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Abstract

This paper considers a service deployment problem that combines service placement and replication
level decisions in a cloud computing context. The services are composed of multiple components
that are to be placed on nodes in the private cloud of the service provider or, if the private cloud
has limited capacity, partly in a public cloud. In the service delivery, the provider has to take
into account the quality of service guarantees offered to his end-users. To solve the problem, we
develop a branch and price algorithm, where the subproblems both are formulated as a linear mixed
integer program and a shortest path problem with resource constraints (SPPRC) on a network with
a special structure. The SPPRC can be solved by an exact label-setting algorithm, but to speed up
the solution process, we develop a heuristic label-setting algorithm based on a reduced network and
simplified dominance rule. Our results show that using the heuristic subproblem solver is efficient.
Furthermore, the branch and price algorithm performs better than a previously developed pre-
generation algorithm for the same problem. In addition, we analyze and discuss the differences in
solutions that utilize resources in a public cloud to different degrees. By conducting this analysis
we are able to identify some essential characteristics of good solutions.

Keywords: Branch and price, Shortest path problem with resource constraints, Multi-tier
service, Replication, Cloud computing

1. Introduction

In this work, we are considering a service deployment problem of a software-as-a-service (SaaS)
provider that offers a set of services to his end-users. In the provisioning, the SaaS provider (SP)
must scale his services according to the performance and availability guarantees specified in the
service level agreements (SLAs) contracts that define the services in terms of functionality and
quality. Furthermore, the SP also has to decide where to run the services. A typical objective in
this problem is to minimize the cost of provision, while fulfilling the service quality guarantees.

In principle, this decision problem can be solved statically or dynamically. Herein, we consider
the demand to vary over time, but within certain periods, the demand is stationary in a stochastic
sense. When these periods are sufficiently long and recurring, that is, they might reflect working
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Figure 1: Illustration of a three-tier web service

hours, evenings, etc., it is possible to compute a stationary deployment solution for each period,
and apply the appropriate solution when one enters a new period. If the infrastructure running the
services is failure-prone, it is necessary to complement the stationary solution with a strategy to
return from a failed state back to the stationary solution. This strategy can be based on migrating
(by e.g., live migration [7]) or restarting service components on preallocated backup locations, as
proposed in [5], or based on activating standby service components [8]. However, in cases where
the demand is constantly fluctuating and not in a stationary state, it is necessary to solve the
deployment problem dynamically, but such cases are not considered here.

The different SaaS services offered by the SP are represented by multi-tier services, which
are services composed of several components collaborating to provide a service to the end-users.
An example of a multi-tier service is a three-tier web service composed of a web server tier, an
application tier and a database tier. Figure 1 illustrates the structure of a three-tier web service.
Each tier corresponds to a software component, referred to as component throughout this paper,
which runs on one or more virtual machines (VMs), which in turn run on physical servers. E.g. in
periods of low service demand, the web server component of a service might run on only one VM,
while with increased demand, the component is deployed by running multiple identical VMs in
order to provide a service in accordance with the SLA. While a component might run on multiple
VMs, a VM will only run one component. The considered SP owns and operates a limited set of
servers, forming a private cloud, which are capable of running the VMs of the service components.
An important operational cost component in a data center is the cost of energy, and a strategy
used to minimize the cost of energy usage in the VM scheduling is to turn off servers that are
not required with the current demand [16]. For the SP, there might be periods where the service
demand is too high to be able to provide the services from the private cloud alone. In such cases
the SP has the option to lease resources from a public infrastructure-as-a-service (IaaS) provider
(e.g. Amazon [1]), denoted a public cloud provider. When the infrastructure used by the SP to
provide his services is composed of both a private and a public cloud, this infrastructure is referred
to as a hybrid cloud [22]. In cases where the SP maintains a private infrastructure, it is often
desirable to fully utilize this infrastructure before leasing capacity from an IaaS provider.

The private and public clouds typically consist of a large amount of cheap, off-the-shelf hard-
ware, which make the services prone to failures, and hence, make fault tolerance an important
consideration in the deployment of cloud services. When a VM fails, one has to provide a new
VM to maintain service. A technique to improve the fault tolerance is standby redundancy, that
is, the principle of allocating standby resources that can be activated in case of a failure. The
use of standby redundancy reduces the time from a failure until the moment the new VM is up
and running. This time is commonly denoted failover time. Undheim et al. [28] present differ-
ent ways to implement standby redundancy in a cloud context. Moreover, software systems and
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conceptual frameworks that employ standby redundancy by running passive standby VMs on the
infrastructure are proposed by Cully et al. [8] and Distler et al. [9].

In [12], we present a novel optimization model of the service deployment problem of the SP that
includes decisions both related to the replication of the components of multi-tier services and related
to the placement of the replicas of the components. In the model, each component of a service could
be replicated into a number of load-balanced replicas, referred to as active replicas, and in addition,
passive replicas are used to improve the fault tolerance of the component. However, since we are
interested in the performance and fault tolerance of the whole service, not only the components,
the selection of replication levels of the different components of a service is linked. In cases where
different services interact through their placement (e.g., by running on the same servers), the most
cost-efficient way to replicate the components of a given service is dependent of the replication of
the components of other services. This is reflected in the model. The replication level decisions, i.e.,
deciding the number of active and passive replicas of each component of each service, are somewhat
similar to the decisions of an optimization problem referred to as the redundancy allocation problem
[20]. This problem consists of allocating parallel replicas to different subsystems in series so that
the reliability is over a given threshold, while minimizing the cost.

The service deployment problem was modeled as a linear mixed-integer program (MIP), and
solved using a commercial MIP solver in [12]. We also reformulated the problem and obtained
a pattern-based formulation. The linear relaxation of the reformulation was shown to be much
stronger than that of the former, direct MIP formulation. Nevertheless, the number of variables in
the reformulation grew exponentially with the size of the problem, and we could only optimize over
a small subset of the variables. Since we seek to find a stationary solution, we argue that one can
spend some time searching for a near-optimal or optimal solution. If the solution quality is of more
importance than the time to find a solution, we suggest using an exact solution method. Here,
we propose a branch and price (B&P) algorithm, in which the master problem is based on the
mentioned pattern-based formulation. The subproblem of the B&P is solved using a MIP solver
and a label-setting algorithm. The latter seeks to find the shortest path in a network, which to our
knowledge has a novel structure. While developing an exact label-setting algorithm, we observed
that this algorithm has deficiencies related to its dominance rule.

A contribution of this paper is an efficient heuristic label-setting algorithm based on a reduced
network and simplified dominance rule. Using this heuristic in conjunction with an exact MIP
solver speeds up the B&P algorithm. However, in some nodes of the enumeration tree, no improving
columns can be found, and hence, using the heuristic algorithm is ineffective. Another contribution
of this paper is a simple rule to decide whether the heuristic algorithm should be used in a node,
or the exact MIP solver should be called directly. A major question we seek to answer in our
computational study is by which methods the subproblem should be solved. The paper also provides
a discussion on how the size of the private cloud, relative to the service’s resource requirements,
affects the solution structure.

The outline of the paper is as follows. Next, in Section 2, we present some works related to
the service deployment problem, and in Section 3, we describe the problem in more detail. Two
variants of the problem are formulated in Section 4, before the B&P algorithm is explained in
Section 5. More details of the algorithm are found in Appendix A. The numerical results of our
experiments with the algorithm, along with a discussion of the results, are presented in Section 6.
Finally, we conclude the paper in Section 7.
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2. Related Work

As stated in the introduction, the part of the problem that regards the replication level decisions
is related to the redundancy allocation problem, which has applications in many areas including
in the design of computer systems. Ashrafi et al. [3] present optimization models with the goal to
optimize the reliability of a software system. More recently, Meedeniya et al. [21] use multi-objective
optimization to explore the trade-off between reliability and energy consumption when building
redundancy into an embedded system. While the redundancy allocation problem is related to our
work, this problem does not consider decisions associated with the placement of the redundant
components as considered herein.

Regarding the part of the problem that relates to the placement of the VMs, there exists a
lot of literature on scheduling and placement of VMs in clouds. A recent survey on resource
management in clouds is found in Jennings and Stadler [17]. We also review some literature in
[12]. Speitkamp and Bichler [27] present static optimization models for the problem of placing
VMs on servers in enterprise data centers. In contrast to our work, they do not model services as
consisting of multiple tiers, and neither do they treat replication of VMs. Dynamic optimization
models that investigate the trade-off between energy usage and performance can be found in several
works [2, 10, 19, 24]. Moreover, Google proposed another dynamic optimization model in the
ROADEF/EURO challenge 2012 [25]. In relation to the B&P algorithm proposed in this paper,
the solution approach of Kramer et al. [19] is interesting since it is one of the few approaches
in the VM placement literature that is based on column generation. Another related solution
approach is presented by Breitgand and Epstein [6], where column generation is used to solve a
static service placement problem, both with and without considering the cost of migrating VMs.
Like us, they require the provider to comply with requirements specified in SLAs, but while we
consider the service deployment problem of a SaaS provider, they regard the decision problem of an
IaaS provider. Both Kramer et al. [19] and Breitgand and Epstein [6] end the column generation
after solving the linear relaxation of the restricted master problem to optimality. To obtain an
integer solution, they solve this problem as an integer program, and thus, in contrast to the exact
B&P algorithm proposed herein, their solution approaches remain heuristic algorithms. Shi et al.
[26] consider a similar static placement problem that includes requirements specifying that a set
of VMs should run on different nodes for fault tolerance reasons, or the a node can only run a set
of VMs from the same user for security reasons. They develop both a linear integer programming
formulation to obtain an optimal static placement solution, and faster heuristics for performing
dynamic (online) placement of VMs. Furthermore, Goudarzi and Pedram [11] and Ardagna et al.
[2] regard a dynamic placement problem of an IaaS provider, which considers placement of multi-
tier services with decisions related to the load balancing and bounds on the performance. They
model the relationship between resource allocation and performance by queuing theory, and develop
non-linear integer programming formulations. While the latter works allow using several VMs for
each tier, none of the reviewed placement literature so far, except our previous work, models the
placement of passive backup replicas. However, Bin et al. [5] regard a related placement problem of
an IaaS provider where the VMs are allocated a fixed number of backup locations to which they can
be migrated in case of a failure. They develop a constraint programming model considering both
the placement of VMs and the allocation of backup locations. While there are some similarities
with our work, our work explicitly differs by modeling the VMs as part of multi-tier services with
associated SLA requirements, and by regarding the number of passive replicas as variable.
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3. Problem Description

We let S be the set of multi-tier services offered by the SP, and let Qi, i ∈ S, be the set
of components, i.e., tiers, of service i. A component q ∈ Qi runs in one or more VMs (due to
replication, discussed in Section 3.1), which in turn should run on a server, denoted a node in the
following. A VM contains only one replica of one component, and hence there is a one-to-many
relationship between components and VMs. A private cloud placement is an assignment of a VM
running component q of service i to a node in the private cloud of the SP. The nodes provide
resources like CPU power, memory and storage to the VMs, and we let the set G contain the
different types of resources. We assume the nodes to be identical with equal resource capacities
NCg of resource type g ∈ G. The VMs placed in the private cloud are of given sizes, depending on
the specific component running in the VM, and we let GAiqg be the amount of resource of type g
assigned to a VM running component q of service i when placed on a node. For simplicity, we will
denote component q of service i as the pair (i, q) in the following.

