Balancing potency, metabolic stability and permeability in pyrrolopyrimidine based EGFR inhibitors

Jin Han ${ }^{\text {a,b) }}$, Silje Henriksen ${ }^{\text {a,c }}$, Kristin G. Nørsett ${ }^{\text {d }}$, Eirik Sundby ${ }^{\text {b }}$, Bård Helge Hoff ${ }^{\text {a }}{ }^{*}$

${ }^{\text {a) }}$ Norwegian University of Science and Technology, Department of Chemistry, Høgskoleringen 5, NO-7491 Trondheim, Norway. ${ }^{\text {b }}$ Norwegian University of Science and Technology, Institute of Chemistry and Material Technology, Faculty of Technology, 7491 Trondheim. ${ }^{\text {c) }}$ Current address: Jotun Marine, Protective and Powder Coatings, Rosenvoldsgt. 19, NO-3202 Sandefjord, Norway. ${ }^{\text {d) }}$ Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, Prinsesse Kristinas gt. 1, N7030 Trondheim, Norway.

Corresponding author: * Bård H. Hoff, Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491, Norway. Email: Bard.Helge.Hoff@chem.ntnu.no, phone:
++004773593973, fax: ++004773594256.

Abstract

The present study describes our continuous effort to develop epidermal growth factor receptor (EGFR) inhibitors based on the 6 -aryl-pyrrolo[2,3- d]pyrimidin-4-amine scaffold. The activity-ADME space has been evaluated by synthesizing 43 new structures, including four variations of the 4 -amino group and 34 different substitution patterns in the 6 -aryl moiety. Most of the new pyrrolopyrimidines were highly active, with twelve analogues possessing lower IC_{50} values than the commercial drug Erlotinib in enzymatic assays. Ten EGFR inhibitors were also profiled in cell studies using the $\mathrm{Ba} / \mathrm{F} 3-\mathrm{EGFR}^{\mathrm{L} 858 \mathrm{R}}$ reporter cells, and all revealed nanomolar activity. However, some of the privileged structures in terms of potency had ADME short-comings: compounds containing amides, sulfonamides, amine and hydroxymethyl substituents in the 6-aryl group had low permeability and high efflux, derivatives having (R)-3-amino-3-phenylpropan-1-ol at $\mathrm{C}-4$ induced hERG inhibition properties, and metabolic lability was seen for compounds having (S)-2-methoxy-1-phenylethan-1-amine at C-4. Based on a trade-off between enzymatic activity, cellular potency and ADME properties, (S)-2-phenyl-2-((6-phenyl-7H-pyrrolo[2,3- d]pyrimidin-4-yl)amino)ethan-1-ol appeared as the most promising drug candidate. Cellular studies indicate this compound to have therapeutic use in EGFR driven diseases.

Keywords: EGFR; Pyrrolopyrimidine; SAR; ADME; metabolism; Erlotinib

1. Introduction

Protein kinases are an important class of enzymes which catalyse phosphorylation of specific protein substrates, thereby regulating vital cellular processes. Abnormality in expression levels or in the structure of these protein kinases plays a crucial role in a number of human diseases. Kinases are especially attractive targets for treatment of cancer diseases $[1,2]$ The membrane bound epidermal growth factor receptor tyrosine kinase (EGFR) has been one of the more investigated kinase, since EGFR amplification or mutation has been noted in lung [1, 3], breast [2], pancreatic [4], ovarian [5], prostate [6], and head and neck [7] cancers. However, development of new kinase drug candidates is increasingly difficult, and a late focus on absorption, distribution, metabolism, excretion and toxicology (ADMET) is regarded as one of the main reasons for drug failure [8, 9]. Kinase inhibitors tend to have higher molecular weight and be more lipophilic than other classes of drugs [10], which could lead to suboptimal properties in terms of solubility and permeability [11], but also to toxicity [12]. Attractive kinase inhibitors could have a moderate kinase selectivity [13, 14] causing side effects [15]. Moreover, patients receiving EGFR therapy are likely to have undergone other type of chemotherapy increasing the risk of organ failure [16]. Thus, avoiding potential ADMET pitfalls early on in development is important. Most small molecular based EGFR inhibitors are based on aniline substituted quinazolines. For this class of drug candidates ADMET data is available as input for drug developmental programs [16-18]. We have focused our development on chiral benzylamine based pyrrolo[2,3-d]pyrimidines as EGFR inhibitors [19-21]. Only three pyrroloyrimidines based EGFR inhibitors have reached clinical trials, namely PKI-166 [22], AEE-788 [23, 24], and TAK-285 [25, 26], see Figure 1.

PKI-166

AEE-788

TAK-285

Lead structure I

Figure 1. Pyrrolopyrimidine-based EGFR inhibitors.

Our lead compound I [20] (Figure 1), which possessed high in vitro enzymatic and cellular activity, was unfortunately a substrate of the breast cancer resistant protein and the P glycoprotein ABC-transporters, making further development challenging [21]. Herein, we describe our continuous effort to identify new EGFR inhibitor candidates with improved ADME profile.

2. Results and discussion

2.1 Design

At the onset of this study, our main concern with the lead structure \mathbf{I} was metabolism at the 4-positioned benzylic alcohol and at the 2-methoxy group. However, as the project proceeded it was evident that the challenge with I was mediocre permeability and a high efflux, while human liver microsome assay indicated the molecule to be stable to phase I oxidative metabolism. Thus, the drug discovery process was thereafter motivated by desire to improve permeability while maintaining on target potency.

Initially, we focused on identifying bioisosteres for the 2-methoxy and the 4hydroxymethyl groups. The 4-benzylic function is directed towards the active site entrance, which might allow for some flexibility in terms of substituent size. Thus, we included a range of hydrogen bond acceptor and donor groups of different size at the 3- and 4-position of the 6 -aryl group. At the 2-position we set on to synthesise compounds with ether functionalities varying in size and electronic properties.

Figure 2. Lead structure I, and structural elements subjected to further evaluation.
As the project proceeded various strategies were attempted to improve the activity/ADME properties of the compounds including: fluorine insertion; deuterisation; solubilizing tails; replacement of the 6-aryl group by pyridines; and varying the amine part of the molecule.

2.2 Chemistry

The synthesis of all EGFR inhibitors were performed starting with 4-chloro-6-iodo-7 H pyrrolo $[2,3-d]$ pyrimidine (4), which in turn was obtained in two steps from the precursor $\mathbf{1}$, see Scheme 1. Iodination of $\mathbf{1}$ gave a $9: 1$ mixture of compound $\mathbf{2}$ and $\mathbf{3}$, which upon pyrrole deprotection gave the key intermediate $\mathbf{4}$ in 89% yield. Two alternative routes were used for C-4 and C-6 functionalisation of the pyrrolo[2,3-d]pyrimidine core. The shortest method includes amination of $\mathbf{4}$ to yield the derivatives $\mathbf{7}$, followed by a Suzuki coupling to give the target inhibitor structures. Although containing only two steps, this pathway has the drawbacks of low reactivity in both the amination and in the Suzuki coupling.

Scheme 1. Synthesis of functionalized pyrrolo[2,3-d]pyrimidines. Reagents: SEMdeprotection i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ii) sat. Aqueous NaHCO_{3}, THF.

Therefore, we installed the N -2-trimethylsilylethyoxymethyl (N -SEM) protection on the pyrrol to give the intermediate 5 . With the SEM-protected pyrrolopyrimidine derivatives,
both the amination and the cross-coupling reaction proceeded more smoothly. Purification by silica-gel chromatography was also more facile. The Suzuki reaction was performed mainly with XPhos/Xphos Pd G2 as catalyst system. In contrast, standard conditions using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ proved inefficient also on typically good substrates. Low reactivity in the Suzuki coupling was observed between pyridinylboronic acids and 6a-b. Besides pyrrole protection, a change in catalyst system from XPhos/Xphos Pd G2 to the ferrocene based PdCl_{2} (dppf) catalyst improved the processes. When more complex 6 -aryl substitution patterns were targeted, in-house synthesized arylboronic esters (8-11) were used, see Scheme 2. These were synthesised by boronylation of aryl bromides with pinacolborane using the $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ / SPhos catalyst system [27] with yields ranging from $64-81 \%$. Importantly, this system successfully transformed aryl bromides with amines and sterically hindered ortho-substituents to the corresponding arylboronic esters in good yield. The required N-substitution pattern in $\mathbf{1 0}$ and $\mathbf{1 1}$ could be introduced either prior or after the boronylation.

Scheme 2. Synthesis of boronic esters 8-11. Functionalisation to: 10: $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}_{1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; 11: $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Some of the kinase inhibitors were made by post-modification of 6-aryl-7H-pyrrolo[2,3d]pyrimidin-4-amines structures having aldehyde substituents in the 3- and 4-position of the 6 -aryl group. These reactions involved conventional reduction using sodium borohydride to the corresponding benzylic alcohols and reductive aminations. A two-step reductive amination protocol via the imine followed by NaBH_{4} reduction was found more efficient than the one-step method using $\mathrm{NaBH}(\mathrm{OAc})_{3}$.

2.3 EGFR kinase inhibition

In our previous work, combination of 2-methoxy and 4-hydroxymethyl as 6-aryl substituents resulted in favourable ligand-protein interactions and high EGFR inhibitory properties [21]. Nevertheless, both the methoxy group and the polar benzyl alcohol function could easily be afflicted by metabolic inactivation in vivo. Initially, the benzyl alcohol at the 4 -position of the 6 -aryl ring was replaced with amide, methyl sulfone, sulfone amide, methyl sulfone amide, acetamide, meta-carboxamide and pyridine, while using (R)-1-phenylethan-1-amine as the C-4 substituent, see Figure 3. All these derivatives displayed high inhibitory properties with IC_{50} below 1 nM . Especially attractive was derivative 34 bearing a methylsulfone and the sulfonamide 37. Erlotinib in this assay had an IC_{50} value of $0.4 \pm 0.2 \mathrm{nM}$. We were also encouraged to find that the pyridine derivative 39 was active. This allows for tuning of both metabolic stability and solubility. Turning to the 2-position
which has been insufficiently investigated previously, enzymatic EGFR assays showed that ethoxy, isopropoxy and OCHF_{2} groups were all well tolerated, while the trifluoromethoxy group resulted in lower potency. Four di-substituted derivatives, 46-49, were also evaluated and displayed promising activity. However, only in case of the N^{1}, N^{1}-dimethylethane-1,2diamine substituted 49 an obvious improvement in activity was seen as compared to the mono-substituted analogues.

4-substituted

		$-\pi$	-10		-	-1/0
34	35	36	37	38	39	40
EGFR Kinase data (nM)						
0.4 ± 0.0	0.7 ± 0.0	0.8 ± 0.0	0.3 ± 0.0	0.7 ± 0.0	0.6 ± 0.2	1.1 ± 0.1

2-substituted				3-substituted
42	43	44	45	41
EGFR Kinase data (nM)				
0.3 ± 0.1	0.6 ± 0.1	0.8 ± 0.0	4.3 ± 0.9	1.4 ± 0.4

Figure 3. Effect of variation of the 6 -aryl group on the EGFR IC_{50} value (nM) for pyrrolopyrimidines containing $(R)-1$-phenylethan-1-amine as C-4 substituent.

In our previous study on pyrrolopyrimidine-based EGFR inhibitors, an improvement of potency was seen when substituting (R)-1-phenylethan-1-amine at C-4 with the (S)-2-amino-2-phenylethan-1-ol group. As a starting point we evaluated the previously discovered unsubstituted compound $\mathbf{5 0}$ and the 2-methoxy derivative $\mathbf{5 1}$ for metabolic stability and permeability. Both compounds were found highly permeable by Caco-2 assays $\left(\mathrm{P}_{\text {app (50) }}=30.3 \times 10^{-6} \mathrm{~cm} / \mathrm{s}, \mathrm{P}_{\text {app (51) }}=26.4 \times 10^{-6} \mathrm{~cm} / \mathrm{s}\right)$, while compound 50 had higher stability in human liver microsome assays $\left(\mathrm{t}_{1 / 2}(\mathbf{5 0})=109 \mathrm{~min}, \mathrm{t}_{1 / 2(51)}=29.6 \mathrm{~min}\right)$. Based on this background, we analysed additional derivatives having the (S)-2-amino-2-phenylethan1 -ol, see Figure 4. Several of the potency inducing 6-aryl groups identified in the first series (Figure 3) was chosen, but also new substitution patterns: a deuterated derivative, 52, designed to slow metabolism; the amide $\mathbf{5 6}$ as a bioisoster for the benzyl alcohol function;
compounds containing pyridines ($\mathbf{6 0 - 6 2}$) and solubilizing tails (63-68) to address solubility and protein binding. Again, most derivatives were highly potent, but an additional increase in potency on introducing the (S)-2-amino-2-phenylethan-1-ol was hardly seen. This could be due to enthalpy-entropy compensating effects, in which the favourable binding energy is compensated by unfavourable entropy losses due to more tight binding [28, 29].

Figure 4. Effect of variation of the 6-aryl group on $\mathrm{EGFR} \mathrm{IC}_{50}$ value (nM) for pyrrolopyrimidines containing (S)-2-amino-2-phenylethan-1-ol as C-4 substituent.

During ADME evaluation of the derivatives mentioned above, it became evident that the more polar compounds had low permeability and a high efflux ratio. Incorporation of fluorine adjacent to hydrogen bond donors has previously been shown as an efficient strategy to improve permeability [30], thus derivatives 69-72 were prepared.

Compounds 69 and 70 having a 4-fluoro substituent showed IC_{50} values of 1.2 and 1.6 nM , respectively. However, higher activity was observed for derivatives 71 and 72 substituted with a fluorine in position 3 . Compound 73 with a N^{1}, N^{2}, N^{2}-trimethylethane-1,2-diamine group was also highly active.

0.5 ± 0.0 enen

Figure 5. $\mathrm{EGFR}^{\mathrm{IC}} \mathrm{F}_{50}$ value (nM) for pyrrolopyrimidines 74-78.

Five other compounds evaluated by kinase assay are shown in Figure 5. The (S)-2-methoxy-1-phenylethan-1-amine containing compounds $\mathbf{7 4}$ and $\mathbf{7 5}$ had IC_{50} values of 0.5 and 1.3 nM , respectively. This scaffold was not further investigated due to the low metabolic stability seen for compound 75 . Compound 76, with (R)-3-amino-3-phenylpropan-1-ol at $\mathrm{C}-4$, was designed to improve contacts in the DFG motif by hydrogen bonding to polar residues, and as compared to derivative $\mathbf{5 0}$, an improvement in EGFR activity was seen. Furthermore, an additional gain in potency was obtained when installing a 2-ethoxy substituent (compound 77). Unfortunately, this scaffold induced hERG inhibition. The N methyl substituted compound $\mathbf{7 8}$ was made to confirm SAR information and as a model compound for ADME studies. As anticipated, removing the pyrrole NH-group gave a high IC_{50}-value.

2.4 SAR and in-silico evaluation

The SAR information based on this and our previous work on pyrrolopyrimidines is summarised in Figure 6.

Figure 6. Structure-activity relationships identified in this and previous study [19, 20]. Colour code: green: induce potency; black: minor effects; red: reduce potency.

In short, for Fragment A, the activity was highest when having a hydroxymethyl or hydroxyethyl substituent as R_{1}, which is explained by hydrogen interactions to the DFG motif. The discussion of the effect of hydroxyl group on activity is complicated by the possibility of intramolecular hydrogen bonding. Compounds $\mathbf{5 0}, \mathbf{5 3}$ and $\mathbf{7 7}$ were subjected to a conformational search using MacroModel and the OPLS3 force field. The search gave conformations with lowest energy which displayed intermolecular hydrogen bonds between the hydroxyl groups and the pyrimidine $\mathrm{N}-3$ for all compounds tested, see Supplementary Material. The intramolecular hydrogen bond would reduce desolvation cost, but the required reorganisation of hydrogen bonding, as judged from docking and dynamics, would somewhat limit the positive impact on binding. Unsubstituted phenyl or fluorinated substituents are preferred in the aromatic part [20], while the activity is highly dependent on correct stereochemistry as also seen in the thienopyrimidine series of compounds [31]. Substitution of the 6-aryl group (Fragment B) improved EGFR potency when having polar groups in the 4-position. The same substituent can also be placed in 3position. Evaluation of 2-substitution patterns confirmed the ethoxy substituent to have the highest positive impact on activity, and also that larger substituents as isopropoxy and difluoromethoxy were well tolerated. A drop in potency was noted for the trifluoromethoxy analogue, which might indicate that minor size changes or electronic properties are of importance. Finally, methylating the pyrrole NH group removed most activity.

Selected derivatives were investigated for their binding interactions with EGFR by inducedfit docking with the Schrödinger Maestro suite [32-34] using the crystal structure 4WKQ at $1.85 \AA$ A resolution [35]. The docking revealed compounds 53, 65, 76, and 77 to have very similar binding mode. Docking scores were $-10.63,-11.00,-11.42$ and $-10.77 \mathrm{kcal} / \mathrm{mol}$, respectively. The docked structure of compound 77 is shown in Figure 7. The main interactions were between the pyrimidine $\mathrm{N}-1$ involved in hydrogen bonding with the backbone NH of Met793, and the pyrimidine $\mathrm{N}-3$ nitrogen which engaged in water mediated hydrogen bonding. For derivatives 53, 76 and 77, a hydrogen bond between the hydroxyl group in the R_{1} side chain and Asp855 was noticed, while compound $\mathbf{6 5}$ is bonded to Thr854.

Figure 7. Docking of compound 77 using crystal structure 4WKQ [35].

In contrast, the highest docking score for compound $\mathbf{5 0}$ was for a pose in which the pyrrole NH and the pyrimidine $\mathrm{N}-1$ promote binding via a network of water molecules to Thr790, Gln791 and Thr854. We also found a docking pose with similar binding mode as that shown for 77 in Figure 7, but being $1.36 \mathrm{kcal} / \mathrm{mol}$ higher in energy. Both binding modes are shown in the Supplementary Material. Although we cannot exclude the possibility of an alternative binding mode, the rather consistent SAR data indicate that all derivatives bind in a very similar way.

The poses with the best docking scores were then evaluated by 10 ns molecular dynamics using the Desmond suite, the OPL-3 force field and the TIP4P solvent model [36]. An interaction plot following dynamics for compound 77 is shown in Figure 8.

Figure 8. Ligand-EGFR contacts for compound 77 during 10 ns of molecular dynamics. Highlighted amino acids are within $5 \AA$ distance from the docked ligand. (Dynamics for compounds 50, 53 and 76 are given in the Supplementary Material). The colours indicate residue type: green - lipophilic residues; red - acidic residues; blue - polar residues; purple - basic residues. The lines indicate contacts with the enzyme. Only interactions that occur more than 10% of the 10 ns simulation time are shown. Ligand atoms that are exposed to solvent are marked with grey spheres.

Dynamics showed all these compounds to interact via $\mathrm{N}-1$ to Met793. The pyrrole NH in case of compound $\mathbf{6 5}$ and $\mathbf{7 6}$ is found to interact with the oxygen of Met793. However, in compounds 53 and 77 the pyrrole NH instead was indicated to have intramolecular hydrogen bonding with the ether functionalities at the 6 -aryl group. On one hand, if this interaction is also present in the unbound state, desolvation will be less costly. On the other side, an intramolecular hydrogen bond would prevent the pyrrole NH from taking part in EGFR binding. However, a potency increase was seen going from unsubstituted to 2methoxy and 2-ethoxy substituted 6 -aryls. It could be that this is solely due to weak lipophilic interactions, which could be under estimated in docking protocols. Alternatively,
the substituent or the indicated intramolecular hydrogen bond could induce a slight alteration of the position of the 4 -amino group causing stronger binding in this part.

Further, compounds $\mathbf{5 3}, \mathbf{6 5}, \mathbf{7 6}$ and 77 were indicated to have hydrogen bonding from N-3 via water molecules to different residues, mainly Thr854 and Cys775. In the 4 -amino part (Fragment A) differences were noticed as compared to the docked structures. Lys745 forms a cation- π interaction with the aromatic ring. This interaction was found to be most prominent in the ether containing derivatives 53 and $\mathbf{7 7}$. Lys745 also together with Asp855 and other residues form hydrogen bonding networks with the hydroxyl group at the R_{1} side chain. The higher activity of $\mathbf{7 6}$ and $\mathbf{7 7}$ as compared to derivatives $\mathbf{5 0}$ and $\mathbf{5 3}$ could thus be due to these extended hydrogen bonding networks.

High potency was seen for all derivatives containing solubilizing tails at the 4-position of the 6-aryl group. An interaction plot from dynamics of derivative $\mathbf{6 5}$ is shown in Figure 9. The N^{\prime}, N^{\prime}-dimethylethane-1,2-diamine substituent is indicated to be hydrogen bonded via several water molecules to Asp800, Cys797, and Pro794, which might explain the high activity of these derivatives.

Figure 9. Ligand-EGFR contacts for compound $\mathbf{6 5}$ during 10 ns of molecular dynamics. Highlighted amino acids are within $5 \AA$ distance from the docked ligand. The colours indicate residue type: green - lipophilic residues; red - acidic residues; blue - polar residues; purple - basic residues. The lines indicate contacts with the enzyme. Only interactions that occur more than 10% of the 10 ns simulation time are shown. Ligand atoms that are exposed to solvent are marked with grey spheres.

2.5 ADME profiling

A summary of the ADME profile of some of the drug candidates is given in Table 1, while additional data for other compounds is provided in the Supplementary Material.

Table 1. Summary of key ADME data for the new EGFR inhibitors. Compounds are sorted by the $\mathrm{P}_{\text {app }}$ values. Additional data is provided in Supplementary Material.

[^0]High Caco-2 permeability ($\mathrm{P}_{\text {app }}$) and efflux ratio close to unity were seen for the less polar compounds 50-53, 76 and 77. Derivatives containing the N^{\prime}, N^{\prime}-dimethylethane-1,2diamine solubilizing tail $(49,65,69$ and 71$)$ had a 10 fold lower permeability in the A-B direction, but also reasonable efflux values. Thus, the major challenge with the pyrrolopyrimidines as EGFR inhibitors was related to balancing the potency versus the permeability of the compounds. Many of the most potent inhibitors had a high efflux,
mainly due to a low $\mathrm{P}_{\text {app }}$ in the A-B direction. This was the case for compounds bearing amide or sulfonamide type substituents, which could indicate that hydrogen bond acceptors lowers permeability. High efflux was also seen in a series of N5-substituted pyrrolo[3,2$d]$ pyrimidine EGFR inhibitors containing amides and the methylsulfonyl functional group [37].

