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Abstract

This paper proposes an observer for the joint state and fault estimation devoted to
discrete-time linear parameter varying (LPV) systems subject to actuator faults.
The major contribution of this work is that the proposed observer is able to es-
timate multiplicative faults, contrarily to the existing approaches, that consider
additive faults. The main characteristic of the proposed observer is that it is sched-
uled not only by means of the endogenous varying parameters of the faulty model,
but also by the input vector. Another contribution of this paper consists in adding
a switching component in order to guarantee the feasibility of the conditions for
designing the observer gains. It is proved that, as long as the input sequence satis-
fies some characteristics, the convergence of the observer error dynamics to zero
is assured. A numerical example is used to demonstrate the effectiveness of the
proposed strategy.
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1. Introduction

Fault detection and isolation (FDI) systems have been a very active area of
research in the last decades, and many schemes have been developed (see [1],
[2] and [3] for recent surveys of the most relevant results). The FDI approaches
are generally classified into model-based/data-based and quantitative/qualitative
techniques [1]. A quantitative model-based FDI scheme utilizes a mathematical
model, often known as analytical redundancy, to carry out FDI in real-time.

Among the proposed solutions for fault diagnosis systems, several methods
are based on observers. These fault estimation methods attempt to reconstruct the
fault rather than to detect its presence, and provide a direct estimate of its mag-
nitude and severity, which is important in many applications, especially when an
active fault tolerant control (FTC) strategy is implemented. In [4], a sliding mode
observer that decouples the effects of the fault signals from the response of the sys-
tem estimated outputs has been developed. The observer is designed to maintain
a sliding motion even in the presence of faults, that are explicitly reconstructed
through the manipulation of the equivalent output injection signal. Further im-
provements of this technique can be found in [5] and [6]. [7] provided a robust
state-space observer for Lipschitz nonlinear descriptor systems with bounded in-
put disturbances. The proposed method can simultaneously estimate descriptor
system states, actuator faults, their finite time derivatives, and attenuate input
disturbances in any desired accuracy. In [8], a method for state estimation of
Takagi-Sugeno (TS) descriptor systems affected by unknown inputs has been pre-
sented. Sufficient existence conditions of the unknown input observers (UIOs) are
given and strict linear matrix inequalities are solved to determine the gain of the
observers. In particular, in [8], it has been shown that, by designing a bank of
observers and using a simple decision logic and thresholds, robust fault diagnosis
can be performed. In [9], the authors have further developed the use of UIOs for
fault detection/isolation in overactuated systems. In [10], a robust residual gen-
erator in order to achieve the tasks of fault detection, isolation and estimation for
nonlinear systems described by a TS model has been proposed. The main result
consisted in extending the method of fault diagnosis based on H∞ control frame-
work including a reference model corresponding to the desired response of the
residual to the fault.
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The provided list of references is not exhaustive, and many other observer-
based FDI methods have been developed for actuator faults, e.g. [11] and [12].
However, most of the proposed approaches consider the case of additive faults,
and there is a lack of results concerning observer-based estimators for actuator
multiplicative faults. The main difference between an additive and a multiplica-
tive fault is that, as a result of the additive faults, the mean value of the output
changes, while if the fault is multiplicative, it generates changes on the system
parameters [13]. The design of observers for multiplicative fault estimation is
not as straightforward as the case of additive fault estimation, because the effect
of the input and the fault are mixed. To the best of the author’s knowledge, the
only observer-based solution for the estimation of multiplicative faults has been
provided by [14], where the multiplicative faults have been reshaped into additive
faults, such that a sliding mode observer is used. Hence, finding solutions to this
problem remains an open research issue.

On the other hand, the concept of linear parameter varying (LPV) systems was
introduced by [15] to distinguish such systems from linear time invariant (LTI) and
linear time varying (LTV) ones [16]. Since then, the LPV paradigm has become
a standard formalism in systems and control, for analysis, controller synthesis
and even system identification. In some cases, due to the loss of feasibility of
the LMIs or the inherent switching modes of the system, it may be needed to
split the parameter region into subregions, and switch among them during the
LPV system operation. Thus, the LPV system is transformed into a new class of
system, referred to as switched LPV system [17].

