabolic response to everolimus treatment is more pronounced in responding PDX models, with increased levels of metabolites representing the central carbon metabolism and decreased levels of phosphocholine.

Metabolic discrimination of PI3K pathway protein expression and p53 mutation status

Protein expression determined from immunohistochemistry and p53 mutation status for the PDX models is given in Table 1. PLS-DA results to classify untreated controls (n=53) according to expression or no expression of proteins PTEN and pAKT and to p53 mutation status are summarized in Table 2. p53 mutation status was successfully discriminated with an accuracy of 71% (p=0.008) (Figure 7A), with the mutant gene associated with increased lactate (Lac), glycine (Gly), scyllo-inositol (sI), and creatine (Cr), and decreased taurine (Tau), GPC, choline (Cho), and glutathione (GSH) (Figure 7B). Metabolite integrals were unable to predict pAKT expression, while PTEN expression discrimination approached significance (Accuracy=63%, p=0.069) (Figure 7C). Wild type p53 exhibited similar metabolic trends as PTEN expression (Figure 7B, Figure 7D), with increased PCh and decreased Ala additionally being associated with the latter. Altogether, this indicates that the expression of tumor suppressor genes regulating signal transduction in the PI3K pathway is reflected in the metabolic profile of the tumor.

DISCUSSION

Triple negative breast cancer is the most clinically challenging histopathological category of the disease owing to its highly aggressive nature, poor prognosis, and lack of available targeted therapies [38]. Activation of the PI3K signaling pathway is frequently seen in TNBC, and it has therefore been proposed that drugs targeting the PI3K/Akt/mTOR axis may be of particular benefit in these patients. In this study, we used MR spectroscopy to obtain metabolic profiles from patient-derived triple negative breast tumor xenografts following everolimus treatment, demonstrating more pronounced metabolic effects in responding xenografts compared to non-responders.

Since this drug blocks PI3K signaling via mTOR inhibition, we additionally explored whether metabolic data reflects the expression of key proteins and mutation status for the tumor suppressor gene p53, which regulate signaling activity in this pathway.

Successful discrimination of treated animals and untreated controls was achieved by applying a multivariate approach where 17 metabolites and three metabolite ratios, collectively referred

to as metabolite integrals, were analyzed simultaneously. Five out of six metabolite integrals that contributed the most to the discrimination were also found to be significantly different between the treatment groups when the relative metabolite levels were analyzed individually using LMM; treatment group trends observed by each method were in accordance with each other. These agreeing results, summarized by pathway in Figure 8, strongly indicate metabolic alterations in TNBC patient-derived tumor xenografts following everolimus treatment.

Glucose levels can be affected by many factors, including cell number and degree of perfusion. The elevated glucose observed as an effect of treatment points to the normalization of cellular energy metabolism. Via glycolysis, glucose is metabolized to pyruvate, most of which is fed into the mitochondrial tricarboxylic acid cycle (TCA) under aerobic conditions, and ultimately, into oxidative phosphorylation to produce energy in the form of adenosine triphosphate (ATP). On the other hand, anaerobic glycolysis leads to the majority of pyruvate being converted to lactate, producing much less ATP (Figure 8). In cancer and normal proliferating cells, the latter occurs independently of oxygen availability, a phenomenon known as the Warburg effect [39] or glycolytic phenotype. PI3K activation has been shown to promote this effect [40], and its inefficiency in energy production leads to an increase in glucose consumption to fulfill the energy requirements of the cell. Higher glucose as well as lower lactate has been repeatedly observed in normal breast tissue compared to tumor tissue [41-43], and was found by Moestue et al. in basal-like xenografts following PI3K inhibition [7]. Although we could not detect any significant change in lactate with treatment, the lactateto-glucose ratio was significantly lower in treated animals, further suggesting a decrease in glucose consumption in this group.

Another finding indicative of a positive effect of everolimus treatment was the observed decrease in phosphocholine. This metabolite is an intermediate in the synthesis of the cell membrane phospholipid phosphatidylcholine (Figure 8), and has been associated with malignant transformation [44]. Phosphocholine can be observed in vivo together with choline and glycerophosphocholine as one peak referred to as total choline (tCho), whose decrease has been suggested as a marker of treatment response [45, 46]. Although it is widely accepted that choline metabolism is abnormal in cancer cells, the mechanisms driving this are still poorly understood [47]. The relationship between phosphocholine and glycerophosphocholine is currently under discussion, with some studies suggesting increased PCh/GPC as a marker for malignancy [44, 48] while others have found the inverse GPC/PCh to be elevated in breast cancer subtypes with worse prognosis [49, 50]. Here, GPC/PCh was observed to be

significantly higher in the treated animals compared to untreated controls, while no significant differences were observed for either glycerophosphocholine nor choline. This suggests that phosphocholine is the tCho-constituent most affected by everolimus, and its decrease may reflect a reduction in tumor malignancy and aggressiveness due to everolimus treatment.

Significant differences in glutamine were also observed between treated animals and controls. Although glutamine is a non-essential amino acid in non-cancerous cells, cancer cells depend on it to replace glucose, feeding the TCA cycle via production of alpha-ketoglutarate (Figure 8). In addition, it plays an important role in supplying carbon and nitrogen for macromolecular synthesis needed to sustain cell proliferation [51]. Furthermore, glutamine provides protection against oxidative stress, as it is a precursor of glutamate-derived glutathione (GSH), an important cellular antioxidant [51, 52]. The significantly higher levels of glutamine observed in the treated animals suggests its lower consumption in this group, and may reflect a decrease in glutamine addiction with everolimus treatment.

A key objective of the study was to compare metabolic responses in responding and nonresponding PDX models. Using multivariate PLS-DA, significant differences between responding and non-responding PDX models could not be detected in either treated animals or untreated controls. Further multivariate PCA was performed to investigate metabolic heterogeneity both independent of (untreated control group) and after everolimus treatment (treated group). Although all patient-derived tumor xenografts included in this study were triple negative invasive ductal carcinomas (IDC), distinct metabolic characteristics for each PDX model were identified through the groupings on the PCA plots for both responding and non-responding models. This metabolic heterogeneity was expected, as the PDX differed with regards to gene expression traits. The inter-tumor heterogeneity therefore contributed to the unsuccessful prediction of response to treatment based on metabolite integrals. Building the multilevel LMM including the random effect of 'PDX model' should account for the between-PDX model heterogeneity, but differences between the response groups could still not be detected using this technique. The observed heterogeneity suggests that treatment management of TNBC may benefit from further stratification of this histopathological subtype. Moestue et al. [7] found that a basal-like, but not a luminal-like, breast cancer PDX responded to PI3K inhibitors, and basal-like cancers have been found to be more homogenous than TNBC [53]. In our cohort, however, both responding and non-responding PDX models included basal-like, luminal-like, and HER2-enriched tumors (Table 1), suggesting that other factors contributed to the heterogeneous treatment efficacy in terms of tumor growth inhibition within the gene expression subtypes. Additional sources of this heterogeneity, perhaps with an initial focus on basal-like breast cancers, may be worth investigating.

Although comparing each response group with each other proved to be unsuccessful in detecting metabolic differences between them, separating these groups to investigate differences between treated animals and untreated controls revealed a more substantial metabolic effect of everolimus treatment in responding PDX models. With only phosphocholine and glutamine significantly decreasing and increasing, respectively, with treatment in non-responding models, significant changes in metabolites involved in glycolysis were only observed in the responding models. This is consistent with findings from Foster *et al.* [54], who observed glucose-dependent growth in cells with mutations in PIK3CA, the gene encoding the alpha catalytic subunit of PI3K. In contrast, they found that both wild-type and PIK3CA-mutated cells depended on glutamine to grow. This supports our observed significant increase in glutamine with treatment, independent of whether tumor growth was significantly inhibited (responding PDX) or not (non-responding PDX). Previous work studying the same animal cohort examined here, however, found that PIK3CA mutations were rare and could not predict response to everolimus on their own [25].

Despite findings related to the response groups not being as straightforward as the metabolic differences observed in the treatment groups, it is important to note that the response criteria used here was based on tumor size, since this is the traditional approach. Imaging techniques are widely used in the clinic to assess response to treatment based on tumor reduction [55, 56]. There has been increasing interest in the development of imaging modalities that can detect biological and physiological changes in tissue rather than just imaging morphology [57, 58]. Functional imaging approaches provide possibilities for treatment assessment monitoring based on biological changes in the tumor, which may occur long before any reduction in size [59]. In line with this, we could detect metabolic differences between treated animals and untreated controls, pointing to biological changes occurring as an effect of treatment, in all PDX models, whether they exhibited a significant reduction in tumor volume or not. Nevertheless, PDX models responding to everolimus therapy exhibited a more significant metabolic response than resistant models.

