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Problem Description

Estimating future asset returns is a difficult problem making input sensitive

portfolio optimization models, like the mean-variance model, perform poorly

when comparing risk adjusted returns. Many investors still use the tradi-

tional 60/40 rule as it offers a degree of diversification and often beats other

portfolio optimization heuristics in the financial markets.

The recent popularity of the risk parity portfolio heuristics has given a

new hope for technical optimization models as this heuristic only focuses

on risk contributions, not expected returns, making it more robust. By

equalizing risk contributions, true diversification is offered achieving higher

risk adjusted return. So far volatility has been the preferred risk measure in

research, but it has its limitations.

This thesis will develop a new framework for simulating multivariate re-

turn distributions to be used in a risk parity portfolio optimization model.

By introducing a modern risk measure in risk parity optimization, better

intelligence is offered to investors and less risky portfolios may be obtained.
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Sammendrag

Dagens porteføljeoptimeringsmodeller er ofte for sensitive til stokastiske in-

putparametre og bruken av utdaterte risikom̊al. Som følge av dette lider

mange av dem av d̊arlig risikojustert avkastning. Denne avhandlingen pre-

senterer en løsning som unng̊ar disse problemene ved å introdusere et nytt

rammeverk for å simulere multivariate avkastninger for korrelerte aktiva. I

tillegg introduseres en modell for å konstruere en risikoparitetsportefølje med

forventet haletap (CVaR) som risikomål. Dette gjør at modellen kan utnytte

spesifikk haleinformasjon funnet i marginaldistribusjonene.

Kvantilregresjon og prinsipialkomponentanalyse brukes til å formulere en

faktormodel som modellerer hele distribusjonen og samtidig opprettholder

avhengigheter mellom aktiva. En ny måte å simulere framtidige prinsipi-

alkomponenter p̊a gjør simuleringsalgoritmen rask og effektiv.

De resulterende marginaldistribusjonene ivaretar aktivaspesifikke risikokarak-

teristikker og haleoppførsel. Dette gjenspeiles tydelig i riskoparitetsportføljen,

noe som viser at CVaR som risikom̊al tilbyr rikere informasjon til investorer.
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Abstract

Today’s portfolio optimization models are often too sensitive to stochastic

input parameters and the use of outdated risk measures, resulting in poor

risk adjusted return. This thesis presents a solution to avoid these difficulties

by introducing a new simulation framework to obtain multivariate return

distributions for correlated assets. Next a model to obtain a risk parity

portfolio using Conditional Value at Risk (CVaR) is offered making the model

able to capture asset specific risk characteristics present in the tails of the

marginal distributions.

Quantile regression and principal component analysis (PCA) are com-

bined to form a factor model able to capture the entire return distribution

and maintain dependencies between correlated assets. A new method to

simulate future principal components is presented making the simulation al-

gorithm quick and effective.

The resulting marginal distributions show asset spesific risk characteris-

tics and tail behaviour. This is in turn reflected in the risk parity portfolio

weights, confirming CVaR as a risk measure offering better intelligence to

investors.

vii





Contents

1 Introduction 1

2 Methodology 5

2.1 Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Arbitrage Pricing Theory . . . . . . . . . . . . . . 6

2.1.2 Quantile Regression . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Principal Component Analysis . . . . . . . . . . . . . . 8

2.1.4 PCA Factor Model . . . . . . . . . . . . . . . . . . . . 11

2.2 Simulation of Return Distributions . . . . . . . . . . . . . . . 13

2.2.1 The Simulation Algorithm . . . . . . . . . . . . . . . . 13

2.2.2 Simulation of Principal Components . . . . . . . . . . 15

2.2.3 Construction of Future Return Distributions . . . . . . 24

2.3 Risk Parity Portfolio Optimization . . . . . . . . . . . . . . . 27

2.3.1 Mathematical Representation . . . . . . . . . . . . . . 27

2.3.2 The Optimization Algorithm . . . . . . . . . . . . . . . 28

2.3.3 Risk Measures in Risk Parity Optimization . . . . . . . 30

3 Empirical Results 35

3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Empirical Model . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Quantile Regression Results . . . . . . . . . . . . . . . . . . . 40

3.4 Simulated Cumulative Return Distributions . . . . . . . . . . 43

3.5 Simulated Return Distributions . . . . . . . . . . . . . . . . . 45

3.6 Simulation Performance . . . . . . . . . . . . . . . . . . . . . 48

3.7 Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . 52

ix



3.7.1 Optimization Results . . . . . . . . . . . . . . . . . . . 53

4 Conclusion 57

A Computational Information 63

B Data set 64

C Descriptive Statistics of Historical Data 67

D Sector Comparison 72

D.1 Variance Explained by PC . . . . . . . . . . . . . . . . . . . . 72

D.2 Correlation Matrices . . . . . . . . . . . . . . . . . . . . . . . 73

E Explanation of Numerical Instability 74

F January 2016 CI Analysis 75

G Simulation Plots 77

H Risk Parity Portfolio Weights 79

x



List of Figures

1 Quantile regression lines and OLS . . . . . . . . . . . . . . . . 8

2 Orthogonal transformation in PCA . . . . . . . . . . . . . . . 9

3 Scatter plot of calculated cumulative return distribution for a

stock given set of principal components . . . . . . . . . . . . . 12

4 Flow chart of the simulation algorithm . . . . . . . . . . . . . 15

5 Simulated return from a cumulative return distribution . . . . 16

6 4 simulations of correlated asset movements comparing simu-

lated principal components . . . . . . . . . . . . . . . . . . . . 23

7 AAPL’s distribution of monthly returns from 1995 to 2015 . . 25

8 Development of return distributions as the number of simula-

tions increases . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9 Risk measures discussed . . . . . . . . . . . . . . . . . . . . . 32

10 Comparison of correlation matrices between data sets . . . . . 37

11 Effect of PCA, comparison between sector 10, 25, 40 and the

full data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

12 The cumulative distribution with too many explanatory vari-

ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

13 α and β estimates from quantile regression . . . . . . . . . . . 42

14 Simulated cumulative stock return distributions for APA, XOM,

ABT and LLY . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

15 Simulated stock return distributions for January 2016 . . . . . 46

16 Monthly development of the S&P500 index from 1995 to Q2

2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xi



17 Forecast plot for January 2016 using probability distributions

from figure 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

18 Realized and mean returns with 95% confidence intervals . . . 51

19 Example portfolio of two stocks with different characteristics. . 52

20 Simulated distributions and risk parity weights for sector 10 . 55

21 Cumulative variance and variance explained by principal com-

ponent for all sectors and the full data set, respectively . . . . 72

22 Correlation matrices for all sectors and for the full data set . . 73

23 Realized and mean returns . . . . . . . . . . . . . . . . . . . . 76

24 Return distributions for all stocks with 100.000 simulations . . 78

24 Risk parity weight allocations for all sectors using three dif-

ferent risk measures . . . . . . . . . . . . . . . . . . . . . . . . 80

xii



List of Tables

1 Effect of PCA with at least 95% variance explained . . . . . . 38

2 Descriptive statistics of probability distributions from figure 15 46

3 Confidence intervals of probability distributions from figure 15 49

4 Relative amount in CI Intervals . . . . . . . . . . . . . . . . . 51

5 Target function values for the different risk measures used in

the portfolio optimization . . . . . . . . . . . . . . . . . . . . 54

6 Full data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Descriptive statistics of Historical Data . . . . . . . . . . . . . 71

xiii





1 Introduction

Being able to accurately forecast the price movements of stocks and other as-

sets would give a superior advantage in today’s financial markets. This prob-

lem is hard to solve and with markets being in constant change, a promising

solution today might not be as promising tomorrow. Merton concluded in

1980 that estimating the market’s return is difficult to do with much accu-

racy, as the expected return is too sensitive to changing factors [1]. This

does not only apply to the market’s return, but applies to many stochastic

variables. As a consequence of this, portfolio optimization is still a problem

whose solutions may look good on paper, but perform poorly when imple-

mented in practice.

Markowitz [2] presented a solution to the portfolio optimization prob-

lem using a solid mathematical foundation with his mean-variance (MPT)

framework in 1952. Since then many researchers have extended this the-

ory which has led to the introduction of several heuristics such as Arnott,

Hsu & Moore’s fundamental weights (FW) [3], CAPM’s market value weights

(MVW) and the MPT special case, minimum variance (MV) [4]. With all

these alternatives at hand, many practitioners still use the traditional 60/40

rule because the heuristics have not proven to be superior to the 60/40 port-

folio in financial markets. One of the reasons for this is that the models base

their output on stochastic parameters, which are difficult to predict, such as

an asset’s future return. That being said, trying to predict an asset’s future

movement may not be a waste of time. Even though an asset’s expected

return is difficult to estimate, the shape of the return distribution is eas-

ier to estimate and can support the decision making in several applications
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including portfolio optimization.