A rational prediction of efflux effects is challenging due to the multitude of possible transporter proteins involved [38, 39], and for some previously investigated classes of pyrrolopyrimidines no clear system can be seen [40]. However, in this homogenous series of compounds (28 investigated for permeability, Supplementary Material) correlation with physiochemical properties gave a decent fit with polar surface area, see Figure 10. One outlayer was identified, compound $\mathbf{6 8}$ containing a piperazine group in the solubilzing tail. The low efflux ratio value is due to extremely low $\mathrm{P}_{\text {app }}$ in the $\mathrm{B}-\mathrm{A}$ direction, indicating this compound to be a substrate or inhibitor of specific ABC transporter.

Figure 10. Efflux ratio (Caco-2) as a function polar surface area $(\mathrm{n}=28)$.

The metabolic stability of the EGFR inhibitors and selected model compounds (29 derivatives) were evaluated in human liver microsome (HLM) assay at $3 \mu \mathrm{M}$ test concentration. A graphical representation of the key findings in this part of the study is shown in Figure 11. As a point of reference, the unsubstituted phenyl analogue $\mathbf{5 0}$ had a half-life of 109 min . The 2-methoxy derivative $\mathbf{5 1}$ had a stability comparable to that of Erlotinib, which is somewhat on the low side [41]. Higher stability was seen for the $d_{3^{-}}$ methoxy analogue 52, possibly due to a kinetic isotope effect [42]. Based on previous reports we anticipated that the difluoromethoxy [43] or the ethoxy substituted derivatives could be used as more stable bioisostere for the methoxy analogue. Whereas compounds with both substituents maintained a high EGFR activity, no improvement in half-life was detected for the difluoromethoxy compound $\mathbf{4 4}$ and the ethoxy compound 53. Upon varying
the 4 -substituent of the 6 -aryl group (R_{4}) most amides and benzyl alcohol containing derivatives had higher stability than the reference 50. Moreover, although the 2-methoxy group is a metabolic soft spot, including substituents in position 4 increases the stability of all molecules containing this functionality. Compounds containing solubilizing tails generally had a high stability. The most labile compound of these was the piperidine substituted analogue 67 (half-life: 40 min). Fluorine was inserted in an attempt to improve the stability and permeability of the benzylalcohol and benzylamine containing derivatives (compounds 69-72). Only in one case a direct comparison of stability could be made, indicating that an adjacent fluorine has a slight negative impact on stability. A well-known trick to improve stability of drug candidates is to reduce the electron content of the aromatic ring by insertion of heteroatoms [44]. Thus, also in this study replacing the 2 methoxyphenyl with the corresponding pyridine derivative 62 increase the half-life considerably.

Figure 11. Illustration of the relative stability and metabolic soft spots based on HLM data.

Concerning the effect of the 4 -amino group on metabolic stability a few guidelines could be drawn. Comparing data for three analogues containing the $(R)-1$-phenylethan-1-amine fragment (compound 37, 48 and 49) with the stability of the corresponding (S)-2-amino-2-phenylethan- 1 -ol containing compounds ($\mathbf{5 4}, 58$ and $\mathbf{6 5}$) indicate that the latter group improves stability. The highly active EGFR inhibitors based on (R)-2-amino-2phenylpropanol, 76 and 77, had a half-life of 67 and 23 minutes, respectively, which is lower than compound 50. The (S)-2-methoxy-1-phenylethan-1-amine unit in compound $\mathbf{7 5}$ was found especially labile. The N-methyl derivative $\mathbf{7 8}$ is not an EGFR inhibitor, but was included as a model substance for evaluating ADME properties. The stability was considerably lower than the reference compound $\mathbf{5 0}$, indicating the N-methyl group as the metabolic soft spot. Detailed data is provided in the Supplementary Material.

To attain on target activity in vivo the drug candidates must possess high bioavailability. A graphical method for evaluating bioavailability (\% F) based on Caco-2 and HLM data have been developed by Mandagere et al. [45], which categorise molecules into high, medium and low bioavailability classes. We adopted the approach on our data, see Figure 12.

Figure 12. Estimation of bioavailability using a graphical oral bioavailability map.

The method predicts (S)-2-amino-2-phenylethan-1-ol containing molecules possessing nonpolar substituents (50-53) and the (R)-2-amino-2-phenylpropan-1-ol containing structures $\mathbf{7 6}$ and 77 to have medium bioavailability. Note that compound $\mathbf{7 8}$ has very low EGFR potency.

High protein binding was seen for several of the candidate structures. However, this is also the case for the EGFR/HER2 inhibitor Lapatinib [16], and 45% of newly approved drugs had protein binding above 95% [46]. By including a solubilizing tail in the inhibitor structure, protein binding was efficiently reduced, but the permeability drops probably as a result of higher polarity.

The hERG potassium voltage-gated ion channel is essential for cardiac re-polarisation. Thus, inhibiting hERG can give rise to potentially fatal toxicity. Ten compounds were evaluated by IC_{50} titration. For eight of these IC_{50} was $>25 \mu \mathrm{M}$, see Table 2 . However, upon including the 1-phenyl-2-amino-3-propanol scaffold as present in compound 76 and 77 higher activity was seen, indicating possible toxic issues with these agents.

Table 2. hERG inhibition data for the new EGFR inhibitors. Additional data is provided in Supplementary Material.

Comp.	Erlotinib	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{6 5}$	$\mathbf{7 1}$	$\mathbf{7 6}$	$\mathbf{7 7}$
hERG inhibition	$>25(\mathrm{n}=17)$	>25	>25	>25	>25	>25	22	11
$\mathbf{I C}_{\mathbf{5 0}}(\boldsymbol{\mu}=12)$	$(\mathrm{n}=15)$	$(\mathrm{n}=12)$	$(\mathrm{n}=14)$	$(\mathrm{n}=14)$	$(\mathrm{n}=17)$	$(\mathrm{n}=12)$		

${ }^{\text {a) }} \mathrm{hERG}$ channel inhibition $\left(\mathrm{IC}_{50}\right)$ was done at concentrations $0.008,0.04,0.2,1,5$ and $25 \mu \mathrm{M}$.

2.6 Kinase selectivity profile

The kinase selectivity profile of five compounds (50, 51, 53, 71 and 76) representing different structural elements was evaluated in assays towards 50 additional kinases at 500 nM test concentration. The selectivity as analysed by the Gini-method [47] was rather similar (Gini coefficient from 0.57-0.62). Another way of quantifying selectivity, which assumes that low inhibitory activity is clinically irrelevant, is the so called selectivity score [48]. It is calculated by dividing the number of kinases showing inhibition above a set limit by the total number of kinases evaluated. Thus, a non-selective inhibitor has a selectivity score close to unity, while a selective inhibitor has a score close to zero. Employing 50% inhibition as the threshold for the calculation, the compounds follows the selectivity order: $76(0.08)>53(0.10)>$ Erlotinib $(0.16)>\mathbf{5 0}(0.18)>51(0.20)>71(0.25)$. Figure 13 illustrates the degree of inhibition for $\mathbf{7 6}, \mathbf{5 0}$ and $\mathbf{7 1}$ towards 15 of the kinases sorted by the activity displayed by the least selective compound 71.

Figure 13. Inhibition profile of compounds 71, 50, 76 and Erlotinib towards 15 kinases sorted by the activity of compound 71. Data for additional kinases for these compounds, $\mathbf{5 1}$ and $\mathbf{5 3}$ is provided in Supplementary Material)

Evidently, the solubilizing tail in 71 increase activity towards a number of kinases. This was also noted in one of our structurally related furopyrimidine compound [49]. On one hand this might lead to undesired off-target related toxicity, on the other side having activity towards several kinases in the same pathway might be beneficial in a therapeutic setting.

2.7 Cell assays

The new EGFR inhibitors were compared with the reference drug Erlotinib in proliferation studies with two cell lines; A-431 harbouring overexpressed EGFR-wild type, and a genetically engineered cancer model cell, $\mathrm{Ba} / \mathrm{F} 3-\mathrm{EGFR}^{\mathrm{L} 858 \mathrm{R}}$, containing the activating L858R mutant form (see Table 3). Except compound $68\left(\mathrm{IC}_{50} 396 \mathrm{nM}\right)$ all compounds were highly sensitive towards the $\mathrm{Ba} / \mathrm{F} 3-\mathrm{EGFR}^{\mathrm{L} 858 \mathrm{R}}$ cells with IC_{50} in the range as Erlotinib (IC_{50} $75-158 \mathrm{nM}$). This proves on-target activity also in cells. In assay towards the more complex A-431 cell line, the activity was high for derivative $\mathbf{5 0}, \mathbf{5 1}$ and $\mathbf{7 6}$, but considerable lower than Erlotinib for the other derivatives tested. Interestingly, compound $\mathbf{7 1}$ displaying excellent EGFR activity in enzymatic studies and also high inhibition towards a number of kinases including HER2 and HER4, had a mediocre activity towards the A-431 cell line.

Table 3. Cell proliferation study of selected pyrrolopyrimidines towards $\mathrm{Ba} / \mathrm{F} 3-$ EGFR ${ }^{\text {L858R }}$ and A-431 cells.
Comp. Structure $\quad 80$
68
396 ± 50
6.2 ± 3.1
142 ± 12
>10
72

158 ± 44
5.8 ± 4.6
77 ± 12
>10
73

76

75 ± 14
0.8 ± 0.3
77

99 ± 1
4.9 ± 4.2
${ }^{\text {a) }}$ Each IC_{50} is the result of three independent replicates.
${ }^{\text {b) }}$ Unless otherwise stated IC_{50} is the result of three replicates.
${ }^{\text {c }}$ Data is taken from ref. [20] (Erlotinib had an IC_{50} of $142 \pm 65 \mathrm{nM}$).
${ }^{d}{ }^{\text {d }}$ Data is taken from ref. [20] (Erlotinib had an IC_{50} of $0.4 \pm 0.1 \mu \mathrm{M}$).

Based on a trade-off between enzymatic and cellular activity and ADME properties the previously identified compound $\mathbf{5 0}$ appears as the most promising drug candidate. Table 4 summarises other cell proliferation data for compound $\mathbf{5 0}$.

Table 4. Cell proliferation data of compound $\mathbf{5 0}$ and Erlotinb towards various cancer cell lines.

Cancer type		IC $\mathbf{5 0}_{\mathbf{0}}(\boldsymbol{\mu M})$	
	Cell line	Erlotinib	Comp. 50
Lung	PC-9	<0.1	<0.1
Breast	A-549	>100	>100
Ovarian	AU-565	$3.3 \pm 0.6^{\text {a) }}$	$2.5 \pm 0.4^{\mathrm{a})}$
Head\&Neck	C-33A	$0.9 \pm 0.0^{\mathrm{a})}$	$0.7 \pm 0.0^{\mathrm{a})}$
	CAL-27	$1.3 \pm 0.6^{\text {a) }}$	$2.7 \pm 0.6^{\mathrm{a})}$
Leukaemia	FaDu	>11	>33
	K-562	$55 \pm 9^{\mathrm{a})}$	$15 \pm 2^{\mathrm{a})}$

Pancreatic	BxPC3	1.9 ± 0.2	15 ± 1

a) Data taken from ref. [20]

Erlotinib and compound $\mathbf{5 0}$ were highly potent towards the PC-9 lung cancer cells harbouring the EGFR E746-A750 deletion mutation. In contrast, both compounds were found inactive towards A-549, which have wild type EGFR, but mutated RAS [50]. Fairly similar potency was seen towards the AU-565 breast cancer cell line and the cervix carcinoma cell line C-33A [20]. The decent potency detected for the latter cell line is surprising giving this cell line's low expression of EGFR [51-53], indicating that alternative cytotoxicity mechanisms might be operating. In line with what seen for structurally related analogues [21], compound $\mathbf{5 0}$ was moderately active towards CAL-27 cells, but inactive towards the FaDu cells. Compound $\mathbf{5 0}$ also had a low potency towards the leukaemia K562 cell line and the pancreatic cell line BxPC3. Overall the cell proliferation studies on compound $\mathbf{5 0}$ indicate that the major use of this compound as single agent is in EGFR driven diseases.

3. Conclusion

The goal of this work was to identify pyrrolopyrimidine-based EGFR inhibitors for medical use. Thus, starting from our own lead structure, we have performed a SAR study involving 43 new structures. The SAR study revealed that ortho-ethoxy groups and amine based solubilizing tails in para-position of the 6 -aryl moiety, and a (R)-3-amino-3-phenylpropan1 -ol at C-4 boosted potency. Based on this collection of new structures and two previously identified compounds, various ADME assays were used to identify the most promising drug candidate. Permeability was investigated by the Caco-2 method for 28 of the inhibitors. Overall, the efflux ratio correlated well with polar surface area of the molecules, and compounds bearing polar functionalities at the 6-aryl ring, especially amides and sulphonamides, increased drug efflux ratio and reduced permeability. Metabolic stability (HLM), investigated for 29 of the derivatives, showed that sites most prone to metabolism were the ortho-methoxyphenyl group at C-6, and (S)-2-methoxy-1-phenylethan-1-amine at C-4. The metabolic stability of the ortho-methoxy compound could be increased by bioisosteric substitution with a deuteromethoxy group, whereas no improvement was seen using the difluoromethoxy substituent. hERG inhibition was generally low, but two compounds bearing the (R)-3-amino-3-phenylpropan-1-ol group at C-4, had $\mathrm{IC}_{50}<25 \mu \mathrm{M}$, indicating toxicity issues with this scaffold. Ten compounds were subjected to proliferation assays using $\mathrm{Ba} / \mathrm{F} 3-\mathrm{EGFR}^{\mathrm{L} 588 \mathrm{R}}$ and A-431 cells. Whereas high activity was seen for the former cell line, only a few was potent in the A-431 cells. Further, five of the EGFR inhibitors were compared in assays towards a panel of 50 kinases, revealing that amine containing solubilizing tails at para-position of the 6 -aryl group reduced selectivity. On background of all these studies, (S)-2-phenyl-2-((6-phenyl-7H-pyrrolo[2,3- d]pyrimidin-4-yl)amino)ethan-1-ol (50) appeared as the most promising drug candidate. The high potency
displayed in $\mathrm{Ba} / \mathrm{F} 3-\mathrm{EGFR}^{\mathrm{L} 558 \mathrm{R}}$ reporter cells, A-431 and PC9 cell proliferation studies indicate this compound to have potential therapeutic use in EGFR driven diseases.

4. Experimental

4.1 General

Xhos, $2^{\text {nd }}$ generation XPhos, $\mathrm{NaBH}_{4},(R)$-1-phenylethan-1-amine and (S)-2-amino-2-phenylethan-1-ol and the arylboronic acid derivatives except 2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetamide (Activate Scientific) and 8-11 (in house prepared) were from Sigma Aldrich. (R)-3-Amino-3-phenylpropan-1-ol was from Fluorochem.. Silica-gel column chromatography was performed using silica-gel 60A from Fluka, pore size 40-63 $\mu \mathrm{m}$. Celite 545 from Fluka was also used. (S)-2-Methoxy-1phenylethanamine [54], and compounds 1, 7a-b, 7d, 31-33, 50 and 51 [20], were prepared and characterized in other studies from our laboratory. The Supplementary Material contains experimental and analytical data on synthesis of 4-bromo-3-methoxyaniline, 1-bromo-2-(methoxy- d_{3})benzene and compounds 3 and $\mathbf{8 - 1 1}$.

4.2 Analyses

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with Bruker Avance 600 and 400 spectrometer operating at $600 / 400 \mathrm{MHz}$ and $150 / 100 \mathrm{MHz}$, respectively. ${ }^{19} \mathrm{~F}$ NMR was performed on a Bruker Avance 600 operating at 564 MHz . For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are in ppm rel. to tetrametylsilane (TMS) calibrated using DMSO- d_{6} or TMS, while for ${ }^{19}$ F NMR the shift values were calibrated using hexafluorobenzene. Coupling constants are in hertz. The pyrrole NH signal ($\delta: 12.2-10.2 \mathrm{ppm}$), the NH at $\mathrm{C}-4$ ($\delta: 7.9-7.7 \mathrm{ppm}$ and the hydroxyl group at R_{1} in compounds 52-73 and 78 ($\delta: 4.99-4.95 \mathrm{ppm}$) disappeared after $\mathrm{D}_{2} \mathrm{O}$ exchange. Other exchangeable protons are mentioned for each specific compound. HPLC (Agilent 110-Series) with a G1379A degasser, G1311A Quatpump, G1313A ALS autosampler and a G1315D Agilent detector (230 nm) was used to determine the purity of the synthesised compounds. All compounds evaluated for EGFR inhibitory potency had a purity of $\geq 96 \%$. Conditions: Poroshell C18 $(100 \times 4.6 \mathrm{~mm})$ column, flow rate $0.8 \mathrm{~mL} / \mathrm{min}$, elution starting with water/ $\mathrm{CH}_{3} \mathrm{CN}(90 / 10), 5 \mathrm{~min}$ isocratic elution, then linear gradient elution for 35 min ending at $\mathrm{CH}_{3} \mathrm{CN} /$ water (100/0). The software used with the HPLC was Agilent ChemStation. Accurate mass determination (ESI) was performed on an Agilent G1969 TOF MS instrument equipped with a dual electrospray ion source. Accurate mass determination in positive and negative mode was performed on a "Synapt G2-S" Q-TOF instrument from Waters. Samples were ionized by the use of an ASAP probe, no chromatography separation was used before the mass analysis. FTIR spectra were recorded on a Thermo Nicolet Avatar 330 infrared spectrophotometer. All melting points are uncorrected and measured by a Stuart automatic melting point SMP40 apparatus.

4.3 In vitro EGFR (ErbB1) inhibitory potency

The compounds were supplied in a 10 mM DMSO solution, and enzymatic EGFR (ErbB1) inhibition potency was determined by Reaction Biology Corp. using their biochemical kinase assay at $10 \mu \mathrm{M}$ ATP concentration. All compounds were first tested for their inhibitory activity at 100 nM in duplicates. The potency observed at 100 nM was used to set starting point of the IC_{50} titration curve, in which three levels were used 100, 1000 or 10000 nM . The IC_{50} values reported are based on the average of at least 2 titration curves (minimum 20 data points), and were calculated from activity data with a four parameter logistic model using SigmaPlot (Windows Version 12.0 from Systat Software, Inc.) Unless stated otherwise the ATP concentration used was equal to K_{m}. The average standard deviation for single point measurements were $<4 \%$.

4.4 In vitro kinase panel

The compounds were supplied in a 10 mM DMSO solution, and enzymatic kinase inhibition potency was determined by Invitrogen (LifeTechnology) using their Z'-LYTE ${ }^{\circledR}$ assay technology [55], at 500 nM in duplicates. ATP concentration used was equal to K_{m}, except when this service was not provided and other concentrations had to be used.

4.5 ADME and cell studies

ADME studies, including solubility, Caco-2 assay, human liver microsome metabolic assay, hERG inhibition and protein binding were performed as previously described [21].

Cell proliferation studies with the PC-9, FaDu and BXPC-3 cells were performed as described in reference [21], while protocols for the $\mathrm{Ba} / \mathrm{F} 3 \mathrm{EGFR}^{\mathrm{L} 858 \mathrm{R}}$ cell proliferation studies can be found in reference [20].

Proliferation study with the A-549 cell line was performed by Reaction Biology Corp: The A549 cell line was obtained from American Type Culture Collection (Manassas, VA). Staurosporine was obtained from Selleckchem. Cell Titer-Glo® Luminescent cell viability assay reagent was obtained from Promega (Madison, WI). A549, cell line was cultured in F-12K medium supplemented with 10% FBS. $100 \mu \mathrm{~g} / \mathrm{ml}$ penicillin and $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin. Cultures were maintained at $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ and 95% air. The test compound, Erlotinib and Staurosporine (positive control) were all dissolved in DMSO in 10 mM stock. Culture medium ($10 \mu \mathrm{l}$) was added to each well of 384 well cell culture plates. The compounds were diluted in a source plate in DMSO at 3 fold serial dilutions starting at 10 mM , total 10 doses. The compounds $(0.25 \mu \mathrm{l})$ were delivered from source plate to each well of the cell culture plates by Echo 550. Then, 250 $\mu 1$ of culture medium containing 5000 cells were added to the wells of the cell culture plates. The cells were incubated with the compounds at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$ for 72 hours. $25 \mu \mathrm{l}$ of Cell Titer Glo reagent ($25 \mu \mathrm{l}$) was added to each well according to the instruction of the kit. The contents were mixed on an orbital shaker for 2 minutes and incubated at room temperature for 10 minutes to stabilize luminescent signal. Luminescence was recorded by Envision 2104 Multilabel Reader (PerkinElmer, Santa Clara, CA). The maximum luminescence for
each cell line in the absence of test compound, but in the presence of 0.4% DMSO, was similarly recorded after incubation for 72 hours. The number of viable cells in the culture was determined based on quantitation of the ATP present in each culture well. The percentage growth after 72 hours (\%-growth) was calculated as follows: $100 \% \times$ (luminescence $\mathrm{t}=72$ hours / luminescence untreated, $\mathrm{t}=72$ hours).

4.6 General procedures

4.6.1 General procedure for thermal amination of pyrrolo[2,3- d] pyrimidines

The 4-chloropyrrolopyrimidine ($\mathbf{4}$ or $\mathbf{5}$) $(0.12-2.0 \mathrm{~g})$ was mixed with the selected amine (2-3 eq) and $n-\mathrm{BuOH}(2-30 \mathrm{~mL})$ and agitated at $145^{\circ} \mathrm{C}$ for $1-24 \mathrm{~h}$ under N_{2} atmosphere. The mixture was then cooled to ambient temperature, concentrated in vacuo, diluted with water and extracted with EtOAc $(2 \times 30-100 \mathrm{~mL})$. The combined organic phases were washed with saturated aq. NaCl solution ($15-60 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was purified by silica-gel column chromatography.

4.6.2 General procedure for Suzuki cross-coupling on pyrrolo[2,3d]pyrimidines

The 6-iodopyrrolopyrimidine ($\mathbf{6 a}-\mathbf{6 c}, \mathbf{7 a}-\mathbf{7 b}$ or $\mathbf{7 d}$) ($50-350 \mathrm{mg}$) was mixed with the selected arylboronic acid (1.2 eq), fine powdered $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 eq), XPhos ($5 \mathrm{~mol} \%$) / $2^{\text {nd }}$ generation XPhos precatalyst ($5 \mathrm{~mol} \%$) system or PdCl_{2} (dppf) ($5 \mathrm{~mol} \%$) and mixture with degassed 1,4 -dioxane $/ \mathrm{H}_{2} \mathrm{O}(1 / 1 \mathrm{by}$ vol. $\%, 2-8 \mathrm{~mL})$. The reaction was then stirred at $100^{\circ} \mathrm{C}$ for $0.5-10$ hours under N_{2} atmosphere. The solvent was removed and the product was diluted with $\mathrm{H}_{2} \mathrm{O}(25-100 \mathrm{~mL})$ and extracted with EtOAc (50-120 mL), several times if required. The combined organic phases were washed with saturated aq. NaCl solution (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification was performed as described for each individual compound.