The main contribution of this paper is to propose an observer for the joint
estimation of the state and multiplicative faults in discrete-time LPV systems. The
proposed observer is scheduled not only by the endogenous varying parameters
of the faulty model, but also by the input vector. Its design is performed solving
matrix inequalities, and it is shown that if any of the system inputs can take a value
equal to zero, a problem of feasibility of the matrix inequalities would appear if
a non-switching structure is used for the LPV observer. However, the addition
of a switching component allows to overcome this issue by considering different
feasibility regions generated by the scheduling parameters. It is worth highlighting
that the proposed method can also be applied to LTI systems, by considering that
the switched LPV observer is scheduled only by the input vector.

The paper is structured as follows. Section 2 presents the problem of joint
state and actuator multiplicative fault estimation. Section 3 provides the solution
proposed for this problem. Section 4 illustrates the proposed approach using a
numerical example. Finally, Section 5 outlines the conclusions.
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2. Problem Statement

Let us consider a discrete-time LPV system subject to actuator faults

x̄(k + 1) = Ā (θ̄(k)) x̄(k) + B̄ (θ̄(k))Γ(k)u(k) (1)
y(k) = C̄ x̄(k) (2)

where x̄(k) ∈ Rnx and y(k) ∈ Rny are the state and output vector, respectively. The
input vector, denoted by u(k), takes values in a subset Υ ⊂ Rnu , defined as follows

Υ = [umin
1 ,umax

1 ] × . . . × [umin
nu
,umax

nu
] (3)

where umin
j < 0 and umax

j > 0 for all j = 1, . . . ,nu.
The matrices Ā (θ̄(k)) ∈ Rnx×nx , B̄ (θ̄(k)) ∈ Rnx×nu are known and scheduled by

the vector of varying parameters θ̄(k) ∈ Θ ⊂ Rnθ . The matrix C̄ ∈ Rny×nx is a known
constant matrix. On the other hand, the matrix Γ(k) is unknown and describes the
multiplicative faults, as follows

Γ(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

γ1(k) 0 ⋯ 0
0 γ2(k) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ γnu(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where each γ j(k), j = 1, . . . ,nu, represents the loss of effectiveness of the j-th
actuator, such that its extreme values 0 and 1 correspond to the total loss of the
actuator and to the healthy actuator, respectively.

Remark 1. The assumption of constant output matrix is quite common in the lit-
erature, and could be relaxed either by increasing the mathematical complexity of
the solution proposed in the following, or by post-filtering the output vector y(k),
as proposed by [18].

The problem addressed in this paper is the joint estimation of the system states
and the multiplicative faults using the model (1) and the available measurements
(2). In order to achieve this objective, let us notice that, thanks to the diagonal
structure of Γ(k), which implies

Γ(k)u(k) = U (u(k))γ(k) (5)
U (u(k)) = diag (u1(k), . . . ,unu(k)) (6)

γ(k) = [ γ1(k) γ2(k) . . . γnu(k) ]T
(7)
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it is possible to rewrite the system state equation (1) as

x̄(k + 1) = Ā (θ̄(k)) x̄(k) + B̄ (θ̄(k))U (u(k))γ(k) (8)

Under the assumption of slow-varying faults, i.e. γ(k + 1) = γ(k), and by
considering the augmented state vector x(k) ≜ [x̄(k)T γ(k)T ]T and the scheduling
vector θ(k) ≜ [θ̄(k)T u(k)T ]T , the following augmented system is obtained

x(k + 1) = A(θ(k))x(k) (9)
y(k) = Cx(k) (10)

with

A(θ(k)) = [Ā(θ̄(k)) B̄(θ̄(k))U (u(k))
0 I ] , C = [C̄ 0]

Remark 2. The assumption of slow variation of the faults could appear very re-
strictive. Nevertheless, this assumption could be relaxed from a practical point of
view, as stated by [19] and [20].