Risk parity is a new portfolio heuristic with great potential as it does not

rely on the estimates of future asset prices. Its only objective is to equalize

the total risk contribution from every asset, thus creating the highest degree

of diversification achievable. The general idea was developed in the 1990s,

but after the financial crisis in 2008, it raised researchers’ attention. Maillard,

Roncalli & Teiletche [6] introduce the properties of the heuristic and how to

create a risk parity portfolio, and Denis Chaves, Jason Hsu, Feifei Li & Omid

Shakernia [7] claim the risk parity portfolio indeed offers true diversification

while showing promising risk adjusted return compared to other heuristics,

including the 60/40 portfolio.

Another powerful characteristic of the risk parity portfolio is that the

investor may choose any risk measure to compare the risk contributions,

making future asset return distributions highly relevant. So far, volatility

has been the risk measure in focus among researchers, but for the purpose

of portfolio optimization, it is an outdated risk measure. Conditional Value

at Risk (CVaR) also known as expected tail loss (ETL) or expected shortfall

(ES), captures the tail information in the return distributions providing bet-

ter intelligence to the investors. Therefore it is a more expedient risk measure

in a state of the art portfolio optimization model.

This thesis presents a new framework to simulate multivariate return

distributions of correlated assets while keeping important asset specific tail

information. It then shows how to use these distributions in creating a risk

parity portfolio, with a risk measure that captures this information. Chapter

2 establishes this framework and its building blocks. In chapter 3 the main
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objective is to show how the framework is applied, what type of information

one can extract from the results and how one uses the information to obtain a

risk parity stock portfolio. This way an understanding of how the framework

operates, what information to expect and how to use this information in a

portfolio optimization model is offered.

Arbitrage pricing theory, principal component analysis (PCA) and quan-

tile regression are combined to create a multi-factor model able to describe

future scenarios. This model along with a comprehensive simulation algo-

rithm based on Alexander & Ruppert’s algorithm [5], results in multivariate

asset return distributions which are used in the risk parity portfolio opti-

mization model.

This thesis makes a valid contribution to financial research as it presents

a new algorithm to simulate multivariate return distributions and obtain a

risk parity portfolio using a suitable risk measure. Focusing entirely on risk,

these methods are combined in an original framework, shifting the attention

from estimating future mean returns to simulating future risk characteristics.

This way one avoids some of the difficulties present in existing portfolio

optimization models.

Chapter 4 concludes the thesis, discusses future research and possible

extensions of this framework.

3





2 Methodology

This chapter introduces the framework used to simulate multivariate return

distributions and the general process to obtain a risk parity portfolio using

the simulated stock returns. The chapter consists of three sections where

section 2.1 focuses on the mathematical foundation of the framework, sec-

tion 2.2 presents the mechanics behind the simulation algorithm and lastly

section 2.3 covers the implementation of the simulation results in risk parity

optimization. Throughout chapter 2, a brief overview of the mathematical

building blocks is given to enlighten the reasoning behind the framework

before the models are discussed.

2.1 Factor Model

The most popular financial factor model is the capital asset pricing model

(CAPM) first introduced by Sharpe [8] and Lintner [9] in the 1960s. This

model identifies the undiversifiable risk of an asset and illustrates the linear

relationship between the asset’s expected return given the excess return of

the market. This relationship can be modeled by the following factor model.

ri = rf + βiRM + εi, E(εi) = 0, (1)

The constant term rf is the risk free interest rate and βi measures the

asset’s sensitivity to the market’s excess return, RM , which is the return over

the risk free rate. A positive beta will indicate a positive correlation between

i and the market, and vice versa. In addition, the beta’s value will indicate

high or low volatility given changes in the market’s excess return. A solution

5



to this model can be found by minimizing ε2i which is called the squared

residual or squared error. The most used method to solve this optimization

problem is ordinary least squares (OLS).

2.1.1 The Arbitrage Pricing Theory

In the financial markets factor models play an important part in modeling

a relationship between a risky asset and different external risk factors. Risk

factors can be the return of a market index, an interest rate or other macro

economic variables. These models are in a subcategory of the arbitrage pric-

ing theory (APT) developed by Ross [10]. How an asset behaves given the

behaviour of a risk factor is a question that can be explained by factor mod-

els. These models often contain multiple risk factors and are then called

multi-factor models. The general APT model takes the vector form,

ri
T×1

= αi + β1,i F1
T×1

+ ...+ βn,i Fn
T×1

+ εi
T×1

(2)

here the return of a risky asset i, is described by a linear combination of n

risk factors including a constant term and an error term. The constant term

is constant because it is riskless and not influenced by variable risk factors.

The betas are called factor sensitivities and is a measure of how sensitive

the risky asset is to the known factor. If the beta is far from zero, i will be

heavily influenced by the factor, thus even a small change in the risk factor

could have a great impact on the risky asset. The alpha and the betas can

be estimated using OLS. These types of models are very useful because it

is often easier to measure and predict the future movements of risk factors

than it is to predict an asset’s return. If one can show a relationship between
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the movements of an asset’s return and risk factors, and at the same time be

able to predict the movement of the same risk factors, a factor model would

be an efficient tool to predict the risky asset’s movement.

2.1.2 Quantile Regression

Solving equation 2 using OLS will output the expected ri,t at a given point

in time conditional on a set of factors, that is

E(ri,t|F1,t, ..., Fn,t) = αi + βi,1F1,t + ...+ βi,nFn,t (3)

Because ri,t is a stochastic variable, it has a probability distribution. As

this method finds the conditional mean it does not capture any information

regarding this distribution. Quantile regression introduced by Koenker &

Bassett [11], is similar to OLS, but the regression line is conditional on a

specified quantile. Consider two time series X and Y of T observations, with

a set of (xt, yt) pairs OLS can be applied on the set and produce E(yt|xt).

With quantile regression a similar expression can be produced only here the

regression line will divide the set of (xt, yt) pairs at the q-quantile. Figure

1 illustrates a scatter plot with (xt, yt) pairs and the same plot with three

regression lines, OLS, the 0.1-quantile and the 0.9-quantile regression line.

The true power of quantile regression becomes available when applying

a full set of quantiles in the range 〈0, 1〉. Defining the q-quantile regression

line for the return of stock i as,

Qri(q|F1, ..., Fn)
Tx1

= αqi + βq1,iF1
Tx1

+ ...+ βqn,iFn
Tx1

+ εqi
Tx1

(4)
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Figure 1: Quantile regression lines and OLS

multiple regression lines for a set of quantiles can be used to create a

cumulative probability function for ri,t. In equation 4 the variables ri, Fj

and εi are time series represented as column vectors with T observations.

2.1.3 Principal Component Analysis

Principal component analysis is an orthogonalization technique to transform

a set of correlated variables into a set of uncorrelated variables. Figure 2

depicts this orthogonal linear transformation in two dimensions. The uncor-

related variables are called principal components and are indeed orthogonal

because they are computed from the normalized eigenvectors from the co-

variance matrix.

These correlated variables are in this case time series of asset returns.

PCA uses the properties of the time series’ covariance matrix and outputs a

set of principal components which can easily reproduce the original data set.

Taking a data set represented by a Txn matrix X of n assets with T obser-

vations through time with a covariance matrix C, the principal components

of X can be found by multiplying the data set with an nxn matrix w,
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Figure 2: Orthogonal transformation in PCA

P = Xw (5)

where the columns of w are the normalized eigen vectors of C and the

columns of P are the principal components. The columns of w are sorted so

that the first column vector is the eigen vector with the largest corresponding

eigenvalue, that is the vector which explains most of the variance in X. The

second column vector is the eigen vector explaining the second most variance

in X and so forth. Put differently, for all n (λi,Ei) pairs of C, where λi is

the eigen value and Ei is the corresponding normalized eigen vector, w is

given by equation 6

w
n×n

=
(
E1 . . .En

)
(6)

where,

λ1 ≥ ... ≥ λn (7)

holds.
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When equation 6 and 7 holds, the variation in the data set explained by

the ith principal component is given by

λi
λ1 + ...+ λi + ...+ λn

(8)

This equation can be used to calculate how many principal components

are needed to explain the variation in the data set up to a given threshold. All

n principal components explain 100% of the variation in X, but m principal

components where m < n might be able to explain for example 95% of the

variance. If 95% is a good enough margin, all columns from m+1 and up to

n can be removed from w. For a highly correlated set of variables, m � n

and the benefit of using PCA is higher. The original data set X can be

reconstructed using

X = PwT (9)

Because w is orthogonal, w−1 = wT . With a 95% variance margin, only

m columns are needed and n - m columns can be removed from w. If w∗

is the matrix with the m leftmost columns of w, P∗ can be found using

equation 5 with w∗ instead of w. P∗ is then the matrix with the m first

principal components.

