
Self-Adaption in Lego-Mindstorm Train
Control System using OSGi

Alexander Svae

Master of Science in Communication Technology

Supervisor: Peter Herrmann, ITEM

Department of Telematics

Submission date: June 2016

Norwegian University of Science and Technology

Title: Self-Adaption in Lego-Mindstorm Train Control System
using OSGi

Student: Alexander Svae

Problem description:

Public transportation systems are becoming increasingly important in today’s society,
especially in big cities. Due to the dynamic behavior of the vehicles in operation, the
system ability to adapt to spatial and temporal changes is critical.

The Department of Telematics has a Lego-Mindstorm model railroad layout on
which the trains and junction plates can be operated using software created by our
IDE Reactive Blocks. In a project assignment, a control system was developed to
allow the trains to operate without an external coordinator. Furthermore, in parallel
with this thesis, another student is working on modulate and improving the existing
system.

We want to develop a module that allows the system to handle changes of
contextual conditions. The extension needs to be able to respond quickly and adapt
at runtime to changes due to the dynamic behavior mentioned above.

We will use parts of the ideas presented by Amir Taherkordi et al. in their paper
Scalable Self-Adaptation in Mobile Cyber-Physical Systems. The paper proposes
a scalable self-adaptive framework design to be used with Mobile Cyber-Physical
Systems (mCPS) to enable Raspberry Pi based DiddyBorg robots to respond to
spatial and temporal changes at runtime. To control code adaptation the OSGi
framework is proposed. The OSGi framework is a service-oriented component-based
framework that adds a dynamic module system to Java.

At first, the system will be analyzed and a design of the module will be developed.
Then, implementation options will be discussed and the module will be implemented.
When the system module is running, its performance and correctness will be tested.

Responsible professor: Peter Herrmann, ITEM
Supervisor: Peter Herrmann, ITEM, Amir Taherkordi, UiO

Abstract

Public transport has become an important part of everyday life in today’s
society. With the advances in information and communication technology
has ITS become an important research field. Because of this, we have
in recent years seen an increasing number of autonomous transportation
systems. These autonomous systems operate in dynamic environments
where unpredictable events may occur. These events may affect the
vehicle’s ability to operate safely. It is therefore essential that these
systems have a way to reason and react to these events. Since the vehicles
often operate under high speed is it important that adaptation to these
events can happen quickly and while the system is running. This paper
presents an adaptation module design intended for autonomous trains
that operates on a Lego Mindstorm based model. The module’s task
is collect contextual information and use this information to adapt the
trains behavior accordingly. To enable this adaptation during runtime is
the Java based framework OSGi used. The module uses a state machine
that is implemented with the State Design Pattern. This state machine is
used to as the context reasoning component for the adapter. OSGi based
services are used to facilitate retrieval of the contextual information and
to perform the adaptation actions. The module is implemented using the
modular development tool Reactive Block and was tested on the Lego
Mindstorm based train model mentioned above with good results.

Sammendrag

Offentlig transport er blitt viktig del av menneskers hverdag i dagens
samfunn. Med de siste års fremskritt innen informasjon og kommunika-
sjons teknologi har ITS blitt et viktig forskningsfelt. Ved hjelp av denne
forskningen har vi i de senere årene sett et økende antall autonome trans-
port system. Disse autonome systemene operer i dynamiske miljøer der
uforutsigbare hendelser kan skje. Disse hendelsene kan påvirke kjøretøy-
enes evne til å operere på en trygg måte. Det er derfor essensielt at disse
systemene har en måte å analysere og reagere på disse hendelsene. Siden
kjøretøyene ofte operer under høy fart er det også viktig at adaptasjo-
nen til disse hendelsen kan skje raskt og mens systemet kjører. I denne
oppgaven presenteres et adaptasjon modul design beregnet på autonome
tog som operer på en Lego-Mindstorm basert modell. Modulens oppgave
er å samle inn kontekstuelle data og bruke denne dataen til å adaptere
togenes atferd deretter. For å muliggjør denne adaptasjonen mens toget
kjører er det Java basert rammeverket OSGi benyttet. Modulen tar i
bruk en tilstandsmaskin implementert i henhold til State Design Pattern.
Denne tilstands maskinen er ansvarlig for kontekst resoneringen i modulen.
OSGi baserte tjenester blir også brukt til å forenkle innhenting av den
kontekstuelle informasjonen samt å utføre adaptasjons tiltak. Modulen er
implementert ved hjelp av det modul baserte utviklingsverktøyet Reactive
Block og ble testet på den Lego-Mindstorm basert tog banene modellen
nevnt ovenfor med gode resultater.

