
ISBN 978-82-326-2022-7 (printed ver.)
ISBN 978-82-326-2023-4 (electronic ver.)

ISSN 1503-8181

Doctoral theses at NTNU, 2016:341

Katina Kralevska

Applied Erasure Coding in
Networks and Distributed Storage

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2016:341
K

atina K
ralevska

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy
Th

es
is

 fo
r

th
e

D
eg

re
e

of
P

hi
lo

so
ph

ia
e

D
oc

to
r

Fa
cu

lt
y

of
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

,
M

at
he

m
at

ic
s

an
d

El
ec

tr
ic

al
 E

ng
in

ee
ri

ng
D

ep
ar

tm
en

t o
f T

el
em

at
ic

s

Thesis for the Degree of Philosophiae Doctor

Trondheim, December 2016

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Telematics

Katina Kralevska

Applied Erasure Coding in
Networks and Distributed Storage

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics
and Electrical Engineering Department of Telematics

© Katina Kralevska

ISBN 978-82-326-2022-7 (printed ver.)
ISBN 978-82-326-2023-4 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2016:341

Printed by NTNU Grafisk senter

Abstract

The amount of digital data is rapidly growing. There is an increasing
use of a wide range of computer systems, from mobile devices to large-
scale data centers, and important for reliable operation of all computer
systems is mitigating the occurrence and the impact of errors in digital
data.
The demand for new ultra-fast and highly reliable coding techniques

for data at rest and for data in transit is a major research challenge.
Reliability is one of the most important design requirements. The simplest
way of providing a degree of reliability is by using data replication
techniques. However, replication is highly inefficient in terms of capacity
utilization. Erasure coding has therefore become a viable alternative to
replication since it provides the same level of reliability as replication
with significantly less storage overhead.
The present thesis investigates efficient constructions of erasure codes

for different applications. Methods from both coding and information
theory have been applied to network coding, Optical Packet Switching
(OPS) networks and distributed storage systems. The following four
issues are addressed:

– Construction of binary and non-binary erasure codes;
– Reduction of the header overhead due to the encoding coefficients
in network coding;

– Construction and implementation of new erasure codes for large-
scale distributed storage systems that provide savings in the storage
and network resources compared to state-of-the-art codes; and

– Provision of a unified view on Quality of Service (QoS) in OPS
networks when erasure codes are used, with the focus on Packet
Loss Rate (PLR), survivability and secrecy.

A major part of the present thesis is the study of both theoretical and
practical aspects of code constructions for distributed storage systems.
Distributed storage systems typically employ commodity hardware, often
mounted in racks, so that the system can be scaled at a low cost. The
components may suffer from failures and other factors, such as software
glitches and machine reboots during maintenance operations, that result in
unavailability of the stored data. The reliability provided by 3-replication
is an accepted industry standard for incorporating reliability into storage
systems. Nevertheless, the relentless data growth has made erasure coding
a valuable alternative to 3-replication, and hence many distributed storage
systems such as Hadoop Distributed File System (HDFS), OpenStack
SWIFT and Microsoft Azure employ Reed-Solomon (erasure) codes.

i

New metrics for efficient erasure coding solutions have been identified
in the literature. Some of these metrics, that are also studied in the present
thesis, include: 1) reliability, 2) storage efficiency, 3) repair bandwidth,
4) disk-I/O, 5) repair locality, and 6) update complexity. Each of these
metrics has a different relevance to a specific system depending on the
system’s architecture and the workload.
In the present thesis, we propose two novel constructions of erasure

codes for distributed storage. The first construction is called HashTag
Erasure Codes (HTECs). HTECs are storage-reliability optimal meaning
that they offer maximum fault tolerance for the consumed storage. HTECs
are the first codes in the literature that reduce the repair bandwidth
for both single and multiple failures for an arbitrary sub-packetization
level. The bandwidth savings can go up to 70% and 30% compared to RS
codes for single and double failures, respectively. HTECs address also the
practical problem of disk I/O operations with the focus on reducing the
number of random operations that access locations on the storage devices
in a non-contiguous manner. The second construction of erasure codes
belongs to the class of Locally Repairable Codes (LRCs). The proposed
Balanced Locally Repairable Codes (BLRCs) are suitable for applications
that require a low repair locality for single and double failures, low storage
overhead, high reliability and low update complexity.
The present thesis therefore provides new code constructions and

demonstrates how these codes are applied to network coding, OPS net-
works and distributed storage systems.

ii

Preface

This dissertation is submitted in partial fulfillment of the requirements
for the degree Philosophiae Doctor (PhD) at NTNU, Norwegian University
of Science and Technology. The presented work was carried out at the
Department of Telematics (ITEM) in the period October 2012 – August
2016 under the supervision of Associate Professor Harald Øverby and
the co-supervision of Professor Danilo Gligoroski and Assistant Professor
Gergely Biczók.

iii

Acknowledgement

With deep sense of gratitude, I thank my supervisor Assoc. Prof.
Harald Øverby for his guidance and support throughout the PhD period.
He has always had an open door and time for me. I would like to thank
Prof. Danilo Gligoroski for his constant support and fruitful discussions.
The collaboration with him was both inspiring and encouraging. Many
thanks to Assis. Prof. Gergely Biczók for his useful advice and insights.
I would further like to thank Prof. Steinar Hidle Andresen for accepting
me as an IAESTE trainee at ITEM and later supporting me to pursue a
PhD.
During my PhD period I have cooperated with the Transfer Technology

Office (TTO) at NTNU. I am sincerely grateful to Torbjørn Rostad and
the rest of the TTO team who saw a market potential in my research.
Per Simonsen, Rune E. Jensen, Sindre B. Stene and Kjetil Babington
have contributed greatly in the establishment of the startup company
MemoScale by creating a market value and applying the research in
industrial products. I would like to thank my co-authors Zoran Hadzi-
Velkov, Yanling Chen, Tewelde D. Assefa and Yuming Jiang for the
collaboration. Many thanks to my office-mate Chengchen Hu for the
useful discussions. I would like to thank Gianfranco Nencioni, Poul E.
Heegaard, Katrien De Moor, Mona Nordaune, Randi Flønes and the
rest of my colleagues who have made ITEM such an enjoyable place to
work at. Big thanks to my friends in Trondheim who have always been a
great company for going out and exploring new places. Special thanks
to Elissar Khloussy for being such a wonderful friend. My dear friends
Atina and Jasmina from Macedonia have always been good friends even
though we live far away from each other.
My final thanks are reserved to my dearest ones. I would like to thank

my parents and brother for supporting me in all my decisions. Special
thanks to my grandparents for their constant care. Last but not least, I
would like to thank Henry for his understanding and happy moments.

v

Contents

Abstract i

Preface iii

Acknowledgement v

List of Figures ix

List of Tables xi

List of Acronyms xiii

I Summary of the Thesis 1

1 Introduction 3
1.1 Thesis Structure . 3
1.2 Motivation . 4

2 Background and Related Works 7
2.1 Coding Theory . 7

2.1.1 Galois fields . 7
2.1.2 Erasure Coding . 8

2.2 Network Coding . 15
2.3 Code Constructions for Distributed Storage Systems 21

2.3.1 Regenerating Codes . 22
2.3.2 Locally Repairable Codes . 28

2.4 Optical Packet Switched Networks 30

3 Contributions and Concluding Remarks 37
3.1 Research Questions . 37
3.2 Research Results . 38
3.3 Research Answers . 40
3.4 Summary of the Results Contributing to the Thesis 41

vii

3.5 Concluding Remarks . 45
3.6 Future Works . 46

References 49

II Included Papers 63

Paper 1: Balanced XOR-ed Coding 65

Paper 2: Families of Optimal Binary Non-MDS Erasure Codes 77

Paper 3: Minimal Header Overhead for Random Linear Network
Coding 87

Paper 4: General Sub-packetized Access-Optimal Regenerating Codes 99

Paper 5: HashTag Erasure Codes: From Theory to Practice 109

Paper 6: Balanced Locally Repairable Codes 129

Paper 7: Coded Packet Transport for Optical Packet/Burst Switched
Networks 139

viii

List of Figures

1.1 50-fold growth of the amount of digital data from 2010 to 2020 [IDC12]. 5

2.1 Encoding of the source data x with the generator matrix G of a (8, 5)
MDS code. 11

2.2 A graphical representation of the encoding/decoding process. The encoder
encodes k source units into n. The decoder has to receive at least k data
units in order to reconstruct the source data. 12

2.3 A graphical representation of the decoding process at the decoder. . . . 12

2.4 A (2, 4) regular LDPC code where k = 8 and r = 4. All 8 variable nodes
have degree 2 and all 4 check nodes have degree 4. 14

2.5 Butterfly network . 18

2.6 Generating a coded packet yk in RLNC. The file is split into n packets and
encoding is performed within a group of m < n packets. Each packet is
multiplied with a random coefficient cki

. All packets are XOR-ed together
and yk is generated. 19

2.7 Structure of a coded packet in RLNC. 19

2.8 Illustration of an information flow graph corresponding to a (5, 3) MDS
code. When node x5 is unavailable, a new node x6 reconstructs the data
by connecting to d = 4 available nodes and downloading βMB from each
node. 23

2.9 An optimal tradeoff curve between the storage α and the repair bandwidth
γ for a (15, 10, 14) code andM = 1 [DGW+10]. Traditional erasure coding
(RS codes) corresponds to the points α = 0.1 and γ = 1. 25

2.10 Amount of transferred data for reconstruction of the systematic node
a1 for a (14,10) RS code, a (14, 10) MSR code and a (16, 10, 5) LRC.
The systematic nodes are represented in red and the parity nodes in blue,
while the local parity nodes for the LRC are in green. 25

ix

2.11 Contention resolution mechanisms at an OPS node where the packets a and
b arrive on the same wavelength at the same time and contend for the same
output wavelength. a) The packet a is transmitted, while b is dropped;
b) Contention resolution with wavelength conversion where packet b

is converted to an idle wavelength (on the same fiber); c) Contention
resolution with FDL buffering where packet b is delayed using FDL
buffering; d) Contention resolution with FEC where redundant packets
are added. 33

2.12 Different path protection schemes. 34

3.1 Relations between the papers included in the thesis. The papers are
grouped based on the research questions. 38

x

List of Tables

2.1 A comparison of switching technologies for Dense Wavelength Division
Multiplexing (DWDM) [VCR00]. 31

3.1 List of publications included in the thesis. 39
3.2 List of publications not included in the thesis. 40
3.3 List of patent applications. 41

xi

List of Acronyms

AMDS Almost-Maximum Distance Separable.

ARQ Automatic Repeat reQuest.

BCH Bose-Chaudhuri-Hocquenghem.

BHP Burst Header Packet.

CPT Coded Packet Transport.

CRC Cyclic Redundancy Checksum.

DBR Data Burst Redirection.

DWDM Dense Wavelength Division Multiplexing.

ECC Error-Correcting Code.

FDL Fiber Delay Line.

FEC Forward Error Correction.

HARQ Hybrid Automatic Repeat reQuest.

HDFS Hadoop Distributed File System.

HTECs HashTag Erasure Codes.

LDGM Low-Density Generator Matrix.

LDPC Low Density Parity Check.

LNC Linear Network Coding.

LT Luby Transform.

xiii

MBR Minimum-Bandwidth Regenerating.

MDS Maximum Distance Separable.

MRD Maximum Rank Distance.

MSCR Minimum Storage Collaborative Regenerating.

MSR Minimum-Storage Regenerating.

MTFF Mean Time to First Failure.

MTTDL Mean Time To Data Loss.

NLPRS Network Layer Packet Redundancy Scheme.

NMDS Near-Maximum Distance Separable.

Non-MDS Non-Maximum Distance Separable.

OBS Optical Burst Switching.

OPS Optical Packet Switching.

PLR Packet Loss Rate.

PM-MSR Product-Matrix-MSR.

PRNG Pseudo-Random Number Generator.

QoS Quality of Service.

RAID Redundant Arrays of Inexpensive Disks.

RAM Random-Access Memory.

RLNC Random Linear Network Coding.

RS Reed Solomon.

RSA Rivest-Shamir-Adleman.

RTT Round Trip Time.

SECDED Single-Error-Correcting and Double-Error-Detecting.

SHEC Shingled erasure codes.

SSAC Small Set of Allowed Coefficients.

WRON Wavelength Routed Optical Networks.

xiv

Part I

Summary of the Thesis

1

Chapter1Introduction

1.1 Thesis Structure

The present thesis is a collection of papers which is in accordance with NTNU rules
for PhD studies. It is divided into two main parts:

– Part I: Summary of the Thesis

– Part II: Included Papers

Part I is a comprehensive summary of the present thesis. It consists of three
chapters:

– The Introduction chapter (Chapter 1) presents the motivation for applying
erasure codes in different networks.

– The Background and Related Works chapter (Chapter 2) gives the necessary
background to understand the contributions of the thesis. It also reviews
the state-of-the-art for erasure coding, algorithms for header compression in
network coding, code constructions for distributed storage and QoS metrics in
OPS networks. Some of the challenges faced by the coding and the networking
communities that are addressed in the present thesis are listed in the end of
each section.

– The Contributions and Concluding Remarks chapter (Chapter 3) presents the
research questions answered in the present thesis and the research contributions
and results obtained during the PhD period. It also puts the presented research
results into a wider context by comparing them to selected references. Finally,
conclusions followed by suggestions for future work are presented.

Part II consists of 7 papers where 6 are published and 1 is submitted for publication
(Table 3.1).

3

4 1. INTRODUCTION

1.2 Motivation

The relentless data growth brings enormous challenges, as well as incredible research
and business opportunities. IDC [IDC12] estimates that the total amount of digital
data created, replicated and consumed will reach 40000 exabytes, or 40 trillion
gigabytes, by 2020. From now until 2020, the amount of digital data is expected to
double every two years, as shown in Figure 1.1.
Reliable communication through unreliable media is paramount in modern com-

munication systems. Reliable communication requires that all intended receivers of
the data receive the data intact, i.e. data must be transferred without errors or loss.
The demand for efficient and reliable communication has been accelerated even more
by the emergence of large-scale, high-speed data networks for exchange, processing
and storage of digital information in public and private spheres. Reliability is achieved
by adding redundancy at different levels in the protocol stack. One way is to use
Forward Error Correction (FEC) codes as error correction or erasure codes. FEC
codes preprocess the data in such a way to provide recovery after data corruption
[CC81].
Erasure coding has emerged as a compliment, or an alternative, to Automatic

Repeat reQuest (ARQ) and replication in communication networks and distributed
storage systems, respectively.
Using erasure coding, or combining it with ARQ, is a better solution instead of

only using ARQ. When the PLR is very high, then retransmissions happen frequently
and the system throughput is reduced significantly. In this case, combining ARQ with
FEC known as Hybrid Automatic Repeat reQuest (HARQ) [CC84, LY82] is useful.
ARQ is not feasible for unidirectional broadcast networks or real-time applications,
because a return channel may not exist or the Round Trip Time (RTT) delay may
be too large. Additionally, when the number of users is very large, scalability issues
may prevent the use of return channels. In all these scenarios, the use of erasure
codes is imminent.
Replication is not an appropriate enabler of the exabyte era because it increases

enormously the storage overhead. Let us take the following example where 3-
replication and an (9, 6) erasure code provide a similar level of reliability. Three
copies of the same file are stored with 3-replication, while the file is divided into
6 fragments and 3 redundancy fragments when constructed with an (9, 6) erasure
code. The storage overhead is 200% with 3-replication, while it is only 50% with the
erasure code. In this example, erasure coding reduces the cost of storage by 150%,
which is a tremendous cost saving when storing exabytes of data. Erasure coding
has a clear advantage over replication as it provides the same level of reliability with
less storage overhead [WK02].
Although many different erasure codes have been developed, there is no erasure

code construction that provides simultaneously optimal performance and reliability.
Maximum Distance Separable (MDS) codes such as Reed-Solomon codes [RS60] are

1.2. MOTIVATION 5

�
�

�
�

�
�

�

�

�

�

�

�

�

�

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

10 000

20 000

30 000

40 000

Figure 1.1: 50-fold growth of the amount of digital data from 2010 to 2020 [IDC12].

fault tolerant optimal, but they are computationally expensive in practice. Low
Density Parity Check (LDPC) codes [Gal63] do not offer the same fault tolerance
as MDS codes, but tend to be computationally inexpensive and may have regular
or irregular fault tolerance. Random Linear Network Coding (RLNC) is a flexible
coding scheme that does not follow a predesigned code. Depending on the finite field
size, the codes can be fault tolerant optimal. Then the codes are computationally
demanding as Reed-Solomon codes.
Both the underlying system and the application have a huge impact on which

coding scheme gives the best performance. For instance, erasure coding has been
currently deployed in Windows Azure [HSX+12], big data analytics clusters (e.g.
Facebook Analytics Hadoop cluster [SAP+13]), archival storage systems, and peer-
to-peer storage systems like Cleversafe. Facebook has recently reported that it
is archiving old data using a classical Reed-Solomon erasure code implemented
on the top of HDFS[SAP+13], while Microsoft uses a pyramid code as the main
storage primitive of its Azure storage service [HCL13]. Reed-Solomon codes, that
are the essential building blocks in RAID 6, are optimal in terms of storage capacity
utilization in large-scale distributed storage systems, but they perform poorly in
terms of other system resources such as disk I/O and network bandwidth. During a
recovery of lost or otherwise unavailable data, classical Reed-Solomon codes require
a large amount of data to be read and transferred across the network.
Accordingly, the work presented in this thesis has been directed towards con-

structing efficient erasure codes for different applications. The four topics covered in
the present thesis are:

– Construction of binary erasure codes (Paper 1 and Paper 2);

– Reduction of the header overhead due to coding coefficients in network coding
(Paper 3);

6 1. INTRODUCTION

– Construction of erasure codes for practical use in distributed storage systems
(Paper 4, Paper 5 and Paper 6); and

– Application of erasure codes to increase the QoS in OPS/OBS networks (Paper
7).

Chapter2Background and Related Works

In this Chapter we review the background and the related works in the main research
areas of this dissertation: erasure coding (Section 2.1), header compression algorithms
for network coding (Section 2.2), code constructions for distributed storage systems
(Section 2.3) and optical packet switched networks (Section 2.4).

2.1 Coding Theory

Data reliability, regardless of the medium, is achieved by adding redundancy. FEC
(Forward Error Correction) codes are either used as error correction or erasure codes.
Error correction codes are usually used at lower layers of the protocol stack, either
as standalone codes or in conjunction with error detection checksums (e.g. Cyclic
Redundancy Checksum (CRC))[PB61]. The upper layers deal with erasures (missing
data units) after reception or storage/retrieval. Erasure codes are typically used in
situations where the exact positions of the missing data units are known a priori
(e.g. disk array). In many cases, error correction and erasure codes use the same
encoding algorithm but have different decoding algorithms.
Since FEC codes treat each symbol as an element of a finite field and they perform

extensively operations in finite fields, i.e. Galois fields, first a very brief introduction
to Galois fields is given. For a more detailed description of Galois fields, please refer
to [LN86].

2.1.1 Galois fields

Finite fields Fq, also known as Galois fields GF (q), are fundamental to coding theory.
We use both notations Fq and GF (q) interchangeably through the present thesis.
The main advantage of using a Galois field is its closure property. A field is closed
under both addition and multiplication meaning that the result of addition and
multiplication of field elements is still a field element. Both operations are associative,
distributive and commutative. Every non-zero element has a multiplicative inverse
and every element has an inverse additive (negative) element. Working with data

7

8 2. BACKGROUND AND RELATED WORKS

in transit or with data at rest in a Galois field means that the data elements are
mapped into field elements, the performed operations follow the rules of the field
and the data is reconstructed by inverse mapping.
The order of GF (q) is the number of elements in the field. There exists a finite

field of order q if, and only if, q is a prime power, i.e. q = pm where p is a prime
number called the characteristic of the field, and m is a positive integer. If m = 1,
then the field is called a prime field. Working in a prime field GF (p) is quite simple.
The prime field is the set of elements from 0 to p − 1 under the operations of addition
and multiplication modulo p.
If m ≥ 2, then the field is called an extension field. Galois fields of order 2m are

called binary extension fields. These fields are used ubiquitously in coding theory
and cryptography. One way of representing the elements in GF (2m) is to use a set
of polynomials of degree at most m − 1 where the coefficients are from the binary
field GF (2) = {0, 1}:

GF (2m) = {cm−1xm−1 + cm−2xm−2 + . . .+ c1x1 + c0x0 : ci ∈ {0, 1}}. (2.1)

Thus, the 4-bit element a = (1, 1, 1, 0)24 has the following polynomial representation
a(x) = 1x3 + 1x2 + 1x+ 0.
The field GF (2m) is defined over an irreducible polynomial f(x) of degree m

with coefficients from GF (2). An irreducible polynomial is analogous to a prime
number in that it cannot be factored as a product of polynomials each of degree
less than m. Addition in GF (2) is done with the bitwise XOR operator, while
multiplication is performed with the bitwise AND operator. Addition in GF (2m) is
the usual addition of polynomials with coefficient arithmetic performed modulo 2,
while multiplication is more complex. Multiplication of two field elements a and b

is performed by polynomial multiplication of a(x) and b(x) and then the product
a(x)b(x) is reduced modulo the irreducible polynomial f(x).
Another useful property of any finite field GF (q) is that the set of all nonzero

elements GF (q)× = GF (q) \ 0 form a multiplicative cyclic group (GF (q)×, ×). That
means that any nonzero element a ∈ GF (q)× can be represented as a power of a
single element α ∈ GF (q)×. Such a generator α is called a primitive element of the
finite field. Powers of α repeat with a period length of q − 1, thus, αq−1 = α0 = 1.
This makes multiplication of two elements a = αi and b = αj quite simple and
fast. If we write i = log(a) and a =antilog(i), then the product of a, b ∈ GF (2m) is
computed as ab =antilog(log(a) + log(b)) mod 2m − 1.

2.1.2 Erasure Coding

Erasure codes, in particular linear block codes, are most appropriate for the appli-
cations such as data transmission and storage, which are of interest to the present
thesis. The background presented in this subsection is essential to fully understand

2.1. CODING THEORY 9

the work in the present thesis. Some terminology and definitions can be found in
[LC83, Pla05].
A block encoder, according to certain rules, transforms each input message of k

information symbols into a message of n symbols (n > k). This message of n symbols
is called a codeword. If the alphabet of the information source contains q different
digits, then there are a total of qk distinct messages of k symbols. To each of the
qk possible messages a unique codeword is assigned. This set of qk codewords of n

symbols is called a q-ary block code of length n.

Definition 2.1. A block code of length n and qk codewords is called a linear (n,k)
code if and only if its qk codewords form a k-dimensional subspace of the vector space
of all n-tuples over the finite field GF (q).

The code rate R, or code efficiency, is defined as R = k
n . The error detection and

error correction capabilities of a (n, k, d) code are defined by its metric, the minimum
distance d. Before defining d, it is first necessary to define the Hamming weight of a
codeword and the Hamming distance between two codewords.

Definition 2.2. The Hamming weight wH(c) of a codeword c is the number of
non-zero elements in c.

Definition 2.3. The Hamming distance dH(c1, c2) between two codewords c1 and
c2, that have the same number of elements, is the number of elements in which these
two codewords differ.

Consider the two codewords c1 = (0, 1, 0, 0, 1) and c2 = (1, 1, 0, 1, 1). The
Hamming weights of c1 and c2 are wH(c1) = 2 and wH(c2) = 4, respectively, while
dH(c1, c2) = 2.

Definition 2.4. The minimum distance of a (n, k) block code C, denoted by d, is
the minimum among the Hamming distances between any two different codewords
from C. A block code C of length n, qk codewords and minimum distance d is
denoted by (n, k, d) code C.

Theorem 2.5. [Sin64] For a (n, k, d)q linear code we have

d ≤ n − k + 1 (Singleton bound). (2.2)

Codes for which the equality holds are known as Maximum Distance Separable (MDS)
codes.

When MDS codes are used as erasure codes, the receiver can recover the k source
symbols from any subset of k received symbols out of the n encoded symbols.
The Singleton defect of a (n, k, d) code C, that is defined as s(C) = n − k+1− d,

measures how far away is C from being a MDS code. Based on the Singleton defect,
the codes are divided in two classes:

10 2. BACKGROUND AND RELATED WORKS

1. Optimal, or very close to optimal, ones known as MDS [MS78], Almost-
Maximum Distance Separable (AMDS) [dB96] and Near-Maximum Distance
Separable (NMDS) [DL95].

2. Suboptimal or Non-Maximum Distance Separable (Non-MDS) codes [GLW10,
Haf05, HCL13, LMS+97].

Definition 2.6. A (n, k, d) code C is
(i) t-error detecting code iff its minimum distance is at least t+ 1;
(ii) t-error correcting code iff its minimum distance is at least 2t+ 1.

As mentioned earlier, a linear code constitutes a subspace and thus any codeword
can be represented by a linear combination of the basis vectors of the subspace, i.e.
by a linear combination of linearly independent vectors. The basis vectors can be
written as rows of a k × n matrix.

Definition 2.7. Any matrix G ∈ Fk×n
q whose rows form a basis of C is called a

generator matrix for C, i.e.

C = {xG ∈ Fn
q : x ∈ Fk

q } = {y ∈ Fn
q }. (2.3)

The injective map Fk
q � Fn

q , x � xG encodes all the q-ary words of length k to
words of length n.
A generator matrix is called systematic if it is of the form

G =
[
Ik|P

]
, (2.4)

where Ik is an identity matrix of order k and P is a k × (n − k) parity submatrix.
The code can either be systematic or non-systematic. The generator matrix

of a systematic code has the same form as the matrix represented in (2.4). That
means that a systematic linear code does not transform the original k data symbols,
but it only generates extra r redundant symbols. If the first k rows in G do not
contain an identity matrix, then the code is non-systematic. That is to say, all n

generated symbols linearly depend on all original k symbols via G. Systematic codes
are less computationally demanding than non-systematic, since they do not require
processing of the original data.
Given a generator matrix G of a linear code we can derive its parity-check matrix

H (and vice versa).

Definition 2.8. The parity-check matrix H for a (n, k, d) linear code with a
generator matrix G (2.4) is given by

H =
[
−P T |In−k

]
, (2.5)

2.1. CODING THEORY 11

Figure 2.1: Encoding of the source data x with the generator matrix G of a (8, 5)
MDS code.

Since the rows of H are linearly independent, it generates a (n, n − k, d′) linear
code called the dual code of the (n, k, d) linear code generated with G.
Codes with generator matrices that are sparse and balanced minimize the maximal

computation time of computing any code symbol. The problem of constructing
balanced and sparse codes was studied in [DSDY13, HLH16].

Theorem 2.9. [DSDY13] Suppose 1 ≤ k ≤ n and q >
(

n−1
k−1

)
. Then there always

exits a (n, k)q MDS code that has a generator matrix G satisfying the following two
conditions:

– Sparsest: each row of G has weight n − k + 1; and

– Balanced: column weights of G differ from each other by at most one.

Let us explain the encoding and decoding of data with a (8, 5) MDS code. As
shown in Figure 2.1, k = 5 source data units represented as a row vector x are
encoded into n = 8 data units (a row vector y) with the systematic generator matrix
G of a (8, 5) MDS code. The coefficients ci,j , i = 1, . . . , 5 and j = 1, 2, 3, are elements
from GF (q). The encoder in Figure 2.2 performs this multiplication. Next, the data
is transmitted through unreliable medium to the receiver. Some of the data units
may get corrupted (lost) during the transmission. Since the code is MDS, at most 3
data units can be lost. In this example, x1, x4, r2 are lost. Namely, the decoder has
to receive at least 5 data units in order to reconstruct the source data. Recovery of
the source data is done by

y′ = xG′ → x = y′G′−1
, (2.6)

where x is the source data and y′ is the subset of k components available at the
decoder. The matrix G′ is the subset of columns from G corresponding to the
components of y′. The source data x can be reconstructed only if G′ is non-singular.
This means, in general cases, any k × k submatrix extracted from G has to be
invertible in order to recover from at most n − k lost data units. In the presented
example, the matrix G′ is obtained by deleting the columns in G that correspond to

12 2. BACKGROUND AND RELATED WORKS

Figure 2.2: A graphical representation of the encoding/decoding process. The
encoder encodes k source units into n. The decoder has to receive at least k data
units in order to reconstruct the source data.

Figure 2.3: A graphical representation of the decoding process at the decoder.

2.1. CODING THEORY 13

the lost data units. Decoding is done in two steps: first G′ is inverted and then the
data is decoded by computing x = y′G′−1 as shown in Figure 2.3.
There are numerous types of erasure codes. Some of the codes, such as Luby

Transform (LT) [Lub02], Tornado [LMSS01a], and Raptor [Sho06] are protected by
patents and hence their further development by third parties is problematic.
Among all codes in the class of block codes, cyclic codes are the most important

from practical point of view. Bose-Chaudhuri-Hocquenghem (BCH) codes were
discovered independently in the papers by Bose and Chaudhuri (1960) [BRC60]
and Hocquenghem (1959) [Hoc59]. BCH codes are cyclic codes that have algebraic
decoding algorithms.
Reed Solomon (RS) codes were first described in a paper by Reed and Solomon

in 1960 [RS60]. They are non-binary BCH codes defined by the parameters: n =
q − 1, n − k = 2t, d = 2t+ 1. Since the minimum distance is n − k + 1, RS codes are
MDS codes. RS codes are widely implemented in storage devices and communication
standards. RS encoding is relatively straightforward, but decoding is complex despite
the significant efficiency improvements with Berlekamp-Massey algorithm [Ber68].
The two limitations of RS codes are: the small block size and the high decoding
times. The length of a RS code is limited by the field size, for example, it is n ≤ 255
for GF (256). The larger Galois field is, the longer the code can be, but at the same
time the operations are getting slower and more complex. Therefore, the values of n

and k have to be small if high transmission rates are desired.
The introduction of Turbo codes [BGT93] and LDPC codes [Gal63, MN97, MN95]

have been one of the most important milestones in channel coding during the last
years. Provided that the information block length is long enough, both Turbo and
LDPC codes achieve performance close to the Shannon theoretical limit. However,
in practical applications, both schemes have some complexity issues. Specifically,
the encoding complexity is very low, but the decoding is more complex with Turbo
codes compared to LDPC codes. The contrary occurs for standard LDPC codes. The
encoding is more complex with standard LDPC codes, but the decoding is simpler.
LDPC codes were first introduced by Gallager in 1960 [Gal63], but they were

impractical for implementation in that time. As the computational power has
increased, they become attractive for research and practical implementations. MacKay
and Neal rediscovered them in 1995 [MN95]. LDPC codes are defined by sparse
parity-check matrices. Sparse bipartite graphs are used to represent LDPC codes
where one set of nodes, the variable nodes, corresponds to elements of the codeword
and the other set of nodes, the check nodes, corresponds to the set of parity-check
constraints which define the code. An example of a regular LDPC code where all
nodes of the same type have the same degree is shown in Figure 2.4. The principle of
using irregular graphs where the degrees of the variable and the check nodes can vary
widely was introduced in [LMS+97], and it was further studied in [LMSS01b, RSU01].
The degrees of each set of nodes are chosen according to some distribution. The

14 2. BACKGROUND AND RELATED WORKS

decoding complexity for LDPC codes increases linearly with the block length. LDPC
codes are asymptotically good and their recovery performance decreases for small
blocks.

Figure 2.4: A (2, 4) regular LDPC code where k = 8 and r = 4. All 8 variable
nodes have degree 2 and all 4 check nodes have degree 4.

Garcia-Frias and Zhong introduced Low-Density Generator Matrix (LDGM) codes
that are constructed by using systematic sparse generator matrices [GFZ03]. They
are a special class of LDPC codes with low encoding and decoding complexity. The
amount of processing at the encoder is comparable to that of Turbo codes due to the
sparseness of the generator matrix.
LDPC were significantly improved by Luby, Shokrollahi et al. that led to the

invention of Tornado [BLMR98], LT [Lub02] and Raptor [Sho06] codes. Tornado
codes are the precursor to fountain codes. Fountain or rateless codes are a class of
erasure codes with the property that a potentially limitless sequence of encoding
symbols can be generated from a given set of source symbols such that the original
source symbols can ideally be recovered from any subset of the encoding symbols of
size equal to or only slightly larger than the number of source symbols. These codes
do not have a fixed code rate and are known as rateless codes. Both LT and Raptor
codes belong to the class of rateless codes.
The fundamental goal of the research presented in the present thesis is to construct

erasure codes that have the following desirable properties:

2.2. NETWORK CODING 15

– High code rate;
– Same error-correcting capabilities as MDS codes, or very close to those of MDS
codes; and

– Efficient encoding and decoding algorithms.

2.2 Network Coding

Network coding as a research area was initiated by the seminal paper by Ahlswede et
al. [ACLY00]. They made the key observation that intermediate nodes are allowed
to carry out algebraic operations on the incoming data instead of only forwarding
the incoming data. Before defining their main result, some essential terminology that
can be found in [MS12, Law01, Bol79, RSK10] is introduced.
A communication network is defined as a tuple N = (V, E, S, T) that consists of:

– a finite directed acyclic multigraph G = (V, E) where V is the set of vertices
and E is the multiset of directed edge;

– a set S ⊂ V of sources; and

– a set T ⊂ V of sink nodes.

Vertices model communication nodes within the network, while directed edges model
error-free communication channels between the nodes. An edge (i, j) has unit capacity
in the sense that it can be used to reliably deliver one symbol from i to j. To allow
for greater capacity from i to j, multiple edges between i and j are permitted, i.e. G

is in general a multigraph. The capacity of an edge (i, j) ∈ E is given by Rij and let
R = [Rij , (i, j) ∈ E].

Definition 2.10. F = [Fij , (i, j) ∈ E] is a flow in G from s where s ∈ S to tl where
tl ∈ T if for all (i, j) ∈ E

0 ≤ Fij ≤ Rij

such that for all i ∈ V except for s and tl∑
i′:(i′,i)∈E

Fi′i =
∑

j:(i,j)∈E

Fij ,

i.e. the total flow into node i is equal to the total flow out of node i.

Fij is referred to as the value of F in the edge (i, j). The value of F is defined as

∑
j:(s,j)∈E

Fsj −
∑

i:(i,s)∈E

Fis

which is equal to ∑
i:(i,tl)∈E

Fitl
−

∑
j:(tl,j)∈E

Ftlj .

16 2. BACKGROUND AND RELATED WORKS

Definition 2.11. F is a max-flow from s to tl in G if F is a flow from s to tl whose
value is greater than or equal to any other flow from s to tl.

Definition 2.12. A cut is a set of edges that partition the graph into two sets of
vertices.

Definition 2.13. A minimal cut separating s and t is a cut of the smallest
cardinality denoted as min-cut(s, t).

A min-cut(s, t) can be regarded as a bottleneck between s and t and it limits the
information rate of the flow between s and t.

Theorem 2.14. [Law01]Max-Flow Min-Cut Theorem: For every non-source
node t, the minimum value of a cut between the source and a node t is equal to
max-flow(s, t).

It is well known from Menger’s Theorem [Men] that the number of edge-disjoint
paths from s to t is equal to max-flow. A collection of edge-disjoint paths can be
found by the Ford-Fulkerson algorithm [FF]. Thus, in a single-sink network, the
number of symbols transferred from s to t per time unit is equal to the min-cut of
the network where each symbol is sent on a different edge-disjoint path.
Ahlswede et al. [ACLY00] showed that the multicast capacity for a single-source

network, i.e. the maximum rate at which s can transfer information to the sinks,
cannot exceed the capacity of any cut separating s from the sinks.

Theorem 2.15. [MS12] The multicast rate R(s, T) from s to T cannot exceed the
transmission rate that can be achieved from s to any element of T . The multicast
rate R(s, T) must satisfy:

R(s, T) ≤ min
t∈T

min-cut(s, t). (2.7)

The quantity mint∈T min-cut(s, t) is referred to as the multicast capacity of the
given network. The upper bound is achievable (with equality) via network coding
[ACLY00].
Li et al. [LYC03] showed that Linear Network Coding (LNC) achieves the upper

bound given that the finite field is sufficiently large.

Theorem 2.16. Adapted version of [LYC03, Th.5.1] from [RSK10]: Let q be a
sufficient large power of 2. A symbol over Fq is treated as a unit of information. In a
directed, delay-free, acyclic graph, with a single source s and multiple sinks t1, . . . , tk

and where the edges have integral capacity, if the capacity of the min-cut from the
source to each of the k sinks is at least ν, then there exists a linear network solution
that delivers ν units of information to each of the k sinks simultaneously.

2.2. NETWORK CODING 17

Koetter and Médard extended further the work by Li et al. [LYC03] to arbitrary
networks and robust networking. In [KM03], they presented an algebraic framework
for investigating coding rate regions in networks using linear codes.
An efficient distributed randomized approach that asymptotically achieves the

capacity for general multi-source multicast networks is presented in [HMK+06].
Random Linear Network Coding (RLNC) is a simple, randomized coding method
that maintains “a vector of coefficients for each of the source processes,” which is
“updated by each coding node”. In other words, RLNC requires messages being
communicated through the network to be accompanied by some degree of extra
information (a vector of coefficients). The vector of coefficients is updated at each
node that performs network coding.
Another definition of network coding is coding at a node in a packet network

(where data is split into packets and network coding is applied to the content of
packets). We use this definition in the sequel.
A well-known benefit of network coding is an increase of the throughput. This is

achieved by using packet transmissions more efficiently, i.e. by communicating more
information with fewer packet transmissions. The famous butterfly network in Figure
2.5 illustrates this. Assume that the source node s wants to multicast two packets
to the destinations t1 and t2. Assume that the capacity of each link is 1 packet per
time unit and the delay of each link is the same. The maximum throughput from the
source node s to the destination nodes t1 and t2 is 2 packets per time unit, but the
maximum throughput cannot be achieved simultaneously if only routing is allowed,
since node n3 can transmit either b1 or b2 but not both packets at the same time.
Nevertheless, if node n3 performs the exclusive-OR (XOR) operation on b1 and b2
and transmits the XOR-ed packet to node n4, then both destinations achieve the
maximum throughput simultaneously. Node t1 decodes correctly b2 after it receives
b1 from node n1 and the XOR-ed packet from node n4. It is similar for node t2.
At the expense of encoding operations at the intermediate nodes and decoding

operations at the sink nodes, RLNC improves the network throughput, the efficiency
and the scalability, as well as the resilience to attacks and eavesdropping [CY02,
BN05]. Inspired by these gains, researchers have applied network coding in many
applications such as wireless networks [KRH+08, KHH+13], distributed storage
systems [ADMK05, DGW+10], video streaming [NNC10], satellite networks [VB09]
and distributed file sharing [WWX10, FR12, GR06].
However, there are some issues with practical implementation of network coding.

In order to explain them easily, the generation of a coded packet yk in RLNC is
presented in Figure 2.6. The file is divided into n packets of length l and encoding is
performed within a group of m packets. This group is called a generation and m is
the generation size. Random coefficients are generated and each packet is multiplied
with a coefficient. Then, all packets are XOR-ed together, i.e. bitwise XOR-ing
of packets with equal length, and yk is generated. The newly generated packet is

18 2. BACKGROUND AND RELATED WORKS

Figure 2.5: Butterfly network

a linear combination of m packets from the generation and each newly generated
packet should be linearly independent from previously generated packets of the same
generation. The average number of packets that have to be received before the
original m packets can be decoded is upper bounded by [LMS09]

min
{

m
q

q − 1 , m+ 1 +
1− q−m+1

q − 1
}

. (2.8)

The exact probability of successful decoding is derived in [TCBOF11]. The probability
of generating a linearly independent packet increases with the number of packets in
the generation m and the size of the Galois field q. On the other hand, the length of
the header overhead due to the coding coefficients becomes significant. This affects
the throughput of a system and has a huge impact on the system load for some
network scenarios. Thus, it is of a great importance to find a good tradeoff between
the parameters.
Next, we calculate the encoding complexity of RLNC. The computational com-

plexity of generating the coding coefficients depends on the complexity of generating
a random number r that is system specific and the generation size m. Consequently,
the complexity of generating the encoding coefficients is O(mr) where r is a constant.
After generating the encoding coefficients, the packets are multiplied with them.
This has a complexity of O(ml). Finally, the complexity of encoding one packet
yk is O(m(l + r)) [HPFL08], while encoding all packets within one generation has

2.2. NETWORK CODING 19

Figure 2.6: Generating a coded packet yk in RLNC. The file is split into n packets
and encoding is performed within a group ofm < n packets. Each packet is multiplied
with a random coefficient cki . All packets are XOR-ed together and yk is generated.

Figure 2.7: Structure of a coded packet in RLNC.

a complexity equal to O(m2(l + r)). The structure of a coded packet in RLNC is
showed in Figure 2.7. The length of the vector of coding coefficients is m log2 q bits.
For instance, a typical packet length in sensor networks is 30 bytes. Consider a

sensor network where 60 nodes send data. If RLNC in GF (16) is performed and
the generation size is 60, then 30 bytes per packet are used for recording the coding
coefficients, i.e. the length of the header overhead is equal to the length of the
useful data. Additionally, the header overhead has an impact on the required energy
to transmit the coded packets. The energy used to transmit a single bit of data
between devices in ad hoc sensor networks is equal to the energy for performing
800 instructions in the devices [MFHH02]. This implies that many applications may
benefit by performing local computations rather than sending more bits. Thus, the
reduction of the length of transmitted data, while keeping the same functionality of
the employed algorithms is a challenging task.