X ≈ P∗w∗T (10)

With P∗ and w∗, X can be approximated keeping 95% of the original

variance with a reduction of n - m dimensions. This is why PCA is such a

powerful tool to reduce complexity of large correlated data sets. When the

framework is used to simulate correlated asset returns, the effect of using
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PCA should increase as higher correlation in the data set leads to a higher

effect of PCA.

2.1.4 PCA Factor Model

With the mathematical foundations explained, the original model for repre-

senting asset returns can be introduced. This model is a multi-factor model

which makes use of quantile regression and principal component analysis to

represent cumulative return distributions. The input to the factor model is

a data set X, with T observations of n assets. PCA outputs a reduced set of

principal components large enough to explain a set margin of the variance in

the original data set. The PCA factor model is then given by equation 11.

Qri(q|PC1, ..., PCm) = αqi + βq1,iPC1 + ...+ βqm,iPCm + εqi (11)

and is run for all n stocks for all q quantiles. The quantiles are,

Q = {0.01, 0.1, 0.2, ..., 0.9, 0.99} (12)

The 0.01-quantile and the 0.99-quantile are included to capture tail be-

haviour in the distributions. For a given set of principal components, PCs,

one can calculate Qri(q|PCs) for all quantiles and get a scatter plot. An

example is illustrated in figure 3. Notice how the first and last quantile

explain important tail behaviour and make the distribution look like an S-

curve. These data points can later be interpolated to create a full cumulative

return distribution used for asset return simulation.

As mentioned in the introduction, the objective behind this simulation

framework is to capture dependencies between assets and simulate their

11



Figure 3: Scatter plot of calculated cumulative return distribution for a stock

given set of principal components
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marginal distributions. With PCs as explanatory variables, these dependen-

cies are easier to model because of the variance properties of the principal

components explained in section 2.1.3. Quantile regression makes it possible

model the entire distribution instead of the conditional mean. By combin-

ing these methods, one gets a factor model able to fulfill the requirements

described in chapter 1.

2.2 Simulation of Return Distributions

The simulation algorithm combines principal component analysis, quantile

regression, factor model theory and numerical interpolation to produce a

probability distribution for the return of an asset at the end of a specified

period. The core of the simulation framework is an extension of Alexander

& Ruppert [5], however in this simulation a more extensive factor model is

developed and used to increase efficiency and better model the dependencies.

Section 2.2.1 introduces the simulation algorithm with a simple layout in

order to get a good overall understanding of how the algorithm works. In

later sections more technical details will be presented and explained.

2.2.1 The Simulation Algorithm

Figure 4 shows a flow chart of the simulation algorithm. The algorithm is

made up of four main procedures, where one of these is explained in a sub

chart. The first procedure is the principal component analysis on the histori-

cal data. Here w from equation 5 is calculated and the unnecessary columns

are removed before it is multiplied with the matrix containing the historical

data. This procedure results in a reduced set of principal components which

13



is able to explain as much variance as required. The principal components

are then used as explanatory variables in the factor model. The next step is

to estimate an α and multiple βs for each quantile, for each asset in the data

set. These constants are the ones in equation 11, and quantile regression is

used to find these estimates. The first phase of the algorithm is now com-

plete. It involves everything that have to do with looking back in time and

processing historical data.

Phase two is about predicting the future and starts by simulating a set of

principal components. This procedure is the first part of a bigger loop that

must be done many times to improve the accuracy of the return estimates.

With simple pre-allocation of memory and input, this loop can easily run in

parallel on a computer or on a cluster network to significantly reduce the time

it takes to simulate the future return distributions 1. With a simulated set of

future principal components and the αs and βs from the quantile regressions,

equation 11 is used to calculate a data point for each quantile. The set of

data points produces a scatter plot of the cumulative return distribution for

the asset. This procedure is done for every asset. The mentioned scatter

plot is already illustrated in figure 3. In the next step these data points are

interpolated to create a continuous function describing the cumulative return

distribution.

With all this done, the last step consists of generating a uniform random

number between 0 and 1 and drawing a return from the cumulative return

distribution. This drawn return, will represent a simulated future asset re-

turn. By repeating this process thousands of times, these drawn returns will

1See appendix A for computational information.
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Figure 4: Flow chart of the simulation algorithm

form a probability distribution for the future return of the asset. The last

two steps are illustrated in figure 5. This concludes phase two and the entire

simulation algorithm 2.

2.2.2 Simulation of Principal Components

The simulation of principal components is the most important part of the

entire stock simulation algorithm as the simulated future returns are depen-

2See algorithm 1 for a consolidated description in pseudo code.
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Figure 5: Simulated return from a cumulative return distribution

16



input : A set of quantiles Q

input : A T × n matrix X, of historical data for n assets

input : S̃, number of simulations

output: An S̃ × n matrix D, of simulated returns

Perform PCA and obtain the reduced set of principal components,

PCs, of X where the variance margin hold ;

for i← 1 to n do

foreach q in Q do

Estimate the parameters αqi , β
q
1,i, ..., β

q
m,i from equation 11;

end

end

for j ← 1 to S̃ do

Simulate a set of future principal components, simPCs;

for i← 1 to n do
Calculate the conditional quantiles from equation 11 using

simPCs;

Interpolate the conditional quantiles to obtain a cumulative

return distribution;

Simulate a return by drawing from the distribution and

insert into D(j, i);

end

end

Algorithm 1: The Simulation Algorithm

17



dent upon the simulated future principal components through the PCA factor

model shown in equation 11. The original idea behind these future principal

components comes from equation 5. When a matrix of principal components

can be found by multiplying w with the matrix of historical returns, the

same logic could be applied into the future. Meaning a simulated matrix of

principal components P̃ can be found by multiplying w by a simulated set

of future returns X̃, that is,

P̃ = X̃w (13)

By simulating asset movements one can create X̃. One of the ways to do

this is by modeling movements as stochastic processes, treating the returns

over the time span as a system of random variables.

P̃ =

stochastic
processes


︸ ︷︷ ︸

X̃

w (14)

This idea makes one assumption that w is constant in the simulated

future. As the matrix w is calculated based on the historical data, this is

a reasonable assumption to make. In chapter 3 the plain stochastic process

for simulating stock movements is used, that is geometric Brownian motion

(GBM). However, one could use any relevant stochastic process to simulate

asset movements, like a jump-diffusion process or other processes specialized

in modeling the chosen asset’s behaviour.
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Geometric Brownian Motion For Correlated Stocks

For a single stock the proportional change of the price at time t can be

written,

dSt
St

= µdt+ σdWt (15)

This process is called a geometric Brownian motion because the change in

price is relative to St compared to an absolute change which is an arithmetic

Brownian motion. µ is the stocks drift, σ is the volatility over the period

and Wt is a Brownian motion. The solution to this stochastic differential

equation is, [12]

St = S0e
(µ−σ

2
)t+σWt (16)

To simplify the math for computing purposes the numerical approxima-

tion of this stochastic differential equation is of interest to the simulation

algorithm. For a discrete step in time equation 16 becomes,

St+∆t = Ste
(µ−σ

2
)∆t+σWt+∆t (17)

Here µ and σ are adjusted for the period ∆t. Using the Euler-Maruyama

method, equation 17 becomes,

St+∆t = St + µSt∆t+ σSt∆Wt (18)

where ∆Wt = Wt+∆t −Wt and ∆Wt ∼ N(0,∆t). Notice how the price

term is included in all right hand parts of equation 18, because the algorithm

is focused on returns, this equation can be simplified to,
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r̃t+∆t =
St+∆t − St

St
= µ+ σ∆Wt (19)

assuming ∆t = 1.

Stocks in the same markets and sectors tend to move together and are

influenced by each other. For this reason, GBM of several correlated assets

should be simulated as a system. Equation 19 for a system of n correlated

assets becomes,

r̃t+∆t
1×n

= µ
1×n

+ ∆Wt
1×n

LT
n×n

(20)

where L is the lower Cholesky decomposition of the covariance matrix C and

∆Wt ∼MVN(0, I).

Principal Component Simulation with GBM

With an understanding of geometric Brownian motion for correlated stocks,

the framework’s simulation of principal components can be explained. If the

algorithm is run on other assets than stocks or an other stochastic process

than GBM, the following procedure must be altered accordingly.

With GBM P̃ is created the following way,

P̃ =


µ+ ∆WtL

T

µ+ ∆Wt+1L
T

...