Preface

This thesis was conducted by Alexander Svae during the spring of 2016
at Norwegian University of Science and Technology (NTNU), depart-
ment ITEM. The idea behind this thesis originated from professor Peter
Herrmann.

I would like to thank my supervisors Peter Herrmann and Amir
Taherkordi for all their guidance throughout this thesis. I will also thank
my co-student Henrik Heglund Svendsen for his invaluable input.

Contents

List of Figures xi

List of Tables xiii

List of Glossary xv

List of Acronyms xix

1 Introduction 1
1.1 Problem outline and scope . 1
1.2 Methodology . 2
1.3 Limitations . 3
1.4 Terminology . 3
1.5 Structure of the thesis . 3

2 Background 5
2.1 The Lego-Mindstorm Train System 5
2.2 Related work . 5
2.3 Reactive Blocks . 6

2.3.1 Building Blocks . 7
2.4 OSGi . 9

2.4.1 Module layer . 10
2.4.2 Life cycle layer . 10
2.4.3 Service layer . 10
2.4.4 Service Tracker . 11
2.4.5 Event Admin Service . 11
2.4.6 Apache Felix File Install . 12

2.5 Git . 12
2.6 Eclipse . 13
2.7 AMQP . 13
2.8 RabbitMQ . 13

3 Analyse of the existing infrastructure 15

vii

3.1 Improvements to the train system . 15
3.2 Analyse of the train system . 16
3.3 Analyse of the adaptation module 16

3.3.1 Discussion with Henrik H. Svendsen 17
3.4 System requirements . 17

3.4.1 Non-functional system requirements 17
3.4.2 Functional requirements . 18

4 Adaption module design 19
4.1 High-Level Design . 19
4.2 Services . 20

5 Communication 23
5.1 Communication protocol . 23
5.2 Service requirements . 23
5.3 Implementation . 24

5.3.1 TrainAMQPSendService . 24
5.3.2 TrainAMQPService . 24
5.3.3 AMQPMessage . 25

5.4 The RemoteControl block . 26
5.4.1 Message reception . 27
5.4.2 Sending a message . 27

6 Sensor software 29
6.1 SensorSchedulerService . 29
6.2 Sensor implementation . 30
6.3 Sensor Publishers . 30
6.4 Sensor Problems . 31

7 Sensor handling 33
7.1 Tracking the sensors . 33

7.1.1 The CustomeServiceTracker block 33
7.2 Receiving sensor readings . 34

7.2.1 SensorHandlerController service 34
7.2.2 Sensor reconfiguration . 35

7.3 The SensorController block . 36

8 Context modeling and reasoning 39
8.1 Keeping track of the train . 39

8.1.1 Train restrictions . 39
8.1.2 Map properties . 40

8.2 Context reasoning . 40
8.3 Train State Implementations . 45

8.4 Scope of states . 45
8.4.1 Location based states . 45
8.4.2 Sensor based states . 46
8.4.3 Train operation status based states 46
8.4.4 Hierarchical states . 46
8.4.5 TrainState Interface . 46
8.4.6 States . 46
8.4.7 The TrainContext interface 48

8.5 ContextChecker . 49

9 Train Adapter 51
9.1 The TrainAdapter block . 51
9.2 Processing a sensor reading . 53

9.2.1 Changing train state . 54
9.3 Reconfigure a sensor . 54
9.4 Perform a sensor reading . 55
9.5 Handling failed sensor readings . 55