Under the assumption that the augmented system (9)-(10) is observable, the
following observer for the joint state and fault estimation could be proposed

x̂(k + 1) = A(θ(k))x̂(k) + L(θ(k)) (ŷ(k) − y(k)) (11)
ŷ(k) = Cx̂(k) (12)

In this case, the problem would reduce to find the observer gain L(θ(k)) such
that lim

k→∞
e(k) = lim

k→∞
(x̂(k) − x(k)) = 0.

Taking into account the augmented system (9)-(10) and the state/fault observer
(11)-(12), the dynamics of the estimation error e(k) is given as follows

e(k + 1) = (A (θ(k)) + L (θ(k))C) e(k) (13)

Let us recall the following lemma.

Lemma 1. (Lyapunov condition for the stability of discrete-time LPV systems)
Consider an autonomous discrete-time LPV system

x(k + 1) = A (θ(k)) x(k), θ ∈ Θ ⊂ Rnθ (14)

5



If there exists a matrix P = PT ≻ 0 such that ∀θ ∈ Θ the following holds

[ P PA (θ)
A (θ)T P P

] ≻ 0 (15)

then the system (14) is stable in the sense of Lyapunov.
Proof: The proof is straightforward by considering the Lyapunov function

V (k) = x(k)T Px(k) and imposing that the difference V(k + 1) − V(k) is nega-
tive. ◻

Then, sufficient conditions for guaranteeing the stability of (13) are obtained
by applying Lemma 1, that leads to the following matrix inequalities

[P PA (θ) + Ξ (θ)C
⋆ P ] ≻ 0 ∀θ ∈ Θ ×Υ (16)

However, due to the structure of the matrix A (θ) and C, if any of the inputs can
take a value equal to zero, then a problem of feasibility of the matrix inequalities
appears due to the loss of observability of the pairs (A (θ) ,C). For example, if
u(k) = 0 were an admissible input, the observability matrix for this value, defined
as

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C
CA(θ)

⋮
CA (θ)nx+nu−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C̄ 0
C̄Ā (θ̄) 0

⋮ ⋮
C̄Ā (θ̄)nx+nu−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(17)

is such that rank(O) < nx + nu.
In order to guarantee the feasibility of the conditions for designing the ob-

server gains, a switched LPV state/fault observer is proposed in the next section,
which is the main contribution of this work.

3. Main result

Let us define the following subsets of the input space

Rs1 s2...snu
= {u ∶ u1

s1

O(−1)s1ε1, . . . ,unu

snu

O (−1)snuεnu} (18)

Qs1 s2...snu
= {u ∶ u1

s1

O s1ε1, . . . ,unu

snu

O snuεnu} (19)
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R/Qs1 s2...snu
= {u ∶ u ∈Rs1 s2...snu

,u ∉ Qs1 s2...snu
} (20)

where the operators
s j

O, j = 1, . . . ,nu, are a shorthand notation for

s j

O = { ≥ i f s j = +
≤ i f s j = −

(21)

and ε j, j = 1, . . . ,nu, are given small scalars. The piecewise constant switching
signal

σ(k) = s1(k) . . . snu(k) (22)

defines at each time sample whether the index s j of the active subsetsRs1 s2...snu
and

Qs1 s2...snu
is + or −, as given in (21). In particular, the switching rule that provides

the switching signal is chosen to be dependent on the values of the inputs, as
follows

s j(k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s j(k − 1) i f u j(k)
s j(k−1)

O (−1)s j(k − 1)ε j

−s j(k − 1) i f u j(k)
s j(k−1)

≶ (−1)s j(k − 1)ε j

(23)

where the operators
s j

≶ are a shorthand notation for

s j

≶ = { < i f s j = +
> i f s j = −

(24)

Example: Let us consider the case where nu = 2, that is, a system with two
available inputs u1(k) and u2(k). Eq. (18)-(20) define the following subsets of the
input space