The study by Hatem *et al.* on the effect of everolimus treatment on protein and gene expression for the animal cohort included in this study suggested post treatment activation of AKT to be a potential biomarker for early drug response monitoring [25]. We could not see

differences in AKT activation being translated to the metabolic level, however, as the metabolite information could not discriminate post treatment samples expressing or not expressing pAKT (results not shown). Although discrimination of untreated tumors expressing or not expressing proteins involved in PI3K/Akt signaling based on metabolic information could not be achieved, p53 mutation status could be predicted from the metabolite levels. The potent tumor suppressor p53 is involved in cell cycle control via transcriptional regulation of its target genes and has been found to decrease glycolytic activity. Up-regulation of the genes of several glycolytic enzymes has been observed in mutated p53 breast tumors [60]. Although differences in glucose levels were not observed between p53 wild type and mutant PDX models, increased lactate was associated with the latter. This is in accordance with wild type p53 negatively regulating pyruvate dehydrogenase kinase-2, which inactivates the pyruvate dehydrogenase complex (PDC) [61]. Since PDC converts pyruvate into Acetyl CoA, p53 promotes a non-glycolytic phenotype by directing pyruvate into the TCA cycle instead of towards lactate production. Other metabolites that were found to be associated with p53 mutation were creatine and glycine. p53 increases guanidinoacetate methyltranferase (GAMT), which catalyzes the production of creatine from guanidinoacetate (GAA) [62], and glycine is a precursor of GAA. Differences in creatine and glycine levels between wild type and mutant p53 PDX models may therefore reflect a p53associated dysregulation of creatine synthesis. This may result as a compensation mechanism for impaired glycolytic energy production in mutants, since creatine metabolism is tightly connected with ATP homeostasis via the reversible phosphorylation of creatine by creatine kinase with ATP/ADP [63]. Protein expression discrimination based on metabolic information approached significance for PTEN (Table 2), which is another tumor suppressor. Similar metabolic trends were observed with lack of PTEN expression and mutant p53. The metabolome may therefore reflect the connection between PI3K/AKT pathway and other signaling mechanisms.

In conclusion, clear metabolic differences between everolimus-treated animals and untreated controls were detected, indicating reduced glycolytic lactate production and glutaminolysis after treatment, consistent with PI3K/AKT signaling pathway inhibition. Although inherent metabolic heterogeneity between different PDX models seemed to hinder prediction of treatment response, significant changes in glucose, alanine, lactate/glucose, and glycerophosphocholine/phosphocholine with treatment were detected in responding, but not in non-responding, PDX models. p53 mutation status could be predicted using MR based

metabolite levels, which may provide complimentary insight into the interplay between PI3K signaling and other drivers of disease progression.

References

- 1. Giordano SH, Buzdar AU, Smith TL, Kau S-W, Yang Y, Hortobagyi GN. Is breast cancer survival improving? Cancer. 2004;100(1):44-52. doi:10.1002/cncr.11859.
- 2. American Cancer Society. Global Cancer Facts & Figures 2nd Edition. Atlanta, GA, USA: American Cancer Society; 2011.
- 3. Yiannakopoulou E. Breast Cancer Therapy-Classical Therapy, Drug Targets, and Targeted Therapy. In: Barh D, editor. Omics Approaches in Breast Cancer. Springer India; 2014. p. 483-98.
- 4. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-52. doi:http://www.nature.com/nature/journal/v406/n6797/suppinfo/406747a0_S1.html.
- 5. Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences. 2003;100(14):8418-23. doi:10.1073/pnas.0932692100.
- 6. López-Knowles E, O'Toole SA, McNeil CM, Millar EKA, Qiu MR, Crea P et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. International Journal of Cancer. 2010;126(5):1121-31. doi:10.1002/ijc.24831.
- 7. Moestue SA, Dam CG, Gorad SS, Kristian A, Bofin A, Mælandsmo GM et al. Metabolic biomarkers for response to PI3K inhibition in basal-like breast cancer. Breast Cancer Res. 2013;15:R16.
- 8. Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treatment Reviews. 2004;30(2):193-204. doi:http://dx.doi.org/10.1016/j.ctrv.2003.07.007.
- 9. Houghton PJ. Everolimus. Clinical cancer research: an official journal of the American Association for Cancer Research. 2010;16(5):1368-72. doi:10.1158/1078-0432.CCR-09-1314.
- 10. Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, Sahmoud T et al. Everolimus in Postmenopausal Hormone-Receptor-Positive Advanced Breast Cancer. New England Journal of Medicine. 2012;366(6):520-9. doi:doi:10.1056/NEJMoa1109653.
- 11. Ejlertsen B, Heinrich G, Jerusalem M, Hurvitz SA, De Boer RH, Taran T et al. BOLERO-6: Phase II study of everolimus plus exemestane versus everolimus or capecitabine monotherapy in HR+, HER2- advanced breast cancer. J Clin Oncol; 2013.
- 12. André F, O'Regan R, Ozguroglu M, Toi M, Xu B, Jerusalem G et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. The Lancet Oncology. 2014;15(6):580-91. doi:http://dx.doi.org/10.1016/S1470-2045(14)70138-X.
- 13. Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, Loi S et al. Dissecting the Heterogeneity of Triple-Negative Breast Cancer. Journal of Clinical Oncology. 2012. doi:10.1200/jco.2011.38.2010.
- 14. Hatem R, Botty RE, Chateau-Joubert S, Servely J-L, Labiod D, Plater Ld et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. 2016. 2016.
- 15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144. doi:10.1016/j.cell.2011.02.013.
- 16. Palmnas M, Vogel H. The Future of NMR Metabolomics in Cancer Therapy: Towards Personalizing Treatment and Developing Targeted Drugs? Metabolites. 2013;3(2):373.
- 17. Bathen TF, Sitter B, Sjøbakk TE, Tessem M-B, Gribbestad IS. Magnetic Resonance Metabolomics of Intact Tissue: A Biotechnological Tool in Cancer Diagnostics and Treatment Evaluation. Cancer Research. 2010;70(17):6692-6. doi:10.1158/0008-5472.can-10-0437.
- 18. Moestue SA, Sitter B, Bathen TF, Tessem M-B, Gribbestad I. HR MAS MR Spectroscopy in Metabolic Characterization of Cancer. Current Topics in Medicinal Chemistry. 2011;11(1):2-26. doi:http://dx.doi.org/10.2174/156802611793611869.