9.5.1 The NFC sensor was not able to read the data from the beacon 55
9.5.2 The NFC sensor was not able to detect the beacon 55

9.6 Handling sensor failure . 55

10 Performance Tests 57
10.1 Runtime environment used by the trains 57
10.2 Logging results . 57
10.3 Overview . 58
10.4 Response time on color events . 58

10.4.1 Setup . 58
10.4.2 Results . 58

10.5 Using color events to trigger NFC readings 59
10.5.1 Setup . 59
10.5.2 Results . 60

10.6 Complete performance test . 60
10.6.1 Setup . 60
10.6.2 Noticing trains about turns 62
10.6.3 Reconfigure a sensor . 62
10.6.4 Perform a NFC sensor reading and changing state 63

11 Discussion and Conclusion 65
11.1 Discussion . 65

11.1.1 Correctness . 65
11.1.2 Performance . 65
11.1.3 Using services . 66

11.1.4 Using Reactive Block and OSGi 66
11.2 Conclusion . 66
11.3 Further work . 67

11.3.1 Improving the MapChecker service 67
11.3.2 Considering the other trains 67
11.3.3 Introducing concurrent state machines 67
11.3.4 Having a separate bundle management service 67

References 69

Appendices
A Java code 73

A.1 TrainAMQPService . 73
A.2 Sensor Event Handlers . 77
A.3 Sensor Publishers . 78
A.4 ContextChecker . 78

List of Figures

2.1 A Reactive Blocks example application, showing an application block
(top), the inner activity diagram of the building block Speech(bottom left)
and its External State Machine (bottom right). The Speech and Buffer
Eager Simple blocks are provided by Reactive Blocks 8

2.2 Overview of the OSGi . 9
2.3 An example of how a event is routed to a system using the OSGi Even-

tAdmin service . 12

4.1 High-level design of the adaption module 19

5.1 The RemoteControl block is responsible for all remote communication
with the train adapter . 26

5.2 The sequence diagram for the set up of the AMQP connection inside of
the RemoteControl block . 28

5.3 The sequence diagram for the describing how the message reception is
handled . 28

6.1 The sequence diagram for how a sensor data is published to the system 30

7.1 The activity diagram of the CustomServiceTracker block 34
7.2 The activity diagram of the SensorController block 36
7.3 Overview of the SensorController . 37
7.4 The sequence diagram for how the SensorController retrieves the appro-

priate EventHandler when a train sensor is registered to the system . . 38

8.1 Structure of a state pattern system . 41
8.2 Overview of the states contained in the state machined used by the adapter 47
8.3 The activity diagram of the ContextChecker block 49
8.4 Overview of the ContextChecker block 50

9.1 The activity diagram for the TrainAdapter block 51

xi

9.2 The figure shows how the blocks and services are linked together. Blue
squares are used to represent blocks while the green squares represents
services . 53

10.1 Figure of the track layout. The figure is a modified version of a Figure
6.1 found at [Sve15]. The colored lines indicate the location of a sleeper
with that color. The boxes indicate track zones 61

List of Tables

6.1 A list of the sensor hardware running on the trains 29

10.1 Response time on color events . 58
10.2 Time for an event is published til it is received by the event handler . . 59
10.3 Response time on color event where the events that took more then 100ms

to get from the publisher to the event handler is filtered out 59
10.4 Results from the test of the NFC and Color sensor 60
10.5 Adaptation table for sensor reading used by the train adapter 61
10.6 Response time on color events . 62
10.7 Time used to reconfigure a sensor after receiving a color reading 62
10.8 Time used for the adapter to change state when entering a new map zone 63

xiii

List of Glossary

Callback function A callback function is a piece of executable code
that is passed as an argument to other code,
which is expected to execute the code at some
convenient time..

Enum An enum type is a special data type that enables
for a variable to be a set of predefined constants.