20 2. BACKGROUND AND RELATED WORKS

Several header compression algorithms have been suggested in recent literature.
Kötter and Kschischang proposed an approach that finds a linear subspace of the
ambient vector space, and the coding is just done in that linear subspace [KK08].
This is a challenging task since every combination of source data should result in
a distinct union subspace and finding a proper subspace can be a computational
challenge.
The concept of sparse coding is well known, and it was first applied for header

compression in network coding by Siavoshani et al. [SKFA09]. The number of
combined packets in one coded packet is reduced from n to m, where m < n, which
results in a header length of O(m log2 n log2 q) bits. However, limiting the number of
combined packets affects the invertibility of the matrix or it reduces the probability
of a redundant packet being innovative [BKW97, HPFM11, FLS+14, PFS05]. It was
proved that m should be at least of order O(logn) so that the matrix has a full rank
with high probability.
A header compression algorithm based on erasure decoding and list decoding

was presented in [LR10]. The compressed header length under the erasure decoding
scheme is m + n/ log2 q bits. The header length becomes arbitrarily close to m +
O(log2 n)/ log2 q bits when the list decoding scheme is used. Both schemes are valid
for moderate or large values of m.
In [CCW10], the header overhead is the seed for generating the coding coefficients

with a known Pseudo-Random Number Generator (PRNG). This effectively reduces
the header overhead to the size of the seed, but it does not support re-encoding
which is the crucial constituent of RLNC [LWLZ10].
A similar solution where the generation of the coding coefficients is based on

modified Vandermonde matrices which can be determined by one symbol is given
in [TF12]. Two main drawbacks of this solution are: the network coding nodes can
only perform addition operations and the generation size is upper bounded by log2 q

bits due to the cyclic property of the matrices.
Silva showed that precoding with Maximum Rank Distance (MRD) codes virtually

eliminates the linear dependency even over a binary field [Sil12]. Coding in small finite
fields significantly reduces the overhead in RLNC. This approach implies a moderate
increase in the decoding complexity, but it potentially simplifies the operations at
intermediate nodes that comes as an additional benefit besides minimizing the total
overhead.
Recently, Fulcrum codes were proposed [LPHF14b, LPHF14a]. Fulcrum codes

are concatenated codes where a seed for a PRNG is used to end-to-end communicate
the coefficients of the outer code, while the inner code requires 1+r/n bits per packet.
Recoding can be performed exclusively over the inner code in GF (2). Encoding and
decoding is performed over the outer code in big finite fields.
Although there has been a vast amount of research results for network coding since

its emergence, still there have not been many practical applications. The concept

2.3. CODE CONSTRUCTIONS FOR DISTRIBUTED STORAGE SYSTEMS 21

of network coding has been used to derive the bounds of the repair bandwidth in
distributed storage systems. This is discussed in the next subsection.
The research in the present thesis addresses one of the main limitations for

practical implementation of network coding:

– Reducing the length of the vector of coding coefficients.

2.3 Code Constructions for Distributed Storage Systems

A distributed storage system is a network of storage disks or nodes where data
pertaining to a single file is distributed across the storage nodes. It is a practical
choice for storing large amounts of data. The nodes are relatively inexpensive storage
devices that may fail, be down during maintenance, or otherwise unavailable due
to serving other demands, etc. A distributed storage system has to guarantee a
reliable storage of the data over long periods of time even though the nodes might
be individually unreliable.

Definition 2.17. Reliability is the probability that a system provides an uninter-
rupted service during a certain time interval [0, t], i.e.

R(t) = P (TF F > t), (2.9)

where TF F is Time to First Failure.

Definition 2.18. Mean Time to First Failure (MTFF) or Mean Time To Data
Loss (MTTDL) is a measure of the reliability of a system defined as

MTFF =
∫ ∞

0
R(t)dt. (2.10)

It equals the time it takes a given storage system to exhibit enough failures such that
at least one block of data cannot be retrieved or reconstructed.

In order to build a highly reliable system, redundancy has to be introduced. The
redundancy can either be a simple copy of the data or a linear combination of the
original data. Replication is a method of making copies from the original data. The
data is available until one copy still exists. In case of storing one extra replica, the
storage overhead is 100%, while it is 200% for 2 replicas and so forth. For instance,
Google File System [GGL03] and Hadoop File System [SKRC10] store three copies
of the data by default. When storing petabytes of data, replication is cost-inefficient.
The main advantages of replication are: simple design and verification, low I/O and
latency. However, its major disadvantage is the high storage overhead (200% for
the industry standard) that translates into a high hardware cost (disk drives and
associated equipment), as well as a high operational cost such as building space,
power, cooling, maintenance, etc.

22 2. BACKGROUND AND RELATED WORKS

Weatherspoon and Kubiatowicz showed in [WK02] that erasure resilient systems
use an order of magnitude less bandwidth and storage to provide a similar level of
reliability as replicated systems. Hence many distributed storage systems are now
turning to Reed-Solomon codes. Two reasons why often RS codes are employed
in large-scale distributed systems are their storage optimality (since they are MDS
codes) and generic applicability (construction of RS codes for arbitrary n and k).
Redundant Arrays of Inexpensive Disks (RAID) is a well known technology for data
protection in high performance computing storage systems [PGK88]. RAID based
systems use RS codes to recover the data when multiple disks fail simultaneously.
In order to avoid the large finite field operations, many code constructions such as
EvenOdd [BBBM95], Row-Diagonal Parity [CEG+04] and flat XOR [GLW10] use
only exclusive-OR operations to recover the data. Although RS codes improve the
storage efficiency, the amount of accessed and transferred data to repair a failed
node is large. We graphically present the repair process of a single systematic node
with RS code in Figure 2.10 (a). The parameters in this example are k = 10, r = 4
and M = 100MB. When RS codes are used, each node is recovered by transferring
data of size M/k from any k nodes. In order to reconstruct 10MB of data stored in
a single node, 10 × 10MB=100MB are read from 10 nodes and transferred across
the network to the node performing the decoding computations. Accordingly, RS
codes perform poorly in terms of the repair bandwidth since the amount of the repair
bandwidth is k times the size of the data to be reconstructed. Additionally, this has
a negative effect on the read performance of the system in a degraded mode (there is
a read request for a data unit that is missing or unavailable) and the recovery time.
An improvement is to seek for codes that perform better than RS codes. Three

major repair cost metrics for new erasure coding solutions have been identified in the
recent literature: i) the amount of transferred data during a repair process (repair
bandwidth), ii) the number of access operations during each repair (disk-I/O), and
iii) the number of nodes that participate in the repair process (repair locality). Two
types of repairs have been suggested[DRWS11]: exact (the recovered data has exactly
the same content as the lost data) and functional (the newly generated data can
be different than the lost one, but it maintains the MDS-property). The research
presented in the present thesis focuses only on exact repair, which is preferred from
a practical point of view.

2.3.1 Regenerating Codes

Classical MDS codes are optimal in terms of the storage-reliability tradeoff, but they
still do not give a good answer to the key question: How to encode the data in a
distributed way while transferring as little data as possible across the network during
a repair process?
Under a (n, k) MDS code, a file of size M symbols is divided into k fragments,

each of size M
k symbols, encoded and stored in n nodes. The original file can be

2.3. CODE CONSTRUCTIONS FOR DISTRIBUTED STORAGE SYSTEMS 23

Figure 2.8: Illustration of an information flow graph corresponding to a (5, 3)
MDS code. When node x5 is unavailable, a new node x6 reconstructs the data by
connecting to d = 4 available nodes and downloading βMB from each node.

recovered from any set of k fragments. Hence any data collector would preferably
connect to these k nodes. Dimakis et al. [DGW+10] showed that the repair problem
under functional repair can be mapped to a multicasting problem in an information
flow graph [DGW+10]. Building on known results from network coding, they proved
that a node repair is possible if and only if the underlying information flow graph has
sufficiently large min-cuts. Figure 2.8 shows an information graph that corresponds
to a (5, 3) code where the node S corresponds to the source file. Assume that a (5, 3)
MDS code is used to encode the file M = 3MB. The code generates 5 fragments each
of size α = 1MB (stored in the nodes x1, . . . , x5) with the property that any 3 can be
used to reconstruct the original data. The storage node xi is represented by a storage
input node xi

in and a storage output node xi
out. The capacity of the edge between

these two nodes is equal to the amount of stored data in node xi. Data collectors
connect to subsets of active nodes through edges with infinite capacity. When node
x5 fails, a newcomer x6 reconstructs the lost data from x1, . . . , x4. The question is:
What is the minimum amount of information that has to be communicated? The new
storage node x6 downloads βMB from d = 4 active nodes. The min-cut separating
the source and the data collector must be larger than M = 3MB for a reconstruction
to be possible. In this example, the min-cut value is given by 1 + 3β, implying that
β ≥ 0.33MB is sufficient and necessary.
A (n, k, d) regenerating code replaces the data from a failed node by downloading

β symbols from d non-failed nodes where β ≤ α. Thus, the repair bandwidth is
γ = dβ where α ≤ γ � M . The main result of [DGW+10] is the following Theorem.

Theorem 2.19. [DGW+10, Th.1] For any α ≥ α∗(n, k, d, γ), the points (n, k, d, α, γ)
are feasible, and linear network codes suffice to achieve them. It is information theo-

24 2. BACKGROUND AND RELATED WORKS

retically impossible to achieve points with α < α∗(n, k, d, γ). The threshold function
α∗(n, k, d, γ) is the following:

α∗(n, k, d, γ) =

{
M
k , γ ∈ [f(0),+∞)

M−g(i)γ
k−i , γ ∈ [f(i), f(i − 1)) (2.11)

where
f(i) � 2Md

(2k − i − 1)i+ 2k(d − k + 1)
(2.12)

g(i) � (2d − 2k + i+ 1)i
2d

(2.13)

where d ≤ n − 1. For d, n, k given, the minimum repair bandwidth γ is

γmin = f(k − 1) = 2Md

2kd − k2 + k
. (2.14)

The repair bandwidth γ decreases as the number of d nodes increases. An optimal
tradeoff curve between the storage and the repair bandwidth for a (15, 10, 14) code is
shown in Figure 2.9. Regenerating codes achieve each point on this optimal tradeoff
curve. The two extremal points on the optimal tradeoff correspond to the points at
which the storage and the repair bandwidth are minimized, respectively. Following
Theorem 2.19, the both points are attained when d = n − 1, i.e. all n − 1 non-failed
nodes called helpers are contacted during a node repair. The codes that attain these
points are known asMinimum-Storage Regenerating (MSR) andMinimum-Bandwidth
Regenerating (MBR) codes, respectively. MSR codes achieve the pair

(
αMSR, γmin

MSR

)
=

(
M

k
,

M

k

n − 1
n − k

)
, (2.15)

while MBR codes

(αmin
MBR, γmin

MBR) =
(

M

k

2n − 2
2n − k − 1 ,

M

k

2n − 2.
2n − k − 1

)
. (2.16)

MBR codes require an expansion factor of 2n−2
2n−k−1 in the amount of stored data,

thus, they are no longer storage-reliability optimal.
The work in [CJM10] and [CR10] showed that the lower bound of the repair

bandwidth for functional repair with MSR codes given in (2.15) is also achieved for
exact repair with MSR codes.
The present thesis focuses only on storage-reliability optimal codes with exact

repair since they have the biggest practical potential.
We illustrate the benefit of using an MSR code in Figure 2.10 (b). We use the

same parameters as for the RS code, i.e. k = 10, r = 4 and M = 100MB. Under the
MSR code, the data from an unavailable node is reconstructed by downloading only
100
40 MB=2.5MB from each of the 13 non-failed nodes, i.e.

1
4 of the stored data from

2.3. CODE CONSTRUCTIONS FOR DISTRIBUTED STORAGE SYSTEMS 25

Α

�

�
�

�

�

�

�

�

�

�

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

0.1

0.11

0.12

0.13

0.14

0.15

Γ

Figure 2.9: An optimal tradeoff curve between the storage α and the repair
bandwidth γ for a (15, 10, 14) code and M = 1 [DGW+10]. Traditional erasure
coding (RS codes) corresponds to the points α = 0.1 and γ = 1.

Figure 2.10: Amount of transferred data for reconstruction of the systematic node
a1 for a (14,10) RS code, a (14, 10) MSR code and a (16, 10, 5) LRC. The systematic
nodes are represented in red and the parity nodes in blue, while the local parity
nodes for the LRC are in green.

26 2. BACKGROUND AND RELATED WORKS

each node. The total repair bandwidth is only 32.5MB compared to 100MB under
RS.
MSR codes possess all properties of an MDS code, giving an additional advantage

of efficient repair consuming minimum possible bandwidth. This is made possible
by using a sub-packetization level, i.e. the data at each node is further divided into
blocks. The sub-packetization level α represents the minimum dimension over which
all operations are performed. Namely, when the sub-packetization is 1, then each
node is recovered by transferring data of size M/k symbols from any k nodes, i.e. the
case when RS codes are used. Hence, α > 1 is required to achieve the lower bound
of the repair bandwidth. We use a sub-packetization level equal to 64 in Figure 2.10
(b) in order to achieve the minimum repair bandwidth with the (14, 10) MSR code.
The construction of exact-repair codes is a well-studied problem in the literature.

Here we only list the most relevant results for our work about MDS codes for storage
systems. Exact-MSR codes that are obtained by using the technique of interference
alignment, a technique used to efficiently handle multiple interfering channels in
wireless communications [CJ08], were presented in [WD09, CR10].
Papailiopoulos et al. in [PDC13] and Cadambe et al. in [CHL11] resolved partly

the open problem about designing high-rate MDS codes that achieve the optimal
repair bandwidth. The code construction in [PDC13] used Hadamard matrices to
construct a two-parity MDS code with optimal repair properties for any single node
failure, including the parities. The construction is similar to zigzag codes in [TWB13],
but the former one uses bigger finite fields. The zigzag codes provide an optimal
recovery of any systematic node and an optimal update for a sub-packetization
level of rk. The work was further extended to provide an optimal recovery of both
systematic and parity nodes [WTB11].
Furthermore, Tamo et al. [TWB14] showed that the sub-packetization level of an

access-optimal MDS code for repairing a failed systematic node is r
k
r . In [CHLM11],

Cadambe et al. proposed codes that repair optimally any systematic node for this
sub-packetization level. An alternate construction of access-optimal MSR codes
motivated by zigzag codes was presented in [ASVK15]. An essential condition for
designing alternate codes with r parity nodes is m = k

r to be an integer m ≥ 1 where
k is set to rm and α to rm.
Wang et al. constructed codes that optimally repair any systematic or parity

node and require a sub-packetization level of rk+1 [WTB11]. High-rate MSR codes
with polynomial sub-packetization level were proposed in [SAK15]. However, the
work presented in the present thesis focuses only on optimal repair of any systematic
node.
Although the aforementioned MSR constructions achieve the lower bound of the

repair bandwidth for a single failure, they have not been practically implemented in
real-world distributed storage systems. Two main reasons for practical abandonment
of existing MSR codes are: either MSR codes require encoding/decoding operations

2.3. CODE CONSTRUCTIONS FOR DISTRIBUTED STORAGE SYSTEMS 27

over an exponentially growing finite field or the sub-packetization level α increases
exponentially. There are at least two ways to solve the problem by using small
sub-packetization levels and optimizing in terms of I/O operations.
Rashmi et al. reported 35% reduction in the repair bandwidth for any systematic

node when the sub-packetization level is 2 compared to a (14, 10) RS code [RSG+14].
They used the piggyback framework [RSR13] to construct Hitchhiker erasure codes.
The basic idea of the piggyback framework is to take multiple instances of an
existing code and add carefully designed functions of the data from one instance to
another. Other code constructions with small sub-packetization levels are Rotated-RS
[KBP+12], EVENODD [BBBM95] and RDP codes [CEG+04]. Rotated-RS codes
exist only for r ∈ {2, 3} and k ≤ 36, while EVENODD and RDP codes exist for
r = 2.
I/O is becoming the primary bottleneck in the performance of cloud storage

systems and applications that serve a large number of user requests or perform
data intensive computations such as analytics. There are two main types of I/Os:
sequential and random operations. Sequential operations access locations on the
storage device in a contiguous manner, while random operations access locations on
the storage device in a non-contiguous manner. A recent algorithm to transform
Product-Matrix-MSR codes [RSK11] into I/O optimal codes (termed PM-RBT codes)
while retaining their storage and network optimality was presented in [RNW+15].
PM-RBT exist only for r ≥ k − 1, i.e. for the low-rate regime.
All MDS erasure codes discussed in the previous paragraphs focus on an efficient

repair from a single failure, since single failures present 98.08% of the total failures
[RSG+14]. On the other hand, the authors in [FLP+10] state that the failures are
often correlated. Next we review codes that outperform the aforementioned codes
when multiple failures happen.
A cooperative recovery mechanism in the minimum-storage regime for repairing

from multiple failures was proposed in [HXW+10, WXHO10]. Minimum Storage
Collaborative Regenerating (MSCR) codes minimize the repair bandwidth while
still keeping the MDS property by allowing new nodes to download data from the
non-failed nodes and the new nodes to exchange data among them. The repair
bandwidth for MSCR codes under functional repair was derived independently in
[HXW+10, KSS11]. The existence of a random linear strong-MDS code under the
assumption that the operations are in a sufficiently large finite field was showed in
[HXW+10]. The codes attain the MSR point but the decoding complexity is quite
expensive. Adaptive regenerating codes where the numbers of failed and surviving
nodes change over time were proposed in [KSS11]. The authors in [LL14] showed
that it is possible to construct exact MSCR codes for optimal repair of two failures
directly from existing exact MSR codes. MSCR codes that cooperatively repair any
number of systematic nodes and parity nodes or a combination of one systematic
and one parity node were presented in [CS13]. However, the code rate of these codes

28 2. BACKGROUND AND RELATED WORKS

is low (n = 2k). A study about the practical aspects of codes with the same code
rate (n = 2k) in a system called CORE that supports multiple node failures can be
found in [LLL15]. There is no explicit construction of high-rate MDS codes for exact
repair of multiple failures at the time of writing of the present thesis.
Practical scenarios [SAP+13, PJBM+16, RSG+14] showed that erasure codes

have to provide a satisfactory tradeoff between the metrics such as storage overhead,
reliability, repair bandwidth, locality and I/Os. The present thesis tackles this by
working on:

– MDS code constructions with arbitrary sub-packetization levels for both low-
rate and high-rate regimes; and

– Locally Repairable Codes.

2.3.2 Locally Repairable Codes

Locally Repairable Codes (LRCs) were independently introduced in [GHSY12, OD11,
PLD+12].
Let C be a (n, k, d)q linear code. Assume that the encoding of x ∈ Fk

q is by the
vector

C(x) = (c1 · x, . . . , cn · x) ∈ Fn
q . (2.17)

Thus, the code C is specified by the set of n points C = {c1, . . . , cn} ∈ Fk
q . The set

of points must have a full rank equal to k for C to have k information symbols.

Definition 2.20. For ci ∈ C, we define Loc(ci) to be the smallest integer l for
which there exists L ⊆ C of cardinality l such that

ci =
∑
j∈L

λjcj . (2.18)

We further define Loc(C) = maxi∈{1,...,n}Loc(ci).

Definition 2.21. We say that a code C has information locality l if there exists
I ⊆ C of full rank such that Loc(c) ≤ l for all c ∈ I.

Gopalan et al. derived the upper bound for the minimum distance of a (n, k, d)q
code with locality l.

Theorem 2.22. [GHSY12, Th.5] For any (n, k, d)q linear code with information
locality l,

d ≤ n − k −
⌈

k

l

⌉
+ 2. (2.19)

Huang et al. showed the existence of Pyramid codes that achieve the distance
given in (2.19) when the field size is big enough [HCL13].

2.3. CODE CONSTRUCTIONS FOR DISTRIBUTED STORAGE SYSTEMS 29

Two practical LRCs have been implemented in Windows Azure Storage [HSX+12]
and HDFS-Xorbas by Facebook [SAP+13]. Both implementations reduce the recon-
struction cost by introducing l local and r global parity blocks. The local parity
nodes are computed from a subset of the systematic nodes. The locality of a code has
also an impact on the fault tolerance and the update efficiency. LRCs tolerate r + 1
arbitrary node failures and l+ r theoretically decodable failures. Consider the example
with 10 data nodes in Figure 2.10 (c) where a (16, 10) LRC generates 6 (instead of
4) parity nodes. The first four parities (denoted as p1, p2, p3, p4) are global parities
and are computed from all systematic nodes. While, for the two other parities, LRC
divides the systematic nodes into two equal size groups and computes one local parity
node for each group. The local parity p5 is computed as an XOR combination from
5 systematic nodes in the first group (a1, . . . , a5), while the parity p6 is computed
from 5 systematic nodes in the second group (a6, . . . , a10).
Let us consider the reconstruction of a1. Instead of reading p1 (or another global

parity node) and the remaining 9 systematic nodes, it is more efficient to read
p5 and 4 systematic nodes (a2, . . . , a5) from the first group. It is easy to verify
that the reconstruction of any systematic node requires accessing only 5 nodes, i.e.
significantly less than the RS (10 nodes) and the MSR (13 nodes) code. The locality
in this example is equal to 5 for the local parities and equal to 10 for the global
parities. Any systematic node is recovered from k

l nodes within its local group.
Hence, the repair bandwidth for a single systematic node recovery with the (16, 10)
LRC is 50MB. If we consider a repair of the parity nodes as well, then the average
repair bandwidth for a single node failure is (5× 12 + 10× 4)× 10MB/16 = 62.5MB,
because the recovery of the global parities is performed in the same way as with RS
codes.
The authors of [SAP+13] improved the recovery of the global parities by intro-

ducing an implied parity, but choosing the coefficients for the parities to satisfy
the alignment condition is computationally demanding. Tamo et al. introduced a
new family of optimal LRCs that are based on re-encoding RS encoded fragments
[TPD13]. Although the code construction is simple, it requires a large finite field.
Motivated by practical situations in hot storage, where the data changes dynami-

cally, the metric update complexity has been introduced in [ASV10]. Specifically, if
the value of any of the systematic data changes, then the corresponding data has to
be updated in the nodes that contain it in order to keep the data consistent.

Definition 2.23. The update complexity of a (n, k, d)q code C is defined as the
maximum number of symbols that must be updated when any single information
symbol is changed.

Tolerating and recovering efficiently from multiple failures is an important require-
ment for big data storage systems. Shingled erasure codes (SHEC) are codes with
local parities shingled with each other that provide efficient recovery from multiple
failures [MNS14]. All parities have the same locality l and support rl

k systematic or

30 2. BACKGROUND AND RELATED WORKS

parity node failures without data loss, but they are not efficient in terms of storage
overhead and reliability.
There is still a need for new erasure resilient codes that reduce the number of

nodes contacted during a repair, while still guaranteeing a low repair bandwidth even
when multiple failures occur. Additionally, performing updates consumes bandwidth
and energy, so it is of a great interest to construct codes that have small update
complexity, i.e. small locality. Thus, one of the research topics in the present thesis
is:

– A construction of LRCs that have low storage overhead, low average repair
bandwidth for single and double failures, high reliability and improved update
performance.

2.4 Optical Packet Switched Networks

Dense Wavelength Division Multiplexing (DWDM) has emerged as a core transmission
technology for backbone networks. With DWDM, optical signals are multiplexed
enabling simultaneously different wavelengths on the same fiber. Fiber networks can
therefore carry multiple Terabits of data per second over thousands of kilometers
[htt]. ADVA optical networking reported that the current DWDM systems support
up to 192 wavelengths on a single fiber, with each wavelength transporting up to
100Gbit/s – 400Gbit/s and 1 Terabit/s.
However, DWDM opaque networks use expensive optical/electrical/optical (O/E/O)

conversion for switching. Although the speed of electronic devices has been increased
significantly, it is still not likely to catch up with the transmission speed available
at the optical layer. Thus, there is a need to minimize or eliminate the electronic
processing in order to fully exploit the potential bandwidth offered by DWDM. This
calls for a move of the switching functionalities from the electronic domain to the
optical domain, i.e. all-optical networking [OSHT01].
Furthermore, the traffic has become more data-dominant than voice-dominant.

As the traffic nature has changed from continuous to bursty, there is a need for a
switching technology that supports efficiently bursty traffic [QY99].
The switching technologies for DWDM are:

– Wavelength Routed Optical Switching establishes all-optical circuit switched
connections (lightpaths) between edge nodes in the optical core network [RS02].
In Wavelength Routed Optical Networks (WRON), a lightpath is set-up before
the data transmission and a dedicated wavelength on every link is reserved.
The lightpath may be wavelength converted at the intermediate nodes. Thus,
WRON does not require buffering, O/E/O conversion or processing at interme-
diate nodes. The major problem in WRON is the non-optimal utilization of link
resources, because there is no resource sharing between lightpaths traversing
the same link.

2.4. OPTICAL PACKET SWITCHED NETWORKS 31

Table 2.1: A comparison of switching technologies for DWDM [VCR00].

Switching technology Granularity Utilization Complexity
Wavelength Switching (WRON) Coarse Poor Low
Optical Packet Switching (OPS) Fine High High (not mature)
Optical Burst Switching (OBS) Moderate Moderate Moderate

– An alternative to Wavelength Routed Optical Switching is Optical Packet
Switching (OPS) and Optical Burst Switching (OBS) [GRG+98, YSH+98] that
enable all-optical packet transport combined with statistical multiplexing for
increased link utilization [HA00, CQY04, Tur99].

One of the main differences between OPS and OBS is the data unit that is
processed and forwarded through the network. In OPS networks, packets
are processed and forwarded, while in OBS networks, incoming packets are
aggregated into bursts at an OBS ingress node based on the destination and/or
the service class of the packets which are then transmitted in the network.
Both OPS and OBS allow switching of data in the optical domain. However,
switching decisions are made in the electronic domain [NBG08] as optical
processing is still an immature technology.

Another key difference between OPS and OBS is the control information.
The control information in OPS is in-band, while it is out-of-band in OBS
networks. In particular, reservation is not possible in OPS, because the header
follows the rest of the packet. In OBS, the burst transmission is initiated
shortly after the burst was assembled and the control packet was sent out. The
wavelength is allocated only for the duration of a data packet/burst and can
be statistically shared by packets/bursts belonging to different connections.
Switching decisions are taken based on the packet header or the burst control
packet that undergoes O/E conversion and electronic processing at the switches,
while the packet/burst payload is optically switched.

OPS has finer granularity compared to OBS, but requires fast switching,
header reading and reinsertion that increase the complexity and the cost at
the switching node [NBG08].

An overview of the characteristics of the aforementioned switching technologies is
given in Table 2.1 [VCR00].
A crucial issue in OPS/OBS networks is the packet loss at the network layer

due to contentions. A contention occurs at a switching node when two or more
packets are destined on the same output port, on the same wavelength, at the same
time. Contending packets are dropped which leads to increased PLR. For instance,
the default behavior is to drop one of the two packets that contend for the same
wavelength at the same time. In Figure 2.11 (a), packet b is dropped. It is impossible

32 2. BACKGROUND AND RELATED WORKS

to buffer the data or retransmit the dropped packets. First, the amount of data
is enormous, and, second, there is no Random-Access Memory (RAM) available in
OPS/OBS networks. Thus, contending packets cannot be buffered and forwarded
when the output port is free.
Several contention resolution mechanisms such as wavelength conversion, Fiber

Delay Line (FDL) buffering and deflection routing [CWXQ03] have been proposed to
combat packet loss in OPS/OBS networks. Wavelength conversion [DJMS98, EM00]
converts the wavelength of one of the contending packets to an idle wavelength on the
same output port (Figure 2.11 (b)). FDLs [HCA98] try to mimic electronic buffering
by delaying one of the packets in time and scheduling it to the intended wavelength
when it is free (Figure 2.11 (c)). A large number of FDLs are needed to implement
large buffer capacity and they may add an additional delay. Both wavelength
conversion and optical buffering require extra hardware which may increase the
system cost. Deflection routing is a multiple-path routing technique that routes the
contending packets to other nodes, i.e. output ports on the same wavelength. The
performance of deflection routing largely depends on the network topology. A big
advantage is that any of these three techniques can be combined. Another contention
resolution scheme in OBS networks is burst segmentation. Rather than dropping the
entire burst during contention, only the overlapping segments are dropped [VJS02].
FEC has been recently applied in OPS/OBS networks to alleviate PLR (Figure

2.11 (d)) [YKSC01]. FEC is not a contention resolution scheme, which means it can be
combined with wavelength conversion, fiber delay line buffering and deflection routing.
Redundant packets are added to a set of data packets at the OPS ingress node and
transmitted along with the original data packets to an OPS egress node. Data packets
dropped due to a contention can be reconstructed at the OPS egress node by using
excess redundant packets, leading to a potential reduced PLR. The Network Layer
Packet Redundancy Scheme (NLPRS), introduced in [Øve04], reduces several orders
of magnitude the end-to-end PLR due to contentions in an asynchronous OPS ring
network with and without a wavelength conversion. The authors in [GA02] evaluate
several topology-routing algorithms for deflection routing coupled with erasure coding.
The results show the amount of redundancy that is needed in unstructured networks
of switches. The forward redundancy mechanism proposed in [VZ06] significantly
reduces the packet loss compared to a retransmission-based backward loss recovery
mechanism without the need for large ingress electronic buffers or big retransmission
delays. Under this mechanism, only the overlapping segments of the contenting
bursts are dropped. The dropped segments of a burst can be recovered using the
redundant packets at the OBS egress node that were sent in the forward direction,
from the ingress to the egress node.
Apostolopoulos used multiple state video coding and path diversity for transferring

video over a lossy packet network [Apo01]. Path diversity is defined as sending
different subsets of packets over disjoint paths, as opposed to the default scenarios

2.4. OPTICAL PACKET SWITCHED NETWORKS 33

Figure 2.11: Contention resolution mechanisms at an OPS node where the
packets a and b arrive on the same wavelength at the same time and contend for
the same output wavelength. a) The packet a is transmitted, while b is dropped; b)
Contention resolution with wavelength conversion where packet b is converted to an
idle wavelength (on the same fiber); c) Contention resolution with FDL buffering
where packet b is delayed using FDL buffering; d) Contention resolution with FEC
where redundant packets are added.

where the packets proceed along a single path. Path diversity provides better
performance because the probability that all of the multiple paths are simultaneously
congested is much less than the probability that a single path is congested. Nguyen
and Zakhor combined a rate allocation algorithm from multiple senders to a receiver
with FEC in order to minimize the probability of lost packets due to congestions in
a bursty loss environment [NZ02]. The work was further extended in [NZ03] where
they presented a scalable, heuristic scheme for selecting a redundant path between
an ingress node and an egress node. The disjoint paths from a sender to a receiver
are created by using a collection of relay nodes.
Another coding technique for mitigating packet loss is network coding. A straight-

forward application of the network coding technique is not feasible in OPS/OBS due
to the lack of store-and-forward capabilities. However, the idea of combining the
packets instead of dropping them reduces the packet loss [BØ11].

Survivability is essential in OPS/OBS networks with a throughput of order of
terabits per second [ZS00]. The survivability of a network refers to a network’s
capability to provide continuous service in the presence of failures. The most
common types of failures are node and link failure. Service providers have to

34 2. BACKGROUND AND RELATED WORKS

Figure 2.12: Different path protection schemes.

ensure that their networks are fault tolerant. To meet these requirements, providers
use common survivability mechanisms such as predesigned protection techniques
[GL03, FV00, SRM02], node and component redundancy, prebuffering [KBØS10],
and predetection schemes [BNH02]. The most used protection techniques include
1+1 protection, in which the same data is transmitted on two link disjoint paths, and
the receiver selects the packets from the path with better quality; 1 : 1 protection,
which is similar to 1 + 1, except that traffic is not transmitted on the backup path
until a failure occurs; 1 : N protection, which is similar to 1 : 1, except that one
path is used to protect N paths; and M : N , where M protection paths are used to
protect N working paths. Figure 2.12 shows 1 + 1 and 1 : 2 path protection schemes.
Some of the protection techniques can be combined with coding. Kamal first

applied network coding to provide 1 + N protection against single link failure
[Kam06, Kam07b, Kam08]. The optimal 1 + N protection scheme in [KAK08]
requires exactly the same amount of protection resources as in 1 : N and the time
to recover from failures is comparable to that of 1 + 1 protection. Kamal extended
the approach to protect against multiple link failures [Kam07a, KRLL11]. Menendez
and Gannet proposed photonic XOR devices for network coding [MG08]. Savings
of up to 33% in links (transmitter, fiber or wavelength channel and receiver) are
possible with network coding compared to conventional techniques. The effectivness
of network coding to provide robustness against link failures of multicast traffic is
presented in [MDXA10].
In OBS, data and control packets are sent out of band. Sending the Burst

Header Packet (BHP) prior the transmission of data packets with specific offset time
exposes the data payload to different security challenges. The authors in [SMS12]
discussed the burst hijacking attack where a source node can maliciously create
a copy of the original BCH and modify its value to setup a path to a malicious
destination. The data payload is forwarded to the original destination as well as
the malicious destination. However, the malicious destination does not send an
acknowledgment for this hijacked burst, thus, it escapes from being caught. A
solution based on Rivest-Shamir-Adleman (RSA) public-key encryption algorithm

2.4. OPTICAL PACKET SWITCHED NETWORKS 35

that addresses the Data Burst Redirection (DBR) attack in OBS networks is proposed
in [CAKSAL+15]. However, the high capacities of OPS/OBS networks make data
encryption in OPS/OBS not feasible as the current computational resources do not
match the required encryption processing demands. The encryption mechanisms have
to be with low computational complexity, suitable for high-speed implementation
and the majority of the header content should not be encrypted since the processing
of the headers has to be at ultra high speed [CV08].
One way of providing a certain level of security in a non-cryptographic way is

to utilize non-systematic coding. Secrecy as defined in [MS12] provides protection
from a passive adversary that is not able to reconstruct the whole packet/burst set
by eavesdropping on a single path. This property has not been so far exploited
in OPS/OBS networks. The authors in [OLV+12] showed how secrecy in storage
systems is provided even when an eavesdropper knows or can guess some of the
missing information.
There is a lack of research work that gives a unified view of the performance

metrics in OPS. The scheme proposed in [Øve08] and [ØBBT12] provides a 1 + 1
path protection in addition to the packet loss alleviation. In particular, the work in
[ØBBT12] shows that significant cost savings are achieved by using erasure codes
compared to other approaches that provide 1+1 path protection. There is a need for:

– An integrated view of QoS in OPS/OBS networks that deals with survivability,
packet loss alleviation and secrecy at the same time.

Chapter3Contributions and Concluding
Remarks

3.1 Research Questions

The state-of-the-art in the four main research areas covered in the present thesis
was reviewed in the previous Chapter. The detailed literature study brings forth the
following research questions.
First, it is of utmost importance to identify the desired code properties explained

in Subsection 2.1 when constructing erasure codes, properties such as non-MDS or
MDS, binary or non-binary codes with as few as possible operations in large finite
fields, structure of the generator matrix, generic applicability, fast encoding/decoding
etc. Accordingly, it is meaningful to ask:

RQ1 How can we construct balanced erasure codes?

The next goal is to address some of the challenges of a practical implementation
of network coding. Network coding can increase the data throughput by an order-
of-magnitude and also improve the robustness of existing networks. However, one
of the main challenges is the header overhead imposed by the coding coefficients as
explained in Subsection 2.2. Accordingly, there is an enormous need for new header
compression algorithms and this poses the next research question:

RQ2 How can we reduce the header overhead in network coding?

Network coding concepts helped to derive the storage-repair bandwidth tradeoff
for single node recovery with regenerating codes in distributed storage systems. While
MSR codes possess all properties of MDS codes and offer an additional advantage of
efficient repair consuming the minimum repair bandwidth (Subsection 2.3.1), locally
repairable codes disregard the MDS property and provide a low locality (Subsection
2.3.2). Thus, a more general question about code constructions that are optimal for
some of the cost metrics in distributed storage systems is raised:

RQ3 How can we construct efficient codes for distributed storage systems?

37

38 3. CONTRIBUTIONS AND CONCLUDING REMARKS

Figure 3.1: Relations between the papers included in the thesis. The papers are
grouped based on the research questions.

The next question is related to provision of a unified view on QoS in OPS/OBS
networks that is explained in Subsection 2.4. It is essential to know the interactions
between the survivability, the packet loss rate and the secrecy when erasure codes
are applied. Naturally, this poses the following question:

RQ4 How can erasure coding be applied to increase the QoS in OPS/OBS networks?

3.2 Research Results

The author of the present thesis wrote and contributed to 10 publications and 7
patent applications during the four-year PhD period. Table 3.1 presents a complete
list of included publications in the thesis, while Table 3.2 and Table 3.3 list the
rest of the publications and patent applications that are not included in the thesis.
The order in which the papers are given is not necessarily chronological, but rather
related to the research questions so that it is easier and more natural to follow the
exposition in the thesis.
Figure 3.1 shows the position of the included papers in the thesis with regards

to the four research questions. Erasure code constructions are the core and they
are used in different applications. The arrows depict the correlations between the
included papers. Combinatorics and coding theory go hand in hand acting as powerful
tools for design, analysis and implementation of efficient codes. We started with
construction of erasure codes from combinatorial designs where we generate codes

3.2. RESEARCH RESULTS 39

Table 3.1: List of publications included in the thesis.

Paper Title · Author List · Conference/Journal
Paper 1 Balanced XOR-ed Coding

K. Kralevska, D. Gligoroski, and H. Øverby
Lecture Notes in Computer Science, vol. 8115, pp. 161-172, 2013

Paper 2 Families of Optimal Binary Non-MDS Erasure Codes
D. Gligoroski and K. Kralevska
IEEE Proceedings on International Symposium on Information Theory
(ISIT), pp. 3150-3154, 2014

Paper 3 Minimal Header Overhead for Random Linear Network Coding
D. Gligoroski, K. Kralevska, and H. Øverby
IEEE International Conference on Communication Workshop (ICCW),
pp. 680 - 685, 2015

Paper 4 General Sub-packetized Access-Optimal Regenerating Codes
K. Kralevska, D. Gligoroski, and H. Øverby
IEEE Communications Letters, vol. 20, issue 7, pp. 1281 - 1284, 2016

Paper 5 HashTag Erasure Codes: From Theory to Practice
K. Kralevska, D. Gligoroski, R. E. Jensen, and H. Øverby
Submitted to IEEE Transactions on Big Data

Paper 6 Balanced Locally Repairable Codes
K. Kralevska, D. Gligoroski, and H. Øverby
International Symposium on Turbo Codes and Iterative Information
Processing, 2016

Paper 7 Coded Packet Transport for Optical Packet/Burst Switched
Networks
K. Kralevska, H. Øverby, and D. Gligoroski
IEEE Proceedings on Global Communications Conference (GLOBE-
COM), pp. 1 - 6, 2015

with balanced structure (Paper 1 and Paper 2). The balanced structure ensures that
all packets have the same encoding complexity. A comparison between the decoding
probability with the proposed balanced codes and RLNC is given in Paper 2. If the
intermediate nodes in addition to the source nodes are allowed to encode the data,
then we study a case of network coding. We identified the open problem of header
compression that plays a major role in practical implementations of network coding.
Employing some known facts from finite fields, we suggest an algorithm called Small
Set of Allowed Coefficients (SSAC) in Paper 3. Network coding is an interesting
problem that is well studied with the help of graph theory. By using some concepts of
network coding, the lower bound of the repair bandwidth for a single node recovery
in distributed storage networks is derived. A general construction of MDS codes
for any sub-packetization level for repair of a single systematic node is suggested in

40 3. CONTRIBUTIONS AND CONCLUDING REMARKS

Table 3.2: List of publications not included in the thesis.

Paper Title · Author List · Conference/Journal
Paper 8 Combining Forward Error Correction and Network Coding in

Bufferless Networks: a Case Study for Optical Packet Switch-
ing
G. Biczók, Y. Chen, K. Kralevska, and H. Øverby
IEEE 17th International Conference on High Performance Switching and
Routing (HPSR), 2016

Paper 9 Performance Analysis of LTE Networks with Random Linear
Network Coding
T. Degefa Assefa, K. Kralevska, and Y. Jiang
39th International Convention on Information and Communication Tech-
nology, Electronics and Microelectronics, 2016

Paper 10 Joint Balanced Source and Network Coding
K. Kralevska, H. Øverby, and D. Gligoroski
22nd Telecommunications Forum (TELFOR), Telecommunication Society,
ISBN 978-1-4799-6190-0, pp. 589-592, 2014

Paper 4. The code construction from Paper 4 is further elaborated and optimized
in terms of I/O in Paper 5. Later the idea of applying balanced codes as LRCs in
distributed storage came. In Paper 6, we relaxed the condition of equal number of
non-zero elements per column in the generator matrix. In both Paper 2 and Paper 6,
we use hill-climbing search for codes with better performance. The path diversity and
the secrecy features from Paper 1 inspired us to apply them in OPS/OBS networks
in order to achieve survivability against link failures and non-cryptographic secrecy.

3.3 Research Answers

Here we summarize the answers to the research questions defined in Subsection 3.1.