3.1. Quality of Service

The quality of service (QoS) levels of the services are stated in SLAs, and common QoS measures
for web services include the response time, either the average or a percentile of the distribution,
throughput and downtime [23]. Replication of the components of a service is used to manage the
service’s QoS, and the SP might choose to replicate a component into multiple active load-balanced
replicas, i.e., VMs, to increase the service performance. To make the services fault-tolerant, the
SP might additionally place passive back-up replicas on the nodes. In the treatment of replication
in this paper, there is a one-to-one match between a replica and a VM, and the notions are used
interchangeably. The replicas of the same component should not be placed on the same node, a
requirement referred to as node-disjoint placement. This is to prevent that multiple replicas of a
single component go down due to a single node failure. The passive replicas do not serve demand in
a failure-free situation, and consume fewer resources than active replicas [8, 9]. Therefore, instead
of being assigned GAiqg resources, a passive replica of the pair (i, q) is assigned GPiqg(< GAiqg)
resources of type g when placed on a node. Each node that runs at least one passive replica needs
to maintain a pool of shared backup resources for activation of passive replicas. The size of this
pool is a trade-off between fault tolerance and resource utilization since a small pool size will make
it difficult to provide enough resources to a passive replica when it is activated; and a large pool
means that a large amount of resources are unused in a failure-free situation. Herein, the pool
size is set such that the passive replica requiring the largest increase in resource assignment when
being activated can be activated. This means that a node can in the worst case only guarantee
the activation of one passive replica at a time, and thus the number of passive replicas on a node
is limited to NP , which enforces a distribution of the passive replicas on the infrastructure.

In this paper, we will not consider a specific QoS measure, but instead assume that there exists
a method to check if a service, with given replication levels of its components, satisfies the QoS
guarantees. Gullhav et al. [13] present a method that takes the number of active and passive
replicas of each component, the assigned resources (translated to service times of the requests)
of the replicas and failure probabilities as input, and outputs an approximated response time
distribution of the service. In [12], we introduced replication patterns in order to express the
relationship between the number of replicas of each component and the QoS guarantees in a linear
MIP. Thus, a replication pattern r ∈ Ri of service i is a combination of the number of active and
passive replicas of each component in the service. We let these numbers be denoted by RAiqr and
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RPiqr, which means that if replication pattern r is chosen for service i, one has to deploy RAiqr
active replicas and RPiqr passive replicas of each component q ∈ Qi. We assume that the set of
replication patterns Ri for each service i is given as input, and that all the replication patterns in
these sets satisfy the QoS guarantees.

The performance of the underlying network is neglected in our models. Within a single data
center, neglecting the network latency might be fair, but between clouds of different geographical
locations, one might argue that the network latency plays a role. On the other hand, this negligence
simplifies the models considerably. However, there is a bound on the number of different services
that can be run from a single node, NS . With this constraint, the model will implicitly drive
different components from the same service to be run on the same nodes, and so, the amount
of inter-node communication, stemming from the collaboration between components of the same
service, is expected to decrease.

3.2. Placement in Public Clouds

So far, we have taken for granted that the private cloud has enough resources to run all the
services, and only discussed the placement of the replicas in the private cloud of the SP. Now, we
consider the case where the private cloud does not have enough nodes to run all services, and the
SP gets the option, or is rather forced, to lease extra resources from a public cloud provider. We let
NN denote the number of nodes in the private cloud. In this case, leasing means to run a replica
of a pair (i, q) in a VM of an appropriate size in the data centers of the public cloud provider
at a cost. We do not assume that the public cloud provider supports the activation of passive
replicas, so passive replicas are always run in the private cloud. Since we do not consider network
effects explicitly in this work, we can consider the public cloud resources as a generic resource pool,
possibly consisting of offers from several public cloud providers. We can also determine before
the optimization the cheapest way (at which provider, and in what geographical location, etc.) to
place an active replica of the pair (i, q) in the public cloud. The cost of this placement is denoted
CCiq, and it is dependent on the resource requirement of the active replica. Generally, the public
cloud providers offer predetermined, fixed VM types differing by resource capacity and cost, and
typically the resource capacities of the VM types are coarse grained. For example, Amazon [1]
offers seven general-purpose VM types (referred to as Instances by Amazon), where the resource
capacities double from one VM type to the next. The amount of resource assigned to an active
replica of pair (i, q), GAiqg, is set before considering the available VM types offered in the public
cloud. When selecting the VM type that is going to be used for placement of an active replica in
the public cloud, one has to select a VM type that provides enough resources for each g ∈ G, and
one will select the cheapest VM type providing this. This means that two pairs (i1, q1) and (i2, q2)
with GAi1q1g 6= GAi2q2g for all g ∈ G, might have to run in the same type of VM in the public cloud
at an identical cost.

3.3. Cost of Deployment

The cost of deployment can consist of different cost components related to the service provi-
sioning. When only considering deployment in the private cloud of the SP, we consider the cost of
energy usage as the sole cost component. Like, several other optimization models for VM place-
ment, we minimize the number of nodes that is turned on. A reason for this choice is that a node
that is turned on, but in an idle state, consumes as much as 70 percent of its peak power [4], and
hence, running the services on as few nodes as possible will reduce the cost substantially. Another
situation arises when a hybrid cloud is used for placement. The motivation behind this scenario
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is that the private cloud does not have enough resources for running all services, and thus the SP
has to use a public cloud. In this scenario, the important cost component to minimize is the cost
of placing VMs in the public cloud, while fully utilizing the nodes in the private cloud.

4. Mathematical Formulations

Two formulations of the service deployment problem are presented next. The first formulates
the private cloud model, where only placement in the private cloud is considered, while the second
formulates the hybrid cloud model that also allows for placement in a public cloud. Both formu-
lations were proposed [12], but are repeated here as they form the master problem of our B&P
algorithm. To model the placement of replicas, they use node patterns, which represent a feasible
assignment of replicas to a node, that is, the assignment must respect the resource capacities of the
node, the requirement for shared backup resources, the requirement for node-disjoint placement
of replicas, and upper bounds on the number of passive replicas and the number of services on a
node. Since the nodes are considered identical, any node pattern can represent any node in the
private cloud. In this section, we take the set of node patterns as granted, but in Section 5, we
will formulate a subproblem for the B&P, which is used to generate node patterns dynamically.

4.1. Private Cloud Model

In the formulation below, the integer variables xb denote the number of times each node pattern
b ∈ B is used in the solution, where B represents the set of node patterns. The parameters
Wbiq ∈ {0, 1} and Vbiq ∈ {0, 1} indicate the placement of an active replica (Wbiq = 1) and a passive
replica (Vbiq = 1) of the pair (i, q) in node pattern b. Furthermore, the binary variables yir indicate
the selection of a replication pattern r ∈ Ri for service i.

min zP =
∑
b∈B

xb (4.1)

∑
r∈Ri

yir = 1 ∀i ∈ S (4.2)

∑
b∈B

Wbiqxb −
∑
r∈Ri

RAiqryir = 0 ∀i ∈ S,∀q ∈ Qi (4.3)

∑
b∈B

Vbiqxb −
∑
r∈Ri

RPiqryir = 0 ∀i ∈ S, ∀q ∈ Qi (4.4)

xb ∈ Z+ ∀b ∈ B (4.5)

yir ∈ {0, 1} ∀i ∈ S,∀r ∈ Ri (4.6)

The objective function (4.1) minimizes the number of used node patterns, and thereby also nodes.
The equalities (4.2) ensure that one replication pattern is selected for each service. Furthermore,
the equalities (4.3) and (4.4) establish the relation between the node pattern variables and the
replication pattern variables, and so provide that the correct number of active and passive replicas
of each pair (i, q) are placed on the nodes, according the chosen replication pattern. Finally, (4.5)
and (4.6) define the node pattern and replication pattern variables as non-negative integer and
binary, respectively.
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4.2. Hybrid Cloud Model

The motivational case of placing replicas in a public cloud is that there exist time periods
where the SP does not have enough capacity to run all services in his private cloud. We let wCiq
be integer variables denoting the number of active replicas of (i, q) placed in the public cloud. The
mathematical formulation of the hybrid cloud model is given below.

min zH =
∑
i∈S

∑
q∈Qi

CCiqwCiq (4.7)

∑
r∈Ri

yir = 1 ∀i ∈ S (4.8)

∑
b∈B

Wbiqxb + wCiq −
∑
r∈Ri

RAiqryir = 0 ∀i ∈ S,∀q ∈ Qi (4.9)

∑
b∈B

Vbiqxb −
∑
r∈Ri

RPiqryir = 0 ∀i ∈ S, ∀q ∈ Qi (4.10)

∑
b∈B

xb ≤ NN (4.11)

wCiq ∈ Z+ ∀i ∈ S,∀q ∈ Qi (4.12)

xb ∈ Z+ ∀b ∈ B (4.13)

yir ∈ {0, 1} ∀i ∈ S,∀r ∈ Ri (4.14)

The objective (4.7) minimizes the cost of placing active replicas in the public cloud. The equalities
(4.8) correspond to (4.2) in the private cloud model. The balance equalities (4.9) now include a
term for the public cloud placement of active replicas, while (4.10) remains identical to (4.4). The
inequality (4.11) reflects that the number of nodes is limited by setting an upper bound on the
sum of node patterns. At optimum (4.11) will be satisfied as an equality. At last, (4.12) - (4.14)
define the decision variables as integer or binary. It should be noted that the wCiq variables are
naturally integer as long as all xb and yir variables are non-fractional.