4.6.3 General procedure for reductive amination of pyrrolo[$2,3-d]$ pyrimidines

The 6 -aryl aldehydes ($\mathbf{1 9}, \mathbf{2 3}, \mathbf{2 4}, \mathbf{3 1} \mathbf{- 3 3}$) ($16.6-100 \mathrm{mg}$) were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1-5 \mathrm{~mL})$ and the respective amine (1.2 eq) was added and stirred at $20^{\circ} \mathrm{C}$ for $1-$ 4 hours until full conversion to the imine as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Solvent was removed in vacuo and the crude product was dissolved in $\mathrm{MeOH}(4-10 \mathrm{~mL})$ and NaBH_{4} ($1.8-2.3 \mathrm{eq}$) was added and stirred for $2-4$ hours until completed reduction. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10-30 \mathrm{~mL})$ and the mixture was extracted with EtOAc (40 $-100 \mathrm{~mL})$. The combined organic phases were washed with saturated aq. $\mathrm{NaCl}(10-30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification was performed as described for each individual compound.

4.6.4 General procedure for SEM-deprotection of pyrrolo[2,3-d]pyrimidines

Compounds ($50-200 \mathrm{mg}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10-20 \mathrm{~mL}$) and TFA ($2-4 \mathrm{~mL}$) was added and stirred at $50{ }^{\circ} \mathrm{C}$ for 3-6 hours ours until full conversion determined by ${ }^{1} \mathrm{H}$ NMR at which time the solvent was removed in vacuo. The crude material was dissolved in THF $(10-20 \mathrm{~mL})$ and saturated aq $\mathrm{NaHCO}_{3}(10-20 \mathrm{~mL})$ solution was added and stirred for 6 12 hours. The mixture was then extracted with EtOAc (50-150 mL) and the combined organic phases were washed with saturated aq $\mathrm{NaCl}(10-40 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification was performed as described for each individual compound.

4.7 Synthesis of intermediates

4.7.1 4-Chloro-6-iodo-7H-pyrrolo[2,3-d]pyrimidine (4) [20].

4-Chloro-7-(phenylsulfonyl)-7H-pyrrolo[2,3-d]pyrimidine (1) [20], ($5.42 \mathrm{~g}, 18.5 \mathrm{mmol}$) was iodinated as previously described [20]. This gave a $9: 1$ mixture of 2 and $\mathbf{3}(6.0 \mathrm{~g})$ which was mixed with THF (125 mL) and 5 M NaOH solution in $\mathrm{MeOH}(21 \mathrm{~mL})$. After 2 hours stirring at room temperature, a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution (125 mL) was added and the mixture concentrated. The formed precipitate was collected by filtration and washed with water. Trituration from boiling acetonitrile ($1 \mathrm{~g} / 10 \mathrm{~mL}$) gave $3.96 \mathrm{~g}(14.2$ $\mathrm{mmol}, 77 \%$) of $\mathbf{4}$ as a white solid, $\mathrm{mp} 219^{\circ} \mathrm{C}$ (dec.) (lit.[20] $220^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 12.57(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR data is in agreement with that previously reported [20].

4.7.2 4-Chloro-6-iodo-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3d] pyrimidine (5) [56].

4-Chloro-6-iodo-7H-pyrrolo[2,3- d] ($2.02 \mathrm{~g}, 7.24 \mathrm{mmol}$) and sodium hydride ($210 \mathrm{mg}, 8.45$ mmol) were added dry DMF (70 mL) under nitrogen atmosphere and cooled to $0^{\circ} \mathrm{C}$. 2(Trimethylsilyl)ethoxymethyl chloride ($1.69 \mathrm{~mL}, 9.36 \mathrm{mmol}$) was added dropwise over 30 \min at $0^{\circ} \mathrm{C}$ and stirred at $22^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was added water (150 mL) and extracted with $\mathrm{EtOAc}(2 \times 150 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography on silica gel (EtOAc / n-pentane $1 / 1, \mathrm{R}_{f}=0.78$) gave $\mathbf{5}$ in 2.43 g $(5.92 \mathrm{mmol}, 81 \%)$ as a clear oil that solidified upon drying in vacuo. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=8.4,2 \mathrm{H}), 0.83(\mathrm{t}, J=8.4$, $2 \mathrm{H}),-0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 152.5,150.7,149.1,118.5,109.7$, 91.5, 73.4, 66.1, 17.0, -1.4 (3C); HRMS (APCI/ASAP, m/z): 409.9955 (calcd. $\left.\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OSiClI}, 409.9952,[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.7.3 (R)-6-Iodo- N -(1-phenylethyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7Hpyrrolo $[2,3-d]$ pyrimidin-4-amine (6a)

Compound 6a was prepared as described in Section 4.6.1, starting with 5 ($506 \mathrm{mg}, 1.24$ mmol) and (R)-1-phenylethan-1-amine ($449 \mathrm{mg}, 3.71 \mathrm{mmol}, 3 \mathrm{eq}$.). The reaction time was 3 hours. Purification by silica-gel column chromatography (n-pentane/EtOAc, $8 / 2, \mathrm{R}_{f}=$ 0.49) gave $456 \mathrm{mg}(0.923 \mathrm{mmol}, 75 \%)$ of a pale foam; HPLC purity: $98 \%, \mathrm{t}_{R}=30.3 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}^{20}=-195.6(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{TMS}$) $\delta: 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.41-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.57$ (s, 2H), 5.52 $5.47(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~d}, J=6.8,3 \mathrm{H}), 0.98-0.89(\mathrm{~m}, 2 \mathrm{H}),-0.06(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$-TMS) $\delta: 154.2,152.6,152.4,143.8,128.9$ (2C), 127.5, 126.2 (2C), 109.5, 105.2, 77.8, 73.2, 66.5, 50.2, 22.9, 17.9, -1.3 (3C); IR (neat, cm^{-1}): 3273, 2945, 1594, 1450, 1295, 1080, 833, 746, 697; HRMS (APCI/ASAP, m/z): 495.1082 (calcd. $\left.\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{OSiI}, 495.1077[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.7.4 (S)-2-((6-Iodo-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (6b)

Compound 6b was prepared as described in Section 4.6.1, starting with 5 ($1.02 \mathrm{~g}, 2.05$ mmol) and (S)-2-amino-2-phenylethan-1-ol ($844 \mathrm{mg}, 6.15 \mathrm{mmol}, 3$ eq.). The reaction time was 6 hours. Purification by silica-gel column chromatography (EtOAc/n-pentane, 6/4, R_{f} $=0.24)$ gave $896 \mathrm{mg}(1.76 \mathrm{mmol}, 86 \%)$ of a white foam; HPLC purity: $99 \%, \mathrm{t}_{R}=25.6$ $\min ;[\alpha]_{\mathrm{D}}^{20}=-187.2(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.83$ - 7.81 (m, 1H), 7.41-7.39 (m, 2H), 7.31-7.28 (m, 2H), 7.22-7.17 (m, 2H), 5.48-5.37 $(\mathrm{m}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 4.97-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.47(\mathrm{~m}, 2 \mathrm{H}), 0.82-$ 0.78 (m, 2H), -0.11 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d d_{6}) : 154.4, 151.9, 151.4, 141.6, 128.0 (2C), 126.9 (2C), 126.7, 110.2, 104.9, 79.5, 72.5, 65.4, 64.9, 56.1, 17.1, -1.3 (3C); HRMS (APCI/ASAP, m/z): 511.1031 (calcd. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{SiI}, 511.1026[\mathrm{M}+\mathrm{H}]^{+}$).

4.7.5 (R)-3-((6-Iodo-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-3-phenylpropan-1-ol (6c)

Compound $\mathbf{6 c}$ was prepared as described in Section 4.6.1, starting with 5 ($152 \mathrm{mg}, 0.371$ mmol) and (R)-3-amino-3-phenylpropan-1-ol ($121 \mathrm{mg}, 0.800 \mathrm{mmol}, 2$ eq.). The reaction time was 20 hours. Purification by silica-gel column chromatography (EtOAc/n-pentane, $\left.6 / 4, \mathrm{R}_{f}=0.24\right)$ gave $190 \mathrm{mg}(0.361 \mathrm{mmol}, 97 \%)$ of a white foam; HPLC purity: $99 \%, \mathrm{t}_{R}$ $=25.9 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-190.1(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{TMS}\right) \delta: 8.28(\mathrm{~s}$, $1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.61-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~s}$, $2 \mathrm{H}), 5.23-5.22(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.31$ - $2.23(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 0.94-0.90(\mathrm{~m}, 2 \mathrm{H}),-0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$-TMS) $\delta: 154.7,152.2,152.0,142.3,129.2$ (2C), 128.0, 126.8 (2C), 109.2, 105.2, 78.2, 73.3, 66.6, 58.5, 52.0, 39.4, 17.9, -1.3 (3C); HRMS (APCI/ASAP, m/z): 524.1093 (calcd. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{SiI}, 524.1098[\mathrm{M}+\mathrm{H}]^{+}$).

4.8 SEM-protected pyrrolopyrimidines

4.8.1 (R)-N-(1-Phenylethyl)-6-(pyridin-4-yl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (12)

Compound $\mathbf{1 2}$ was prepared as described in Section 4.6.2, starting with $\mathbf{6 a}$ ($150 \mathrm{mg}, 0.30$ mmol), pyridin-4-ylboronic acid ($52 \mathrm{mg}, 0.430 \mathrm{mmol}$) and using PdCl_{2} (dppf) ($10 \mathrm{mg}, 0.014$ $\mathrm{mmol}, 0.05$ eq.) as catalyst The reaction time was 2 hours. Purification by silica-gel column chromatography (EtOAc/n-pentane, 2/1, $\mathrm{R}_{f}=0.32$) gave $123 \mathrm{mg}(0.280 \mathrm{mmol}, 61 \%)$ of a yellow oil. HPLC purity: $99 \%, \mathrm{t}_{R}=30.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-189.9$ (c 1.00, DMSO); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$-TMS) $\delta: 8.67-8.66$ (m, 2H), $8.40(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ 7.43 (m, 2H), $7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 5.61-5.57(\mathrm{~m}, 3 \mathrm{H})$, $5.59-5.53(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.76(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=6.8,3 \mathrm{H}), 0.99-0.96(\mathrm{~m}, 2 \mathrm{H}),-0.02$ $(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta: 155.8,153.3,(2 \mathrm{C}), 150.4,(2 \mathrm{C}), 143.9,139.3$, $135.5,128.9$, (2C), 127.5, 126.2, 122.9, 103.0, 100.5, 70.8, 66.9, 50.5, 22.9, 18.1, -1.3 (3C); IR (neat, cm^{-1}): 3262, 2945, 2353, 1591, 1468, 1303, 1073, 730, 697; HRMS (APCI/ASAP, m / z): 446.2376 (calcd. $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{OSi}, 446.2376[\mathrm{M}+\mathrm{H}]^{+}$).

4.8.2 (S)-2-((6-(2-(Methoxy- $\left.d_{3}\right)$ phenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3- d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (13)

Compound $\mathbf{1 3}$ was prepared as described in Section 4.6.2, starting with $\mathbf{6 b}(90 \mathrm{mg}, 0.237$ mmol) and 2-(2-(methoxy- d_{3})phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (8) (68 mg , $0.284 \mathrm{mmol})$. The reaction time was 1 hour. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 19 / 1, \mathrm{R}_{f}=0.20\right)$ gave $91 \mathrm{mg}(0.209 \mathrm{mmol}, 88 \%)$ of a clear oil; HPLC purity: $99 \%, \mathrm{t}_{R}=15.1 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$-TMS) $\delta: 8.35$ (s , $1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 1 \mathrm{H})$, $6.36(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 5.34-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.13-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 2 \mathrm{H})$, $0.77-0.73(\mathrm{~m}, 2 \mathrm{H}),-0.13(\mathrm{~s}, 9 \mathrm{H})$; NH and OH was not seen; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3-}$ TMS) $\delta: 157.4,155.9,151.7,151.2,140.0,135.3,132.6,130.7,129.3$ (2C), 128.3, 127.0 (2C), 121.0, 120.7, 111.1, 103.5, 99.6, 71.5, 68.5, 66.4, 64.4, 59.3, 17.9, -1.3 (3C).

4.8.3 (S)-2-((6-(2-Ethoxyphenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3- d] pyrimidin-4-yl)amino)-2-phenylethan-1-ol (14)

Compound 14 was prepared as described in Section 4.6.2, starting with $\mathbf{6 b}$ ($100 \mathrm{mg}, 0.196$ mmol) and (2-ethoxyphenyl)boronic acid ($49 \mathrm{mg}, 0.294 \mathrm{mmol}$). Purification by silica-gel column chromatography (EtOAc / n-pentane, $3 / 2, \mathrm{R}_{f}=0.34$) gave $90 \mathrm{mg}(0.178 \mathrm{mmol}, 90$ $\%)$ of a colourless oil; HPLC purity: $99 \%, \mathrm{t}_{R}=27.3 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-102.1(c 0.50, \mathrm{DMSO})$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$-TMS) $8: 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 7 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 2 \mathrm{H})$, $6.34(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 5.47-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.03(\mathrm{~m}, 4 \mathrm{H})$, $3.34-3.30(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.0,3 \mathrm{H}), 0.75-0.70(\mathrm{~m}, 2 \mathrm{H}),-0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$-TMS) $\delta: 156.6,155.9,151.7,151.4,140.1,135.8,132.7,130.6,129.3$ (2C),
$128.3,127.0$ (2C), 121.1, 120.9, 112.2, 103.7, 99.0, 71.6, 68.6, 66.3, 64.1, 59.2, 17.9, 14.9, -1.4 (3C).

4.8.4 (S)-2-(3-(4-((2-Hydroxy-1-phenylethyl)amino)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-6yl)phenyl)acetamide (15)

Compound $\mathbf{1 5}$ was prepared as described in Section 4.6.2, starting with $\mathbf{6 b}$ ($75 \mathrm{mg}, 0.147$ $\mathrm{mmol}), \mathrm{PdCl}_{2}$ (dppf) ($10.5 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.05 \mathrm{eq}$.) and 2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)acetamide ($59 \mathrm{mg}, 0.224 \mathrm{mmol}$). Purification by silica-gel column chromatography (EtOAc/MeOH, 94/6, $\left.\mathrm{R}_{f}=0.16\right)$ gave $63 \mathrm{mg}(0.121 \mathrm{mmol}, 83 \%)$ of a yellow foam. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.79-$ $7.76(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.17(\mathrm{~m}$, $2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}), 5.46-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.99(\mathrm{~m}$, $1 \mathrm{H}), 3.74-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 2 \mathrm{H}), 0.81-0.77(\mathrm{~m}, 2 \mathrm{H}),-0.13(\mathrm{~s}, 9 \mathrm{H})$.

4.8.5 (S)-2-Phenyl-2-((6-(pyridin-4-yl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)ethan-1-ol (16)

Compound 16 was prepared as described in Section 4.6.2, starting with $\mathbf{6 b}$ ($150 \mathrm{mg}, 0.294$ mmol), PdCl_{2} (dppf) ($11 \mathrm{mg}, 15.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and pyridin-4-ylboronic acid $(54 \mathrm{mg}$, $0.441 \mathrm{mmol})$. The reaction time was 1 hour. Purification by silica-gel column chromatography (EtOAc, $\left.\mathrm{R}_{f}=0.17\right)$ gave $124 \mathrm{mg}(0.271 \mathrm{mmol}, 92 \%)$ of a colourless film; HPLC purity: $99 \%, \mathrm{t}_{R}=25.8 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 8.68-8.65(\mathrm{~m}, 2 \mathrm{H})$, $8.41(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}$, $1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.63-5.58(\mathrm{~m}, 3 \mathrm{H}), 5.55-5.52(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.53$ (m, 2H), $0.90-0.86(\mathrm{~m}, 2 \mathrm{H}),-0.11(\mathrm{~s}, 9 \mathrm{H})$.

4.8.6 (S)-2-Phenyl-2-((6-(pyridin-3-yl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3- d]pyrimidin-4-yl)amino)ethan-1-ol (17)

Compound $\mathbf{1 7}$ was prepared as described in Section 4.6.2, starting with $\mathbf{6 b}$ ($80 \mathrm{mg}, 0.157$ mmol), PdCl_{2} (dppf) ($6 \mathrm{mg}, 7.85 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$.) and pyridin-3-ylboronic acid ($29 \mathrm{mg}, 0.235$ $\mathrm{mmol})$. The reaction time was 4 hours. Purification by silica-gel column chromatography $\left(E t O A c, \mathrm{R}_{f}=0.21\right)$ gave $70 \mathrm{mg}(0.151 \mathrm{mmol}, 96 \%)$ of a pale film. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d d_{6}) $\delta: 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.63-8.61(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.14-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.97-$ $7.95(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}$, $1 \mathrm{H}), 7.08(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 5.47-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.00-4.97(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.70(\mathrm{~m}$, 2H), 3.58-3.54 (m, 2H), 0.84-0.80 (m, 2H), -0.12 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right) \delta: 155.8,152.3,152.0,148.9,148.8,141.7,139.7,135.5,133.1,128.1$ (2C), 127.9, 127.0 (2C), 126.7, 123.7, 101.0, 70.2, 65.6, 64.9, 56.2, 17.2, -1.4 (3C).

4.8.7 (S)-2-((6-(3-Methoxypyridin-4-yl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (18)

Compound 18 was prepared as described in Section 4.6.2, starting with $\mathbf{6 b}$ ($200 \mathrm{mg}, 0.392$ $\mathrm{mmol}), \mathrm{PdCl}_{2}$ (dppf) ($14 \mathrm{mg}, 0.020 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$.) and 3-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine ($138 \mathrm{mg}, 0.588 \mathrm{mmol}$). The reaction time was 1 hour. Purification by silica-gel column chromatography ($\mathrm{EtOAc}, \mathrm{R}_{f}=0.14$) gave $161 \mathrm{mg}(0.328$ mmol, 84%) of a colourless film. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.32$ $8.31(\mathrm{~m}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.46-6.42(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H})$, 4.99-4.96(m, 1H), $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.30(\mathrm{~m}, 2 \mathrm{H}), 0.69-0.65(\mathrm{~m}$, 2 H), $-0.18(\mathrm{~s}, 9 \mathrm{H})$; The SEM-protected intermediate 18 was used without further purification.

4.8.8 (S)-4-(4-((2-Hydroxy-1-phenylethyl)amino)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3- d]pyrimidin-6-yl)-3methoxybenzaldehyde (19)

Compound 19 was prepared as described in Section 4.6 .2 , starting with $\mathbf{6 b}$ ($511 \mathrm{mg}, 1.00$ mmol) and (4-formyl-2-methoxyphenyl)boronic acid ($216 \mathrm{mg}, 1.20 \mathrm{mmol}$). The reaction time was 2 hours. Purification by silica-gel column chromatography (EtOAc / n-pentane, $\left.7 / 3, \mathrm{R}_{f}=0.29\right)$ gave $456 \mathrm{mg}(0.879 \mathrm{mmol}, 88 \%)$ of a yellow solid. mp $169-171{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}$ $=-238.1$ (c 1.00, DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 10.07(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H})$, 7.91-7.89 (m, 1H), 7.70-7.68 (m, 1H), 7.65-7.64(m, 2H), 7.43-7.41 (m, 2H), $7.32-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 5.47-5.38(\mathrm{~m}, 3 \mathrm{H}), 4.97(\mathrm{t}, J=5.7,1 \mathrm{H})$, 3.89 (s, 3H), 3.78-3.71 (m, 2H), 3.32-3.25 (m, 2H), 0.66-0.62 (m, 2H), -0.19 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 192.6,157.3,155.7,152.0,151.4,141.7,137.4,132.1$, 131.5, 128.0 (2C), 127.1 (2C), 126.9, 126.7, 122.7, 110.8, 102.9, 102.2, 70.7, 65.3, 64.9, 59.6, 55.8, 17.0, -1.5 (3C); HRMS (APCI/ASAP, m/z): 519.2348 (calcd. $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}$, $\left.519.2348[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.8.9 (S)-2-((6-(2-Methoxy-4-(((2-morpholinoethyl)amino)methyl)phenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (20)

Compound 20 was prepared as described in Section 4.6.3, starting with 19 ($200 \mathrm{mg}, 0.386$ $\mathrm{mmol})$ and 2-morpholinoethan-1-amine ($0.15 \mathrm{~mL}, 15 \mathrm{mg}, 1.157 \mathrm{mmol}$). This gave 217 mg $(0.343 \mathrm{mmol}, 89 \%)$ of a pale solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta: 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.70-$ $7.49(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H})$, $7.02-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.46-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.31(\mathrm{~m}, 2 \mathrm{H}), 4.97-4.95$ $(\mathrm{m}, 1 \mathrm{H}), 3.79-3.70(\mathrm{~m}, 7 \mathrm{H}), 3.57-3.55(\mathrm{~m}, 4 \mathrm{H}), 3.26-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=6.4,2 \mathrm{H})$, $2.41(\mathrm{t}, J=6.4,2 \mathrm{H}), 2.35-2.33(\mathrm{~m}, 4 \mathrm{H}), 0.65-0.61(\mathrm{~m}, 2 \mathrm{H}),-0.19(\mathrm{~s}, 9 \mathrm{H})$, NH was not seen; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 156.8,155.5,152.9,151.5,143.8,141.9,133.1$, 131.5, 128.1 (2C), 127.0 (2C), 126.7, 119.9, 118.8, 110.9, 107.3, 100.5, 70.5, 68.3, 66.2,
$65.3,65.0,58.0,57.5,56.4,55.4,53.5,53.0,45.3,17.1,-1.5$ (3C); The SEM-protected intermediate $\mathbf{2 0}$ was used without further purification.