ANS1 Paper 1 and Paper 2 answer RQ1 by introducing a new way of constructing
balanced binary codes from combinatorial designs (Latin squares and Latin
rectangles).

ANS2 Paper 3 answers RQ2 by proposing a novel algorithm called SSAC for practical
network coding. SSAC generates the shortest header overhead by using sparse
coding and properties of finite fields.

ANS3 Paper 4, Paper 5 and Paper 6 answer RQ3. Paper 4 and Paper 5 present
the first MDS codes for both low-rate and high-rate regimes that provide the
lowest repair bandwidth for any sub-packetization level. The practicality of

3.4. SUMMARY OF THE RESULTS CONTRIBUTING TO THE THESIS 41

Table 3.3: List of patent applications.

Application No. Title · Status
US14/902,251 Network Coding over GF (2)

Pending
PCT/EP2015/063337 Coding in Galois Fields with Reduced Complexity

Pending
US 9,430,443 Systematic Coding Technique

Granted
GB1522869.5 Systematic Erasure Coding Technique

Pending
GB1608441.0 Locally Repairable Erasure Codes

Pending
GB1613575.8 Regenerating - Locally Repairable Codes

Pending
GB1616704.1 Regenerating - Locally Repairable Codes

Pending

these codes is further investigated in Paper 5. Paper 6 solves partially the open
problem of finding a general construction of LRCs with a low locality for any
n and k.

ANS4 Paper 7 constitutes a first step for providing a unified view on the interactions
between survivability, PLR and secrecy in OPS/OBS networks raised in RQ4.

3.4 Summary of the Results Contributing to the Thesis

This Section gives a summary of the papers included in Part II. The contributions of
each paper are compared to the most relevant state-of-the-art results. The papers
are presented in the order as they give answers to the research questions.

Paper 1: Balanced XOR-ed Coding
K. Kralevska, D. Gligoroski, and H. Øverby
Lecture Notes in Computer Science, vol. 8115, pp. 161-172, 2013
Encoding and decoding over GF (2) are up to two orders of magnitude less

energy demanding and up to one order of magnitude faster than encoding/decoding
operations in higher fields [VPFH10]. Sparse codes minimize the computation time
of computing any coded packet, a property that is appealing to systems where
computational load-balancing is critical. These are the main motivations to seek for
sparse codes only with XOR operations.

42 3. CONTRIBUTIONS AND CONCLUDING REMARKS

The first theoretical work by Riis in [Rii04] shows that every solvable multicast
network has a linear solution over GF (2). Afterwards, XOR coding has been applied
in wireless networks in [KRH+08] where random coding with no predefined code
construction is used.
In Paper 1, we apply the knowledge from combinatorics for code constructions by

introducing a new way of constructing balanced XOR-ed codes from combinatorial
designs (Latin squares and Latin rectangles). In this context, balanced means all
packets are encoded with equal complexity, i.e. the number of ones in each row and
each column is equal. We show that the XOR-ed codes reach the max-flow for single
source multicast acyclic networks with delay. Encoding of the original data is done
by a nonsingular incidence matrix obtained from a Latin rectangle, while decoding is
performed by the inverse matrix of the incidence matrix. Additionally, this paper
shows that balanced coding offers plausible secrecy properties. In particular, if the
incidence matrix and its inverse matrix switch the roles, then an eavesdropper has to
eavesdrop at least max-flow links in order to decode one original packet.

Paper 2: Families of Optimal Binary Non-MDS Erasure Codes
D. Gligoroski and K. Kralevska
IEEE Proceedings on International Symposium on Information Theory (ISIT), pp.
3150-3154, 2014
The results presented in Paper 1 are further extended in Paper 2. We use the same

logic (combinatorial designs) for constructing codes as in Paper 1. First, we define
families of optimal binary non-MDS erasure codes. We also introduce the metric
vector of exact decoding probability as a measure for how far away a specific (n, k)
code is from being an MDS code. The second contribution is a heuristic algorithm
for finding those families by using hill climbing techniques over balanced XOR-ed
codes. Due to the hill climbing search, those families of codes have always better
decoding probability than the codes generated in a typical RLNC scenario. Finally,
we show that for small values of k, the decoding probability of balanced XOR-ed
codes in GF (2) is very close to the decoding probability of random linear codes in
GF (4).

Paper 3: Minimal Header Overhead for Random Linear Network Coding
D. Gligoroski, K. Kralevska, and H. Øverby
IEEE International Conference on Communication Workshop (ICCW), pp. 680 -
685, 2015
Paper 3 presents the only algorithm in the literature called SSAC where the

header length does not depend from the size of the finite field. This is achieved by
applying sparse coding, using an irreducible polynomial and at least two primitive
elements from a finite field.
Although the concept of sparse coding is first used in [SKFA09], there the header

3.4. SUMMARY OF THE RESULTS CONTRIBUTING TO THE THESIS 43

length depends from the field size. Our work builds up on sparse coding, but we do
not use parity-check matrices of error correcting codes. SSAC generates the header
overhead by utilizing a small set Q ⊂ GF (q) of coefficients that multiply the original
data. Usually Q consists of 2 primitive elements in GF (q), thus, the header length
is decreased from n log2 q to m(1 + log2 n) bits where n is the generation size and
m is the sparsity parameter. We show that the header length in SSAC does not
depend on the size of the finite field where the operations are performed, i.e. it just
depends on the number of combined packets. Moreover, our work is the first one that
investigates the efficiency of the header compression algorithm in every intermediate
node in conjunction with the number of buffered packets in that node.

Paper 4: General Sub-packetized Access-Optimal Regenerating Codes
K. Kralevska, D. Gligoroski, and H. Øverby
IEEE Communications Letters, vol. 20, issue 7, pp. 1281 - 1284, 2016
In Paper 4, we propose an algorithm for explicit construction of MDS codes that

access and transfer the lowest amount of data when repairing from a single node
failure for any sub-packetization level. The amount of accessed and transferred data
is the same. The number of helper nodes is n − 1.
The algorithm presented in Paper 4 is so general that it also covers construction

of access-optimal MSR codes. Compared to the construction presented in [ASVK15]
where k

r has to be an integer and the considered sub-packetization level is exclusively
equal to r

k
r , the parameter k

r in our work is not necessarily an integer. For instance,
the code (14, 10) that is deployed in the data-warehouse cluster of Facebook is out of
the scope of applicability with the current proposals in [ASVK15, CHLM11, TWB14],
because k

r = 2.5 is a non-integer. While the algorithm in Paper 4 constructs a
(14, 10, 13) code that reduces the repair bandwidth for any systematic node by 67.5%
when the sub-packetization level is r� k

r � = 64 compared to a (14, 10) RS code. The
presented codes are simultaneously optimal in terms of storage, reliability and repair
bandwidth. We also give an algorithm for exact repair of any systematic node that
is linear and highly parallelized. This means a set of
 α

r � symbols is independently
repaired first and used along with the accessed data from other helper nodes to
recover the remaining symbols. The results show how the repair bandwidth decreases
as the sub-packetization level increases. The lower bound of the repair bandwidth is
achieved for α = r� k

r � (MSR codes).

Paper 5: HashTag Erasure Codes: From Theory to Practice
K. Kralevska, D. Gligoroski, R. E. Jensen, and H. Øverby
Submitted to IEEE Transactions on Big Data
Paper 5 is an extension of Paper 4 where we study both the theoretical and the

practical aspects of the explicit construction introduced in Paper 4. Although we
first introduced the codes without a specific name, in Paper 5 we call them HashTag

44 3. CONTRIBUTIONS AND CONCLUDING REMARKS

Erasure Codes (HTECs) due to the resemblance between the hashtag sign # and the
procedure of their construction. The three main contributions of Paper 5 are: an
analysis of different concrete instances of HTECs, an elaboration of the correlation
between the repair bandwidth and the I/Os with the sub-packetization level, and
the repair bandwidth savings with HTECs even for repair of multiple failures.
We have implemented HTECs in C/C++ and performance analysis show up to

30% bandwidth savings compared to Piggyback 1 and Piggyback 2 codes [RSR13].
We also optimize HTECs in terms of the I/Os while still retaining their optimality in
terms of the storage and the repair bandwidth. The authors in [RNW+15] transform
Product-Matrix-MSR (PM-MSR) into I/O optimal codes (which they call PM-RBT
codes). Compared to HTECs that exist for any code parameters, PM-RBT codes
exist only for r ≥ k − 1. We identify the values of sub-packetization levels that
give optimal overall system performance. We also show that the scheduling of the
indexes in HTECs ensures a gradual increase in the number of random reads, hence
no additional algorithms such as hop-and-couple [RSG+14] are needed to make the
reads sequential.
Additionally, HTECs are the first codes in the literature that offer bandwidth

savings when recovering from multiple failures for any code parameters including the
high-rate regime.

Paper 6: Balanced Locally Repairable Codes
K. Kralevska, D. Gligoroski, and H. Øverby
International Symposium on Turbo Codes and Iterative Information Processing, 2016
Paper 6 solves partially the open problem of finding a general construction of

LRCs for any n and k [TPD13]. We suggest BLRCs that provide a good trade-
off between the storage overhead, the repair bandwidth, MTTDL and the update
complexity.
The main problem with many existing LRCs [HSX+12, SAP+13] is that although

they reduce the size of the subset of contacted nodes, they suffer from the drawback
that only a single subset of nodes enables the repair of a specific block. If a single
node from that repair subset is not available, data cannot be repaired “locally” and
this increases the repair cost. BLRCs address this problem and provide an efficient
repair even when double failures occur. The strict requirement that the repair locality
has to be a fixed small number l is relaxed for BLRCs and we allow the repair locality
to be either l or l + 1. One of the main features of the proposed codes is that the
parity blocks depend in a balanced manner from the systematic data blocks. This
means that each systematic block is included in exactly w parity blocks. Additionally,
BLRCs are optimal even when double failures occur and this is not the case with
other LRCs. We use four metrics such as storage overhead, average repair bandwidth,
MTTDL and update complexity to compare our codes with existing LRCs. An
extensive reliablity analysis for calculating the MTTDL is also presented.

3.5. CONCLUDING REMARKS 45

Paper 7: Coded Packet Transport for Optical Packet/Burst Switched
Networks
K. Kralevska, H. Øverby, and D. Gligoroski
IEEE Proceedings on Global Communications Conference (GLOBECOM), pp. 1 - 6,
2015
Paper 7 provides a unified view on QoS in OPS/OBS networks. The work in

Paper 7 focuses on the interactions between survivability, PLR and secrecy. The
authors in [Øve04] and [VZ06] focus only on FEC codes to reduce packet loss in OPS
networks. The work in [Øve08] and [ØBBT12] extends these schemes to provide 1+1
path protection. Unlike our work, none of these references considers secrecy.
We present the Coded Packet Transport (CPT) scheme, a novel transport mecha-

nism for OPS/OBS networks that exploits the benefits of source coding with erasure
codes combined with path diversity. At an OPS/OBS egress node, reconstruction
of lost packets due to contentions and link/node failures is enabled by the added
redundancy. Sending different subsets of non-systematic coded packets over disjoint
paths between the ingress and the egress node provides an end-to-end secrecy against
passive adversaries. CPT provides a non-cryptographic secrecy in OPS networks.
We combine an attack technique (a combination of partially known coded text and a
brute force attack) with the modern recommended levels of security (a long term
security level of 128 bits) to analyze the secrecy constraints in CPT. The presented
analytical models show how the QoS aspects of CPT are affected by the number
of disjoint paths, the packet overhead and the packet loss rate. The number of
disjoint paths and the packet overhead should be chosen so that CPT is within the
operational range (the secrecy and the survivability constraints are not violated).

3.5 Concluding Remarks

As the amount of generated and stored data is exponentially growing, cost-efficient
and reliable systems have become increasingly important. One way to ensure efficient
reliability are erasure codes with properties as close as possible to MDS codes. Erasure
codes have become particularly attractive for fault protection in storage systems. In
order to have a practical deployment of new erasure coding techniques in distributed
storage, several issues have to be solved. New coding techniques have to provide high
resilience to failures as well as low repair bandwidth and fast recovery.
Network coding offers throughput benefits, but at the cost of adding extra

overhead. Transmitting a single bit in ad hoc sensor networks is more energy
consuming than performing instructions in the devices. The large amount of traffic,
has made all-optical network architectures crucial for high-speed transport. OPS is
a promising candidate among all-optical network architectures proposed in recent
literature. We elaborate the applicability of erasure coding in OPS/OBS networks in
order to provide better QoS.

46 3. CONTRIBUTIONS AND CONCLUDING REMARKS

The present thesis has dealt with erasure code constructions, with a particular
focus on general binary and non-binary code constructions and the advantages of
employing them in different networks. The overall major scientific contributions in
the present thesis include:

– A novel construction of binary codes suitable for implementation on devices
with limited processing and energy capacity from combinatorial designs.

– A new algorithm for header compression in network coding where the header
length is 2 to 7 times shorter than the length achieved by related compression
techniques.

– Code constructions and implementation of new erasure codes for large scale
distributed storage systems that provide savings in the storage and network
resources.

◦ A novel construction of MDS erasure codes that significantly reduce both
the repair bandwidth and the random I/Os during a repair of missing
or otherwise unavailable data with no additional storage overhead and
flexibility in the choice of parameters.

◦ A code construction optimized for repair locality and update complexity
by relaxing the MDS requirement.

– A unified view of QoS in OPS/OBS networks by linking survivability, packet
loss rate and secrecy using erasure coding and path diversity.

3.6 Future Works

Some proposals for future works are presented in this Section.
A natural follow-up of the current work related to large-scale distributed storage

is an extension of the HTEC construction to enable construction of high-rate codes
that are optimal for recovery of both the systematic and the parity nodes. Several
high-rate MSR codes for efficient repair of both systematic and parity nodes exist
in the literature [WTB11, SAK15, YB16a]. Still for these codes, either the sub-
packetization level is too large or the constructions are not explicit. An open issue is
how to extend the HTEC construction to support an efficient repair of the parity
nodes as well.
In Paper 4 and Paper 5, we use the work in [ASVK15] to guarantee the existence

of non-zero coefficients from Fq so that the code is MDS. However, the lower bound
of the size of the finite field is relatively big. On the other hand, in our examples we
actually work with very small finite fields (F16 and F32). Recent results in [YB16b]
showed that a code is access-optimal for α = r� k

r � over any finite field F as long as
|F| ≥ r
 k

r �. Determining the lower bound of the size of the finite field for HTECs
remains an open problem.

3.6. FUTURE WORKS 47

Repairing the data with regenerating nodes requires contacting n − 1 nodes. This
creates a burden in the system and the data from all n − 1 nodes should be always
available. LRCs tackle this problem by contacting only l nodes, but the improved
performance comes at the expense of extra storage. An interesting research direction
is how to combine the benefits from both regenerating and LRC codes.
Another research direction is the development of Error-Correcting Code (ECC)

memory. The concept is similar to what we have been working on until now, but
instead of recovering lost data distributed over different failure domains such as hard
drives, nodes, racks and geographical locations, the concept is applied to memory
chips. ECC memory offers error detection in addition to error correction. A memory
error is an event that leads to the logical state of one or multiple bits being read
differently from how they were last written. A memory error can lead to a machine
crash or applications using corrupted data if the system does not support ECCs.
Thus, ECCs memory are crucial components in each system. Since the construction
of Hamming codes, only very few practical constructions have been designed and
employed. Hamming codes are the most common used codes for protecting memory,
although triple modular redundancy is used sometimes. Hamming codes are Single-
Error-Correcting and Double-Error-Detecting (SECDED). BCH codes are another
alternative for practical implementations of ECCs. They have better correcting
capabilities than Hamming codes, but imply a higher latency. Thus, another research
direction is a construction of low latency ECCs that offer multi-bit detection and
correction in one cycle.

References

[ACLY00] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung. Network information
flow. IEEE Transactions on Information Theory, 46(4):1204–1216, 2000.

[ADMK05] S. Acedański, S. Deb, M. Médard, and R. Kötter. How good is random
linear coding based distributed networked storage. In NetCod, 2005.

[Apo01] J. G. Apostolopoulos. Reliable video communication over lossy packet
networks using multiple state encoding and path diversity. In VCIP,
Proceedings of SPIE, pages 392–409, 2001.

[ASV10] N.P. Anthapadmanabhan, E. Soljanin, and S. Vishwanath. Update-
efficient codes for erasure correction. In 48th Annual Allerton Conference
on Communication, Control, and Computing, pages 376–382, Sept 2010.

[ASVK15] G.K. Agarwal, B. Sasidharan, and P. Vijay Kumar. An alternate
construction of an access-optimal regenerating code with optimal sub-
packetization level. National Conference on Communications (NCC),
pages 1–6, Feb 2015.

[BBBM95] M. Blaum, J. Brady, J. Bruck, and Jai Menon. Evenodd: an efficient
scheme for tolerating double disk failures in raid architectures. IEEE
Transactions on Computers, 44(2):192–202, Feb 1995.

[Ber68] E. R. Berlekamp. Algebraic Coding Theory. MacGraw-Hill (New York
NY), 1968.

[BGT93] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit
error-correcting coding and decoding: Turbo-codes. In ICC, volume 2,
pages 1064–1070, 1993.

[BKW97] J. Blömer, R. Karp, and E. Welzl. The rank of sparse random matrices
over finite fields. Random Struct. Algorithms, 10(4):407–419, July 1997.

[BLMR98] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital
fountain approach to reliable distribution of bulk data. Technical report,
May 1998.

49

50 REFERENCES

[BN05] K. Bhattad and K.R. Narayanan. Weakly secure network coding. Proc.
First Workshop on Network Coding, Theory, and Applications (NetCod),
2005.

[BNH02] S. Bjørnstad, M. Nord, and D.R. Hjelme. Transparent optical protection
switching scheme based on detection of polarisation fluctuations. In
Optical Fiber Communication Conference and Exhibit, pages 433–434,
Mar 2002.

[BØ11] G. Biczók and H. Øverby. Combating packet loss in ops networks: A
case for network coding. In NIK, 2011.

[Bol79] B. Bollobas. Graph Theory: An Introductory Course. Springer, New
York/Berlin, 1979.

[BRC60] R. C. Bose and Dwijendra K. Ray-Chaudhuri. On A class of error
correcting binary group codes. Information and Control, 3(1):68–79,
March 1960.

[CAKSAL+15] Y. Coulibaly, A. Al-Kilany, M. S. A. Latiff, G. Rouskas, S. Mandala, and
M.A. Razzaque. Secure burst control packet scheme for optical burst
switching networks. In IEEE International Broadband and Photonics
Conference (IBP), pages 86–91, April 2015.

[CC81] G. C. Clark, and J. Bibb Cain. Error-correction coding for digital
communications. Plenum Press, 1981.

[CC84] R. Comroe and D.J. Costello. Arq schemes for data transmission in mo-
bile radio systems. IEEE Journal on Selected Areas in Communications,
2(4):472–481, July 1984.

[CCW10] C.-C. Chao, C.-C. Chou, and H.-Y. Wei. Pseudo random network coding
design for IEEE 802.16m enhanced multicast and broadcast service. In
VTC Spring, pages 1–5. IEEE, 2010.

[CEG+04] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar. Row-diagonal parity for double disk failure correction. In
Proceedings of the USENIX FAST ’04 Conference on File and Storage
Technologies, pages 1–14, March 2004.

[CHL11] V. R. Cadambe, C. Huang, and J. Li. Permutation code: Optimal
exact-repair of a single failed node in MDS code based distributed
storage systems. In ISIT, pages 1225–1229. IEEE, 2011.

[CHLM11] V.R. Cadambe, C. Huang, J. Li, and S. Mehrotra. Polynomial length
mds codes with optimal repair in distributed storage. Asilomar Con-
ference on Signals, Systems and Computers, pages 1850–1854, Nov
2011.

REFERENCES 51

[CJ08] V.R. Cadambe and S.A. Jafar. Interference alignment and degrees of
freedom of the k -user interference channel. IEEE Transactions on
Information Theory, 54(8):3425–3441, Aug 2008.

[CJM10] V. R. Cadambe, S. A. Jafar, and H. Maleki. Distributed data storage
with minimum storage regenerating codes - exact and functional repair
are asymptotically equally efficient. CoRR, abs/1004.4299, 2010.

[CQY04] Y. Chen, C. Qiao, and X. Yu. Optical burst switching (obs): A new
area in optical networking research. IEEE Network Magazine, 18:16–23,
2004.

[CR10] S. Changho and K. Ramchandran. Exact regeneration codes for
distributed storage repair using interference alignment. CoRR,
abs/1001.0107, 2010.

[CS13] J. Chen and K. W. Shum. Repairing multiple failures in the suh-
ramchandran regenerating codes. In ISIT, pages 1441–1445, 2013.

[CV08] Y. Chen and P.K. Verma. Secure optical burst switching: Framework
and research directions. IEEE Communications Magazine, 46(8):40–45,
2008.

[CWXQ03] Y. Chen, H. Wu, D. Xu, and C. Qiao. Performance analysis of optical
burst switched node with deflection routing. In ICC, pages 1355–1359.
IEEE, 2003.

[CY02] N. Cai and R.W. Yeung. Secure network coding. In IEEE International
Symposium on Information Theory, pages 323–328, 2002.

[dB96] M. A. de Boer. Almost mds codes. Des. Codes Cryptography, 9(2):143–
155, 1996.

[DGW+10] A.G. Dimakis, P.B. Godfrey, Y. Wu, M.J. Wainwright, and K. Ram-
chandran. Network coding for distributed storage systems. IEEE
Transactions on Information Theory, 56(9):4539–4551, Sept 2010.

[DJMS98] S.L. Danielsen, C. Joergensen, B. Mikkelsen, and K.E. Stubkjaer. Opti-
cal packet switched network layer without optical buffers. Photonics
Technology Letters, IEEE, 10(6):896–898, 1998.

[DL95] S.M. Dodunekov and I.N. Landjev. On near-mds codes. Journal of
Geometry, 54:30–43, 1995.

[DRWS11] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey
on network codes for distributed storage. Proceedings of the IEEE,
99(3):476–489, 2011.

[DSDY13] S. H. Dau, W. Song, Z. Dong, and C. Yuen. Balanced sparsest gen-
erator matrices for mds codes. In IEEE International Symposium on
Information Theory Proceedings (ISIT), pages 1889–1893, July 2013.

52 REFERENCES

[EM00] J.M.H. Elmirghani and H.T. Mouftah. All-optical wavelength conversion:
technologies and applications in dwdm networks. IEEE Communications
Magazine, 38(3):86–92, Mar 2000.

[FF] L. R. Ford and D. R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404.

[FLP+10] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage
systems. In 9th USENIX Symposium on Operating Systems Design and
Implementation, OSDI, pages 61–74. USENIX Association, 2010.

[FLS+14] S. Feizi, D.E. Lucani, C.W. Sorensen, A. Makhdoumi, and M. Medard.
Tunable sparse network coding for multicast networks. In International
Symposium on Network Coding (NetCod), pages 1–6, June 2014.

[FR12] M. H. Firooz and S. Roy. Data dissemination in wireless networks with
network coding. IEEE Communications Letters, Volume:17 , Issue: 5,
2013, December 08 2012.

[FV00] A. Fumagalli and L. Valcarenghi. Ip restoration vs. wdm protection: is
there an optimal choice? IEEE Network, 14(6):34–41, Nov 2000.

[GA02] S. Ghosh and V. Anantharam. Bufferless all-optical networking with
erasure codes. In IEEE Information Theory Workshop, pages 19–24,
Oct 2002.

[Gal63] R. G. Gallager. Low-Density Parity-Check Codes. The M.I.T. Press,
Cambridge, MA, USA, 1963.

[GFZ03] J. Garcia-Frias and W. Zhong. Approaching shannon performance by
iterative decoding of linear codes with low-density generator matrix.
IEEE Communications Letters, 7(6):266–268, June 2003.

[GGL03] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
ACM Symposium on Operating Systems Principles, SOSP ’03, pages
29–43. ACM, 2003.

[GHSY12] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the local-
ity of codeword symbols. IEEE Transactions on Information Theory,
58(11):6925–6934, 2012.

[GL03] D. W. Griffith and S. Lee. A 1+1 protection architecture for optical burst
switched networks. IEEE Journal on Selected Areas in Communications,
21(9):1384–1398, 2003.

[GLW10] K.M. Greenan, X. Li, and J.J. Wylie. Flat xor-based erasure codes
in storage systems: Constructions, efficient recovery, and tradeoffs. In
IEEE Symposium on Mass Storage Systems and Technologies (MSST),
pages 1–14, May 2010.

REFERENCES 53

[GR06] C. Gkantsidis and P. Rodriguez. Cooperative security for network
coding file distribution. In INFOCOM. IEEE, 2006.

[GRG+98] P. Gambini, M. Renaud, C. Guillemot, F. Callegati, I. Andonovic,
B. Bostica, D. Chiaroni, G. Corazza, S. L. Danielsen, P. Gravey, P. B.
Hansen, M. Henry, C. Janz, A. Kloch, R. Krähenbühl, C. Raffaelli,
M. Schilling, A. Talneau, and L. Zucchelli. Transparent optical packet
switching: network architecture and demonstrators in the KEOPS
project. IEEE Journal on Selected Areas in Communications, 16(7):1245–
1259, 1998.

[HA00] D.K. Hunter and I. Andonovic. Approaches to optical internet packet
switching. IEEE Communications Magazine, 38(9):116–122, Sep 2000.

[Haf05] J. L. Hafner. Weaver codes: Highly fault tolerant erasure codes for
storage systems. In FAST. USENIX, 2005.

[HCA98] D. K. Hunter, M. C. Chia, and I. Andonovic. Buffering in optical packet
switches. Journal of Lightwave Technology, 16(12):2081–2094, Dec 1998.

[HCL13] C. Huang, M. Chen, and J. Li. Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems. TOS,
9(1):3, 2013.

[HLH16] W. Halbawi, Z. Liu, and B. Hassibi. Balanced reed-solomon codes. In
IEEE International Symposium on Information Theory (ISIT), pages
935–939, July 2016.

[HMK+06] T. Ho, M. Médard, R. Kötter, D. R. Karger, M. Effros, J. Shi, and
B. Leong. A random linear network coding approach to multicast. IEEE
Transactions on Information Theory, 52(10):4413–4430, 2006.

[Hoc59] A. Hocquenghem. Codes correcteurs d’Erreurs. Chiffres (Paris), 2:147–
156, September 1959.

[HPFL08] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and T. Larsen. Cautious view
on network coding - from theory to practice. Journal of Communications
and Networks, 10(4):403–411, 2008.

[HPFM11] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and M. Médard. On code
parameters and coding vector representation for practical RLNC. In
ICC, pages 1–5, 2011.

[HSX+12] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure coding in windows azure storage. In USENIX
Annual Technical Conference, pages 15–26, 2012.

[htt] http://www.advaoptical.com/en/products/technology/dwdm.aspx.
ADVA Optical Networking.

54 REFERENCES

[HXW+10] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li. Cooperative recovery of
distributed storage systems from multiple losses with network coding.
IEEE Journal on Selected Areas in Communications, 28(2):268–276,
February 2010.

[IDC12] IDC. Idc’s digital universe study, sponsored by emc. White Paper,
December 2012.

[KAK08] A.E. Kamal and O. Al-Kofahi. Toward an optimal 1+n protection
strategy. In Allerton Conference on Communication, Control, and
Computing, pages 162–169, Sept 2008.

[Kam06] A. E. Kamal. 1+N protection in mesh networks using network coding
over p-cycles. In GLOBECOM, 2006.

[Kam07a] A. E. Kamal. 1+N protection against multiple link failures in mesh
networks. In ICC, pages 2224–2229, 2007.

[Kam07b] A. E. Kamal. GMPLS-based hybrid 1+N link protection over p-cycles:
Design and performance. In GLOBECOM, pages 2298–2303, 2007.

[Kam08] A. E. Kamal. A generalized strategy for 1+N protection. In ICC, pages
5155–5159, 2008.

[KBØS10] A. Kimsas, S. Bjørnstad, H. Øverby, and N. Stol. Improving performance
in the opmigua hybrid network employing the network layer packet
redundancy scheme. IET Communications, 4(3):334–342, 2010.

[KBP+12] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking
erasure codes for cloud file systems: minimizing I/O for recovery and
degraded reads. In FAST, pages 20–40. USENIX Association, 2012.

[KHH+13] J. Krigslund, J. Hansen, M. Hundeboll, D. E. Lucani, and F. H. P.
Fitzek. CORE: COPE with MORE in wireless meshed networks. In
VTC Spring, pages 1–6, 2013.

[KK08] R. Kötter and F. R. Kschischang. Coding for errors and erasures in
random network coding. IEEE Transactions on Information Theory,
54(8):3579–3591, 2008.

[KM03] R. Koetter and M. Médard. An algebraic approach to network coding.
IEEE/ACM Trans. Netw, 11(5):782–795, 2003.

[KRH+08] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft.
XORs in the air: Practical wireless network coding. IEEE/ACM Trans.
Netw, 16(3):497–510, 2008.

[KRLL11] A. E. Kamal, A. Ramamoorthy, L. Long, and S. Li. Overlay protection
against link failures using network coding. IEEE/ACM Trans. Netw,
19(4):1071–1084, 2011.

REFERENCES 55

[KSS11] A. M. Kermarrec, N. Le Scouarnec, and G. Straub. Repairing mul-
tiple failures with coordinated and adaptive regenerating codes. In
International Symposium on Network Coding, pages 1–6, July 2011.

[Law01] E. Lawler. Combinatorial Optimization : Networks and Matroids. Dover
Publications, 2001.

[LC83] S. Lin and D. J. Costello. Error Control Coding: Fundamentals and
Applications. Prentice-Hall, Englewood Cliffs, NJ, USA, 1983.

[LL14] J. Li and B. Li. Cooperative repair with minimum-storage regenerat-
ing codes for distributed storage. In IEEE Conference on Computer
Communications (INFOCOM), pages 316–324, April 2014.

[LLL15] R. Li, J. Lin, and P. P. C. Lee. Enabling concurrent failure recovery
for regenerating-coding-based storage systems: From theory to practice.
IEEE Transactions on Computers, 64(7):1898–1911, July 2015.

[LMS+97] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and
V. Stemann. Practical loss-resilient codes. In STOC, pages 150–159.
ACM, 1997.

[LMS09] D. E. Lucani, M. Médard, and M. Stojanovic. Random linear net-
work coding for time-division duplexing: Field size considerations. In
GLOBECOM, pages 1–6, 2009.

[LMSS01a] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman.
Efficient erasure correcting codes. IEEE Transactions on Information
Theory, 47(2):569–584, Feb 2001.

[LMSS01b] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman.
Improved low-density parity-check codes using irregular graphs. IEEE
Transactions on Information Theory, 47(2):585–598, Feb 2001.

[LN86] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their
Applications. Cambridge University Press, New York, NY, USA, 1986.

[LPHF14a] D. E. Lucani, M. V. Pedersen, J. Heide, and F. H. P. Fitzek. Coping
with the upcoming heterogeneity in 5G communications and storage
using fulcrum network codes. In ISWCS, pages 997–1001, 2014.

[LPHF14b] D. E. Lucani, M. V. Pedersen, J. Heide, and F. H. P. Fitzek. Ful-
crum network codes: A code for fluid allocation of complexity. CoRR,
abs/1404.6620, 2014.

[LR10] S. Li and A. Ramamoorthy. Improved compression of network coding
vectors using erasure decoding and list decoding. IEEE Communications
Letters, 14(8):749–751, 2010.

[Lub02] M. Luby. LT codes. In IEEE Symposium on Foundations of Computer
Science (FOCS), 2002.

56 REFERENCES

[LWLZ10] Z. Liu, C. Wu, B. Li, and S. Zhao. UUSee: Large-scale operational on-
demand streaming with random network coding. In IEEE INFOCOM,
pages 2070–2078, 2010.

[LY82] S. Lin and P.S. Yu. A hybrid arq scheme with parity retransmission for
error control of satellite channels. IEEE Transactions on Communica-
tions, 30(7):1701–1719, July 1982.

[LYC03] S. Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE
Transactions on Information Theory, 49, 2003.

[MDXA10] E. D. Manley, J.S. Deogun, L. Xu, and D. R. Alexander. All-optical
network coding. IEEE/OSA Journal of Optical Communications and
Networking, 2(4):175–191, April 2010.

[Men] K. Menger. Zur allgemeinen kurventheorie.

[MFHH02] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A
tiny AGgregation service for ad-hoc sensor networks. In OSDI, pages
1–16, 2002.

[MG08] R.C. Menendez and J.W. Gannet. Efficient, fault-tolerant all-optical
multicast networks via network coding. In Optical Fiber communica-
tion/National Fiber Optic Engineers Conference, pages 1–3, Feb 2008.

[MN95] D. J. C. MacKay and R. M. Neal. Good codes based on very sparse
matrices. Lecture Notes in Computer Science, 1025, 1995.

[MN97] D. J. C. MacKay and R. M. Neal. Near shannon limit performance of
low density parity check codes. Electronics Letters, 33(6):457–458, Mar
1997.

[MNS14] T. Miyamae, T. Nakao, and K. Shiozawa. Erasure code with shingled
local parity groups for efficient recovery from multiple disk failures.
In 10th Workshop on Hot Topics in System Dependability (HotDep).
USENIX Association, 2014.

[MS78] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting
Codes. North-holland Publishing Company, 2nd edition, 1978.

[MS12] M. Médard and A. Sprintson. Network coding, Fundamentals and
Applications. 2012.

[NBG08] M. Nord, S. Bjørnstad, and C. M. Gauger. OPS or OBS in the core
network?- A comparison of optical packet- and optical burst switching,
2008.

[NNC10] K. Nguyen, T. P. Nguyen, and S.-C. S. Cheung. Video streaming with
network coding. Signal Processing Systems, 59(3):319–333, 2010.

REFERENCES 57

[NZ02] T. Nguyen and A. Zakhor. Distributed video streaming with forward
error correction, 2002.

[NZ03] T. Nguyen and A. Zakhor. Path diversity with forward error correction
(pdf) system for packet switched networks. In INFOCOM, volume 1,
pages 663–672 vol.1, March 2003.

[ØBBT12] H. Øverby, G. Biczók, P. Babarczi, and J. Tapolcai. Cost comparison of
1+1 path protection schemes: A case for coding. In IEEE International
Conference on Communications (ICC), 2012.

[OD11] F. E. Oggier and A. Datta. Self-repairing homomorphic codes for
distributed storage systems. In INFOCOM, pages 1215–1223, 2011.

[OLV+12] P. F. Oliveira, L. Lima, T. T. V. Vinhoza, J. Barros, and M. Médard.
Coding for trusted storage in untrusted networks. IEEE Transactions
on Information Forensics and Security, 7(6):1890–1899, 2012.

[OSHT01] M.J. O’Mahony, D. Simeonidou, D.K. Hunter, and A. Tzanakaki. The
application of optical packet switching in future communication net-
works. IEEE Communications Magazine, 39(3):128–135, Mar 2001.

[Øve04] H. Øverby. Network layer packet redundancy in optical packet switched
networks. Opt. Express, 12(20):4881–4895, Oct 2004.

[Øve08] H. Øverby. Combined study on survivability and performance in optical
packet switched networks. J. Opt. Netw., 7(4):294–309, Apr 2008.

[PB61] W. W. Peterson and D. T. Brown. Cyclic codes for error detection.
Proceedings of the IRE, 49(1):228–235, Jan 1961.

[PDC13] D.S. Papailiopoulos, A.G. Dimakis, and V.R. Cadambe. Repair opti-
mal erasure codes through hadamard designs. IEEE Transactions on
Information Theory, 59(5):3021–3037, May 2013.

[PFS05] P. Pakzad, C. Fragouli, and A. Shokrollahi. Coding schemes for line
networks. In Proc. ISIT, 2005.

[PGK88] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In ACM SIGMOD International
Conference on Management of Data, pages 109–116, May 26–28 1988.

[PJBM+16] L. Pamies-Juarez, F. Blagojević, R. Mateescu, C. Gyuot, E. E. Gad,
and Z. Bandić. Opening the chrysalis: On the real repair performance
of msr codes. In USENIX Conference on File and Storage Technologies
(FAST), pages 81–94, February 2016.

[Pla05] J. S. Plank. Erasure codes for storage applications. Tutorial Slides,
presented at FAST-2005: 4th Usenix Conference on File and Storage
Technologies, 2005.

58 REFERENCES

[PLD+12] D.S. Papailiopoulos, J. Luo, A.G. Dimakis, C. Huang, and J. Li. Simple
regenerating codes: Network coding for cloud storage. In INFOCOM,
pages 2801–2805, March 2012.

[QY99] C. Qiao and M. Yoo. Optical burst switching (obs) - a new paradigm
for an optical internet. Journal of High Speed Networks, 8:69–84, 1999.

[Rii04] S. Riis. Linear versus nonlinear boolean functions in network flow. CISS,
2004.

[RNW+15] K. V. Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B. Shah, and
Kannan Ramchandran. Having your cake and eating it too: Jointly
optimal erasure codes for I/O, storage, and network-bandwidth. In
Jiri Schindler and Erez Zadok, editors, FAST, pages 81–94. USENIX
Association, 2015.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, June 1960.

[RS02] R. Ramaswami and K. N. Sivarajan. Optical Networks: A Practical
Perspective. Second edition, 2002.

[RSG+14] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A "hitchhiker’s" guide to fast and efficient data
reconstruction in erasure-coded data centers. In SIGCOMM, pages
331–342, 2014.

[RSK10] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Network coding. Resonance,
15(7):604–621, 2010.

[RSK11] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-regenerating
codes for distributed storage at the msr and mbr points via a product-
matrix construction. IEEE Transactions on Information Theory,
57(8):5227–5239, Aug 2011.

[RSR13] K. V. Rashmi, N. B. Shah, and K. Ramchandran. A piggybacking
design framework for read-and download-efficient distributed storage
codes. CoRR, abs/1302.5872, 2013.

[RSU01] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke. Design of
capacity-approaching irregular low-density parity-check codes. IEEE
Transactions on Information Theory, 47(2):619–637, Feb 2001.

[SAK15] B. Sasidharan, G. K. Agarwal, and P. V. Kumar. A high-rate MSR
code with polynomial sub-packetization level. CoRR, abs/1501.06662,
2015.

[SAP+13] M. Sathiamoorthy, M. Asteris, D. S. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing elephants: Novel erasure
codes for big data. PVLDB, 6(5):325–336, 2013.

REFERENCES 59

[Sho06] A. Shokrollahi. Raptor codes. IEEE Transactions on Information
Theory, 52(6):2551–2567, 2006.

[Sil12] D. Silva. Minimum-overhead network coding in the short packet regime.
In International Symposium on Network Coding (NetCod), pages 173–
178, June 2012.

[Sin64] R. Singleton. Maximum distance q -nary codes. IEEE Transactions on
Information Theory, 10(2):116–118, Apr 1964.

[SKFA09] M. J. Siavoshani, L. Keller, C. Fragouli, and K. J. Argyraki. Compressed
network coding vectors. In ISIT, pages 109–113, 2009.

[SKRC10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In IEEE Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–10, 2010.

[SMS12] N. Sreenath, K. Muthuraj, and P. Sivasubramanian. Secure optical
internet: Attack detection and prevention mechanism. In International
Conference on Computing, Electronics and Electrical Technologies (IC-
CEET), pages 1009–1012, March 2012.

[SRM02] L. H. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee. Fault manage-
ment in IP-over-WDM networks: WDM protection versus IP restoration.
IEEE Journal on Selected Areas in Communications, 20(1):21–33, 2002.

[TCBOF11] O. Trullols-Cruces, J. M. Barcelo-Ordinas, and M. Fiore. Exact decoding
probability under random linear network coding. IEEE Communications
Letters, 15(1):67–69, January 2011.

[TF12] N. Thomos and P. Frossard. Toward one symbol network coding vectors.
IEEE Communications Letters, 16(11):1860–1863, 2012.

[TPD13] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis. Optimal locally re-
pairable codes and connections to matroid theory. CoRR, abs/1301.7693,
2013.

[Tur99] J. S. Turner. Terabit burst switching. J. High Speed Networks, 8(1):3–16,
1999.

[TWB13] I. Tamo, Z. Wang, and J. Bruck. Zigzag codes: MDS array codes
with optimal rebuilding. IEEE Transactions on Information Theory,
59(3):1597–1616, 2013.

[TWB14] I. Tamo, Zhiying Wang, and J. Bruck. Access versus bandwidth in codes
for storage. IEEE Transactions on Information Theory, 60(4):2028–2037,
April 2014.

[VB09] F. Vieira and J. Barros. Network coding multicast in satellite networks.
In Next Generation Internet Networks, pages 1–6, July 2009.

60 REFERENCES

[VCR00] S. Verma, H. Chaskar, and R. Ravikanth. Optical burst switching: a
viable solution for terabit ip backbone. IEEE Network, 14(6):48–53,
Nov 2000.

[VJS02] V.M. Vokkarane, J.P. Jue, and S. Sitaraman. Burst segmentation: an
approach for reducing packet loss in optical burst switched networks. In
IEEE International Conference on Communications (ICC), volume 5,
pages 2673–2677, May 2002.

[VPFH10] P. Vingelmann, M. V. Pedersen, F. H. P. Fitzek, and J. Heide. Multime-
dia distribution using network coding on the iphone platform. In ACM
Multimedia Workshop on Mobile Cloud Media Computing, MCMC ’10,
pages 3–6, 2010.