- 19. Cao MD, Lamichhane S, Lundgren S, Bofin A, Fjøsne H, Giskeødegård GF et al. Metabolic characterization of triple negative breast cancer. BMC Cancer. 2014;14(1):1-12. doi:10.1186/1471-2407-14-941.
- 20. Borgan E, Sitter B, Lingjærde OC, Johnsen H, Lundgren S, Bathen TF et al. Merging transcriptomics and metabolomics advances in breast cancer profiling. BMC Cancer. 2010;10(1):1-14. doi:10.1186/1471-2407-10-628.
- 21. Haukaas TH, Euceda LR, Giskeødegård GF, Lamichhane S, Krohn M, Jernström S et al. Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes. Cancer & Metabolism. 2016;4(1):1-14. doi:10.1186/s40170-016-0152-x.
- 22. Cao MD, Sitter B, Bathen TF, Bofin A, Lønning PE, Lundgren S et al. Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR in Biomedicine. 2012;25(2):369-78. doi:10.1002/nbm.1762.
- 23. Cao MD, Giskeødegård GF, Bathen TF, Sitter B, Bofin A, Lønning PE et al. Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer. 2012;12(1):1-11. doi:10.1186/1471-2407-12-39.
- 24. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P et al. A New Model of Patient Tumor-Derived Breast Cancer Xenografts for Preclinical Assays. Clinical Cancer Research. 2007;13(13):3989-98. doi:10.1158/1078-0432.ccr-07-0078.
- 25. Hatem R, Botty RE, Chateau-Joubert S, Servely J-L, Labiod D, Plater Ld et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. 2016. doi:10.18632/oncotarget.10195.
- 26. Giskeødegård G, Cao M, Bathen T. High-Resolution Magic-Angle-Spinning NMR Spectroscopy of Intact Tissue. In: Bjerrum JT, editor. Metabonomics. Methods in Molecular Biology: Springer New York; 2015. p. 37-50.
- 27. Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(23):8204-9. doi:10.1073/pnas.0502857102.
- 28. Akeno N, Miller AL, Ma X, Wikenheiser-Brokamp KA. p53 suppresses carcinoma progression by inhibiting mTOR pathway activation. Oncogene. 2015;34(5):589-99. doi:10.1038/onc.2013.589.
- 29. Eilers PHC. Parametric Time Warping. Anal Chem. 2004;76(2):404-11. doi:10.1021/ac034800e.
- 30. Savorani F, Tomasi G, Engelsen SB. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson. 2010;202(2):190-202. doi:http://dx.doi.org/10.1016/j.jmr.2009.11.012.
- 31. Sitter B, Sonnewald U, Spraul M, Fjösne HE, Gribbestad IS. High-resolution magic angle spinning MRS of breast cancer tissue. NMR in Biomedicine. 2002;15(5):327-37. doi:10.1002/nbm.775.
- 32. Wold S, Esbensen K, Geladi P. Principal Component Analysis. Chemometr Intell Lab. 1987;2:37-52.
- 33. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems. 2001;58(2):109-30. doi:http://dx.doi.org/10.1016/S0169-7439(01)00155-1.
- 34. Westerhuis J, Hoefsloot HJ, Smit S, Vis D, Smilde A, van Velzen EJ et al. Assessment of PLSDA cross validation. Metabolomics. 2008;4(1):81-9. doi:10.1007/s11306-007-0099-6.
- 35. Pinheiro JC, Bates DM. Linear Mixed-Effects Models: Basic Concepts and Examples. Mixed-Effects Models in S and S-PLUS. Statistics and Computing. New York, NY, USA: Springer New York; 2000. p. 3-56.
- 36. R Core Team (2014) R: A language and environment for statistical computing. http://www.R-project.org/. R Foundation for Statistical Computing.
- 37. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-117, URL: http://CRAN.R-project.org/package=nlme. 2014.
- 38. Kaplan HG, Malmgren JA. Impact of Triple Negative Phenotype on Breast Cancer Prognosis. The Breast Journal. 2008;14(5):456-63. doi:10.1111/j.1524-4741.2008.00622.x.
- 39. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Sci Signal. 2009;324.
- 40. Plas DR, Thompson CB. Akt-dependent transformation: there is more to growth than just surviving. Oncogene. 0000;24(50):7435-42.

- 41. Gribbestad IS, Petersen SB, Fjosne HE, Kvinnsland S, Krane J. 1H NMR spectroscopic characterization of perchloric acid extracts from breast carcinomas and non-involved breast tissue. NMR Biomed. 1994;7(4):181-94.
- 42. Tessem M-B, Selnæs KM, Sjursen W, Tranø G, Giskeødegård GF, Bathen TF et al. Discrimination of Patients with Microsatellite Instability Colon Cancer using 1H HR MAS MR Spectroscopy and Chemometric Analysis. Journal of Proteome Research. 2010;9(7):3664-70. doi:10.1021/pr100176g.
- 43. Bathen TF, Geurts B, Sitter B, Fjøsne HE, Lundgren S, Buydens LM et al. Feasibility of MR Metabolomics for Immediate Analysis of Resection Margins during Breast Cancer Surgery. PLoS ONE. 2013;8(4):e61578. doi:10.1371/journal.pone.0061578.
- 44. Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999;59(1):80-4.
- 45. Jagannathan NR, Kumar M, Seenu V, Coshic O, Dwivedi SN, Julka PK et al. Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. British Journal of Cancer. 2001;84(8):1016-22. doi:10.1054/bjoc.2000.1711.
- 46. Baek H-M, Chen J-H, Nalcioglu O, Su M-Y. Proton MR spectroscopy for monitoring early treatment response of breast cancer to neo-adjuvant chemotherapy. Annals of Oncology. 2008;19(5):1022-4. doi:10.1093/annonc/mdn121.
- 47. Moestue SA, Giskeodegard GF, Cao MD, Bathen TF, Gribbestad IS. Glycerophosphocholine (GPC) is a poorly understood biomarker in breast cancer. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(38):E2506; author reply E7. doi:10.1073/pnas.1208226109.
- 48. Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G, Di Vito M et al. Activation of phosphatidylcholine-cycle enzymes in human epithelial ovarian cancer cells. Cancer research. 2010;70(5):2126-35. doi:10.1158/0008-5472.CAN-09-3833.
- 49. Moestue S, Borgan E, Huuse E, Lindholm E, Sitter B, Borresen-Dale AL et al. Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models. BMC Cancer. 2010;10. doi:10.1186/1471-2407-10-433.
- 50. Giskeødegård GF, Grinde MT, Sitter B, Axelson DE, Lundgren S, Fjosne HE et al. Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res. 2010;9(2):972-9. doi:10.1021/pr9008783.
- 51. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. The Journal of clinical investigation. 2013;123(9):3678-84. doi:10.1172/jci69600.
- 52. Franco R, Cidlowski JA. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ. 2009;16(10):1303-14. doi:http://www.nature.com/cdd/journal/v16/n10/suppinfo/cdd2009107s1.html.
- 53. Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, Viens P et al. How basal are triplenegative breast cancers? International Journal of Cancer. 2008;123(1):236-40. doi:10.1002/ijc.23518.
- 54. Foster R, Griffin S, Grooby S, Feltell R, Christopherson C, Chang M et al. Multiple Metabolic Alterations Exist in Mutant PI3K Cancers, but Only Glucose Is Essential as a Nutrient Source. PLoS ONE. 2012;7(9):e45061. doi:10.1371/journal.pone.0045061.
- 55. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al. New Guidelines to Evaluate the Response to Treatment in Solid Tumors. Journal of the National Cancer Institute. 2000;92(3):205-16. doi:10.1093/jnci/92.3.205.
- 56. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). European Journal of Cancer. 2009;45(2):228-47. doi:http://dx.doi.org/10.1016/j.ejca.2008.10.026.
- 57. Juweid ME, Cheson BD. Positron-Emission Tomography and Assessment of Cancer Therapy. New England Journal of Medicine. 2006;354(5):496-507. doi:doi:10.1056/NEJMra050276.
- 58. Gutte H, Hansen AE, Johannesen HH, Clemmensen AE, Ardenkjær-Larsen JH, Nielsen CH et al. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer. American Journal of Nuclear Medicine and Molecular Imaging. 2015;5(5):548-60.
- 59. Brindle K. New approaches for imaging tumour responses to treatment. Nat Rev Cancer. 2008;8(2):94-107.

- 60. Harami-Papp H, Pongor LS, Munkacsy G, Horvath G, Nagy AM, Ambrus A et al. TP53 mutation hits energy metabolism and increases glycolysis in breast cancer. Oncotarget. 2016. doi:10.18632/oncotarget.11594.
- 61. Contractor T, Harris CR. p53 Negatively Regulates Transcription of the Pyruvate Dehydrogenase Kinase Pdk2. Cancer Research. 2012;72(2):560-7. doi:10.1158/0008-5472.can-11-1215.
- 62. da Silva RP, Clow K, Brosnan JT, Brosnan ME. Synthesis of guanidinoacetate and creatine from amino acids by rat pancreas. The British journal of nutrition. 2014;111(4):571-7. doi:10.1017/s0007114513003012.
- 63. Ide T, Chu K, Aaronson SA, Lee SW. GAMT joins the p53 network: branching into metabolism. Cell cycle (Georgetown, Tex). 2010;9(9):1706-10. doi:10.4161/cc.9.9.11473.