4.8.10 (S)-2-((6-(2-Methoxy-4-(((2-(piperidin-1-yl)ethyl)amino)methyl)phenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3- d] pyrimidin-4-yl)amino)-2-phenylethan-1-ol (21)

Compound 21 was prepared as described in Section 4.6.3, starting with 19 ($160 \mathrm{mg}, 0.308$ mmol) and 2-(piperidin-1-yl)ethan-1-amine ($0.13 \mathrm{~mL}, 16 \mathrm{mg}, 0.925 \mathrm{mmol}$). Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 85 / 15, \mathrm{R}_{f}=0.11\right)$ gave 174 mg $(0.343 \mathrm{mmol}, 90 \%)$ of a pale solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta: 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.77-$ $7.75(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H})$, $7.01-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.46-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.32(\mathrm{~m}, 2 \mathrm{H}), 4.98-4.95$ $(\mathrm{m}, 1 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 7 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.35(\mathrm{~m}, 2 \mathrm{H})$, 2.31-2.28 (m, 4H), 1.50-1.45 (m, 4H), 1.39-1.34 (m, 2H), 0.64-0.60 (m, 2H), -0,19 (s, 9H), NH was not seen; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 156.8,155.5,151.5,143.9$, $141.9,133.1,131.4,128.0$ (2C), 127.0 (2C), 126.7, 119.9, 118.8, 110.9, 102.9, 110.5, 70.5, $65.3,64.9,59.8,58.3,55.4,54.2$ (2C), 53.0, 45.7, 25.7 (2C), 24.2, 17.1, 14.1, -1.5 (3C).

4.8.11 (S)-2-((6-(2-Methoxy-4-(((2-(piperazin-1-yl)ethyl)amino)methyl)phenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3- d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (22)

Compound 22 was prepared as described in Section 4.6.3, starting with 19 ($160 \mathrm{mg}, 0.308$ mmol) and 2-(piperazin-1-yl)ethan-1-amine ($0.13 \mathrm{~mL}, 12 \mathrm{mg}, 0.925 \mathrm{mmol}$). This gave 186 $\mathrm{mg}(0.296 \mathrm{mmol}, 96 \%)$ of a pale solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 8.10(\mathrm{~s}, 1 \mathrm{H})$, $7.78-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~s}$, $1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.47-5-42(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.31(\mathrm{~m}, 2 \mathrm{H}), 4.99-$ $4.96(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 7 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.62-2.59(\mathrm{~m}$, 2 H), 2.39-2.35 (m, 2H), 2.33-2.32(m, 1H), 2.28-2.24 (m, 4H), 0.64-0.60 (m, 2H), $0.19(\mathrm{~s}, 9 \mathrm{H})$, NH was not seen; SEM-protected intermediate 22 was used further without purification.

4.8.12 (S)-2-Fluoro-5-(4-((2-hydroxy-1-phenylethyl)amino)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-6yl)benzaldehyde (23)

Compound 23 was prepared as described in Section 4.6.2, starting with $\mathbf{6 b}$ ($300 \mathrm{mg}, 0.588$ mmol) and (4-fluoro-3-formylphenyl)boronic acid ($148 \mathrm{mg}, 0.882 \mathrm{mmol}$). The reaction time was 1 hour. Purification by silica-gel column chromatography (EtOAc/n-pentane, 3/2, $\mathrm{R}_{f}=0.27$) gave $260 \mathrm{mg}(0.513 \mathrm{mmol}, 87 \%)$ of a yellow foam; mp $146-148{ }^{\circ} \mathrm{C}$; HPLC purity: $99 \%, \mathrm{t}_{R}=27.1 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-227.6(c 0.99, \mathrm{DMSO}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\right.$ TMS) $\delta: 10.39(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.18-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.05-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.39$ $(\mathrm{m}, 4 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.73-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.55-$ $5.49(\mathrm{~m}, 2 \mathrm{H}), 5.39-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.71(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.98(\mathrm{~m}$,

2H), -0.02 (s, 9H), OH not observed; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{TMS}$) $\delta: 186.8$ (d, $J=$ 6.0), $156.0,152.4,152.2,139.8,136.8$ (d, $J=9.9$), 136.6, 129.6, 129.3 (2C), 128.8 (d, $J=$ $3.8), 128.3,126.9(2 \mathrm{C}), 124.5(\mathrm{~d}, J=8.9), 117.2(\mathrm{~d}, J=21.2), 112.2,103.3,99.1,70.8$, $68.2,66.8,58.8,18.1,-1.3$ (3C).

4.8.13 (S)-2-Fluoro-4-(4-((2-hydroxy-1-phenylethyl)amino)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3- d] pyrimidin-6yl)benzaldehyde (24)

Compound 24 was prepared as described in Section 4.6.2, starting with $\mathbf{6 b}$ ($300 \mathrm{mg}, 0.588$ mmol) and (3-fluoro-4-formylphenyl)boronic acid ($148 \mathrm{mg}, 0.882 \mathrm{mmol}$). The reaction time was 1 hour. Purification by silica-gel column chromatography (EtOAc/n-pentane, 7/3, $\left.\mathrm{R}_{f}=0.32\right)$ gave $252 \mathrm{mg}(0.500 \mathrm{mmol}, 85 \%)$ of a yellow foam; $[\alpha]_{\mathrm{D}}^{20}=-218.5(c 0.50$, DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 10.25(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.09-8.07(\mathrm{~m}$, $1 \mathrm{H}), 7.98-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33$ $-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.57(\mathrm{~m}, 2 \mathrm{H}), 5.47-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.98$ $(\mathrm{m}, 1 \mathrm{H}), 3.76-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 2 \mathrm{H}),-0.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 187.3,166.1(\mathrm{~d}, J=261.2), 156.1,153.0,152.5,145.3$, $141.5,133.9,130.0,128.1$ (2C), 127.0 (2C), 126.8, 124.3, 122.5 (d, $J=9.2$), 115.2 (d, $J=$ $22.5), 103.0,70.4,67.0,65.8,64.9,56.2,17.2,-1.4$ (3C).

4.8.14 (S)-2-((6-(3-(((2-(Dimethylamino)ethyl)amino)methyl)-4-fluorophenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3- d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (25)

Compound 25 was prepared as described in Section 4.6.3, starting with 23 ($98 \mathrm{mg}, 0.192$ mmol) and $N^{\prime} N^{\prime}$ 'dimethylethane-1,2-diamine ($40.0 \mu \mathrm{~L}, 51 \mathrm{mg}, 0.577 \mathrm{mmol}$). Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 90 / 10 / 1, \mathrm{R}_{f}=0.10\right)$ gave 127 $\mathrm{mg}(0.219 \mathrm{mmol}, 74 \%)$ of a light yellow solid; HPLC purity: $99 \%, \mathrm{t}_{R}=27.3 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=$ -99.1 (c 0.50, DMSO); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CHCl}_{3}$-TMS) $\delta: 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}$, $1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.44$ $(\mathrm{s}, 1 \mathrm{H}), 5.56-5.53(\mathrm{~m}, 3 \mathrm{H}), 5.38-5.34(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}$, $2 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.2,2 \mathrm{H}), 2.44(\mathrm{t}, J=6.2,2 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 0.98-0.94$ $(\mathrm{m}, 2 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) \mathrm{NH}$ was not seen; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CHCl}_{3}$-TMS) $\delta: 161.8$ (d, J $=239.9), 155.9,152.2,151.8,140.0,138.5(\mathrm{~d}, J=24.9), 131.5(\mathrm{~d}, J=4.9), 129.6,129.5(\mathrm{~d}$, $J=8.7$), 129.3 (2C), 128.3, 126.9 (2C), 115.6 (d, $J=22.7$), 112.1, 103.4, 98.1, 70.8, 68.4, 66.7, 59.1, 59.0, 47.4, 46.8, 45.6 (2C), 18.2, -1.25 (3C); HRMS (APCI/ASAP, m/z): 579.3273 (calcd. $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{FSi}$, $579.3279[\mathrm{M}+\mathrm{H}]^{+}$).

4.8.15 (S)-2-((6-(4-Fluoro-3-(hydroxymethyl)pheny))-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (26)

To a solution of (S)-2-fluoro-5-(4-((2-hydroxy-1-phenylethyl)amino)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)benzaldehyde (23) (100 $\mathrm{mg}, 0.197 \mathrm{mmol})$ in a mixture of $\mathrm{MeOH}(5 \mathrm{~mL})$ and THF $(10 \mathrm{~mL}), \mathrm{NaBH}_{4}(22.5 \mathrm{mg}, 0.597$ mmol) was added. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 hours at which time the solvent was removed in vacuo. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with EtOAc $(2 \times 20 \mathrm{~mL})$. The combined organic phases were washed with saturated aq. NaCl solution (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by silica-gel column chromatography (EtOAc, $\mathrm{R}_{f}=$ $0.31)$ gave $75 \mathrm{mg}(0.148 \mathrm{mmol}, 75 \%)$ of a pale solid; HPLC purity: $99 \%, \mathrm{t}_{R}=24.6 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-140.5(c 0.50, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{TMS}\right) \delta: 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.78-$ $7.75(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H})$, $5.59-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 5.38-5.34(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.12-4.01(\mathrm{~m}, 2 \mathrm{H})$, 3.74-3.70(m, 2H), 0.98-0.94(m, 2H), -0.04 (s, 9H); OH groups not observed; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$-TMS) $\delta: 160.8(\mathrm{~d}, J=249.4$), $155.9,152.3,151.8,139.9,138.1,130.3$, 130.2, 129.3 (2C), 128.6, 128.3, 126.9 (2C), 115.9, 115.7, 103.3, 98.2, 77.4, 70.8, 68.3, 66.7, 59.4, 59.0, 18.2, -1.3 (3C).

4.8.16 (S)-2-((6-(4-(((2-(Dimethylamino)ethyl)amino)methyl)-3-fluorophenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (27)

Compound 27 was prepared as described in Section 4.6.3, starting with 24 ($100 \mathrm{mg}, 0.197$ $\mathrm{mmol})$ and $N^{\prime} N^{\prime}$ 'dimethylethane-1,2-diamine ($40.0 \mu \mathrm{~L}, 51 \mathrm{mg}, 0.577 \mathrm{mmol}$). Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 90 / 10 / 1, \mathrm{R}_{f}=0.16\right)$ gave 107 $\mathrm{mg}(0.183 \mathrm{mmol}, 93 \%)$ of a colourless oil; HPLC purity: $98 \%, \mathrm{t}_{R}=17.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-$ 134.1 ($c 0.50$, DMSO); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CHCl}_{3}$-TMS) $\delta: 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}$, $7 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.57-5.55(\mathrm{~m}, 3 \mathrm{H}), 5.38-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.02$ $(\mathrm{m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.2,2 \mathrm{H}), 2.45(\mathrm{t}, J=6.2,2 \mathrm{H})$, $\left.2.21(\mathrm{~s}, 6 \mathrm{H}), 0.99-0.95(\mathrm{~m}, 2 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CHCl}_{3}-\mathrm{TMS}\right) \delta: 161.3$ (d, $J=260.4$), 156.0, 152.4, 152.0, 139.9, 137.8, 132.3 (d, $J=25.7$), 130.8 (d, $J=5.0$), 129.3 (2C), 127.7 (d, $J=16.1$), 128.3, 126.9 (2C), 124.8, 115.9 (d, $J=24.0$), 103.3, 98.4 , $70.8,68.3,66.8,59.2,58.9,47.3,46.8,45.6$ (2C), 18.1, -1.25 (3C).

4.8.17 (S)-2-((6-(3-Fluoro-4-(hydroxymethyl)phenyl)-7-((2-
 (trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (28)

To a solution of (S)-2-fluoro-4-(4-((2-hydroxy-1-phenylethyl)amino)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)benzaldehyde (24) (100 $\mathrm{mg}, 0.197 \mathrm{mmol}$) in a mixture of $\mathrm{MeOH}(5 \mathrm{~mL})$ and THF (10 mL) $\mathrm{NaBH}_{4}(23 \mathrm{mg}, 0.597$ mmol) was added. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 2.5 hours at which time
the solvent was removed in vacuo. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with EtOAc $(2 \times 35 \mathrm{~mL})$. The combined organic phases were washed with saturated aq. NaCl solution (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by silica-gel column chromatography (EtOAc, $\mathrm{R}_{f}=$ $0.24)$ gave $95 \mathrm{mg}(0.187 \mathrm{mmol}, 95 \%)$ of a pale solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ : $8.15(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 5.44-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H})$, 3.77-3.73 (m, 2H), 3.63-3.58 (m, 2H), 0.87-0.83 (m, 2H), -0.09 (s, 9H).

4.8.18 (S)-2-((6-(4-(($(2-(D i m e t h y l a m i n o) e t h y l)(m e t h y l) a m i n o) m e t h y l)-2-~$ methoxyphenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (29)

To a solution of (S)-4-(4-((2-hydroxy-1-phenylethyl)amino)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3- d]pyrimidin-6-yl)-3-methoxy-
benzaldehyde (19) ($100 \mathrm{mg}, 0.192 \mathrm{mmol}$) in 2,2,2-trifluoroethanol (4 mL) was added N^{1}, N^{1}, N^{2}-trimethylethane-1,2-diamine ($42 \mu \mathrm{~L}, 12 \mathrm{mg}, 0.578 \mathrm{mmol}$) and molecular sieve $(0.2 \mathrm{~g}, 4 \AA)$. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 hours at which time the solvent was removed in vacuo. The crude product was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(22$ $\mathrm{mg}, 0.529 \mathrm{mmol}$) was added and the mixture stirred for 3 hours. Upon completion, all solvent was removed and the crude material was extracted with EtOAc $(2 \times 50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic phases were washed with saturated aq. NaCl solution (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 90 / 10 / 1, \mathrm{R}_{f}=0.19\right)$ gave $93 \mathrm{mg}(0.154 \mathrm{mmol}, 80 \%)$ of a pale solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 8.11$ $(\mathrm{s}, 1 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H})$, $7.10(\mathrm{~s}, 1 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.47-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.32(\mathrm{~m}, 2 \mathrm{H})$, 4.98-4.95 (m, 1H), 3.78-3.71 (m, 2H), 3.76 (s, 3H), 3.55 (s, 2 H$), 3.25-3.20(\mathrm{~m}, 2 \mathrm{H})$, $2.47-2.38(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 0.64-0.60(\mathrm{~m}, 2 \mathrm{H}),-0.19(\mathrm{~s}, 9 \mathrm{H})$.

4.8.19 (R)-3-((6-(2-Ethoxyphenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3- d] pyrimidin-4-yl)amino)-3-phenylpropan-1-ol (30)

Compound $\mathbf{3 0}$ was prepared as described in Section 4.6.2, starting with $\mathbf{6 c}$ ($100 \mathrm{mg}, 0.191$ mmol) and (2-ethoxyphenyl)boronic acid ($47 \mathrm{mg}, 0.286 \mathrm{mmol}$). Purification by silica-gel column chromatography (EtOAc/n-pentane, 6/4, $\mathrm{R}_{f}=0.32$) gave $97 \mathrm{mg}(0.187 \mathrm{mmol}, 98$ $\%)$ of a colourless oil; HPLC purity: $98 \%, \mathrm{t}_{R}=27.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-105.2(c 0.50, \mathrm{DMSO})$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{TMS}$) $8: 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H})$, $7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.64-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 5.13-5.12(\mathrm{~m}, 1 \mathrm{H})$, $4.05(\mathrm{q}, J=7.0,2 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.03-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.0,3 \mathrm{H}), 0.75-0.70(\mathrm{~m}, 2 \mathrm{H}),-0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}-TMS) $\delta: 156.6,155.9,151.8,151.4,142.7,135.6,132.7,130.6,129.2$ (2C), 127.9, 126.9 (2C), 121.1, 120.9, 112.1, 103.3, 98.7, 71.6, 66.3, 64.0, 58.4, 51.8, 39.7, 17.8, 14.9, -1.4 (3C).

4.9 EGFR inhibitor structures

4.9.1 (R)-6-(4-(Methylsulfonyl)phenyl)-N-(1-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (34)

Compound 34 was prepared as described in Section 4.6.2, starting with $7 \mathbf{a}$ ($300 \mathrm{mg}, 0.824$ mmol) and (4-(methylsulfonyl)phenyl)boronic acid ($198 \mathrm{mg}, 0.988 \mathrm{mmol}$). The reaction time was 4 hours. Purification by silica-gel column chromatography (THF/Et $\mathrm{t}_{2} \mathrm{O}, 1 / 1, \mathrm{R}_{f}=$ 0.23) gave $244 \mathrm{mg}(0.622 \mathrm{mmol}, 76 \%)$ of a pale solid; mp 326-327 ${ }^{\circ} \mathrm{C}$ (dec.); HPLC purity: $99 \%, \mathrm{t}_{R}=19.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-362.1(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta: 12.26(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.95(\mathrm{~m}, 5 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}$, $3 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.48(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=7.0,3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta: 155.4,152.7,152.0,145.3,138.7,136.5,131.5,128.2$ (2C), 127.8 (2C), $126.5,126.0(2 C), 124.8(2 C), 104.0,99.0,48.7,43.6,22.8$; IR (neat, cm^{-1}): 3377, 3356, 2982, 1593, 1478, 1315. 1295, 1144, 1089, 818, 764, 699; HRMS (APCI/ASAP, m / z): 393.1380 (calcd. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}, 393.1385[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.2 (R)-4-(4-((1-Phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6yl)benzenesulfonamide (35)

Compound 35 was prepared as described in Section 4.6.2, starting with $7 \mathbf{7 a}$ ($260 \mathrm{mg}, 0.714$ mmol) and (4 -sulfamoylphenyl)boronic acid ($178 \mathrm{mg}, 0.884 \mathrm{mmol}$). The reaction time was 23 hours. Purification by silica-gel column chromatography (THF/Et $\mathrm{t}_{2} \mathrm{O}, 7 / 3, \mathrm{R}_{f}=0.23$), followed by crystallization from EtOAc (15 mL) gave $260 \mathrm{mg}(0.660 \mathrm{mmol}, 90 \%)$ of a white solid; mp 306-307 ${ }^{\circ} \mathrm{C}$ (dec.); HPLC purity: $99 \%, \mathrm{t}_{R}=18.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-342.9(c$ 0.99 , DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 12.18$ ($\mathrm{s}, 1 \mathrm{H}$), 8.09 (s, 1H), 7.94-7.90 (m, 3H), 7.88-7.85 (m, 2H), 7.44-7.42 (m, 2H), 7.35 (s, br, 2H), 7.33-7.29 (m, 2H), 7.26 $(\mathrm{s}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.54-5.47(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=7.0,3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 155.3,152.4,151.9,145.3,142.2,134.9,131.8,128.2$ (2C), 126.5, 126.4 (2C), 126.0 (2C), 124.6 (2C), 103.9, 98.3, 48.7, 22.8; IR (neat, cm^{-1}): 3361, 3060, 2977, 1592, 1477, 1334, 1312, 1155, 1094, 898, 768, 697; HRMS (APCI/ASAP, m/z): 394.1335 (calcd. $\left.\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}, 394.1338[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.3 (R)-4-(4-((1-Phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6yl)benzamide (36)

Compound $\mathbf{3 6}$ was prepared as described in Section 4.6 .2 , starting with $\mathbf{7 a}$ ($300 \mathrm{mg}, 0.824$ mmol) and (4-carbamoylphenyl)boronic acid ($164 \mathrm{mg}, 0.988 \mathrm{mmol}$). The reaction time was 10 hours. Purification by silica-gel column chromatography (THF, $\mathrm{R}_{f}=0.20$), followed by recrystallization from $\mathrm{MeOH}(10 \mathrm{~mL})$ gave $197 \mathrm{mg}(0.551 \mathrm{mmol}, 71 \%)$ of a white solid; $\mathrm{mp} 323-325^{\circ} \mathrm{C}$ (dec.); HPLC purity: $99 \%, \mathrm{t}_{R}=18.1 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-343.1$ ($\left.c 1.00, \mathrm{DMSO}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 12.11(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.93(\mathrm{~m}, 3 \mathrm{H}), 7.87-$ 7.84 (m, 3H), 7.44-7.43 (m, 2H), 7.33-7.29 (m, 3H), 7.22-7.18 (m, 2H), 5.54-5.47 (m, $1 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 167.3,155.2,152.2,151.8$,
145.4, 134.3, 132.46, 132.48, 128.2 (4C), 126.4, 126.0 (2C), 124.0 (2C), 103.9, 97.5, 48.7, 22.8; IR (neat, cm^{-1}): 3346, 3117, 2961, 1668, 1590, 1491, 1387, 1142, 841, 765, 702; HRMS (APCI/ASAP, m/z): 358.1662 (calcd. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}, 358.1668[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.4 (R)- N -(4-(4-((1-Phenylethyl)amino)-7H-pyrrolo[2,3-d] pyrimidin-6yl)phenyl)methanesulfonamide (37)

Compound $\mathbf{3 7}$ was prepared as described in Section 4.6.2, starting with $7 \mathbf{7 a}$ ($301 \mathrm{mg}, 0.826$ mmol) and ($4-($ methylsulfonamido)phenyl)boronic acid ($213 \mathrm{mg}, 0.988 \mathrm{mmol}$). The reaction time was 8 hours. Purification by silica-gel column chromatography ($\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$, $\left.1 / 1, \mathrm{R}_{f}=0.26\right)$ gave $254 \mathrm{mg}(0.624 \mathrm{mmol}, 76 \%)$ of a pale solid; mp $260-26{ }^{\circ} \mathrm{C}$; HPLC purity: $97 \%, \mathrm{t}_{R}=19.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-325.6(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta: 11.99(\mathrm{~s}, 1 \mathrm{H}), 9.87(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.75(\mathrm{~m}, 2 \mathrm{H})$, $7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 5.54-5.47(\mathrm{~m}$, $1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 155.0,151.7$, $151.5,145.5,137.5,133.1,128.2$ (2C), 127.5, 126.4, 126.1 (2C), 125.5 (2C), 120.1 (2C), 103.9, 95.5, 48.7, 39.4, 22.9; IR (neat, cm^{-1}): 3426, 3387, 3288, 3125, 2967, 2874, 1592, 1473, 1330, 1297, 1151, 969, 829, 749, 701; HRMS (APCI/ASAP, m/z): 408.1487 (calcd. $\left.\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}, 408.1494[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.5 (R)-N-(4-(4-((1-Phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6yl)phenyl)acetamide (38)