JSON JavaScript Object Notation is a lightweight data-
interchange format that is easy for humans to
read and write..

GSON Gson is a Java library that can be used to con-
vert Java Objects into their JSON representa-
tion and vice versa.

xv

List of Acronyms

AMQP Advanced Message Queuing Protocol.

ESM External state machine.

IDE Integrated Development Environment.

ITS Intelligent transportation system.

JAR Java Archive.

LDAP Lightweight Directory Access Protocol.

NTNU Norwegian University of Science and Technology.

UML Unified Modeling Language.

XML Extensible Markup Language.

xix

Chapter1Introduction

Over the last years have public transportation systems become an essential part of
peoples everyday lives, specially in bigger cities. With the advances of information
and communication technologies has ITS become an important field of research. ITS
systems aims to provide innovative solution to improve the efficiency, performance,
safety and security of transport systems[Par10]. One of these solutions is the
introduction of autonomous vehicles into public transport systems. A critical property
for these vehicles is the ability to maintain safe operation. Due to the dynamic
operating environment of the vehicles, their ability to adapt to spatial and temporal
changes is critical in order to maintain this property.

1.1 Problem outline and scope

NTNU has in the last years increased its research into ITS, specially with the
establishment of its ITS Lab[NTN16]. The lab has numerous ongoing projects
concerning developments in the ITS sector. One of these projects is the development
of an fully autonomous train system running on a Lego-Mindstorm based railroad
model.

Autonomous vehicles are reliant on sensor information in order to recognize
contextual changes. To maintain safe operation it is essential that the vehicles can
use this information to adapt their behavior accordingly.

The goal for this thesis is to design and implement a module that allows the
autonomous trains to adapt to contextual changes. These changes can be software
and hardware defects, environmental properties and they will affect the way the train
operates. Furthermore, these changes can take place while the vehicle is operating at
high speed. This mandates that the adaptation must be done quickly and at run
time. These requirements demand an efficient context reasoning system in order to
guarantee those properties.

1

2 1. INTRODUCTION

The proposed architecture should serve as an example of how context awareness
and reasoning can be implemented into an autonomous system. Since this module
is operating in an event driven environment is Reactive Blocks be used to handle
synchornization and concurrency.

An important part of the adaption is reconfiguration and modifcation of code
running on the system. To be able to do this at runtime is the module Java based
framework OSGi proposed.

The adaption module will use ideas from the self-adaption framework presented by
Amir Taherkordi et al. in their paper Architectural Virtualization for Self-Adaptation
in Mobile Cyber-Physical Systems[AT]. In the problem description the name Scalable
Self-Adaptation in Mobile Cyber-Physical Systems used of the paper. The reason for
this was the paper went through a revision that lead to its name being changed.

1.2 Methodology

The work done in this thesis was conducted in four phases. First phases consisted of
a litterateur study, mainly focusing on the technologies used by the module. As far
as the knowledge of the author goes does it not exist a working adaption module for
an autonomous railroad system using Reactive Blocks and OSGi. Due to this was
limited time spent investigating existing solution with the exception of the paper
mentioned above. The technology study was focused on the OSGi specification, as
the author was already familiar with Reactive Blocks. OSGi is a massive framework
that contains lots of functionality. The author had some basic knowledge about how
the frameworks in theory, but had little experience in using it in practice.

Next, was the train control system where the module was being implemented into
analysed. In parallel to this thesis was fellow student Henrik H. Svendsen conducting
his master thesis that consisted of improving the train control system. Due to this
was a conversation with Svendsen held about what these changes would be. With
this information was the system, or in this case, the module requirements found.

Next phase was making an abstract design of the module and its components.
Since Reactive Blocks is a graphical development tool, it is natural to merge the
design and implementation phase together. The way this was done was that and the
abstract design was made and then drawn up in Reactive Blocks. Then was each
component of the module implemented in a prototyping fashion [Wik16e], meaning
that the components were developed in iterations. When the module was fully
implemented was performance tests conducted.