R++ = {u ∶ u1 ≥ −ε1,u2 ≥ −ε2} R+− = {u ∶ u1 ≥ −ε1,u2 ≤ ε2}

R−+ = {u ∶ u1 ≤ ε1,u2 ≥ −ε2} R−− = {u ∶ u1 ≤ ε1,u2 ≤ ε2}
(25)

Q++ = {u ∶ u1 ≥ ε1,u2 ≥ ε2} Q+− = {u ∶ u1 ≥ ε1,u2 ≤ −ε2}

Q−+ = {u ∶ u1 ≤ −ε1,u2 ≥ ε2} Q−− = {u ∶ u1 ≤ −ε1,u2 ≤ −ε2}
(26)

R/Q++ = {u ∶ u ∈R++,u ∉ Q++} R/Q+− = {u ∶ u ∈R+−,u ∉ Q+−}

R/Q−+ = {u ∶ u ∈R−+,u ∉ Q−+} R/Q−− = {u ∶ u ∈R−−,u ∉ Q−−}
(27)

Then, σ(k − 1) = ++ would indicate that the active subset at time sample k − 1
is R++, while σ(k − 1) = +−, σ(k − 1) = −+ and σ(k − 1) = −− would indicate
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R+−, R−+ and R−−, respectively. Then, if the active subset at time sample k − 1
were R++, the switching rule (23) would be as follows

σ(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+ + i f u1(k) ≥ −ε1,u2(k) ≥ −ε2

+ − i f u1(k) ≥ −ε1,u2(k) < −ε2

− + i f u1(k) < −ε1,u2(k) ≥ −ε2

− − i f u1(k) < −ε1,u2(k) < −ε2

On the other hand, if the active subset at time sample k − 1 were R+−, the
switching rule would be

σ(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+ + i f u1(k) ≥ −ε1,u2(k) > ε2

+ − i f u1(k) ≥ −ε1,u2(k) ≤ ε2

− + i f u1(k) < −ε1,u2(k) > ε2

− − i f u1(k) < −ε1,u2(k) ≤ ε2

Similar switching rules are obtained for the remaining active subsetsR−+ orR−−.
∎

Taking into account the definition of the switching signal provided in (22)-
(23), the following switched LPV state/fault observer is proposed in order to guar-
antee that in each subset of the input space Rs1 s2...snu

, the design conditions for the
gains are feasible

x̂(k + 1) = A(θ(k))x̂(k) + Lσ(k)(θ(k)) (ŷ(k) − y(k)) (28)
ŷ(k) = Cx̂(k) (29)

where Lσ(k)(θ(k)) corresponds to the active LPV observer gain, that is defined by
the value of the switching signal σ(k). The design problem becomes to find the
possible LPV observer gains Ls1...snu

(θ(k)) for all the subsets defined in (18), such
that the dynamics of the estimation error

e(k + 1) = (A (θ(k)) + Lσ(k) (θ(k))C) e(k) (30)

satisfies some stability condition.
The following theorem provides a sufficient condition for the stability of the

estimation error dynamics (30). This proof resembles the reasoning used to prove
the stability of switched LPV systems with average dwell time [17].
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Theorem 1. If there exist 2nu positive definite matrices Pl = PT
l ∈ R(nx+nu)×(nx+nu),

2nu matrices Ξl(θ) ∈ R(nx+nu)×ny , scalars 0 ≤ a ≤ 1, b ≥ 0 and µ > 1 such that the
following conditions hold

[ Pl PlA (θ) + Ξl (θ)C
⋆ aPl

] > 0, ∀θ ∈ Θ × (Υ ∩Ql) (31)

[ Pl PlA (θ) + Ξl (θ)C
⋆ bPl

] > 0, ∀θ ∈ Θ × (Υ ∩Rl) (32)

1
µ

Pm ≤ Pl ≤ µPm (33)

with l and m equal to all the possible combinations of indices s1 . . . snu as defined
in (18)-(19), then the error dynamics (30) converges asymptotically to zero as long
as the LPV observer gains are calculated as