Compound 38 was prepared as described in Section 4.6.2, starting with $7 \mathbf{a}$ ($302 \mathrm{mg}, 0.829$ mmol) and (4 -acetamidophenyl)boronic acid ($187 \mathrm{mg}, 1.04 \mathrm{mmol}$). The reaction time was 10 hours. Purification by silica-gel column chromatography ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}, 6 / 4, \mathrm{R}_{f}=0.10$), followed by recrystallization from acetonitrile (20 mL) gave $267 \mathrm{mg}(0.719 \mathrm{mmol}, 83 \%)$ of a pale solid, mp 307-308 ${ }^{\circ} \mathrm{C}$; HPLC purity: 99%, $\mathrm{t}_{R}=18.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-373.2$ (c 1.02, DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 11.93(\mathrm{~s}, 1 \mathrm{H}), 10.02(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.78$ - 7.76 (m, 1H), 7.72-7.70 (m, 2H), 7.66-7.60 (m, 2H), 7.44-7.42 (m, 2H), 7.32-7.28 $(\mathrm{m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.00(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.46(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.53$ $(\mathrm{d}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 168.3,154.9,151.5,151.4,145.6$, 138.5, 166.4, 128.2 (2C), 126.6, 126.4, 126.1 (2C), 125.0 (2C), 119.3 (2C), 103.9, 95.2, 48.7, 24.1, 22.9; IR (neat, cm^{-1}): 3416, 3268, 3110, 2972, 2859, 1694, 1584, 1507, 1497, 1492, 1313, 1245, 1134, 836, 746, 693; HRMS (APCI/ASAP, m/z): 372.1819 (calcd. $\left.\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}, 372.1824[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.6 (S)-2-Phenyl-2-((6-(pyridin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)ethan-1-ol (39)

Compound $\mathbf{3 9}$ was prepared as described in Section 4.6 .4 starting with $\mathbf{1 2}$ ($123 \mathrm{mg}, 0.280$ mmol). Purification by silica-gel column chromatography ($\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}, 1 / 1, \mathrm{R}_{f}=0.22$). This gave $49 \mathrm{mg}(0.160 \mathrm{mmol}, 71 \%)$ of a yellow solid, $\mathrm{mp} 264-266^{\circ} \mathrm{C}$; HPLC purity: 99%,
$\mathrm{t}_{R}=18.9 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-298.5(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{TMS}\right) \delta: 12.98$ $(\mathrm{s}, 1 \mathrm{H}), 8.69-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 5.60-5.58(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=6.8,3 \mathrm{H})$, NH not observed; ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta: 156.0,152.7,152.3,150.7$ (2C), 143.7, 139.2, 132.8, 129.0 (2C), 127.7, 126.3 (2C), 119.3 (2C), 104.5, 98.0, 50.6, 22.9; IR (neat, cm^{-1}): 3429, 2971, 1588, 1475, 1311, 1143, 773, 763, 703; HRMS (APCI/ASAP, m / z): 316.1563 (calcd. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{5}, 316.1562[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.1 (R)-4-(4-((1-Phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)benzoic acid (40)

Compound $\mathbf{4 0}$ was prepared as described in Section 4.6.2, starting with $7 \mathbf{7 a}$ ($150 \mathrm{mg}, 0.412$ $\mathrm{mmol}), \mathrm{PdCl}_{2}$ (dppf) ($15 \mathrm{mg}, 0.021 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$.) and 4-boronobenzoic boronic acid (89.0 $\mathrm{mg}, 0.535 \mathrm{mmol}$). The reaction time was 24 hours. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was used in the workup. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 95 / 5 / 1, \mathrm{R}_{f}=\right.$ $0.18)$ gave $21 \mathrm{mg}(0.045 \mathrm{mmol}, 11 \%)$ of a pale solid, $\mathrm{mp} 267-270{ }^{\circ} \mathrm{C}$ (dec.); HPLC purity: $98 \%, \mathrm{t}_{R}=15.2 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 12.92(\mathrm{~s}, 1 \mathrm{H}), 12.07(\mathrm{~s}, 1 \mathrm{H}), 8.10$ $(\mathrm{s}, 1 \mathrm{H}), 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.55-5.48(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0,3 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right) \delta: 169.3,155.1,152.4,151.8,145.4,134.3,132.8,132.6,128.2$ (4C), 126.4, 126.1 (2C), 124.2 (2C), 103.9, 97.5, 48.7, 22.8; HRMS (APCI/ASAP, m/z): 359.1470 (calcd. $\left.\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}, 359.1468[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.2 (R)-3-(4-((1-Phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6yl)benzamide (41)

Compound 41 was prepared as described in Section 4.6.2, starting with 7 ($303 \mathrm{mg}, 0.832$ mmol) and (3-carbamoylphenyl)boronic acid ($165 \mathrm{mg}, 0.998 \mathrm{mmol}$). The reaction time was 6 hours. Purification by silica-gel column chromatography (THF, $\mathrm{R}_{f}=0.23$), followed by crystallization from EtOAc (70 mL) gave $230 \mathrm{mg}(0.643 \mathrm{mmol}, 77 \%)$ of a white solid, mp 242-243 ${ }^{\circ} \mathrm{C}$ (EtOAc); HPLC purity: $98 \%, \mathrm{t}_{R}=18.2 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-265.2(c 0.50, \mathrm{DMSO})$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 12.05(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$, 7.93-7.91(m, 1H), 7.82-7.80 (m, 1H), 7.77-7.75 (m, 1H), 7.53-7.49 (m, 1H), 7.44 $7.43(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.54-5.46(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 167.7,155.1,151.9,151.7,145.5,135.0,133.0$, $131.9,128.9,128.1$ (2C), 126.8, 126.4, 126.0 (2C), 125.9, 124.1, 103.9, 96.8, 48.7, 22.9; IR (neat, cm^{-1}): 3367, 3150, 2977, 1660, 1589, 1444, 1344, 1147, 771, 699; HRMS (APCI/ASAP, m/z): 358.1662 (calcd. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}, 358.1668[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.3 (R)-6-(2-Ethoxyphenyl)-N-(1-phenylethyl)-7H-pyrrolo-[2,3- d]pyrimidin-4-amine (42)

Compound 42 was prepared as described in Section 4.6.2, starting with $7 \mathbf{7 a}$ ($200 \mathrm{mg}, 0.550$
mmol) and (2-ethoxyphenyl)boronic acid ($109 \mathrm{mg}, 0.660 \mathrm{mmol}$). The reaction time was 1 hour. Purification by silica-gel column chromatography (EtOAc / n-pentane, 4/1, $\mathrm{R}_{f}=0.24$), followed by trituration from pentane and a further crystallisation from acetonitrile (90 mg in 1 mL) gave $60 \mathrm{mg}(0.17 \mathrm{mmol}, 31 \%)$ of a white solid, $\mathrm{mp} 154^{\circ} \mathrm{C}$; HPLC purity: 96%, $\mathrm{t}_{R}=23.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-275.3(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta: 11.58(\mathrm{~s}$, $1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2,1 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29$ (m, 2H), 7.29-7.25 (m, 1H), 7.21-7.17(m, 1H), $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.03$ $-6.99(\mathrm{~m}, 1 \mathrm{H}), 5.58-5.50(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=6.9,2 \mathrm{H}), 1.55(\mathrm{~d}, J=7.0,3 \mathrm{H}), 1.45(\mathrm{t}, J=$ $6.9,3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta: 155.3,155.0,151.5,150.7,145.6,130.3$, 128.4, 128.1 (2C), 127.6, 126.4, 126.1 (2C), 120.7, 120.6, 112.8, 103.5, 99.6, 63.7, 48.6, 22.8, 14.7. IR (neat, cm^{-1}): 3214, 2974, 2359, 1575, 1446, 1313, 1244, 1124, 1032, 749, 698. HRMS (APCI/ASAP, m/z): 359.1867 (calcd. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}, 359.1872[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.4 (R)-6-(2-Isopropoxyphenyl)-N-(1-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (43)

Compound 43 was prepared as described in Section 4.6.2, starting with 7a ($200 \mathrm{mg}, 0.550$ mmol) and (2-isopropoxyphenyl)boronic acid ($119 \mathrm{mg}, 0.660 \mathrm{mmol}$). The reaction time was 1 hour. Purification by silica-gel column chromatography (EtOAc / n-pentane, $4 / 1, \mathrm{R}_{f}=$ $0.26)$, trituration from pentane and finally crystallisation from $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{mg}$ in 40 mL$)$ gave $31 \mathrm{mg}(0.08 \mathrm{mmol}, 15 \%)$ of a white solid, $\mathrm{mp} 186-187^{\circ} \mathrm{C}$; HPLC purity: $96 \%, \mathrm{t}_{R}=23.5$ $\min ;[\alpha]_{\mathrm{D}}^{20}=-256.7(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta: 11.52(\mathrm{~s}, 1 \mathrm{H}), 8.05$ $(\mathrm{s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.3,1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.01-$ $6.98(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.52(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.66(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=7.0,3 \mathrm{H}), 1.39-1.37$ $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta: 155.0,154.3,151.4,150.6,145.6,130.4$, 128.3, 128.1 (2C), 127.9, 126.4, 126.1 (2C), 121.5, 120.5, 114.4, 103.5, 99.6, 70.3, 48.6, 22.8, 21.9 (2C); IR (neat, cm^{-1}): 3216, 2966, 2358, 1579, 1448, 1309, 1248, 1127, 950, 753, 699. HRMS (APCI/ASAP, m/z): 373.2023 (calcd. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}, 373.2028[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.5 (R)-6-(2-(Difluoromethoxy)phenyl)-N-(1-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (44)

Compound $\mathbf{4 4}$ was prepared as described in Section 4.6 .2 , starting with 7 ($170 \mathrm{mg}, 0.470$ mmol) and 2-(2-(difluoromethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9) $(300 \mathrm{mg}, 1.11 \mathrm{mmol})$. The reaction time was 1 hour. Purification by silica-gel column chromatography ($\mathrm{EtOAc} / \mathrm{n}$-pentane, 4/1, $\mathrm{R}_{f}=0.28$) gave $129 \mathrm{mg}(0.340 \mathrm{mmol}, 73 \%)$ of a pale yellow solid, mp $103-105{ }^{\circ} \mathrm{C}$; HPLC purity: $97 \%, \mathrm{t}_{R}=22.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-247.5(c$ 1.00, DMSO); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta: 11.86(\mathrm{~s}, 1 \mathrm{H}), 8.08$ ($\mathrm{s}, 1 \mathrm{H}$), 7.95 (d, $J=$ 8.2, 1H), 7.82-7.80(m, 1H), 7.43-7.42(m, 2H), 7.40-7.37(m, 1H), 7.34-7.32(m, 1H), $7.32-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{t}, J=73.6,1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.55-5.50(\mathrm{~m}$, $1 \mathrm{H}), 1.54(\mathrm{~d}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta: 155.2,152.0,151.0,147.7$, $145.5,128.7,128.5,128.3,128.2$ (2C), 126.4, 126.1 (2C), 125.5, 123.6, 119.0, 116.7 (t, J
$=258.1), 103.7,110.8,48.6,22.7 ;{ }^{19} \mathrm{~F}$ NMR ($\left.564 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta:-83.2(\mathrm{~d}, J=74.4)$; IR (neat, cm^{-1}): 2977, 2358, 1589, 1475, 1311, 1205, 1106, 1036, 751, 699; HRMS (APCI/ASAP, m/z): 381.1527 (calcd. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{OF}_{2}, 381.1527[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.6 (R)- N -(1-Phenylethyl)-6-(2-(trifluoromethoxy)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (45)

Compound 45 was prepared as described in Section 4.6.2, starting with 7a (200 mg, 0.470 mmol) and (2-(trifluoromethoxy)phenyl)boronic acid ($136 \mathrm{mg}, 0.660 \mathrm{mmol}$). The reaction time was 1 hour. Purification by silica-gel column chromatography (EtOAc/n-pentane, 4/1, $\left.\mathrm{R}_{f}=0.38\right)$ gave $141 \mathrm{mg}(0.350 \mathrm{mmol}, 64 \%)$ of a pale green solid, $\mathrm{mp} 101-103{ }^{\circ} \mathrm{C}$; HPLC purity: $99 \%, \mathrm{t}_{R}=23.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-273.7(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta: 11.99(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.2,1 \mathrm{H}), 7.86-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}$, 3H), 7.43-7.42 (m, 2H), 7.33-7.29 (m, 2H), 7.21-7.18 (m, 1H), 7.14 (s, 1H), 5.57-5.49 $(\mathrm{m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta: 155.3,152.2,151.1$, $145.4,145.4,144.9,129.3,128.8,128.2$ (2C), 127.9, 127.7, 126.4, 126.1 (2C), 125.7, 121.8, 120.1 (q, $J=257.4$), 103.7, 100.6, 48.6, 22.7; ${ }^{19} \mathrm{~F}$ NMR (564 MHz , DMSO- d_{6}) $\delta:-58.2$; IR (neat, cm^{-1}): 2971, 2353, 1580, 1470, 1309, 1245, 1218, 1160, 754, 698; HRMS (APCI/ASAP, m/z): 399.1429 (calcd. $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OF}_{3}, 399.1433[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.7 (R)-6-(2,6-Dimethoxyphenyl)-N-(1-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (46)

Compound 46 was prepared as described in Section 4.6.2, starting with $7 \mathbf{a}$ ($298 \mathrm{mg}, 0.820$ mmol) and (2,6 -dimethoxyphenyl)boronic acid ($180 \mathrm{mg}, 0.992 \mathrm{mmol}$). The reaction time was 8 hours. Purification by silica-gel column chromatography ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}, 6 / 4, \mathrm{R}_{f}=0.22$) gave 237 mg ($0.632 \mathrm{mmol}, 76 \%$) of a white solid, $\mathrm{mp} 200-20{ }^{\circ} \mathrm{C}$; HPLC purity: 99%, $\mathrm{t}_{R}=22.3 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-214.0\left(c 0.99\right.$, DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 11.25$ $(\mathrm{s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.21-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 3 \mathrm{H}), 5.57-5.50(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0,3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 157.9$ (2C), 154.7, 150.9, 149.8, 145.7, 129.4, 128.1 (2C), 126.4, 126.1 (2C), 125.9, 110.0, 104.3 (2C), 102.9, 100.6, 55.77 (2C), 48.5, 22.8; IR (neat, cm^{-1}): 3411, 3253, 3090, 2967, 2840, 1579, 1473, 1235, 1105, 1033, 785, 728, 697; HRMS (APCI/ASAP, m/z): 375.1817 (calcd. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}, 375.1821[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.8 (R)-3-Methoxy-4-(4-((1-phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)benzamide (47)

Compound 47 was prepared as described in Section 4.6 .2 , starting with $\mathbf{7 a}$ ($303 \mathrm{mg}, 0.833$ mmol) and (4-carbamoyl-2-methoxyphenyl)boronic acid ($197 \mathrm{mg}, 1.01 \mathrm{mmol}$). The reaction time was 7 hours. Purification by crystallization from acetonitrile (25 mL) gave $259 \mathrm{mg}(0.668 \mathrm{mmol}, 79 \%)$ of a pale solid, mp $265-267^{\circ} \mathrm{C}$; HPLC purity: $99 \%, \mathrm{t}_{R}=17.9$ $\min ;[\alpha]_{\mathrm{D}}^{20}=-361.3(c 0.99, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 11.78(\mathrm{~s}, 1 \mathrm{H})$,
8.07 (s, 1H), 8.03 (s, br, 1H), 7.89 (m, 1H), 7.87-7.82 (m, 1H), 7.606-7.602 (m, 1H), 7.57 $-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.54-5.49$ $(\mathrm{m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 167.3$, $155.8,155.2,152.0,151.0,145.4,133.6,129.2,128.2$ (2C), 126.6, 126.4, 126.1 (2C), 122.9, $119.8,110.9,103.7,101.5,55.7,48.6,22.8$; IR (neat, cm^{-1}): 3392, 3165, 1664, 1591, 1503, 1398, 1249, 1152, 1038, 862, 776, 697; HRMS (APCI/ASAP, m/z): 388.1768 (calcd. $\left.\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{2}, 388.1773[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.9 (R)-N-(3-Methoxy-4-(4-((1-phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenyl)methanesulfonamide (48)

Compound 48 was prepared as described in Section 4.6 .2 , starting with $7 \mathbf{7 a}$ ($100 \mathrm{mg}, 0.275$ $\mathrm{mmol}) \quad$ and $\quad \mathrm{N}$-(3-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)methanesulfonamide ($\mathbf{1 0}$) ($90 \mathrm{mg}, 0.275 \mathrm{mmol}$). The reaction time was 6 hours. Purification by silica-gel column chromatography (THF/Et $2 \mathrm{O}, 1 / 1, \mathrm{R}_{f}=0.12$) gave 78 mg ($0.178 \mathrm{mmol}, 65 \%$) of a white solid, $\mathrm{mp} 157-160^{\circ} \mathrm{C}$; HPLC purity: $98 \%, \mathrm{t}_{R}=19.9 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}^{20}=-269.0(c 0.50, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 11.59(\mathrm{~s}, 1 \mathrm{H}), 9.86(\mathrm{~s}$, $1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.48(\mathrm{~m}, 1 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 156.7$, $154.9,151.4,150.7,145.6,138.6,129.8,128.1$ (2C), 127.8, 126.4, 126.1 (2C), 116.0, 112.2, 103.6, 103.1, 99.2, 55.5, 48.6, 39.4, 22.9; IR (neat, cm^{-1}): 3372, 2967, 2623, 1599, 1474, 1321, 1145, 977, 762, 700; HRMS (APCI/ASAP, m/z): 438.1592 (calcd. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$, $\left.438.1600[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.10 (R)- N^{1}-(3-Methoxy-4-(4-((1-phenylethyl)amino)-7H-pyrrolo[2,3$d]$ pyrimidin-6-yl)benzyl)- N^{2}, N^{2}-dimethylethane-1,2-diamine (49)

To a solution of (R)-3-methoxy-4-(4-((1-phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin6 -yl)benzaldehyde (31) [20] ($60 \mathrm{mg}, 0.162 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $N^{\prime} N$ '-dimethylethane-1,2-diamine ($0.032 \mathrm{~mL}, 26 \mathrm{mg}, 0.295 \mathrm{mmol}$). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 2.5 hours at which time the solvent was removed in vacuo. The intermediate product was dissolved in a $\mathrm{MeOH}(5 \mathrm{~mL}), \mathrm{NaBH}_{4}(14 \mathrm{mg}, 0.373)$ was added and the mixture was stirred for 3 hours. Upon completion, all solvent was removed and the crude material was extracted with $\mathrm{EtOAc}(2 \times 25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$. The combined organic phases were washed with saturated aq. NaCl solution (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification was by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} / \mathrm{NH}_{3}, 80 / 20 / 1, \mathrm{R}_{f}=0.08\right)$. This gave $55 \mathrm{mg}(0.124$ $\mathrm{mmol}, 76 \%$) of 49 as a pale solid, $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}$; HPLC purity: $99 \%, \mathrm{t}_{R}=21.8 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}^{20}=-276.9(c 0.51, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 11.60(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}$, $1 \mathrm{H}), 7.79-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.12$ $-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.48(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.73(\mathrm{~m}, 2 \mathrm{H})$, $2.55(\mathrm{t}, J=6.5,2 \mathrm{H}), 2.34(\mathrm{t}, J=6.5,2 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0,3 \mathrm{H})$, NH was not
seen; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 156.1,154.9,151.4,150.7,145.7,141.8,130.2$, 128.2 (2C), 126.9, 126.4, 126.1 (2C), 120.1, 118.6, 111.3, 103.6, 99.5, 58.9, 55.5, 52.9, 48.6, 45.6, 45.4 (2C), 22.9; IR (neat, cm^{-1}): 3216, 3107, 2935, 2810, 2758, 1591, 1568, 1452, 1346, 1304, 1257, 1231, 1153, 1034, 1003, 805, 783, 696; HRMS (APCI/ASAP, m / z): 445.2710 (calcd. $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}, 445.2716[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.11 (S)-2-((6-(2-(Methoxy- $\left.d_{3}\right)$ phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (52)

Compound $\mathbf{5 2}$ was prepared as described in Section 4.6 .4 starting with $\mathbf{1 3}$ ($91 \mathrm{mg}, 0.209$ $\mathrm{mmol})$. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9 / 1, \mathrm{R}_{f}=0.35\right)$ gave $59 \mathrm{mg}(0.163 \mathrm{mmol}, 78 \%)$ of a white solid, $\mathrm{mp} 186-187^{\circ} \mathrm{C}$; HPLC purity: $98 \%, \mathrm{t}_{R}$ $=18.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-235.0(c 0.50, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 11.64(\mathrm{~s}$, $1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28$ (m, 3H), $7.24(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 1 \mathrm{H}), 5.45$ - $5.42(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{t}, J=5.7,1 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 156.1,155.5,151.5,150.7,142.1,130.1,128.3,128.0$ (2C), 127.2, 127.1 (2C), 126.6, $120.6,120.3,111.9,103.7,100.0,65.0,56.0,54.8$; IR (neat, cm^{-1}): 3451, 3234, 3140, 2928, 1592, 1536, 1482, 1305, 1275, 1112, 1063, 781, 746, 698; HRMS (APCI/ASAP, m/z): 364.1852 (calcd. $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{D}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}, 364.1853[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.12 (R)-6-(2-Ethoxyphenyl)-N-(1-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-4amine (53)

Compound 53 was prepared as described in Section 4.6 .4 starting with $14(90 \mathrm{mg}, 0.178$ mmol). Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 90 / 10, \mathrm{R}_{f}=\right.$ 0.35) gave $58 \mathrm{mg}(0.155 \mathrm{mmol}, 78 \%)$ of a white solid, $\mathrm{mp} 115-117^{\circ} \mathrm{C}$; HPLC purity: 99 $\%, \mathrm{t}_{R}=20.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-171.6(c 0.50, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{TMS}$) $\delta:$ $10.25(\mathrm{~s}, 1 \mathrm{H}), 8.30(1 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.30$ - $7.26(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.68(\mathrm{~m}, 1 \mathrm{H}), 5.58-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.34$ $(\mathrm{m}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.0,2 \mathrm{H}), 4.14-4.02(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{t}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$-TMS) $\delta: 155.9,155.2,151.5,150.5,140.1,133.5,129.3$ (3C), 128.3, 127.9, 127.0 (2C), 121.7, 119.7, 113.1, 103.7, 95.2, 68.5, 64.8, 59.2, 15.1; IR (neat, cm^{-1}): 3418, 2971, 2868, 1590, 1470, 1452, 1235, 1125, 1036, 742, 699; HRMS (APCI/ASAP, m/z): 375.1817 (calcd. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}, 375.1821[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.13 (S)-N-(4-(4-((2-Hydroxy-1-phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenyl)methanesulfonamide (54)