Tables

PDX	nTreated/	Thin C. I.	PTEN	pAKT	53	Response
model	nControls	TNBC subtype	expression	expression	mutations	Group
		Luminal-like				
HBCx2	4/4	(AR+FOXA+)	+	+	p.A276D	Non-Resp.
HBCx12A	2/4	HER2 enriched	-	+	WT	Non-Resp.
		Basal				
HBCx16	4/4		+	+	WT	Non-Resp.
		(KRT5+KRT17+) Basal				•
HBCx30	4/4		-	-	p.F134L	Non-Resp.
		(KRT5+KRT17+) Basal (KRT5+KRT17+) /				
HBCx39	4/4		+	-	p.Y220C	Responder
		HER2 enriched Luminal-like				
HBCx31	4/4		+	+	p.R175H	Responder
		(AR+FOXA1+) Basal				
HBCx66	4/4		-	+	p.R273C	Responder
		(KRT17+)				
HBCx10	4/4	HER2 enriched	-	+	p.Q144fs	Responder
HBCx51	3/2	HER2 enriched	+	-	WT	Responder
		Basal				1
HBCx4B	7/8		-	+	p.S149fs	Responder
		(KRT5+ KRT17+) Luminal-like			•	•
HBCx52	3/4		+	NA	WT	Responder
		AR+ FOXA1+ Basal				
HBCx24	4/3		-	+	p.K292fs	Responder
		(KRT5+)				
HBCx63	3/4	unclassified	-	+	p.S149fs	Responder

All PDX models were of the invasive ductal carcinoma (IDC) histological type.

PDX: patient-derived xenograft; TNBC: triple negative breast cancer; Non-resp.: non-responder; AR: androgen receptor; FOXA: forkhead box protein A; KRT: keratin; NA: not available, WT:wild type.

Table 2. Classi	fication results fro	m PLS	-DA.			
Samples included in the model	Discriminated Classes	n	No. of LVs	Classification Accuracy (%)	Sensitivity/ Specificity (%)	Permutation p-value
All	Treated vs Untreated	106	1	67	66/68	0.003*
Untreated	Resp. PDX vs Non-resp. PDX	53	1	47	63/32	0.613
Treated	Resp. PDX vs Non-resp. PDX	50	1	57	68/46	0.237
Untreated	PTEN+ vs PTEN-	53	1	63	68/57	0.069
Untreated	pAKT+ vs pAKT-	49#	1	57	21/94	0.244
Untreated	p53 mutant vs Wild type	53	1	71	81/61	0.008*

Sensitivity/Specificity are reported for Treated/Resp. PDX /INPP4B+/PTEN+/pAKT+.

^{*4/53} samples were of a PDX model with undetermined pAKT expression, and were therefore excluded.

n: number of samples; No. of LVs: number of latent variables; Resp. PDX: Responding patient-derived xenograft models; Non-resp PDX: non-responding patient-derived xenograft models; Class: classification.

Table 3. LMM	results for the	fixed effects of	treatment grou	p and response	group.	
Metabolite -	Treated an	imals vs untrea	ted controls	Respondi	ng vs non-respon	ding PDX
Metabolite	Estimate	Std. Error	q-value	Estimate	Std. Error	q-value
Glc	0.130	0.038	4.45E-03*	-0.049	0.116	9.25E-01
Asc	0.016	0.019	6.63E-01	0.186	0.063	2.51E-01
Lac	0.015	0.018	6.63E-01	-0.057	0.055	8.39E-01
Tyr	-0.012	0.021	8.82E-01	0.045	0.065	9.09E-01
Gly	0.015	0.017	6.63E-01	0.008	0.077	9.76E-01
mI	0.007	0.018	9.24E-01	-0.054	0.126	9.25E-01
Tau	-0.004	0.021	9.24E-01	0.002	0.055	9.76E-01
sI	0.038	0.040	6.63E-01	0.028	0.118	9.59E-01
GPC	-0.035	0.025	4.80E-01	0.093	0.165	9.25E-01
PCh	-0.129	0.028	1.26E-04**	0.032	0.093	9.25E-01
Cho	-0.006	0.022	9.24E-01	0.054	0.051	8.39E-01
Cr	-0.003	0.019	9.28E-01	0.103	0.112	8.39E-01
GSH	0.007	0.027	9.24E-01	-0.054	0.057	8.39E-01
Gln	0.144	0.021	2.59E-08**	0.115	0.098	8.39E-01
Succ	0.019	0.018	6.63E-01	0.040	0.041	8.39E-01
Glu	0.007	0.019	9.24E-01	-0.081	0.061	8.39E-01
Ala	0.060	0.015	7.02E-04**	-0.071	0.075	8.39E-01
Lac/Glc	-0.115	0.041	2.05E-02*	-0.008	0.132	9.76E-01
Tau/Cr	0.000	0.015	9.87E-01	-0.103	0.128	8.83E-01
GPC/PCh	0.095	0.025	1.63E-03*	0.059	0.172	9.25E-01

Metabolite increase (positive estimate) or decrease (negative estimate) is shown for treated animals with respect to untreated controls and responding PDX models with respect to non-responding PDX models, respectively. * and ** indicate significance ($q \le 0.05$ and $q \le 0.001$, respectively).

Std.: standard; Glc: glucose; Asc: ascorbate; Lac: lactate; Tyr: tyrosine; Gly: glycine; mI: myo-inositol; Tau: taurine; sI: scyllo-inositol; GPC: glycerophosphocholine; PCh: phosphoscholine; Cho: choline; Cr: creatine; GSH: glutathione; Gln: glutamine; Succ: succinate; Glu: glutamate; Ala: alanine.

^{*} indicates significant p-values (≤0.05).

Figures

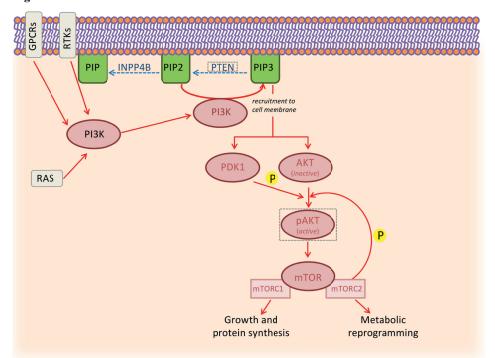
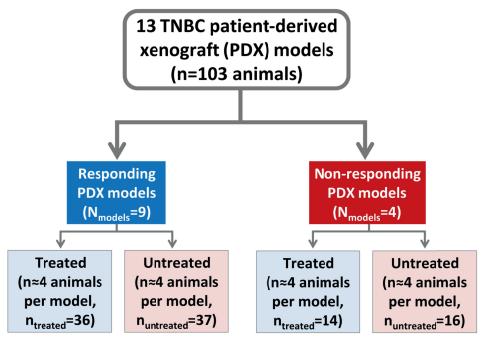



Figure 1. PI3K/Akt signaling pathway in cancer. PI3K can be activated by receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and RAS. Activated PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2), a plasma membrane phospholipid, and converts it into phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 binds to 3-phosphoinositide dependent protein kinase-1 (PDK1) and Akt, recruiting them to the plasma membrane. This process is negatively regulated by PTEN and INPP4B, which convert PIP3 back to PIP2, and PIP2 back to phosphatidylinositol phosphate (PIP), respectively. Once at the plasma membrane, Akt is activated via phosphorylation by PDK1. Activated Akt then phosphorylates mTOR (mammalian target of rapamycin), which acts as a catalytic subunit in the protein complexes of mTORC1 and mTORC2. mTORC1 is involved in growth and protein synthesis, while mTORC2 regulates metabolic reprogramming and activates Akt, creating a positive feedback loop. In the present study, prediction of the expression of the proteins PTEN and pAKT (in gray, dashed boxes) using metabolic data was attempted.

Figure 2. Study Design. Thirteen triple negative breast cancer (TNBC) patient-derived xenograft (PDX) models were included in the study. Nine PDX models were found to respond to everolimus based on significant differences in relative tumor volume between treated animals and untreated controls. For each PDX model, approximately 4 animals were treated with everolimus and 4 were untreated controls. The total number of samples obtained were $n_{treated}$ =50, and $n_{untreated}$ =53.

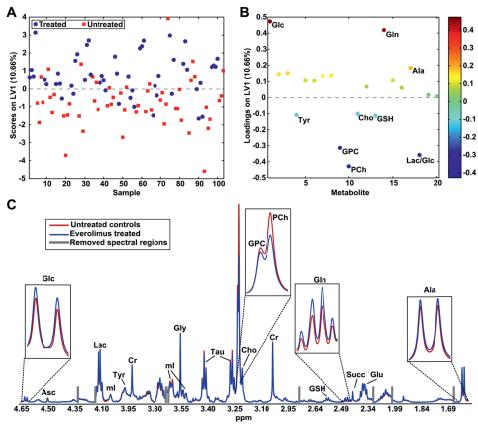


Figure 3. PLS-DA scores (A) and loadings plots (B) of treated animals vs untreated controls (n=103), and mean spectra (C) of treated animals and untreated controls. Loadings are colored according to latent variable (LV) 1. Ala: alanine; Asc: ascorbate; Cho: choline; Cr: creatine; Glc: glucose; Gln: glutamine; Glu: glutamate; Gly: glycine; GPC: glycerophosphocholine; GSH: glutathione; Lac: lactate; mI: myo-inositol; PCh: phosphocholine; Succ: succinate; Tau: taurine; Tyr: tyrosine.