5. The Branch and Price Approach

In this section, we describe the algorithmic features of our B&P approach, and especially
concentrate on the solution methods used for solving the subproblem. In short, B&P is a solution
method that uses column generation in a branch and bound (B&B) framework. For the models
of Section 4, it would be possible in small cases to include all feasible node patterns and solve the
models as integer programs (IPs) using B&B. However, for realistic cases, this is not practical,
and thus, we propose to solve the model using B&P. In B&P, one generates new node patterns
in each B&B node until no further profitable node patterns exist. This is done by alternating
between solving the master problem, i.e., the formulations in Section 4, as a linear program (LP),
and a subproblem that generates new node patterns, until no node patterns with negative reduced
cost exists. The subproblem minimizes the reduced cost of a new node pattern by using the dual
variables of the master problem as coefficients in the objective function. When no node pattern
with negative reduced cost is found, one finishes the current B&B node and uses the same criteria
for branching or pruning as in the traditional B&B. However, the branching rules used in B&P
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applications often differ from the typical branching rule in the B&B framework. The branching
rule used herein is discussed in Section 5.3. Since the master problem LP only contains a subset
of the feasible node patterns, this problem is referred to as the restricted master problem (RMP),
and this is solved using a commercial LP solver. To obtain integer solutions by other means
than branching, one can solve the RMP as an IP at different points in time. The results of the
experiments presented in Section 6 show that we find all our best integer solutions this way. This
strategy is also used in the literature, e.g., by Gunnerud et al. [14], which find all their integer
solutions by solving an IP.

An overview of the B&P algorithm is shown in Algorithm 1. To keep the pseudocode compact
we let z, x, and y, with vectors in bold font, denote the RMP’s LP objective value, the node
pattern solution vector, and the replication pattern solution vector; and α, β, γ, and η be the
dual variables of the RMP. α and β refer to dual variables of the balance equations (4.3) and (4.4)
(resp. (4.9) and (4.10)), γ stems from the branching constraints introduced in Section 5.3, while
η represents the dual variable of (4.11), and is only present in the hybrid cloud model. Moreover,
ζ, w, and v denote, respectively, the reduced cost of the new node pattern, the binary vector
indicating the active replicas deployed in the new node pattern, and the binary vector indicating
the passive replicas. The vectors w and v correspond to the node pattern coefficients Wbiq and
Vbiq. In Algorithm 1, symbols with a superscript I refer to the current incumbent solution.

Algorithm 1 Pseudocode of the branch and price algorithm
Require: an initial set of node patterns, B, such that feasibility is assured.
1: Initialize tree by creating a root node
2: zI ←∞ // Initialize the objective value of the current incumbent to ∞
3: while there exists unsolved nodes do
4: Get next unsolved B&B node accoring to the best first strategy
5: repeat
6: (z,x,y,α,β,γ, η)← solveRMP(B)
7: (ζ,w,v)← solveSubproblem(α,β,γ, η)
8: if ζ < 0 then
9: B ← B ∪ {(w,v)} //add the new node pattern, represented by (w,v), to B

10: end if
11: until ζ ≥ 0 //implemented as check against a small positive number
12: if z < zI then
13: if solution (x,y) is fractional then
14: Branch and add new nodes with parent objective value z to the set of unsolved nodes
15: else
16: zI ← z, (xI ,yI)← (x,y) // store the new best solution
17: Remove all unsolved nodes with parent objective value worse than zI (prune)
18: end if
19: end if
20: if /*any condition*/ then {// specified in Section 6.1}
21: (z,x,y)← solveMasterIP(B) //Solve the RMP as an IP
22: if z < zI then
23: zI ← z, (xI ,yI)← (x,y) // store the new best solution
24: Remove all unsolved nodes with parent objective value worse than zI (prune)
25: end if
26: end if
27: end while
28: return (xI ,yI)

In the B&P implementation, we have done two small changes to the master problem formula-
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tions. The equalities (4.3)-(4.4) and (4.9)-(4.10) are changed to ≥ constraints. This has at least
two advantages. Firstly, it makes the dual variables of these constraints non-negative instead of
free, which might help to reduce the instability of the dual solutions [32]. Secondly, the feasible
region is enlarged which should make it easier to find a feasible solution. However, this also means
that one could obtain solutions that deploy more replicas than required. Especially, the passive
replicas, which require relatively small amounts of resources, are susceptible to this.

The subproblem that is used to generate new node patterns can be formulated and solved in
various ways. In general, subproblems can often be solved as MIPs, and in many applications, the
subproblem can also be formulated as a shortest path problem with resource constraints (SPPRC),
which is solved using a label-setting algorithm [15]. In addition, heuristic solution methods based
on label-setting algorithms have been utilized successfully to solve different types of subproblems
[15]. Solving the subproblem by a label-setting algorithm has an advantage over a MIP solver in
that it is relatively easy to extract more than one node pattern in each column generating iteration.
Herein, we have formulated the subproblem as a MIP and an SPPRC. For the SPPRC, we develop
both an exact and a heuristic label-setting algorithm, outlined in Section 5.2. However, when using
a heuristic subproblem solver, one must complement the heuristic solver with an exact subproblem
solver to maintain an exact B&P algorithm.

5.1. Formulating the Subproblem as a MIP

The subproblem can be formulated as the following MIP, where the αiq and βiq are the dual
variables of the constraints (4.3) and (4.4) (respectively (4.9) and (4.10)) of the private cloud
(respectively hybrid cloud) model. Furthermore, the formulation uses binary placement variables
wiq and viq, corresponding to the node pattern coefficients Wbiq and Vbiq; and binary variables si
to indicate whether at least one replica of service i is placed on the node, or not. The amount of
shared backup resources for activation of passive replicas are represented by the variables mg.

min ζ = 1−
(∑
i∈S

∑
q∈Qi

αiqwiq +
∑
i∈S

∑
q∈Qi

βiqviq

)
(5.1)

wiq + viq ≤ si ∀i ∈ S,∀q ∈ Qi (5.2)∑
i∈S

si ≤ NS (5.3)

∑
i∈S

∑
q∈Qi

viq ≤ NP (5.4)

mg − (GAiqg −GPiqg)viq ≥ 0 ∀i ∈ S,∀q ∈ Qi, ∀g ∈ G (5.5)∑
i∈S

∑
q∈Qi

GAiqgwiq +
∑
i∈S

∑
q∈Qi

GPiqgviq +mg ≤ NCg ∀g ∈ G (5.6)

mg ≥ 0 ∀g ∈ G (5.7)

wiq ∈ {0, 1} ∀i ∈ S, ∀q ∈ Qi (5.8)

viq ∈ {0, 1} ∀i ∈ S, ∀q ∈ Qi (5.9)

si ∈ {0, 1} ∀i ∈ S (5.10)
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The objective function (5.1) to be minimized corresponds to the reduced cost of a node pattern in
the private cloud model. The expression for the reduced cost in the hybrid cloud model is discussed
in Section 5.4. The constraints (5.2) ensure node-disjoint placement, and at the same time force si
to take value 1, as long as there is at least one replica from service i selected in the node pattern.
Moreover, (5.3) and (5.4) set upper bounds on the number of different services, and the number
of passive replicas that can run on a node, respectively. The resource capacities of the nodes are
handled by (5.6), where the first and second term account for the resources assigned to the active
and passive replicas, and the third term accounts for the shared backup resources. As discussed in
Section 3.1, the shared backup resources should be greater than or equal to the increase in assigned
resources when activating the passive replica with the largest resource increase. This is enforced
by the inequalities (5.5). Lastly, (5.7) - (5.10) give the variable definitions.

5.2. Formulating the Subproblem as an SPPRC

The underlying idea of the SPPRC formulation is to let the service components represent the
vertices of a graph (two vertices per component, corresponding to an active and a passive replica),
and then appropriately connect the vertices with directed arcs, such that the resulting graph is
acyclic. The resources of the SPPRC include the reduced cost, the amount of a node’s resources
assigned to replicas, the amount of a node’s resources reserved to allow passive replicas to be
activated, in addition to the number of passive replicas and the number of different services placed
on the node. The goal is to find the minimum reduced cost path from a dummy source vertex to
a dummy sink vertex, which is feasible with respect to the other resources. Such a feasible path
corresponds to a feasible node pattern, and a label-setting algorithm is used to obtain these paths.

The label-setting algorithm runs on a directed acyclic graph (V,A) which can be viewed as
a two-layered network. The upper layer network is illustrated in Figure 2, and is composed of
the dummy source and sink vertices, σ0 and τ0, and several service blocks, one for each service in
S. From σ0, there is an arc to every service block; and from each service block, there are arcs
to all other service blocks of higher order, in addition to an arc to τ0. The service blocks can be
ordered in different ways, and the ordering can change between separate calls to the label-setting
algorithm. Designing the network with the service blocks as central elements is beneficial because
of the restricted number of different services that can be visited, cf. constraint (5.3). That is, no
more than NS service blocks can be visited by a path.

σ0
Service
block 1

Service
block 2

· · · Service
block i

· · · Service
block |S| τ0

· · ·
· · · · · ·

· · · · · ·
· · ·
· · ·

Figure 2: The upper layer network of the SPPRC formulation

Each service block is a network in itself, and the structure of these subnets is depicted in Figure
3. The service block is composed of four types of vertices: one σ-vertex, one τ -vertex, one or more
a-vertices and one or more p-vertices. The σ-vertex, labelled σi in Figure 3, is the entrance of
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the service block and every arc into the service block is directed to this vertex. Similarly, the
τ -vertex, labelled τi in Figure 3, is the exit of the service block, and all arcs from a service block
to another service block or to τ0 are directed out from the τ -vertex. Each a-vertex in the service
subnet represents an active replica, i.e. the vertex ai1 in Figure 3 represents an active replica of the
first component of service i; and a path visiting this vertex is interpreted as a placement of such
a replica in the node pattern corresponding to the path. Analogously, each p-vertex in the service
subnet represents a passive replica. Again, the ordering of the components can change between
separate calls to the label-setting algorithm. From the σ-vertex, there is an arc to all a-vertices
and p-vertices; and from an a-vertex or p-vertex, there are arcs to all a-vertices and p-vertices
of higher order, in addition to the τ -vertex. Note that, there are no arcs between a-vertices and
p-vertices representing active and passive replicas of the same component, and no arc directly from
the σ-vertex to the τ -vertex.

σi

ai1

pi1

ai2

pi2

· · ·

· · ·

ai|Qi|

pi|Qi|

τi

· · ·

· · ·

· · ·

· · ·

Figure 3: The subnet of a service block in the SPPRC formulation

Algorithm 2 outlines the basic structure of the label-setting algorithm. The pseudocode is kept
compact and general, and thus does not show the special properties of the network. Each vertex ν
maintains a set of labels, Lν , and the algorithm is initialized by letting the label set of the dummy
source vertex σ0 have one label with reduced cost 1, representing a path containing only the source
vertex σ0. Then, all vertices are considered in topological order; that is, if A contain an arc from
ν to ω, vertex ν is considered before ω. Before the labels of a vertex ν is extended, all dominated
labels in Lν are removed. At the end, when the dummy sink vertex τ0 is considered, all labels in
Lτ0 with negative reduced cost are returned. The extension and domination of labels is detailed in
Appendix A.1 and Appendix A.2, respectively.