Compound 54 was prepared as described in Section 4.6.2, starting with 7b ($300 \mathrm{mg}, 0.789$ mmol) and (4-(methylsulfonamido)phenyl)boronic acid ($204 \mathrm{mg}, 0.947 \mathrm{mmol}$). The reaction time was 1 hour. Purification by silica-gel column chromatography ($\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$, $6 / 4, \mathrm{R}_{f}=0.17$), followed by crystallization from acetonitrile (25 mL), gave $264 \mathrm{mg}(0.623$
mmol, 79%) of a white solid, mp $245-246{ }^{\circ} \mathrm{C}$; HPLC purity: 99%, $\mathrm{t}_{R}=16.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}$ $=-243.1$ (c 1.01, DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 11.96(\mathrm{~s}, 1 \mathrm{H}), 9.82(\mathrm{~s}, \mathrm{br}$, $1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26$ $(\mathrm{m}, 4 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 5.44-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.97-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.79$ $3.69(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d d_{6}) $\delta: 155.5,151.6,151.5,142.0$, 137.5, 133.1, 128.1 (2C), 127.5, 127.1 (2C), 126.7, 125.5 (2C), 120.1 (2C), 104.1, 95.6, 65.0, 56.1, 39.4; IR (neat, cm^{-1}): 3397, 3323, 3139, 2938, 1597, 1480, 1328, 1147, 967, 782, 757, 704; HRMS (APCI/ASAP, m/z): 424.1437 (calcd. $\mathrm{C}_{2} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}, 424.1443$ $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.14 (S)-2-((6-(4-(Methylsulfonyl)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (55)

Compound $\mathbf{5 5}$ was prepared as described in Section 4.6.2, starting with 7b ($304 \mathrm{mg}, 0.800$ mmol) and (4-(methylsulfonyl)phenyl)boronic acid ($189 \mathrm{mg}, 0.946 \mathrm{mmol}$). The reaction time was 3 hours. Purification by silica-gel column chromatography (THF/Et $2 \mathrm{O}, 1 / 1, \mathrm{R}_{f}=$ 0.18), followed by crystallization from acetonitrile (23 mL), gave $200 \mathrm{mg}(0.490 \mathrm{mmol}, 62$ $\%$) of an off-white solid, mp $300-302{ }^{\circ} \mathrm{C}$ (dec.); HPLC purity: $99 \%, \mathrm{t}_{R}=16.9 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}$ $=-283.6(c 0.99$, DMSO $) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 12.26(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H})$, 8.04-7.97 (m, 4H), 7.91-7.89 (m, 1H), 7.45-7.43 (m, 2H), 7.37 (s, br, 1H), 7.33-7.29 $(\mathrm{m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.00-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 2 \mathrm{H})$, 3.25 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 155.9,152.7,152.0,141.8,138.7,136.5$, 131.5, 128.1 (2C), 127.8 (2C), 127.0 (2C), 126.7, 124.8 (2C), 104.2, 99.1, 65.0, 56.0, 43.6; IR (neat, cm^{-1}): 3362, 3105, 2997, 2864, 1593, 1477, 1314, 1278, 1141, 765, 703; HRMS (APCI/ASAP, m/z): 409.1331 (calcd. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}, 409.1334[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.15 (S)-2-(3-(4-((2-Hydroxy-1-phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenyl)acetamide (56)

Compound 56 was prepared as described in Section 4.6 .4 starting with 15 ($63 \mathrm{mg}, 0.121$ mmol). Purification by silica-gel column chromatography (THF/ $\mathrm{NH}_{3}, 99 / 1, \mathrm{R}_{f}=0.17$) gave $49 \mathrm{mg}(0.125 \mathrm{mmol}, 85 \%)$ of a yellow solid, mp $172-174{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=-242.7$ (c 1.10, DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 12.00(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.83(\mathrm{~m}$, $1 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.87(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 5.44-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.03-5.02(\mathrm{~m}$, $1 \mathrm{H})$, 3.75-3.71 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 177.9,174.6,155.4,151.8$, $151.5,145.3,137.8,134.0,131.9,128.9,128.0$ (2C), 127.1 (2C), 126.7, 126.6, 124.3, 104.3, 97.2, 64.8, 56.0, 55.8; IR (neat, cm^{-1}): 3204, 2923, 2849, 1661, 1597, 1199, 1133, 759, 700; HRMS (APCI/ASAP, m/z): 388.1770 (calcd. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{2}, 388.1773[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.16 (S)-4-(4-((2-Hydroxy-1-phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)-3-methoxybenzamide (57)

Compound 57 was prepared as described in Section 4.6.2, starting with 7b ($298 \mathrm{mg}, 0.784$ mmol) and (4-carbamoyl-2-methoxyphenyl)boronic acid ($187 \mathrm{mg}, 0.941 \mathrm{mmol}$). The reaction time was 4 hours. Purification by silica-gel column chromatography (THF, $\mathrm{R}_{f}=$ $0.10)$, followed by crystallization from acetonitrile (40 mL) gave $195 \mathrm{mg}(0.483 \mathrm{mmol}, 62$ $\%$) of an off-white solid, mp $213-215^{\circ} \mathrm{C}$; HPLC purity: 98%, $\mathrm{t}_{R}=14.9 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-$ 306.3 (c 0.52, DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 11.75$ ($\mathrm{s}, 1 \mathrm{H}$), $8.06(\mathrm{~s}, 1 \mathrm{H}), 8.02$ (s , br, 1H), 7.85-7.83(m, 1H), 7.80-7.78(m, 1H), 7.610-7.606 (m, 1H), 7.57-7.54 (m, $1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.46$ - $5.41(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 2 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 167.3,155.8,155.7,152.0,150.9,142.0,133.6,129.2,128.0$ (2C), 127.0 (2C), 126.7, 126.5, 122.9, 119.8, 110.9, 103.8, 101.5, 64.9, 56.0, 55.8; IR (neat, cm^{-1}): 3421, 3283, 3165, 2923, 1734, 1670, 1591, 1556, 1403, 1245, 1157, 1033, 880, 761, 701; HRMS (APCI/ASAP, m/z): 404.1718 (calcd. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{3}, 404.1723[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.17 (S)-N-(4-(4-((2-Hydroxy-1-phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)-3-methoxyphenyl)methanesulfonamide (58)

Compound 58 was prepared as described in Section 4.6.2, starting with 7b ($102 \mathrm{mg}, 0.268$ mmol) and N-(3-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)methanesulfonamide (10) ($88 \mathrm{mg}, 0.268 \mathrm{mmol}$). The reaction time was 8 hours. Purification by silica-gel column chromatography ($\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}, 6 / 4, \mathrm{R}_{f}=0.07$), followed by precipitation as HCl salt, gave $90 \mathrm{mg}(0.184 \mathrm{mmol}, 69 \%)$ of a light yellow solid, mp 214 $215^{\circ} \mathrm{C}$; HPLC purity: $99 \%, \mathrm{t}_{R}=16.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-99.4(c 0.50$, DMSO); NMR spectra of HCl salt: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 12.73(\mathrm{~s}, 1 \mathrm{H}), 10.02(\mathrm{~s}, 1 \mathrm{H}), 9.62(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$, $8.28(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.72-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}$, 2H), $7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.30(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 3.86-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H})$, OH not observed; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 157.1,154.7,151.4,150.0,145.3,139.9,130.2,128.6$ (2C), 127.8 (2C), 127.1 (2C), $115.8,111.0,102.9,101.9,99.3,64.4,59.8,55.7,39.4$; IR (neat, cm^{-1}): 3258, 2943, 1634, 1479, 1324, 1146, 979, 913, 761, 700; HRMS (APCI/ASAP, m/z): 454.1543 (calcd. $\left.\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}, 454.1549[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.18 (R)-N-(4-(4-((1-Phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6yl)phenyl)acetamide (59)

Compound 59 was prepared as described in Section 4.6.2, starting with 7b $90 \mathrm{mg}, 0.237$ mmol) and $\quad \mathrm{N}$-(3-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)acetamide (11) ($82 \mathrm{mg}, 0.284 \mathrm{mmol}$). The reaction time was 2 hours. Purification by silica-gel column chromatography ($\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}, 7 / 3, \mathrm{R}_{f}=0.08$) gave $80 \mathrm{mg}(0.192 \mathrm{mmol}$, 81%) of a light yellow solid, mp $154-156{ }^{\circ} \mathrm{C}$; HPLC purity: $97 \%, \mathrm{t}_{R}=17.2 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=$ -238.9 (c 0.99, DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 11.55(\mathrm{~s}, 1 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H})$,
$8.02(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}$, $2 \mathrm{H}), 7.15(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.43-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.71(\mathrm{~m}$, 2H), 2.07 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 168.4,156.2,155.4,151.2,150.6$, 142.1, 139.6, 130.1, 128.0 (2C), 127.3, 127.0 (2C), 126.6, 115.2, 110.0, 103.7, 102.5, 98.9, $65.0,55.4,54.9,24.1$; IR (neat, cm^{-1}): $3283,3110,2718,1763,1675,1596,1448,1319$, 1255, 1157, 1033, 782, 700; HRMS (APCI/ASAP, m/z): 418.1876 (calcd. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{3}$, $\left.418.1879[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.19 (S)-2-Phenyl-2-((6-(pyridin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)ethan-1-ol (60)

Compound $\mathbf{6 0}$ was prepared as described in Section 4.6 .4 starting with $\mathbf{1 6}$ ($124 \mathrm{mg}, 0.271$ $\mathrm{mmol})$. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 85 / 15, \mathrm{R}_{f}=\right.$ $0.10)$ gave $78 \mathrm{mg}(0.140 \mathrm{mmol}, 80 \%)$ of a white solid, mp $226-228^{\circ} \mathrm{C}$ (dec.); HPLC purity: $99 \%, \mathrm{t}_{R}=15.0 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-292.3(c 0.54, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta: 12.30(\mathrm{~s}, 1 \mathrm{H}), 8.60-8.59(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.72(\mathrm{~m}$, $2 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.98$ $(\mathrm{t}, J=5.6,1 \mathrm{H}), 3.78-3.71(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 156.0,152.9,152.0$, 150.3 (2C), 141.7, 138.6, 130.4, 128.1 (2C), 127.0 (2C), 126.7, 118.5 (2C), 104.0, 99.5, 64.9, 56.0; IR (neat, cm^{-1}): 3216, 3112, 2940, 2847, 2727, 1592, 1537, 1479, 1311, 1143, 1070, 1027, 999, 821, 775, 698; HRMS (APCI/ASAP, m/z): 332.1512 (calcd. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}$, $\left.322.1511[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.20 (S)-2-Phenyl-2-((6-(pyridin-3-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)ethan-1-ol (61)

Compound 61 was prepared as described in Section 4.6 .4 starting with 17 ($70 \mathrm{mg}, 0.151$ $\mathrm{mmol})$. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 85 / 15, \mathrm{R}_{f}=\right.$ 0.43) gave $57 \mathrm{mg}(0.140 \mathrm{mmol}, 93 \%)$ of a pale solid, $\mathrm{mp} 212-213{ }^{\circ} \mathrm{C}$; HPLC purity: 99 $\%, \mathrm{t}_{R}=14.9 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-301.2(c 0.52, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta: 12.19$ $(\mathrm{s}, 1 \mathrm{H}), 9.02-9.01(\mathrm{~m}, 1 \mathrm{H}), 8.49-8.48(\mathrm{~m}, 1 \mathrm{H}), 8.15-8.12(\mathrm{~m}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.83-$ $7.81(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H})$, 5.46-5.40(m, 1H), $4.99(\mathrm{t}, J=5.6,1 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right) \delta: 155.7,152.2,151.8,148.0,145.8,141.9,131.5,130.3,128.1$ (2C), 127.8, 127.0 (2C), 126.7, 124.0, 104.0, 97.4, 65.0, 56.0; IR (neat, cm^{-1}): 3278, 3096, 3023, 2940, 2842, 1597, 1571, 1534, 1478, 1317, 1169, 1028, 924, 760, 696; HRMS (APCI/ASAP, m/z): 332.1509 (calcd. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}, 332.1511[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.21 (S)-2-((6-(3-Methoxypyridin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (62)

Compound 62 was prepared as described in Section 4.6 .4 starting with $\mathbf{1 8}$ ($161 \mathrm{mg}, 0.328$ $\mathrm{mmol})$. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 85 / 15, \mathrm{R}_{f}=\right.$
0.12) gave $95.0 \mathrm{mg}(0.262 \mathrm{mmol}, 89 \%)$ of a white solid, $\mathrm{mp} 188-190^{\circ} \mathrm{C}$ (dec.); HPLC purity: $98 \%, \mathrm{t}_{R}=15.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-266.2(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta: 11.99(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=5.0,1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.95(\mathrm{~m}, 1 \mathrm{H})$, $7.78(\mathrm{~d}, J=5.0,1 \mathrm{H}), 7.56(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19$ $(\mathrm{m}, 1 \mathrm{H}), 5.48-5.43(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{t}, J=5.6,1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.71(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 156.0,153.6,152.7,151.4,151.2,142.4,141.8,134.8$, 128.1 (2C), 127.1, 127.0 (2C), 126.7, 126.5, 119.5, 103.9, 64.9, 56.4, 56.1; IR (neat, cm^{-1}): 3205, 3107, 2993, 2935, 2842, 1590, 1477, 1309, 1259, 1157, 1019, 937, 812, 780, 748, 698; HRMS (APCI/ASAP, m/z): 362.1620 (calcd. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{2}, 362.1617[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.22 (S)-2-((6-(4-(((2-(Dimethylamino)ethyl)amino)methyl)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (63)

Compound 63 was prepared as described in Section 4.6.3, starting with (S)-4-(4-((2-hydroxy-1-phenylethyl)amino)-7H-pyrrolo[2,3- d]pyrimidin-6-yl)benzaldehyde (32) [20], $(17 \mathrm{mg}, 0.046 \mathrm{mmol})$ and $N^{\prime} N^{\prime}$-dimethylethane-1,2-diamine $(0.015 \mathrm{~mL}, 12 \mathrm{mg}, 0.137$ $\mathrm{mmol})$. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} / \mathrm{NH}_{3}, 70 / 30 / 2, \mathrm{R}_{f}\right.$ $=0.16)$ gave $16 \mathrm{mg}(0.037 \mathrm{mmol}, 80 \%)$ of a light yellow solid, $\mathrm{mp} 198-200{ }^{\circ} \mathrm{C}$; HPLC purity: $98 \%, \mathrm{t}_{R}=19.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=199.8(c 0.50, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta: 11.98(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}$, 2H), 7.40-7.38 (m, 2H), 7.32-7.29 (m, 2H), 7.23-7.19 (m, 1H), $7.10(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.44-$ $5.39(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.76-3.74(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{t}, J=6.4,2 \mathrm{H}), 2.36(\mathrm{t}, J=6.4$, $2 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H})$, NH was not seen; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 155.3,151.6,151.4$, $142.0,139.9,133.5,129.7,128.5$ (2C), 128.0 (2C), 127.0 (2C), 126.6, 124.3 (2C), 104.2, 98.4, 95.7, 65.0, 58.6, 55.8, 52.6, 45.2 (2C); IR (neat, cm^{-1}): 3288, 3120, 2928, 2863, 1595, 1482, 1309, 1038, 780, 699; HRMS (APCI/ASAP, m/z): 431.2554 (calcd. $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}$, $\left.431.2559[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.23 (S)-2-((6-(2-Methoxy-4-(((2-(methylsulfonyl)ethyl)amino)methyl)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (64)

A mixture of 2-(methylsulfonyl)ethan-1-amine hydrogen chloride ($18 \mathrm{mg}, 0.113 \mathrm{mmol}$), diisopropylethylamine (DIPEA) ($0.020 \mathrm{~mL}, 15 \mathrm{mg}, 0.113 \mathrm{mmol}$) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 $\mathrm{mL})$ were stirred for 30 min at $20{ }^{\circ} \mathrm{C}$. (S)-4-(4-((2-Hydroxy-1-phenylethyl)amino)-7 H -pyrrolo[2,3- d]pyrimidin-6-yl)-3-methoxybenzaldehyde (33) [20], ($40 \mathrm{mg}, 0.103 \mathrm{mmol}$) was then added and the mixture stirred for 6 hours at which time the solvent was removed in vacuo. The crude product was dissolved in a mixture of $\mathrm{MeOH}(4 \mathrm{~mL}) / \mathrm{THF}(1 \mathrm{~mL})$. $\mathrm{NaBH}_{4}(6 \mathrm{mg}, 0.159)$ was then added and the mixture stirred for 3 hours. Upon completion, all solvent was removed and the crude material was extracted with EtOAc $(2 \times 25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic phases were washed with saturated aq. NaCl solution (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 90 / 10 / 1, \mathrm{R}_{f}=0.46\right)$ gave $43 \mathrm{mg}(0.087 \mathrm{mmol}, 77 \%)$ of a yellow solid, $\mathrm{mp} 134-137{ }^{\circ} \mathrm{C}$; HPLC purity: 98%,
$\mathrm{t}_{R}=15.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-224.1(c 0.99, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 11.61(\mathrm{~s}$, $1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18$ $(\mathrm{m}, 2 \mathrm{H}), 7.12(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.95$ ($\mathrm{s}, 3 \mathrm{H}$), 3.77-3.71 (m, 4H), 3.27 (t, J=6.6, 2H), 3.17-3.16 (m, 1H, NH), $3.04(\mathrm{~s}, 3 \mathrm{H}), 2.93$ $(\mathrm{t}, J=6.6,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 167.4,156.1,151.3,149.1,142.1,130.1$, 128.0 (2C), 127.1 (2C), 126.9, 126.5, 120.1, 118.9, 111.3, 104.5, 102.8, 99.6, 65.9, 55.5, 54.9, 53.9, 52.2, 42.1, 41.6; IR (neat, cm^{-1}): 3392, 3145, 2918, 1592, 1468, 1301, 1277, 1130, 1032, 808, 785, 703; HRMS (APCI/ASAP, m/z): 496.1940 (calcd. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$, $\left.496.1940[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.24 (S)-2-((6-(4-(((2-(Dimethylamino)ethyl)amino)methyl)-2-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (65)

Compound 65 was prepared as described in Section 4.6.3, starting with (S)-4-(4-((2-hydroxy-1-phenylethyl)amino)-7 H -pyrrolo[2,3- d]pyrimidin-6-yl)-3-
methoxybenzaldehyde (33) [20], ($70 \mathrm{mg}, 0.180 \mathrm{mmol}$) and $N^{\prime} N$ '-dimethylethane-1,2diamine ($0.023 \mathrm{~mL}, 18 \mathrm{mg}, 0.148 \mathrm{mmol}$). Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 90 / 10 / 1, \mathrm{R}_{f}=0.46\right)$ gave $64 \mathrm{mg}(0.126 \mathrm{mmol}, 77 \%)$ of a light yellow solid, mp 119-121 ${ }^{\circ} \mathrm{C}$; HPLC purity: $98 \%, \mathrm{t}_{R}=17.9 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-192.9$ (c $0.50, \mathrm{DMSO}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 11.6(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ $7.42(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 1 \mathrm{H})$, $5.43-5.42(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.73(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.4,2 \mathrm{H})$, $2.38(\mathrm{t}, J=6.4,2 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H})$, NH was not seen; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ : 156.1, 155.6, 151.5, 150.7, 146.5, 142.1, 130.2, 128.1 (2C), 127.0, 127.1 (2C), 126.7, 120.3, $118.8,111.5,103.8,99.7,65.1,58.5,55.6,52.7,46.0,45.5,45.2(2 \mathrm{C})$; IR (neat, cm^{-1}): 3165, 2918, 2819, 1670, 1592, 1453, 1161, 1031, 821, 781, 700; HRMS (APCI/ASAP, m/z): 461.2663 (calcd. $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{2}, 461.2665[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.25 (S)-2-((6-(2-Methoxy-4-(((2-morpholinoethyl)amino)methyl)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (66)

Compound 66 was prepared as described in Section 4.6 .4 starting with 20 ($217 \mathrm{mg}, 0.343$ mmol). Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 85 / 15, \mathrm{R}_{f}=\right.$ 0.06) gave $138 \mathrm{mg}(0.274 \mathrm{mmol}, 71 \%)$ of a light yellow solid, $\mathrm{mp} 191-193{ }^{\circ} \mathrm{C}(\mathrm{dec}$.$) ;$ HPLC purity: $99 \%, \mathrm{t}_{R}=18.1 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-213.6(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta: 11.62(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.40(\mathrm{~m}, 1 \mathrm{H})$, $4.97(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{t}, J=4.6,4 \mathrm{H}), 2.65(\mathrm{t}, J=6.4,2 \mathrm{H})$, $2.42(\mathrm{t}, J=6.4,2 \mathrm{H}), 2.35-2.33(\mathrm{~m}, 4 \mathrm{H})$, NH on solubility tail not found; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 156.1,155.5,151.4,150.7,142.1,130.1,128.0$ (2C), 127.1 (2C), 126.9, $126.6,120.3,118.8,111.5,107.1,103.7,99.7,66.2$ (2C), $65.0,57.6,56.1,55.5,53.4$ (2C), 52.6, 45.0; IR (neat, cm^{-1}): 3232, 2940, 2816, 1591, 1451, 1306, 1256, 1114, 1067, 1031,

914, 814, 781, 754, 696; HRMS (APCI/ASAP, m/z): 503.2766 (calcd. $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{3}$, $\left.503.2771[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.26 (S)-2-((6-(2-Methoxy-4-(((2-(piperidin-1-yl)ethyl)amino)methyl)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (67)

Compound 67 was prepared as described in Section 4.6 .4 starting with 21 ($174 \mathrm{mg}, 0.343$ mmol). Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 85 / 15, \mathrm{R}_{f}=\right.$ 0.05) gave $110 \mathrm{mg}(0.220 \mathrm{mmol}, 72 \%)$ of a bright yellow solid, $\mathrm{mp} 180-182^{\circ} \mathrm{C}(\mathrm{dec}$.$) ;$ HPLC purity: $99 \%, \mathrm{t}_{R}=18.1 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-215.8(c 1.01, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta: 11.61(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.40(\mathrm{~m}, 1 \mathrm{H})$, $4.97(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.73(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{t}, J=6.5,2 \mathrm{H}), 2.37(\mathrm{t}, J=6.5,2 \mathrm{H})$, 2.31-2.29(m, 4H), 1.50-1.45(m, 4H), 1.37-1.36(m, 2H), NH was not seen; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 156.1,155.5,151.4,150.6,142.1,130.2,128.0$ (2C), 127.1 (2C), $126.9,126.6,120.1,118.6,111.3,107.1,103.7,99.6,65.0,58.3,56.0,55.5,54.2$ (2C), 52.8, 45.6, 25.6 (2C), 24.1; IR (neat, cm^{-1}): 3253, 3108, 2926, 2838, 1591, 1451, 1307, 1255, 1156, 1032, 813, 780, 748, 700; HRMS (APCI/ASAP, m/z): 501.2973 (calcd. $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{6} \mathrm{O}_{2}$, $\left.501.2978[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.27 (S)-2-((6-(2-Methoxy-4-(((2-(piperazin-1-yl)ethyl)amino)methyl)phenyl)-7H-pyrrolo[2,3- d] pyrimidin-4-yl)amino)-2-phenylethan-1-ol (68)