1.3. LIMITATIONS 3

1.3 Limitations

As developing a working adaption module is time consuming work, this paper will
not look into efficiency factors like battery consumption or system load. Nor will it
look at the configuration options that OSGi provides.

As with the sensor reconfiguration we will only look at software reconfiguration
and not hardware reconfiguration. The reason for this is that the hardware and
its control software used in this thesis was implemented by a co-student, Henrik H.
Svendsen in his master thesis[Sve16].

Unfortunately was it not possible to test the adapter module with a complete
train control system. Therefor was a simpler version of the control system used in
the tests presented in Chapter 10.

1.4 Terminology

In this thesis we will use the term adapter to refer to the adaption module. When
referring to the framework we mean the OSGi framework running on the trains.
When referring to the system we mean the train control system running on the OSGi
framework. The terms method and function is used interchangeably.

1.5 Structure of the thesis

Chapter 2 goes through background information that is useful to understand the
following chapters.

Chapter 3 presents information gained from analysis of existing train control system
and its infrastructure. Form this analysis was the requirements for the module
derived.

Chapter 4 show the high-level design of the module and goes through its the
components.

Chapter 5 describes how communication is implemented and handled by the mod-
ule.

Chapter 6 contains information about how the sensors are implemented in the
system. This work was not done by the author, but it is included in this thesis
as it influences the adaption module.

Chapter 7 explains how sensors are handled by the module and how their informa-
tion is gathered. This information plays a significant role in allowing the trains
to be aware of their context.

4 1. INTRODUCTION

Chapter 8 describes how context reasoning is done by the module.

Chapter 9 shows how the module components are combined to form the adaption
module.

Chapter 10 show the results obtain by the tests that was ran on the system.

Chapter 11 contains the discussion about the result from the previous chapter as
well as general thoughts about the module. It also presents some ideas for
further research that can be done with the module. The chapter also contains
a conclusion that sums up the work done in this thesis.

Chapter2Background

2.1 The Lego-Mindstorm Train System

The Department of Telematics has a Lego-Mindstorm model railroad layout. The
model has been used in several theses and is now running a control system developed by
Henrik H.Svendsen [Sve15]. The control system allows trains to operate autonomously
without an external coordinator and is implemented with the help of Reactive Blocks.

The railroad model consists of tracks and intersections. The model also has
two types of physical entities, namely trains and a set of point switches controlling
intersections. The switches are connected to a EV3 brick[Gro16] which is running
software that can be used to control the them. The trains running on the model
has a set of sensors that it uses for self-localization as well as a motor controller.
The system uses a topic based AMQP exchange over Wifi for its communication.
Messages are sent wireless to a Raspberry Pi implementing a RabbitMQ message
broker that is directly connected to a Wifi router residing inside of the lab.

To enable coordination between the trains do each train have an internal repre-
sentation of the railroad layout. The layout of the railroad has been modeled in a
Lego Modeling tool called BlueBricks. The BlueBricks software can generate XML
file based on these models. The trains have a parser module that can take in this
XML file and convert it into an internal representation of the railroad track.

To avoid collision is a two-phase commit protocol used by the trains to reserve
track legs that it must travel to reach its destination.

2.2 Related work

Amir Taherkord et al. paper Architectural Virtualization for Self-Adaptation in
Mobile Cyber-Physical Systems proposes a self-adaption framework for mCPS units
operating in a cooperative environment. The framework addresses the issues related

5

6 2. BACKGROUND

to the complex modeling of and adaptation to highly dynamic location and time
aspects of cooperative mCPS. The framework uses a virtualization design technique,
named Virtual Adaptation Framework (VAF), to provide a unified application-level
view to adaptation requirements. Contextual conditions are defined as a set of rules
by the VAF and the BeSpaceD tool-set analyzes the rules at runtime. The analyses
are used to guide the reconfigurations of mCPS.