Since a label-setting algorithm without a dominance rule essentially is a full enumeration algo-
rithm, a critical algorithmic element is the efficiency of this rule. When conducting experiments
with the label-setting algorithm on the SPPRC formulation, it became clear that the interaction
between the shared backup resources, corresponding to mg in the subproblem MIP, and the total
amount of resources assigned to replicas on the node, made the dominance quite weak. However,
fixing mg before calling the label-setting algorithm would lead to much faster, but heuristic, solu-
tion method. There are two implications of this fixing that will increase the speed of the algorithm:
the dominance becomes more efficient, and one can reduce network size by disregarding the vertices
representing passive replicas with GAiqg − GPiqg > mg for at least one g. We consider two types
of fixings: mg fixed to zero for all g, and mg fixed to positive values. When using this heuristic
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Algorithm 2 Pseudocode of the label-setting algorithm
Require: a directed acyclic graph (V,A)
1: Lσ0 ← {`0}
2: for all vertices ν ∈ V in topological order do
3: if domination should be conducted then
4: Domination: find and remove all dominated labels in Lν
5: end if
6: for all labels ` ∈ Lν do
7: for all feasible extensions of label ` do
8: Extension: extend label ` to obtain label k
9: ω ← vertex of k

10: Lω ← Lω ∪ {k}
11: end for
12: end for
13: end for
14: return all labels (paths) in Lτ0 with negative reduced cost

label-setting algorithm in the B&P, the label-setting algorithm is run twice in each call to the
subproblem solver (Line 7 in Algorithm 1): one run with a zero-valued mg, and one run with at
least one positive mg. More details on this heuristic dominance and network reduction, in addition
to details on how the positive values of the mg variables are set, are found in Appendix A.4.

5.3. Branching

In B&P, it is well-known that branching directly on the variables generated by the subproblem
results in an unbalanced tree. Such a branching rule would also be difficult to implement in the
subproblem, and could destroy its structure [31]. While it is not efficient to branch directly on the
xb variables, one can use the traditional branching rules for the binary variables yir. However, in
our B&P algorithm, we prioritize branching on the node patterns as long as there exist fractional
xb variables, and we only describe the branching rule for the node patterns here. Regarding the
wCiq variables of the hybrid cloud model, we pointed out in Section 4.2 that these variables are
naturally integer, and hence, we do not branch on these variables.

Several works, including [29, 31, 33], discuss branching rules which ideas can be applied in our
problem. Generally, these rules select a subset of the generated columns, such that the sum of
the corresponding column variables are fractional. Based on this subset, one adds a constraint to
the master problem that either bounds this sum to be less than or equal to the fractional value
rounded down, or conversely, bound this sum to be greater than or equal to the fractional value
rounded up. However, the rule to select the subset of columns has to be designed such that it can
be handled by the subproblem. For a cutting stock problem, Vance [29] uses a branching rule that
selects a set of rows, denoted a branching set, in the master problem, and chooses the subset of
columns to branch on as the columns with coefficients greater than a certain value in each selected
row. We base our rule on this idea, but limit ourselves to consider pairs of rows.

First, we define J as the set of all branching sets of cardinality two, i.e., an element j ∈ J
corresponds to a pair of rows in (4.3)-(4.4) (analogously (4.9)-(4.10)), which means that j can either
represent two active replicas, two passive replicas, or one active and one passive replica. Because
replicas of the same component are required to run on different nodes, it is only meaningful that the
two rows of a branching set corresponds to two different service components. We use the symbols
HAjiq ∈ {0, 1} to indicate if the row (i, q) in (4.3) is included in the branching set j (HAjiq = 1);
and likewise HPjiq ∈ {0, 1} to indicate if the row (i, q) in (4.4) is included in the branching set
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j (HPjiq = 1). Moreover, let us define the set Bj as the current set of node patterns that have
coefficients (Wbiq or Vbiq) equal to one in the two rows represented by the branching set j, cf.
(5.11).

Bj = {b ∈ B | ∀i ∈ S, ∀q ∈ Qi (Wbiq ≥ HAjiq ∧ Vbiq ≥ HPjiq)} ∀j ∈ J (5.11)

Using the above definitions, branching is done by selecting a branching set j ∈ J , such that∑
b∈Bj

xb = φ /∈ Z

is fractional in the current solution; and then use the following inequalities as branching constraints
in the master problem:∑

b∈Bj

xb ≤ bφc and
∑
b∈Bj

xb ≥ dφe.

Therefore, at a given B&B node t in the tree, one would have a set J̄t of active branching sets
representing down branches (upper bounds), and a set J t of active branching sets representing up
branches (lower bounds). The branching constraints are written as (5.12) and (5.13), where Utj
and Ltj are set to the fractional value rounded down and up, respectively.∑

b∈Bj

xb ≤ Utj ∀j ∈ J̄t (5.12)

∑
b∈Bj

xb ≥ Ltj ∀j ∈ J t (5.13)

We need to point out that it could happen that an active branching set ̂ ∈ J̄t (or J t) is used
again when a new branching decision is made. In such a situation, the first child of B&B node t,
say t1, will have its current bound Ut1 ̂ < Ut̂ (or Lt1 ̂ > Lt̂), i.e. tightened, while the other child,
say t2, will have ̂ as element in both sets of active branching sets, that is, ̂ ∈ J̄t2 ∩ J t2 .

Furthermore, the branching rule will not make a node pattern invalid in any B&B node, which
means that we do not need to keep track of whether a node pattern is valid or not in each B&B
node. In addition, when we solve the RMP as an IP, we disregard all branching constraints and
optimize over all node patterns found so far.

A question that is not yet addressed is if this branching rule leads to a complete algorithm,
that is, can we guarantee that one could always eliminate fractional xb variables using this rule?
Proposition 5 in [33] states that for the cutting stock problem with columns as binary vectors, one
might have to use branching sets with cardinality greater than the maximum value of the right
hand sides in the master problem. If we had fixed all the replication pattern variables yir in the
enumeration tree to obtain fixed right hand sides in (4.3) - (4.4), the maximum right hand side
which could possibly be observed in a B&B node corresponds to:

R̄ = max{ max
i∈S,q∈Qi,r∈Ri

{RAiqr}, max
i∈S,q∈Qi,r∈Ri

{RPiqr}}.

In the test instances used in Section 6, this number would be much larger than two. Nevertheless,
when setting upper bounds on the run time, as done in Section 6, we have not encountered situations
where using branching sets with larger cardinality than two have been necessary to eliminate a
fractional solution. Yet, we cannot be certain that if the maximum run time is increased, we will
still be able to branch successfully on branching sets of cardinality two only.
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5.3.1. Modifications of the Subproblem Formulations

The dual variables of the branching constraints (5.12) and (5.13), γ̄j for all j ∈ J̄t and γj for
all j ∈ J t, need to be considered in the computation of the reduced cost of a new node pattern.
In the MIP formulation of the subproblem this is done by introducing new binary variables, p̄j for
all j ∈ J̄t, and pj for all j ∈ J t, which take value 1 if the branching set j is included in the new
node pattern. With this definition the modified objective function is given in (5.14). Moreover, the
inequalities (5.15)-(5.16) ensure that the p̄j and pj variables take the correct value. Note that since
γ̄j ≤ 0 and γj ≥ 0, the objective function will try to make p̄j , j ∈ J̄t, equal to zero, and hence we
only have to force it to take value one in case the new node pattern will include the branching set
j. For pj , j ∈ J̄t, we have the opposite situation as the objective will try to make the variable equal
to one, and therefore we have to force the variable to zero as long as the new node pattern will not
include the branching set. Hence, each new branching constraint in the master problem will lead
to one new binary variable and one new constraint in the MIP formulation of the subproblem.

min ζt = 1−
(∑
i∈S

∑
q∈Qi

αiqwiq +
∑
i∈S

∑
q∈Qi

βiqviq +
∑
j∈J̄t

γ̄j p̄j +
∑
j∈J t

γjpj

)
(5.14)

∑
i∈S

∑
q∈Qi

HAjiqwiq +
∑
i∈S

∑
q∈Qi

HPjiqviq − p̄j ≤ 1 ∀j ∈ J̄t (5.15)

∑
i∈S

∑
q∈Qi

HAjiqwiq +
∑
i∈S

∑
q∈Qi

HPjiqviq − 2pj ≥ 0 ∀j ∈ J t (5.16)

It is also necessary to modify the SPPRC formulation and label-setting algorithm to account
for the branching decisions. Details on this is found in Appendix A.3.

We emphasize that adding branching constraints to the master problem and implementing the
branching decisions in the subproblem formulations make the problems harder to solve. Therefore,
it might be desirable to select B&B nodes high up in the tree when selecting new nodes in the
B&P algorithm (cf. line 4 of Algorithm 1). Hence, we have implemented best first as the node
selection strategy of our algorithm.

5.4. Generating Node Patterns in the Hybrid Cloud Model

In order to generate new improving node patterns in the hybrid cloud model (4.7) - (4.14), we
have to make some small modifications to the subproblem. When computing the reduced cost of
a new node pattern, we now have to take into account the dual variable η of constraint (4.11).
Moreover, the objective coefficient of a new node pattern in the master problem objective (4.7) is
zero, not one as in the private cloud model. The modified objective function of the MIP formulation
of the subproblem is given in (5.17) below. Note that η ≤ 0, and that the first term of the modified
objective function is constant.

min ζt = −η −
(∑
i∈S

∑
q∈Qi

αiqwiq +
∑
i∈S

∑
q∈Qi

βiqviq +
∑
j∈J̄t

γ̄jpj +
∑
j∈J t

γjpj

)
(5.17)

Like the modifications in the MIP formulation, the modifications in the SPPRC formulation
and the label-setting algorithm are only minor. Instead of initializing the label-setting algorithm
with a label with reduced cost 1, one initializes the algorithm with a label with reduced cost −η.
Otherwise, the algorithm remains the same.
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6. Numerical Results and Discussion

The main goal of our experimental study is to evaluate the different solvers for the subproblem.
In addition, we are comparing the proposed B&P algorithm with the solution method presented
in our earlier work [12]. The comparisons are done on both the private cloud and hybrid cloud
model. At the end of the section, we will also investigate and present some characteristics of the
solutions of the hybrid cloud model. Before the results are presented and discussed, we will give a
description of the setup of the experiments.

6.1. Experimental Setup

We have implemented the B&P and label-setting algorithms in C++, and compiled the code
with GCC version 4.8.2 with option -O3. The experiments have been run on a CentOS 5.8 machine
with a dual core 3.0GHz Intel E5472 Xeon processor and 16 GB of memory. The Xpress-Optimizer
version 27.01.02 of the FICO Xpress Optimization Suite version 7.8 was used for solving the master
problem and the MIP formulation of the subproblem. The MIP solver has been able to utilize eight
threads in the B&B. All experiments have been given a maximum run time of five hours.