Ll (θ(k)) = P−1
l Ξl (θ(k)) (34)

and the input sequence u(k) is such that for any k0 ≥ 0, it is possible to find a
k f > k0 such that

(µN) (bNk̄
R/Q) (aNk̄Q) < 1 (35)

where N is the number of switches in [k0, k f ] given by (23), k̄Q is the average
number of samples per switch during which u(k) belongs to one of the subsets
Qs1...snu

, and k̄R/Q is the average number of samples per switch during which u(k)
belongs to the regions that belong to a subset Rs1...snu

but do not belong to any
subset Qs1...snu

.
Proof: First of all, for each possible combination of indices s1 . . . snu in (18)-

(19), let us define the corresponding Lyapunov function

Vl (e(k)) = e(k)T Ple(k) (36)

Also, it is assumed that over an interval [k0, k f ], the input u(k) changes the active
subset as Q0 → R0/Q0, . . . ,Ql → Rl/Ql, . . . ,QN−1 → RN−1/QN−1 at time samples
k0
Q
, . . . , kl

Q
, . . . , kN−1

Q
, and asR0/Q0 → Q1, . . . ,Rl/Ql → Ql+1, . . .,RN−1/QN−1 → QN

at time samples k0
R/Q

, . . . , kl
R/Q

, . . . , kN−1
R/Q

.
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Then, due to the conditions (31), at k = k0
Q
, . . . , kl

Q
, . . . , kN−1

Q
, the Lyapunov

functions V0, . . . ,Vl, . . . ,VN satisfy

V0 (e(k0
Q
)) < (ak0

Q
−k0)V0 (e(k0)) (37)

V1 (e(k1
Q
)) < (ak1

Q
−k0
R/Q)V1 (e(k0

R/Q
)) (38)

⋮
Vl (e(kl

Q
)) < (akl

Q
−kl−1
R/Q)Vl (e(kl−1

R/Q
)) (39)

⋮
VN (e(k f )) < (ak f−kN−1

R/Q)VN (e(kN−1
R/Q

)) (40)

On the other hand, the conditions (32) guarantee that at k = k0
R/Q

, . . . , kl
R/Q

, . . . , kN−1
R/Q

,
the Lyapunov functions V0, . . . ,Vl, . . . ,VN−1 satisfy

V0 (e(k0
R/Q

)) < (bk0
R/Q

−k0
Q)V0 (e(k0

Q
)) (41)

V1 (e(k1
R/Q

)) < (bk1
R/Q

−k1
Q)V1 (e(k1

Q
)) (42)

⋮
Vl (e(kl

R/Q
)) < (bkl

R/Q
−kl
Q)Vl (e(kl

Q
)) (43)

⋮
VN−1 (e(kN−1

R/Q
)) < (bkN−1

R/Q
−kN−1
Q )VN−1 (e(kN−1

Q
)) (44)

In addition, the conditions (33) guarantee that at k = k0
R/Q

, . . . , kl
R/Q

, . . . , kN−1
R/Q

V1 (e(k0
R/Q

)) < µV0 (e(k0
R/Q

)) (45)

⋮
Vl+1 (e(kl

R/Q
)) < µVl (e(kl

R/Q
)) (46)

⋮
VN (e(kN−1

R/Q
)) < µVN−1 (e(kN−1

R/Q
)) (47)

Therefore, linking all the inequalities (37)-(47), the following is true

VN (e(k f )) < (µN)
⎛
⎝

b
N−1
∑

l=0
(kl

R/Q−kl
Q)⎞
⎠
⎛
⎝

a
k f−kN−1

R/Q+
N−1
∑

l=1
(kl

Q−kl−1
R/Q)+k0

Q−k0⎞
⎠

V0 (e(k0)) (48)
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By considering

k̄Q =
k f − kN−1

R/Q +
N−1
∑
l=1

(kl
Q − kl−1

R/Q) + k0
Q − k0

N
(49)

k̄R/Q =

N−1
∑
l=0

(kl
R/Q − kl

Q)