[VZ06] V.M. Vokkarane and Q. Zhang. Forward redundancy: a loss recovery
mechanism for optical burst-switched networks. In International Con-
ference on Wireless and Optical Communications Networks, pages 5–10,
2006.

[WD09] Y. Wu and A. G. Dimakis. Reducing repair traffic for erasure coding-
based storage via interference alignment. In ISIT, pages 2276–2280,
2009.

[WK02] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication:
A quantitative comparison. In International Workshop on Peer-to-Peer
Systems (IPTPS), LNCS, volume 1, 2002.

[WTB11] Z. Wang, I. Tamo, and J. Bruck. On codes for optimal rebuilding access.
In Allerton Conference on Communication, Control, and Computing
(Allerton), pages 1374–1381, Sept 2011.

[WWX10] X. Wang, J. Wang, and Y. Xu. Data dissemination in wireless sensor
networks with network coding. EURASIP J. Wireless Comm. and
Networking, 2010.

[WXHO10] X. Wang, Y. Xu, Y. Hu, and K. Ou. Mfr: Multi-loss flexible recovery
in distributed storage systems. In IEEE International Conference on
Communications (ICC), pages 1–5, May 2010.

[YB16a] M. Ye and A. Barg. Explicit constructions of high-rate MDS array
codes with optimal repair bandwidth. CoRR, abs/1604.00454, 2016.

[YB16b] M. Ye and A. Barg. Explicit constructions of optimal-access MDS codes
with nearly optimal sub-packetization. CoRR, abs/1605.08630, 2016.

[YKSC01] S.-W. Yuk, M.-G. Kang, B.-C. Shin, and D.-H. Cho. An adaptive redun-
dancy control method for erasure-code-based real-time data transmission
over the internet. IEEE Transactions on Multimedia, 3(3):366–374, Sep
2001.

REFERENCES 61

[YSH+98] Y. Yamada, K. Sasayama, K. Habara, A. Misawa, M. Tsukada, T. Mat-
sunaga, and K. Yukimatsu. Optical output buffered ATM switch proto-
type based on FRONTIERNET architecture. IEEE Journal on Selected
Areas in Communications, 16(7):1298–1308, 1998.

[ZS00] D. Zhou and S.S. Subramaniam. Survivability in optical networks. IEEE
Network, 14(6):16–23, Nov 2000.

Part II

Included Papers

63

Balanced XOR-ed Coding
Katina Kralevska, Danilo Gligoroski, and Harald Øverby
Lecture Notes in Computer Science, vol. 8115, pp. 161-172, 2013

65

Paper 1

Balanced XOR-ed Coding

Katina Kralevska, Danilo Gligoroski, and Harald Øverby

Department of Telematics; Faculty of Information Technology, Mathematics and Electrical

Engineering; Norwegian University of Science and Technology, Trondheim, Norway,

Email: {katinak, danilog, haraldov}@item.ntnu.no

Abstract

This paper presents a construction of codes over GF (2) which reach the max-flow for single source multicast

acyclic networks with delay. The coding is always a bitwise XOR of packets with equal lengths, and is based on

highly symmetrical and balanced designs. For certain setups and parameters, our approach offers additional plausible

security properties: an adversary needs to eavesdrop at least max-flow links in order to decode at least one original

packet.

Keywords – XOR coding, GF (2), Latin squares, Latin rectangles

I. INTRODUCTION

Encoding and decoding over GF (2) is more energy efficient than encoding and decoding in any other
larger field. Recent studies concerning several new techniques in network coding [1] (Linear Network
Coding (LNC) [10], [12] and Random Linear Network Coding (RLNC) [6]) confirmed that encoding and
decoding over GF (2) are up to two orders of magnitude less energy demanding and up to one order of
magnitude faster than the encoding/decoding operations in larger fields [14], [18], [20].

The high computational complexity of packet encoding and decoding over large finite fields and its high
energy cost which makes it unsuitable for practical implementation are the main motivation to seek for
coding techniques only with XOR operations. The first theoretical work was done by Riis in [16] who
showed that every solvable multicast network has a linear solution over GF (2). Afterwards, XOR coding
in wireless networks was presented in [9], where the main rule is that a node can XOR n packets together
only if the next hop has all n− 1 packets. A more general network coding problem which is called index
coding is considered in [15], [17]. In [15] the authors address the coding problem by proposing coding
over GF (2). The encoding scheme is based on bitwise XORing by adding redundant bits, and the decoding
scheme is based on a simple but bit after bit sequential back substitution method.

The main contribution of our work is a construction of codes over GF (2) by using combinatorial designs
(Latin squares and Latin rectangles) [4]. Its lower computation and energy cost makes it suitable for practical
implementation on devices with limited processing and energy capacity like mobile phones and wireless
sensors. We will illustrate the construction of codes by the following simple example.

Example 1: We use the following strategy (Fig. 1): the source s performs bitwise XOR of packets
with equal length based on the incidence matrix of a Latin rectangle L. Each column of L represents a
combination of source packets xi, i = 1, . . . , 4, in a coded packet ci, i = 1, . . . , 4. In the first phase, the
packets c1 and c2 are sent, and in the second phase, the packets c3 and c4 are sent. The intermediate nodes
u1 and u2 forward the coded packets to the sink nodes t1 and t2 which decode the packets by using the
inverse matrix of the incidence matrix of L. The sink nodes need only to know the combination of source
packets in each received packet. Note that the max-flow in the network is achieved.
Routinely as in other coding approaches, this information is included in the header of each coded packet.
Since in this paper we use diversity coding performed just by the source nodes, there is no need for
updating the coefficients in the header at each intermediate node. The length of the prepended header
vector is negligible compared to the length of the packet.

The construction of our codes was not motivated by security issues, therefore the security is not the
main goal in this paper. However, it turns out that for certain setups and parameters, our approach offers

s

u1 u2

t1 t2

c3 = x1 + x2 + x3

c1 = x1 + x2 + x4

c4 = x1 + x3 + x4

c2 = x2 + x3 + x4

L =

[
2 3 1 4
1 4 2 3
4 2 3 1

]

Figure 1: An example of balanced XOR coding where the source sends combinations of source packets
(combined as the column of the Latin rectangle). The intermediate nodes just forward the data to the sink

nodes.

additional plausible security properties. The plausible security properties that accompany our approach are
not based on hard mathematical problems in modern cryptology (for example factoring of large integers or
discrete logarithm problems or on the Shamir’s secret sharing algorithm). We show that if an eavesdropper
wants to reconstruct at least one original packet, then the number of eavesdropped links should be equal
to the max-flow of the network. Bhattad and al. [2] make similar observations when network coding is
implemented so that a weekly secure network coding is achieved.

The rest of the paper is organized as follows: Section II presents the notation and the mathematical
background that are used in the following sections. The construction of codes is presented in Section III.
Section IV illustrates the security features of our approach. Sections V concludes the paper.

II. NOTATION AND MATHEMATICAL BACKGROUND

We define a communication network as a tuple N = (V,E, S, T) that consists of:

• a finite directed acyclic multigraph G = (V,E) where V is the set of vertices and E is the set of
edges,

• a set S ⊂ V of sources,
• a set T ⊂ V of sink nodes.

Assume that vertex s ∈ S sends n source packets to vertex t ∈ T over disjoint paths. A minimal cut
separating s and t is a cut of the smallest cardinality denoted as mincut(s, t). The packets are sent in several
time slots, i.e., phases denoted as p. The maximum number of packets that can be sent in a phase from s to
t is denoted as maxflow(t). The Max-Flow Min-Cut Theorem [11] indicates that mincut(s, t) = maxflow(t).
The multicast capacity, i.e., the maximum rate at which s can transfer information to the sink nodes, cannot
exceed the capacity of any cut separating s from the sink nodes. A network is solvable when the sink nodes
are able to deduce the original packets with decoding operations. If the network is solvable with linear
operations we say that the network is linearly solvable.

A. XOR-ed coding
First we recall that in [16], Riis showed that every solvable multicast network has a linear solution over

GF (2) in some vector dimension. The essence of his proof relies on the fact that any two finite fields
with the same cardinality are isomorphic. Thus, instead of working in a finite field GF (2n) for which the
conditions of the linear-code multicast (LCM) theorem [12, Th. 5.1] are met, he showed that it is possible
to work in the isomorphic vector space GF (2)n that is an extension field over the prime field GF (2). We
formalize the work in the vector space GF (2)n with the following:

Definition 1: A XOR-ed coding is a coding that is realized exclusively by bitwise XOR operations
between packets with equal length. Hence, it is a parallel bitwise linear transformation of n source bits
x = (x1, . . . , xn) by a n× n nonsingular matrix K, i.e., y = K · x.

In [16] it was also shown that there are simple network topologies where encoding in GF (2) cannot
reach the network capacity with the original bandwidth or by sending data in just one phase. However, it
was shown that the network capacity by XOR-ed coding can be achieved either by increasing the bandwidth
or the number of phases so that they match the dimension of the extended vector space GF (2)n. In this
paper we take the approach to send data in several phases p instead of increasing the bandwidth.

Theorem 1: For any linearly solvable network topology with maxflow(t1) > 1, the sufficient condition
for a single sink t1 to reach its capacity in each of p phases by XOR-ed coding is to receive n linearly
independent packets x = (x1, . . . , xn), where n = p×maxflow(t1).

Proof: Assume that the network topology is linearly solvable. That means there exists a vector space
GF (2)n where we can encode every n source bits with a bijective function K, i.e., y = K · x. Having
in mind that the source s succeeds to send n encoded packets to t1 in p phases, and the max-flow in the
network is maxflow(t1) > 1, we have that n = p×maxflow(t1) and the sink t1 receives n packets after p
phases via maxflow(t1) disjoint paths. In order to have a successful recovery of the initial n packets, the
received packets should be linearly independent.
Based on Theorem 1 we can prove the following:

Theorem 2: For any linearly solvable network topology and for any two sinks T = {t1, t2} that have
maxflow(t) = maxflow(t1) = maxflow(t2), there always exists a XOR-ed coding for n = p × maxflow(t)
packets that achieves the multicast capacity in each of p phases.

Proof: For the sink t1 we apply Theorem 1 and find one XOR-ed coding that achieves the capacity in
each of p phases. Let us denote by U1 = {u1,i| there is an
edge (u1,i, t1) ∈ E} the nodes that are directly connected and send packets to the sink node t1. We have that
|U1| = maxflow(t), and the set of n packets is partitioned in maxflow(t) disjoint subsets Y1,1, . . . , Y1,maxflow(t)

each of them having p packets. The subset Y1,i comes from the node ui, i = 1, . . . ,maxflow(t).
The set U2 = {u2,i|there is an edge(u2,i, t2) ∈ E} is a set of nodes that are directly connected and

send packets to the sink node t2. We denote the intersection between the sets of nodes U1 and U2 as
U1,2 = U1

⋂
U2. The following three situations are considered:

1) There are no mutual nodes that send packets to both sinks t1 and t2, i.e., U1,2 = ∅. In that case find
one partition of the set of n packets in maxflow(t) disjoint subsets Γ1 = {Y2,1 . . . , Y2,maxflow(t)} each
of them having p packets. The sets of packets Y2,j are delivered to the sink t2 via the node u2,j ,
j = 1, . . . ,maxflow(t). The multicast capacity for the sink t2 is achieved in each of p phases.

2) There are nodes that send packets to both sinks t1 and t2, i.e., U1,2 = {u(1,2)ν1
, . . . , u(1,2)νk

}. Denote
the nodes that are in U2\U1 = {u2ν1

, . . .
. . . , u2νmaxflow(t)−k

}. In that case, the sink t2 receives from the nodes in U1,2 the same packets that

are delivered to the sink t1. The number of the remaining packets that have to be delivered to
t2 is exactly p × (maxflow(t) − k). Find one partition of maxflow(t) − k disjoint subsets Γ2 =
{Y2,1 . . . , Y2,maxflow(t)−k} each of them having p packets. The sets of packets Y2,j are delivered to
the sink t2 via the node u2,νj , j = 1, . . . ,maxflow(t) − k. The multicast capacity for the sink t2 is
achieved in each of p phases.

3) All the nodes that send packets to the sink t1, send packets to the sink t2 as well, i.e., U1,2 =
U1

⋂
U2 = U1. In that case, the sink t2 receives from the nodes in U1,2 the same packets that are

delivered to the sink t1. The multicast capacity for the sink t2 is achieved in each of p phases.

Note that the proof of Theorem 2 is similar to the work by Jaggi et al. [8] where they discuss a construction
of general codes using simple algorithms.

As a consequence of Theorems 1 and 2 we can post the following:
Theorem 3: For any linearly solvable network topology and for any set of N sinks T = {t1, . . . , tN}

that have maxflow(t) = maxflow(t1) = . . . = maxflow(tN), there always exists a XOR-ed coding for

n = p×maxflow(t) packets that achieves the multicast capacity in each of p phases.
Proof: (Sketch) First, we recall the construction of generic linear codes presented in the LCM theorem

in [12, Th. 5.1]. Second, we use the transformation to equivalent codes over GF (2)n as it was shown in
[16]. Then, the proof is a straightforward application of the mathematical induction by the number of sinks
N . Let us suppose that the claim of the theorem is correct for N − 1 sinks. By adding a new N -th sink
we consider again three possible situations as in Theorem 2.

III. CONSTRUCTION OF XOR-ED CODING

In this section we describe the construction of codes over GF (2). Instead of working with completely
random binary matrices, in the remaining part of this paper we work with nonsingular binary matrices
that have some specific structure related to randomly generated Latin square or Latin rectangle. We do not
reduce the space of possible random linear network encoding schemes, since the number of Latin squares
and Latin rectangles of order n increases proportionally with factorial of n. Therefore, in our approach we
have virtually an endless repository of encoding schemes that have the benefits from both worlds: they are
randomly generated, but they have a certain structure and offer plausible security properties.

In order to introduce our approach, we briefly use several definitions that the reader can find in [19] and
[3].

Definition 2: A Latin square of order n with entries from an n-set X is an n×n array L in which every
cell contains an element of X such that every row of L is a permutation of X and every column of L is a
permutation of X.

Definition 3: A k×n Latin rectangle is a k×n array (where k ≤ n) in which each cell contains a single
symbol from an n-set X, such that each symbol occurs exactly once in each row and at most once in each
column.

s

u1 u2 u3 u4

t1 t2 t3 t4 t5 t6

C2

C4 C3

C1

C1

C3

C4

C2

Figure 2: A 4-dimensional binary linear multicast in a single source multicast network with delay

For generating a Latin square, one can always start with a permutation of n elements that is a trivial
1×n Latin rectangle and can use the old Hall’s marriage theorem [5] to construct new rows until the whole
Latin square is completed. However, this approach does not guarantee that the generated Latin squares are
chosen uniformly at random. In order to generate Latin squares of order n that are chosen uniformly at
random we use the algorithm of Jacobsen and Matthews [7]. Further, in our approach we sometimes split
the Latin square into two Latin rectangles (upper and lower), and work with the algebraic objects (matrices
or block designs) that are related to either the upper or the lower Latin rectangle.

As a convention, throughout this paper, the number of packets n that are sent from the source is equal
to the number of columns in the Latin square or Latin rectangle.

Example 2: As shown in Fig. 2, we assume that the source wants to send four packets x1, . . . , x4 to
the sink nodes, and that each sink node has maxflow(tk) = 2, (k = 1, . . . , 6). The sink nodes receive data
from different pair of intermediate nodes, ui, (i = 1, . . . , 4). Our aim is all six sink nodes to be able to
reconstruct the source packets that are exclusively coded in GF (2).

Let us take the following Latin square and split it into two Latin rectangles:

L =

⎡
⎢⎣
2 4 1 3
1 3 2 4
3 2 4 1
4 1 3 2

⎤
⎥⎦ .

Each column from the 3× 4 upper Latin rectangle represents a combination of source packets in a coded
packet ci, i = 1, . . . , 4. Using the incidence matrix M of the Latin rectangle the source computes the coded
packets.

Definition 4: Let (X,A) be a design where X = {x1, . . . , xv} and A = {A1, . . . , Ab}. The incidence

matrix of (X,A) is the v × b 0-1 matrix M = (mi,j) defined by the rule mi,j =

{
1, if xi ∈ Aj,

0, if xi /∈ Aj.

Proposition 1: The incidence matrix M = (mi,j) of any Latin rectangle with dimensions k×n is balanced
matrix with k ones in each row and each column.

Proof: From the definition of the incidence matrix it follows that the number of ones in each row is
equal to the number of elements k in each column of the Latin rectangle. On the other hand, since each
row of the Latin rectangle is a permutation of n elements, and there are no elements that occur twice in
each column, the number of ones in each column can be neither less nor larger than k.

Note 1: The incidence matrix M of a k × n Latin rectangle is always balanced. However, the inverse
matrix of the incidence matrix M−1 is not always balanced.

Proposition 2: The necessary condition an incidence matrix M = (mi,j) of a k × n Latin rectangle to
be nonsingular in GF (2) is k to be odd, i.e., k = 2l + 1.

Proof: Assume that k is even, i.e., k = 2l. Recall that a matrix M is nonsingular in GF (2) if and
only if its determinant is 1 (or it is singular if and only if its determinant is 0). Recall further the Leibniz
formula for the determinant of an n×n matrix M : det(M) =

∑
σ∈Sn

sgn(σ)
∏n

i=1mi,σi
, where the sum is

computed over all elements of the symmetric group of n elements Sn, i.e., over all permutations σ ∈ Sn,
and sgn(σ) is the signature (or the parity of the permutation) whose value is +1 or −1. The elements
mi,σi

are the elements mi,j of the matrix M where the value for the index j = σi is determined as the i–th
element of the permutation σ.

If k = 2l is even, from Proposition 1 and from the fact that operations are performed in GF (2), it follows
that every summand in the Leibniz formula gives an even number of nonzero products, thus the final sum
must be even, i.e., the determinant in GF (2) is 0.

The corresponding 4× 4 incidence matrix of the Latin rectangle in Example 2 is nonsingular in GF (2)
(Proposition 2). M is represented as

M =

⎡
⎢⎣
1 1 1 0
0 1 1 1
1 1 0 1
1 0 1 1

⎤
⎥⎦ .

A direct consequence from Theorem 1 is the following:
Corollary 1: A sink node t ∈ T with maxflow(t) can receive n source packets, encoded with the incidence

matrix of a k×n Latin rectangle in GF (2), in p = � n
maxflow(t)

� phases. In each phase the sink node reaches

its maxflow(t).
Following Corollary 1 the number of phases in which packets are sent depends from the total number

of packets and maxflow(tk).
Using M the source computes the vector of coded packets as

c = Mx = [c1, c2, c3, c4]
�

TABLE I: Description of receiving coded packets in each phase at the sink nodes

t1 t2 t3 t4 t5 t6
First phase C4, C1 C4, C3 C4, C3 C1, C2 C1, C2 C3, C2

Second phase C2, C3 C2, C1 C2, C1 C3, C4 C3, C4 C1, C4

where x = [x1, x2, x3, x4]
� is a vector of the source packets. The coded packets are XOR-ed combinations

of the source packets, i.e.,

c1 = x1 ⊕ x2 ⊕ x3,

c2 = x2 ⊕ x3 ⊕ x4,

c3 = x1 ⊕ x2 ⊕ x4,

c4 = x1 ⊕ x3 ⊕ x4.

The source further prepends the information from the incidence matrix to each of the coded packets. The
vector of packets that are sent becomes as follows: C = {(1, 2, 3, c1), (2, 3, 4, c2), (1, 2, 4, c3), (1, 3, 4, c4)}
= {C1, C2, C3, C4}. The sink nodes receive in each phase a pair of different packets as shown in Table I.
Their buffer should be large enough to store the received packets Ci, i = 1, . . . , 4. The decoding at the
sink nodes is performed by M−1. Each sink node computes M−1 from the prepended indexes. The original
packets xi, i = 1, . . . , 4, are reconstructed as x = M−1c. Note that although our approach is similar to [16],
we use a systematic selection of the encoding functions and we do not send plain packets on the disjoint
paths.

IV. ADDITIONAL PLAUSIBLE SECURITY PROPERTIES OF THE BALANCED XOR-ED CODING

The work with incidence matrices related to randomly generated Latin rectangles is actually a work with
balanced block designs. However, as we noted in Note 1, it is not necessary both the incidence matrix and
its inverse matrix to be completely balanced. If we are interested in the complexity of decoding and the
security issues when an adversary can successfully decode some sniffed packets, then the easiest way to
address these issues is to give equal level of security to all encoded packets. In our approach this can be
easily achieved by switching the roles of the incidence matrix and its inverse matrix: the encoding of the
source packets is done with the inverse matrix of the incidence matrix and decoding of the coded packets is
done with the incidence matrix. By applying this approach, decoding of any of the source packets requires
an equal number of coded packets.

Corollary 2: For each value of maxflow(t) and a number of source packets n which is multiple of
maxflow(t), there exists a Latin rectangle with n− 1 or n− 2 rows and its incidence matrix can be used
for decoding.

Due to Proposition 2, when n is even the necessary requirement for a nonsingular incidence matrix is the
Latin rectangle to have n− 1 rows. When n is odd the necessary requirement for a nonsingular incidence
matrix is the Latin rectangle to have n− 2 rows.

Theorem 4: When decoding is performed with the incidence matrix from Corollary 2, any eavesdropper
needs to listen at least maxflow(t) links in order to decode at least one source packet.

Proof: Assume that an adversary eavesdrops maxflow(t) − 1 links. Since the incidence matrix used
for decoding is related to a Latin rectangle with n− 1 or n− 2 rows, eavesdropping “just” maxflow(t)− 1
links is not sufficient for the adversary to receive at least one subset of n− 1 or n− 2 packets from which
he/she can decode at least one original packet.

Another remark that can be given about our approach is that the number of XOR operations between
different packets (both in the source and in the sink nodes) is relatively high. We can address that remark by
using Latin rectangles with smaller number of rows as a trade-off between the number of encoding/decoding
operations and the ability of an adversary to decode a source packet. Namely, the encoding and decoding

efforts at the source and sink node are the highest when encoding and decoding requires n − 1 or n − 2
packets. In order to decrease the number of operations at the nodes, the Latin rectangle should have k ≤ n−2
rows. However, we are interested to reduce the number k without reducing the number of links that have
to be listened by an eavesdropper in order to decode at least one original packet. The following theorem
gives the necessary and sufficient condition for that to happen:

Theorem 5: Let the coding be done by M−1 obtained from a Latin rectangle Lk×n of size k× n, where
k ≤ n − 2. Further, assume that the transfer is done by sending n packets from s to t in p = � n

maxflow(t)
�

phases on maxflow(t) disjoint paths and let the sets of indexes of the packets sent via i-th disjoint path are
denoted by Si, i = 1, . . . ,maxflow(t). A necessary and sufficient condition for an eavesdropper to need to
listen at least maxflow(t) links in order to decode at least one original packet is:

∀j ∈ {1, . . . , n}, ∀i ∈ {1, . . . ,maxflow(t)} : Lk,j ∩ Si
= ∅, (1)

where Lk,j, j ∈ {1, . . . , n} is the set of elements in the j-th column of the Latin rectangle Lk×n.
Proof: To show that the condition (1) is necessary assume that an eavesdropper needs maxflow(t)− 1

links in order to decode one original packet xl, and let us denote by Sm the set of indexes of the packets
sent via the disjoint path that was not listened by the eavesdropper. This means that for the l-th column
Lk,l of the Latin rectangle Lk×n: Lk,l ∩ Sm = ∅ which violates the condition (1).

To show that the condition (1) is sufficient, let us denote by Si,j = Lk,j ∩ Si, j ∈ {1, . . . , n}, i ∈
{1, . . . ,maxflow(t)}. It is sufficient to notice that Si,j are disjunctive partitions for every set Lk,j , i.e.,

∀j ∈ {1, . . . , n} :
maxflow(t)⋃

i=1

Si,j = Lk,j

and
∀j1, j2 ∈ {1, . . . , n} : Si,j1 ∩ Si,j2 = ∅.

Since |Lk,j| = k, and the encoding of original n packets is done by M−1, it follows that an eavesdropper
can decode any original packet only by listening at least maxflow(t) links.

Example 3: We present an example that illustrates the security in our approach. The goal is to achieve
secrecy1 so that a passive adversary is able to reconstruct n source packets only when at least maxflow(t)
links are eavesdropped. By sending XOR-ed packets on disjoint paths (exploiting the path diversity), an
adversary is unable to decode the message although several paths are eavesdropped. Let us consider the
network shown in Fig.3, where a source s communicates with two sinks t1 and t2 with the help of
intermediate nodes ui, i = 1, 2, 3, and sends twelve packets to t1 and t2. Packets are sent in four phases
since maxflow(t) = 3. Let us use the following 5× 12 Latin rectangle:

L5×12 =

⎡
⎢⎢⎣

4 2 11 8 12 1 9 5 10 7 6 3
2 8 12 3 6 10 4 11 5 1 9 7
3 4 2 9 11 12 5 6 7 8 10 1
9 10 1 6 3 7 2 8 4 11 12 5
6 5 7 10 1 11 8 3 12 4 2 9

⎤
⎥⎥⎦ .

The colors of indexes in L5×12 correspond to the colors of the packets as they are sent in Fig 3. If the
sink nodes reconstruct the source packets with M−1, then not all packets have the same level of decoding
complexity. That is demonstrated with relations (2) and (3). For instance, to decode x4, x7 and x8 nine
coded packets are needed, while to decode x5 and x11 just three packets are needed. The goal is to avoid
this non-balanced complexity in the decoding. Therefore, as in Theorem 5 the encoding is done by M−1

and the decoding by M . When s computes the vector of coded packets as c = M−1x, then the coded
packets ci, i = 1, . . . , 12 are XOR-ed combinations of different number of source packets. Consequently,
decoding of packets is done with a balanced matrix, i.e., x = Mc.

1We use here the term secrecy as it is used in [13, Ch.7 pp. 185]

s

u1 u2 u3

t1 t2

C3

C10

C7

C2

C8

C4

C11

C9

C1

C6

C5

C12

Figure 3: Routing of 12 packets for secure coding when decoding is performed with 5 coded packets

Assume that the routing is as follows: on the first path the source sends (C3, C10, C7, C2), on the second
path (C8, C4, C11, C9) and (C1, C6, C5, C12) on the third path as it is shown in Fig.3. We use three different
colors for the packets sent to three disjoint paths in order to demonstrate the essence of the proof of
Theorem 5. Note that all colors are present in every column of the Latin rectangle L5×12. This corresponds
to the condition (1) in Theorem 5. In order to reconstruct at least one source packet, an adversary must
eavesdrop at least 3 links.

c1 =x2 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x9,

c2 =x2 ⊕ x4 ⊕ x5 ⊕ x8 ⊕ x10,

c3 =x1 ⊕ x2 ⊕ x7 ⊕ x11 ⊕ x12,

c4 =x3 ⊕ x6 ⊕ x8 ⊕ x9 ⊕ x10,

c5 =x1 ⊕ x3 ⊕ x6 ⊕ x11 ⊕ x12,

c6 =x1 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x12,

c7 =x2 ⊕ x4 ⊕ x5 ⊕ x8 ⊕ x9,

c8 =x3 ⊕ x5 ⊕ x6 ⊕ x8 ⊕ x11,

c9 =x4 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x12,

c10 =x1 ⊕ x4 ⊕ x7 ⊕ x8 ⊕ x11,

c11 =x2 ⊕ x6 ⊕ x9 ⊕ x10 ⊕ x12,

c12 =x1 ⊕ x3 ⊕ x5 ⊕ x7 ⊕ x9.

(2)

x1 =c2 ⊕ c5 ⊕ c10 ⊕ c11 ⊕ c12,

x2 =c1 ⊕ c3 ⊕ c5 ⊕ c6 ⊕ c7 ⊕ c9 ⊕ c10,

x3 =c3 ⊕ c5 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c9 ⊕ c12,

x4 =c4 ⊕ c5 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c9 ⊕ c10 ⊕ c11 ⊕ c12,

x5 =c1 ⊕ c2 ⊕ c4,

x6 =c1 ⊕ c2 ⊕ c4 ⊕ c6 ⊕ c7 ⊕ c10 ⊕ c11,

x7 =c2 ⊕ c3 ⊕ c4 ⊕ c5 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c11 ⊕ c12,

x8 =c1 ⊕ c3 ⊕ c5 ⊕ c7 ⊕ c8 ⊕ c9 ⊕ c10 ⊕ c11 ⊕ c12,

x9 =c1 ⊕ c2 ⊕ c5 ⊕ c9 ⊕ c10,

x10 =c1 ⊕ c5 ⊕ c7 ⊕ c9 ⊕ c10,

x11 =c1 ⊕ c7 ⊕ c8,

x12 =c3 ⊕ c4 ⊕ c5 ⊕ c7 ⊕ c9.

(3)

V. CONCLUSIONS

In this paper we have presented a construction of codes over GF (2) which reach the max-flow for
single source multicast acyclic networks with delay. The coding is exclusively performed in GF (2), i.e.,
it is a bitwise XOR of packets with equal lengths. The encoding and decoding are based on balanced
nonsingular matrices that are obtained as incidence matrices from Latin rectangles. Balanced XOR-ed
coding is of particular importance for energy and processor constraint devices. Additionally, we showed
that the approach offers plausible security properties, i.e., if an eavesdropper wants to reconstruct at least
one original packet, then the number of eavesdropped links must be equal to the max-flow of the network.

Possible future work includes intermediate nodes to form coded packets, as well as building networks
dynamically by adding more and more sink nodes that reach the max-flow when the coding is XOR-ed
coding.

ACKNOWLEDGEMENTS

We would like to thank Gergely Biczók for his discussions and remarks that significantly improved the
paper.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung. Network information flow. IEEE Transactions on Information Theory, 46(4):1204–
1216, 2000.

[2] K. Bhattad and K.R. Narayanan. Weakly secure network coding. Proc. First Workshop on Network Coding, Theory, and Applications
(NetCod), 2005.

[3] C. J. Colbourn and J. H. Dinitz. Handbook of Combinatorial Designs, Second Edition (Discrete Mathematics and Its Applications).
Chapman, Hall/CRC, 2006.

[4] C. J. Colbourn, J. H. Dinitz, and D. R. Stinson. Applications of combinatorial designs to communications, cryptography, and networking.
1999.

[5] P. Hall. On representatives of subsets. J. London Math. Soc., 10(37):26–30, 1935.

[6] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong. A random linear network coding approach to multicast.
IEEE Transactions on Information Theory, 52(10):4413–4430, 2006.

[7] M. T. Jacobson and P. Matthews. Generating uniformly distributed random latin squares. Journal of Combinatorial Designs, 4(6):405–437,
1996.

[8] S. Jaggi, Y. Cassuto, and M. Effros. Low complexity encoding for network codes. In Information Theory, 2006 IEEE International
Symposium on, pages 40–44, 2006.

[9] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. XORs in the air: Practical wireless network coding. IEEE/ACM
Trans. Netw, 16(3):497–510, 2008.

[10] R. Koetter and M. Médard. An algebraic approach to network coding. IEEE/ACM Trans. Netw, 11(5):782–795, 2003.

[11] E. Lawler. Combinatorial Optimization : Networks and Matroids. Dover Publications, 2001.

[12] S. Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE Transactions on Information Theory, 49(2):371–381, 2003.

[13] M. Médard and A. Sprintson. Network coding, Fundamentals and Applications. 2012.

[14] M. V. Pedersen, F. H. P. Fitzek, and T. Larsen. Implementation and performance evaluation of network coding for cooperative mobile
devices. In Proc. IEEE Cognitive and Cooperative Wireless Networks Workshop, 2008.

[15] J. Qureshi, Foh Chuan Heng, and Cai Jianfei. Optimal solution for the index coding problem using network coding over gf(2). In Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pages 209–217, 2012.

[16] S. Riis. Linear versus nonlinear boolean functions in network flow. CISS, 2004.

[17] Salim Y. El Rouayheb, Alex Sprintson, and Costas N. Georghiades. On the index coding problem and its relation to network coding
and matroid theory, September 30 2008. Comment: submitted to transactions on information theory.

[18] H. Shojania and B. Li. Random network coding on the iphone: fact or fiction? NOSSDAV, 2009.

[19] D. R. Stinson. Combinatorial Designs: Constructions and Analysis. SpringerVerlag, 2003.

[20] P. Vingelmann, M. V. Pedersen, F. H. P. Fitzek, and J. Heide. Multimedia distribution using network coding on the iphone platform.
Proceedings of the 2010 ACM multimedia workshop on Mobile cloud media computing, 2010.

Families of Optimal Binary Non-MDS Erasure Codes
Danilo Gligoroski and Katina Kralevska
IEEE Proceedings on International Symposium on Information Theory (ISIT),
pp. 3150-3154, 2014

77

Paper 2

Families of Optimal Binary Non-MDS Erasure
Codes

Danilo Gligoroski and Katina Kralevska

Department of Telematics; Faculty of Information Technology, Mathematics and Electrical

Engineering; Norwegian University of Science and Technology, Trondheim, Norway,

Email: {danilog, katinak}@item.ntnu.no

Abstract

We introduce a definition for Families of Optimal Binary Non-MDS Erasure Codes for [n, k] codes over GF (2),
and propose an algorithm for finding those families by using hill climbing techniques over Balanced XOR codes. Due

to the hill climbing search, those families of codes have always better decoding probability than the codes generated

in a typical Random Linear Network Coding scenario, i.e., random linear codes. We also show a surprising result

that for small values of k, the decoding probability of our codes in GF (2) is very close to the decoding probability

of the codes obtained by Random Linear Network Coding but in the higher finite field GF (4).

I. INTRODUCTION

In the fast approaching Zettabyte Era [3] the erasure codes will become the most important codes among
all coding techniques. That is mostly due to two factors: 1. The global communications will be almost
exclusively based on the packet switching paradigm, where the recovery from packet losses is addressed
efficiently by erasure codes; 2. Storage systems will have capacities of hundreds of exabytes, and will have
to tolerate and recover efficiently from multiple disk failures.

According to the rate of redundancy that is used, the erasure codes are divided in two classes: 1. Optimal
or very close to optimal ones, known as Maximum Distance Separable (MDS) Codes [19], almost-MDS
(AMDS) [5] and near-MDS codes (NMDS) [6], and 2: Suboptimal or non-MDS codes [7], [8], [11], [14],
[17].

Reed-Solomon codes [22] are a well known class of MDS codes that provide a general technique for
construction of MDS codes. However, these codes are defined in higher finite fields and they can be very
computationally demanding. That is the main reason for series of research efforts to find codes that work
just in the simplest finite field GF (2) where the operations are bitwise exclusive-or (XOR) operations [2],
[4], [12], [13].

Beside the use in massive storage systems, the erasure codes have been recently used in one research area
that is addressing the demanding needs for increasing the speed and reliability of packet based communica-
tions. That evolving area is Network Coding [1]. Network Coding allows nodes in the network to perform
a set of functions over the generated or received data packets before forwarding them. Random Linear
Network Coding (RLNC) [10] is a network coding technique that produces random linear combinations of
the packets over a Galois Field of size q, GF (q). The field size has an impact on the decoding probability,
i.e., the probability of receiving linearly independent packets increases with q.

When one or more sources want to transmit k packets to one or more destination nodes, the channel
conditions must be considered. Even in a presence of packet losses (erasures) the destination node has to
be able to decode k original packets by receiving k + r packets. The authors in [18] derive the average
number of received coded packets n for successful decoding of k original packets at the destination nodes.
They study the effect of q on the performance of RLNC. The exact probability that k out of k+ r received
packets are linearly independent is derived in [24]. Both papers show that q equal to 4 or 8 is enough to
get very close to the optimal performance even when k is not very large.

However, as in the case of codes for massive storage systems, working in higher fields or with large
number of data packets has an impact on the computational complexity leading to higher energy consumption

[9] and no real benefits. A recent result in [21] shows that the speed of computation on modern CPUs with
wide SIMD instructions is similar for operations in GF (2) and in GF (16). On the other hand, implementing
RLNC in higher fields on devices that have power and memory constraints is a challenging problem. Some
recent studies show that RLNC in constrained devices in GF (2) is up to two orders of magnitude less
energy demanding and up to one order of magnitude faster than RLNC in higher fields [25], [20].

In this work we introduce a definition of Families of Optimal Binary Non-MDS Erasure Codes for [n, k]
codes over GF (2). Then we propose one heuristic algorithm for finding those families by using hill climbing
techniques over Balanced XOR codes introduced in [15]. Due to the hill climbing search, those families
of codes have always better decoding probability than the codes generated in a typical Random Linear
Network Coding scenario, i.e., random linear codes as described in [24]. We also show a surprising result
that for small values of k, the decoding probability of our codes in GF (2) is very close to the decoding
probability of the codes obtained by RLNC but in the higher finite field GF (4).

The paper is organized as follows. In Section II, we introduce the basic terminology and the definition of
Families of Optimal Binary Non-MDS Erasure Codes. In Section III, we describe one heuristic algorithm
for finding those Families of Optimal Binary non-MDS Erasure Codes. We also discuss and compare the
properties of our erasure codes to codes generated in a typical Random Linear Network Coding scenario,
i.e., random linear codes. Conclusions and future work are summarized in Section IV.

II. MATHEMATICAL PRELIMINARIES

In this section we briefly introduce the basic terminology, some useful properties and facts about linear
codes, as well as some basic terminology and coding methods for Balanced XOR codes [15].

Let us denote by Fq = GF (q) the Galois field with q elements, and by Fn
q the n-dimensional vector space

over Fq. Let us also denote by [n, k]q the q-ary linear code of length n and rank k which is actually a linear
subspace C with dimension k of the vector space Fq. An [n, k, d]q code is an [n, k]q code with minimum
weight at least d among all nonzero codewords. An [n, k, d]q code is called maximum distance separable
(MDS) if d = n − k + 1. The Singleton defect of an [n, k, d]q code C defined as s(C) = n − k + 1 − d
measures how far away is C from being MDS.

Below we give some basic properties for MDS matrices that we use in this paper:
Proposition 1 ([19], Ch. 11, Corollary 3): Let C be an [n, k, d] code over GF (q). The following state-

ments are equivalent:

1) C is MDS;
2) every k columns of a generator matrix G are linearly independent;
3) every n− k columns of a parity check matrix H are linearly independent.

Definition 1: Let C be an [n, k] code over GF (q) with a generator matrix G. Let us denote by GI , I =
k, . . . , n the sets of submatrices obtained from G when choosing I columns from G, and by DI ⊂ GI , I =
k, . . . , n the subsets of GI with a rank k. We call the following vector VD = (�0, �1, . . . , �n−k), �i =
|Di+k|/|Gi+k|, the Vector of Exact Decoding Probability, for the code C.

With other words, the value �i represents the probability that we can decode all k original values
x1, . . . , xk, if we are given k + i values y1, . . . , yk+i that corresponds to encoding with k + i columns
of the generator matrix G.

For random generator matrices G, the values of VD are calculated in [24] and we formulate them in the
following Proposition:

Proposition 2: For a linear [n, k] code over GF (q) with a random generator matrix G the elements of
the vector VD = (�0, �1, . . . , �n−k) have the following values:

�i = P (k + i), (1)

where the values P (I) are computed as follows:

P (I) =

{
0 if I < k,∏k−1

j=0

(
1− 1

qI−j

)
if I ≥ k.

(2)

Proof: The equation (2) is actually the equation (7) in [24] with adopted notation to be consistent
with the standard notation for linear [n, k] codes over GF (q). The equation (1) then follows directly.

The connection between the Vector of Exact Decoding Probability and the MDS codes can be established
by using the Proposition 2 as follows:

Theorem 1: A linear [n, k] code C over GF (q) with a generator matrix G is a MDS code iff the Vector
of Exact Decoding Probability is the following vector VD = (�0, �1, . . . , �n−k) = (1, 1, . . . , 1).

Proof: The theorem can be proved with a direct application of the Proposition 2 and the Definition
1.

In this work we are interested exclusively to work with XOR coding, i.e., to work with linear binary
codes. Thus, our interest is to define a class of binary codes that in some properties are as close as possible
to MDS codes. Unfortunately, it is a well known old fact in coding theory (see for example [19]) that for
the case of linear binary codes, all MDS codes are trivial, i.e., k = 1 or n = k + 1 or n = k.

So, dealing with the fact that non-trivial binary codes are not MDS, we adopt a strategy to search for
codes that will be optimal from certain perspective according to the Vector of Exact Decoding Probability
VD. When a channel has an erasure probability p the strategy will be to find binary codes that maximize
the probability to recover the original data. Therefore, we prove the following Theorem:

Theorem 2: Let C be a binary linear [n, k] code with a Vector of Exact Decoding Probability VD =
(�0, �1, . . . , �n−k) and let k packets are encoded by C. The probability ps of successful decoding of k
packets from n encoded and transmitted packets via a channel with an erasure probability p is:

ps = 1−

(
n−k∑
i=0

(
n

i

)
pi(1− p)n−i(1− �n−k−i) +

n∑
i=n−k+1

(
n

i

)
pi(1− p)n−i

)
(3)

Proof: Let us denote by E1 the event that i packets, where 0 ≤ i ≤ n − k, are lost during the
transmission, and by E2 the event that more than n−k packets from the set of all n packets are lost during
the transmission.