µ+ ∆Wt+T̃L
T


︸ ︷︷ ︸

X̃

w (21)

Here the principal components are simulated T̃ steps into the future where
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∆t = 1. With this method, an assumption is made that µ, which are calcu-

lated based on historical data, holds in the future. By exploiting the benefits

of PCA and only using the m principal components needed to fit the require-

ment of variance explained, one can experience a reduction in computational

effort in the calculation of future principal components by multiplying X̃ by

W∗ instead of W getting,

P̃∗ = X̃w∗ (22)

With this method X̃ still needs to be fully computed using GBM or an

other stochastic process before multiplying it with w∗. Because X̃ has to be

simulated in every simulation, it is a time consuming step. In the end, the

goal is to end up with a matrix of simulated principal components P̃∗. For

an arbitrary row in the matrix,

p̃∗t
1×m

= x̃t
1×n

w∗
n×m

(23)

where,

E[p̃∗t ] = E[X̃tw
∗] = µw∗ (24)

and

V ar[p̃∗t ] = w∗TLLTw∗ = w∗TCw∗ = C̃
m×m

(25)

To make the algorithm more efficient in simulating future principal com-

ponents, it splits up X̃ and performs the GBM simulation and PCA multi-

plication from equation 23 in one calculation using the following equation,
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p̃∗t
1×m

= µ
1×n

w∗
n×m

+ ∆W
1×m

L̃T
m×m

(26)

where L̃ is the lower Cholesky decomposition of C̃, which is static. Notice

how the random vector ∆W can be reduced from a length n to m using this

method. To show that this works, p̃∗t calculated by equation 26 must have

the same expected value and variance as in equation 24 and 25.

E[p̃∗t ] = E[µw∗] + E[∆WtL
Tw∗] = µw∗ + 0 (27)

and variance,

Cov[P̃∗t ] = Cov[µw∗] + Cov[∆W LTw∗︸ ︷︷ ︸
A

] = ATCov[∆W ]A =︸︷︷︸
(eq29)

C̃ (28)

ATCov[∆W ]A = w∗TLILTw∗ = w∗TCw∗ = C̃ (29)

Using this process, a significant amount of computational time is saved

making the simulation algorithm faster.

Figure 6 shows a comparison between simulating principal components.

The three columns use equation 13, 22 and 26 respectively, and each row

shows a simulation run. Here the future movement of six arbitrary assets are

shown using returns calculated with equation 9 and 10 from simulated prin-

cipal components. Notice how the trend is clearly similar between the plots,

this is caused by the equality between equation 24 and 27. The covariance

matrix of each plot in a simulation should also be equal as a consequence of

the variance equality.
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Figure 6: 4 simulations of correlated asset movements comparing simulated

principal components
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When simulating with GBM one draws random numbers form a standard

normal cumulative distribution. This will result in an X̃ matrix of nor-

mally distributed returns. Thus, the principal components will be normally

distributed. As a linear combination of independent normally distributed

random variables also is normally distributed, every Qri(q|PC1, ..., PCm)

from equation 11 will be normally distributed. This does not mean that

the simulated marginal distributions are normally distributed. Remember

Qri(q|PC1, ..., PCm) is only a data point in the mapping of the cumulative

return distribution, hence the distribution itself is not necessarily normally

distributed. However, if a different stochastic process is used in the genera-

tion of X̃, one can make the principal components follow different distribu-

tions.

2.2.3 Construction of Future Return Distributions

When a set of principal components is simulated, the estimation of future

cumulative return distributions can begin. All assets in the data set use these

principal components in several linear combinations to get the data points

which make up the asset’s cumulative return distribution. The constants

in these linear combinations are the αs and βs estimated in the beginning

of the algorithm. This procedure makes a crucial assumption that these

constants also hold in the future. The linear combination in question is the

factor model in equation 11. As mentioned in section 2.2.1 these scatter plots

must be interpolated to complete the cumulative return distributions for all

assets. For this step, the algorithm uses a shape-preserving piecewise cubic

Hermite interpolation. To create pleasing cumulative return distributions,
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Figure 7: AAPL’s distribution of monthly returns from 1995 to 2015

two properties must be present.

• Monotonicity, as the function is a cumulative distribution, it should be

strictly increasing that is ∀x, y were x ≤ y, f(x) ≤ f(y)

• Smoothness, ideally the function should be as smooth as possible and

not contain sharp bends.

Figure 5 shows how the algorithm draws a simulated return after the in-

terpolation is done. However, this process does only result in one simulated

return per asset. By simulating a new set of principal components and re-

peating this process many times, a return distribution will take form. Figure

8 shows how the monthly return distribution look like for 3 different stocks

as the number of simulations increases. Notice how it takes at least 10,000

simulations before the distributions start to look continuous. For comparison

AAPL’s monthly return from 1995 to 2015 is plotted in figure 7. The simu-

lated monthly distributions clearly replicate the behaviour of a real stock.
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2.3 Risk Parity Portfolio Optimization

With estimates of future return distributions at hand, one can use this in-

formation to build a portfolio in which each asset contributes equally to the

total portfolio risk. Such a portfolio is called a risk parity portfolio, and the

intuition behind this approach is to obtain the largest degree of diversification

achievable, and maximize the long term risk adjusted return [13].

2.3.1 Mathematical Representation

To achieve risk parity, the total risk contribution (TRC) from each asset to

the portfolio must be equal. TRC from an asset i is calculated using equation

30,

TRCi = xiMRCi = xi
∂Rp

∂xi
(30)

where MRCi is defined as the marginal risk contribution from i, Rp is the

portfolio risk and xi is the asset weight. The total risk of the portfolio is the

sum of the individual risk contributions,

Rp =
∑
i

TRCi =
∑
i

xiMRCi =
∑
i

xi
∂Rp

∂xi
(31)

The mathematical solution to a risk parity portfolio of n assets is a vector

x of n weights where the following equation holds,

x1
∂Rp

∂x1

= ... = xn
∂Rp

∂xn
(32)

As there is no analytical solution to this problem, numerical optimization

must be used. Equation 33 formulates the optimization problem where the
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solution is a risk parity porfolio [14]. The target function to be minimized is

the sum of all squared differences in total risk contribution from the assets.

The last constraint is included to force long positions.

minimize
x

∑
i

∑
j

(TRCi − TRCj)2

subject to ∑
i

xi = 1

0 ≤ xi ≤ 1, ∀i

(33)

Notice how these equations are not risk measure specific, indicating the

flexibility mentioned in chapter 1. In the risk parity heuristic the investor

may choose which risk measure to use as opposed to other heuristics where

only volatility is used. A risk averse investor interested in his portfolio’s tail

behaviour, might prefer to use Conditional Value at Risk instead of volatility.

With risk parity, this option is possible and the solution lies in the way the

TRCs are being calculated.

2.3.2 The Optimization Algorithm

The optimization algorithm takes as input the matrix, D, where

D =


r1,1 · · · r1,n

...
. . .

...

rs̃,1 · · · rs̃,n

 (34)

containing S̃ simulated returns for all n assets generated by the simulation

algorithm in section 2.2. In this matrix, every column makes up the return

28



distribution for the given asset. Assuming one holds a portfolio, xp, where

xp is a column vector of portfolio weights, the return of the portfolio for a

given simulation will be given by equation 35

rp =
∑
i

rixi (35)

Applying the same equation on all simulated returns, one can obtain the

portfolio return distribution. Equation 36 shows this step in matrix form,

Dp = Dxp =


r1,1 · · · r1,n

...
. . .

...

rs̃,1 · · · rs̃,n



x1

...

xn

 =


r1

...

rs̃

 (36)

which produces a return distribution vector for the portfolio consisting of the

assets as specified by the weight vector xp.

With the portfolio return distribution one can calculate the value of a

risk measure. For each iteration in the optimization algorithm, the risk of

the portfolio for the current xp is calculated. Next a marginal change, ∆xi,

is made to the weight of asset i, and a new portfolio risk is calculated using

the new x
′
p. The resulting change in portfolio risk is used to calculate the

current MRCi. TRCi is then found using equation 37 3,

TRCi = xi
∂Rp

∂xi
≈ xi

Rp(x
′
p)−Rp(xp)

∆xi
(37)

The algorithm then calculates the target function value to be minimized,

which is the sum of all squared differences in TRCs, stated in equation 33.

3Notice how the derivation in equation 37 is merely a numerical computer implemen-

tation of ∂f
∂x = limh→0

f(x+h)−f(x)
h
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After a number of iterations, a portfolio xp is found where the result satisfies

equation 32 and the solution is returned.

As mentioned in section 2.3.1, this procedure is the same for every risk

measure where TRCi has to be calculated numerically. However, when

volatility is chosen as risk measure, an analytical formula can be used. In

this case equation 37 becomes

TRCi = xi
∂σp
∂xi

= xi

∑
j

xjσij

σp
(38)

where σp is the portfolio volatility given by equation 39.

σp =

√∑
i

∑
j

xixjσij (39)

Here σij is the covariance between asset i and j, and σii is defined as the

variance of asset i.