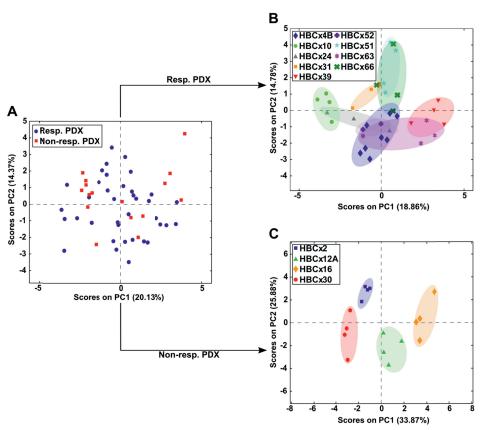


Figure 4. PCA of all untreated controls (A), untreated responding (Resp.) patient-derived xenografts (PDX) only (B), and untreated non-responding (Non-resp.) PDX only (C). Samples in B and C are colored according to PDX model. Ovals were drawn manually to illustrate clusters.

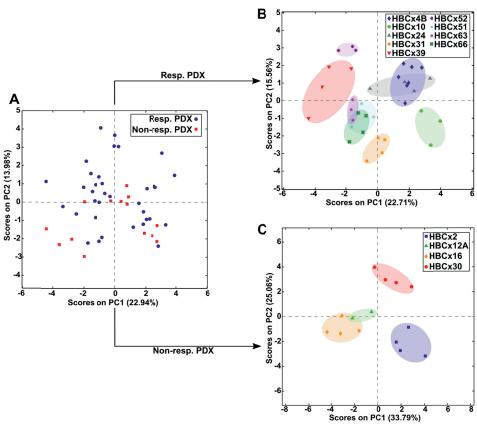


Figure 5. PCA of all treated animals (A), treated responding (Resp.) patient-derived xenografts (PDX) only (B), and treated non-responding (Non-resp.) PDX only. Samples in B and C are colored according to PDX model. Ovals were drawn manually to illustrate clusters.

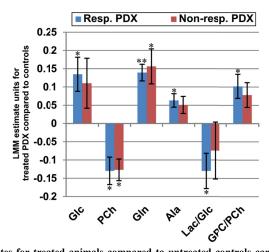


Figure 6. LMM estimates for treated animals compared to untreated controls carried out separately for responding models (Resp. PDX) and non-responding models (Non-resp. PDX). * and ** indicate significance ($q \le 0.05$ and $q \le 0.001$, respectively). Ala: alanine; Glc: glucose; Gln: glutamine; GPC: glycerophosphocholine; Lac: lactate; PCh: phosphocholine.

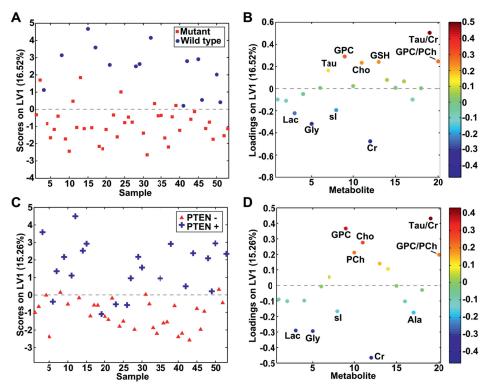


Figure 7. PLS-DA scores (A) and loadings plots (B) of p53 mutant vs p53 wild type untreated controls, and PLS-DA scores (C) and loadings plots (D) of PTEN- vs PTEN+ untreated controls. Loadings are colored according to latent variable (LV) 1. Ala: alanine; Cho:Choline; Cr: creatine; Gly: glycine; GPC: glycerophosphocholine; GSH:glutathione; Lac: lactate; PCh: phosphocholine; s1: scyllo-inositol; Tau: taurine.

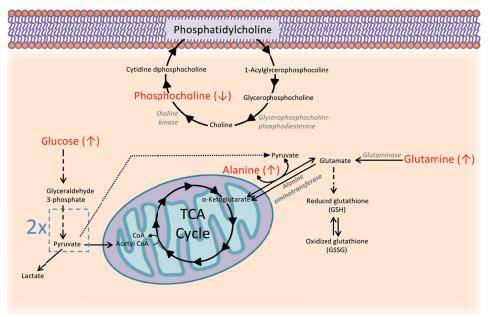


Figure 8. Overview of pathways involving metabolites found to be significantly different between treated animals and untreated controls. Significantly different metabolites are marked in red, with arrows indicating the trend in treated animals with respect to untreated controls. Related enzymes are marked in gray.

Supplementary Information

Article Title: Metabolic response to everolimus in patient-derived xenografts of triple negative breast cancer

Supplementary File 1: Supplementary Table 1.

Supplementary Table 1.