The probability of the event E1 is calculated by the expression:

P (E1) =
n−k∑
i=0

(
n

i

)
pi(1− p)n−i, (4)

and the probability of the event E2 is:

P (E2) =
n∑

i=n−k+1

(
n

i

)
pi(1− p)n−i. (5)

From expression (4) we compute the probability pu1 of failure to decode k original packets, by multiplying
every value in the sum by the opposite probability of successful decoding when n− k − i columns of the
generator matrix G are received, i.e., when i packets are lost. So the decoding failure probability if i packets
are lost (0 ≤ i ≤ n− k) is computed by the following expression:

pu1 =
n−k∑
i=0

(
n

i

)
pi(1− p)n−i(1− �n−k−i). (6)

If more than n− k packets are lost then the probability to fail the decoding is 100% thus the probability
pu2 of failure to decode k original packets is equal to P (E2), i.e., pu2 = P (E2).

TABLE I: A general Stochastic Hill-Climbing algorithm for finding a Family of Optimal Binary
Non-MDS Erasure Codes for given values of n and k

Algorithm 1

Input. n and k

Output. A candidate Family C of Optimal Binary
Non-MDS Erasure Codes

1. Find a random [n, k] linear binary code and
compute its Vector of Exact Decoding Probability
VD = (�0, �1, . . . , �n−k) and its probability ps of
successful decoding of k packets from the equation
(3).

2. Repeatedly improve the solution until no more
improvements are necessary/possible.

In total, the probability of unsuccessful decoding pu is:

pu = pu1 + pu2 = (7)

=
n−k∑
i=0

(
n

i

)
pi(1− p)n−i(1− �n−k−i) +

+
n∑

i=n−k+1

(
n

i

)
pi(1− p)n−i

Finally the probability ps of successful decoding of k packets is the opposite probability of pu i.e.,

ps = 1− pu.

Having defined the probability ps of successful decoding of k packets that are encoded with an [n, k]
binary code, we define a Family of Optimal Binary Non-MDS Erasure Codes as follows:

Definition 2: Let C be a family of binary linear [n, k] codes that have a probability ps of successful
decoding k packets from n encoded and transmitted packets via a channel with an erasure probability p.
We say that C is a Family of Optimal Binary Non-MDS Erasure Codes if for every binary linear [n, k] code
C ′ with a probability p′s of successful decoding of k packets in a channel with an erasure probability p,
there exist a code C ∈ C with a probability ps of successful decoding, such that p′s ≤ ps, for every erasure
probability p.

Problem 1: For given values of n and k find a Family C of Optimal Binary Non-MDS Erasure Codes.

III. A HILL CLIMBING HEURISTICS FOR FINDING FAMILIES OF OPTIMAL BINARY NON-MDS
ERASURE CODES

Finding exact analytical solution (or finding deterministic and efficient algorithm that will find the
solution) for the Problem 1 is hard and in this moment we do not know such a solution. However, there
are many heuristic optimization methodologies that can be used for a search of approximate solutions. We
choose to use the simplest one: The Stochastic Hill-Climbing Methodology [23]. The hill climbing heuristics
has been already used in optimizing problems for RLNC such as in [16]. In general, the stochastic heuristics
is defined as in Algorithm 1.

In order to improve the codes found by Algorithm 1 we decided to work with balanced structures as
they were introduced in [15].

Definition 3: A XOR-ed coding is a coding that is realized exclusively by bitwise XOR operations
between packets with equal length. Hence, it is a parallel bitwise linear transformation of k source bits
x = (x1, . . . , xk) by a k × k nonsingular binary matrix K, i.e., y = x ·K.

In other words XOR-ed coding assumes work within the smallest finite field GF (2), i.e., with k × k
nonsingular binary matrices K. While the binary matrices K in general can be of any form, the specifics
about matrices introduced in [15] are that they are highly structured, balanced and their construction is
based on Latin rectangles of dimensions k1 × k.

Definition 4: A Latin square of order k with entries from an k-set X is an k× k array L in which every
cell contains an element of X such that every row of L is a permutation of X and every column of L is a
permutation of X.

Definition 5: A k1 × k Latin rectangle is a k1 × k array (where k1 ≤ k) in which each cell contains a
single symbol from an k-set X, such that each symbol occurs exactly once in each row and at most once
in each column.

Definition 6: Let (X,A) be a design where X = {x1, . . . , xv} and A = {A1, . . . , Ab}. The incidence

matrix of (X,A) is the v × b 0-1 matrix M = (mi,j) defined by the rule mi,j =

{
1, if xi ∈ Aj,

0, if xi /∈ Aj.
Proposition 3 ([15]): The incidence matrix M = (mi,j) of any Latin rectangle with dimensions k1 × k

is a balanced matrix with k1 ones in each row and each column.
Proposition 4 ([15]): The necessary condition an incidence matrix M = (mi,j) of a k1 × k Latin

rectangle to be nonsingular in GF (2) is k1 to be odd, i.e., k1 = 2l + 1.
Example 1: Let us take the following Latin square and split it into two Latin rectangles:

L =

⎡
⎢⎢⎣
1 4 3 5 2
3 1 5 2 4
4 2 1 3 5
5 3 2 4 1
2 5 4 1 3

⎤
⎥⎥⎦ .

The incidence matrix M of the 3× 5 upper Latin rectangle is:

M =

⎡
⎢⎢⎣
1 0 1 1 0
1 1 0 1 0
1 0 1 0 1
0 1 1 0 1
0 1 0 1 1

⎤
⎥⎥⎦ .

Note how balanced are the rows and columns: in every row and every column, the number of 1s is 3.
The following proposition follows directly from the Proposition 4:
Proposition 5: The k+1-th column of the generator matrix G of a trivial [k+1, k]2 MDS code that has

in the first k columns a matrix for a balanced XOR-ed coding consists of all 1s.
We now describe the modified Stochastic Hill-Climbing that is using Balanced XOR codes where one

column of the generator matrix is defined as in Proposition 5:
We would like to note that Algorithm 1 can find codes with similar decoding probabilities as Algorithm

2, but after performing more stochastic search attempts. Moreover, the codes that Algorithm 2 finds have
advantages that they are structured, balanced and they are sparse, where the sparsity can go down to just
3 nonzero positions.

We now give two numerical results that compare the performance of our codes to a typical linear random
code in GF (2) that can be generated in RLNC. The same parameters are taken as in [24], i.e., r = 0, . . . , 8
is the number of excess packets for k = 5 and k = 100. The results show that the decoding probability
with our scheme is closer to the decoding probability under RLNC in GF (4) when k is small. We would
like to emphasize that with Algorithm 2 we could easily find codes with k in range [5, . . . , 1000].

In Figure 1 the code that was found after 10,000 stochastic attempts by the Balanced XOR-ed approach
of Algorithm 2 is based on the Latin Square from Example 1. Its generator matrix is the following:

G =

⎡
⎢⎢⎣

1 1 1 0 0 1 0 0 0 0 1 0 1
0 1 0 1 1 1 0 0 1 0 1 1 0
1 0 1 1 0 1 0 1 0 0 0 1 0
1 1 0 0 1 1 0 0 0 1 0 1 0
0 0 1 1 1 1 1 0 0 0 1 0 0

⎤
⎥⎥⎦

TABLE II: A Stochastic Hill-Climbing algorithm for finding a Family of Optimal Binary Non-MDS
Erasure Codes based on Balanced XOR codes

Algorithm 2

Input. n and k

Output. A candidate Family C of Optimal Binary
Non-MDS Erasure Codes

1. Find a random Balanced XOR code and put it as
the first part of the generator matrix G of an [n, k]
code. Set the k + 1-th column to consists of all 1s,
and set the remaining columns with random values.
Compute the Vector of Exact Decoding Probability
VD = (�0, �1, . . . , �n−k) and its probability ps of
successful decoding of k packets from the equation
(3).

2. Repeatedly improve the solution until no more
improvements are necessary/possible.

Figure 1: Vector of Exact Decoding Probability VD for k=5

The Vector of Exact Decoding Probability for this code is: VD = (0.615, 0.895, 0.979, 0.998, 1., 1., 1., 1.)
and is presented in Figure 1 with a solid line.

A typical random linear code in GF (2) generated in RLNC is presented in Figure 1 with a dashed line.
For comparison purposes, we put the values for decoding probabilities of a typical random linear code
in GF (4) in the same Figure 1. As it can be seen, our codes in GF (2) have decoding probabilities as a
random linear code in GF (4).

The real advantage of our codes is seen in Figure 2 in channels where packet losses occur with certain
probabilities. Similarly as in [24] we give the results for [n, k] = [108, 100] in Figure 3 and in Figure 4.

IV. CONCLUSIONS

We introduced a definition of Families of Optimal Binary Non-MDS Erasure Codes for [n, k] codes over
GF (2) and proposed one heuristic algorithm for finding those families using hill climbing techniques over
Balanced XOR codes. We showed that the families of codes that we found have always better decoding
probability than the decoding probability of random linear codes generated in RLNC. We also showed
that for small values of k the decoding probability of our codes in GF (2) is very close to the decoding
probability of the random linear codes in GF (4).

As a next research direction, we point out that it will be very useful to further investigate the theoretical
lower and upper bounds of decoding probabilities of the defined Families of Optimal Binary Non-MDS
Erasure Codes and to find better heuristic or deterministic algorithms for efficient finding of those families.
It would be a natural research directions to see how this methodology performs in higher fields.

Figure 2: Comparison between probabilities of unsuccessful decoding of a typical RLNC code and a code
obtained with our stochastic strategy in GF (2) for k = 5

Figure 3: Vector of Exact Decoding Probability VD for k=100

Figure 4: Comparison between probabilities of unsuccessful decoding of a typical RLNC code and a code
obtained with our stochastic strategy in GF (2) for k = 100

ACKNOWLEDGEMENTS

We would like to thank Harald Øverby and Rune E. Jensen for their discussions that improved the
quality of this paper. We would also like to thank the anonymous reviewers for their useful comments and
suggestions.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung. Network information flow. IEEE Transactions on Information Theory, 46(4):1204–
1216, 2000.

[2] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai Menon. Evenodd: An efficient scheme for tolerating double disk failures in raid
architectures. IEEE Trans. Computers, 44(2):192–202, 1995.

[3] Cisco. Cisco visual networking index: Forecast and methodology, 20122017. White Paper, May 2013.

[4] Peter F. Corbett, Robert English, Atul Goel, Tomislav Grcanac, Steven Kleiman, James Leong, and Sunitha Sankar. Row-diagonal parity
for double disk failure correction. In FAST, pages 1–14. USENIX, 2004.

[5] Mario A. de Boer. Almost mds codes. Des. Codes Cryptography, 9(2):143–155, 1996.

[6] S.M. Dodunekov and I.N. Landjev. On near-mds codes. Journal of Geometry, 54:30–43, 1995.

[7] Kevin M. Greenan, Xiaozhou Li, and Jay J. Wylie. Flat xor-based erasure codes in storage systems: Constructions, efficient recovery,
and tradeoffs. In MSST, pages 1–14. IEEE Computer Society, 2010.

[8] James Lee Hafner. Weaver codes: Highly fault tolerant erasure codes for storage systems. In FAST. USENIX, 2005.

[9] Janus Heide, Morten V. Pedersen, Frank H. P. Fitzek, and Muriel Médard. On code parameters and coding vector representation for
practical RLNC. In ICC, pages 1–5. IEEE, 2011.

[10] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong. A random linear network coding approach to multicast.
IEEE Transactions on Information Theory, 52(10):4413–4430, 2006.

[11] Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes: Flexible schemes to trade space for access efficiency in reliable data storage
systems. TOS, 9(1):3, 2013.

[12] Cheng Huang and Lihao Xu. Star : An efficient coding scheme for correcting triple storage node failures. IEEE Trans. Computers,
57(7):889–901, 2008.

[13] O. Khan, R. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking erasure codes for cloud file systems: Minimizing I/O for recovery
and degraded reads. In FAST-2012: 10th Usenix Conference on File and Storage Technologies, San Jose, February 2012.

[14] A. Kiani and S. Akhlaghi. A non-mds erasure code scheme for storage applications. Journal of Communication Engineering, 2.

[15] K. Kralevska, D. Gligoroski, and H. Øverby. Balanced XOR-ed coding. In Advances in Communication Networking - 19th EUNICE/IFIP,
volume 8115 of LNCS, pages 161–172. Springer, 2013.

[16] E. Kurdoglu, N. Thomos, and P. Frossard. Scalable video dissemination with prioritized network coding. In Multimedia and Expo
(ICME), 2011 IEEE International Conference on, pages 1–6, 2011.

[17] Michael Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, Daniel A. Spielman, and Volker Stemann. Practical loss-resilient
codes. In STOC, pages 150–159. ACM, 1997.

[18] Daniel Enrique Lucani, Muriel Médard, and Milica Stojanovic. Random linear network coding for time-division duplexing: Field size
considerations. In GLOBECOM, pages 1–6. IEEE, 2009.

[19] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-holland Publishing Company, 2nd edition, 1978.

[20] M. V. Pedersen, J. Heide, F.H.P. Fitzek, and T. Larsen. Network coding for mobile devices - systematic binary random rateless codes.
In Workshop on Cooperative Mobile Networks 2009 - ICC09. IEEE, June 2009.

[21] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast Galois Field arithmetic using Intel SIMD instructions. In FAST-2013: 11th
Usenix Conference on File and Storage Technologies, San Jose, February 2013.

[22] Irving Reed and Golomb Solomon. Polynomial codes over certain finite fields. Journal of the Society of Industrial and Applied
Mathematics, 8(2):300–304, 06/1960 1960.

[23] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education Inc., 2003.

[24] Oscar Trullols-Cruces, Jose Maria Barcelo-Ordinas, and Marco Fiore. Exact decoding probability under random linear network coding.
2011.

[25] P. Vingelmann, M. V. Pedersen, F. H. P. Fitzek, and J. Heide. Multimedia distribution using network coding on the iphone platform.
Proceedings of the 2010 ACM multimedia workshop on Mobile cloud media computing, 2010.

Minimal Header Overhead for Random Linear Network
Coding
Danilo Gligoroski, Katina Kralevska, and Harald Øverby
IEEE International Conference on Communication Workshop (ICCW),
pp. 680-685, 2015

87

Paper 3

Minimal Header Overhead for Random Linear
Network Coding

Danilo Gligoroski, Katina Kralevska, and Harald Øverby

Department of Telematics; Faculty of Information Technology, Mathematics and Electrical

Engineering; Norwegian University of Science and Technology, Trondheim, Norway,

Email: danilog@item.ntnu.no, katinak@item.ntnu.no, haraldov@item.ntnu.no

Abstract

The energy used to transmit a single bit of data between the devices in wireless networks is equal to the energy

for performing hundreds of instructions in those devices. Thus the reduction of the data necessary to transmit, while

keeping the same functionality of the employed algorithms is a formidable and challenging scientific task. We

describe an algorithm called Small Set of Allowed Coefficients (SSAC) that produces the shortest header overhead

in random linear network coding schemes compared with all other approaches reported in the literature. The header

overhead length is 2 to 7 times shorter than the length achieved by related compression techniques. For example,

SSAC algorithm compresses the length of the header overhead in a generation of 128 packets to 24 bits, while

the closest best result achieved by an algorithm based on error correcting codes has a header overhead length of

84 bits in GF (16) and 224 bits in GF (256). We show that the header length in SSAC does not depend on the

size of the finite field where the operations are performed, i.e., it just depends on the number of combined packets m.

Keywords: Network coding, Header overhead, Compressed header overhead

I. INTRODUCTION

The main feature of network coding is enabling the intermediate nodes in a multi-hop network to
perform coding [1]. All nodes in the network excluding the sink nodes perform random linear mappings
(RLNC [8]) from input packets into output packets over a Galois Field of size q, GF (q). The coding
operations that are done over a packet are recorded in the packet header as a vector of coefficients. In
the multi-hop networks, the vector of coefficients is updated at each node that performs network coding.
The sink nodes decode the data based on the coefficients in the packet header.

One of the main challenges of implementing network coding is the header overhead imposed by the
coding coefficients. When a source wants to send a large file, the file is split into several generations each
consisting of n packets. The length of the vector of coefficients is n log2 q bits under RLNC in the finite
Galois Field GF (q). As the number of packets in a generation or the size of the Galois Field increases, the
length of the header overhead due to the coding coefficients becomes significant. This affects the goodput
of the system and can be a significant contribution to the system load for some network scenarios.

Additionally, it is a known scientific fact that the energy used to transmit a single bit of data between
the devices in ad hoc sensor networks is equal to the energy for performing 800 instructions in the devices
[12]. Thus the reduction of the data necessary to transmit, while keeping the same functionality of the
employed algorithms is a formidable and challenging scientific task that implies that many applications
will benefit by performing local computations rather than sending more bits.

In this paper, we present a novel approach for practical network coding called Small Set of Allowed
Coefficients (SSAC). The main contribution of this approach is that it generates the shortest compressed
network coding header compared to related approaches reported in the literature. In SSAC the header
length does not depend on the size of the finite field where the operations are performed, but only on the
number of combined packets m.

The paper is organized as follows: Related work is presented in Section II. In Section III, we present the
Small Set of Allowed Coefficients algorithm. Experimental results are reported in Section IV. Conclusions
and future work are summarized in Section V.

II. RELATED WORK

Several papers in recent literature have addressed the problem of reducing the header overhead in
network coding.

The first suggested solution was done in [9]. This approach finds a smaller vector subspace of the
original vector space, and the coding is done just in that vector subspace. By this method, finding a
proper subspace can be a computational challenge and decoding at a sink node is also a challenging task
since every combination of source data should result in a distinct union subspace.

The concept of sparse coding is well known and it was first proposed in [14] for header compression
in network coding, to reduce the number of combined packets in one coded packet from n to m where
m < n. This scheme uses parity-check matrices of error correcting codes to compress the header length
down to O(m log2 n log2 q) bits. As noted in [14], the number of sources in sensor networks is large
and a typical frame length is 30 bytes for data transmission. Consider a sensor network where 60 nodes
send data. If RLNC in GF (16) is performed, then 30 bytes per packet are used for recording the coding
coefficients, i.e., the length of the header overhead is equal to the length of the useful data. Therefore, the
authors of [14] introduce the idea of compressing the coding vectors. The length of the coding vector is
reduced by limiting the number of packets that are combined in a coded packet denoted by m. However,
limiting the number of packets being combined affects the invertibility of the matrix or decreases the
probability of a redundant packet being innovative [4], [6], [7], [13].

The authors in [10] proposed improved schemes for compression of the coding vectors by using erasure
decoding and list decoding. The compressed header length under the erasure decoding scheme is m +
n/ log2 q. The header length becomes arbitrarily close to m + O(log2 n)/ log2 q when the list decoding
scheme is used. The both schemes are valid for moderate or large value of m.

Another completely different approach with a fixed and small header overhead was proposed in [5].
There, the header overhead is the seed for generating the coding coefficients with a known pseudo-random
number generator (PRNG). This effectively reduces the header overhead to the size of the seed. However,
as noted in [11] this approach does not support re-encoding which is the crucial constituent of the random
linear network coding.

A similar approach from the point of view of the extremity of reducing the overhead just to one symbol
is proposed in [15]. There, the generation of the coding coefficients is based on modified Vandermonde
matrices which can be determined by one symbol. However, the two big constraints of this design are: the
network coding nodes should only perform addition operations and the generation size is upper bounded
by log2 q due to the cyclic property of the matrices.

We evaluate the presented approaches by using two metrics: the header length and the number of
packets combined in a coded packet. An overview is given in Table I. The features of SSAC are also
presented in Table I and we discuss them in the next Sections. Some of the presented methods do not
support re-encoding or are valid for restricted set of m. Therefore, we compare SSAC with traditional
RLNC and error correcting codes in Section IV.

III. THE ALGORITHM: Small Set of Allowed Coefficients (SSAC)
We denote by GF (q) a finite field (Galois Field) with q elements where q is power of 2. It is known

that for any finite field GF (q) the set of all nonzero elements GF (q)× = GF (q) \ 0 form a multiplicative
cyclic group (GF (q)×,×). That means that any nonzero element β ∈ GF (q)× can be represented as a
power of a single element α ∈ GF (q)×, i.e., β = αr for some r ≤ q. Such a generator α is called a
primitive element of the finite field.

TABLE I: Comparison of header length in bits for different network coding schemes when the
generation size is n

Scheme Header length Packets combined m Operations in
Sources Intemediate nodes Destinations

RLNC n log2 q n GF (q) GF (q) Gaussian elimination
Error correcting codes [14] O(m log2 n log2 q) log2 n < m ≤ �(n− k)/2� GF (q) GF (q) Berlekamp-Massey

Seed with PRNG [5] Size of the seed n GF (q) Do not support Gaussian elimination
Erasure decoding [10] m log2 q + n Moderate or large m GF (q) GF (q) Berlekamp-Massey

List decoding [10] m log2 q +O(log2 n) Moderate or large m GF (q), q is large GF (q), q is large Berlekamp-Massey
Vandermonde matrices [15] log2 q m ≤ log2 q GF (q) GF (2) Gaussian elimination

SSAC m(log2 |Q|+ log2 n) m GF (q) GF (q) Gaussian elimination

We consider that one or several sources send n original data packets through a network where the
source(s) and intermediate nodes can perform random linear network coding. We describe an algorithm
which aims to provide a minimal header overhead for random linear network coding. The algorithm is
based on utilizing a small set Q ⊂ GF (q) of coefficients that multiply the original data. We formalize
this with the following definition:

Definition 1: For a subset Q of GF (q) we say that it is a Small Set of Allowed Coefficients (SSAC) if all
operations of multiplication of the original data packets in the network coding procedures are performed
only by the elements of Q.

Note that due to trivial reasons of impossible representation of the packet transformations, the set Q
cannot have just one element.

The relation between the compression techniques presented in [14] and [10] and our approach can be
described as follows: for the set Q in [14] and [10] they use all non-zero elements from the finite field
GF (q), while we use much smaller set. Namely, we use only two elements, i.e., Q = {q0, q1} where both
elements q0 and q1 are primitive elements in GF (q).

Another crucial part of our method is the initial sparse encoding of the original data. Let us denote
by x = (x1, . . . , xn) a generation of n original data packets. We set the level of sparsity to be a small
number m, m = 2, 3 or 4 as reported in [14]. In the beginning, the source is generating a k× n, (k ≥ n)
random sparse matrix

Ek×n =

⎛
⎝ e1

...
ek

⎞
⎠ (1)

where every row-vector ei is a sparse n-dimensional vector with just m non-zero elements from the set
Q. It uses Ek×n to encode the initial data packets. However, in that encoding, due to the sparsity of the
rows, instead of putting the whole rows as header overheads for each of the packets, it uses a special
compression format.

Definition 2: We say that the row-vector e is encoded in Compressed Sparse Row (CSR) format if it
is presented in the form: h = (i1||j1|| . . . ||im||jm) where iμ denotes the index of an element of the set Q
that is in the row vector e at the jμ position, where jμ is in binary format.

Compressed Sparse Row (CSR) is applied frequently in mathematics and computing, and here we refer
an interested reader to [3] as a good starting reference. Note that there is a slight difference between
the described compressed formats in [3] and our format, since we apply the compressed sparse coding
for each row separately (not for the whole matrix) due to the nature of the network coding paradigm
where packets are transmitted through the network together with their header overhead. Thus we adopt
the following convention:

Definition 3: All packets transmitted in the network have the format h||P . The value of h is the header
overhead as defined in Definition 2, where the indexes jμ denote the indexes of original data packets that
are multiplied by the corresponding element iμ ∈ Q. The value of P is the data payload for that packet.

Without a proof we give here the following proposition:
Proposition 1: The length of h is m(log2 |Q|+ log2 n) bits.

It follows immediately that for a fixed value of n, the size of the header overhead h in bits is minimal
if the size of the set Q is minimal.

Proposition 2: If the set Q has two elements, then for any number of original packets n, the size of
the header overhead h encoded as in Definition 3 achieves the minimum value of m(1 + log2 n) bits.

We give here a complete small example for coding of n = 8 packets in GF (16).
Example 1: Let us use the following irreducible polynomial i(x) = x4 + x3 + 1 in the finite field

GF (24) = GF (16). Let us choose the following two primitive elements: q0 = 4 ≡ (0, 1, 0, 0)16 ≡
0x3+1x2+0x+0 and q1 = 14 ≡ (1, 1, 1, 0)16 ≡ 1x3+1x2+1x+0. Note that we denote the elements of
the field with bold integers to distinguish them from ordinary integers. Note also that the integer binary
representation in four bits corresponds with their polynomial representation with coefficients {0, 1} and
with polynomials of degree up to 3.

Let us consider that n = 8 packets and m = 3. If we have the following vector: w = (0,4,4,0,14,0,0,0),
then it is represented in the following CSR format: h = (0 001 0 010 1 100). Note that the spacing is just
for readability, and that the indexing of the n coordinates is done in the range from 0 to n− 1.

Let us now suppose that a node has received 5 random linear network coded packets, encoded with the
following sparse row vectors:

E5×8 =

⎛
⎜⎜⎜⎝

0 0 0 4 0 0 14 4
4 0 4 0 0 14 0 0
0 0 0 14 0 14 4 0
0 0 4 0 14 0 14 0
0 14 0 14 0 0 0 14

⎞
⎟⎟⎟⎠

Note that E5×8 is similar to (1), but since it is a node (not the source) the number of rows k = 5 is less
than n. We say that number k in every node represents the number of buffered packets in that node. If
the node combines all of its buffered packets (in this case 5 packets) it may find a new innovative packet
which is a combination of the original data packets, with a vector that has only m nonzero elements from
the set Q. Indeed, if the buffered packets are combined with the following vector: x = (1,0,0,1,5) then
the new innovative packet is e6 = w = x ·E5×8 = (0,4,4,0,14,0,0,0). By innovative we mean that it is
linearly independent from all existing rows in the matrix E5×8. Then the node generates the compressed
header h6 = (0 001 0 010 1 100) and with the vector x encodes the buffered 5 packets producing the
innovative data payload P . It sends the packet h6||P as presented in Definition 3 .

We systematize the previous example in a form of a precise step by step algorithm SSAC in Table II.

A. Efficiency of SSAC
The procedure called RandomSparseVector(m,n,Q) in Step 4 returns one random n dimensional vector

that is sparse and has exactly m nonzero coordinates from the set Q. It is important to notice that the
algorithm is a probabilistic one, and in Step 5 it attempts to find a solution x of a linear matrix-vector
equation

w = x · E. (2)

Depending on the values of k, m, n and E it is not always possible to find such a linear solution x.
One work that addresses the problem of existence of solutions of equation (2) is [2]. We summarize the
findings in [2] adopted for our SSAC algorithm with the following Observation:

Observation 1: Let Ek×n be a random sparse matrix where the sparsity of each row is such that there
are exactly m nonzero elements from the set of coefficients Q. If the number of rows k is

k = kopt ≈ m log
n

m
, (3)

then there exists a sparse vector w (with a sparsity of having exactly m nonzero elements from the set
of coefficients Q) and a solution to the equation (2) with a probability 1− ε, where ε is a small value.

TABLE II: An algorithm for network coding that generates an innovative packet (hk+1||Pk+1) where the
header overhead hk+1 has a minimal length in bits

Algorithm: Small Set of Allowed Coefficients (SSAC)

Input: n, k, m, GF (q), Q = {q0, q1}, (or Q =
{q00, q01, q10}),
Data = {(h1||P1), . . . , (hk||Pk)}
Output: (hk+1||Pk+1)

1. Set H = (h1,h2, . . . ,hk)
T ;

2. Set E = (e1, e2, . . . , ek)
T ; where ei are CSR forms of

hi

3. Set P = (P1, P2, . . . , Pn)
T ;

Repeat

4. Set w ← RandomSparseVector(m,n,Q);

5. Find x such that w = x ·E;
Until found x;
6. Set ek+1 = w;

7. Set hk+1 = CompressedSparseRow(ek+1);

8. Set Pk+1 = x ·P;

9. Return: (hk+1||Pk+1).

We emphasize that our work is the first one that explicitly addresses the efficiency of the header
overhead compression algorithm in every intermediate node in conjunction with the number of buffered
packets k in that node. In other related works such as [10] and [14] the number of buffered packets in
the intermediate nodes as a factor for the efficiency of the algorithm is not addressed at all.

Another important question is the efficiency of the SSAC algorithm for finding a solution of the equation
(2). We experimentally measured the number of attempts in the Repeat-Until loop of the SSAC algorithm
for the sparsity values m = 2, 3 or 4, the number of packets in the range from 16 to 128, and the number
of packets in the nodes k ≈ m log n

m
. The results are given in the next Section.

B. Probability of successful decoding at the destination
Another important aspect in the analysis of SSAC is the probability of successful decoding of the

original data. As reported in [7] and [13] the probability of successful decoding depends on the sparsity
m, the size of the finite field q and the overhead O (for n encoded packets, the receiver needs n + O
packets in order to decode them successfully). Our experiments presented in the next Section confirm that
SSAC behaves in the same way as reported in [6], [7], [13]. The probability of successful decoding is
lower when using sparse codes compared to dense codes. On the other hand, the probability of successful
decoding increases with the overhead and the field size.

IV. EXPERIMENTAL RESULTS

In this Section we illustrate the performance of SSAC and compare it with RLNC and the algorithm
based on error correcting codes.

Network coding is usually performed in GF (16) and GF (256), therefore we make experiments for
these finite fields for different generation sizes. In order to check the correctness of the presented results,
we give the concrete values of the finite fields and the primitive elements that we used. The irreducible
polynomial for GF (16) is i(x) = x4 + x3 + 1. For a two-element Small Set of Allowed Coefficients we
choose Q = {4, 14}.

The irreducible polynomial for GF (256) is i(x) = x8 + x6 + x3 + x2 +1. For a two-element Small Set
of Allowed Coefficients we choose Q = {21, 43}.

First, we investigate the probability of solution existence for different values of m, n and kopt in GF (16)
and GF (256). Figure 1 shows the probability of solution existence and the number of attempts in the

Fig. 1: Probability of solution existence and the number of attempts to find the solution when m = 2 for
different values of n and kopt in GF (16) and GF (256). Note that the height of the bars denotes the
probability, but the values above the bars denote the average number of attempts in SSAC algorithm.

Also note that for n = 128 in our experiments we took k = kopt + 8.

Fig. 2: Probability of a full rank matrix as a function of the overhead when n=16 for different m in
GF (16) and GF (256)

Repeat-Until loop for the aforementioned parameters for m = 2. We see that the probability of solution
existence increases with kopt and the size of the field. As we can see that the number of attempts in the
Repeat-Until loop varies in the range from 30 up to 3816.

Next we investigate the probability that the received matrix at the destination has a full rank when it
has more than n rows, i.e., it has some overhead. Figure 2 shows the probability of a successful decoding
as a function of the overhead for n = 16 in GF (16) and GF (256) when m = 3, 4 and the destination
receives overhead of 4, 6, 8 or 10 extra packets. From Figure 2 we can see that probability of having a
successful decoding increases with m and the overhead.

We also compare the length of the coding vectors in bits for different schemes. As we stated previously,
we compare the performance of SSAC with the most relevant approaches, i.e., traditional RLNC and error
correcting codes based approach. Figure 3 to Figure 9 depict the length of the coding vectors in bits versus
the generation size n for different m and finite fields. The length of the header overhead increases with the
generation size in all three approaches as shown in Figure 3 to Figure 9. However, SSAC achieves around

Fig. 3: Length of the compressed coding vectors in bits as a function of the number of packets in a
generation n when m=3 in GF (16)

Fig. 4: Length of the compressed coding vectors in bits as a function of the number of packets in a
generation n when m=4 in GF (16)

Fig. 5: Length of the compressed coding vectors in bits as a function of the number of packets in a
generation n when m=3 in GF (256)

Fig. 6: Length of the compressed coding vectors in bits as a function of the number of packets in a
generation n when m=4 in GF (256)

Fig. 7: Length of the compressed coding vectors in bits as a function of the number of packets in a
generation n for m=4 in GF (16) and GF (256)

42 times shorter header overhead compared to RLNC in GF (256) as presented in Figure 5. Compared to
the method with error correcting codes, SSAC produces around 7 times shorter header overheads when
m=3 in GF (256). Figure 5 and Figure 6 show that the ratio between the header lengths of SSAC and
RLNC is decreasing as m is increasing and the coding is performed in the same finite field. On the other
hand, the ratio between the header lengths of SSAC and Error correcting codes approaches is the same
for different m in the same finite field.

Figure 7 shows the length of the coding vectors in bits versus the generation size in GF (16) and
GF (256) when m is fixed to 4. It is well-known fact that the header overhead increases with the finite
field. However, the finite field size does not have an impact on the header overhead when the coding
coefficients are generated with SSAC as shown in Figure 7. For instance, the length of the coding vector
is the same in GF (16) and GF (256) for the same m. This can be considered as a big advantage of the
SSAC algorithm.

Figure 8 and Figure 9 show how the length of the header overhead depends on m. If m increases, then

Fig. 8: Length of the compressed coding vectors in bits as a function of the number of packets in a
generation n for m=3 and m=4 in GF (16)

Fig. 9: Length of the compressed coding vectors in bits as a function of the number of packets in a
generation n for m=3 and m=4 in GF (256)

the length of the header overhead increases as presented in Figure 8 and Figure 9. The step of increasing
of the header overhead length in dependence on m is around 8 bits for the SSAC algorithm. On the other
hand, this step is significantly bigger for the algorithm based on error correcting codes.

V. CONCLUSIONS

In this paper we proposed the algorithm Small Set of Coefficients (SSAC). The SSAC achieves the
shortest header overhead in random linear network coding schemes compared to other approaches reported
in the literature. We compared the SSAC with RLNC and Error correcting codes. The header overhead
length with SSAC is 2 to 7 times shorter than the length achieved by these compression techniques.

We show that the header length does not depend on the size of the finite field where the operations are
performed, i.e., it just depends from the number of packets combined m.

As a future work we suggest the following: 1. To establish a precise empirical correlation between
the parameters m, n, k, q and the probability of finding solutions of the equation (2); 2. To improve the
efficiency of the algorithm SSAC by replacing the randomized search approach in Step 4 with a faster
direct algorithm for finding suitable w and x in equation (2); 3. To introduce and examine a realistic
metric of energy consumption in the source and intermediate nodes for producing and transmitting the
headers; and 4. To investigate the relation between the elements in the set |Q| and the efficiency of the
algorithm.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung. Network information flow. IEEE Transactions on Information Theory, 46(4):1204–
1216, 2000.

[2] Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds for sparse recovery. CoRR, abs/1106.0365, 2011.
[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates

for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 2 edition, 1994.
[4] Johannes Blmer, Richard Karp, and Emo Welzl. The rank of sparse random matrices over finite fields, 1997.
[5] Cheng-Chih Chao, Ching-Chun Chou, and Hung-Yu Wei. Pseudo random network coding design for IEEE 802.16m enhanced multicast

and broadcast service. In VTC Spring, pages 1–5. IEEE, 2010.
[6] S. Feizi, D.E. Lucani, C.W. Sorensen, A. Makhdoumi, and M. Medard. Tunable sparse network coding for multicast networks. In

Network Coding (NetCod), 2014 International Symposium on, pages 1–6, June 2014.
[7] Janus Heide, Morten Videbæk Pedersen, Frank H. P. Fitzek, and Muriel Médard. On code parameters and coding vector representation

for practical RLNC. In ICC, pages 1–5. IEEE, 2011.
[8] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong. A random linear network coding approach to multicast.

IEEE Transactions on Information Theory, 52(10):4413–4430, 2006.
[9] Ralf Koetter and Frank R. Kschischang. Coding for errors and erasures in random network coding. IEEE Transactions on Information

Theory, 54(8):3579–3591, 2008.
[10] Shizheng Li and Aditya Ramamoorthy. Improved compression of network coding vectors using erasure decoding and list decoding.

IEEE Communications Letters, 14(8):749–751, 2010.
[11] Zimu Liu, Chuan Wu, Baochun Li, and Shuqiao Zhao. UUSee: Large-scale operational on-demand streaming with random network

coding. In INFOCOM, pages 2070–2078. IEEE, 2010.
[12] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG: A tiny AGgregation service for ad-hoc sensor

networks. In OSDI 2002, pages 1–16, 2002.
[13] Payam Pakzad, Christina Fragouli, and Amin Shokrollahi. Coding schemes for line networks. In Proc. ISIT, 2005.
[14] Mahdi Jafari Siavoshani, Lorenzo Keller, Christina Fragouli, and Katerina J. Argyraki. Compressed network coding vectors. In ISIT,

pages 109–113. IEEE, 2009.
[15] Nikolaos Thomos and Pascal Frossard. Toward one symbol network coding vectors. IEEE Communications Letters, 16(11):1860–1863,

2012.

General Sub-packetized Access-Optimal Regenerating Codes
Katina Kralevska, Danilo Gligoroski, and Harald Øverby
IEEE Communications Letters, vol. 20, issue 7, pp. 1281-1284, 2016

99

Paper 4

General Sub-packetized Access-Optimal
Regenerating Codes

Katina Kralevska, Danilo Gligoroski, and Harald Øverby

Abstract

This paper presents a novel construction of (n, k, d = n−1) access-optimal regenerating codes for an arbitrary

sub-packetization level α for exact repair of any systematic node. We refer to these codes as general sub-packetized

because we provide an algorithm for constructing codes for any α less than or equal to r�
k
r � where k

r is not

necessarily an integer. This leads to a flexible construction of codes for different code rates compared to existing

approaches. We derive the lower and the upper bound of the repair bandwidth. The repair bandwidth depends on

the code parameters and α. The repair process of a failed systematic node is linear and highly parallelized, which

means that a set of �αr � symbols is independently repaired first and used along with the accessed data from other

nodes to recover the remaining symbols.

Index Terms- Minimum storage regenerating codes, sub-packetization, access-optimal

I. INTRODUCTION

Erasure coding is becoming an attractive technique for data protection since it offers the same level of
reliability with significantly less storage overhead compared to replication [1]. Apart from the reliability
and the storage overhead, there are other desirable features in a distributed storage system such as low
repair bandwidth and access-optimality. Repair bandwidth is the amount of transferred data during a repair
process. Access-optimality is achieved when the amount of accessed and transferred data during the repair
process is equal.

Dimakis et al. introduced regenerating codes that significantly reduce the repair bandwidth [2]. Under
an (n, k, d) regenerating code, a file of M symbols from a finite field Fq is divided into k fragments, each
of size α = M

k
symbols, which are further encoded into n fragments using an (n, k) MDS (Maximum-

Distance Separable) code. The parameter α, termed as a sub-packetization level of the code, represents
the minimum dimension over which operations are performed. The data from a failed node is recovered
by transferring β symbols from each d non-failed nodes. Thus, the repair bandwidth γ is equal to dβ
where α ≤ dβ � M . Dimakis et al. [2] showed the existence of minimum storage regenerating (MSR)
codes that attain the minimum storage point of the optimal tradeoff curve between the storage and the
repair bandwidth, i.e.,

(αMSR, γ
min
MSR) = (

M

k
,
M

k

n− 1

n− k
). (1)

The repair bandwidth is minimized when all d = n− 1 non-failed nodes transmit a fraction of 1/r of the
stored data.

Several exact repair MSR codes, which are characterized by the repaired data being exactly the same
as the lost data, have been suggested. Tamo et al. proposed optimal MSR codes for α equal to rk known
as zigzag codes [3]. Furthermore, they showed that α of access-optimal MSR codes for repair of any

systematic node is r
k
r [4]. The codes presented in [5] and [6] meet this condition. An essential condition

for the code construction in [6] is that m = k
r

has to be an integer m ≥ 1 where k is set to rm and α
to rm. Wang et al. constructed codes that optimally repair any systematic or parity node for α equal to

Manuscript received March 18, 2016; revised April 25, 2016; accepted April 25, 2016. Date of publication May 2, 2016; date of current
version July 8, 2016. The associate editor coordinating the review of this letter and approving it for publication was R. D. Souza. The
authors are with the Department of Telematics, NTNU, Norwegian University of Science and Technology, Trondheim 7491, Norway (e-mail:
katinak@item.ntnu.no; danilog@item.ntnu.no; haraldov@item.ntnu.no).

rk+1 [7]. High-rate MSR codes with a polynomial sub-packetization level are proposed in [8]. However,
our work focuses only on code constructions for optimal repair of any systematic node.

MSR codes are optimal in terms of storage, reliability and repair bandwidth, but not I/O. Implementing

MSR codes with a sub-packetization level of r
k
r may not be practical for storage systems that serve

applications with a large number of user requests or perform intensive computations. Thus, having an
algorithm for constructing MSR codes for any combination of n, k and α that are simultaneously optimal
in terms of storage, reliability, repair bandwidth and I/O is an important problem that is solved in this
work.

Our Contribution: This paper presents a novel construction of (n, k, d = n − 1) access-optimal
regenerating codes for an arbitrary sub-packetization level for exact repair of any systematic node.
The codes have the following properties: 1. MDS; 2. Systematic; 3. Flexible sub-packetization level;

4. Minimum repair bandwidth for every α including the lower bound (1) when α is r	
k
r

; 5. Access-

optimality; 6. Fast decoding. To the best of the authors’ knowledge, these are the first code constructions
for an arbitrary α. Motivated by the code construction in [6], we construct general codes where k

r
does

not need to be an integer and α is not exclusively equal to r
k
r . For instance, the code (14, 10) that is

deployed in the data-warehouse cluster of Facebook [9] is out of the scope of applicability with the current
proposals in [4]–[6], because k

r
= 2.5 is a non-integer. However, the presented algorithm constructs an

(14, 10, 13) code that reduces the repair bandwidth for any systematic node by 67.5% when α is r	
k
r

 = 64

compared to an (14, 10) RS code. The repair process is linear and highly parallelized.