N
(50)

the inequality (48) can be rewritten as

VN (e(k f )) < (µN) (bNk̄R/Q) (aNk̄QV0 (e(k0))) (51)

Then, if the input u(k) is such that for each k0 ≥ 0 it is possible to find k f > k0

that satisfies (35), the Lyapunov functions will be decreasing to zero, and therefore
the estimation error e(k) will converge asymptotically to zero, completing the
proof. ◻

From a practical point of view, Theorem 1 cannot be used because it relies
on the satisfaction of infinite constraints. However, the number of constraints can
be reduced to a finite number by choosing the observer gain L to depend only on
θ̄(k), and by considering a polytopic representation of A (θ(k)) and L (θ̄(k)), as
follows

A (θ(k)) =
Nθ̄

∑
i=1
αi (θ̄(k))

Nu

∑
j=1
βl

j (u(k))AQl
i j ∀θ ∈ Θ × (Υ ∩Ql) (52)

A (θ(k)) =
Nθ̄

∑
i=1
αi (θ̄(k))

Nu

∑
j=1
χl

j (u(k))ARl
i j ∀θ ∈ Θ × (Υ ∩Rl) (53)

Ll (θ̄(k)) =
Nθ̄

∑
i=1
αi (θ̄(k))Ll

i ∀θ ∈ Θ × (Υ ∩Rl) (54)

with
Nθ̄

∑
i=1
αi (θ̄(k)) =

Nu

∑
j=1
βl

j (u(k)) =
Nu

∑
j=1
χl

j (u(k)) = 1 (55)

and αi ≥ 0 ∀i = 1, . . . ,Nθ̄, β j ≥ 0 ∀ j = 1, . . . ,Nu, χ j ≥ 0 ∀ j = 1, . . . ,Nu.
Then, the following corollary can be obtained easily from Theorem 1.
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Corollary 1. Choose scalars 0 ≤ a ≤ 1, b ≥ 0, and find 2nu positive definite
matrices Pl = PT

l ∈ R(nx+nu)×(nx+nu) and 2nu Nθ̄ matrices Ξl
i ∈ R(nx+nu)×ny such that

[ Pl PlA
Ql
i j + Ξl

iC
⋆ aPl

] > 0 (56)

[ Pl PlA
Rl
i j + Ξl

iC
⋆ bPl

] > 0 (57)

and such that there exists µ > 1 for which

1
µ

Pm ≤ Pl ≤ µPm (58)

with l and m equal to all the possible combinations s1, . . . , snu as defined in (18)-
(19), i = 1, . . . ,Nθ̄ and j = 1, . . . ,Nu.

Then, the error dynamics (30) converges asymptotically to zero as long as the
LPV observer gain is given by (54) with

Ll
i = P−1

l Ξl
i (59)

and the input sequence u(k) is such that for any k0 ≥ 0, it is possible to find a
k f > k0 such that (35) holds.

Proof: The proof is based on a basic property of matrices [21], which estab-
lishes that any linear combinations of (56) and (57) with non-negative coefficients
(of which at least one different from zero) is definite positive. Using the coefficients
αi (θ̄(k)) and βl

j (u(k)), (56) becomes

Nθ̄

∑
i=1
αi (θ̄(k))

Nu

∑
j=1
βl

j (u(k)) [ Pl PlA
Ql
i j + Ξl

iC
∗ aPl

] > 0 (60)

that, taking into account Ξl
i = PlLl

i, and (52), (54) and (55), becomes (31).
If the same process is applied to (57) using the coefficients αi (θ̄(k)) and

χl
j (u(k)) and taking into account (55)-(57), (32) would be obtained.