BeSpaceD has the ability to automatically deduce spatiotemporal analysis at
runtime, which makes it an eligible candidate to reason about the current context of
applications. Logical quantifiers can be applied to specify and check the existence
of a spatiotemporal condition in a specification, or to prove that a certain property
holds for a distinct time and space area. Furthermore are algorithms and tools such
as an external SMT solvers proposed to help resolve geometric constraints such as
overlapping of different areas in time and space.

2.3 Reactive Blocks

Reactive Blocks is a developer plug-in for the Eclipse IDE that combines model
based engineering together with the Java language in order to make efficient event
driven applications. The plug-in provides a graphical drag and drop interface where
developers composes so called building blocks together to make complete applications.
Behind the graphical interface lies a powerful automated compiler that generates
complete and executable code from the building blocks. In addition, will all blocks
be formally analysed and verified so that interaction errors do not occur [AS16c].

Reactive Blocks is not a substitute for conventional programming, rather it is a
tool that takes care of the concurrency and synchronization parts of an application
in a understandable and efficient way. Advanced business logic such as algorithms
should still be implemented in code [AS16c].

The graphical representation provides an abstract view where synchronization
and concurrency logic is abstracted the way. This representation is especially useful
in collaborative projects where developers work on separate parts of an application.
With this abstract view can developers get a basic understanding of an application’s
or component’s behavior and its capabilities without having to go through complex
code.

Reactive Blocks has built-in support for OSGi and BitReactive, the company
developing Reactive Blocks, is also part of the OSGi Alliance [AS16b].

In the following, will we explain the fundamentals of Reactive Blocks and go to
through some features that were used in this thesis. The complete documentation of
Reactive Blocks can be found at their homepage [AS16h].

2.3. REACTIVE BLOCKS 7

2.3.1 Building Blocks

Building blocks is reusable software modules that are composed of a behavior diagram,
a block contract called External State Machine (ESM) and Java code. The must
common way to define a block’s behavior diagram is with a UML style activity
diagram. The activity diagram is built up by token flows represented by edges, block
operation and activity nodes. There are two types of token flows, control flows and
object flow, with the latter being able to carry data. Activity nodes are used to
control the token flow in a block. Examples of activity nodes are timers, forks, merges
and event reception nodes. A full list of all, including description of the nodes can
be found at [AS16a]. Each block do also have a set of pins. These pins can be either
incoming or outgoing and is connected to the token flows inside of the block. The
pins allow tokens to be passed into or out of the block.

The ESM describes the abbreviated interface behavior for the block. It states
which tokens that can pass through certain pins in a given state, in addition to show
potential state transition for a given token flow.

Each block does also have a corresponding Java class file where the blocks
operation, variables and more is defined. The class file is just a regular java file
with the only exception that methods also can be accessed from the block. For
example, when a token is passed to the operation parseMessage in Figure 2.1, the
corresponding method in the java file will be invoked.

There are though some restrictions one has to consider when programming with
Reactive Blocks [AS16f].

– Every method accessed by the block must have a unique name, even though
Java allow for methods with same name but different method signatures.

– If an exception can occur inside a method it must be handle inside the method,
usually done with a try/catch clause.

– Methods should not block or wait. Since Reactive blocks is event driven it is
important that blocks stay responsive and is able to handle events. If a method
has to block or wait do notification patterns exist that can be used. In our
system we use separate threads to run waiting or blocking methods and event
receptions to propagate events generated by these threads to the blocks.

– Reactive blocks provides a special method named sendToBlock(String sig-
nalname). When using the method a token will be generated and sent to
a event reception node residing inside the block. The signalname parameter
defines which event reception node the token should be sent to. For example,

8 2. BACKGROUND

in Figure 2.1 will the use of sendToBlock("SPEECH_READY") send a token
to the event reception node named SPEECH_READY inside the Speech block.