II. A GENERAL (n, k, d = n− 1) CODE CONSTRUCTION

Consider a file of size M = kα symbols from a finite field Fq stored in k systematic nodes dj of
capacity α symbols.

We define a systematic MDS code in the following way: The basic data structure component is an

index array of size α × k where α ≤ r	
k
r

 and n = k + r, P = ((i, j))α×k. We use r such index arrays

P1, . . . , Pr. The elements pi,1, i = 1, . . . , α, in p1 are a linear combination only of the symbols with
indexes present in the rows of P1. In the initialization phase, additional �k

r
� columns with pairs (0, 0) are

added to P2, . . . , Pr. The goal of the algorithm is to replace those zero pairs with concrete (i, j) pairs
so that the code is access-optimal for a given sub-packetization level α. The value of α determines two
phases of the algorithm. In the first phase, the indexes (i, j) that replace the (0, 0) pairs are chosen such
that both Condition 1 and Condition 2 are satisfied (defined further in this section). The first phase starts
with a granulation level parameter called run that is initialized with the value �α

r
�. This parameter affects

how the indexes (i, j) are chosen and with every round the granulation level decreases by a factor r. Once
the granulation level becomes equal to 1 and there are still (0, 0) pairs that have to get some value (i, j),
the second phase starts where the remaining indexes are chosen such that only Condition 2 is satisfied.

A high level description of the proposed algorithm is given in Alg. 1, while a detailed one in Alg. 2.

Algorithm 1 High level description of an algorithm for generating general sub-packetized, access-optimal
regenerating codes

1: Initialize the index arrays P1, . . . , Pr;

2: # Phase 1

3: Set the granulation level run← �αr �
4: repeat
5: Replace (0, 0) pairs with indexes (i, j) such that both

Condition 1 and Condition 2 are satisfied;
6: Decrease the granulation level run by a factor r.

7: until the granulation level run > 1
8: # Phase 2

9: If there are still (0, 0) indexes that have to get some value (i, j), choose them such that only Condition 2 is satisfied;

10: Return the index arrays P1, . . . , Pr;

Once the index arrays P1, . . . , Pr are determined, the symbols pi,l in the parity nodes, 1 ≤ i ≤ α and
1 ≤ l ≤ r, are generated as a combination of the elements aj1,j2 where the pair (j1, j2) is in the i-th row
of the index array Pl, i.e.,

pi,l =
∑

cl,i,jaj1,j2 . (2)

The linear relations have to guarantee an MDS code, i.e., to guarantee that the entire information can be
recovered from any k nodes (systematic or parity). We use the following terms and variables:

Algorithm 2 Algorithm to generate the index arrays
Input: n, k, α;
Output: Index arrays P1, . . . , Pr.

1: Initialization: P1, . . . , Pr are initialized as index arrays P = ((i, j))α×k;

2: Append �kr � columns to P2, . . . , Pr all initialized to (0, 0);
3: Set portion← �αr �;
4: Set V alidPartitions← ∅;
5: Set j ← 0;

6: # Phase 1

7: repeat
8: Set j ← j + 1;

9: Set ν ← � jr �;
10: Set run← � α

rν �;
11: Set step← �αr � − run;

12: Ddj
= V alidPartitioning(V alidPartitions, k, r,

portion, run, step, Jν);
13: Set V alidPartitions = V alidPartitions ∪ Ddj ;

14: Determine one Dρ,dj ∈ Ddj such that its elements

correspond to row indexes in the (k + ν)-th column

in one of the arrays P2, . . . , Pr, that are all zero pairs

(0, 0);
15: The indexes in Dρ,dj

are the row positions where the

pairs (i, j) with indexes i ∈ D \ Dρ,dj
are assigned in

the (k + ν)-th column of P2, . . . , Pr;

16: until (run > 1) AND (j
= 0 mod r)
17: # Phase 2

18: while j < k do
19: Set j ← j + 1;

20: Set ν ← � jr �;
21: Set run← 0;

22: Ddj
= V alidPartitioning(V alidPartitions, k, r,

portion, run, step, Jν);
23: Set V alidPartitions = V alidPartitions ∪ Ddj

;

24: Determine one Dρ,dj
∈ Ddj

such that its elements

correspond to row indexes in the (k + ν)-th column

in one of the arrays P2, . . . , Pr, that are all zero pairs

(0, 0);
25: The indexes in Dρ,dj are the row positions where the

pairs (i, j) with indexes i ∈ D \ Dρ,dj
are assigned in

the (k + ν)-th column of P2, . . . , Pr;

26: end while
27: Return P1, . . . , Pr.

• The set Nodes = {d1, . . . , dk} of k systematic nodes is partitioned in �k
r
� disjunctive subsets

J1, J2, . . . , J	 k
r

 where |Jν | = r (if r does not divide k then J	 k

r

 has k mod r elements) and

Nodes = ∪	
k
r

ν=1Jν . In general, this partitioning can be any random permutation of k nodes. Without

loss of generality we use the natural ordering as follows: J1 = {d1, . . . , dr}, J2 = {dr+1, . . . , d2r},
. . . , J	 k

r

 = {d� k

r
�×r+1, . . . , dk}.

• Each node dj consists of an indexed set of α symbols {a1,j, a2,j, . . . , aα,j}.
• portion = �α

r
�: The set of all symbols in dj is partitioned in disjunctive subsets where at least one

subset has portion number of elements.
• run = � α

rν
�, for values of ν ∈ {1, . . . , �k

r
�}.

• step = �α
r
�− run: For the subsequent (k+ ν)-th column, where ν ∈ {1, . . . , �k

r
�}, the scheduling of

the indexes corresponding to the nodes in Jν is done in subsets of indexes from a valid partitioning.
• A valid partitioning Ddj = {D1,dj , . . . , Dr,dj} of a set of indexes D = {1, . . . , α}, where the i−th

symbol in dj is indexed by i in D, is a partitioning in r disjunctive subsets Ddj = ∪r
ρ=1Dρ,dj . If r

divides α, then the valid partitioning for all nodes in Jν is equal. If r does not divide α, then the
valid partitioning has to contain at least one subset Dρ,dj with portion elements that correspond to
the row indexes in the (k + ν)-th column in one of the arrays P2, . . . , Pr that are all zero pairs.

• Condition 1: At least one subset Dρ,dj has portion elements with runs of run consecutive elements
separated with a distance between the indexes equal to step. The elements of that subset correspond
to the row indexes in the (k+ν)-th column in one of the arrays P2, . . . , Pr that are all zero pairs. The
distance between two elements in one node is computed in a cyclical manner such that the distance
between the elements aα−1 and a2 is 2.

• Condition 2: A necessary condition for the valid partitioning to achieve the lowest possible repair
bandwidth is Ddj1

= Ddj2
for all dj1 and dj2 in Jν and Dρ,dj1

= Dρ,dj2
for all dj1 and dj2 systematic

nodes in the system. If portion divides α, then Dρ,dj for all dj in Jν are disjunctive, i.e., D =
∪r
j=1Dρ,dj = {1, . . . , α}.

Algorithm 3 V alidPartitioning
Input:V alidPartitions, k, r, portion, run, step, Jν ;
Output: Ddj = {D1,dj , . . . , Dr,dj}.

1: Set D = {1, . . . , α};
2: if run
= 0 then
3: Find Ddj that satisfies Condition 1 and Condition 2;

4: else
5: Find Ddj

that satisfies Condition 2;

6: end if
7: Return Ddj ;

Alg. 4 shows the repair of a systematic node where the systematic and the parity nodes are global

variables. A set of �α
r
� symbols is accessed and transferred from each n−1 non-failed nodes. If α
= r	

k
r

,

then additional elements may be required as described in Step 4. Note that a specific element is transferred
just once and stored in a buffer. For every subsequent use of that element, the element is read from the
buffer and further transfer operation is not required. The repair process is highly parallelized, because a
set of �α

r
� symbols is independently and in parallel repaired in Step 2 and then the remaining symbols

are recovered in parallel in Step 5.
Proposition 1: The repair bandwidth for a single systematic node γ is bounded between the following

lower and upper bounds:

(n− 1)

r
≤ γ ≤ (n− 1)

α
�α
r
�+ (r − 1)

α
�α
r
��k

r
�. (3)

Proof: Note that we read in total k�α
r
� elements in Step 1 of Alg. 4. Additionally, (r−1)�α

r
� elements

are read in Step 3. Assuming that we do not read more elements in Step 4, we determine the lower bound

as k�α
r
�+ (r− 1)�α

r
� = (n− 1)�α

r
� elements, i.e., the lower bound is

(n−1)
α
�α
r
� (since every element has

Algorithm 4 Repair of a systematic node dl
Input: l;
Output: dl.

1: Access and transfer (k − 1)�αr � elements ai,j from all k − 1 non-failed systematic nodes and �αr � elements pi,1 from p1
where i ∈ Dρ,dl

;

2: Repair ai,l where i ∈ Dρ,dl

3: Access and transfer (r − 1)�αr � elements pi,j from p2, . . . , pr where i ∈ Dρ,dl
;

4: Access and transfer from the systematic nodes the elements ai,j listed in the i−th row of the arrays P2, . . . , Pr where

i ∈ Dρ,dl
that have not been read in Step 1;

5: Repair ai,l where i ∈ D \Dρ,dl
;

Fig. 1: An MDS array code with 3 systematic and 2 parity nodes for α = 4. The elements presented in
colors are scheduled as additional elements in p2.The coefficients are from F16 with irreducible

polynomial x4 + x3 + 1.

a size of 1
α

). To derive the upper bound, we assume that we read all elements ai,j from the extra �k
r
�

columns of the arrays P2, . . . , Pr in Step 4. Thus, the upper bound is
(n−1)

α
�α
r
�+ (r−1)

α
�α
r
��k

r
�.

The optimality of the proposed code construction is captured in the following Proposition.
Proposition 2: If r divides α, then the indexes (i, j) of the elements ai,j where i ∈ D \ Dρ,dj for

each group of r systematic nodes are scheduled in one of the �k
r
� additional columns in the index arrays

P2, . . . , Pr.
Next we show that there always exists a set of non-zero coefficients from Fq in the linear combinations
so that the code is MDS. We adapt Theorem 4.1 from [6] as follows:

Theorem 1: There exists a choice of non-zero coefficients cl,i,j where l = 1, . . . , r, i = 1, . . . , α and
j = 1, . . . , k from Fq such that the code is MDS if q ≥ (

n
k

)
rα.

Proof: The system of linear equations in (2) defines a system of r × α linear equations with k × α
variables. A repair of one failed node is given in Alg. 4, but for the sake of this proof, we explain the
repair by discussing the solutions of the system of equations. When one node has failed, we have an
overdefined system of r × α linear equations with α unknowns. In general this can lead to a situation
where there is no solution. However, since the values in system (2) are obtained from the values of the
lost node, we know that there exists one solution. Thus, solving this system of r × α linear equations
with an overwhelming probability gives a unique solution, i.e., the lost node is recovered. When 2 nodes
have failed, we have a system of r× α linear equations with 2α unknowns. The same discussion for the
overdefined system applies here. The most important case is when r = n − k nodes have failed. In this
case, we have a system of r × α linear equations with r × α unknowns. If the size of the finite field Fq

is large enough, i.e., q ≥ (
n
k

)
rα, as it is shown in Theorem 4.1 in [6], the system has a unique solution,

i.e., the file M can be collected from any k nodes.

III. CODE EXAMPLES

Let us take the (5, 3, 4) code. We show a code construction for the optimal sub-packetization level

α = 2	
3
2

 = 4.

The following requirements have to be satisfied for the code to be an access-optimal MDS code that
achieves the lower bound of the repair bandwidth for any systematic node:

• M = kα = 12 symbols,
• Repair a failed systematic node by accessing and transferring �α

r
� = 2 symbols from the remaining

d = 4 nodes,
• Reconstruct the data from any 3 nodes.

The systematic nodes d1, d2, d3 and the parity nodes p1, p2 are shown in Fig. 1. The file size is 12
symbols, where each node stores α = 4 symbols. The elements of p1 are linear combinations of the row
elements from the systematic nodes multiplied by coefficients from F16. The elements of p2 are obtained
by adding extra symbols to the row sum. We next show the scheduling of an element ai,j from a specific
dj where i ∈ D \ Dρ,dj at portion = 2 positions in the i-th row, i ∈ Dρ,dj , and the (3 + ν)-th column,
ν = 1, 2, of P2. We follow the steps in Alg. 2 and give a brief description:
1. Initialize P1 and P2 as arrays P = ((i, j))4×3.
2. Append additional 2 columns to P2 initialized to (0, 0).
3. Set portion = 2 and V alidPartitions = ∅ .
4. For the nodes d1, d2 that belong to J1, run is equal to 2 and step to 0. While run is equal to 1 and
step to 1 for the node d3 that belongs to J2.
5. Alg. 3 gives Dd1 = {{1, 2}, {3, 4}}. Following step 14 in Alg. 2, the first 2 zero pairs in the 5-th column
of P2 with 0 distance between them are at the positions (i, 5) where i = 1, 2. Thus, Dρ,d1 = {1, 2}. We
follow the same logic to obtain Dρ,d2 = {3, 4} and Dρ,d3 = {1, 3}. Next we schedule the elements of dj
with i indexes that are not elements of Dρ,dj (represented in colors in Fig. 1) in the i−th row of P2 where
i ∈ Dρ,dj . The i−th index of a3,1 and a4,1 does not belong to Dρ,d1 so these elements are scheduled at
the positions (1, 5) and (2, 5) of P2. We add the elements a1,2, a2,2 from d2 in the 3-rd and the 4-th row
respectively, while we add the elements a2,3 and a4,3 from d3 in the 1-st and 3-rd row respectively. The
symbols in the parity nodes are obtained as linear combinations of the row elements in the parity arrays.
For instance, p1,2 is a linear combination of the elements in the first row from all systematic nodes, a3,1
and a2,3.

We next show how to repair the node d1 following Alg. 4. First, we repair the elements a1,1, a2,1. Thus,
we access and transfer a1,2, a2,2, a1,3 and a2,3 from d2 and d3 and p1,1, p2,1 from p1. In order to recover
a3,1, a4,1, we need to access and transfer p1,2 and p2,2 from p2. Hence, the data from d1 is recovered by
accessing and transferring in total 8 elements from 4 non-failed nodes. Exactly the same amount of data,
8 symbols, is needed to repair d2 or d3. Thus, the average repair bandwidth, defined as the ratio of the
total repair bandwidth to repair all systematic nodes to the file size M , is equal to 2 symbols.

A. Performance Analysis
Another code discussed in this section is (14, 10, 13) with different α. Fig. 2 shows the relation between

the average repair bandwidth and α. For an RS code, α is 1 and the average repair bandwidth is equal
to the file size. A Hitchhiker code [9] for α = 2 reduces the repair bandwidth by 35% compared to the
RS code. The remaining values of the average repair bandwidth are for the codes constructed with the
algorithms presented in Section II. We observe that the lower bound of the repair bandwidth that is 3.25

is achieved for α = r	
k
r

 = 64. As we can see the repair bandwidth decreases as α increases.

IV. CONCLUSIONS

We presented a general construction of access-optimal regenerating codes that reach the lower bound

of the repair bandwidth for α = r	
k
r

, while the repair bandwidth is as close as possible to the lower

bound when α < r	
k
r

. The repair process of a systematic node is linear and highly parallelized.

Fig. 2: Average repair bandwidth for any systematic node for different sub-packetization levels α for an
(14, 10, 13) code

REFERENCES

[1] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A quantitative comparison,” in Proc. 1st Int. Workshop on Peer-
to-Peer Systems, 2002, pp. 328–338.

[2] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sept. 2010.

[3] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: Mds array codes with optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3, pp.
1597–1616, March 2013.

[4] I. Tamo, Z. Wang, and J. Bruc, “Access vs. bandwidth in codes for storage,” in Proc. IEEE Int. Symp. Inf. Theory, 2012, pp. 1187–1191.
[5] V. R. Cadambe, C. Huang, J. Li, and S. Mehrotra, “Polynomial length mds codes with optimal repair in distributed storage,” in Proc.

45th Asilomar Conf. Signals, Syst., Comp., 2011, pp. 1850–1854.
[6] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, “An alternate construction of an access-optimal regenerating code with optimal sub-

packetization level,” in Proc. 21st Nat. Conf. Comm., 2015, pp. 1–6.
[7] Z. Wang, I. Tamo, and J. Bruck, “On codes for optimal rebuilding access,” in Proc. 49th Annual Allerton Conf. Comm., Control, Comp.,,

2011, pp. 1374–1381.
[8] B. Sasidharan, G. K. Agarwal, and P. V. Kumar, “A high-rate msr code with polynomial sub-packetization level,” in Proc. IEEE Int.

Symp. Inf. Theory, 2015, pp. 2051–2055.
[9] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchandran, “A ”hitchhiker’s” guide to fast and efficient data

reconstruction in erasure-coded data centers,” in Proc. ACM SIGCOMM Conf., 2014, pp. 331–342.

HashTag Erasure Codes: From Theory to Practice
Katina Kralevska, Danilo Gligoroski, Rune E.Jensen, and Harald Øverby
Submitted to IEEE Transactions on Big Data

109

Paper 5

HashTag Erasure Codes: From Theory to Practice

Katina Kralevska, Danilo Gligoroski, Rune E. Jensen, and Harald Øverby

Abstract

Erasure coding has been increasingly deployed as an alternative to data-replication for fault-tolerance in

distributed-storage systems. Conventional erasure codes such as Reed-Solomon provide savings in the storage

space, but at the cost of higher repair bandwidth and more complex computations than replication. Minimum-

Storage Regenerating (MSR) codes have emerged as a viable alternative to Reed-Solomon codes as they minimize

the repair bandwidth while still being optimal in terms of reliability and storage overhead. Although several MSR

code constructions exist, so far they have not been practically implemented. One of the main reasons for their

practical abandonment is that existing MSR code constructions imply much bigger number of I/O operations than

RS codes.

In this paper, we analyze high-rate MDS codes that are simultaneously optimal in terms of storage, reliability,

I/O operations and repair-bandwidth for single and multiple failures of the systematic nodes. The codes were

recently introduced in [1] without any specific name. Due to the resemblance between the hashtag sign # and the

procedure of the construction of these codes, we call them here HashTag Erasure Codes (HTECs).
HTECs provide the lowest data-read and data-transfer for an arbitrary sub-packetization level α where α ≤

r

⌈
k
r

⌉
among all existing solutions for distributed storage. The repair process is linear and highly parallel. Addi-

tionally, we show that HTECs are the first high-rate MDS codes that reduce the repair bandwidth for more than

one failure.

Index Terms

Distributed storage, MDS erasure codes, sub-packetization, access-optimal, I/O, single and multiple failures.

I. INTRODUCTION

ERASURE coding has become a viable alternative to replication as it provides the same level of
reliability with significantly less storage overhead [2]. When replication is used, the data is available

as long as at least one copy still exists. The storage overhead of storing one extra replica is 100%, while it
is 200% for 2 replicas and so forth. Therefore, replication is not suitable for large-scale storage systems.
Its high storage overhead implies a high hardware cost (disk drives and associated equipment), as well as
high operational costs that include building space, power, cooling, maintenance, etc.

Compared to replication, traditional erasure codes reduce the storage overhead, but at a higher repair cost
that is expressed through a high repair bandwidth (the amount of data transferred during the repair process),
excessive input and output operations (I/Os) and expensive computations. Practical implementations of
erasure codes in distributed storage systems such as Google File System (GFS) [3] and Hadoop Distributed
File System (HDFS) [4] require the erasure codes to be Maximum Distance Separable (MDS), high-rate
and repair-efficient. Two primary metrics that determine the repair efficiency of a code are the amount of
accessed data (data-read) from the non-failed nodes and the amount of transferred data (repair bandwidth).
We are interested in codes where these two metrics are minimized and equal at the same time. The amount
of data transferred characterizes the network usage, while the accessed data corresponds to disk I/O
operations. The number of I/Os is an important parameter in storage systems especially for applications
that serve a large number of user requests or perform data intensive computations where I/Os are becoming
the primary bottleneck. There are two main types of I/Os: sequential and random operations. Sequential

K. Kralevska, D. Gligoroski and H. Øverby are with the Department of Telematics, NTNU, Norwegian University of Science and
Technology, Trondheim 7491, Norway. E-mail: {katinak, danilog, haraldov}@item.ntnu.no.

R. E. Jensen is with the Department of Computer and Information Science, NTNU, Norwegian University of Science and Technology,
Trondheim 7491, Norway. E-mail: runeerle@idi.ntnu.no.

operations access locations on the storage device in a contiguous manner, while random operations access
locations on the storage device in a non-contiguous manner.

Reed-Solomon (RS) codes [5] are a well-known representative of traditional MDS codes. Under an
(n, k) RS code, a file of M symbols is stored across n nodes with equal capacity of M

k
symbols. The

missing/unavailable data from one node can be recovered from any k out of n nodes. Thus, a transfer of
k × M

k
= M (the whole file of M symbols) is needed in order to repair 1

k
of the file. RS codes tolerate

up to n− k failures without any permanent data-loss. In general, the repair bandwidth and the number of
I/Os are k times higher with RS codes than with replication. During the reconstruction process with RS
codes, the entire data from k nodes has to be read and hence trivially, the reads are sequential.

A powerful class of erasure codes that optimizes for storage and repair bandwidth costs has been
proposed in [6]. Minimum Bandwidth Regenerating (MBR) codes are optimal in terms of the repair
bandwidth, while Minimum Storage Regenerating (MSR) codes in terms of the storage. MSR codes possess
all properties of MDS codes, giving an additional advantage of efficient repair consuming minimum
possible bandwidth. The repair bandwidth for a single failure is lower bounded by [6]:

γmin
MSR ≤

M

k

n− 1

n− k
. (1)

The length of the vector of symbols that a node stores in a single instance of the code determines the
sub-packetization level α. The data from a failed node is recovered by transferring β symbols where
β < α from each of d non-failed nodes called helpers. Thus, the repair bandwidth γ is equal to dβ where
α ≤ dβ �M . The repair bandwidth for a single failure is minimized when a fraction of 1

r
= 1

n−k of the
stored data in all d = n−1 helpers is transmitted (Eq.1). MDS codes that achieve the minimum bandwidth
are called access-optimal codes. However, for these codes, the access operations are in a non-contiguous
manner, meaning that the number of I/Os can be several orders of magnitude greater than with RS codes.
Working with a large sub-packetization level increases enormously the I/Os, and hence it has a negative
impact on the speed of repair, the encoding throughput, the CPU utilization, the data availability etc.
Consequently, implementing MSR codes in distributed storage systems can be quite complex and due to
high number of I/Os can result in poor system performance.

MSR codes optimize only the bandwidth for a single failure. Although single failures are dominant
[7], multiple node failures are often correlated and co-occurring in practice [8], [9]. Thus, we believe that
for a successful and generally accepted practical implementation of erasure codes in distributed storage
systems it is necessary to have MDS erasure codes that provide low repair bandwidth and low number of
I/Os for arbitrary sub-packetization levels for single and multiple failures.

A. Our Contribution
In this paper, we study both the theoretical and the practical aspects of the explicit construction of

general sub-packetized erasure codes that was recently introduced in [1]. Since the codes, upon their
definition were presented without any specific name, for easier referencing we call them here HashTag
Erasure Codes (HTECs) due to the resemblance between the hashtag sign # and the procedure of their
construction. HTECs are simultaneously optimal in terms of storage, reliability and repair bandwidth and
in this paper we study their I/O performance. We also study their recovery properties not just for single
failures of the systematic nodes but also for multiple failures of the systematic nodes.

The first contribution of this paper is that we analyze many concrete instances of HTECs. HTEC
construction is an explicit construction of MDS codes for an arbitrary sub-packetization level α. We show
that the bandwidth savings for a single failure compared to RS codes [5] can be up to 60% and compared
to Piggyback codes [10] can be up to 30%. We also show that for double failures, the codes still achieve
repair bandwidth savings of 20% compared to RS codes. The code construction is general and works
for any combination of n, k and α even when r is not a divisor of k. HTECs are access-optimal codes

for α = r

⌈
k
r

⌉
. For all other values of α, HTECs achieve all points that lie from the MSR point to the

MBR

MSR EC

Repair bandwidth γ

S
to

ra
g
e
α

Fig. 1. Regenerating codes (MSR and MBR) offer performance improvement compared to conventional erasure coding (EC). We propose
explicit constructions of MDS codes (codes that lie on the curve from MSR codes to EC).

RS erasure code (EC) point on the optimal trade-off curve between the storage and the repair bandwidth
shown in Fig. 1.

Our second contribution is that we elaborate the correlation between the repair bandwidth and the I/Os
in terms of α. While large values of α guarantee low average repair bandwidth, they inevitably increase
the system I/Os (especially the number of random access operations) that has an impact on the repair
speed, the overall latency of the recovery operation, the throughput, CPU utilization etc. That means that
large values of α create I/O bottlenecks. From this perspective HTECs can be constructed for various
values of α, hence they address one crucial practical engineering problem: how to identify the values of
α that give optimal overall system performance. We show that all k systematic nodes are clustered in
subsets of r nodes (with the exception of the last subset that can have less than r nodes). Then, we prove
that there is one subset that can be repaired with n− 1 random reads. Further on, for all other subsets of
r nodes the discontiguity increases sequentially.

Our third contribution is a deeper scrutiny of the repair process with HTECs. In general, the repair

process for a single failure is linear and highly parallel. This means a set of
⌈
α
r

⌉
symbols is independently

repaired first and used along with the accessed data from other nodes to repair the remaining symbols
of the failed node. We show that HTECs have one extra beneficial feature compared to RS codes: the
amount of accessed and transferred data when multiple failures occur is less than RS codes. The main
idea when recovering from multiple failures is to access and transfer the same data from the helpers as
would have been done under a recovery from a single failure of the systematic nodes. To the best of our
knowledge, HTECs are the first codes in the literature that offer bandwidth savings when recovering from
multiple failures for any code parameters including the high-rate regime.

B. Paper Outline
The rest of the paper is organized as follows. Section II reviews the state-of-the-art for MDS erasure

codes for distributed storage. Section III provides the mathematical preliminaries about HTECs and
their properties. Section IV shows different code examples constructed with the algorithms from the
previous Section. An algorithm for I/O optimization is presented in Section V. A comparison between the
performance with HTECs and other codes in the literature is given in Section VI. Section VII discusses
open issues, and finally, Section VIII concludes the paper.

II. RELATED WORKS

There has been a considerable amount of work in the area of erasure codes for efficient repair in
distributed storage. We only review the most relevant literature on exact repair codes, since HTECs

TABLE I
COMPARISON OF EXPLICIT MDS CODES

Code construction MDS k, r supported Sub-packetization level Optimized for t failures

High-rate MSR [11] Y r = k
m
,m ≥ 1 r

k
r t = 1

MSR over small fields [12] Y r = 2, 3 r
k
r t = 1

Product-Matrix MSR [13] Y r ≥ k − 1 r t = 1
Piggyback 1 [10] Y All 2m, m ≥ 1 t = 1
Piggyback 2 [10] Y r ≥ 3 (2r − 3)m, m ≥ 1 t = 1
Rotated RS [14] Y r ∈ {2, 3}, k ≤ 36 2 t = 1

EVENODD, RDP [15], [16] Y r = 2 k t = 1
MSCR [17] Y r = k r 2 ≤ t ≤ r
CORE [18] Y r = k r 1 ≤ t ≤ r

HashTag Erasure Codes (HTEC) Y All 2 ≤ α ≤ r

⌈
k
r

⌉
1 ≤ t ≤ r

analyzed in this paper belong to the class of exact repair codes where the reconstructed data is exactly
the same as the lost data.

In [19], high-rate (n, k = n − 2, d = n − 1) MSR codes using Hadamard designs for optimal
repair of both the systematic and parity nodes were constructed. The work also presented a general
construction for optimal repair only of the systematic nodes for a sub-packetization level α of rk. Codes
for optimal systematic-repair for the same sub-packetization level appeared in [20] and [21]. The work
was subsequently extended in [22] to include optimal repair of parity nodes.

Furthermore, the work in [23] showed that the required sub-packetization level α of access-optimal MSR

codes for repair of any systematic node is α = r
k
r . Few code constructions for optimal systematic-repair

for α = r
k
r followed in the literature. In [24], Cadambe et al. proposed a high-rate MSR construction that

is not explicit and requires a large field size. Later, an alternate construction of access-optimal MSR codes
with a sub-packetization level of α = rm where m = k

r
was presented in [11]. An essential condition for

the code construction in [11] is that m = k
r

has to be an integer m ≥ 1 where k is set to rm and α to rm.

Explicit access-optimal systematic-repair MSR codes over small finite fields for α ≥ r
k
r were presented

in [12]. However, these codes are limited for r = 2, 3.
Although the aforementioned constructions achieve the lower bound of the repair bandwidth for a single

failure, as far as we know, they have not been practically implemented in real-world distributed storage
systems. There are at least two practical reasons for that: either MSR codes require encoding/decoding
operations over an exponentially growing finite field or the sub-packetization level α increases exponen-
tially. Practical scenarios [25]–[27] showed that a good erasure code has to provide a satisfactory tradeoff
between the system-level metrics such as storage overhead, reliability, repair bandwidth and I/Os. One
way to achieve a good system tradeoff is to work with small sub-packetization levels.

Piggyback codes [10] are a good example of practical MDS codes with small sub-packetization levels.
The basic idea of the piggyback framework is to take multiple instances of an existing code and add
carefully designed functions of the data from one instance to another. Piggyback codes have better repair
bandwidth performance than Rotated-RS [14], EVENODD [15] and RDP codes [16]. Rotated-RS codes
exist only for r ∈ {2, 3} and k ≤ 36, while EVENODD and RDP codes exist only for r = 2. In [27],
Rashmi et al. reported 35% bandwidth savings for an (14, 10) code with α = 2 when repairing a systematic
node compared to an (14, 10) RS code. The code construction [1] studied in this paper offers up to 67.5%

bandwidth savings during repair of a single systematic node of an (14, 10) code for α equal to r

⌈
k
r

⌉
= 64.

Another way to provide good overall system performance is to optimize in terms of I/Os while still
retaining the storage and bandwidth optimality. An algorithm that transforms Product-Matrix-MSR codes
[13] into I/O optimal codes (termed PM-RBT codes) was presented in [28]. However, PM-RBT exist only
for r ≥ k − 1, i.e., the codes have low rates.

All MDS erasure codes discussed in the previous paragraphs are for optimal repair of a single node
failure. Next we review codes that outperform MSR codes when multiple failures happen.

A cooperative recovery mechanism in the minimum-storage regime for repairing from multiple failures
was proposed in [29], [30]. Minimum Storage Collaborative Regenerating (MSCR) codes minimize the
repair bandwidth while still keeping the MDS property by allowing new nodes to download data from
the non-failed nodes and the new nodes to exchange data among them. The repair bandwidth for MSCR
codes under functional repair was derived independently in [29], [31]. The existence of a random linear
strong-MDS code under the assumption that the operations are in a sufficiently large finite field was
showed in [29]. The codes attain the MSR point but the decoding complexity is quite expensive. Adaptive
regenerating codes where the numbers of failed and surviving nodes change over time were proposed in
[31].

The authors in [32] showed that it is possible to construct exact MSCR codes for optimal repair of two
failures directly from existing exact MSR codes. MSCR codes that cooperatively repair any number of
systematic nodes and parity nodes or a combination of one systematic and one parity node were presented
in [17]. However, the code rate of these codes is low (n = 2k). A study about the practical aspects of
codes with the same code rate (n = 2k) in a system called CORE that supports multiple node failures can
be found in [18]. There is no explicit construction of high-rate MDS codes for exact repair of multiple
failures at the time of writing of this paper.

Table I compares different explicit codes designed for efficient repair, with respect to whether they are
MDS or not, the parameters they support, the sub-packetization level and for how many failures the codes
are optimized.

III. MATHEMATICAL PRELIMINARIES

Let us first give a list of major notations used in the paper:
n total number of nodes
k number of systematic nodes
r number of parity nodes
d number of non-failed nodes (helpers)
t number of failures, 1 ≤ t ≤ r
di the i-th systematic node, 1 ≤ i ≤ k
pi the i-th parity node, 1 ≤ i ≤ r
M size of the original data
α sub-packetization level
β data transferred from a node
γ data accessed and transferred per node repair.

We consider only systematic codes where k nodes store the data without encoding it. We refer to these
nodes as systematic nodes and the remaining r = n− k nodes are called parity nodes.

MDS codes are optimal with respect to the storage-reliability tradeoff, because they offer maximum
fault tolerance (r arbitrary failures) for the storage overhead consumed.

Dimakis et al. introduced the repair bandwidth as a new parameter of optimality for storage codes [6].
MDS codes that achieve the lower bound of the repair bandwidth are termed optimal with respect to
the storage-bandwidth tradeoff. MSR codes are optimal with respect to the both storage-reliability and
storage-bandwidth tradeoff.

In addition to the parameters n and k, MSR codes are associated with the parameters d (number of
helpers) and α (sub-packetization level). In general, attaining the lower bound of the repair bandwidth
requires an exponential increase of the finite field size that significantly increases the computational cost
and the number of blocks α that the data is split in grows exponentially.

Accessing and transferring many small blocks of data increases enormously the degree of discontiguity
and forfeits the potential disk I/O savings during data reconstruction.

Fig. 2. Amount of accessed and transferred data for reconstruction of the systematic node d1 for an (9,6) RS code, an (9, 6) access-optimal
HTEC for α = 9 and an (9, 6) HTEC for α = 6. The systematic nodes are represented in red and the parity nodes in blue.

We have already presented some general properties about RS and MSR codes in Section I. We illustrate
them with examples in the next two subsections and motivate the need for HTECs.

A. An Example with Reed-Solomon Codes
Let us consider the following example with a RS code for k = 6 and r = 3. The storage overhead

is 50% and the code can recover from up to 3 failures. Fig. 2a depicts the storage of a file of 54MB
across 9 nodes where each node stores 9MB. It also illustrates the reconstruction of node d1 from nodes
d2, . . . , d6 and p1. In order to reconstruct 9MB of unavailable data, 6 × 9MB=54MB are read from 6
nodes and transferred across the network to the node performing the decoding computations. The same
amount of data (54MB) is needed to repair from up to 3 node failures. The number of random reads for
this example is 6, because data is read in a contiguous manner from 6 different locations.

B. Two Examples with HashTag Erasure Codes
The first construction of HTECs appeared in [1] (although without their name HashTag Erasure Codes).

They are MSR codes when α = r

⌈
k
r

⌉
and d = n − 1. Hence, the generality of HTECs is that any code

parameters are supported even when k
r

is a non-integer and α can be an arbitrary value. Note that such
a flexible construction is not present in the proposals published in [11], [23], [24].

First we illustrate the performance improvement with an (9, 6) access-optimal HTEC for α = 9 and
d = 8 compared to an (9, 6) RS code. The bandwidth to repair any systematic node is reduced by
55.6% compared to an (9, 6) RS code. The reconstruction of node d1 is illustrated in Fig. 2b. In order to
reconstruct the data from d1, 1/3 of the stored data from all 8 helpers is accessed and transferred, hence
the repair bandwidth is only 24MB compared to 54MB with RS. HTECs achieve the minimum repair
bandwidth given in Eq. 1 when α = 9. Contacting 8 nodes when recovering a single failure increases the
number of seek operations and random I/Os.

One way to reduce the number of random I/Os is to decrease α. The code presented in Fig. 2c is
for α = 6 where the reconstruction of d1 is shown. Namely, 3MB are accessed and transferred from
d2, d3, d6, p1, p2 and p3, while 4.5MB from d4 and d5. Thus, the repair bandwidth for d1 is 27MB. The
same amount of data is needed to repair d3, d4 and d6, while 30MB of data is needed to repair d2 and d5.
The average repair bandwidth, defined as the ratio of the total repair bandwidth to repair all systematic
nodes to the file size, for the systematic nodes is 28MB. Implementing an erasure code with α = 6 is
simpler than with α = 9 and it still provides bandwidth savings compared to 54MB with RS (and it is
slightly more than 24MB with the MSR code for α = 9). The big savings that come from the bandwidth
reduction are evident when storing petabytes of data.

C. Definition of HashTag Erasure Codes
The general algorithm introduced in [1] offers a rich design space for constructing HTECs for various

combinations of k systematic nodes, r parity nodes (so the total number of nodes is n = k + r), and
sub-packetization levels α. In this subsection, we give a high level description of the algorithm for HTEC
construction in Alg. 1.

As a general notation we say that a systematic node dj , where 1 ≤ j ≤ k, consists of α symbols

{a1,j, a2,j, . . . , aα,j}. The set N = {d1, . . . , dk} of k systematic nodes is partitioned in
⌈
k
r

⌉
disjunctive

subsets J1, J2, . . . , J⌈
k
r

⌉ where |Jν | = r (if r does not divide k then J⌈
k
r

⌉ has k mod r elements) and

N = ∪
⌈

k
r

⌉
ν=1 Jν .

The basic idea for how to obtain the linear dependencies for the r parity nodes can be described as
setting up r grids where the α symbols of each systematic node are represented as columns in that grid,
and where the linear dependencies for the α symbols of the parity nodes are obtained from the rows
of that grid. The name HashTag Erasure Codes comes from their resemblance with the popular hashtag
sign #. In other words, the basic data structure component for construction of HTECs is an index array

P = ((i, j))α×k of size α × k where α ≤ r

⌈
k
r

⌉
. The elements pi,1, i = 1, . . . , α, in p1 are a linear

combination only of the symbols with indexes present in the rows of P1. Actually, in Step 1 of the

initialization phase r such arrays are constructed. Then, in Step 2 additional
⌈
k
r

⌉
columns with pairs

(0, 0) are added to P2, . . . , Pr.
In the next steps of Alg. 1, the zero pairs are replaced with concrete (i, j) pairs so that the repair

bandwidth is minimized for a given sub-packetization level α. The values of α and k determine two
phases of the algorithm. In the first phase, the indexes (i, j) that replace the (0, 0) pairs are chosen
such that both Condition 1 and Condition 2 are satisfied (defined further in this section). The first phase

starts with a granulation level parameter called run that is initialized to
⌈
α
r

⌉
and a parameter called step

initialized to 0. These parameters affect how the i indexes of the elements in dj , D = {1, . . . , α}, are
split into r disjunctive subsets Ddj = ∪r

ρ=1Dρ,dj . The granulation level decreases by a factor r with every
round. Once the granulation level becomes equal to 1 and there are still (0, 0) pairs that have to get some
(i, j) values from the unscheduled elements in the systematic nodes, the second phase starts where the
remaining indexes are chosen such that only Condition 2 is satisfied.

• Condition 1: At least one subset Dρ,dj has
⌈
α
r

⌉
elements with runs of run consecutive elements

separated with a distance between the indexes equal to step. The elements of that subset correspond

to the row indexes in the (k + ν)-th column, where ν = 1, . . . ,
⌈
k
r

⌉
, in one of the arrays P2, . . . , Pr

that are all zero pairs. The distance between two elements in one node is computed in a cyclical
manner such that the distance between the elements aα−1 and a2 is 2.

• Condition 2: A necessary condition for the valid partitioning to achieve the lowest possible repair
bandwidth is Ddj1

= Ddj2
for all dj1 and dj2 in Jν and Dρ,dj1

= Dρ,dj2
for all dj1 and dj2 systematic

nodes in the system. If
⌈
α
r

⌉
divides α, then Dρ,dj for all dj in Jν are disjunctive, i.e., D = ∪r

j=1Dρ,dj =

{1, . . . , α}.
Once the index arrays P1, . . . , Pr are determined, the symbols pi,l in the parity nodes, 1 ≤ i ≤ α and

1 ≤ l ≤ r, are generated as a combination of the elements aj1,j2 where the pair (j1, j2) is in the i-th row
of the index array Pl, i.e.,

pi,l =
∑

cl,i,jaj1,j2 . (2)

The linear relations have to guarantee an MDS code, i.e., to guarantee that the entire information can be
recovered from any k nodes (systematic or parity).

Algorithm 1 High level description of an algorithm for generating HTEC for an arbitrary sub-packetization
level
Input: n, k, α;
Output: Index arrays P1, . . . , Pr.

1: Initialization: P1, . . . , Pr are initialized as index arrays P = ((i, j))α×k;

2: Append
⌈
k
r

⌉
columns to P2, . . . , Pr all initialized to (0, 0);

3: # Phase 1

4: Set the granulation level run←
⌈
α
r

⌉
and step← 0;

5: repeat
6: Replace (0, 0) pairs with indexes (i, j) such that both Condition 1 and Condition 2 are satisfied;

7: Decrease the granulation level run by a factor r and step←
⌈
α
r

⌉
− run;

8: until The granulation level run > 1
9: # Phase 2

10: If there are still (0, 0) and unscheduled elements from the systematic nodes, choose (i, j) such that only Condition 2 is

satisfied;

11: Return the index arrays P1, . . . , Pr.