2.3.3 Risk Measures in Risk Parity Optimization

In risk parity research, volatility has been the risk measure receiving most

attention. Even though several authors mention the possibility to use differ-

ent risk measures as one of the major benefits to using risk parity [14], [15],

an overwhelming majority of recent research papers focus on risk parity in

comparison with other heuristics, using volatility as risk measure [13], [16],

[17].

As volatility does not indicate the direction of an investment’s movement

it is not ideal for investors in practice. Investors are not distressed by gains,

and volatility, treating all fluctuation as risk, will therefore perform poorly
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for non-normal distributions. The important tail information is not captured

by volatility and therefore it lacks focus on what matters most.

Downside deviation partly addresses these issues, as it focuses only on

the negative fluctuation, ignoring the positive portfolio gains. As defined in

equation 40, downside deviation calculates every return below some prede-

fined threshold c, and reports this back as risk.

Downside deviation =

√√√√ 1

n

n∑
ri<c

(ri − c)2 (40)

In this way, downside deviation estimates the potential losses of the port-

folio to some degree. However, it does not offer any insight on the probabili-

ties of the different levels of loss, and so it fails to become the preferred risk

measure to be used by investors.

Value at Risk (VaR) focuses on the tail of the return distribution, and

answers the question ”What is the most I can expect to lose with a given

confidence interval over a time period?”. Figure 9 shows VaR as the breaking

point for the ”worst case scenario” - defined as the highest percentage of

portfolio value the investor may expect to lose with 1 − α% certainty over

the time period considered.

Even though VaR has been widely used for measuring risk in the financial

industry, it still has severe shortcomings when used alone as a risk measure.

VaR does define the break point for the α% worst case loss, but completely

ignores the size of the expected loss once this point is breached. This is

where CVaR comes in. Defined as in equation 41 and shown in figure 9,

CVaR measures the expected loss of the portfolio in the α% worst cases.
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Figure 9: Risk measures discussed

CV aR1−α(ri) =

∫ V aR1−α

−∞
rip(ri) dri (41)

Here ri and p(ri) is asset i’s stochastic return and its probability distribution,

respectively.

CVaR is more sensitive to the shape of the tail distribution and it es-

timates the risk of an investment in a more conservative way, focusing on

the least profitable outcomes. As VaR has shortcomings when used as a risk

measure, it also has mathematical properties far inferior to those of CVaR.

Rockafellar & Uryasev [18] show how VaR, when calculated from scenarios,

is a non-convex and discontinuous function, making it difficult or even im-

possible to optimize as it has many local extrema. In this framework, where

the input are discrete distributions calculated from scenarios, optimization

using VaR as risk measure is not performed.

The main objective of the simulation algorithm presented in section 2.2

is to simulate marginal return distributions preserving asset specific tail be-

haviour. This information is of interest to CVaR as risk measure and when

using CVaR as risk measure in risk parity optimization. Given CVaR’s su-

perior mathematical properties as compared with those of VaR, and given
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its characteristics as a risk measure used in optimization, CVaR will be the

risk measure of focus in the empirical study later in this thesis.
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3 Empirical Results

This chapter presents the results from testing the simulation algorithm on

an empirical data set. Without any knowledge of how the stock markets

moved in January 2016, the algorithm will use available historical data and

simulate the performance of stocks in January using the framework presented

in chapter 2. A brief introduction to the data set is given before section 3.2 to

section 3.5 describe the realized factor models and simulation results. Next

a performance test of the simulation algorithm is presented in section 3.6

where the simulated returns are compared to the actual realized returns of

January 2016. The results of the risk parity optimization are presented in

section 3.7.

3.1 Data Description

The data set in this empirical test consists of 80 stocks from the S&P100

index. The S&P100 index is an index composed of a subset of companies

from Standard&Poor’s 500 index. The companies listed in the S&P100 in-

dex are mostly the leading well-established publicly traded U.S companies,

representing a large amount of the total market capitalization of the U.S

equity markets. In order to get higher effect of PCA, this 80 stock data set is

split into 10 smaller data sets with respect to the Global Industry Classifica-

tion Standard (GICS). Descriptive statistics of historical data for all stocks

grouped into GICS sectors are listed in appendix C.

Monthly adjusted close prices taken from January 1st 1995 to December

31st 2015 output 252 data points for each stock. Appendix B shows a list

35



of all the stocks in the data set. These time series have been converted to a

return matrix with discrete returns calculated using equation 42,

rt =
St − St−1

St−1

(42)

implying that one time step equals one month. The reason why 20 stocks

are excluded from the data set is because these companies do not have data

going back to 1995, as the majority is younger than 20 years old.

One month is a reasonable period to hold a portfolio of assets before

rebalancing and was therefor seen as a natural choice for the simulation

period resulting in a ∆t value equal to 1 with months as unit. The number

of simulation steps into the future is also set to 1 in the algorithm, meaning

the results at the end of the run are stock returns in January 2016. As figure 8

points out, several thousand simulations is necessary to produce continuous

return distributions. In this test, 100.000 simulations for each stock were

used, meaning S̃ equals 100.000.

When it comes to the decision of what historical data to use, there are

many options to choose from and no optimal answer. A key element to

consider is what applications the simulation results are going to be used in.

Thus, the choice of daily, weekly or monthly data should reflect the intended

use. The time horizon of the historical data should also be considered. Too

few data points and the effect of quantile regression will become absent. With

to many data points, the effect of one data point would be diluted resulting

in a loss of stock specific tail behaviour.
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Figure 10: Comparison of correlation matrices between data sets

3.2 Empirical Model

The simulation algorithm is run on each GICS sector individually, meaning

every sector with its respective stocks is treated as an independent data set.

This is done to achieve a higher correlation in the data sets, thus enhancing

the effect of using PCA in the simulations. Figure 10 shows a comparison of

the correlation matrix of the historical data between the arbitrarily selected

sectors 10, 25 and 40, and the full data set 4. These surface plots show

an increased internal correlation when splitting the full data set into GICS

sectors indicating, as expected, an increased effect of PCA.

4See appendix D.2 for a comparison between all sectors and the full data set.
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Sector Columns Columns After PCA Reduction

10 9 7 22,2%

15 2 2 0,0%

20 13 11 15,4%

25 10 8 20,0%

30 9 8 11,1%

35 12 10 16,7%

40 12 9 25,0%

45 9 8 11,1%

50 2 2 0,0%

55 2 2 0,0%

All 80 50 37,5%

Table 1: Effect of PCA with at least 95% variance explained

Table 1 shows the effect of using PCA keeping at least 95% of the variance

in all data sets. The third column in the table shows how many risk factors

are included in the PCA factor models, representing the variable m from

chapter 2. 95% is used as a variance margin to achieve dimension reduction

and at the same time keep individual stock characteristics in the data sets.

The fourth column shows the percentage effect of using PCA in the model to

reduce complexity. If there was any reduction, over 10% was achieved. With

a variance margin below 80% only common trends will be kept in the data

set after PCA, making the simulation of stock specific tail characteristics

impossible.

Figure 11 shows a plot of the cumulative variance explained and how much
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Figure 11: Effect of PCA, comparison between sector 10, 25, 40 and the full

data set

39



variance each principal component explains for sectors 10, 25, 40 and the full

data set 5. The red horizontal line in the first column indicates the 95% mark.

With equation 8 in mind, notice how small the eigen values of the principal

components in the full data set are. From the twentieth principal component

and onwards, each PC explains less than 1% of the variance in the data set.

Using the full data set of 80 stocks and keeping at least 95% variance in the

simulation would require 50 principal components in the PCA factor models.

With that many risk factors, the algorithm ran into problems with numerical

instability in the simulation of future cumulative return distributions. By

splitting the data set into GICS sectors, each factor model had fewer PCs

which eliminated the risk of overfitting in the interpolation caused by the

instability. Figure 12 illustrates this instability problem. Remember that

every data point is normally distributed as discussed in section 2.2.2. Notice

how the means create a smooth S-shaped cumulative distribution. With too

large variance in the data points, they may not be aligned properly, thus

creating an undesired cumulative return distribution under interpolation 6.

This shows how high positive correlation in the data set is important for the

PCA and the stability in the framework.

3.3 Quantile Regression Results

After the PCA is run on the historical data, the principal components are

ready to be used in the quantile regressions. This is the second process in the

5See appendix D.1. for a comparison between all sectors and the full data set
6See appendix E for an explanation of why the variance in data points grows with the

number of principal components in the factor model
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Figure 12: The cumulative distribution with too many explanatory variables

flow chart in figure 4. The number of explanatory variables from equation 11

used in the regressions, are shown in the third column in table 1. The β is as

mentioned in section 2.1, sensitivity to the risk factor, while the α measure

the risk less behaviour, that is the stock’s trend. Figure 13 shows the α and

3 βs for APA, XOM, ABT and LLY’s stock. Remember β1 is the stock’s

sensitivity to the principal component that explains the most variance, then

comes β2 and so on.