Compound 68 was prepared as described in Section 4.6 .4 starting with 22 ($186 \mathrm{mg}, 0.296$ $\mathrm{mmol})$. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 90 / 10 / 1\right.$, $\left.\mathrm{R}_{f}=0.12\right)$ gave $99 \mathrm{mg}(0.220 \mathrm{mmol}, 64 \%)$ of a bright yellow solid, mp 208-210 ${ }^{\circ} \mathrm{C}(\mathrm{dec}$.$) ;$ HPLC purity: $99 \%, \mathrm{t}_{R}=17.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-159.5(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta: 11.60(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.44-$ $7.42(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 1 \mathrm{H})$, $5.44-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.72$ (m, 8H), 2.81 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}), 2.59$ $(\mathrm{t}, J=6.1,2 \mathrm{H}), 2.37(\mathrm{t}, J=6.1,2 \mathrm{H}), 2.36-2.32(\mathrm{~m}, 4 \mathrm{H})$, NH was not seen; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 156.4,155.5,151.4,149.9,142.1,130.2,128.0$ (2C), 127.1 (2C), 126.9, $126.6,120.1,118.6,111.3,107.4,103.7,99.7,65.0,59.8,56.7,55.5,52.9$ (2C), 51.1, 45.6 (3C); IR (neat, cm^{-1}): 3243, 2937, 2817, 1593, 1451, 1348, 1307, 1253, 1156, 1030, 816, 781, 753, 700; HRMS (APCI/ASAP, m/z): 502.2924 (calcd. $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{7} \mathrm{O}_{2}, 502.2930$ $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.28 (S)-2-((6-(3-(((2-(Dimethylamino)ethyl)amino)methyl)-4-fluorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (69)

Compound 69 was prepared as described in Section 4.6 .4 starting with 25 ($127 \mathrm{mg}, 0.219$ mmol). Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 90 / 10 / 1\right.$, $\left.\mathrm{R}_{f}=0.28\right)$ gave $80 \mathrm{mg}(0.180 \mathrm{mmol}, 82 \%)$ of a bright yellow solid, $\mathrm{mp} 159-161{ }^{\circ} \mathrm{C}$; HPLC
purity: $98 \%, \mathrm{t}_{R}=18.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-196.1(c 0.50, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta: 12.01(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.43(\mathrm{~m}$, 2H), $7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.44-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.99-$ $4.95(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.3,2 \mathrm{H}), 2.35(\mathrm{t}, J=6.3,2 \mathrm{H})$, 2.11 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 159.7$ (d, $J=244.3$), 155.6, 151.7, 142.0, 132.8, 128.3 (d, $J=14.3$), 128.1, 128.0 (2C), 127.0 (2C), 126.7, 126.6 (d, $J=4.6$), 124.5 (d, $J=8.7$), 115.6 (d, $J=24.0$), 96.0, 74.0, 73.8, 65.0, 58.8, 46.4, 46.2, 45.4, 45.3 (2C); IR (neat, cm^{-1}): 3117, 2935, 2810, 2758, 1597, 1475, 1320, 1231, 1023, 816, 696; HRMS (APCI/ASAP, m/z): 449.2462 (calcd. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{OF}, 449.2465[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.29 (S)-2-((6-(4-Fluoro-3-(hydroxymethyl)phenyl)-7H-pyrrolo[2,3d] pyrimidin-4-yl)amino)-2-phenylethan-1-ol (70)

Compound 70 was prepared as described in Section 4.6 .4 starting with 26 ($75 \mathrm{mg}, 0.148$ $\mathrm{mmol})$. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 90 / 10, \mathrm{R}_{f}=\right.$ $0.12)$ gave $58 \mathrm{mg}(0.154 \mathrm{mmol}, 78 \%)$ of a white solid, $\mathrm{mp} 148-149{ }^{\circ} \mathrm{C}$; HPLC purity: 98 $\%, \mathrm{t}_{R}=16.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-246.9(c 0.50, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 12.04$ $(\mathrm{s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.32-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.44-5.1(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{t}, J=5.6,1 \mathrm{H})$, $4.95(\mathrm{t}, J=5.6,1 \mathrm{H}), 4.61(\mathrm{~d}, J=5.6,2 \mathrm{H}), 3.78-3.69(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right) \delta: 157.6(\mathrm{~d}, J=245.1), 155.5,151.7,151.5,142.0,132.8,129.8(\mathrm{~d}, J=15.5)$, 128.1 (d, $J=3.6$), 128.0 (2C), 127.0 (2C), 126.7, 125.2 (d, $J=4.9$), 124.4 (d, $J=8.6$), 115.4 (d, $J=$ 21.9), 115.3, 109.6, 104.2, 96.0, 65.0, 56.8 (d, $J=3.5$), 56.1 ; IR (neat, cm^{-1}): 3408, 3205, 3133, 2935, 2883, 1596, 1482, 1304, 1231, 1029, 768, 696; HRMS (APCI/ASAP, m/z): 389.1971 (calcd. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}, 389.1964[\mathrm{M}+\mathrm{H}]^{+}$). The hydroxyl proton at 5.39 disappeared after $\mathrm{D}_{2} \mathrm{O}$ exchange.

4.9.30 (S)-2-((6-(4-(((2-(Dimethylamino)ethyl)amino)methyl)-3-fluorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (71)

Compound 71 was prepared as described in Section 4.6 .4 starting with 27 ($107 \mathrm{mg}, 0.183$ mmol). Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 85 / 15 / 2\right.$, $\left.\mathrm{R}_{f}=0.15\right)$ gave $69 \mathrm{mg}(0.154 \mathrm{mmol}, 84 \%)$ of a white solid, $\mathrm{mp} 201-202^{\circ} \mathrm{C}$; HPLC purity: $99 \%, \mathrm{t}_{R}=17.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-232.7(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta:$ $12.05(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H})$, 7.51-7.48(m, 1H), 7.44-7.43(m, 2H), 7.32-7.29(m, 2H), 7.22-7.20(m, 1H), 7.18 (s, $\mathrm{br}, 1 \mathrm{H}), 5.44-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.77-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{~s}, \mathrm{br}$, $1 \mathrm{H}), 2.58(\mathrm{t}, J=6.4,2 \mathrm{H}), 2.33(\mathrm{t}, J=6.4,2 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO$\left.d_{6}\right) \delta: 160.8(\mathrm{~d}, J=243.1), 155.7,152.0,151.5,141.9,132.4(\mathrm{~d}, J=8.5), 132.1(\mathrm{~d}, J=2.2)$, 130.9 (d, $J=5.4$), 128.0 (2C), 127.0 (2C), 126.7, 126.4 (d, $J=15.5$), 120.2 (d, $J=3.3$), 110.8 (d, $J=24.1$), 104.0 (d, $J=5.5$), 96.9, 65.0, 58.8 (2C), 56.0, 46.2, 45.9 (d, $J=2.2$), 45.3; IR (neat, cm^{-1}): 3299, 3122, 2935, 2835, 2816, 2764, 1595, 1478, 1444, 1304, 1133, 1029, 777, 701; HRMS (APCI/ASAP, m/z): 449.2460 (calcd. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{OF}, 449.2465$ $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.9.31 (S)-2-((6-(3-Fluoro-4-(hydroxymethyl)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (72)

Compound 72 was prepared as described in Section 4.6 .4 starting with 28 ($95 \mathrm{mg}, 0.187$ $\mathrm{mmol})$. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 90 / 10, \mathrm{R}_{f}=\right.$ $0.23)$ gave $67 \mathrm{mg}(0.175 \mathrm{mmol}, 89 \%)$ of a white solid, $\mathrm{mp} 273-275{ }^{\circ} \mathrm{C}$; HPLC purity: 98 $\%, \mathrm{t}_{R}=15.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-279.6(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) $\delta: 12.06$ $(\mathrm{s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.54-$ $7.51(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.18$ (s, br, 1H), $5.44-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{t}, J=5.8,1 \mathrm{H}), 4.96(\mathrm{t}, J=5.6,1 \mathrm{H}), 4.56(\mathrm{~d}, J=5.6,2 \mathrm{H}), 3.77-$ 3.71 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta: 160.0(\mathrm{~d}, J=243.5$), 155.7, 152.0, 151.6, 141.9, 132.6 (d, $J=8.4$), 132.1 (d, $J=1.9$), 129.7 (d, $J=5.5$), 128.0 (2C), 127.8 (d, $J=$ 15.4), 127.0 (2C), 126.7, 120.3 (d, $J=2.0$), 110.7 (d, $J=23.5$), 104.0, 97.0, 65.0, 56.6 (d, $J=3.3$), 56.0; IR (neat, cm^{-1}): 3303, 3116, 3023, 2940, 2878, 1594, 1470, 1320, 1153, 994, 966, 868, 764, 700; HRMS (APCI/ASAP, m/z): 379.1570 (calcd. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}, 379.1570$ $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$. The hydroxyl proton at 5.28 disappeared after $\mathrm{D}_{2} \mathrm{O}$ exchange.

4.9.32 (S)-2-((6-(4-(((2-(Dimethylamino)ethyl)(methyl)amino)methyl)-2-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (73)

Compound 73 was prepared as described in Section 4.6 .4 starting with 29 ($93 \mathrm{mg}, 0.154$ $\mathrm{mmol})$. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 90 / 10 / 1\right.$, $\mathrm{R}_{f}=0.09$) gave $74 \mathrm{mg}(0.156 \mathrm{mmol}, 81 \%)$ of a yellow solid, mp $116-118{ }^{\circ} \mathrm{C}$; HPLC purity: 99%; $\mathrm{t}_{R}=17.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-234.6(c 0.50, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta: 11.63-11.62(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.93(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.40(\mathrm{~m}, 1 \mathrm{H})$, 4.98-4.95 (m, 1H), $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 2.47-2.37(\mathrm{~m}, 4 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 156.0,155.5,151.4,150.7$, 142.1, 139.9, 130.1, 128.0 (2C), 127.1 (2C), 126.9, 126.6, 122.2, 120.8, 118.9, 111.8, 99.7, $65.0,61.7,58.3,57.1,55.5,54.8,45.6$ (2C), 42.4; IR (neat, cm^{-1}): 3100, 2939, 2824, 2772, 1590, 1446, 1305, 1253, 1159, 1034, 780, 753, 696; HRMS (APCI/ASAP, m/z): 475.2823 (calcd. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{2}, 475.2821[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.33 (S)-(3-Methoxy-4-(4-((2-methoxy-1-phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenyl)methanol (74)

Compound 74 was prepared as described in Section 4.6.2, starting with 7d ($220 \mathrm{mg}, 0.560$ mmol) and (4-formyl-2-methoxy)phenyl))boronic acid ($121 \mathrm{mg}, 0.670 \mathrm{mmol}$). Purification by silica-gel column chromatography (diethyl ether $/ \mathrm{MeOH}, 19 / 1, \mathrm{R}_{f}=0.31$) gave 107 mg ($0.270 \mathrm{mmol}, 49 \%$) of (S)-3-methoxy-4-(4-((2-methoxy-1-phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)benzaldehyde as a pale green solid, mp $185-18{ }^{\circ} \mathrm{C}$; HPLC
purity: $99 \%, \mathrm{t}_{R}=20.3 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-318.6(c 0.80, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO$\left.d_{6}\right) \delta: 11.06(\mathrm{~s}, 1 \mathrm{H}), 9.97(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.52(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$, 5.65-5.64 (m, 1H), 4.02 ($\mathrm{s}, 3 \mathrm{H}$), 3.87-3.83(m, 2H), $3.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta: 191.3,156.3,156.0,152.9,151.3,140.6,136.3,131.0,128.7$ (2C), 127.8, 127.6, 126.8, (2C), 126.2, 124.7, 110.7, 104.0, 99.2, 75.8, 59.3, 56.2, 54.1; IR (neat, cm^{-1}): 3117, 2826, 2360, 1682, 1592, 1474, 1309, 1146, 1031, 784, 700; HRMS (APCI/ASAP, m / z): 403.1767 (calcd. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}, 403.1770[\mathrm{M}+\mathrm{H}]^{+}$). Aldehyde reduction was performed as described in Section 4.8.34 and the product was purified by silica-gel column chromatography ($\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}, 1 / 1, \mathrm{R}_{f}=0.24$). This gave $73 \mathrm{mg}(0.180 \mathrm{mmol}, 75 \%)$ of $\mathbf{7 4}$ as a yellow solid, $\mathrm{mp} 203-204{ }^{\circ} \mathrm{C}$; HPLC purity: $98 \%, \mathrm{t}_{R}=17.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-216.3(c 1.00$, DMSO); ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta: 10.23(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}$, $1 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.01-7.00$ $(\mathrm{m}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.62-5.60(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.86-$ 3.82 (m, 2H), 3.41 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta: 156.1,155.6,151.9,150.5$, $142.3,140.7,132.5,128.7$ (2C), 127.7, 127.6, 126.9 (2C), 119.9, 119.0, 110.5, 108.1, 103.7, 75.9, 65.1, 59.3, 55.9, 54.1; IR (neat, cm^{-1}): 3423, 3169, 2873, 1604, 1474, 1319, 1159, 1035, 997, 777, 670; HRMS (APCI/ASAP, m/z): 405.1923 (calcd. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}, 405.1927$ $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$. The hydroxyl proton at 5.91 ppm disappeared after $\mathrm{D}_{2} \mathrm{O}$ exchange.

4.9.34 (S)-6-(2-(Difluoromethoxy)phenyl)-N-(2-methoxy-1-phenylethyl)-7H-pyrrolo[2,3- d]pyrimidin-4-amine (75)

Compound $\mathbf{7 5}$ was prepared as described in Section 4.6.2, starting with $7 \mathbf{d}$ ($92 \mathrm{mg}, 0.230$ mmol) and 2-(2-(difluoromethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9) (320 mg, , 0.1 .19 mmol). The reaction time was 1 hour. Purification by silica-gel column chromatography (EtOAc/n-pentane, $\left.5 / 1, \mathrm{R}_{f}=0.19\right)$ gave $62 \mathrm{mg}(0.150 \mathrm{mmol}, 64 \%)$ of a pale brown solid, mp $95-97^{\circ} \mathrm{C}$; HPLC purity: 99%, $\mathrm{t}_{R}=21.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-212.0(c 0.90$, DMSO); ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta: 11.89(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.3$, $1 \mathrm{H}), 7.83-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.27$ $(\mathrm{t}, J=73.7,1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 5.59-5.68(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.75(\mathrm{~m}, 1 \mathrm{H})$, 3.65-3.62 (m, 1H), $3.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta: 155.6,151.9,151.1$, 147.7, 141.3, 128.7, 128.5, 128.4, 128.2 (2C), 127.0 (2C), 126.9, 125.5, 123.6, 119.0, 116.7 ($\mathrm{t}, J=258.1$), 103.8, 100.7, 75.0, 58.0, 52.7, ${ }^{19}$ F NMR (564 MHz, DMSO- d_{6}) $\delta:-83.1$ (d, J $=73.1$); IR (neat, $\left.\mathrm{cm}^{-1}\right): 3325,3106,2826,1592,1477,1311,1104,1035,751,698$; HRMS (APCI/ASAP, m/z): 411.1634 (calcd. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}_{2}, 411.1633[\mathrm{M}+\mathrm{H}]^{+}$).

4.9.35 (R)-3-Phenyl-3-((6-phenyl-7H-pyrrolo[2,3- d] pyrimidin-4-yl)amino)propan-1-ol (76)

Compound 76 was prepared as described in Section 4.6.1, starting with 4-chloro-6-phenyl$7 H$-pyrrolo[2,3- d]pyrimidine [19] ($50 \mathrm{mg}, 0.218 \mathrm{mmol}$) and (R)-3-amino-3-phenylpropan-

1-ol ($99 \mathrm{mg}, 0.653 \mathrm{mmol}$). The reaction time was 28 hours. Purification by silica-gel column chromatography ($\mathrm{EtOAc} / \mathrm{MeOH} .95 / 5, \mathrm{R}_{f}=0.18$) gave $68 \mathrm{mg}(0.198 \mathrm{mmol}, 91 \%)$ of a white solid, $\mathrm{mp} 208-209{ }^{\circ} \mathrm{C}$; HPLC purity: $98 \%, \mathrm{t}_{R}=18.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-289.4(c$ 1.00, DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 12.02(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.77$ $(\mathrm{m}, 3 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.52$ $-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.91$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right) \delta: 155.4,151.7,151.5,144.7,133.4,131.8,128.9$ (2C), 128.1 (2C), 127.2, 126.5 (2C), 126.4, 124.5 (2C), 103.9, 96.0, 57.9, 50.4, 39.8; IR (neat, cm^{-1}): 3337, 3125, 3026, 2922, 1597, 1522, 1452, 1319, 1033. 787, 748, 702; HRMS (APCI/ASAP, m/z): 344.1634 (calcd. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}, 344.1637$ [M] ${ }^{+}$). The hydroxyl proton at 4.58-4.56 ppm disappeared after $\mathrm{D}_{2} \mathrm{O}$ exchange.

4.9.36 (R)-3-((6-(2-Ethoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-3-phenylpropan-1-ol (77)

Compound 77 was prepared as described in Section 4.6 .4 starting with $\mathbf{3 0}$ ($97 \mathrm{mg}, 0.187$ $\mathrm{mmol})$. Purification by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 90 / 10, \mathrm{R}_{f}=\right.$ 0.38) gave $72 \mathrm{mg}(0.186 \mathrm{mmol}, 97 \%)$ of a white solid, $\mathrm{mp} 116-117^{\circ} \mathrm{C}$; HPLC purity: 98 $\%, \mathrm{t}_{R}=21.0 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-151.9(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{TMS}\right) \delta$: $10.23(\mathrm{~s}, 1 \mathrm{H}), 8.33(1 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.04$ $-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.64(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=$ $7.0,2 \mathrm{H}), 3.79-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{t}, J=7.0,3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$-TMS) $\delta: 155.8,155.2,151.8,150.3,142.6,133.3,129.3,129.2$ (2C), 127.9, 127.8, 126.9 (2C), 121.6, 119.6, 113.3, 103.7, 95.0, 64.7, 58.4, 51.8, 39.6, 15.1; IR (neat, cm^{-1}): 3107, 2971, 2925, 2862, 1593, 1465, 1450, 1309, 1236, 1122, 1034, 748, 699; HRMS (APCI/ASAP, m/z): 389.1971 (calcd. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}, 389.1964[\mathrm{M}+\mathrm{H}]^{+}$). The hydroxyl proton at $5.24-5-23 \mathrm{ppm}$ disappeared after $\mathrm{D}_{2} \mathrm{O}$ exchange.

4.9.37 (S)-2-((7-Methyl-6-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-phenylethan-1-ol (78)

4-Chloro-6-phenyl-7H-pyrrolo[2,3- d]pyrimidine [19] ($150 \mathrm{mg}, 0.653 \mathrm{mmol}$) and cesium carbonate ($319 \mathrm{mg}, 0.980 \mathrm{mmol}$) were dissolved in anhydrous DMF (2 mL). Iodomethane ($0.65 \mathrm{~mL}, 1.31 \mathrm{mmol}, 2 \mathrm{M}$ in tert-butyl methyl ether) was added over 30 min and the solution stirred at room temperature for 90 min . The reaction mixture was then quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic phases were washed with saturated aq $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, saturated aq $\mathrm{NaCl}(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by silica-gel column chromatography (EtOAc/n-pentane, $1 / 1, \mathrm{R}_{f}=0.46$). This gave $143 \mathrm{mg}(0.587 \mathrm{mmol}, 90 \%)$ of 4-chloro-7-methyl-6-phenyl-7H-pyrrolo[2,3- d]pyrimidine as a white solid, mp 150-152 ${ }^{\circ} \mathrm{C}$ (lit.[57] 151-153 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.71$ (m, $2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR data are in agreement with
those previously reported [57]. Compound 78 was then made as described in Section 4.6.1, starting with 4 -chloro-7-methyl-6-phenyl-7H-pyrrolo[2,3- d]pyrimidine ($120 \mathrm{mg}, 0.492$ mmol) and (S)-2-amino-2-phenylethan-1-ol ($203 \mathrm{mg}, 1.48 \mathrm{mmol}$). The reaction time was 26 hours. The crude product was purified by silica-gel column chromatography (EtOAc, R_{f} $=0.13)$. This gave $150 \mathrm{mg}(0.436 \mathrm{mmol}, 88 \%)$ of 78 as a white solid. $\mathrm{mp} 133-135^{\circ} \mathrm{C}$; HPLC purity: $99 \%, \mathrm{t}_{R}=19.9 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{20}=-227.3(c 0.99, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta: 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.46-5.41$ $(\mathrm{m}, 1 \mathrm{H}), 4.97-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 155.6,151.4,150.9,141.9,136.5,131.9,128.8$ (2C), 128.4 (2C), 128.0 (2C), 127.9, 127.0 (2C), 126.6, 101.7, 98.4, 64.9, 56.1, 29.6; IR (neat, cm^{-1}): 3288, 3026, 2913, 1724, 1596, 1471, 1306, 1070, 757, 698; HRMS (APCI/ASAP, m/z): 345.1714 (calcd. $\left.\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}, 345.1715[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4.10 Docking and dynamics

The X-ray crystal structures of the protein 4WKQ (Wild-type EGFR) [35] were prepared using the protein preparation wizard, which is part of the Maestro software package (Maestro, v8.5; Schrödinger, LLC, New York, NY, USA) using the OPLS-3 force field. The resulting protein structures were used in the following docking study. Ligands were drawn using ChemBioDraw (ChemBioDraw Ultra 13.0, CambridgeSoft, PerkinElmer) or the Maestro 2D Sketcher tool and were prepared using LigPrep2.2 (LigPrep, v2.2; Schrödinger, LLC). For the computational investigation of the receptor-inhibitor structures, the energy minimized structures of 4 WKQ and ligands were subsequently docked using induced-fit docking (IFD) of Schrödinger [32-34]. Briefly this was achieved by doing an initial docking for each ligand using Glide and a softened potential (van der Waals radii scaling). A maximum of 20 poses per ligand were retained. Side-chain prediction for each protein-ligand complex on residues within $5 \AA$ of the ligands were then calculated using Prime and the same set of ligands and residues were subsequently minimized using Prime minimization. Finally, the ligands within a specified energy from the lowest-energy structure ($30 \mathrm{kcal} / \mathrm{mol}$) were redocked on the modified receptor structure using default Glide settings. The resulting docked poses were analysed using Glide pose viewer tool. For dynamic simulation, the best poses from docking were used as starting points when building the model systems Dynamic simulations were conducted for 10 ns simulation time using Maestros Desmond suite [36], the OPLS-3 force field and a TIP4P solvent model. Briefly, this was performed by putting the docked protein-ligand complex inside a minimized solvent box and adding ions $\left(\mathrm{Na}^{+}\right.$or $\left.\mathrm{Cl}^{-}\right)$in order to have an electrical neutral system. Finally, NaCl was added to a total concentration of 0.15 M , which is approximately the physiological concentration of monovalent ions. This gave normally a system of approximately 39000 atoms. Molecular dynamics were then calculated on these systems using the isothermal-isobaric (NPT) ensemble at 300 K and 1.01325 bar. Trajectory analysis were performed using Desmond's Simulation Interactions Diagram tool and all the
graphical pictures were made using Maestro or Pymol (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC).