D. MDS Property
Next we show that there always exists a set of non-zero coefficients from Fq in the linear combinations

so that the code is MDS. We adapt Theorem 4.1 from [11] as follows:
Theorem 1: There exists a choice of non-zero coefficients cl,i,j where l = 1, . . . , r, i = 1, . . . , α and

j = 1, . . . , k from Fq such that the code is MDS if q ≥ (
n
k

)
rα.

Proof: The system of linear equations given in (2) defines a system of r × α linear equations with
k× α variables. A repair of one failed node is given in Alg. 2, but for the sake of this proof, we explain
the repair by discussing the solutions of the system of equations. When one node has failed, we have an
overdefined system of r × α linear equations with α unknowns. In general this can lead to a situation
where there is no solution. However, since the values in system (2) are obtained from the values of the
lost node, we know that there exists one solution. Thus, solving this system of r × α linear equations
with an overwhelming probability gives a unique solution, i.e., the lost node is recovered. When 2 nodes
have failed, we have a system of r× α linear equations with 2α unknowns. The same discussion for the
overdefined system applies here. The most important case is when r = n − k nodes have failed. In this
case, we have a system of r × α linear equations with r × α unknowns. If the size of the finite field Fq

is large enough, i.e., q ≥ (
n
k

)
rα, as it is shown in Theorem 4.1 in [11], the system has a unique solution,

i.e., the file M can be collected from any k nodes. �
As a conclusion from Theorem 1 we say that HTECs as any other MDS codes are storage-reliability

optimal.
Note that we do not address the problem of the size of the finite field. For the sake of the correctness

of Theorem 1 we use the work in [11] where the lower bound for the size of the finite field is relatively
big. On the other hand, in all examples in this paper we actually work with very small finite fields (F16

and F32). We leave the problem of determining the lower bound of the size of the finite field for HTECs
as an open problem.

E. Repairing from a Single Systematic Failure
Alg. 2 shows how to repair a single systematic node where the systematic and the parity nodes are global

variables. A set of
⌈
α
r

⌉
symbols is accessed and transferred from each of n−1 helpers. If α
= r

⌈
k
r

⌉
, then

additional elements may be required as described in Step 4. Note that a specific element is transferred
just once and stored in a buffer. For every subsequent use of that element, the element is read from the
buffer and further transfer operation is not required. The repair process is highly parallel, because a set

of
⌈
α
r

⌉
symbols is independently and in parallel repaired in Step 2 and then the remaining symbols are

recovered in parallel in Step 5.

Algorithm 2 Repair of a systematic node dl
Input: l;
Output: dl.

1: Access and transfer (k − 1)
⌈
α
r

⌉
elements ai,j from all k − 1 non-failed systematic nodes and

⌈
α
r

⌉
elements pi,1 from p1 where i ∈ Dρ,dl ;

2: Repair ai,l where i ∈ Dρ,dl

3: Access and transfer (r − 1)
⌈
α
r

⌉
elements pi,j from p2, . . . , pr where i ∈ Dρ,dl ;

4: Access and transfer from the systematic nodes the elements ai,j listed in the i−th row of the arrays
P2, . . . , Pr where i ∈ Dρ,dl that have not been read in Step 1;

5: Repair ai,l where i ∈ D \Dρ,dl .

F. Repair Bandwidth
The bandwidth optimality of HTEC construction is captured in the following Proposition.
Proposition 1: If r divides α, then the indexes (i, j) of the elements ai,j where i ∈ D \Dρ,dj for each

group of r systematic nodes are scheduled in one of the
⌈
k
r

⌉
additional columns in the index arrays

P2, . . . , Pr.
Proof: The proof is a simple counting strategy of all indexes (i, j) of the elements ai,j where i ∈ D\Dρ,dj .

�
Proposition 2: The bandwidth for repair of a single systematic node is bounded between the following

lower and upper bounds:
(n− 1)

r
≤ γ ≤ (n− 1)

r
+

(r − 1)

α

⌈α
r

⌉⌈k
r

⌉
. (3)

Proof: Note that we read in total k
⌈
α
r

⌉
elements in Step 1 of Alg. 2. Additionally, (r−1)

⌈
α
r

⌉
elements

are read in Step 3. Assuming that we do not read more elements in Step 4 and every element has a size

of 1
α

, we determine the lower bound as
(n−1)

r
. This bound is the same as the one given in Eq. 1. To derive

the upper bound, we assume that we read all elements ai,j from the extra
⌈
k
r

⌉
columns of the arrays

P2, . . . , Pr in Step 4. Thus, the upper bound is
(n−1)

r
+ (r−1)

α

⌈
α
r

⌉⌈
k
r

⌉
. �

Proposition 3: The recovery bandwidth is equal for all systematic nodes when k is a divisor of α = r

⌈
k
r

⌉
.

Proof: If k divides α then the steps in Alg. 1 produce index arrays P1, . . . , Pr where the distribution of
indexes from all systematic nodes is completely symmetric (or balanced). That symmetry reflects to the
linear dependencies for each of the parity elements which further implies that the recovery bandwidth is
symmetrical i.e., equal for all systematic nodes. �

G. Repairing from Multiple Systematic Failures
Alg. 3 shows how to find a minimal system of linear equations to repair t failures where 1 ≤ t ≤ r

with minimal bandwidth. Data from all n − t non-failed nodes is accessed and transferred. The sets N
and T consist of the indexes of all systematic nodes and the failed systematic nodes, respectively. Note
that when t = 1 the amount of accessed and transferred data is the same with both Alg. 2 and Alg. 3.

Algorithm 3 Repair of t systematic nodes where 1 ≤ t ≤ r
Input: T = {l1, . . . , lt} where T ⊂ N and |T | = t;
Output: Data from all dl where l ∈ T .

1: for each l ∈ T do
2: Select equations pi,l where i ∈ Dρ,dl from p1, . . . , pr;
3: end for
4: while The set of selected equations does not contain all missing t×α elements ai,l where i = 1, . . . , α

and l ∈ T do
5: Select equation pi,j where i ∈ D\∪lt

j=l1
Dρ,dj that includes maximum number of new non-included

elements ai,l;
6: end while
7: Access and transfer from the available systematic nodes and from the parity nodes all elements ai,j

and pi,j listed in the selected equations;
8: Solve the system for t× α unknowns ai,l where i = 1, . . . , α and l ∈ T ;
9: Return the data for the missing dl where l ∈ T .

H. Repair Bandwidth
Proposition 4: The bandwidth to repair t systematic nodes is bounded between the following lower and

upper bounds:
t

α

⌈α
r

⌉
(n− t) ≤ γ ≤ kα. (4)

Proof: Note that if for all missing nodes dl where l ∈ T it is true that the index sets Dρ,dl are
disjunctive, i.e., it is true that Dρ,dl1

∩Dρ,dl2
= ∅ where l1, l2 ∈ T , then in Steps 1 – 3 of Alg. 3 we will

select all t×α necessary equations to repair the t missing nodes. In that case Alg. 3 selects the minimum
number of linear equations and thus the repair bandwidth reaches the lower bound. This means that in the

Step 8 we need to read in total t(k− t)
⌈
α
r

⌉
elements ai,j from the k− t systematic nodes and additionally

to read t · r
⌈
α
r

⌉
elements pi,j from the r parity nodes. Assuming that every element has a size of 1

α
, we

determine the lower bound as t
α
((k − t)

⌈
α
r

⌉
+ r

⌈
α
r

⌉
) = t

α

⌈
α
r

⌉
(n− t).

Any additional selection of equations in the while loop in Steps 4 – 6 just increases the repair bandwidth
and can not exceed the upper bound which is simply the same amount of repair bandwidth required for
RS codes that is kα. �

IV. CODE EXAMPLES WITH ARBITRARY SUB-PACKETIZATION LEVELS AND MULTIPLE FAILURES

In this Section, we give two examples for an (9, 6) HTEC code for two sub-packetization levels: α = 6
and α = 9. We choose the code (9, 6) due to its relatively small size that is appropriate for presentation.

A. An (9, 6) HTEC for α = 6

The systematic nodes d1, . . . , d6 and the parity nodes p1, p2, p3 are shown in Fig. 3. The file size M is
36 symbols where each node stores α = 6 symbols. The elements of p1 are linear combinations of the
row elements from the systematic nodes multiplied with coefficients from F16. The elements of p2 and
p3 are obtained by adding extra symbols to the row sum. We next show the code construction following
the steps in Alg. 1.

1) Initialize Pi, i = 1, 2, 3, as index arrays Pi = ((i, j))6×6,

Pi =

⎡
⎢⎣

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

⎤
⎥⎦ .

2) Append
⌈
k
r

⌉
= 2 columns to P2 and P3 initialized to (0, 0), i.e., P2 = P3 =⎡

⎢⎣
(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (0, 0) (0, 0)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (0, 0) (0, 0)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (0, 0) (0, 0)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (0, 0) (0, 0)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (0, 0) (0, 0)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (0, 0) (0, 0)

⎤
⎥⎦ .

3) For the systematic nodes d1, d2 and d3 in J1, run = 2 and step = 0.
4) Both Condition 1 and Condition 2 have to be fulfilled. We use the notation Dρ,dj , j = 1, . . . , 6,

to denote the subset with its elements corresponding to row indexes in the (6 + ν)-th column,
ν = 1, 2, in one of the arrays P2 and P3 that are all zero values (0, 0). For the node d1, we get
Dd1 = {{1, 2}, {3, 4}, {5, 6}}. Note that the run length is 2 and the distance between the indexes
is 0. The first 2 zero elements in the 7-th column of P2 are at the positions (1, 7) and (2, 7), thus,
Dρ,d1 = {1, 2}. The i indexes of the remaining pairs (i, 1) where i = 4, . . . , 6 belong to 2 other
subsets D \ Dρ,d1 , i.e., D2,d1 = {3, 4} and D3,d1 = {5, 6}. The pairs (i, 1) for i ∈ D \ Dρ,d1 are
added in the 7-th column of P2 and P3.
Similarly, we perform the same steps for the nodes d2 and d3 resulting in Dρ,d2 = {3, 4} and
Dρ,d3 = {5, 6}, respectively.
Next we schedule the elements from d4, d5 and d6.

5) For the nodes d4, d5 and d6 in J2, run = 1 and step = 1.
6) We perform the same steps as for the nodes in J1. Here we only give the corresponding Dρ,dj , i.e.,

Dρ,d4 = {1, 3}, Dρ,d5 = {2, 5} and Dρ,d6 = {4, 6}.
7) After replacing the (0, 0) pairs with specific (i, j) pairs, the final index arrays are:

P1 =

⎡
⎢⎣

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

⎤
⎥⎦ ,

P2 =

⎡
⎢⎣

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (3, 1) (2, 4)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (4, 1) (1, 5)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (1, 2) (5, 4)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (2, 2) (1, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (1, 3) (3, 5)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (2, 3) (3, 6)

⎤
⎥⎦ .

and

P3 =

⎡
⎢⎣

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (5, 1) (4, 4)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (6, 1) (4, 5)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (5, 2) (6, 4)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (6, 2) (2, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (3, 3) (6, 5)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (4, 3) (5, 6)

⎤
⎥⎦ .

8) Schedule the elements ai,j with the corresponding (i, j) indexes in the index arrays. The parity
symbols are linear combinations from the elements in the same row in the array. The coefficients
for the MDS code with 6 systematic and 3 parity nodes for α = 6 in Fig. 3 are from F16 with
irreducible polynomial x4 + x3 + 1.

We next show how to repair the node d1 following Alg. 2. First, we repair the elements a1,1, a2,1. Thus,
we access and transfer a1,j and a2,j where j = 2, . . . , 6 from all 5 non-failed systematic nodes and p1,1,
p2,1 from p1. Since a3,1, a4,1 are added as extra elements in p2, we need to access and transfer p1,2 and p2,2
from p2. Due to the optimal scheduling of the extra elements in the parity nodes, no further elements are
required to recover a3,1, a4,1. The last two elements a5,1, a6,1 are recovered by accessing and transferring
p1,3, p2,3, a4,4 and a4,5. The last two elements are read because we work with a sub-packetization level
that is not equal to 9. The data from d1 is recovered by accessing and transferring in total 18 elements
from 8 helpers. Exactly the same amount of data, 18 symbols, is needed to repair d3, d4 or d6, while 20
symbols are needed to repair d2 and d5. Thus, the average repair bandwidth is equal to 3.11 symbols.

Fig. 3. An MDS array code with 6 systematic and 3 parity nodes for α = 6. The elements presented in colors are scheduled as additional
elements in p2 and p3. The coefficients are from F16 with irreducible polynomial x4 + x3 + 1.

B. An (9, 6) HTEC for α = 9 and Repairing from Multiple Failures
We next show the recovery of the nodes d1 and d3 under an (9, 6) code for α = 9 by using Alg. 3. The

(9, 6) code in Fig. 4 is generated by Alg. 1. Here we only give Dρ,d1 = {1, 2, 3} and Dρ,d3 = {7, 8, 9}. We
first access and transfer 24 ai,j elements from all 4 non-failed systematic nodes and 18 pi,j elements from
p1, p2, p3 where i ∈ Dρ,d1 ∪Dρ,d3 . In total we have accessed and transferred 42 symbols. We next check
the condition if the number of linearly independent equations is equal to 18. When d1 and d3 are lost,
the condition is fulfilled so it is possible to repair the 18 lost symbols from d1 and d3. Exactly the same
amount of data, 42 symbols, is needed to repair any pair of lost systematic nodes when Dρ,dli

∩Dρ,dlj
= ∅.

There are in total
(
3
2

)
combinations of 2 failed systematic nodes from the nodes d1, d2 and d3 in J1 and(

3
2

)
combinations of 2 failed systematic nodes from the nodes d4, d5 and d6 in J2.

The recovery process has some additional steps when Dρ,dli
∩ Dρ,dlj

= ∅, i.e., when 1 node from

each of the groups J1 and J2 has failed. By reading the elements from Step 2 the number of linearly
independent equations pi,j for i ∈ Dρ,dli

∪ Dρ,dlj
is exhausted. Thus, we have to read pi,j that has not

been read previously, i.e., pi,j where i ∈ D \Dρ,dli
∪Dρ,dlj

. Let us consider the repair of d1 and d4 where

Dρ,d1 = {1, 2, 3} and Dρ,d4 = {1, 4, 7}. We first access and transfer 20 elements ai,j from all 4 non-failed
systematic nodes and 15 pi,j elements from p1, p2, p3 where i ∈ Dρ,d1 ∪Dρ,d4 . In total we have accessed
and transferred 35 symbols. We next check if the number of linearly independent equations is equal to
18. Since we have only transferred 15 pi,j , the condition is not fulfilled. So we need to read 3 more pi,j
than have not been read previously. In this case, we transfer p5,1, p5,2, p6,1 and the ai,j elements from the
5-th row in the parity arrays P1 and P2 and from the 6-th row in the parity array P1 that have not been
transferred in Step 2. The total number of symbols read to repair d1 and d4 is 46. There are in total

(
3
1

)(
3
1

)
pairs of failed nodes where 46 symbols are needed to repair from double failures.

The average repair bandwidth to repair any 2 failed nodes is 4.933 symbols that is 17.783% reduction
compared to a RS code.

V. OPTIMIZING I/O DURING REPAIR

Optimizing the amount of data accessed and transferred might not directly correspond to an optimized
I/O, unless the data reads are sequential. Motivated by the practical importance of I/O, we optimize the

Fig. 4. An MDS array code with 6 systematic and 3 parity nodes for α = 9. The elements presented in colors are scheduled as additional
elements in p2 and p3. The coefficients are from F32 with irreducible polynomial x5 + x3 + 1.

MDS HashTag erasure codes constructed with Alg. 1 while still retaining their optimality in terms of
storage and repair bandwidth.

Before discussing sequential and random reads, first we explain what do we treat as a sequential and
as a random read. Since the amount of data-read and the amount of data-transferred for HTECs is equal,
the number of read and transfer operations is the same. Hence we use the terms reads and transfers
interchangeably. Whenever there is a seek for data from a new location, the first read is counted as a
random read. If the data is read in a contiguous manner, then the second read is counted as a sequential
read. For instance, when a seek request is initiated for a1,1 from d1 in Fig. 5, then the number of random
reads is 1. If we next read a2,1, a3,1 and so forth in a contiguous manner, then the number of sequential
reads increases by one for each contiguous access. On the other hand, if we read a3,1 after reading a1,1
(but not a2,1), then the number of random reads becomes 2. Note that reading a6,1 and a1,1 results in 2
random reads.

The parameter step defines the contiguity of the reads for the codes obtained by Alg. 1.
Theorem 2: The number of random reads for access-optimal codes is equal to n− 1 for r out of the k

systematic nodes.

Proof: When repairing a single systematic node when α = r

⌈
k
r

⌉
, then data from all n − 1 helpers has

to be accessed and transferred. The set of systematic nodes N is partitioned in
⌈
k
r

⌉
disjunctive subsets of

r nodes (the last subset may have less than r nodes). For the group of r nodes in J1, step is equal to 0
and hence the reads are sequential. This means that in total n− 1 seeks to read the data in a contiguous
manner from n− 1 helpers are performed. �
The scheduling of indexes by Alg. 1 ensures a gradual increase in the number of random reads, hence no
additional algorithms such as hop-and-couple [28] are needed to make the reads sequential, instead we

Fig. 5. An I/O optimized MDS array code with 6 systematic and 3 parity nodes for α = 6. The elements presented in colors are scheduled
as additional elements in p2 and p3. The coefficients are from F16 with irreducible polynomial x4 + x3 + 1.

use Alg. 4.

Algorithm 4 I/O optimization of an (n, k) code
Input: An (n, k) code generated with Alg. 1;
Output: An (n, k) I/O optimized code.

1: Find an (n, k) MDS erasure code where the parity nodes are generated with Alg. 1;
2: Repeatedly improve the solution by searching for codes with low I/O for single systematic node

failure with same repair bandwidth, until no more improvements are necessary/possible.

A. Code Example: Optimizing I/O
Let us consider that the file size is 54MB and each node stores 9MB. Each I/O reads and transfers

512KB. When repairing a failed systematic node with an (9, 6) RS code, 6 out of the 8 non-failed nodes
have to be accessed (in total 6 random reads to recover 1 node). Since each I/O transfers 512KB and
with the RS code the whole data of 9MB stored in a node is read and transferred, then there are 18 I/O
transfers of 512KB from each node where the first I/O is random and the next 17 are sequential. Thus,
the number of 512KB sized I/Os is 108 where 6 are random and 6×17=102 are sequential.

Next we revisit the first example presented in Section IV where α = 6. In this example, we are working
with blocks of 9MB/6=1.5MB. The average number of random reads for recovery of one systematic node
is 13.33. Since the block size is 1.5MB and each random I/O transfers 512KB, that means that each
random read is accompanied with 2 sequential reads. In addition, there are 5.33 sequential reads of blocks
that becomes 5.33× 3 reads of 512KB. In average there are 13.33 random I/Os and 42.66 sequential I/Os
when reconstructing a lost systematic node, for a total of 56 I/Os.

With the help of Alg. 4, we reduce the number of random reads while still providing the same average
repair bandwidth. The code given in Fig. 5 is a good example of an (9, 6) I/O optimized code for α = 6.
For this code construction the number of random I/Os is reduced to 11.33, while the number of sequential
I/Os becomes 44.66. This is achieved by using different Ddj for the nodes dj ∈ J2. Namely, we obtained
the following sets Dρ,d4 = {1, 5}, Dρ,d5 = {2, 6} and Dρ,d6 = {3, 4}. For instance, the ratio between
the number of random I/Os and total number of I/Os for the non-optimized code is 0.238, while for the

0 1 3 6 9

2

4

6

Sub-packetization level

A
v
er

ag
e

re
p

ai
r

b
an

d
w

id
th

0

0.1

0.2

0.3

R
an

d
o

m
/(

R
an

d
o

m
+

S
eq

.)
I/

O
sAvg. repair bw.

Rnd/(Rnd+Seq.) I/Os

Fig. 6. Average repair bandwidth and normalized number of random I/Os for recovery of the systematic nodes for an (9, 6) code for different
sub-packetization levels.

optimized it is 0.202. This is an important improvement, since in practice the random reads are more
expensive compared to the sequential ones.

Fig. 6 shows the relation between the average repair bandwidth (we consider that M
k
= 1) for a single

systematic failure and the normalized number of random reads with the sub-packetization level for an
(9, 6) code. We observe that for RS code where α = 1, the average repair bandwidth is biggest (the
highest point on the red line with the value 6), while the randomness in the I/Os is the lowest. The repair
bandwidth decreases as α increases and the minimum bandwidth of 2.67 is achieved for α = 9. The
situation is completely opposite when the metric of interest is the number of random reads. The number
of reads (especially random reads) increases rapidly with α as shown in Fig. 6. The best overall system
performance is achieved for α in the range between 3 and 6.

VI. COMPARISON OF DIFFERENT CODES

We have implemented HTECs in C/C++ and we next present performance comparison with other
codes. We first compare the average data read and downloaded during a single node repair for different
code parameters under HTEC construction and Piggyback constructions for systematic repair [10]. Fig.
7 shows a comparison between the data read and transferred when repairing a single systematic node
with Piggyback 1, Piggyback 2 and HTECs. The plot corresponds to the sub-packetization level being 8
in Piggyback 1 and HTEC and 4(2r − 3) in Piggyback 2. We observe that HTEC construction requires
less data read and less data transfer compared to Piggyback 1 and Piggyback 2 even though the sub-
packetization level is lower than the one in Piggyback 2.

Fig. 8 shows the relation between the average repair bandwidth (we consider that M
k
= 1) for a single

failure and the sub-packetization level for an (14, 10) code. For α = 1, we have the conventional Reed-
Solomon codes and the average repair bandwidth is equal to k (the highest point on the red line with the
value 10). A Hitchhiker code [27] for α = 2 reduces the repair bandwidth by 35% compared to the RS
code. The remaining values of the average repair bandwidth are for HTECs. We observe that the lowest

repair bandwidth that is 3.25 is achieved for α = r

⌈
k
r

⌉
= 64. On the other hand, the highest number of

reads is for α = 64. Typically, an engineering decision would end up by choosing parameters for optimal
overall system performance with α in the range between 4 and 16.

VII. DISCUSSION

In this Section, we discuss some open issues that are not covered in this paper.

(12,10)(14,12)(15,12) (12,9) (16,12)(20,15)(24,18)

40
45
50
55
60
65
70
75

Code parameters (n, k)

A
v

g
.

d
at

a
re

ad
an

d
tr

an
sf

er
re

d
as

%
o

f
fi

le
si

ze

Piggyback 1

Piggyback 2

HTEC, α = 8

Fig. 7. Average data read and transferred for repair of a single systematic node in Piggyback 1 for α = 8, Piggyback 2 for α = 4(2r− 3)
and HTEC for α = 8.

124 8 16 32 64
2

4

6

8

10

Sub-packetization level

A
v

g
.

re
p

ai
r

b
an

d
w

id
th

0

50

100

150

A
v

g
.

n
u

m
b

er
o

f
re

ad
s

Avg. repair bw.

Avg. number of reads

Fig. 8. Average repair bandwidth for the systematic nodes and average number of reads (sequential+random reads) for recovery of the
systematic nodes for an (14, 10) code for different sub-packetization levels.

Lower bound of the finite field size. In this paper, we use the work in [11] to guarantee the existence of
non-zero coefficients from Fq so that the code is MDS. However, the lower bound of the size of the finite
field is relatively big. On the other hand, in all examples in this paper we actually work with very small

finite fields (F16 and F32). Recent results in [33] showed that a code is access-optimal for α = r

⌈
k
r

⌉
over

any finite field F as long as |F| ≥ r
⌈
k
r

⌉
. Determining the lower bound of the size of the finite field for

HTECs remains an open problem.
Efficient repair of the parity nodes. HTEC construction considers only an efficient repair of the sys-

tematic nodes. Several high-rate MSR codes for efficient repair of both systematic and parity nodes [22],
[34], [35] exist in the litetruare. Still for these codes, either the sub-packetization level is too large or

the constructions are not explicit. An open issue is how to extend the HTEC construction to support an
efficient repair of the parity nodes as well.

VIII. CONCLUSIONS

MSR codes have been proposed as a superior alternative to popular RS codes in terms of storage, fault-
tolerance and repair bandwidth. In this paper, we presented HashTag Erasure Code (HTEC) construction
that provides the flexibility of constructing MDS codes for any code parameters including an arbitrary
sub-packetization level. MSR codes are constructed when the sub-packetization level of HTECs is equal

to r

⌈
k
r

⌉
. Then HTECs are access-optimal and n− 1 helpers are contacted during the repair process.

Existing MDS erasure code constructions for storage systems do not address the critical problem of I/O
optimization. In this work, we show that HTECs can minimize the disk I/O consumed while simultaneously
providing optimality in terms of storage, reliability and repair-bandwidth. We identify the range of the
sub-packetization level that gives the best overall system performance. Additionally, we show that HTECs
reduce the repair bandwidth for more than one failure. HTECs are the first high-rate MDS codes that
tackle the problem of multiple failures.

REFERENCES

[1] K. Kralevska, D. Gligoroski, and H. Øverby, “General sub-packetized access-optimal regenerating codes,” IEEE Communications
Letters, vol. 20, no. 7, pp. 1281–1284, July 2016.

[2] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A quantitative comparison,” in Proc. 1st Int. Workshop on
Peer-to-Peer Systems, 2002, pp. 328–338.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, ser. SOSP ’03. ACM, 2003, pp. 29–43.

[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,” in Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), ser. MSST ’10. IEEE Computer Society, 2010, pp. 1–10.

[5] G. S. I. S. Reed, “Polynomial codes over certain finite fields,” Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sept. 2010.

[7] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchandran, “A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study on the facebook warehouse cluster,” in 5th USENIX Workshop on Hot
Topics in Storage and File Systems. USENIX, 2013.

[8] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso, C. Grimes, and S. Quinlan, “Availability in globally distributed
storage systems,” in Presented as part of the 9th USENIX Symposium on Operating Systems Design and Implementation. USENIX,
2010.

[9] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang, “NCCloud: applying network coding for the storage repair in a cloud-of-clouds,” in
FAST. USENIX Association, 2012.

[10] K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design framework for read-and download-efficient distributed storage
codes,” in IEEE International Symposium on Information Theory Proceedings (ISIT), July 2013, pp. 331–335.

[11] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, “An alternate construction of an access-optimal regenerating code with optimal
sub-packetization level,” in Proc. 21st Nat. Conf. Comm., 2015, pp. 1–6.

[12] N. Raviv, N. Silberstein, and T. Etzion, “Access-optimal MSR codes with optimal sub-packetization over small fields,” CoRR, vol.
abs/1505.00919, 2015.

[13] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for distributed storage at the msr and mbr points via
a product-matrix construction,” IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5227–5239, Aug 2011.

[14] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang, “Rethinking erasure codes for cloud file systems: minimizing I/O for
recovery and degraded reads,” in FAST. USENIX Association, 2012, p. 20.

[15] M. Blaum, J. Brady, J. Bruck, and J. Menon, “Evenodd: an efficient scheme for tolerating double disk failures in raid architectures,”
IEEE Transactions on Computers, vol. 44, no. 2, pp. 192–202, Feb 1995.

[16] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar, “Row-diagonal parity for double disk failure
correction,” in Proceedings of the USENIX FAST ’04 Conference on File and Storage Technologies. USENIX Association, Mar. 2004,
pp. 1–14.

[17] J. Chen and K. W. Shum, “Repairing multiple failures in the suh-ramchandran regenerating codes,” in ISIT. IEEE, 2013, pp. 1441–1445.
[18] R. Li, J. Lin, and P. P. C. Lee, “Enabling concurrent failure recovery for regenerating-coding-based storage systems: From theory to

practice,” IEEE Transactions on Computers, vol. 64, no. 7, pp. 1898–1911, July 2015.
[19] D. S. Papailiopoulos, A. G. Dimakis, and V. R. Cadambe, “Repair optimal erasure codes through hadamard designs,” IEEE Transactions

on Information Theory, vol. 59, no. 5, pp. 3021–3037, May 2013.

[20] V. R. Cadambe, C. Huang, and J. Li, “Permutation code: Optimal exact-repair of a single failed node in mds code based distributed
storage systems,” in IEEE International Symposium on Information Theory Proceedings (ISIT), July 2011, pp. 1225–1229.

[21] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: Mds array codes with optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3,
pp. 1597–1616, March 2013.

[22] Z. Wang, I. Tamo, and J. Bruck, “On codes for optimal rebuilding access,” in Proc. 49th Annual Allerton Conf. Comm., Control,
Comp.,, 2011, pp. 1374–1381.

[23] I. Tamo, Z. Wang, and J. Bruc, “Access vs. bandwidth in codes for storage,” in Proc. IEEE Int. Symp. Inf. Theory, 2012, pp. 1187–1191.
[24] V. R. Cadambe, C. Huang, J. Li, and S. Mehrotra, “Polynomial length mds codes with optimal repair in distributed storage,” in Proc.

45th Asilomar Conf. Signals, Syst., Comp., 2011, pp. 1850–1854.
[25] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen, and D. Borthakur, “Xoring elephants: Novel

erasure codes for big data,” Proc. VLDB Endow., vol. 6, no. 5, pp. 325–336, Mar. 2013.
[26] L. Pamies-Juarez, F. Blagojević, R. Mateescu, C. Gyuot, E. E. Gad, and Z. Bandić, “Opening the chrysalis: On the real repair

performance of msr codes,” in 14th USENIX Conference on File and Storage Technologies (FAST 16). USENIX Association, Feb.
2016, pp. 81–94.

[27] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchandran, “A ”hitchhiker’s” guide to fast and efficient data
reconstruction in erasure-coded data centers,” in Proceedings of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM ’14.
ACM, 2014, pp. 331–342.

[28] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran, “Having your cake and eating it too: Jointly optimal erasure
codes for i/o, storage, and network-bandwidth,” in 13th USENIX Conference on File and Storage Technologies (FAST 15). USENIX
Association, Feb. 2015, pp. 81–94.

[29] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative recovery of distributed storage systems from multiple losses with network
coding,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 2, pp. 268–276, February 2010.

[30] X. Wang, Y. Xu, Y. Hu, and K. Ou, “Mfr: Multi-loss flexible recovery in distributed storage systems,” in IEEE International Conference
on Communications (ICC), May 2010, pp. 1–5.

[31] A. M. Kermarrec, N. L. Scouarnec, and G. Straub, “Repairing multiple failures with coordinated and adaptive regenerating codes,” in
International Symposium on Network Coding, July 2011, pp. 1–6.

[32] J. Li and B. Li, “Cooperative repair with minimum-storage regenerating codes for distributed storage,” in IEEE Conference on Computer
Communications (INFOCOM), April 2014, pp. 316–324.

[33] M. Ye and A. Barg, “Explicit constructions of optimal-access MDS codes with nearly optimal sub-packetization,” CoRR, vol.
abs/1605.08630, 2016.

[34] B. Sasidharan, G. K. Agarwal, and P. V. Kumar, “A high-rate msr code with polynomial sub-packetization level,” in Proc. IEEE Int.
Symp. Inf. Theory, 2015, pp. 2051–2055.

[35] M. Ye and A. Barg, “Explicit constructions of high-rate MDS array codes with optimal repair bandwidth,” CoRR, vol. abs/1604.00454,
2016.

Balanced Locally Repairable Codes
Katina Kralevska, Danilo Gligoroski, and Harald Øverby
International Symposium on Turbo Codes and Iterative Information Processing, 2016

129

Paper 6

Balanced Locally Repairable Codes

Katina Kralevska, Danilo Gligoroski, and Harald Øverby

Department of Telematics; Faculty of Information Technology, Mathematics and Electrical

Engineering; NTNU, Norwegian University of Science and Technology

Email: {katinak, danilog, haraldov}@item.ntnu.no

Abstract

We introduce a family of balanced locally repairable codes (BLRCs) [n, k, d] for arbitrary values of n, k and d.

Similar to other locally repairable codes (LRCs), the presented codes are suitable for applications that require a low

repair locality. The novelty that we introduce in our construction is that we relax the strict requirement the repair

locality to be a fixed small number l, and we allow the repair locality to be either l or l + 1. This gives us the

flexibility to construct BLRCs for arbitrary values of n and k which partially solves the open problem of finding a

general construction of LRCs. Additionally, the relaxed locality criteria gives us an opportunity to search for BLRCs

that have a low repair locality even when double failures occur. We use metrics such as a storage overhead, an average

repair bandwidth, a Mean Time To Data Loss (MTTDL) and an update complexity to compare the performance of

BLRCs with existing LRCs.

Keywords: Locally Repairable codes, Balanced, Storage overhead, Update complexity, Repair bandwidth,
MTTDL

I. INTRODUCTION

A conventional approach for achieving reliability in big data distributed storage systems is replication.
In particular, the reliability of 3-replication is an accepted industry standard for management of hardware
failures and recovery. That is an apparent situation in systems such as Hadoop HDFS [1], OpenStack SWIFT
[2] or Microsoft Azure [3]. However, the accelerated and relentless data growth has made erasure coding a
valuable alternative to 3-replication since erasure coding provides the same reliability as 3-replication, but
with significant less storage overhead. Recently, there have been several proposals and experimental beta
implementations of different types of erasure codes for huge distributed storage systems [4], [5].

Besides the reliability and the storage overhead, another important feature in distributed storage systems
is the efficiency of the repair of a failed node. The efficiency is measured with two metrics: the repair
bandwidth and the repair locality. The repair bandwidth is the amount of transferred data during a node
repair, while the repair locality is the number of nodes contacted during the node repair process. Two
types of erasure codes that address the repair efficiency have emerged: Regenerating codes [6] and Locally
Repairable Codes (LRCs) [7]–[9].

Regenerating codes [6] aim to minimize the repair bandwidth, while LRCs seek to minimize the repair
locality. The main idea behind regenerating codes is using a sub-packetization. Each block is divided into
sub-packets and a recovery is performed by transferring sub-packets from all n − 1 non-failed nodes that
results in high I/O. A proposal for reducing the I/O is given in [10]. On the other hand, LRCs address the
issue of accessing less nodes, but the amount of transferred data is bigger compared to regenerating codes.
However, communicating less nodes is beneficial for storage applications that require low I/O.

An [n, k, d]q MDS code C has to transfer k symbols to recover one lost symbol. LRCs were independently
introduced in [7]–[9]. The code C has a locality l if the i−th code symbol ci, 1 ≤ i ≤ n, can be recovered
by accessing l symbols where l < k. It was proved in [7] that the minimum distance of an [n, k, d]q code
with a locality l is

d ≤ n− k + 2−
⌈k
l

⌉
. (1)

Huang et al. showed the existence of pyramid codes that achieve this distance when the field size is big
enough [11].

Two practical LRCs have been implemented in Windows Azure Storage [12] and HDFS-Xorbas by Facebook
[13]. Both implementations reduce the repair bandwidth and the I/O for reconstructing a single data block
by introducing a fixed number of l local and r global parity blocks. Any single data block can be recovered
from k

l
blocks within its local group. However, reconstruction of any global parity block (in Windows

Azure) or double blocks failures is performed in the same way as with Reed-Solomon (RS) codes, i.e., k
blocks need to be transferred.

Since node failures in storage systems are often correlated [14], there is a need for other erasure codes
than LRCs for recovery from multiple failures. For instance, Shingled erasure codes (SHEC) have a low
average repair bandwidth when multiple failures occur, but they are not so efficient in terms of the storage
overhead and the reliability [15].

The locality also has an impact on the update complexity [16]. This is particularly important for hot data,
i.e., frequently accessed data. For instance, an [16, 10] LRC where the locality is 5, writing a data block
takes 6 write operations (1 write to itself, 1 write to the local parity and 4 writes to the global parities).

Thus, having a general construction of LRCs that are simultaneously optimal in terms of storage overhead,
reliability, locality and update complexity for a single failure and double failures is an important problem
that is addressed in this work.

A. Our Contribution
We define a new family of balanced locally repairable codes (BLRCs). One of their main characteristics

is that every systematic block has an equal (balanced) influence to the parity blocks. That is to say, each
systematic block affects exactly w parity blocks. Additionally, we pay attention on the repair locality. In
our construction we use a similar (but yet different) approach to the approaches introduced by Luby et
al. for the construction of irregular LDPC codes [17] and Garcia-Frias and Zhong for the construction of
regular and irregular LDGM codes [18]. Namely, instead of the strict requirement the repair locality to be
a fixed small number l, it may be either l or l + 1. This partially solves the open problem given by Tamo
et al. about a general construction of LRCs [19], because we construct LRCs for arbitrary values of n and
k, but the locality is not strictly equal to l. Moreover, the relaxed locality criteria gives us an opportunity
to search for BLRCs that have a low repair locality even when double failures occur. We use four metrics
to examine the performance of BLRCs:

• Storage overhead (a ratio of the parity to the data blocks r
k
);

• Average repair bandwidth (a ratio of the repair bandwidth to repair both data and parity blocks to
the total stored data (sum of the data and the parity blocks));

• MTTDL (Mean Time To Data Loss - an estimate of the expected time that it would take a given
storage system to exhibit enough failures such that at least one block of data cannot be retrieved or
reconstructed);

• Update complexity (a maximum number of elements that must be updated when any single element
is changed).

In summary, several goals are achieved simultaneously with this work: 1) low storage overhead; 2)
low average repair bandwidth for single and double failures; 3) high reliability; and 4) improved update
performance.

The paper is organized as follows. In Section II, we introduce the terminology and the definition of
balanced locally repairable codes. In Section III, we give code examples and examine their performance by
using the predefined metrics. We also compare the properties of our codes to 3-replication, RS and other
LRCs. A reliability analysis is presented in Section IV. Conclusions are summarized in Section V.

II. DEFINITION OF BALANCED LOCALLY REPAIRABLE CODES

We use the following notations throughout the rest of the paper. A file of size M is divided into k equally
sized blocks and encoded in GF (q) with an [n, k, d]q code into n coded blocks. An [n, k, d]q code is called

maximum distance separable (MDS) if d = n− k + 1. An [n, k, d]q MDS code reconstructs a failed block
from any k out of the n blocks. We denote the number of parity blocks with r = n− k.

Definition 1: Let C be an [n, k, d]q code over GF (q) with a generator matrix G:

G =
[
Ik|P

]
, (2)

where Ik is an identity matrix of order k and the k×(n−k) matrix P specifies how the parity is defined for
the given [n, k, d]q linear code. We call C a Balanced Locally Repairable Code (BLRC), if the Hamming
weight of every row in the matrix P is w where w < k, the Hamming weight of every column is l or l+1
and for every submatrix P ′ of P consisting of v rows, 1 ≤ v ≤ w, from P it holds that Rank(P ′) = v.
The field size should be big enough so that the condition for the rank in Definition 1 is fullfiled.

Example 1: Let us consider the following [13, 8, 3] code with a generator matrix:

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 c1,11 c1,12 0
0 1 0 0 0 0 0 0 c2,9 0 0 c2,12 0
0 0 1 0 0 0 0 0 c3,9 0 c3,11 0 0
0 0 0 1 0 0 0 0 0 0 c4,11 0 c4,13
0 0 0 0 1 0 0 0 0 0 0 c5,12 c5,13
0 0 0 0 0 1 0 0 0 c6,10 0 0 c6,13
0 0 0 0 0 0 1 0 0 c7,10 c7,11 0 0
0 0 0 0 0 0 0 1 c8,9 c8,10 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where ci,j are some nonzero elements from GF (q). Note that the Hamming weight of every row in P is
w = 2 < k, while the Hamming weight of every column in P is either l = 3 or l + 1 = 4. Finally, since
any two rows in P are linearly independent, the rank condition from Definition 1 is fulfilled. Thus, the
code is a balanced locally repairable code.

From the erasure recovery point of view, we use the minimum distance of the code as a metric for its
fault tolerance. We have the following Lemma:

Lemma 1: If [n, k, d]q is a balanced locally repairable code defined in a finite field GF (q), then

d = w + 1. (3)

Proof: The minimum distance d of a code C is equal to the number of failed blocks (erasures) after
which the data cannot be recovered. Note that if one systematic block and w parity blocks that are linear
combinations of the specific systematic block fail, then the systematic block is non-recoverable. This is true
due to the fact that all w + 1 parts that have (non-encoded or encoded) information about the systematic
block have been lost. Thus, it follows that d ≤ w + 1. Let us assume that ws systematic and wp parity
blocks are lost where w = ws + wp. If we consider that the lost wp parity blocks are linear combinations
from the ws systematic blocks that have been also lost, then the systematic blocks can be recovered only
if for every submatrix P ′ consisting of ws rows of P it holds that Rank(P ′) = ws. After recovering the
systematic blocks, the lost parity blocks can be recovered. Let us consider that ws = w systematic blocks
have been lost. The lost systematic blocks can be recovered by selecting the corresponding rows that contain
the specific w systematic blocks in the matrix P and producing a matrix P ′. Since Rank(P ′) = w, the lost
systematic blocks can be recovered. On the other hand, if wp = w parity blocks have been lost, then each
of the parity blocks can be recovered from l or l + 1 systematic blocks. In any case d > w. Consequently,
it follows that d = w + 1.

The locality of a systematic code C is defined as the number of data blocks that each parity block is a
function of.