In the experiments, we have not used real data. Even so, we believe that the data we have
used realistically represent real world cases. The test instances used are of 6 different sizes, ranging
from 5 services to 50 services, and for each instance size, we have 5 cases. The cases are generated
based on 10 different dummy services with between 3 and 5 components each and different resource
requirement characteristics. On average, each service consists of 4 components, and hence, the total
number of components in the largest case with 50 different services amounts to 200. Each of the
dummy services specifies distributions from which the GAiqg and GPiqg parameters are randomly
generated, based on a seed, and the components of a service have different distributions to imitate
real SaaS services. The replication pattern data are also different among the cases: the average
number of replication patterns per service is 7.5, and the average number of active and passive
replicas per component over all replication patterns is 3.67 and 2.49, respectively. In all cases,
NS = 3 and NP = 4; and we consider the CPU as the only resource type in the experiments. The
average value of GAiqg and GPiqg are 23.0% and 1.60%, given in percent of the CPU capacity of
the nodes. Furthermore, the median of the maximum (minimum) GAiqg and GPiqg over all cases
is 45.0% and 3.00% (8.00% and 0.333%).

Regarding the experiments on the hybrid cloud model, we also have to set a bound on the
number of nodes in the private cloud, NN . For each of the test cases described above, we can
construct different cases for the hybrid cloud model by changing the NN parameter, and we have
chosen to give this parameter values based on the best bound obtained on the corresponding test
case in the private cloud experiments. Specifically, we have set NN to 75% or 90% of the best bound,
rounded up to the nearest integer. For simplicity, we will refer to these percentages as the private
cloud coverage. When placed in the public cloud, an active replica, say (i, q), is run in a VM which
capacity is at least as large as GAiqg. Typically, the public cloud providers offer predetermined VM
types of different cost and capacity, and most often the cost per resource unit are constant over
all VM types. Herein, we have used the hypothetical VM types listed in Table 1, which cost and
capacity structures resemble the ones offered by Amazon (see [1]). We assume that there exists in
total 6 VM types offered by 2 different public cloud providers. Since our mathematical model does
not distinguish between providers, we can compute before the optimization the cost of placing an
active replica of each component (i, q) in the public cloud. That is, CCiq equals the cost of the
cheapest VM that has larger capacity than GAiqg. Note that the cost values in the table are not
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given units. Since we are not comparing the cost of running services in the private cloud with the
cost of placement in the public cloud, the units are not important. However, the relative differences
in cost and capacity of the VM types are reflecting the reality.

Table 1: Data of the public cloud VM types used in the hybrid cloud experiments. The capacity is given in percentage
of the private cloud node capacity.

Provider 1 Provider 2

Cost Capacity Cost Capacity

10 10% 15 15%

20 20% 30 30%

40 40% 60 60%

The test cases are primarily labelled based on the number of services, but also given a suffix a

to e distinguishing the five different cases with an equal number of services. E.g., the five private
cloud test cases with 20 services are labelled from P20-a to P20-e. When all cases with 20 services
are referred to as a whole, we ignore the suffix. Similarly, the hybrid cloud cases with 20 services
are labelled H20-a to H20-e.

In the B&P algorithm, one has the option of calling an IP solver (the MIP solver of Xpress)
on the RMP (cf. line 20 of Algorithm 1). In the implementation used in the experiments, we have
chosen to call the IP solver directly after the root node is solved, and then after every 100th solved
B&B node. In order not to spend too much time on solving the IPs, we have set the maximum
run time of the IP solver to 600 seconds. Another parameter, which has to be set, is the maximum
number of node patterns that is added to the RMP when the label-setting algorithms are used as
solution method for the subproblem. For the exact label-setting algorithm (E-LSA) we have set
the maximum number of node patterns to 20. Since the heuristic label-setting algorithm (H-LSA)
solves two different networks in each iteration, one with mg = 0 and one with mg > 0, we will add
at most 10 node patterns from each of the two runs to the RMP.

6.2. Evaluation of the Solution Methods

As we want to maintain an exact solution approach, we have to complement the heuristic
solution method with an exact solution method for the subproblem. Therefore, we are interested
in assessing the relative performance of the exact solution methods. To do this, we are using two
different setups of the B&P algorithm in the tests: one where the subproblem is solved by using
the Xpress MIP solver on the MIP formulation in Section 5.1; and one where the subproblem is
solved using the E-LSA of Section 5.2. Table 2 displays the results of experiments on the private
cloud cases with 5 and 10 services. The columns labelled Best sol. report the objective value, i.e.,
the number of nodes required in the placement of the best found solution. We can see that we are
able to solve all of the ten smallest cases to optimality before we reach the maximum run time.
Moreover, E-LSA uses fewer iterations but adds more node patterns to the master problem. Since
we add up to 20 node patterns to the master problem every time the subproblem is solved, we
should expect to solve the subproblem fewer times. While the solution times of the E-LSA are on
par with the solution times of the MIP in the P5 cases, we can see that the solution times increase
dramatically on the P10 cases. For these cases, the MIP is clearly faster; and, not shown in the
table, the differences in solution time continue to increase for the larger cases. Thus, we conclude
that we prefer to use the MIP as the exact solution method for the subproblem. Moreover, the
results disclose that the LP relaxation of the node pattern formulation is very tight. In all of the
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cases displayed in Table 2, the objective value of the optimal solution is equal to the rounded up
value of the RMP after solving the root node. When using the E-LSA as the subproblem solver,
we are able to find the optimal solution by solving the RMP as an IP after solving the root node.
When the MIP is used as the subproblem solver, there are two cases, P5-a and P10-a, where the
IP of the RMP does not give the optimal solution after the root node. Nevertheless, the next time
the RMP is solved as an IP, after 100 more B&B nodes, the optimal solutions are found.

Table 2: Comparison of the exact solution methods for the subproblem: MIP vs. Exact label-setting algorithm
(E-LSA). The column np lists the number of generated node patterns, while the column iter. lists the total number
of times the subproblem is solved. Solution times are given in seconds.

MIP E-LSA

Best
sol.

Best
bound

Sol.
time

B&B
nodes

np iter. Best
sol.

Best
bound

Sol.
time

B&B
nodes

np iter.

P5-a 14 14 121 101 299 400 14 14 47 1 500 34

P5-b 17 17 22 1 133 134 17 17 18 1 434 29

P5-c 15 15 30 1 169 170 15 15 29 1 525 35

P5-d 14 14 28 1 155 156 14 14 50 1 519 38

P5-e 18 18 28 1 146 147 18 18 53 1 507 41

P10-a 32 32 329 101 516 617 32 32 4582 1 955 55

P10-b 32 32 103 1 352 353 32 32 838 1 823 50

P10-c 35 35 134 1 363 364 35 35 2182 1 930 61

P10-d 32 32 112 1 363 364 32 32 752 1 854 50

P10-e 37 37 106 1 357 358 37 37 922 1 808 45

In the experiments on the larger cases, where many B&B nodes are explored, there are B&B
nodes where neither the heuristic nor the exact subproblem solver manages to find new improving
node patterns. Consequently, only one iteration with an exact solution method is necessary to
solve many B&B nodes. On average in the cases with 20, 30, 40 and 50 services, a new improving
node pattern is generated by the subproblem in only 25% of the B&B nodes. In a B&B node
that does not produce a single node pattern, using the heuristic subproblem solver, which has to
be followed by an exact solution method, is clearly a wasted iteration. Ideally, we would like to
know in advance if it is possible to generate an improving node pattern in a B&B node; and if
so, we want to use the heuristic subproblem solver; otherwise, we will call the exact subproblem
solver directly. However, we do not have this type of information; but we try to make a prediction
about the possibility of generating an improving node pattern in a B&B node by comparing the
final LP objective value of the node’s parent and the current LP objective value of the node itself.
In a minimization problem, the objective value of a B&B node t, say zt, can never be less than
the final objective value of the parent node, say zPARt , i.e., zt ≥ zPARt ; and when node patterns
with negative reduced cost are added to the RMP, zt decreases monotonically. Thus, if the relative
difference between these values is small, we suggest that it is less probable to find an improving
node pattern in this B&B node. Specifically, we say that if the relative difference is less than a
threshold, denoted by ∆, we call the exact subproblem solver next. This condition is shown in
inequality (6.1).

zt − zPARt

zPARt

≤ ∆ (6.1)

Table 3 shows some results of the experiments with the B&P with the H-LSA as the primary
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subproblem solver, where ∆ is given different values between zero and one. In the extreme case
where ∆ = 1, the B&P will never use the H-LSA in other B&B nodes than the root node, and if
∆ = 0, the B&P will use the H-LSA in every B&B node until it cannot find an improving node
pattern, and then switch to the exact solution method. Moreover, for each of the instance sizes
with 30, 40 and 50 services, the table lists the number of solved cases (out of 5 for each size), the
average relative gap1 between the objective value of the best found solution and the best bound
after reaching the run time limit, the average percentage of subproblem iterations conducted with
the H-LSA, and the average number of B&B nodes. At the bottom of the table, there are also
averages over all cases with 30 services or more. Generally, we can see that when ∆ is given a large
value, the B&P algorithm explores a larger amount of B&B nodes compared to the cases when ∆
is given a small value. This result might be explained by, as already discussed, the high amount of
B&B nodes where no improving node patterns can be found, and thus smaller values of ∆ imply
more wasted calls to the H-LSA. Overall, the results show that using the H-LSA in the B&P tree
is valuable, at least if we manage to control when to use the H-LSA and when to call the exact
solution method directly. We see that the smallest average gap is achieved when ∆ = 1 · 10−5. For
this value, we observe that on average the H-LSA is used as the solution method in about 20% of
the subproblem iterations, as opposed to about 40% when ∆ = 0.

Table 3: H-LSA results with different thresholds, ∆. Avg. H-LSA iter. refers to the percentage of calls to the H-LSA
subproblem solver out of the total number of times the subproblem is solved. Run time limit: 5 hours.