4.11 Conformational search

Compounds 50, 53 and 77 were subjected to a conformational search using MacroModel, version 11.3, Schrödinger, LLC, New York, NY, 2016. Conformations in water were calculated using the OPLS3 force field.

Acknowledgements

Susana Villa Gonzalez is thanked for the HRMS experiments. Roger Aarvik and Steffen Bugge are acknowledged for their kind help and support. Prof. Dr. Justus Duyster and Dr. Nikolas von Bubnoff, Technical University of Munich, Munich, Germany kindly provided EGFR Ba/F3 cells. The research was financially supported by Anders Jahres foundation and Technology Transfer Office (TTO-NTNU Trondheim). NOTUR is acknowledged for CPU-time.

Author Contributions

The synthetic work was mainly performed by J. Han and some compounds were synthesised by S. Henriksen. Molecular docking and dynamics performed by E. Sundby. The Ba/F3 cellular experiments were performed by K. Nørsett. J. Han and B. Hoff planed the work and wrote the paper.

Supplementary Material: This file contains in vitro kinase data with standard deviations, kinase selectivity data, EGFR-ligand interactions maps following dynamics and selected NMR spectra. The material is available free of charge.

5. References

[1] W. Pao, J. Chmielecki, Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer, Nat. Rev. Cancer, 10 (2010) 760-774.
[2] H.J. Lee, A.N. Seo, E.J. Kim, M.H. Jang, Y.J. Kim, J.H. Kim, S.W. Kim, H.S. Ryu, I.A. Park, S.A. Im, G. Gong, K.H. Jung, H.J. Kim, S.Y. Park, Prognostic and predictive values of EGFR overexpression and EGFR copy number alteration in HER2-positive breast cancer, Br. J. Cancer, 112 (2015) 103-111.
[3] M.R. Brewer, C.H. Yun, D. Lai, M.A. Lemmon, M.J. Eck, W. Pao, Mechanism for activation of mutated epidermal growth factor receptors in lung cancer, Proc. Natl. Acad. Sci. U. S. A, 110 (2013) E3595-E3604.
[4] N. Cook, K.K. Frese, M. Moore, Assessing the role of the EGF receptor in the development and progression of pancreatic cancer, Gastrointest. Cancer: Targets Ther, 4 (2014) 23-37.
[5] D.R. Siwak, M. Carey, B.T. Hennessy, C.T. Nguyen, M.J. McGahren Murray, L. Nolden, G.B. Mills, Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges, J. Oncol., 2010 (2010) Article ID 568938.
[6] T. Zellweger, C. Ninck, M. Bloch, M. Mirlacher, P.A. Koivisto, H.J. Helin, M.J. Mihatsch, T.C. Gasser, L. Bubendorf, Expression patterns of potential therapeutic targets in prostate cancer, Int. J. Cancer, 113 (2005) 619-628.
[7] F.J. Hendler, B.W. Ozanne, Human squamous cell lung cancers express increased epidermal growth factor receptors, J. Clin. Invest., 74 (1984) 647-651.
[8] D. Schuster, C. Laggner, T. Langer, Why drugs fail - a study on side effects in new chemical entities, Curr. Pharm. Des., 11 (2005) 3545-3559.
[9] M.D. Segall, A.P. Beresford, J.M.R. Gola, D. Hawksley, M.H. Tarbit, Focus on success: using a probabilistic approach to achieve an optimal balance of compound properties in drug discovery, Expert Opin. Drug Metab. Toxicol., 2 (2006) 325-337.
[10] A.L. Gill, M. Verdonk, R.G. Boyle, R. Taylor, A comparison of physicochemical property profiles of marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in clinical development, Curr. Top. Med. Chem. , 7 (2007) 1408-1422. [11] Z. O'Brien, M. Fallah Moghaddam, Small molecule kinase inhibitors approved by the FDA from 2000 to 2011: a systematic review of preclinical ADME data, Expert Opin. Drug Metab. Toxicol., 9 (2013) 1597-1612.
[12] N.A. Meanwell, Improving Drug Candidates by Design: A Focus on Physicochemical Properties As a Means of Improving Compound Disposition and Safety, Chem. Res. Toxicol., 24 (2011) 1420-1456.
[13] J. Bain, L. Plater, M. Elliott, N. Shpiro, C.J. Hastie, H. McLauchlan, I. Klevernic, J.S. Arthur, D.R. Alessi, P. Cohen, The selectivity of protein kinase inhibitors: a further update, Biochem. J., 408 (2007) 297-315.
[14] D. Kitagawa, K. Yokota, M. Gouda, Y. Narumi, H. Ohmoto, E. Nishiwaki, K. Akita, Y. Kirii, Activity-based kinase profiling of approved tyrosine kinase inhibitors, Genes Cells, 18 (2013) 110-122.
[15] N. Yamamoto, M. Honma, H. Suzuki, Off-target serine/threonine kinase 10 inhibition by erlotinib enhances lymphocytic activity leading to severe skin disorders, Mol. Pharmacol., 80 (2011) 466-475.
[16] T. Schneider-Merck, M. Trepel, Lapatinib, Recent Results Cancer Res., 184 (2010) 45-59.
[17] P. Marathe, Y. Tang, B. Sleczka, D. Rodrigues, A. Gavai, T. Wong, L. Christopher, H. Zhang, Preclinical pharmacokinetics and in vitro metabolism of BMS-690514, a potent inhibitor of EGFR and VEGFR2, J. Pharm. Sci, 99 (2010) 3579-3593.
[18] J. Ling, K.A. Johnson, Z. Miao, A. Rakhit, M.P. Pantze, M. Hamilton, B.L. Lum, C. Prakash, Metabolism and excretion of erlotinib, a small molecule inhibitor of epidermal growth factor receptor tyrosine kinase, in healthy male volunteers, Drug Metab. Dispos, 34 (2006) 420-426.
[19] S.J. Kaspersen, C. Sørum, V. Willassen, E. Fuglseth, E. Kjøbli, G. Bjørkøy, E. Sundby, B.H. Hoff, Synthesis and in vitro EGFR (ErbB1) tyrosine kinase inhibitory activity of 4-N-substituted 6-aryl-7H-pyrrolo[2,3-d]pyrimidine-4-amines, Eur. J. Med. Chem, 46 (2011) 6002-6014.
[20] S.J. Kaspersen, J. Han, K.G. Nørsett, L. Rydså, E.B. Kjøbli, S., G. Bjørkøy, E. Sundby, B.H. Hoff, Identification of new 4-N-substituted 6-aryl-7H-pyrrolo[2,3$d]$ pyrimidine-4-amines as highly potent EGFR-TK inhibitors with Src-family activity, Eur. J. Pharm. Sci, 59 (2014) 69-82.
[21] E. Sundby, J. Han, S.J. Kaspersen, B.H. Hoff, In vitro baselining of new pyrrolopyrimidine EGFR-TK inhibitors with Erlotinib, Eur. J. Pharm. Sci, 80 (2015) 5665.
[22] P. Traxler, Tyrosine kinases as targets in cancer therapy - successes and failures, Expert Opin. Ther. Targets, 7 (2003) 215-234.
[23] P. Traxler, P.R. Allegrini, R. Brandt, J. Brueggen, R. Cozens, D. Fabbro, K. Grosios, H.A. Lane, P. McSheehy, J. Mestan, T. Meyer, C. Tang, M. Wartmann, J. Wood, G. Caravatti, AEE788: A Dual Family Epidermal Growth Factor Receptor/ErbB2 and Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor with Antitumor and Antiangiogenic Activity, Cancer Res, 64 (2004) 4931-4941.
[24] Y.W. Park, M.N. Younes, S.A. Jasser, O.G. Yigitbasi, G. Zhou, C.D. Bucana, B.N. Bekele, J.N. Myers, AEE788, a dual tyrosine kinase receptor inhibitor, induces endothelial cell apoptosis in human cutaneous squamous cell carcinoma xenografts in nude mice, Clin. Cancer Res, 11 (2005) 1963-1973.
[25] P. LoRusso, K. Venkatakrishnan, E.G. Chiorean, D. Noe, J.T. Wu, S. Sankoh, M. Corvez, E.A. Sausville, Phase 1 dose-escalation, pharmacokinetic, and cerebrospinal fluid distribution study of TAK-285, an investigational inhibitor of EGFR and HER2, Invest. New Drugs, 32 (2014) 160-170.
[26] T. Doi, H. Takiuchi, A. Ohtsu, N. Fuse, M. Goto, M. Yoshida, N. Dote, Y. Kuze, F. Jinno, M. Fujimoto, T. Takubo, N. Nakayama, R. Tsutsumi, Phase I first-in-human study of TAK-285, a novel investigational dual HER2/EGFR inhibitor, in cancer patients, Br. J. Cancer, 106 (2012) 666-672.
[27] K.L. Billingsley, S.L. Buchwald, An Improved System for the Palladium-Catalyzed Borylation of Aryl Halides with Pinacol Borane, J. Org. Chem, 73 (2008) 5589-5591.
[28] J.D. Dunitz, Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions, Chem. Biol., 2 (1995) 709-712.
[29] C. Krintel, P. Francotte, D.S. Pickering, L. Juknaite, J. Poehlsgaard, L. Olsen, K. Frydenvang, E. Goffin, B. Pirotte, J.S. Kastrup, Enthalpy-entropy compensation in the binding of modulators at ionotropic glutamate receptor GluA2, Biophys. J., 110 (2016) 2397-2406.
[30] P.V. Desai, T.J. Raub, M.-J. Blanco, How hydrogen bonds impact P-glycoprotein transport and permeability, Bioorg. Med. Chem. Lett., 22 (2012) 6540-6548. [31] S. Bugge, I.U. Moen, K.O. Kragseth Sylte, E. Sundby, B.H. Hoff, Truncated structures used in search for new lead compounds and in a retrospective analysis of thienopyrimidine-based EGFR inhibitors, Eur. J. Med. Chem, 94 (2015) 175-194.
[32] Induced fit docking protocol 2013-3, Glide version 6.1, Prime version 3.4, Schrödinger, LLC, New York, NY, (2013).
[33] W. Sherman, H.S. Beard, R. Farid, Use of an induced fit receptor structure in virtual screening, Chem. Biol. Drug Des, 67 (2006) 83-84.
[34] W. Sherman, T. Day, M.P. Jacobson, R.A. Friesner, R. Farid, Novel Procedure for Modeling Ligand/Receptor Induced Fit Effects, J. Med. Chem, 49 (2006) 534-553.
[35] Y. Yosaatmadja, C.J. Squire, M. McKeage, J.U. Flanagan, 4WKQ: 1.85 angstrom structure of EGFR kinase domain with gefitinib, To be published: DOI: $10.2210 / \mathrm{pdb} 4 \mathrm{wkq} / \mathrm{pdb}$, (2014).
[36] v. Desmond Molecular Dynamics System, D. E. Shaw Research, Maestro-Desmond Interoperability Tools, version 3.9, Schrödinger, New York, NY, 2014.
[37] Y. Kawakita, K. Miwa, M. Seto, H. Banno, Y. Ohta, T. Tamura, T. Yusa, H. Miki, H. Kamiguchi, Y. Ikeda, T. Tanaka, K. Kamiyama, T. Ishikawa, Design and synthesis of pyrrolo[3,2-d]pyrimidine HER2/EGFR dual inhibitors: Improvement of the physicochemical and pharmacokinetic profiles for potent in vivo anti-tumor efficacy, Bioorg. Med. Chem, 20 (2012) 6171-6180.
[38] M. Falasca, K.J. Linton, Investigational ABC transporter inhibitors, Expert Opin. Invest. Drugs, 21 (2012) 657-666.
[39] G. Szakacs, J.P. Annereau, S. Lababidi, U. Shankavaram, A. Arciello, K.J. Bussey, W. Reinhold, Y. Guo, G.D. Kruh, M. Reimers, J.N. Weinstein, M.M. Gottesman, Predicting drug sensitivity and resistance: Profiling ABC transporter genes in cancer cells, Cancer Cell, 6 (2004) 129-137.
[40] H. Xie, L. Zeng, S. Zeng, X. Lu, G. Zhang, X. Zhao, N. Cheng, Z. Tu, Z. Li, H. Xu, L. Yang, X. Zhang, M. Huang, J. Zhao, W. Hu, Novel pyrrolopyrimidine analogues as potent dipeptidyl peptidase IV inhibitors based on pharmacokinetic property-driven optimization, Eur. J. Med. Chem, 52 (2012) 205-212.
[41] J.P. Hughes, S. Rees, S.B. Kalindjian, K.L. Philpott, Principles of early drug discovery, Br. J. Pharmacol, 162 (2011) 1239-1249.
[42] L. Shao, M.C. Hewitt, The kinetic isotope effect in the search for deuterated drugs, Drug News Perspect., 23 (2010) 398-404.
[43] R.A. Hartz, V.T. Ahuja, X. Zhuo, R.J. Mattson, D.J. Denhart, J.A. Deskus, V.M. Vrudhula, S. Pan, J.L. Ditta, Y.-Z. Shu, J.E. Grace, K.A. Lentz, S. Lelas, Y.-W. Li, T.F. Molski, S. Krishnananthan, H. Wong, J. Qian-Cutrone, R. Schartman, R. Denton, N.J. Lodge, R. Zaczek, J.E. Macor, J.J. Bronson, A Strategy to Minimize Reactive Metabolite Formation: Discovery of (S)-4-(1-Cyclopropyl-2-methoxyethyl)-6-[6-(difluoromethoxy)-2,5-dimethylpyridin-3-ylamino]-5-oxo-4,5-dihydropyrazine-2-carbonitrile as a Potent, Orally Bioavailable Corticotropin-Releasing Factor-1 Receptor Antagonist, J. Med. Chem., 52 (2009) 7653-7668.
[44] D.J. St.Jean, C. Fotsch, Mitigating Heterocycle Metabolism in Drug Discovery, J. Med. Chem, 55 (2012) 6002-6020.
[45] A.K. Mandagere, T.N. Thompson, K.-K. Hwang, Graphical Model for Estimating Oral Bioavailability of Drugs in Humans and Other Species from Their Caco-2
Permeability and in Vitro Liver Enzyme Metabolic Stability Rates, J. Med. Chem., 45 (2002) 304-311.
[46] X. Liu, M. Wright, C.E.C.A. Hop, Rational Use of Plasma Protein and Tissue Binding Data in Drug Design, J. Med. Chem, 57 (2014) 8238-8248.
[47] P.P. Graczyk, Gini Coefficient: A New Way To Express Selectivity of Kinase Inhibitors against a Family of Kinases, J. Med. Chem, 50 (2007) 5773-5779. [48] M.W. Karaman, S. Herrgard, D.K. Treiber, P. Gallant, C.E. Atteridge, B.T. Campbell, K.W. Chan, P. Ciceri, M.I. Davis, P.T. Edeen, R. Faraoni, M. Floyd, J.P. Hunt, D.J. Lockhart, Z.V. Milanov, M.J. Morrison, G. Pallares, H.K. Patel, S. Pritchard, L.M.

Wodicka, P.P. Zarrinkar, A quantitative analysis of kinase inhibitor selectivity, Nat. Biotechnol., 26 (2008) 127-132.
[49] J. Han, S.J. Kaspersen, S. Nervik, K.G. Nørsett, E. Sundby, B.H. Hoff, Chiral 6-aryl-furo[2,3-d]pyrimidin-4-amines as EGFR inhibitors, Eur. J. Med. Chem, 119 (2016) 27782799.
[50] A. Cavazzoni, R.R. Alfieri, D. Cretella, F. Saccani, L. Ampollini, M. Galetti, F. Quaini, G. Graiani, D. Madeddu, P. Mozzoni, E. Galvani, S. La Monica, M. Bonelli, C. Fumarola, A. Mutti, P. Carbognani, M. Tiseo, E. Barocelli, P.G. Petronini, A. Ardizzoni, Combined use of anti-ErbB monoclonal antibodies and erlotinib enhances antibodydependent cellular cytotoxicity of wild-type erlotinib-sensitive NSCLC cell lines, Mol. Cancer, 11 (2012) 91.
[51] M. Eiblmaier, L.A. Meyer, M.A. Watson, P.M. Fracasso, L.J. Pike, C.J. Anderson, Correlating EGFR expression with receptor-binding properties and internalization of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines, J. Nucl. Med, 49 (2008) 14721479.
[52] D.T. Hendricks, R. Taylor, M. Reed, M.J. Birrer, FHIT gene expression in human ovarian, endometrial, and cervical cancer cell lines, Cancer Res, 57 (1997) 2112-2115.
[53] M. Scheffner, K. Munger, J.C. Byrne, P.M. Howley, The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines, Proc. Natl. Acad. Sci. U. S. A, 88 (1991) 5523-5527.
[54] S. Bugge, S.J. Kaspersen, S. Larsen, U. Nonstad, G. Bjørkøy, E. Sundby, B.H. Hoff, Structure-activity study leading to identification of a highly active thienopyrimidine based EGFR inhibitor, Eur. J. Med. Chem, 75 (2014) 354-374.
[55] B.A. Pollok, B.D. Hamman, S.M. Rodems, L.R. Makings, Optical probes and assays, WO 2000066766 A1, (2000).
[56] K.E. Frank, A. Burchat, P. Cox, D.C. Ihle, K.D. Mullen, G. Somal, A. Vasudevan, L. Wang, N.S. Wilson, Preparation of tricyclic compounds for the treatment of immunological and oncological conditions, WO2012149280A2, (2012). [57] V. Prieur, J. Rubio-Martinez, M. Font-Bardia, G. Guillaumet, M.D. Pujol, Microwave-Assisted Synthesis of Substituted Pyrrolo[2,3-d]pyrimidines, Eur. J. Org. Chem., 2014 (2014) 1514-1524.

Figure 1. Pyrrolopyrimidine-based EGFR inhibitors
Figure 2. Lead structure I, and structural elements subjected to further evaluation.
Figure 3. Effect of variation of the 6 -aryl group on the EGFR IC_{50} value (nM) for pyrrolopyrimidines containing $(R)-1$-phenylethan-1-amine as C-4 substituent.

Figure 4. Effect of variation of the 6-aryl group on $\operatorname{EGFR} \mathrm{IC}_{50}$ value (nM) for pyrrolopyrimidines containing (S)-2-amino-2-phenylethan-1-ol as C-4 substituent.

Figure 5. EGFR IC_{50} value (nM) for pyrrolopyrimidines 74-78.
Figure 6. Structure-activity relationships identified in this and previous study [19, 20]. Colour code: green: induce potency; black: minor effects; red: reduce potency.

Figure 7. Docking of compound 77 using crystal structure 4WKQ [35].
Figure 8. Ligand-EGFR contacts for compound 77 during 10 ns of molecular dynamics. Highlighted amino acids are within $5 \AA$ distance from the docked ligand. (Dynamics for compounds 50, 53 and $\mathbf{7 6}$ are given in the Supplementary Material). The colours indicate residue type: green - lipophilic residues; red - acidic residues; blue - polar residues; purple - basic residues. The lines indicate contacts with the enzyme. Only interactions that occur more than 10% of the 10 ns simulation time are shown. Ligand atoms that are exposed to solvent are marked with grey spheres.

Figure 9. Ligand-EGFR contacts for compound $\mathbf{6 5}$ during 10 ns of molecular dynamics. Highlighted amino acids are within $5 \AA$ distance from the docked ligand. The colours indicate residue type: green - lipophilic residues; red - acidic residues; blue - polar residues; purple - basic residues. The lines indicate contacts with the enzyme. Only interactions that occur more than 10% of the 10 ns simulation time are shown. Ligand atoms that are exposed to solvent are marked with grey spheres.

Figure 10. Efflux ratio (Caco-2) as a function polar surface area $(\mathrm{n}=28)$.
Figure 11. Metabolic stability illustrated with respect of compound $\mathbf{5 0}$.
$\mathrm{HLM}_{\mathrm{t}_{1 / 2}}($ Erlotinib $)=31.7 \mathrm{~min}$.
Figure 12. Estimation of bioavailability using a graphical oral bioavailability map.
Figure 13. Inhibition profile of compounds 71, 50, 76 and Erlotinib towards 15 kinases sorted by the activity of compound 71. Data for additional kinases for these compounds, $\mathbf{5 1}$ and $\mathbf{5 3}$ is provided in Supplementary Material)

Scheme 1. Synthesis of functionalized pyrrolo[2,3-d]pyrimidines. Reagents: SEMdeprotection i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ii) sat. Aqueous NaHCO_{3}, THF.

Scheme 2. Synthesis of boronic esters 8-11. Functionalisation to: 10: $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}_{1} \mathrm{CH}_{2} \mathrm{Cl}_{2}$; 11: $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table 1. Summary of key ADME data for the new EGFR inhibitors. Compounds are sorted by the $\mathrm{P}_{\text {app }}$ values. Additional data is provided in Supplementary Material.

Table 2. hERG inhibition data for the new EGFR inhibitors. Additional data is provided in Supplementary Material.

Table 3. Cell proliferation study of selected pyrrolopyrimidines towards $\mathrm{Ba} / \mathrm{F} 3-$ EGFR ${ }^{\text {L858R }}$ and A-431 cells.

Table 4. Cell proliferation data of compound $\mathbf{5 0}$ and Erlotinb towards various cancer cell lines.

[^0]: a) Determined by Caco-2 assay.
 b) Time study using pooled human liver microsomes (HLM) at $3 \mu \mathrm{M}$ concentration.
 c) Protein binding is given as fraction unbound (fu).
 d) Solubility was measured as turbidimetric aqueous solubility.