upplementary T.	upplementary Table 1. Metabolite relative levels (log10 transformed) per PDX model.	evels (log10	transform	ed) per PDA n	nodel.																			
				Gle	V	Asc	_	Lac	T	Tyr	9	Gly	u	Im	Ts	Tau	Is	1	GPC	С	Ь	PCh	Cho	0
PDX model	Treatment Group	п	4.635	4.635 - 4.612 ppm	4.505 - 4	4.497 ppm	4.129 -	4.129 - 4.086 ppm	3.986 -3.	3.986 -3.944 ppm	3.557 - 3	3.557 - 3.546 ppm	3.539 - 3.	3.539 - 3.513 ppm	3.432 - 3.	3.432 - 3.402 ppm	3.355 - 3.	3.355 - 3.347 ppm	3.232 - 3.228 ppm	228 ppm	3.224 - 3	3.224 - 3.217 ppm	3.207 - 3.198 ppm	mdd 861
			Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
nbco	Treated	4	1.408	0.193	1.116	0.080	2.840	0.101	2.251	0.080	2.319	0.049	1.848	0.079	2.654	0.092	1.405	0.315	2.118	0.094	2.817	0.104	2.065	9/0.0
HBCXZ	Untreated	4	1.429	0.112	1.091	0.090	2.861	0.082	2.299	0.030	2.363	0.031	1.921	0.096	2.631	0.047	1.290	0.187	2.126	0.082	2.912	0.091	2.124	0.099
UDCv13A	Treated	2	1.649	0.055	1.194	0.072	2.697	0.052	2.461	0.015	2.415	0.098	2.136	0.001	2.569	0.041	0.894	0.101	2.460	0.033	2.682	0.002	2.089	0.074
IDCALLA	Untreated	4	1.655	0.148	1.167	0.131	2.713	0.070	2.518	0.036	2.456	0.052	2.032	0.021	2.611	0.042	0.919	0.152	2.381	0.036	2.712	0.032	2.140	0.046
HPCv16	Treated	4	1.640	0.114	1.043	0.021	2.770	0.124	2.345	0.044	2.095	0.025	2.092	0.056	2.626	090'0	1.048	0.087	2.434	0.173	2.633	0.136	2.254	0.260
n n	Untreated	4	1.381	0.304	0.954	0.149	2.711	0.060	2.363	0.029	2.081	0.035	2.037	0.099	2.638	0.062	296.0	0.092	2.609	0.070	2.806	0.042	2.329	0.181
HBCv30	Treated	4	1.645	0.164	1.125	0.087	2.904	0.055	2.430	0.113	2.273	0.028	2.406	0.081	2.489	0.027	1.131	0.237	1.808	0.106	2.509	0.040	1.984	0.027
a constant	Untreated	4	1.438	0.207	1.092	0.058	2.792	0.115	2.307	0.041	2.343	090'0	2.540	0.090	2.506	0.037	1.052	0.076	1.857	0.079	2.689	0.059	1.961	0.127
HBCv30	Treated	4	1.541	0.246	1.156	0.049	2.640	0.116	2.578	0.093	2.226	0.058	2.373	0.041	2.550	0.128	0.845	0.056	2.573	0.074	2.619	0.071	2.205	0.035
(a)	Untreated	4	1.395	0.176	1.081	0.058	2.616	0.080	2.597	0.023	2.205	0.085	2.343	0.051	2.552	0.081	0.895	0.173	2.619	0.078	2.707	0.109	2.146	0.076
HBCv31	Treated	4	1.858	0.076	1.331	0.067	2.695	0.045	2.353	0.021	2.449	0.051	1.980	0.018	2.496	0.069	1.029	0.097	2.309	0.073	3.025	0.032	2.243	0.041
	Untreated	4	1.727	0.176	1.282	0.028	2.689	0.036	2.372	0.024	2.412	0.050	1.927	0.042	2.511	0.075	0.949	0.086	2.408	0.049	3.091	0.051	2.224	0.094
JD-DGH	Treated	4	1.763	0.058	1.320	0.044	2.649	0.035	2.474	0.027	2.320	0.035	2.201	0.070	2.600	0.025	1.515	0.427	2.390	0.038	2.559	0.037	2.126	960'0
nov on	Untreated	4	1.838	0.355	1.369	0.101	2.695	0.061	2.446	0.116	2.291	0.069	2.252	0.120	2.648	0.054	1.502	0.328	2.331	0.147	2.674	0.158	2.167	0.078
HBCv10	Treated	4	1.540	0.126	1.343	0.159	2.760	0.056	2.269	0.363	2.429	0.313	1.849	0.066	2.630	0.335	1.310	0.320	1.892	0.211	2.653	0.425	1.976	0.262
прсуп	Untreated	4	1.475	0.236	1.352	0.049	2.776	0.147	2.506	0.053	2.561	0.067	1.828	0.037	2.443	0.103	1.180	0.311	1.874	0.089	2.904	0.137	2.132	0.101
HBCv51	Treated	3	1.101	0.033	1.190	0.024	2.615	0:036	2.164	0.072	2.284	0.055	2.207	0.091	2.500	0.091	896.0	0.186	2.673	0.062	2.872	0.091	2.258	0.074
IIDCASI	Untreated	2	1.053	0.128	1.153	0.065	2.642	0.090	2.173	0.002	2.327	0.009	2.152	0.042	2.362	0.021	1.032	0.101	2.667	0.009	3.057	0.020	2.204	0.061
HBCv4B	Treated	7	1.502	0.191	1.217	0.089	2.904	0.076	2.520	0.115	2.359	0.044	1.936	0.057	2.600	0.065	0.952	0.087	2.102	0.173	2.466	0.165	2.200	0.077
премер	Untreated	00	1.313	0.180	1.188	0.111	2.850	0.043	2.497	0.098	2.277	0.061	1.916	0.111	2.724	0.116	0.940	0.077	2.212	0.110	2.581	0.207	2.181	0.097
HBCv52	Treated	3	1.672	0.137	1.278	0.053	2.694	0.045	2.453	0.101	2.272	0.070	1.970	0.140	2.751	0.045	1.299	0.159	2.009	0.068	2.609	0.018	2.213	0.062
HBCXS	Untreated	4	1.307	0.318	1.505	0.091	2.715	0.083	2.389	0.050	2.127	0.034	1.928	0.083	2.824	0.057	0.977	0.054	2.081	0.057	2.834	0.033	2.200	0.065
HBCv34	Treated	4	1.558	0.121	1.457	0.124	2.912	0.134	2.379	0.053	2.384	0.027	2.268	0.118	2.639	0.078	1.064	0.160	2.207	0.238	2.671	0.163	2.227	0.041
	Untreated	3	1.395	0.301	1.433	0.154	2.846	0.232	2.362	0.167	2.332	0.079	2.310	0.134	2.566	0.125	1.345	0.149	2.208	0.306	2.836	0.246	2.172	0.116
HBCv63	Treated	3	1.431	0.111	1.251	0.035	2.679	0.036	2.474	0.077	2.160	0.042	1.926	0.114	2.619	0.039	1.258	0.229	2.573	0.073	2.680	0.141	2.166	0.081
	Untreated	4	1.280	0.273	1.159	0.128	2.731	0.151	2.480	0.068	2.078	0.097	1.876	0.172	2.591	0.102	1.229	0.360	2.499	0.229	2.690	0.134	2.104	0.151
ha obamical abid.	as absential shift interest of fixed sections interested to so largest the relatives large for each metabolis	metad to onlon	ologo the stole	ative level for ea		Homoitipho oix	T betrousers	or etilodotom ac'	tion the men	i of the chami	and object into	s is additionally removed for metabolite retire the mean of the absenced shift interest is removed for the ammentar act the demonstrator DNY national venous	1 for the mine	to the section of the st	of the denon	inoton DDV: n	ations domini	- Homoomod						

Unrealed 0.172 | 1.280 0.273 | 1.159 0.128 | 2.331 0.114 | 2.480 0.068 | 2.078 0.077 | 1.876 0.172 | 2.591 0.102 | 1.229 0.500 |

The chemical shift interval of fixed regions integrate to calculate the relative level for each metabolite is additionally reported. For metabolite ratios, the mean of the chemical shift integral is reported for the numerator over that of the denominator, PDX; patient-derived xenogradi;

Std. Dev.; standard deviation; Gir. glucose; Ase: ascorbate, Lac: lactaie, Tyr; tyresing, Gir. transme, Gir. style-inscitol; GPC, glycering, PDV; phosphocholing, Chr. choling, Cr. creatine, GSH; glutathore; Sucr. succinate; Glut glutamone;