Because variance is explained by the principal components, the α plot

indicates the cumulative probability distribution for the stock’s trend based

on 252 data points of historical monthly data. APA’s 0.5 quantile in the α

plot indicate a median return of 1,11% per month which corresponds well

with its mean return of 1,15% found in the descriptive statistics in appendix
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Figure 13: α and β estimates from quantile regression
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C. If the regressions were based on daily data, one would expect the median

return to be closer to 0.

Notice how the β plots reveal interesting characteristics of the return dis-

tribution before the distribution is simulated. APA and LLY have almost

no difference in sensitivities when comparing between quantiles as opposed

to XOM and ABT. A typical I-shaped beta plot will reflect in smaller differ-

ences between each quantile making the effect of quantile regression lower.

Thus, a sharper simulated cumulative return distribution is expected. This

assumption will be investigated further in section 3.4.

A second characteristic one can detect by looking at the β plots is an indi-

cation of the stock’s volatility. Higher absolute β values make the stock more

sensitive to risk factors, which will be reflected in the stock’s behaviour. APA

and LLY have higher absolute β values than XOM and ABT meaning APA

and LLY should be more volatile. By comparing volatility in the descriptive

statistics, this claim can be confirmed. Studying the simulated return distri-

butions in appendix G, one can clearly see that this is also the case in the

simulated future.

3.4 Simulated Cumulative Return Distributions

Quantile regression makes it possible to create a future cumulative return

distribution presented in section 2.2.3. However, the effect of this regression

varied in the test. Figure 14 shows 10 simulated cumulative return distri-

butions for APA, XOM, ABT and LLY. From the discussion in section 3.3

one would expect I-shaped cumulative return distributions for APA and LLY

because of the small differences in β values between quantiles. On the other
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Figure 14: Simulated cumulative stock return distributions for APA, XOM,

ABT and LLY

hand, XOM and ABT show more desired patterns where the variation is

bigger leading to S-shaped cumulative distributions.

Notice how the vertical shifts are greater for APA and LLY than they

are for XOM and ABT. This behaviour can also be predicted by looking at

the plots of the β values. The stocks with greater vertical shifts have higher

absolute β values than the stocks with compact cumulative distributions.

The mechanics behind the relationship between the plots in figure 13 and

figure 14 lie in the factor model in equation 11.

One of the reasons why some stocks have I-shaped cumulative return
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distributions lies in the historical data. With clustered data points the re-

gression lines illustrated in figure 1 will lie close together which will lead to

a lower effect of quantile regression. Using monthly data increases the possi-

bility of this outcome in two ways. Firstly, 252 data points might not always

be enough to clearly separate the regression lines for different quantiles. Sec-

ondly, 252 monthly data points might not capture enough variance. If some

share prices increase in 9 out of 10 months, there will be a clustering in the

data. With daily data there are roughly 30 times as many data points per

month than with monthly data, making the risk of clustering lower.

3.5 Simulated Return Distributions

The result of running the simulation algorithm will be as mentioned a matrix

D, consisting of simulated stock returns. These distributions are simulated

as a correlated set of stocks within each GICS sector. Using 100,000 simula-

tions the negative effect of I-shaped cumulative distributions will be reduced.

In addition, the vertical shifts make the distribution keep important tail in-

formation as stock returns will be drawn from the entire return interval.

Figure 15 shows the probability distributions for four different stocks.

Notice how different the characteristics of each distribution are. By gather-

ing individual stock characteristics from empirical data, the algorithm can

predict the future distribution keeping the trends and tail behaviour. Table 2

shows the descriptive statistics for these simulated distributions. The skew-

ness for all stocks is slightly positive meaning the right tale is longer than the

left, but the low skewness values along with the Jarque-Bera test 7 results

7Jarque-Bera test, 1 if the null hypothesis is rejected at a 5% significance level, 0
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Figure 15: Simulated stock return distributions for January 2016

Stock Mean St.Dev Skewness Kurtosis JB Test

AAPL 0.066241 0.12819 0.017501 2.9905 0

AIG 0.031098 0.2138 0.008025 2.9854 0

CVX 0.069666 0.056197 0.002075 3.0297 0

MCD 0.094022 0.059688 0.005722 2.997 0

Table 2: Descriptive statistics of probability distributions from figure 15

indicates a plausibility that the distributions are normal distributions. Also

the kurtosis values support this claim.

Comparing the new descriptive statistics in table 2 with the statistics in

appendix C one can see a noticeable difference. Especially AIG with a his-

toric skewness and kurtosis value of 6.52 and 73.89 respectively. The reason

why these values differ, is because the simulated principal components are

otherwise.
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Figure 16: Monthly development of the S&P500 index from 1995 to Q2 2016.

normally distributed. The return distributions will therefore follow a normal

distribution closely as the new statistics indicate. In addition, the histori-

cal statistics are an average of the past, calculated using 252 returns versus

100.000 in the simulation. Given AIG’s turbulent past, such extreme statis-

tics are not surprising and differences between new and historical statistics

may occur for some stocks.

Figure 24 in appendix G show the simulation results for all stocks. Some

stocks have higher volatility than others and some are more skewed than

others. What the majority have in common is that almost all means are

slightly positive, meaning the algorithm expects most stocks to make money

in January 2016. Looking at the monthly development of the S&P500 index

in figure 16, this assumption is not entirely wrong as the clear trend is a

positive monthly return.
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3.6 Simulation Performance

To measure the performance of the simulation algorithm, different confidence

intervals have been calculated from the simulated distributions to check if

the realized returns were within the intervals. These intervals are the 60,

70, 80, 90 and 95% confidence intervals. Table 3 shows an analysis of the

confidence intervals for the four stocks from section 3.5. Column two shows

the realized stock return in January 2016 and the other columns investigate if

the realized return lies inside its respective interval. Ideally, 95% of the times

the realized stock returns should lie in the 95% confidence interval predicted

by the simulation algorithm. Using the data in table 3, one can produce a

price plot of the stock including both historical development and a forecast

with different certainty levels. Examples of such plots are illustrated in figure

17.

Table 4 shows the amount and relative amount of stocks, where the re-

alized January return was in the interval. This table is a good indication

on how well the algorithm performed in simulating mean returns with the

80 stocks from the S&P 100 index in January 2016. Notice how less than

30% of the returns was in the 60% confidence interval, while almost 80% of

the returns was inside the 95% confidence interval. Because the algorithm

gathers stock characteristics from historical data, naturally the algorithm

will perform better in times where the markets behave similar as the trends

in the past. As January 2016 suffered from turbulent markets and most

of these companies lost money, one can not say the month was an average

month when the historical period in question is January 1995 to December

2015. Figure 18 shows data from table 3 included mean of the four stocks
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Figure 17: Forecast plot for January 2016 using probability distributions

from figure 15
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Figure 18: Realized and mean returns with 95% confidence intervals

In 60%Int In 70%Int In 80%Int In 90%Int In 95%Int

Amount 23 28 41 51 63

Relative 29% 35% 51% 64% 79 %

Table 4: Relative amount in CI Intervals

along with the 95% confidence intervals and the realized return 8.

By looking at the performance results of the simulation algorithm in

January 2016 comparing the estimated mean returns to the realized returns,

one might conclude that the algorithm performed badly. However, this is not

enough to discard the framework even though the results could be better.

Various periods of historical data, forecasting lengths and time intervals are

all variables that should be changed and tested with the algorithm before one

can say with great certainty that the framework does not work. That type

of analysis is beyond the scope of this thesis. This chapter is, as mentioned

in chapter 1, merely about demonstrating how one uses the algorithm to

8See appendix F for a similar plot of all stocks.
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Figure 19: Example portfolio of two stocks with different characteristics.

simulate real life stocks and what data one can extract from the D matrix the

algorithm produces. In addition, with regards to the portfolio optimization

model, the goal of the simulation algorithm is not necessarily to estimate

precise mean returns, but rather model the risk characteristics as accurately

as possible.

3.7 Portfolio Optimization

The portfolio optimization process uses the algorithm presented in section

2.3.2, with D as input. This matrix is then split up into GICS sectors and the

optimization algorithm is run on every sector. This is done to force higher

correlation in the data sets, as it can be shown that for CVaR stocks from

different sectors may have too different characteristics, making it hard or

even impossible to achieve risk parity for any chosen set of weights.