Threshold on relative difference, ∆

1 1 · 10−4 5 · 10−5 1 · 10−5 5 · 10−6 0

P30

Solved cases 1 0 1 1 1 1

Avg. gap 1.359% 1.347% 1.158% 0.9559% 1.157% 0.9580%

Avg. H-LSA iter. 4.468% 5.004% 7.811% 18.17% 23.35% 42.26%

Avg. B&B nodes 1522 1747 1572 1450 1335 1175

P40

Solved cases 0 0 0 0 0 0

Avg. gap 3.225% 3.070% 3.216% 2.788% 2.936% 2.935%

Avg. H-LSA iter. 5.107% 5.845% 9.188% 23.00% 26.46% 40.26%

Avg. B&B nodes 1535 1507 1500 1230 1204 1099

P50

Solved cases 0 0 0 0 0 0

Avg. gap 4.013% 3.901% 3.783% 3.554% 3.783% 4.267%

Avg. H-LSA iter. 7.503% 9.376% 9.579% 18.62% 22.54% 40.02%

Avg. B&B nodes 1192 1152 1109 955.8 912.0 832.0

P30, P40
& P50

Avg. gap 2.866% 2.772% 2.719% 2.433% 2.625% 2.720%

Avg. H-LSA iter. 5.692% 6.742% 8.859% 19.93% 24.12% 40.85%

Avg. B&B nodes 1416 1469 1394 1212 1150 1035

In Gullhav and Nygreen [12], we compared the performance and solution quality of the direct
MIP formulation and a heuristic algorithm that pre-generates a subset of all maximal node patterns,
gives this as input to the pattern-based models, and subsequently solves the formulations of Section
4 as an IP. The results showed that the pre-generation algorithm outperformed the direct MIP
formulation, both in terms of speed and solution quality. Here, we will concentrate on comparing

1 obj. val. of best solution - final best bound

final best bound
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the B&P algorithm with the pre-generation algorithm. Specifically, we will consider two versions of
the B&P algorithm: one which only solves the subproblem with the exact MIP model of Section 5.1;
and one which uses the H-LSA as the primary subproblem solver whenever the relative difference
between the parent objective and the current objective is less than 1 · 10−5. If the H-LSA fails
to find an improving node pattern, the exact MIP model is used as the solver. We denote these
two alternative B&P algorithms for B&P MIP and B&P H-LSA in the following. Regarding the
pre-generation algorithm, we have pre-generated node patterns as it was done in our earlier paper,
and for each of the cases in the subsequently presented results we have included a subset of between
250 000 and 300 000 maximal node patterns (out of millions) in the optimization runs. For the
P50 cases, this corresponds to about 0.1% of the total number of maximal node patterns. Our
experience is that if one includes more node patterns than this, it will not improve the solutions
significantly, but instead slow down the MIP solver.

Table 4 compares the average gaps of the pre-generation and the B&P algorithms at different
time steps for the cases with 20 or more services. The results of the pre-generation is reported
without accounting for the time it takes to pre-generate the node patterns, and the gaps are
calculated based on the final best bound of the B&P H-LSA, which in all cases equals the final
best bound of the B&P MIP. One can see from the columns of Table 4 labelled Final, that after
a maximum of five hours of run time, the B&P H-LSA has the smallest average gaps in all cases.
Generally, at a given time step the B&P H-LSA has found better solutions than both the pre-
generation and the B&P MIP. Also, the B&P MIP outperforms pre-generation in most cases. For
the P50 case we can see that the average gap after 3600 seconds for the B&P MIP is not given. The
explanation is that the B&P MIP has not yet solved the root node, and subsequently the master
problem as an IP, after 3600 seconds in any of the P50 cases. Therefore, no integer solutions are
found at this point. Not shown in the table, the magnitude of the final gaps of B&P H-LSA varies
from 1 for the unsolved P20 cases to between 4 and 7 for the P50 cases. In the latter cases, the
best bounds are in the interval [162, 174]. Furthermore, both B&P MIP and B&P H-LSA solve
three of the five P20 cases, and B&P H-LSA solves one of the five P30 cases. The pre-generation
cannot find the optimal solution in any case.

Table 4: Average relative gap (in %) at different time steps (seconds): comparison of the pre-generation algorithm
and the branch and price algorithms. Run time limit: 5 hours.

Pre-generation B&P MIP B&P H-LSA

3600 7200 10800 14400 Final 3600 7200 10800 14400 Final 3600 7200 10800 14400 Final

P20 3.895 3.895 3.592 3.002 3.002 1.824 1.553 1.553 1.553 1.241 1.553 0.924 0.620 0.620 0.620

P30 8.196 5.423 4.663 4.663 4.663 2.909 2.320 2.320 1.916 1.732 2.522 1.729 1.343 1.139 0.956

P40 7.903 6.566 5.552 5.251 4.674 5.098 3.804 3.509 3.070 3.070 3.958 3.081 2.938 2.788 2.788

P50 9.119 9.119 7.224 6.258 5.798 N/A 5.677 4.844 4.614 4.493 5.144 4.494 4.137 3.789 3.554

Now, we are concentrating on experiments with the hybrid cloud model of Section 4.2. The
B&P H-LSA and pre-generation algorithms are set up as in the private cloud cases. That is, ∆ is
still 1 · 10−5, and the pre-generation algorithm optimizes a hybrid cloud case over the same node
patterns that were used for the corresponding private cloud case. As discussed in Section 6.1,
the specified number of nodes in the hybrid cloud cases are set based on the best bound of the
corresponding private cloud cases. We omit to give the best bound for all private cloud cases, but
instead give the values for one case of each instance size. The best bounds for the cases P20-a,
P30-a, P40-a and P50-a are, respectively, 64, 75, 101 and 124, and the values of the other cases
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are quite similar to the value of the case of the same size.
Table 5 compares the gaps at different points in time of the pre-generation algorithm and the

B&P H-LSA algorithm for the hybrid cloud cases with 90% private cloud coverage. Again, the
gaps of the pre-generation algorithm are computed based on the final best bound of the B&P
H-LSA algorithm. Our tests show that the B&P H-LSA produces better results than the B&P
MIP, but for presentation purposes, we exclude the results of the latter from the tables regarding
hybrid cloud cases. However, the table shows that the branch and price algorithm is clearly better
than pre-generation for all cases. The gaps of the B&P H-LSA are smaller than those of the
pre-generation algorithm. Table 5 also shows that the average gaps are larger compared to the
private cloud results in all cases. Moreover, the time to solve the root node is longer for both
solution methods, and the B&P H-LSA is able to find a solution within 3600 seconds in only one
of the five H50 cases. On the other hand, the pre-generation algorithm finds a solution within 3600
seconds in four of the five H50 cases, but the gap in one of these cases is as much as 98.40%. When
considering the hybrid cloud cases with 75% private cloud coverage, we obtain similar results. As
seen in Table 6, the B&P H-LSA produces solutions with smaller gaps in all cases. However, the
relative gaps are smaller than in the cases with 90% private cloud coverage, and so these cases are
seemingly easier to solve. This observation is consistent with the results in [12], where we showed
that the hybrid cloud model became harder to solve as the number of nodes in the private cloud
approached the best found solution of the private cloud model.

Table 5: Average relative gap (in %) at different time steps (seconds): comparison of the pre-generation algorithm
and the branch and price algorithm using H-LSA on the hybrid cloud cases with 90% private cloud coverage. Run
time limit: 5 hours.

Pre-generation B&P H-LSA

3600 7200 10800 14400 Final 3600 7200 10800 14400 Final

H20 28.99 27.20 25.63 23.58 23.41 8.044 6.775 5.146 5.146 5.146

H30 41.43 39.13 37.28 36.84 34.97 17.64 14.85 12.08 11.49 11.38

H40 107.9 45.14 44.30 43.71 42.45 23.49 18.39 17.64 17.26 16.88

H50 62.38 48.44 46.00 43.54 43.54 25.74 22.39 22.33 20.74 18.66

Table 6: Average relative gap (in %) at different time steps (seconds): comparison of the pre-generation algorithm
and the branch and price algorithm using H-LSA on the hybrid cloud cases with 75% private cloud coverage. Run
time limit: 5 hours.

Pre-generation B&P H-LSA

3600 7200 10800 14400 Final 3600 7200 10800 14400 Final

H20 10.89 10.17 9.410 9.180 9.180 2.007 1.769 1.709 1.304 1.196

H30 14.34 13.05 12.51 12.47 12.47 4.126 3.933 3.576 3.497 3.497

H40 16.74 14.84 14.73 14.67 14.15 7.208 5.847 5.489 5.899 5.092

H50 37.53 16.13 15.99 17.24 17.24 N/A 7.641 6.738 5.606 5.454

Even though the B&P H-LSA finds better solutions than the other algorithms in the compar-
isons in Tables 4 - 6, the B&P H-LSA can only prove optimality in a very few number of cases.
In addition, the gaps shown in the tables are relatively large. For the private cloud model, the
gaps are in general smaller, but this model has also structural similarities with the cutting stock
problem, for which column generation provides very tight bounds [30]. However, for the hybrid
cloud model, we cannot be certain about the tightness of the bounds. Therefore, it is hard to
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quantify the economic consequences of the magnitude of the bounds. For the private cloud model,
a positive gap means that it might be possible to use fewer nodes (and less energy) than in the
best found solution, and for the hybrid cloud model, the magnitude of the gap can be translated
to the extra cost of the best solution compared to the minimum cost value that cannot be rejected
as infeasible.

6.3. Comparison of the Private Cloud and Hybrid Cloud Solutions

The private cloud and hybrid cloud models are in many ways quite similar, but the different
objective functions and the upper bound on the number of nodes in the private cloud of the hybrid
cloud model give their respective solutions distinct features. In the private cloud model, the focus
is on finding efficient ways to pack a node, while in the hybrid cloud model, one also has to decide
which active replicas should be placed in the public cloud. At first, one could think that obtaining
efficient packings of the nodes still was the primary success factor for obtaining good solutions
in the hybrid cloud model, and that the active replicas that did not fit in the selected efficient
packings were moved to the public cloud. However, the solutions of the hybrid cloud model show
that other factors are important to obtain a good solution.

With the node capacity normalized to 100, Table 1 shows that the cost per unit of resource is
equal 1 for all VM types. But since the public cloud VM types are offered in pre-defined discrete
sizes which might not fit exactly with the resource requirement of an active replica of (i, q), GAiqg,
the cost per unit of resource might be higher. E.g., if GAiqg = 32, this active replica would fit
in the largest VM of provider 1 in Table 1 and cost 40. The cost per unit of resource is then
40/32 = 1.25, which is considerable higher than 1. In the private cloud model, this unit cost is of
no importance for the solution quality, but in the hybrid cloud model it is a meaningful quantity.
To compare the solutions of the private cloud cases and the hybrid cloud cases we have computed a
cost-resource-ratio (CRR) by dividing the total cost of placing a set of active replicas in the public
cloud by the sum of resources (GAiqg) required by the same active replicas. The second column of
Table 7 gives the CRR of the best solutions of the private cloud cases, i.e., the CRR is computed by
dividing the potential cost of placing all the active replicas in the public cloud by the total amount
of resource required by the active replicas. The columns labelled tot give the same numbers for
the hybrid cloud cases with 90% and 75% private cloud coverage. Note that these numbers are not
influenced directly by the placement, but computed based on the replication patterns selected in
the solution. The table shows that the CRR computed over all active replicas are often identical. In
the cases where they differ, it means that the solutions use different replication patterns. What is
more interesting is the CRR computed over all active replicas placed in the public cloud (columns
labelled puc). These ratios are much smaller than the ratio of the private cloud cases and the
ratios over all active replicas in the hybrid cloud cases. This observation is important as it tells us
that the optimization process selects the active replicas with relatively low cost per resource unit
to be placed in the public cloud. Just for comparison, Table 7 also presents the CRR computed
over all active replicas placed in the private cloud (cf. column prc) and it shows that these ratios
are higher than the ratio of the private cloud cases. This is because the active replicas with low
cost per resource unit are placed in the public cloud, and so the relatively ”expensive” active
replicas remain in the private cloud. Furthermore, if one compares the CRR computed over the
active replicas in the public cloud one can see that the CRRs for the cases with 90% private cloud
coverage are always smaller than the ones with 75% private cloud coverage. This finding supports
the interpretation above as it means that if the private cloud coverage is increased, the optimization
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process will move the active replicas in the public cloud with relatively high cost per resource unit
back to the private cloud.