mm Mean Statististy mm 1.2472-1258 pmm 1.2472-1244 pmm 1.	i d'immendine	-5	1		-0	ľ	пээ			3			-			Lond	Ė	E	-5	CDCDCL	ť
Trended 4 24.24 Other Std Dec. Mean Mean	PDX model	Treatment Group		3.042 - 3.	.021 ppm	2.582	2.538 ppm	2.478 - 2.	429 ppm	2.422 - 2.	414 ppm	2.386-2.	334 ppm	1.509 - 1.	487 ppm	4.107/4.6	24 ppm	3.417/3.0	31 ppm	3.230/3.221 ppm	maa .
Trended 4 2.429 0.06 1870 0.244 1.688 0.081 1.590 0.018 1.489 0.018 2.481 0.010 1.481 0.017 2.481 0.019 1.481 0.018 1.481 0.018 2.481 0.018 1.481 0.018 1.481 0.018 2.481 0.018 1.481 0.018 2.481 0.018 1.481 0.018 2.481 0.018 1.481 0.018 1.481 0.018 2.482 0.018 1.481 0.018 1.481 0.018 2.482 0.018 1.481 0.018 1.481 0.018 2.483 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.481 0.018 1.4				Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Unreaded 4 2.34 0.09 1471 6.07 1.54 0.07 <t< th=""><th>COUL</th><th>Treated</th><th>4</th><th>2.429</th><th>0.067</th><th></th><th>0.244</th><th>1.688</th><th>0.058</th><th>1.506</th><th>0.155</th><th>2.483</th><th>0.031</th><th>2.485</th><th>0.043</th><th>1.432</th><th>0.242</th><th>0.225</th><th>0.061</th><th>669:0-</th><th>0.114</th></t<>	COUL	Treated	4	2.429	0.067		0.244	1.688	0.058	1.506	0.155	2.483	0.031	2.485	0.043	1.432	0.242	0.225	0.061	669:0-	0.114
Treated 2 2183 0.05 139 0.05 156 0.10 158 0.09 139 0.05 136 0.05 136 0.05 136 0.05 136 0.05 136 0.05 136 0.05 136 0.05 136 0.05 136 0.05 136 0.05 136 0.05 136 0.05 136 0.05 136 0.05 136 0.05 0.05 136	HBCXZ	Untreated	4	2.394	0.042		0.165	1.561	0.030	1.516	0.077	2.501	0.036	2.494	0:020	1.431	0.042	0.237	0.063	-0.786	0.101
Unmented 4 2,242 0.007 1,892 0.008 1,444 0.007 2,890 0.009 2255 0.007 1,593 0.018 1,444 0.007 2,853 0.007 1,593 0.018 1,444 0.007 2,853 0.009 1,234 0.007 1,247 0.018 1,148 0.009 1,244 0.007 2,244 0.008 1,131 0.018 1,148 1,048 0.007 2,447 0.008 1,131 0.130 0.009 1,131 0.009 1,131 0.009 1,131 0.009 1,131 0.009 1,131 0.009 1,131 0.009 1,134 0.009 2,149 0.009 2,141 0.009 2,149 0.009 1,149 0.009 2,149 0.009 1,149 0.009 1,149 0.009 1,149 0.009 2,149 0.009 2,149 0.009 1,149 0.009 2,149 0.009 1,149 0.009 2,149 0.009 1,149 0.009 2	UDC~13.4	Treated	2	2.183	0.059	_	0.019	1.654	0.109	1.510	0.062	2.572	0.039		0.042	1.047	0.106	0.385	0.100	-0.222	0.031
Treated 4 1946 0.11 1935 0.13 1.34 0.05 1.34 0.05 2.53 0.06 2.35 0.06 1.39 0.18 Treated 4 1.916 0.073 1.87 0.073 1.46 0.073 2.43 0.08 2.34 0.09 1.39 0.07 1.46 0.073 2.43 0.09 1.39 0.07 1.48 0.09 2.44 0.08 1.39 0.03 1.39 0.08 0.24 0.08 1.39 0.03 1.39 0.09 1.39 0.09 1.39 0.09 1.39 0.09 1.39 0.09 1.39 0.09 1.39 0.09 1.48 0.09 1.48 0.09 1.49 0.09 1.49 0.09 1.39 0.09 1.48 0.09 1.48 0.09 2.49 0.09 1.39 0.09 1.48 0.09 1.49 0.09 2.49 0.09 1.39 0.09 1.39 0.09 1.48 <	IIDCALEA	Untreated	4	2.242	0.037	_	0:089	1.616	0.145	1.484	0.097	2.590	0.019		0.078	1.058	0.206	0.369	0.051	-0.332	0.031
Figure 1	HPCv16	Treated	4	1.946	0.110	_	0.138	1.733	0.030	1.344	0.022	2.563	0.008		0.061	1.131	0.180	629.0	0.071	-0.200	0.075
Transid 4 2,238 0,02 1,818 0,06 1,850 0,05 1,69 0,07 1,79 0,09 1,79 0,09 1,79 0,09 1,40 0,09 2,41 0,09 1,79 0,09 1,40 0,09 2,41 0,09 1,24 0,09 1,29 0,09 1,40 0,09 2,41 0,09 1,20 0,09 1,40 0,09 2,41 0,09 1,20 0,09 1,40 0,09 2,41 0,09 1,21 0,09 1,21 0,09 1,21 0,09	предп	Untreated	4	1.916	0.073	_	0.029	1.505	0.148	1.463	0.047	2.547	0.048		0.093	1.330	0.258	0.722	0.039	-0.197	0.061
Universided 4 2.443 0.021 1.910 0.073 1.644 0.105 1.719 0.066 2.719 0.068 2.344 0.069 1.354 0.031 Treated 4 2.182 0.002 1.975 0.042 1.445 0.049 2.441 0.046 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.049 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.949 0.078 1.849 0.042 1.949 0.078 1.946 0.078 1.846 0.078 1.849 0.078 1.846 0.078 1.849 0.078 1.846 0.079 2.841 0.078 0.947 0.0	HBCv30	Treated	4	2.328	0.032	_	0.061	1.856	0.253	1.500	0.039	2.668	0.047		0.054	1.259	0.217	0.161	0.042	-0.701	0.113
Treated 4 2182 0.03 1875 0.04 1492 0.19 2149 0.07 1159 0.03 1492 0.19 2.19 0.07 1.19 0.03 1.19 0.03 1.14 0.04 1.14 0.07 1.45 0.03 2.47 0.04 0.19 1.15 0.09 1.14 0.07 2.47 0.04 1.14 0.04 1.46 0.03 2.47 0.04 1.09 0.03 1.24 0.03 1.17 0.03 2.87 0.045 1.09 0.03 0.47 0.04 0.03 0.04 1.09 0.04 1.46 0.09 1.46 0.09 1.46 0.09 1.46 0.09 1.46 0.09 1.46 0.09 1.46 0.09 1.46 0.09 1.46 0.09 1.46 0.09 1.46 0.09 1.46 0.09 1.46 0.09 1.47 0.09 2.47 0.09 0.09 0.09 0.09 0.09 0.09 <t< th=""><th>прской</th><td>Untreated</td><td>4</td><td>2.403</td><td>0.021</td><td>1.910</td><td>0.073</td><td>1.664</td><td>0.126</td><td>1.480</td><td>090'0</td><td>2.719</td><td>0.068</td><td></td><td>0.063</td><td>1.354</td><td>0.321</td><td>0.103</td><td>0.045</td><td>-0.832</td><td>0.130</td></t<>	прской	Untreated	4	2.403	0.021	1.910	0.073	1.664	0.126	1.480	090'0	2.719	0.068		0.063	1.354	0.321	0.103	0.045	-0.832	0.130
Universided 4 2,373 0,090 1,910 0,067 1,454 0,039 2,471 0,058 2,107 0,079 1,221 0,094 Treated 4 2,447 0,039 1,872 0,062 1,440 0,073 2,887 0,049 0,887 0,049 Universided 4 2,444 0,032 1,884 0,044 1,817 0,049 2,871 0,043 2,889 0,048 0,886 0,049 0,887	HBCv30	Treated	4	2.182	0.032	_	0.034	1.946	0.081	1.492	0.195	2.419	0.042		0.078	1.099	0.316	0.368	0.152	-0.046	0.050
Trensed 4 2.417 0.004 1.891 0.064 1.440 0.075 2.887 0.046 2.186 0.040 0.837 0.040 0.837 0.040 0.837 0.040 0.837 0.040 0.837 0.040 0.050 1.78 0.044 1.466 0.019 2.391 0.025 2.185 0.049 0.083 0.020 0.020 1.88 0.039 2.541 0.032 2.185 0.049 0.083 0.031 0.032 1.88 0.040 0.887 0.083 0.032 0.032 2.68 0.049 0.887 0.032 0.040 0.887 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032 0.040 0.032		Untreated	4	2.203	0.090	_	0.067	1.754	0.097	1.465	0.030	2.471	0.036		0.079	1.221	0.192	0.349	0.071	-0.088	0.094
Universided 4 2.464 0.043 1.778 0.049 1.884 0.044 1.466 0.100 2.301 0.052 2.152 0.055 0.965 0.024 0.052 1.879 0.044 1.885 0.044 1.879 0.044 1.879 0.044 1.879 0.044 1.879 0.044 1.879 0.044 1.879 0.044 1.879 0.044 1.879 0.044 1.879 0.045 1.574 0.035 2.584 0.048 0.048 0.085 0.084 0.085 0.044 0.045 0.044 0.045 0.	HBCv31	Treated	4	2.417	0.030	_	090:0	1.941	0.052	1.440	0.073	2.387	0.043		0:040	0.837	0.094	0.078	0.061	-0.717	0.058