For example, figure 19 presents the return distributions of two stocks

from different sectors. Their volatility is always positive, implying that there

will always exist a set of portfolio weights which equalizes the total risk

contribution from the two stocks in a given portfolio. However, with CVaR

52



as risk measure, a portfolio consisting of the two stocks will have marginal

risk contributions with unequal sign. Stock 1 will always contribute to an

increase in portfolio risk, as long as x2 > 0, and stock 2 will contribute to a

decrease in portfolio risk, as long as x1 > 0, in other words,

∂Rp

∂x1

< 0 <
∂Rp

∂x2

(43)

and equation 32 may never hold for any vector x of non-negative weights.

After the data set is split up into individual sectors, the stocks in each

subset share more of the same characteristics. This implies a higher degree

of correlation and ultimately distributions with less extreme differences than

those shown in the example in figure 19. This is also observable in the

correlation matrices in appendix D.2, where the correlation matrix for the full

data set contain both positive and negative values, whereas the correlations

in the individual sectors span values between zero and one.

As the stocks are split up into GICS sectors, the problem of uncorrelated

assets is solved and risk parity optimization using CVaR may be performed.

3.7.1 Optimization Results

The optimization framework is implemented using three different risk mea-

sures; CVaR, volatility and downside deviation, where the last two are in-

cluded for comparison. The risk calculations described in section 2.3.2 are

implemented for the respective risk measures, and the target function for

each risk measure is minimized, observing the restrictions. The resulting

weight vector x is then returned along with a vector of the associated TRCs

to check that equation 32 is indeed satisfied for the given weights.
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Sector CVaR Volatility Down dev

10 2,47E-10 3,46E-12 3,85E-08

15 8,48E-14 5,91E-15 7,52E-08

20 5,36E-12 1,24E-12 9,77E-09

25 2,15E-07 8,90E-12 4,57E-08

30 4,99E-10 1,06E-12 1,28E-08

35 4,59E-07 1,09E-11 9,89E-08

40 5,36E-08 4,70E-12 3,10E-08

45 3,85E-13 7,60E-14 2,14E-08

50 9,45E-14 6,58E-19 2,79E-11

55 3,16E-12 6,93E-16 5,64E-07

Table 5: Target function values for the different risk measures used in the

portfolio optimization

The target function values for each optimization run are presented in

table 5. For each of the different sectors, all values approach zero, indicating

risk parity. 9

When observing the output of the optimization for the different sectors,

it becomes apparent how the choice of risk measure is non-trivial when the

simulation framework described in this thesis is used. In figure 20 the sim-

ulated distributions for the stocks in sector 10 are presented along with the

weights allocated using the different risk measures. For volatility and down-

side deviation, the allocations are quite evenly distributed, as these consider

only the spread of the distributions, ignoring tail behaviour. The allocations

9The risk parity weights for all sectors and risk measures are presented in appendix H.
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(a) Simulated distributions for stocks in sector 10

(b) Allocated risk parity weights for sector 10

Figure 20: Simulated distributions and risk parity weights for sector 10

55



using CVaR, on the other hand, differ much more, allocating almost twice

the weight to XOM as compared with that of the runner up, CVX. The first

two risk measures also allocate more weight to these two stocks compared

with the rest because the spread of the distributions for these two stocks is

smaller. As CVaR focuses on the information in the tail end of the distribu-

tions, it is better able to capture the unique characteristics of the individual

stocks which is shown clearly in this example.

Equivalently, the distributions of APA, APC, DVN and HAL have the

longest tails on the negative side of zero, resulting in CVaR allocating the

lowest weights to these stocks. Apparently, the information captured by the

simulation algorithm is preserved, and the different characteristics of the risk

measures become important.

The results of the optimization show that the simulated distributions may

be relevant in portfolio optimization when using a practical risk measure like

CVaR. There may be difficulties performing risk parity optimization with

CVaR for large data sets of uncorrelated assets, but for smaller sets with

higher correlation, this is not a problem. The unique characteristics of the

different stocks are captured and taken into account to a larger extent when

using CVaR as risk measure, compared to volatility and downside deviation.
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4 Conclusion

This thesis presents a framework for simulating multivariate return distribu-

tions for correlated assets and a way to use these distributions to obtain a

risk parity portfolio using a relevant risk measure like CVaR.

The solution overcomes some of the difficulties of earlier portfolio opti-

mization models as the framework simulates the entire distributions and not

just the conditional means. In addition the risk parity model does not rely

on these means, but focuses only on risk as it examines the characteristics in

the tails of the assets’ distributions. This way, the input sensitivity is lowered

and the model risk is decreased when used with CVaR, enabling better and

more robust solutions to the portfolio optimization problem.

The marginal distributions generated in the simulation show how the in-

dependent behaviour and risk characteristics of the assets are preserved into

the simulated future. The results of the portfolio optimization indicate how

these characteristics result in different weight allocations for different risk

measures, where CVaR captures the information in the tails of the distribu-

tions and allocates accordingly.

The optimization algorithm also shows how optimizing a large data set

of relatively uncorrelated assets is a challenge using CVaR as risk measure.

However, for smaller sets of assets with similar characteristics the algorithm

finds optimal weight allocations with minimal differences in risk contribu-

tions. This shows how the framework can be used creating risk parity optimal

solutions depending on tail information in the simulated distributions.

As the framework was tested only in one time period, an interesting next

step would be to test the framework in different time periods to get a better
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grasp of the general performance of the algorithm. The simulation and time

step values are variables which could be changed, for example with daily

returns and a one day simulation period. In this way one could get many

more data points from the historical data, making the effect of the quantile

regression higher.

The most interesting extension of the simulation algorithm would be to

modify the simulation of future asset movements. By incorporating local

volatility [19] with GBM one could obtain a dynamic volatility with a better

fit to the market situation. Another possible extension is to use a different

stochastic process than GBM to model heavier skewness and tails in the

resulting principal component distributions. This would in the end impact

the shape of the return distributions.

Further research may also be done on using the simulation output ma-

trix in other applications than the portfolio optimization model implemented

here. Other applications such as risk analysis, trading strategies and deriva-

tives pricing may be relevant for the simulated distributions.
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A Computational Information

The simulation algorithm can be implemented in any programming language.

For the test in this thesis, it was implemented in Matlab which is a great tool

for small to medium scale problems and enhanced for matrix algebra. There

are also many toolboxes available which can simplify processes and reduce

the amount of necessary code. Toolboxes used in the implementation are

• Datafeed Toolbox, used to download historical stock data from Yahoo!

Finance.

• Parallel Computing Toolbox, used to simplify the coding for making

the simulation loop run in parallel.

The program can run in parallel on a computer with several cores, or on

a cluster network to significantly reduce the simulation time. The simulation

program was tested on a PC running Windows 7 with an 8 core processor

and 16 GB of RAM. This simulation run time for each sector with 100.000

simulations, was less than 100 seconds.

For the quantile regressions, a script in R was written using the quantreg

package. This script produces .csv files which are later imported by the pro-

gram in Matlab. In addition, small scripts for preprocessing and formatting

of data was written in the Python programming language.

All figures are created in Matlab or Excel.
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B Data set

Data set

Ticker Name GICS Sector Sector Code

APA Apache Corp. Energy 10

APC Anadarko Petroleum Corp. Energy 10

COP ConocoPhillips Energy 10

CVX Chevron Energy 10

DVN Devon Energy Energy 10

HAL Halliburton Energy 10

OXY Occidental Petroleum Corp. Energy 10

SLB Schlumberger Energy 10

XOM Exxon Mobil Corp. Energy 10

DD DuPont Materials 15

DOW Dow Chemical Materials 15

BA Boeing Co. Industrials 20

CAT Caterpillar Inc. Industrials 20

EMR Emerson Electric Co. Industrials 20

FDX FedEx Industrials 20

GD General Dynamics Industrials 20

GE General Electric Co. Industrials 20

HON Honeywell Industrials 20

LMT Lockheed-Martin Industrials 20

MMM 3M Company Industrials 20

NSC Norfolk Southern Corp. Industrials 20

RTN Raytheon Company Industrials 20

UNP Union Pacific Corp. Industrials 20
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UTX United Technologies Corp. Industrials 20

CMCSA Comcast Corp. Consumer Discretionary 25

DIS The Walt Disney Company Consumer Discretionary 25

F Ford Motor Consumer Discretionary 25

HD Home Depot Consumer Discretionary 25

LOW Lowe’s Consumer Discretionary 25

MCD McDonald’s Corp. Consumer Discretionary 25

NKE Nike Consumer Discretionary 25

SBUX Starbucks Corp. Consumer Discretionary 25

TGT Target Corp. Consumer Discretionary 25

TWX Time Warner Inc. Consumer Discretionary 25

CL Colgate-Palmolive Co. Consumer Staples 30

COST Costco Consumer Staples 30

CVS CVS Caremark Consumer Staples 30

KO The Coca-Cola Company Consumer Staples 30

MO Altria Group Consumer Staples 30

PEP Pepsico Inc. Consumer Staples 30

PG Procter & Gamble Co. Consumer Staples 30

WBA Walgreens Boots Alliance Consumer Staples 30

WMT Wal-Mart Consumer Staples 30

ABT Abbott Laboratories Health Care 35

AMGN Amgen Inc. Health Care 35

BAX Baxter International Inc. Health Care 35

BIIB Biogen Idec Health Care 35

BMY Bristol-Myers Squibb Health Care 35

GILD Gilead Sciences Health Care 35

JNJ Johnson & Johnson Inc. Health Care 35
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LLY Eli Lilly and Company Health Care 35