Since (58) corresponds to (33), the conditions provided by Theorem 1 are re-
covered, that completes the proof. ◻
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4. Illustrative Example

Consider the discrete-time LPV system subject to multiplicative actuator faults
(1)-(2) with state and input matrices described by

Ā(θ̄(k)) =
⎡⎢⎢⎢⎢⎢⎣

0.3 0.2 0.1
0.6 θ̄(k) 0.1
0.1 0.3 0.5

⎤⎥⎥⎥⎥⎥⎦
, B̄ =

⎡⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0

⎤⎥⎥⎥⎥⎥⎦
, C̄ = [1 0 0

0 1 0]

with the varying parameter θ̄(k) ∈ [0.1,0.3] for all k, and with the inputs u1(k) and
u2(k) taking values in [−10,10]. By considering (5)-(8), under the assumption of
slow-varying faults, the augmented system (9)-(10) is obtained as follows

A(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3 0.2 0.1 u1(k) 0
0.6 θ̄(k) 0.1 0 u2(k)
0.1 0.3 0.5 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,C = [1 0 0 0 0
0 1 0 0 0]

The subsets R..., Q... and R/Q... are defined as in Example 1 with a choice of
ε1 = ε2 = 1. By taking into account the limits of θ̄(k) and u(k), 8 vertex matrices
are obtained for each subset.

By choosing a = 0.9 and b = 2, the LMIs (56)-(57) have been solved using the
YALMIP toolbox [22] with SeDuMi solver [23], and it has been verified that, for
the obtained Lyapunov matrices, the condition (58) holds with µ = 5.1. According
to Corollary 1, if the LPV observer vertex gains are calculated as in (59), then
the estimation error would converge to zero as long as the input sequence satisfies
condition (35). It is worth remarking that, since the Lyapunov-based conditions
are always sufficient for convergence, and not necessary, it is possible that the
estimation error would still converge to zero even though the input sequence does
not satisfy (35).

The results shown in the following refer to a stepwise profile of the multiplica-
tive faults, that are assumed to occur in both inputs. The initial conditions and the
scheduling parameter trajectory are as follows:

x(0) = [0.2 0.5 1]T
(61)

x̂(0) = [−0.2 0 −0.5 1 1]T
(62)

θ̄(k) = 0.2 + 0.1 sin(0.05k) (63)
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The input sequences are chosen as follows (see Fig. 1)

u1(k) = { 0 if k ∈ [500,1500]
5 sin(0.001k) else (64)

u2(k) = −5 cos(0.0046k) (65)

As shown in Fig. 2 and Fig. 3, at the time instant k = 500, u1(k) becomes
zero. As a result, condition (35) is not satisfied anymore. However, the estimation
errors have already converged to zero, and no convergence problems arise. On the
other hand, when the fault appears at sample k = 1000, the lack of excitation of
the input causes the multiplicative fault in the first actuator γ1 not to be correctly
estimated. Consequently, the state estimation errors and the Lyapunov functions
do not converge to zero (see Fig. 4). However, when satisfactory input sequences
enter into the system, the switched LPV observer behaves as expected, such that
both the faults and the states are correctly and rapidly estimated.

Notice that, although in the proposed scenario γi(k + 1) = γi(k), i = 1,2, does
not strictly hold at some samples (k = 1000, k = 2000, k = 3000 and k = 4000), the
proposed approach is able to correctly achieve its goal of jointly estimating the
states and faults in the system.

5. Conclusions

This paper has proposed a method for estimating simultaneously the states and
the actuator faults in discrete-time LPV systems, using a switched LPV observer.
Differently from the existing approaches that consider additive faults, the pro-
posed observer is able to estimate multiplicative faults. The proposed approach
considers switching rules between different regions and design LMIs that take into
account the properties of observability and non-observability of different regions.
Sufficient conditions to design the observer gains were provided in the form of
a set of LMIs. Moreover, it has been shown that if the input sequence has some
characteristics in terms of numbers of switching in an interval, and average num-
ber of samples per switch in every switching region, the convergence of the error
dynamics to zero is assured. Simulation results have shown the relevant charac-
teristics of the proposed method in terms of fault estimations and state estimation
errors, validating the proposed methodology.
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Figure 1: Applied inputs u1(k) and u2(k).
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Figure 2: Faults and their estimation.
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