Table 7: The cost-resource-ratio (CRR) of the private cloud solution, and the hybrid cloud solutions with 90% and
75% private cloud coverage (pcc). For the latter, the CRR is computed over all active replicas (tot), over the active
replicas placed in the private cloud (prc), and over the active replicas placed in the public cloud (puc).

Private
cloud

Hybrid cloud:
90% pcc

Hybrid cloud:
75% pcc

prc tot puc prc tot puc

H20-a 1.2124 1.2338 1.2123 1.0491 1.2753 1.2123 1.0750

H20-b 1.2234 1.2459 1.2234 1.0680 1.2888 1.2234 1.0810

H20-c 1.2218 1.2444 1.2211 1.0355 1.2825 1.2211 1.0811

H20-d 1.1986 1.2177 1.1986 1.0489 1.2589 1.1983 1.0604

H20-e 1.2197 1.2393 1.2202 1.0676 1.2795 1.2202 1.0788

H30-a 1.2098 1.2336 1.2114 1.0516 1.2725 1.2113 1.0816

H30-b 1.2269 1.2448 1.2269 1.0758 1.2920 1.2269 1.0848

H30-c 1.2240 1.2451 1.2239 1.0647 1.2840 1.2237 1.0848

H30-d 1.1876 1.2059 1.1876 1.0531 1.2459 1.1876 1.0595

H30-e 1.2078 1.2293 1.2091 1.0603 1.2720 1.2091 1.0705

H40-a 1.2023 1.2251 1.2021 1.0603 1.2617 1.2020 1.0796

H40-b 1.2166 1.2403 1.2166 1.0709 1.2801 1.2165 1.0862

H40-c 1.2234 1.2487 1.2234 1.0577 1.2878 1.2234 1.0824

H40-d 1.1966 1.2172 1.1966 1.0535 1.2581 1.1961 1.0646

H40-e 1.2112 1.2322 1.2111 1.0651 1.2706 1.2110 1.0822

H50-a 1.2036 1.2272 1.2036 1.0596 1.2676 1.2034 1.0770

H50-b 1.2150 1.2388 1.2150 1.0668 1.2802 1.2150 1.0736

H50-c 1.2230 1.2494 1.2232 1.0571 1.2892 1.2231 1.0823

H50-d 1.1958 1.2173 1.1958 1.0597 1.2575 1.1954 1.0682

H50-e 1.2099 1.2318 1.2099 1.0727 1.2716 1.2098 1.0789

Average 1.2115 1.2334 1.2116 1.0599 1.2738 1.2115 1.0766

Lastly, Table 8 compares the objective values of the best found solutions of the hybrid cloud
cases divided by the reduction in the number of nodes compared to the best found solution of the
corresponding private cloud case, that is, zH/(zP −NN ). We denote these numbers as the public
cloud node cost. By regarding the costs of the public cloud VM types in Table 1, the minimum
cost of moving all active replicas of a fully utilized node to the public cloud is 100. Since the CRR
values of the active replicas in the public cloud are considerably higher than 1 (cf. Table 7), one
should expect a higher cost than 100. However, the public cloud node costs presented in Table 8
take (average) values both above and below 100. The latter can be explained by the fact that in
many cases the average node utilization in the private cloud cases is significantly less than 100%.
Hence, when zP −NN nodes are removed from the solution of a private cloud case, one does not
have to compensate by leasing resources from a public cloud provider equivalent to zP −NN fully
utilized nodes. Furthermore, Table 8 also illustrates that the public cloud node cost is consistently
less when the private cloud coverage is 90% compared to 75%, which is natural because the average
utilization of the N least utilized nodes is reduced as NN is increased, and thus fewer resources
per node have to be compensated for by using the public cloud. Another feature of the numbers in
the table is that the public cloud node costs seem to decrease with the size of the test cases, with
the H30 cases being exceptions. This can be explained by the fact that the gaps between the best
found solution and the best bound in the private cloud cases increase with the problem size, and
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as a consequence, the average node utilization is lower in the larger cases.

Table 8: Public cloud node cost. Comparison between the best solutions of the hybrid cloud cases with 90% and
75% private cloud coverage (pcc).

90% pcc 75% pcc

H20 96.24 104.1

H30 98.15 104.7

H40 90.73 100.1

H50 87.75 98.12

7. Conclusions

We have studied two versions of the service deployment problem proposed in [12]: one for
periods where the private cloud of the service provider has enough resource capacity to run all
services, and one for periods where a public cloud is used for placement as well, forming a hybrid
cloud. A B&P algorithm was proposed to solve the problems. The subproblem of the B&P was
solved by a MIP solver and a label-setting algorithm, which was run on a network designed to
exploit the special problem structure. Firstly, we developed an exact label-setting algorithm, but
due to a weak dominance rule, the run time of the algorithm did not scale well to larger problems.
One contribution of this paper is a heuristic label-setting algorithm (H-LSA), which heuristically
reduces the underlying network and simplifies the dominance rule based on the problem structure.
The H-LSA was complemented with the exact MIP solver to obtain an exact and complete B&P
algorithm. Our experiments showed that using the H-LSA sped up the solution process. However,
we also observed that in many B&B nodes, no node patterns with negative reduced cost did exist,
and calling the H-LSA in such a case results in a wasted iteration. Another contribution of this
paper is a novel strategy to predict the likeliness of finding node patterns with negative reduced
cost in a B&B node, and in nodes where this seems unlikely, we directly call the MIP solver.

We also compared the B&P algorithm with the pre-generation algorithm presented in [12], and
the results showed that the B&P outperformed the other algorithm. Moreover, the B&P managed
to solve all test cases with 10 services or less, but as the problem size grew the relative gap between
the objective value of the best-found solution and the best bound increased when a maximum run
time was set. For the cases with 50 services, the gap was over five percent on average after five
hours of run time. The results of the experiments on the hybrid cloud model indicate that this
model is more difficult to solve than the private cloud model; the relative gaps were larger and it
took longer time to solve the root node. We also obtained results showing that the hybrid cloud
model becomes harder to solve when the private cloud coverage approaches 100%. Since the hybrid
cloud case with equally many services and service components as a private cloud case, but with
fewer nodes, are more difficult to solve than the private cloud case, this must mean that it is not
necessarily easy to select the active replicas for placement in the public cloud.

By analyzing the solutions of the hybrid cloud model, we found as expected that the active
replicas placed in the public cloud fit better in the VM types offered in the public cloud, i.e., they
have less cost per unit of resource required, than the active replicas placed in the private cloud.
This is a critical factor in a good solution.
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Appendix A. SPPRC Details

Appendix A.1. Labels and Label Extension

Based on the network description in Section 5.2, we let VA (VP ) be the set of all a-vertices
(p-vertices) in all service subnets; and Vσ and Vτ be the sets of all σ-vertices and τ -vertices,
respectively. Note that σ0 and τ0 of the upper layer network (Figure 2) are not contained in the
latter sets. Moreover, since a visit to an a-vertex or p-vertex is analogous to a placement of an
active or passive replica, we have to assign the dual variables, which are used in the mathematical
formulation of the subproblem in Section 5.1, to the respective vertices. Therefore, a vertex ν ∈ VA
is assigned a dual variable αν corresponding to the dual variable αiq of the service-component pair
(i, q) that the vertex represents. Likewise, each vertex ν ∈ VP is assigned a dual variable βν
corresponding to the dual variable βiq. Lastly, we also keep track of the resource usage of a node
pattern by assigning each ν ∈ VA resource consumption values GAνg for all resource types g ∈ G,
resembling the resource consumption GAiqg of (i, q) which ν represents. Similarly, each ν ∈ VP is
assigned the resource consumption values GPνg for all g ∈ G.

To conduct the label-setting algorithm, each label stores data according to Table A.1. We use
the notation ψ(`) to refer to the vertex of label ν, and similarly λ(`), ζ(`), fg(`), mg(`), π(`) and
ξ(`) to refer to the rest of the data listed in the table.

Table A.1: The data stored for each label

Symbol Description

ψ pointer to the vertex of the label

λ pointer the predecessor label

ζ the reduced cost of the label

mg the amount of resource of type g ∈ G reserved for activation of passive replicas

fg the accumulated resource of type g ∈ G (i.e. CPU, memory, etc.), including mg

π the accumulated number of passive replicas

ξ the accumulated number of different services

The path represented by a label ` is feasible if all of the following conditions hold:

fg ≤ NCg, ∀g ∈ G (A.1)

π ≤ NP (A.2)

ξ ≤ NS (A.3)

These conditions are equivalent to the constraints (5.6), (5.4) and (5.3), respectively.
When a label ` is extended to a vertex ν to form a new label k, the data stored for the new

label is constructed as shown below. (A.6) - (A.10) are denoted resource extension functions.