MDT Medtronic Inc. Health Care 35

MRK Merck & Co. Health Care 35

PFE Pfizer Inc. Health Care 35

UNH UnitedHealth Group Inc. Health Care 35

AIG American International Group Inc. Financials 40

ALL Allstate Corp. Financials 40

AXP American Express Inc. Financials 40

BAC Bank of America Corp. Financials 40

BK Bank of New York Financials 40

C Citigroup Inc. Financials 40

COF Capital One Financial Corp. Financials 40

JPM JP Morgan Chase & Co. Financials 40

MS Morgan Stanley Financials 40

SPG Simon Property Group Inc. Financials 40

USB US Bancorp Financials 40

WFC Wells Fargo Financials 40

AAPL Apple Inc. Information Technology 45

CSCO Cisco Systems Information Technology 45

EMC EMC Corp. Information Technology 45

IBM International Business Machines Information Technology 45

INTC Intel Corp. Information Technology 45

MSFT Microsoft Information Technology 45

ORCL Oracle Corp. Information Technology 45

QCOM Qualcomm Inc. Information Technology 45

TXN Texas Instruments Information Technology 45

T AT&T Inc. Telecommunications Services 50
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VZ Verizon Communications Inc. Telecommunications Services 50

EXC Exelon Utilities 55

SO Southern Company Utilities 55

Table 6: Full data set

C Descriptive Statistics of Historical Data

Sector 10

Stock Mean St.Dev Skewness Kurtosis

APA 0.011537 0.100267 0.280947 0.760273

APC 0.012085 0.101281 0.466194 1.93809

COP 0.010643 0.071961 -0.05553 1.251128

CVX 0.010086 0.0586 0.153503 0.806617

DVN 0.010759 0.097821 0.10065 1.082427

HAL 0.013205 0.112151 -0.32884 1.382529

OXY 0.01384 0.080393 0.349282 1.099848

SLB 0.012642 0.092495 -0.13044 1.233693

XOM 0.009766 0.049339 0.349948 1.479707

Sector 15

Stock Mean St.Dev Skewness Kurtosis

DD 0.009388 0.075868 0.296421 1.275727

DOW 0.011763 0.106412 2.365318 19.95742
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Sector 20

Stock Mean St.Dev Skewness Kurtosis

BA 0.012435 0.080764 -0.62964 1.301433

CAT 0.013029 0.093177 0.252294 2.670581

EMR 0.008808 0.065555 -0.08548 0.480123

FDX 0.012659 0.081811 0.466013 1.635417

GD 0.014238 0.068401 -0.25389 1.993718

GE 0.010362 0.075521 -0.21698 1.403417

HON 0.012723 0.087006 -0.21906 6.623444

LMT 0.013811 0.071289 -0.98771 4.287257

MMM 0.01103 0.06064 0.225859 1.377233

NSC 0.010869 0.081867 0.267064 0.620407

RTN 0.010583 0.07996 -0.47971 4.586874

UNP 0.012855 0.068637 -0.01567 0.830352

UTX 0.013932 0.068338 -0.58433 3.092721

Sector 25

Stock Mean St.Dev Skewness Kurtosis

CMCSA 0.013679 0.080699 -0.09995 0.263036

DIS 0.011032 0.07378 -0.25131 1.278885

F 0.012278 0.137978 3.04211 28.61992

HD 0.014443 0.077528 0.087253 0.668349

LOW 0.015936 0.089288 0.237749 0.208749

MCD 0.011475 0.060913 -0.39298 1.57291

NKE 0.017885 0.085516 -0.20359 3.807669

68



SBUX 0.023437 0.104151 -0.18577 1.967423

TGT 0.014447 0.078877 0.192496 0.650608

TWX 0.022785 0.133481 1.318255 5.810858

Sector 30

Stock Mean St.Dev Skewness Kurtosis

CL 0.012162 0.063406 0.565845 4.617323

COST 0.016273 0.072085 -0.68088 4.405728

CVS 0.014408 0.07461 -0.33915 1.766361

KO 0.008461 0.06076 -0.29419 1.495421

MO 0.017196 0.072493 -0.21977 2.765067

PEP 0.010451 0.0565 -0.36449 3.978095

PG 0.009936 0.056466 -0.91 7.43439

WBA 0.014574 0.077105 0.296946 0.524327

WMT 0.009982 0.064803 0.234029 1.191134

Sector 35

Stock Mean St.Dev Skewness Kurtosis

ABT 0.010797 0.056754 -0.48062 0.565874

AMGN 0.015989 0.086528 0.851517 2.459323

BAX 0.010978 0.070055 -0.54315 3.221924

BIIB 0.038001 0.157041 0.862778 3.515306

BMY 0.011579 0.068866 -0.32027 1.30521

GILD 0.029605 0.125628 0.933879 3.487074

JNJ 0.011129 0.053357 0.056419 0.869805
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LLY 0.011795 0.074798 0.100057 2.302815

MDT 0.012614 0.067606 -0.05722 1.533405

MRK 0.00962 0.075546 -0.10188 0.666631

PFE 0.010597 0.063625 -0.09411 0.020745

UNH 0.016105 0.085046 -1.01332 3.244448

Sector 40

Stock Mean St.Dev Skewness Kurtosis

AIG 0.012391 0.214508 6.515358 73.88875

ALL 0.011989 0.080738 -0.86063 5.182934

AXP 0.013126 0.093359 2.739294 28.95565

BAC 0.010432 0.113328 0.333408 9.134332

BK 0.011623 0.080714 0.247555 1.189955

C 0.00879 0.121562 0.129994 8.026639

COF 0.0183 0.118748 0.073638 3.511781

JPM 0.013361 0.093858 -0.19985 1.278393

MS 0.013166 0.111323 -0.01598 2.425499

SPG 0.015641 0.072354 0.20246 9.266868

USB 0.011719 0.077209 -0.90354 5.708111

WFC 0.014313 0.081502 0.117893 5.471074

Sector 45

Stock Mean St.Dev Skewness Kurtosis

AAPL 0.026328 0.129514 -0.3117 1.988668

CSCO 0.017094 0.107572 -0.14407 1.257588
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EMC 0.017846 0.125136 -0.07486 1.396756

IBM 0.012237 0.078643 0.491961 2.286611

INTC 0.015574 0.10727 -0.31768 1.428539

MSFT 0.016669 0.095078 0.473716 2.140453

ORCL 0.019108 0.125136 0.954885 4.582381

QCOM 0.024179 0.148131 1.875931 9.102131

TXN 0.017676 0.115362 0.38084 1.79874

Sector 50

Stock Mean St.Dev Skewness Kurtosis

T 0.007774 0.067997 0.186248 1.484053

VZ 0.008348 0.06797 0.821935 4.251545

Sector 55

Stock Mean St.Dev Skewness Kurtosis

EXC 0.008614 0.067595 0.110001 2.3338

SO 0.010475 0.049348 0.317289 2.40358

Table 7: Descriptive statistics of Historical Data
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D Sector Comparison

D.1 Variance Explained by PC

Figure 21: Cumulative variance and variance explained by principal compo-

nent for all sectors and the full data set, respectively

72



D.2 Correlation Matrices

Figure 22: Correlation matrices for all sectors and for the full data set
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E Explanation of Numerical Instability

Theorem 1 If X1, X2, ..., Xn are mutually independent normally dis-

tributed random variables with means µ1, µ2, ..., µn and variances σ2
1,

σ2
2, ..., σ2

n, then the linear combination

Y =
n∑
i=1

ciXi (44)

follows the normal distribution:

N(
n∑
i=1

ciµi,
n∑
i=1

c2
iσ

2
i ) (45)

This theorem applies to the data points Qri(q|PC1, ..., PCm) as the PCs

are mutually independent normally distributed when simulated using GBM.

Thus, the variance of each data point becomes larger when n grows.
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F January 2016 CI Analysis
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G Simulation Plots
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H Risk Parity Portfolio Weights

(a) Sector 10 (b) Sector 15

(c) Sector 20

(d) Sector 25 (e) Sector 30
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(f) Sector 35

(g) Sector 40

(h) Sector 45 (i) Sector 50 (j) Sector 55

Figure 24: Risk parity weight allocations for all sectors using three different

risk measures
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