Trended 4 2,343 0.064 1,899 0.054 1,871 0.086 2677 0.082 2.68 0.048 0.886 0.087 Unimend 4 2,342 0.066 1,881 0.125 1,534 0.092 2.561 0.048 0.887 0.885 Treated 4 2,537 0.38 1,681 0.12 1,538 0.092 2.547 0.99 0.09 1,687 0.12 1,534 0.092 2.549 0.09 1,200 0.01 1,437 0.01 2.547 0.99 0.09 1,682 0.12 1,538 0.09 2.54 0.09 1,51 0.09 1,437 0.01 2.547 0.09 1,51 0.09 1,437 0.01 2.547 0.09 1,51 0.09 1,432 0.09 1,529 0.09 1,529 0.09 1,529 0.09 1,528 0.09 1,528 0.09 1,528 0.09 1,528 0.09 1,528 0.09 1,		Untreated	4	2.464	0.033	_	0.039	1.884	0.044	1.466	0.109	2.301	0.025		0.053	0.962	0.202	0.048	0.102	-0.683	0.101
Universide	yy.Jan	Treated	4	2.343	0.043	1.899	0.054	1.685	0.034	1.517	0.086	2.617	0.032		0.048	0.886	0.081	0.256	0.061	-0.169	0.053
Transid 4 2.557 0.31 1.661 0.196 1.938 0.102 2.547 0.359 2.366 0.204 1.220 0.109 Unimend 4 2.408 0.039 1.650 0.011 1.537 0.011 2.717 0.038 2.324 0.079 1.519 0.018 1.539 0.019 1.513 0.018 1.539 0.019 1.513 0.018 1.539 0.019 1.539 0.018 1.534 0.019 1.513 0.018 1.539 0.019 1.539 0.018 1.539 0.019 1.539 0.018 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 1.539 0.019 <th>npc.wo</th> <td>Untreated</td> <td>4</td> <td>2.342</td> <td>980'0</td> <td>_</td> <td>0.129</td> <td>1.683</td> <td>0.156</td> <td>1.534</td> <td>0.092</td> <td>2.561</td> <td>0.102</td> <td></td> <td>0.040</td> <td>0.857</td> <td>0.365</td> <td>905.0</td> <td>0.131</td> <td>-0.343</td> <td>0.032</td>	npc.wo	Untreated	4	2.342	980'0	_	0.129	1.683	0.156	1.534	0.092	2.561	0.102		0.040	0.857	0.365	905.0	0.131	-0.343	0.032
Universided 4 2.408 0.009 1.650 0.112 1.755 0.018 1.427 0.115 2.717 0.038 2.329 0.010 1.301 0.109 0.008 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 1.304 0.009 0.004 1.304 0.009 0.009 0.	HBCv10	Treated	4	2.557	0.331	1.661	0.196	1.958	0.122	1.538	0.102	2.547	0.359		0.204	1.220	0.101	0.073	0.069	-0.761	0.244
Treated 3 2 168 0.026 1.544 0.029 1.832 0.025 2.534 0.075 2.534 0.075 2.534 0.075 0.055 1.533 0.025 0.05	a mocern	Untreated	4	2.408	0.059	_	0.112	1.755	0.018	1.427	0.115	2.717	0.038		0.010	1.301	0.196	0.036	0.154	-1.030	0.085
Universide 2 1,990 0.00 1.685 0.165 1.662 0.005 1.728 0.060 2.579 0.053 2.524 0.006 1.589 0.008 0.008 1.728 0.006 1.589 0.008 0.008 1.289 0.008 1.289 0.008 1.289 0.008 1.403 0.009 0.008 1.403 0.008 1.403 0.008 1.403 0.008 1.403 0.008 1.403 0.008 1.403 0.008 1.403 0.008 1.403 0.008 1.403 0.008 1.403 0.008 1.403 0.008 1.403 0.008 1.403 0.008 1.403 0.403 0.403 0.40	HBCv51	Treated	3	2.058	0.055	_	0.029	1.832	0.075	1.533	0.029	2.534	0.078		0.065	1.513	0.008	0.442	0.046	-0.199	0.029
Treated 7 2.419 0.064 1.698 0.218 1.783 0.114 1.592 0.057 2.564 0.034 2.515 0.067 1.403 0.195 Universid 8 2.587 0.048 1.918 0.079 1.263 0.075 2.594 0.068 2.453 0.069 1.537 0.195 Treated 4 2.127 0.048 1.918 0.079 2.630 0.073 2.545 0.073 2.545 0.048 1.409 0.071 Treated 4 2.460 0.097 1.711 0.172 1.620 0.138 1.641 0.083 2.582 0.048 2.579 0.048 1.409 0.401 Treated 3 2.449 0.017 2.041 0.013 1.489 0.012 2.549 0.013 2.549 0.014 2.149 0.013 Treated 3 2.549 0.017 2.041 0.013 1.409 0.017 2.549 0.014 2.549 0.014 2.549 0.015 2.549 0.015 2.549 0.015 Treated 3 2.549 0.017 2.041 0.013 1.409 0.017 2.549 0.014 2.549 0.014 2.549 0.015 2.549 0.015 2.549 0.015 0.015 0.015 Treated 4 2.450 0.007 2.041 2.450 0.015 2.450 0.015 2.549 0.015 2.549 0.015 0.01		Untreated	2	1.990	0.020	_	0.163	1.662	0.005	1.728	090'0	2.579	0.053		900'0	1.589	0.038	0.372	0.042	-0.390	0.029
Universidary S 2.597 0.125 1.872 0.196 1.634 0.112 1.565 0.087 2.594 0.066 2.423 0.095 1.537 0.195 Treated 3 2.117 0.018 1.918 0.079 2.263 0.048 1.918 0.079 2.263 0.048 2.545 0.048 2.247 0.048 1.042 0.171 Treated 4 2.460 0.097 1.711 0.171 1.639 0.135 1.549 0.016 2.285 0.048 2.478 0.079 1.344 0.079 Treated 3 2.449 0.117 1.603 0.111 1.488 0.125 1.549 0.017 2.58 0.170 2.59 0.041 1.548 0.079 Treated 3 2.549 0.017 2.211 0.018 1.489 0.017 2.58 0.014 2.489 0.015 1.481 0.084 Treated 3 2.549 0.007 2.241 0.018 1.489 0.017 2.58 0.014 0.049 1.481 0.018 Treated 3 2.549 0.007 2.549 0.007 2.499 0.007 1.481 0.008 Treated 4 2.460 0.007 2.499	HBCv4B	Treated	7	2.419	0.064	_	0.218	1.783	0.114	1.592	0.057	2.564	0.034		0:067	1.403	0.192	0.181	0.052	-0.364	0.069
Treated 3 2.117 0.048 1.918 0.079 2.266 0.025 1.579 0.058 2.455 0.054 2.237 0.040 1.022 0.171 0.172 1.620 0.138 1.641 0.073 2.826 0.038 2.237 0.048 1.409 0.401		Untreated	∞	2.507	0.125	_	0.196	1.624	0,121	1.565	0.087	2.504	0.061	2.423	0.095	1.537	0.195	0.217	0.092	-0.369	0.179
Universid 4 2.127 0.016 1.915 0.027 2.047 0.079 1.461 0.073 2.896 0.038 2.237 0.048 1.409 0.401 0.401 1.240 0.401 1.240 0.401 1.840 0.401 0.401 1.840 0.401	HBCv62	Treated	3	2.117	0.048	_	0.079	2.263	0.025	1.579	0.058	2.545	0.054		0.040	1.022	0.171	0.635	0.057	-0.600	0.084
Treated 4 2.460 0.097 1.711 0.172 1.620 0.138 1.664 0.083 2.382 0.088 2.478 0.079 1.554 0.078 University 3 2.449 0.117 1.603 0.111 1.488 0.125 1.549 0.105 2.58 0.170 2.379 0.025 1.451 0.084 1.700 1.200 1.200 0.170 1.200 1.200 0.170 1.200 0.121 1.600 0.170 1.200 0.170 1.200 0.121 1.600 0.170 1.200 0.170 1.200 0.121 1.610 0.170 1.200 0.121 1.610 0.121 1.		Untreated	4	2.127	0.016	_	0.027	2.047	0.079	1.461	0.073	2.596	0.038		0.048	1.409	0.401	0.697	0.056	-0.754	0.033
Universid 3 2.449 0.117 1.603 0.111 1.488 0.125 1.549 0.106 2.28 0.170 2.379 0.025 1.451 0.068 Treated 3 2.559 0.017 2.021 0.0015 1.439 0.021 2.548 0.024 2.154 0.03 1.248 0.137 Treated 4 2.456 0.000 1.810 1.480 0.079 1.440	HBCv34	Treated	4	2.460	0.097		0.172	1.620	0.138	1.664	0.083	2.382	0.088		0.079	1.354	0.078	0.179	0.080	-0.464	0.317
Treated 3 2519 0.017 2.021 0.015 1.622 0.079 1.439 0.021 2.568 0.024 2.164 0.043 1.248 0.137 (137) 2.267 0.029 1.248 0.137 (137) 2.267 0.029 1.248 0.137 (137) 2.267 0.029 1.248 0.137 (137) 2.267 0.029 1.241 0.0		Untreated	3	2.449	0.117		0.111	1.488	0.125	1.549	0.106	2.258	0.170		0.025	1.451	0.084	0.116	0.012	-0.628	0.161
	HBCv63	Treated	3	2.519	0.017		0.015	1.622	0.079	1.439	0.021	2.568	0.024		0.043	1.248	0.137	0.100	0.024	-0.107	0.181
1011 0000 1011 0000 0001 0000 0001 0000 0001 0000 0001 0000		Untreated	4	2.456	0.099	1.830	0.181	1.489	0.075	1.340	0.089	2.460	0.072	2.094	0.086	1.451	0.292	0.135	0.023	-0.192	0.179