Lemma 2: Let [n, k, d]q is a balanced locally repairable code defined in a finite field GF (q). Then for
its locality l, it holds:

l =
⌊(d− 1)× k

n− k

⌋
. (4)

Figure 1: (a) An [14, 10] RS code where l = 10; (b) An [16, 10] LRC where l = 5 for the local parities p1
and p2 and l = 10 for the global parities p3, p4, p5 and p6; (c) An [15, 10] BLRC where l = 6 and w = 3

Proof: The parity part P of the generator matrix G is an k × (n− k) matrix. Since every row has w
nonzero elements, with k such rows, the total number of nonzero elements in P is w × k. It follows that

the average number of nonzero elements in every column of P is l =
⌊
(d−1)×k

n−k

⌋
.

The number of transferred blocks during a repair process and the update complexity for BLRCs are
captured in the following propositions:

Proposition 1: When recovering one lost block (a systematic or parity block) in an [n, k, d]q balanced
locally repairable code, the number of transferred blocks is l or l + 1.

The proof for Proposition 1 in connection with Lemma 2 includes a detailed algorithm how to construct
BLRCs. We do not include it in this short paper due to space limitations, but we will include it in an
extended version.

Proposition 2: The number of writes per update of an [n, k, d]q balanced locally repairable code is w+1.
Since the node failures in storage systems are often correlated [14], we next give an algorithm for finding

BLRCs that have a low repair locality even when two blocks have failed. Algorithm 1 uses a stochastic
hill-climbing search in a similar manner as in [20], [21].

Algorithm 1 A general Stochastic Hill-Climbing search for finding a locally repairable code for given n,
k and d
Input: n, k and d;
Output: A Balanced Locally Repairable Code.

1: Find a random [n, k, d] linear code as in Definition 1 where w = d−1 is the Hamming weight of every
row of the matrix P ;

2: Repeatedly improve the solution by searching for codes with low average locality when two blocks
failures have to be recovered, until no more improvements are necessary/possible.

The construction of our codes has some similarities with the construction of several classes of LDPC
codes reported in the literature. In particular, several families of LDPC codes that are based on Finite
Geometries are defined in [19]. In that work, the restrictions that are inferred by the properties of Finite
Geometries restrict the possible choices of different n and k. Variable irregular LDPC codes are constructed
by puncturing the codes or by splitting the columns and rows of the parity-check matrix H .
We have been inspired by two other works that are also from the area of LDPC codes. Namely, Luby et al.
in 2001 introduced the principle of allowing irregularities for variable nodes in a LDPC construction [17].
They allowed those irregularities to have degree 2, 3, 4 or even 20, while in our construction the degree
of locality is either l or l + 1. On the other hand, in 2003 Garcia-Frias and Zhong proposed regular and
irregular LDGM codes in [18]. For the regular LDGM codes, the parity matrix P has always a fixed row
weight X and fixed column weight Y which is equivalent to the LRC case where the row weight is fixed

at w and the column weight is fixed at l. For the irregular LDGM codes the parity matrix P has an average
row weight X and an average column weight Y , while in our construction the row weight is fixed to w
but the column weight can be either l or l + 1.

III. EXAMPLES OF CODE CONSTRUCTIONS

In this Section we present several parity parts P (not to be confused with a parity-check matrix H) of
BLRCs for different code parameters.

The parity part P1 of an [15, 10] code for l = 6 and w = 3 is:

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,11 c1,12 0 c1,14 0
c2,11 0 0 c2,14 c2,15
c3,11 0 c3,13 c3,14 0
c4,11 c4,12 0 0 c4,15
c5,11 0 c5,13 0 c5,15
c6,11 c6,12 c6,13 0 0
0 c7,12 c7,13 0 c7,15
0 0 c8,13 c8,14 c8,15
0 c9,12 c9,13 c9,14 0
0 c10,12 0 c10,14 c10,15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the coefficients ci,j , i ≤ 10 and 11 ≤ j ≤ 15, are elements from a finite field GF (q). Since we do
not show the Ik matrix, the index j for the non-zero coefficients is in the range between k+1 and n. Note
that the number of non-zero elements in P1 per row is w = 3 and per column is l = 6. A transposed P1

is graphically represented in Figure 1c. The non-zero elements are represented with the shaded blocks in
Figure 1c. The average repair bandwidth for a single failure is 6 and for double failures is 9. For comparative
purposes we graphically represent the parity parts of an [14, 10] RS and an [16, 10] LRC in Figure 1a
and 1b, respectively. As we can see the RS code has the biggest locality l = 10. Consequently, a transfer
of 10 blocks is required to repair any systematic or parity block when the RS code is used. The [16, 10]
LRC has locality equal to 5 for the local parity blocks and 10 for the global parity blocks. Therefore, it
requires a transfer of 5 blocks to repair a single failure of the systematic and the local parity blocks, while
it takes 10 blocks to repair the global parities. Hence, the average repair bandwidth for a single failure with
the [16, 10] Azure LRC is (5 × 12 + 10 × 4)/16 = 6.25. However, the [16, 10] Xorbas LRC reduces the
number of transferred blocks for a repair of any single global parity block to 5 by introducing an implied
parity block. Thus, it has a lower average repair bandwidth compared to the Azure LRC implementation.
A comparison of the performance metrics for the [15, 10] code with parity part P1 with 3-replication, the
[14, 10] RS and the [16, 10] Xorbas LRC is presented in Table I, while additionally the Azure LRC is
added in Figure 2. The way how we calculate the MTTDL is described in Section IV.

The next example of an [16, 10] code for l = 5 and w = 3 shows even a better performance when
double failures occur. The average repair bandwidth for a single failure is 5, while it is 6.75556 for double
failures. This code tolerates up to any 3 failures and recovers the data successfully with 99.45%, 96.02%
and 79.66% from 4, 5 and 6 failures, respectively. Its parity part is given as

P2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,11 0 0 0 c1,15 c1,16
0 c2,12 c2,13 0 0 c2,16
0 c3,12 0 0 c3,15 c3,16
0 0 c4,13 c4,14 c4,15 0

c5,11 0 0 c5,14 0 c5,16
0 c6,12 c6,13 c6,14 0 0

c7,11 c7,12 0 c7,14 0 0
c8,11 0 0 c8,14 c8,15 0
0 0 c9,13 0 c9,15 c9,16

c10,11 c10,12 c10,13 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We depict the average repair bandwidth for different number of block failures for the RS, Xorbas LRC,
Azure LRC and BLRCs in Figure 2, under the condition of almost equal MTTDL. BLRCs achieve an

� � � ���

�

� � � � �

�

� � � � �

�

�

� � ��

�

�

� � � �

� �14,10� RS
� �16,10� LRC Xorbas, l�5
� �16,10� LRC Azure, l�5
� �15,10� BLRC, l�6, w�3
� �16,10� BLRC, l�5, w�3

0 1 2 3 4 5 6
4

5

6

7

8

9

10

Figure 2: Average repair bandwidth for different number of block failures

average repair bandwidth that is less than or equal to the average repair bandwidth with the other codes
in case of a single block failure, while it is always less than the average repair bandwidth achieved with
the other codes in case of double block failures. Note that the storage overhead is less with the BLRC
compared to the Xorbas LRC when they achieve the same average repair bandwidth for a single failure.

The next example shows how the repair bandwidth can be reduced even more, but then the fault tolerance
is worse. This has a direct impact on the reliability, i.e., MTTDL. The parity part of an [16, 10] code for
l = 3 or l = 4 and w = 2 is

P3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,11 0 0 0 0 c1,16
0 0 0 c2,14 c2,15 0
0 0 0 c3,14 0 c3,16
0 0 0 0 c4,15 c4,16

c5,11 0 0 c5,14 0 0
0 c6,12 0 0 c6,15 0

c7,11 c7,12 0 0 0 0
c8,11 0 c8,13 0 0 0
0 0 c9,13 0 c9,15 0
0 c10,12 c10,13 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

When applying this code the average repair bandwidth for a single block failure is reduced to 3.33, while
for double block failures to 5.22. On the other hand, the fault tolerance is worse compared to the [16, 10]
code for l = 5 and w = 3. Thus, the MTTDL is reduced from 5.7378× 1014 days to 7.2338× 108 days for
an [16, 10] code when l = 5, w = 3 and l = 3.33, w = 2, respectively.

An overview of the performance metrics for the codes presented in this Section is given in Table I.

IV. RELIABILITY ANALYSIS

We perform a reliability analysis by calculating the MTTDL with a Markov model. The authors in [13]
report values from the Facebook cluster and show that the [16, 10] Xorbas LRC provides significantly longer
MTTDL compared to the [14, 10] RS and 3-replication.

In our analysis, we use the same parameters as in [13] in order to compare the results. The total size
of the cluster data is C = 30PB and this data is stored in N = 3000 nodes. The mean time to failure
of a disk node is 4 years (=1/λ) and the block size is B = 256MB. The node failures are independent.
The bandwidth for cross-rack communication for repairs is limited to γ = 1Gbps. Under an [15, 10] code,
each stripe consists of 15 blocks where each block is placed in different racks to provide a higher fault
tolerance. Thus the total number of stripes in the system is C/(nB) where n = 15. The MTTDL of a stripe

TABLE I: Comparison summary of performance metrics for 3-replication, RS, Xorbas LRC and BLRCs

Scheme Storage overhead
Avr. repair bandwidth

(single failure)
Avr. repair bandwidth

(double failure)
MTTDL (days)

Update
complexity

3-replication 2x 1x 1x 2.3079× 1010 3

[14, 10] RS code 0.4x 10x 10x 3.3118× 1013 5

[16, 10] Xorbas LRC, l = 5 0.6x 5x 10x 1.2180× 1015 6

[15, 10] BLRC, l = 6, w = 3 0.5x 6x 9x 3.3647× 1014 4

[16, 10] BLRC, l = 5, w = 3 0.6x 5x 6.76x 5.7378× 1014 4

[16, 10] BLRC, l = 3 or 4, w = 2 0.6x 3.33x 5.22x 7.2338× 108 3

Figure 3: Markov model for an [15, 10] code where circles represent the states when the data can be
recovered and squares represent the states when the data is unrecoverable

is calculated by using the Markov model shown in Figure 3. Each state in the Markov model represents
the number of available (non-failed) blocks (data and parity blocks). The circles denote the states when the
system is up and the squares denote the states when there is a data loss in the system, i.e., the system is
down.

Let λ denotes the failure rate of a single block. The blocks are distributed in different nodes and the
failure rate per node is λ. When the state is i, i.e., there are i available blocks in a stripe, the failure rate is
iλ. Consequently, the transition rate from State 15 to State 14 is 15λ. Since BLRCs are not MDS codes,
there are two possible transitions from State 12. One of the transitions is to State 11 where there are 4
decodable failures and the other one is to State 11F which represents a state with 4 non-decodable failures.
The percentage of 4 decodable failures is p4 = 99.2674%. Therefore the transition rate to State 11 is 12λp4
and to State 11F is 12λ(1− p4). The same situation happens when transitioning from State 11 to State 10
and State 10F where p5 = 89.677%. When 6 blocks are lost, i.e., only 9 blocks are available in State 9,
the lost blocks from the stripe cannot be recovered. That is why State 9 is shown as a down state. The lost
blocks from the stripe are also non-recoverable in the States 11F and 10F.

In the reverse direction ρi denotes the repair rate. The rate at which a block is repaired depends on the
number of downloaded blocks (the locality), the block size and the bandwidth dedicated for repairs. For
instance, a repair of any single data or parity block requires downloading 6 blocks, i.e., ρ1 = γ

6B
. Any

two lost blocks are repaired by downloading 9 blocks, while a repair of more than 2 lost blocks requires a
transfer of 10 blocks. Thus, ρ2 =

γ
9B

and ρ3 = ρ4 = ρ5 =
γ

10B
. The MTTDL of the system is calculated as:

MTTDL =
MTTDLstripe

C/(nB)
. (5)

The MTTDL values for 3-replication, the [14, 10] RS, the [16, 10] Xorbas LRC and few BLRCs are
presented in Table I. We observe that the fast repair and the high fault tolerance lead to a high reliability
with the [15, 10] and [16, 10] BLRCs.

V. CONCLUSIONS

We defined a new family of balanced locally repairable codes (BLRCs). A novel property of the codes
that we presented is that there is no strict requirement that the repair locality is a fixed small number l, and

it may be either l or l + 1. Advantageously, this provides the flexibility to construct BLRCs for arbitrary
values of n and k which allows a general construction of LRCs. The properties of the presented codes are:
low storage overhead, low average repair bandwidth for a single failure and double failures, high reliability
and low update complexity.

REFERENCES

[1] D. Borthakur, “The hadoop distributed file system: Architecture and design,” Hadoop Project Website, 2007.

[2] J. Arnold, “Openstack swift: Using, administering, and developing for swift object storage,” 2014.

[3] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci et al., “Windows azure
storage: a highly available cloud storage service with strong consistency,” in 23rd ACM Symposium on Operating Systems Principles,
2011, pp. 143–157.

[4] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, “Diskreduce: Raid for data-intensive scalable computing,” in Proceedings of the 4th
Annual Workshop on Petascale Data Storage, 2009, pp. 6–10.

[5] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in c/c++ facilitating erasure coding for storage applications-version
1.2,” Tech. Rep., 2008.

[6] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems,” IEEE
Transactions on Information Theory, vol. 56, no. 9, Sept 2010, pp. 4539–4551.

[7] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of codeword symbols,” IEEE Transactions on Information Theory,
vol. 58, no. 11, 2012, pp. 6925–6934.

[8] F. E. Oggier and A. Datta, “Self-repairing homomorphic codes for distributed storage systems,” in INFOCOM, 2011, pp. 1215–1223.

[9] D. Papailiopoulos, J. Luo, A. Dimakis, C. Huang, and J. Li, “Simple regenerating codes: Network coding for cloud storage,” in IEEE
INFOCOM, 2012, pp. 2801–2805.

[10] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang, “Rethinking erasure codes for cloud file systems: minimizing I/O for
recovery and degraded reads,” in Proceedings of the 10th USENIX conference on File and Storage Technologies, 2012.

[11] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade space for access efficiency in reliable data storage systems,”
in IEEE International Symposium on Network Computing and Applications, July 2007, pp. 79–86.

[12] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin, “Erasure coding in windows azure storage,” in
USENIX Annual Technical Conference, 2012, pp. 15–26.

[13] M. Sathiamoorthy, M. Asteris, D. S. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen, and D. Borthakur, “XORing elephants: Novel
erasure codes for big data,” vol. 6, no. 5, 2013, pp. 325–336.

[14] D. F., F. Labelle, F. I. Popovici, M. Stokely, V. Truong, L. Barroso, C. Grimes, and S. Quinlan, “Availability in globally distributed
storage systems,” in 9th USENIX Symposium on Operating Systems Design and Implementation, 2010, pp. 61–74.

[15] T. Miyamae, T. Nakao, and K. Shiozawa, “Erasure code with shingled local parity groups for efficient recovery from multiple disk
failures,” in 10th Workshop on Hot Topics in System Dependability. USENIX Association, 2014.

[16] N. Anthapadmanabhan, E. Soljanin, and S. Vishwanath, “Update-efficient codes for erasure correction,” in 48th Annual Allerton
Conference on Communication, Control, and Computing, Sept 2010, pp. 376–382.

[17] M. G. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman et al., “Improved low-density parity-check codes using irregular graphs,”
IEEE Transactions on Information Theory, vol. 47, no. 2, 2001, pp. 585–598.

[18] J. Garcia-Frias and W. Zhong, “Approaching shannon performance by iterative decoding of linear codes with low-density generator
matrix,” IEEE Communications Letters, vol. 7, no. 6, 2003, pp. 266–268.

[19] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally repairable codes and connections to matroid theory,” in IEEE
International Symposium on Information Theory, 2013, pp. 1814–1818.

[20] Y. Wang, J. S. Yedidia, and S. C. Draper, “Construction of high-girth qc-ldpc codes,” in 5th International Symposium on Turbo Codes
and Related Topics, Sept 2008, pp. 180–185.

[21] D. Gligoroski and K. Kralevska, “Families of optimal binary non-mds erasure codes,” in IEEE International Symposium on Information
Theory, June 2014, pp. 3150–3154.

Coded Packet Transport for Optical Packet/Burst Switched
Networks
Katina Kralevska, Harald Øverby, and Danilo Gligoroski
IEEE Proceedings on Global Communications Conference (GLOBECOM),
pp. 1-6, 2015

139

Paper 7

Coded Packet Transport for Optical Packet/Burst
Switched Networks

Katina Kralevska, Harald Øverby, and Danilo Gligoroski

Department of Telematics

Norwegian University of Science and Technology, Trondheim, Norway,

Email: katinak@item.ntnu.no, haraldov@item.ntnu.no, danilog@item.ntnu.no

Abstract

This paper presents the Coded Packet Transport (CPT) scheme, a novel transport mechanism for Optical

Packet/Burst Switched (OPS/OBS) networks. The CPT scheme exploits the combined benefits of source coding

by erasure codes and path diversity to provide efficient means for recovering from packet loss due to contentions

and path failures, and to provide non-cryptographic secrecy. In the CPT scheme, erasure coding is employed at the

OPS/OBS ingress node to form coded packets, which are transmitted on disjoint paths from the ingress node to an

egress node in the network. The CPT scheme allows for a unified view of Quality of Service (QoS) in OPS/OBS

networks by linking the interactions between survivability, performance and secrecy. We provide analytical models

that illustrate how QoS aspects of CPT are affected by the number of disjoint paths, packet overhead and processing

delay.

Keywords: optical packet/burst switching, source coding, survivability, secrecy, performance

I. INTRODUCTION

Optical Packet/Burst Switching (OPS/OBS) is a promising architecture for the future core network,
enabling all-optical packet transport combined with statistical multiplexing for increased link utilization
[6]. By avoiding electronic processing of packets, OPS/OBS achieves significant energy savings compared
to existing opaque packet switched architectures [24]. The increasing number of mission-critical services
such as e-banking, e-voting and emergency services put a high demand on the Quality of Service
(QoS) of the future Internet, including OPS/OBS networks. Specifically, the OPS/OBS network has to
provide low packet loss rate (performance) [18], [19], [26], [27], protection against node and link failures
(survivability) [5], [20], as well as being able to withstand targeted eavesdropping attacks from individuals
and organizations (secrecy) [11].

Existing approaches to satisfy these strict QoS demands in OPS/OBS rely on the provision of several
independent QoS schemes, e.g., wavelength conversion to reduce packet loss from contentions and 1+1
path protection to provide survivability. However, since these schemes are deployed in the same physical
and logical infrastructure, they will interact and provide mutual benefits. Examples of this include how the
extra redundancy introduced for providing 1+1 path protection may be used to combat packet loss in OPS
networks in failure-free operations, as studied in [20]. In particular, security threats in all-optical networks
have recently received research attention [3], [12]. One crucial security threat is eavesdropping of data
in the network, which has traditionally been countered using encryption. However, the high capacities of
OPS/OBS networks greater than 100 Gb/s make data encryption in OPS/OBS not feasible as the current
computational resources do not match the required encryption processing demands. Hence, there is a need
for a low complexity scheme that provides a certain level of secure data transport without encrypting the
data. Our goal is to show how erasure coding and path diversity can be used to mutually provide loss
recovery from contentions, survivability and a secrecy of data.

The major contribution of this paper is the novel Coded Packet Transport (CPT) scheme for OPS/OBS
networks. This scheme is able to recover lost data due to contentions and node/link failures, while at the

same time providing secrecy. We use the term secrecy as defined in [11], where the goal is protection
from a passive adversary that is not able to reconstruct the whole packet/burst set by eavesdropping
on a single path. The CPT scheme is based on Forward Error Correction (FEC) codes used as erasure
codes and provides non-cryptographic secrecy. The CPT scheme is applicable to both OPS and OBS
networks, and for the remainder of the paper we use the term packet to also refer to a burst in OBS
networks, without the loss of generality. At an OPS/OBS ingress node, a set of data packets is encoded
into a set of coded packets by utilizing non-systematic erasure codes [9], [17], [25]. These coded packets
are transmitted to an egress node in the OPS/OBS network on multiple disjoint paths. At an OPS/OBS
egress node, reconstruction of packets lost due to contentions and node/link failures is enabled by the
added redundancy. Sending different subsets of packets over disjoint paths between the ingress and the
egress node also enables an end-to-end secrecy property against a passive adversary. To the best of our
knowledge, this work constitutes a first step for providing a unified view on QoS in OPS/OBS networks,
focusing on the interactions between survivability, performance and secrecy.

The rest of this paper is organized as follows: Section II discusses related works. In Section III we
present the CPT scheme. Section IV presents the analytical model. The parameter settings based on the
analytical model are presented in Section V. Finally, Section VI concludes the paper.

II. RELATED WORKS

The authors of [17] and [25] show how FEC codes can be used to reduce packet loss in OPS networks.
Here, redundant packets are added to a set of data packets at the OPS ingress node and transmitted along
with the original data packets to an OPS egress node. Data packets dropped due to contentions may be
reconstructed at the OPS egress node by using excess redundant packets, leading to a potential reduced
Packet Loss Rate (PLR). The work in [20] and [16] extends these schemes to provide 1+1 path protection.
One redundant packet is added to a packet set using the XOR operation. This packet set is transmitted
to the OPS egress node over three or more disjoint paths. In particular, the authors of [16] evaluate
this scheme from a cost perspective, comparing it to other approaches that provide 1+1 path protection,
showing that significant cost savings can be achieved using erasure codes. Unlike the present paper, these
schemes do not consider secrecy.

The authors of [14] show how the PLR can be significantly reduced by sending packets at appropriate
rates on disjoint paths from multiple ingress nodes to an egress node by using FEC techniques. The work
is further extended in [13] where a scalable, heuristic scheme for selecting a redundant path between an
ingress node and an egress node is presented. Another way of reducing the packet loss due to contentions
in OPS networks is by combining source and network coding. Instead of dropping the colliding packets
at the intermediate node, they are XOR-ed together [2], [7].

The authors of [3] suggest an OBS framework that provides authentication of burst headers and
confidentiality of data bursts based on encryption. However, due to the high bandwidth in OBS net-
works, the encryption mechanisms have to be with low computational complexity, suitable for high-speed
implementation and the majority of the header content should not be encrypted since the processing of the
headers has to be at ultra high speed [3]. Unlike their work, we provide a certain level of non-cryptographic
secrecy in the data transport without using encryption, thus significantly reducing the computational
complexity.

That secrecy is achieved by sending non-systematic coded packets on disjoint paths. This property has
so far not been exploited in OPS/OBS networks. The authors of [15] show how to provide secrecy in
storage systems even when an eavesdropper knows or can guess some of the missing symbols. This is
achieved by using MDS matrices (matrices that have no singular square submatrices). On the other hand,
schemes based on non-systematic codes increase the delay in the networks, as decoding of non-systematic
coded packets can start after the number of received coded packets is at least equal to the number of
original data packets. In addition, the encoding and decoding of the packets also add processing delay in
the network.

Fig. 1: An OPS network where data is transmitted from ingress node ni to egress node ne

Fig. 2: Illustration of CPT, k data packets are encoded into n coded packets at ni and transmitted over l
disjoint paths

III. CODED PACKET TRANSPORT (CPT)

We focus on an ingress and egress node pair (ni, ne) in an OPS/OBS network as depicted in Fig. 1.
Packets arrive at ni from a legacy network A, with destination ne or a legacy network B. We assume that
there exist l disjoint paths between ni and ne. We use the term disjoint paths to refer to node disjoint
(respectively link disjoint) paths between two nodes in the network. The ingress node ni encodes the k
data packets into n coded packets. The disjoint paths are independent and disjunctive subsets of the coded
packets are sent on them. Figure 2 depicts the encoding of k data packets with equal length into n coded
packets. Since we analyze the effect of l on the QoS in OPS/OBS, both the original and coded packets
are written as multiple of l, i.e., k = ml and n = m′l. Here we introduce the metric packet overhead o
that is a ratio of the number of redundant packets and data packets, i.e., o = r

k
. Notations used in the

paper are summarized in Table I. Packets in the network may be lost due to contention inside packet
switches and due to node/link failures [20]. Note that we exclude the ingress and egress node from the
set of nodes that can fail.

The CPT scheme is based on FEC codes that are used as erasure codes. Different coding schemes
may be applied for the CPT, including Maximum Distance Separable (MDS) and non-MDS codes. Let
us denote by GF (2q) the Galois field with 2q elements. An (n, k, d)2q code is an (n, k)2q code of length
n and rank k with minimum weight d among all nonzero codewords. An (n, k, d)2q code is called MDS
if d = n− k+1. The Singleton defect of an (n, k, d)2q code C defined as s(C) = n− k+1− d measures
how far away is C from being MDS. Reed-Solomon codes are the most commonly used MDS codes, i.e.,
their Singleton defect is zero [22]. When Reed-Solomon codes are used, at least k out of n packets must
arrive successfully at the egress node in order to enable recovery of the data.

An (n, k) linear block code is defined by its n×k generator matrix G. A code is systematic if the first
k rows of its generator matrix G contain the identity matrix. That means that a systematic linear code
does not transform the original k data packets, but generates only extra n− k redundant packets.

If the generator matrix G is not systematic then the code is non-systematic, and all n generated packets
linearly depend on all original k packets via G. Systematic codes are less processing demanding than
non-systematic, since they do not require processing of the original data. If the goal is to achieve a certain

TABLE I: Overview of parameters

ni Ingress node

ne Egress node

k Number of original data packets

n Number of coded packets

r Number of redundant packets

L Packet length

l Number of disjoint paths

m Number of data packets sent on a disjoint path

m′ Number of coded packets sent on a disjoint path

GF (2q) Galois field

p Packet Loss Rate

pthres Packet Loss Rate threshold

o Packet overhead

level of secrecy in the transmitted data, then non-systematic codes should be used. That is the main reason
why we use non-systematic Reed-Solomon codes.

An (n, k) Reed-Solomon code is obtained by evaluating polynomials over GF (2q) at n different points
α1, α2, . . . , αn. The generator matrix for Reed-Solomon code is an n× k Vandermonde matrix

G =

⎡
⎢⎢⎢⎢⎣
1 α1 α1

2 . . . α1
k−1

1 α2 α2
2 . . . α2

k−1
...

...
...

. . .
...

1 αn−1 αn−12 . . . αn−1k−1

1 αn αn
2 . . . αn

k−1

⎤
⎥⎥⎥⎥⎦ .

The encoding in CPT is performed in the following way.
We assume that the k original data packets with equal length consist of L symbols from GF (2q), i.e.,

xi = (si,j) where 1 ≤ i ≤ k and 1 ≤ j ≤ L. The k data packets are presented in a form of a matrix X
where every row represents one data packet

X =

⎡
⎢⎢⎣
s1,1 s1,2 . . . s1,L
s2,1 s2,2 . . . s2,L

...
...

. . .
...

sk,1 sk,2 . . . sk,L

⎤
⎥⎥⎦ .

We obtain the coded packets by simple matrix multiplication of G with X, i.e.,

Y = G×X.

Similarly as in X, every row of Y represents an encoded packet. For the sake of clarity we represent
the matrix Y in l stripes of m′ = �n

l
� rows, since we consider transmitting data on l disjoint paths

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1,1 s1,2 . . . s1,L
...

...
. . .

...
sm′,1 sm′,2 . . . sm′,L
sm′+1,1 sm′+1,2 . . . sm′+1,L

...
...

. . .
...

s2m′,1 s2m′,2 . . . s2m′,L
...

...
. . .

...

s(l−1)m′+1,1 s(l−1)m′+1,2 . . . s(l−1)m′+1,L
...

...
. . .

...
sn,1 sn,2 . . . sn,L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The packets from the i−th stripe are sent on the i−th disjoint path, respectively. Once again we
emphasize that sending linear combinations of the data packets instead of using a systematic code offers
secrecy as opposed to systematic codes.

Next we discuss the required parameter settings for enabling survivability, secrecy and performance
within a predefined PLR threshold.

IV. ANALYTICAL MODEL

A. Topology constraints

The parameter l dictates the number of disjoint paths between a pair of nodes in the network. We
choose to vary l between 2 and 6, which is grounded in the constraints provided by most empirical
network topologies. Hence, 1 + N protection for a big N is impractical. In the following analysis we
combine path diversity with source coding to meet the goals of the CPT.

B. Survivability constraints
In order to provide 1+1 path protection against single link failure, the number of received packets at

ne must be equal to or larger than the original number of data packets, k. Hence, as the number of lost
data packets in the case of a failed path is m′, we have that

n−m′ ≥ k, (1)

resulting in the following constraint for o

o ≥ 1

l − 1
. (2)

C. Secrecy constraints

The goal is to achieve secrecy so that a passive adversary is not able to reconstruct the whole packet
set by eavesdropping on a single path. We use here the term secrecy as it is used in [11, Ch.7 pp. 185].

An eavesdropper needs to eavesdrop k packets in order to decode the whole packet set. By eavesdropping
on a single path, m′ packets are obtained. Hence, we ensure that by eavesdropping on a single path it is
not possible to recover the data packets if the following

k ≥ m′ (3)

is fullfiled. Resulting in the following constraint for o

o ≤ l − 1. (4)

One straightforward attack on the secrecy of CPT is by applying the strategy described by McEliece
and Sarwate in [10]. The authors conclude that decoding algorithms for Reed-Solomon codes provide
extensions and generalizations of the Shamir’s secret sharing scheme [23].

We adapt the strategy discussed in the last paragraph of [10]. Namely, the attack is a combination of a
partially known coded text and a brute force attack. An eavesdropper knows or guesses the format or even
the content of some parts of the coded information and performs an exhaustive search to check all possible
linear combinations in order to filter out the wrong guesses and to find the correct ones. We give a short
example where we show that constraint 4 is not enough for providing secrecy when an eavesdropper is
able to guess the missing packets, i.e., run a brute force attack.

Example 1: Based on constraints 2 and 4, the network is in the operational range of CPT if l = 3 and
o = 1. We define a range as operational when the secrecy and the survivability constraints are not violated.
Let us take the following Reed-Solomon code (12, 6) over GF (28). If we want to achieve survivability
and secrecy, 4 packets are sent on each disjoint path. However, if an eavesdropper gets the coded packets
from a single path, he/she gets 4 coded packets. The eavesdropper requires 2 more coded packets to
decode the whole data set. Since the coding is performed over GF (28), it applies an exhaustive search
of 22×8 = 216 tries for every 2 missing bytes from the 2 missing packets. Knowing the format of the
submitted information (which is a reasonable and plausible assumption) the eavesdropper filters out all
solutions that do not fit within its filtering strategy and keeps the solutions that give decoded information
that has the expected format.

We combine the attack technique discussed above with the modern recommended levels of security
as they are given in [1], [4], [8]. The minimum level of security for 2015 is between 80 and 112 bits
(Lenstra/Verhul, ECRYPT II, NIST), but we put a level of 128 bits as a long term security level. So we
derive an additional constraint for secrecy in CPT considering these recommendations, i.e.,

(k −m′)q ≥ 128 (5)

resulting in the following constraint for o

o ≤ l − 1− 128

qm
. (6)

Example 2: In this example we still assume that l=3 and o=1. The coding is performed with Reed-
Solomon over GF (28), but n and k are chosen following constraint 6. Let us take the Reed-Solomon
code (96, 48) over GF (28). On each disjoint path 32 packets are sent. If an eavesdropper gets the coded
packets on a single path, still it misses 16 packets to decode the original data. Running an exhaustive
search of 216×8 = 2128 tries for every 16 missing bytes from the 16 missing packets is infeasible.

D. Performance constraints
When the PLR is p and the loss of the redundant packets is accounted, then the average number of

redundant packets is

r =
kp

1− p
. (7)

However, adding r redundant packets does not guarantee that the PLR is kept bellow a predefined
threshold pthres.

Unsuccessful decoding occurs when more than r packets are lost. The probability of unsuccessful
decoding pfail when RS codes are used is

pfail =
n∑

i=n−k+1

(
n

i

)
pi(1− p)n−i. (8)

If one path has failed, still data packets on the non-failed paths can be lost due to contentions. The
required number of redundant packets is calculated for n′ = n − m′ and pfail ≤ pthres, i.e., from the
following expression

n′∑
i=n′−k+1

(
n′

i

)
pi(1− p)n

′−i ≤ pthres. (9)

E. Processing constraints
Since in CPT we add redundancy of n− k packets and we use non-systematic RS codes, we introduce

processing delay. The processing delay is expressed in number of clock cycles.
The processing delay should not be confused with latency, because it is a component of the latency.

Since decoding is more computationally demanding than encoding, we calculate the processing delay at
the egress node. The processing delay is defined as the number of clock cycles required for a packet set
to enter, be processed and leave the egress node.

In [21] the processing delay in number of clock cycles per symbol for a RS systematic code (n, k) at
the decoder is calculated as

dproc = (n− k)2 + 6(n− k) + 4. (10)

If the processing delay for the packet set is greater than the size of the packet set, dproc > n, then the
node should buffer the packets arriving from the next packet set while processing the previous one.

The time to process the packet set for a systematic code is dependent on the number of redundant
packets n− k. For a non-systematic code, the size of the whole packet set n should be counted, not just
n − k. First we obtain the delay for processing a single packet and then we multiply it with the total
number of packets in the packet set. Therefore, the processing delay in number of clock cycles per symbol
for a RS non-systematic code (n, k) at the decoder is

dproc = � n

n− k
�((n− k)2 + 6(n− k) + 4). (11)

V. PARAMETER SETTINGS FOR CPT

Figure 3 shows the operational range of the CPT, i.e., the relationship between the number of available
disjoint paths between a node pair (l) and the packet overhead (o). Three different areas are identified:

1) The operational range for the CPT scheme;
2) The secrecy constraints are violated;
3) The survivability constraints are violated.

As a general insight, we observe that a certain amount of packet overhead needs to be provided in order
to ensure survivability (protection against one failure). Furthermore, sending a certain amount of data
packets less than k on each path should guarantee secrecy against eavesdropping. Thus, the combination
of o and l should be in the operational range. Figure 3 is produced for m = 32 and coding over GF (28).

Figure 4 depicts the required overhead ratio for different PLR when k = 32, 64 and 128 and pthres=10
−12.

Here it is shown that the packet overhead required to keep the PLR below a predefined pthres is less than
the required packet overhead to achieve survivability against single link failure.

Figure 5 illustrates the operational range when we consider constraint (9) in addition to the constraints
for survivability and secrecy. The n − m′ packets sent on the non-failed paths may still be lost due to
contentions that means additional overhead is needed. The operational range reduces as the PLR increases.
We draw the operational range for p=0.01 and 0.001 besides the one presented in Figure 3.

In the previous Section we choose small parameters for n and k for simplified explanation. We give
other examples in Table II where n is equal to 2q − 1 and the parameters are chosen to satisfy the
survivability and secrecy constraints.

Fig. 3: The operational range for CPT for m = 32 and coding over GF (28)

Fig. 4: Required packet overhead for different PLR so that pfail ≤ pthres for pthres=10
−12

Fig. 5: The reduced operational range for CPT for m=32, coding over GF (28) when p=0.01 and 0.001
and pthres=10

−12

TABLE II: Examples where n = 2q − 1

q k r o m′ l Secrecy level in bits

5 25 6 0.24 5 and 6 6 95
6 42 21 0.5 21 3 126
7 84 43 0.512 42 and 43 3 287
8 204 51 0.25 51 5 1224

Fig. 6: Processing delay in clock cycles per symbol for a systematic and non-systematic RS code

Figure 6 shows the processing delay for a systematic code and two non-systematic RS codes for k = 32
and 64. The processing delay for the non-systematic codes is significantly higher than for the systematic
code. This is because that the total number of packets processed by a non-systematic code is greater
than the number of redundant packets processed by a systematic code. The processing delay increases
as r increases for the both cases. As it is illustrated in Figure 6, the number of data packets k has an
impact on the processing delay in addition to r for a non-systematic code. When non-systematic coding is
performed, the decoder will always process the packets from the previous packet set while packets from
a new packet set arrive. This is not the case for a systematic code for some parameter selections.

We conclude that the survivability, performance and secrecy that the CPT offers are at a price of an
increased processing delay. The CPT offers better performance compared to 1+1 or 1+N protection, where
the overhead ratio is 1. In order to keep the CPT scheme in the operational range, either the overhead
ratio should be greater than 0.5 or the number of disjoint paths should be equal to or more than 3. The
CPT scheme offers both survivability and secrecy with less overhead compared to traditional 1+1 path
protection, which offers only survivability against a single failure for 100% overhead ratio.

VI. CONCLUSIONS

This paper presented the Coded Packet Transport (CPT) scheme, a novel transport mechanism for
Optical Packet/Burst Switched (OPS/OBS) networks. The CPT scheme is able to recover packets lost
due to contentions and node/link failures, as well as providing secrecy in OPS/OBS networks. We have
presented the conceptual architecture for the CPT scheme, along with analytical results, outlining the
achievable performance. Further research on this topic should investigate the performance in realistic
network topologies.

ACKNOWLEDGMENTS

We would like to thank Gergely Biczók for his discussions and remarks that significantly improved the
paper.

REFERENCES

[1] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. Recommendation for key management-part 1: General
(revised. In NIST special publication. Citeseer, 2006.

[2] G. Biczók and H. Øverby. Combating packet loss in ops networks: A case for network coding. In NIK 2011, 2011.
[3] Yuhua Chen and P.K. Verma. Secure optical burst switching: Framework and research directions. Communications Magazine, IEEE,

46(8):40–45, 2008.
[4] Damien Giry. BlueKrypt, Cryptographic Key Length Recommendation, 2014.
[5] D. Griffith and SuKyoung Lee. A 1+1 protection architecture for optical burst switched networks. Selected Areas in Communications,

IEEE Journal on, 21(9):1384–1398, 2003.
[6] D.K. Hunter and Ivan Andonovic. Approaches to optical internet packet switching. Communications Magazine, IEEE, 38(9):116–122,

Sep 2000.
[7] K. Kralevska, H. Øverby, and D. Gligoroski. Joint balanced source and network coding. In Telecommunications Forum Telfor (TELFOR),

2014 22nd, pages 589–592, Nov 2014.
[8] Arjen K Lenstra and Eric R Verheul. Selecting cryptographic key sizes. Journal of cryptology, 14(4):255–293, 2001.
[9] Y.-W. Leung. Shared packet loss recovery for internet telephony. Communications Letters, IEEE, 9(1):84–86, 2005.

[10] Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and reed-solomon codes. Communications of the ACM, 24(9):583–584,
1981.

[11] M. Médard and A. Sprintson. Network coding, Fundamentals and Applications. 2012.
[12] Muriel Médard, Douglas Marquis, and Stephen R. Chinn. Attack detection methods for all-optical networks. In NDSS. The Internet

Society, 1998.
[13] Thinh Nguyen and A. Zakhor. Path diversity with forward error correction (pdf) system for packet switched networks. In INFOCOM

2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, volume 1, pages 663–672
vol.1, March 2003.

[14] Thinh Nguyen and Avideh Zakhor. Distributed video streaming with forward error correction, 2002.
[15] Paulo F. Oliveira, Luı́sa Lima, Tiago T. V. Vinhoza, João Barros, and Muriel Médard. Coding for trusted storage in untrusted networks.

IEEE Transactions on Information Forensics and Security, 7(6):1890–1899, 2012.
[16] H. Øverby, G. Biczk, P. Babarczi, and J. Tapolcai. Cost comparison of 1+1 path protection schemes: A case for coding. In Proc. IEEE

International Conference on Communications (ICC), Ottawa, ON, Canada, 2012.
[17] Harald Øverby. Network layer packet redundancy in optical packet switched networks. Opt. Express, 12(20):4881–4895, Oct 2004.
[18] Harald Øverby. Traffic modelling of asynchronous bufferless optical packet switched networks. Computer Communications, 30(6):1229

– 1243, 2007.
[19] Harald Øverby. Traffic models for slotted optical packet switched networks. Photonic Network Communications, 13(2):183–194, 2007.
[20] Harald Øverby. Combined study on survivability and performance in optical packet switched networks. J. Opt. Netw., 7(4):294–309,

Apr 2008.
[21] XILINX Product Guide. LogiCORE IP Reed-Solomon Decoder v9.0.
[22] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics,

8(2):300–304, June 1960.
[23] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
[24] Rodney S. Tucker. Optical packet-switched wdm networks – a cost and energy perspective. In Optical Fiber Communication

Conference/National Fiber Optic Engineers Conference, page OMG1. Optical Society of America, 2008.
[25] V.M. Vokkarane and Qiong Zhang. Forward redundancy: a loss recovery mechanism for optical burst-switched networks. In Wireless

and Optical Communications Networks, 2006 IFIP International Conference on, pages 5 pp.–5, 2006.
[26] Shun Yao, S. J. Ben Yoo, and B. Mukherjee. A comparison study between slotted and unslotted all-optical packet-switched network

with priority-based routing. In Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001, volume 2, pages TuK2–TuK2,
2001.

[27] Shun Yao, B. Mukherjee, S.J.B. Yoo, and S. Dixit. A unified study of contention-resolution schemes in optical packet-switched
networks. Lightwave Technology, Journal of, 21(3):672–683, 2003.

	84200_Katina Kralevska_omslag
	84200_Kralevska, Katina_83.NY
	TK.pdf
	84200_Innmat_02_1_PhDTitlepage.greyscaled
	84200_Innmat_03_1_PhDTitlepage.greyscaled