ψ(k) = ν (A.4)

λ(k) = ` (A.5)
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ζ(k) =


ζ(`)− αν if ν ∈ VA
ζ(`)− βν if ν ∈ VP
ζ(`) otherwise

(A.6)

mg(k) =

{
mg(`) + max{GAνg −GPνg −mg(`), 0} if ν ∈ VP
mg(`) otherwise

∀g ∈ G (A.7)

fg(k) =


fg(`) +GAνg if ν ∈ VA
fg(`) +GPνg + max{GAνg −GPνg −mg(`), 0} if ν ∈ VP
fg(`) otherwise

∀g ∈ G (A.8)

π(k) =

{
π(`) + 1 if ν ∈ VP
π(`) otherwise

(A.9)

ξ(k) =

{
ξ(`) + 1 if ν ∈ Vσ
ξ(`) otherwise

(A.10)

Functions (A.4) and (A.5) set the vertex and predecessor, respectively, and (A.6) computes
and stores the accumulated reduced cost, based on to which vertex set ν belongs. Note that
the label constructed in the initialization in Algorithm 2 has an accumulated reduced cost of 1,
corresponding to the constant term in the objective function (5.1) in the MIP formulation (−η
in the hybrid cloud model). Furthermore, (A.7) computes the amount of resources reserved for
activation of passive replicas. If the vertex ν represents a passive replica and GAν −GPν > mg(`),
mg(k) is increased from mg(`), otherwise mg(k) remains at the level of mg(`). (A.8) computes the
accumulated resources. If vertex ν represents an active replica, the extension comprises adding the
resource usage of ν to the accumulated resources of `. On the other hand, if ν represents a passive
replica, one also have to account from a possible increase in the resources reserved for activation
of passive replicas, likewise done in (A.7). If ν neither represents an active nor passive replica,
fg(k) takes the same value as fg(`). Lastly, (A.9) and (A.10) increment the number of passive
replicas and different services if ν represents a passive replica or is an entrance of a service block,
respectively.

Appendix A.2. Dominance Criteria

The goal of implementing the dominance step of Algorithm 2 is to reduce the number of
extended labels, and thereby speed up the solution procedure. It should be noted that without the
dominance step, Algorithm 2 would have been a procedure enumerating all feasible paths.

In order to describe our dominance criteria, we define the set of path extensions for `, E(`), as
the partial paths, starting in vertex ψ(`) and ending in the sink vertex τ0, that can be concatenated
with the partial path represented by `, and result in a resource-feasible path from σ0 to τ0. Then,
domination is defined as follows; label `1 dominates label `2 if:

ψ(`1) = ψ(`2) (A.11)

ζ(`1) ≤ ζ(`2) (A.12)

E(`1) ⊇ E(`2) (A.13)
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If conditions (A.11) - (A.13) hold, it is certain that any path being constructed by concatenating
the partial path represented by `1 and any partial path e ∈ E(`2) cannot have a worse reduced cost
than the path constructed from the partial path represented by `2 and the same e. Therefore, `1
dominates `2, and the label `2 can be removed from the set of labels at vertex ψ(`2), i.e. Lψ(`2).

Unfortunately, in most cases, ours including, it is not practical to check condition (A.13) di-
rectly. Nevertheless, since the resource extension functions (A.7) - (A.10) of the SPPRC are
non-decreasing, the conditions (A.14) - (A.17) below imply condition (A.13) [15].

mg(`1) ≥ mg(`2) ∀g ∈ G (A.14)

fg(`1) ≤ fg(`2) ∀g ∈ G (A.15)

π(`1) ≤ π(`2) (A.16)

ξ(`1) ≤ ξ(`2) (A.17)

The domination is performed in line 4 of Algorithm 2, and it consists of checking if labels
dominate each other, and if so remove the dominated label. If the domination is implemented
näıvely, one has to compare every label with all other labels, in total |Lν |2 comparisons at vertex
ν. However, if one maintain the set of labels at a node ordered according to the reduced cost ζ,
one only has to compare every label with other labels with worse (i.e., higher) reduced cost (cf.
domination criterion (A.12)).

In line 3 of Algorithm 2, we have the option to decide whether the domination step should be
conducted in a given vertex or not. We have conducted the domination step in every vertex, except
the dummy source and sink, σ0 and τ0; and at the source vertex σ1 of the first service.

Appendix A.3. Implementing the Branching in the SPPRC

The basic idea on how to deal with the branching decisions is to keep track of which branching
sets a label has visited, and if visited for a second time, i.e., both replicas corresponding to a
branching set are included in the label, we have to correct the reduced cost of the label with the
dual variable of the branching set. First we define VCj ⊂ (VA ∪VP ) for each j ∈ J̄t ∪J t as the set
of vertices representing the service component pairs (i, q) with HAjiq = 1 or HPjiq = 1. Note that
the cardinality of VCj is always two. In addition to the data in Table A.1, every label ` has to keep
track of the number of times the vertices related to branching set j ∈ J̄t (j ∈ J t) is visited. We
denote these counters as θ̄j (θj). When extending a label ` to label k at vertex ν, these counters
are updated according to (A.18)-(A.19). At every extension, we also need to monitor if the label
visits a branching set for the second time, and if so subtract the corresponding dual variable from
the accumulated reduced cost. To do this, we build the sets F̄ and F as the set of branching sets
that are visited for the second time at the current vertex, ν. After updating θ̄j and θj , the sets are
built as shown in (A.20) and (A.21) for each label k. By using these sets, the resource extension
function for updating the reduced costs, (A.6), are updated to (A.22).

θ̄j(k) =

{
θ̄j(`) + 1 if ν ∈ VCj
θ̄j(`) otherwise

∀j ∈ J̄t (A.18)

θj(k) =

{
θj(`) + 1 if ν ∈ VCj
θj(`) otherwise

∀j ∈ J t (A.19)
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F̄(k) = {j ∈ J̄t | ν ∈ VCj ∧ θ̄j(k) = 2} (A.20)

F(k) = {j ∈ J t | ν ∈ VCj ∧ θj(k) = 2} (A.21)

ζ(k) =


ζ(`)− αν −

∑
j∈F̄(k) γ̄j −

∑
j∈F(k) γj if ν ∈ VA

ζ(`)− βν −
∑

j∈F̄(k) γ̄j −
∑

j∈F(k) γj if ν ∈ VP
ζ(`) otherwise

(A.22)

The introduction of branching constraints in the master problem also influences how the domi-
nation can be conducted. When comparing the reduced costs of two labels to check if `1 dominates
`2, one can have that label `1 has visited one vertex in a branching set ̄, while `2 has not. If ̄
is an element in J̄t, another visit by an extension of `1 to this branching set will incur a penalty
of γ̄̄, while an extension of `2 to the same vertex will not incur a penalty. Moreover, if `2 has
visited one vertex, not visited by `1, in a branching set j ∈ J t, the extension of label `2 will
receive a bonus of γj if the partial path, represented by `2, is extended to the second vertex of the
branching set, while an extension of `1 to this vertex will not get this bonus. A way to overcome
this issue is to compensate the reduced cost of `1 by the potential penalties which can be observed
by an extension of `1, but not by an extension of `2; and compensate the reduced cost of `2 by
the potential bonuses which can be observed by an extension of `2, but not by an extension of `1.
Jepsen et al. [18] uses this idea in order to account for the dual variables stemming from subset-row
(SR) inequalities in the master problem of a vehicle-routing problem. Since the SR inequalities are
≤-type of constraints, they only have to compensate the reduced cost with potential penalties in
their dominance criteria. Now we define P̄ (and P) as the set of branching sets j ∈ J̄t (and J t)
that are already visited once and has the potential to be visited once more. After extension from
label ` to label k at vertex ν, the sets are built according to (A.23) and (A.24), where ω � ν reads
as ω succeeds ν in the topological order of the acyclic network, i.e., ω can potentially be visited
after the current vertex ν. Using these definitions, we rewrite the dominance criterion (A.12) to
(A.25). That is, label `1 dominates label `2 if (A.11), (A.14)-(A.17) and (A.25) holds.

P̄(k) = {j ∈ J̄t | θ̄j(k) = 1 ∧ ∃ω ∈ VCj (ω � ν)} (A.23)

P(k) = {j ∈ J t | θj(k) = 1 ∧ ∃ω ∈ VCj (ω � ν)} (A.24)

ζ(`1)−
∑

j∈(P̄(`1)\P̄(`2))

γ̄j ≤ ζ(`2)−
∑

j∈(P(`2)\P(`1))

γj (A.25)

Appendix A.4. Details of the Heuristic Label-setting Algorithm

The idea of the heuristic label-setting algorithm is to fix the mg’s in advance of calling Algorithm
2. We consider two cases: mg = 0 for all g ∈ G, in which no passive replicas can be placed in
the current node pattern; and mg > 0 for at least one resource type g, which means that passive
replicas with GAiqg − GPiqg > mg cannot be placed in the node pattern. It is very easy to adapt
the SPPRC formulation and the label-setting algorithm to the former case. All vertices ν ∈ VP ,
i.e., vertices representing passive replicas, together with all arcs connected to ν are removed from
the SPPRC graph, and the dominance criteria (A.14) and (A.16) are disregarded. Otherwise, the
algorithm works as before. Certainly, this network reduction and simplification of the dominance
rule will have considerable impact on the run time of one pass of the algorithm. In the latter
case, with non-zero mg, we choose to pre-select |G| passive replicas for placement, assuming that
|G| ≤ NP holds in the following. Each of these replicas will function as a benchmark for the mg
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(for different resources g). That is, mg = (GAı̂g q̂gg − GP ı̂g q̂gg) for all g ∈ G where the service
components (̂ı1, q̂1), . . . , (̂ıg, q̂g), . . . , (̂ı|G|, q̂|G|) are the pre-selected passive replicas. To implement
this pre-selection and fixing in the SPPRC formulation and label-setting algorithm, more changes
has to be done, but the changes are still simple. Firstly, we remove the vertices representing
the active replicas of service components (̂ıg, q̂g) for all g ∈ G in addition to the connected arcs.
Furthermore, all vertices ν ∈ VP with (GAνg−GPνg) > mg for at least one g, and the arcs connected
to these vertices, are removed. Then, the order of the services is slightly changed to facilitate the
forced placement of the pre-selected passive replicas. Firstly, the service blocks of the pre-selected
replicas, denoted pre-selection blocks, are ordered as the first service blocks (cf. Figure 2), and the
arcs from σ0 to all service blocks except the first are removed. From all the pre-selection blocks,
except the last one in the ordering, there are only arcs from the τ -vertex to the σ-vertex of the next
pre-selection block. From the last pre-selection block, there are arcs to all forward service blocks
and the τ0 vertex. Moreover, the subnet of the pre-selection blocks (cf. Figure 3) is rearranged by
letting the pı̂g q̂g vertices be ordered as the first. All arcs out of the σ-vertices are removed except
the one arc to the first of possibly |G| pre-selected passive replicas of the service. In case there
are several pre-selected replicas in a subnet, each pre-selected replica is linked by an arc, while the
last pre-selected replica has arcs to every other a-vertex and p-vertex of higher order. Lastly, the
dominance rule will disregard criterion (A.14).

A fundamental observation about good solutions of the problem is that node patterns typically
contain either zero or NP passive replicas, and in the latter case, the passive replicas have quite
similar resource requirements for activation (GAiqg−GPiqg). We use this observation when deciding
the pre-selected passive replicas, that is, we try to pick |G| passive replicas which together with
NP −|G| other passive replicas make up a set of passive replicas with large dual variables compared
to their total resource usage if placed together on a node. For presentation purposes, we have
omitted the details of the procedure used to pre-select passive replicas.
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