Figure 2.1: A Reactive Blocks example application, showing an application block
(top), the inner activity diagram of the building block Speech(bottom left) and its
External State Machine (bottom right). The Speech and Buffer Eager Simple blocks
are provided by Reactive Blocks

In Figure 2.1 we can see an example of a simple Reactive Block based application.
At the top part of the figure are three building blocks composed together inside of an
Application block. An Application block specifies an application and is required to run
an application. The block type is similar to a building block with the exception that
it does not have pins or an ESM. Instead, it has initial nodes to start the application
and activity final nodes to terminate it [AS16i]. In the bottom left corner of the
figure we can see the activity diagram for the Speech block and at the bottom right
corner is its ESM.

2.4. OSGI 9

2.4 OSGi

‘The OSGi technology facilitates the componentization of software modules and
applications and assures remote management and interoperability of applications
and services over a broad variety of devices. Building systems from in-house and
off-the-shelf OSGi modules increases development productivity and makes them much
easier to modify and evolve. ’ - The OSGi Alliance [All16c]

The OSGi specification, from now on referred to as OSGi is a open standard
specified and maintained by the OSGi Alliance. OSGi provides a dynamic modular
framework for the Java platform allowing for dynamic component based systems
[Wik16d]. The framework is divided into three main layers that we now will explore.

The aim for this section is to give you a basic knowledge of OSGi. We will not
go through all the nuances of the framework, for that one can look up books like
OSGi in Action by Richard S.Hall et al. [HPMS11]. Most of the information
presented in this section is taken from this book. The OSGi Javadoc reference was
also used[All16f].

Figure 2.2: Overview of the OSGi

10 2. BACKGROUND

2.4.1 Module layer

OSGi introduces the concept of bundles. A bundle can be look upon as a module for
your system. It is much like a regular JAR file with the addition of extra information
in its manifest file. This information grants powerful advantages in comparison to
regular jar files. With bundles, one can explicitly declare which packages are visible
externally. This is done by declaring exported packages in the manifest file. This
improves the encapsulation of code as declaring a class public, which is very common,
no longer means that external packages can access it without it being explicitly
declared in the manifest file. The same is done with bundles and packages required
by the bundle. These specifications is also used by the framework to manage and
verify bundles, making up for Java’s leaking dependency handling.

2.4.2 Life cycle layer

The module layer provides class loading for bundles, but with only this layer cannot
a bundle be managed. In order to do this one must use the life cycle layer. The life
cycle layer defines an API for bundle management. The API provides methods to
install, start, update, stop and uninstall bundles. Since the life cycle layer operates
on bundles, one can manage separate bundles without taking done the rest of the
system. The layer does not mandate any particular mechanism of interacting with
the life cycle API. This gives great flexibility in how one wants to use the layer.
Internally does the life cycle layer grant bundles access to their execution context
called BundleContext and thereby the opportunity for the bundles to interact with
the framework.

2.4.3 Service layer

The service layer introduces the concept of services. Simply stated is a service
a bundle that provides, as the name implies, services that other bundles can use.
Services expose a service interface to its consumers. It is used as a contract between
the service provider and service consumer stating what methods, constants and
enums that are provided by the given service.

One problem that can occur when using interfaces to define services are that
there could be multiple service implementations available, all only exposing the
same interface. Thous, as a consumer, one cannot know which actual service
implementation is being used. A simple example is that you have two services,
providing encryption of data. One of them provides a strong encryption, but is slow.
The other one is fast, but provides a weaker encryption. So, as a consumer of the
service, one cannot easily choose the wanted service implementation. Of course, one
could add a method or constant fields that states the different properties of the
service implementation. The problem with this is that this is hard-coded information

2.4. OSGI 11

and therefore cannot be changed during run-time. In addition, one would have to go
through all available implementations and then find the desired one.

OSGi solves this problem with their Service Registry. It acts as a mediator
between service providers and consumers. The Service Registry also allows for finer
grained control over services since all OSGi services is registered to this registry
and with their registration, they can provide a set of properties that describes their
characteristics. When a consumer wants a particular service implementation, one
can provide the desired service properties and the registry will find a service that
has matching properties, solving the issue mentioned above.

As a service consumer one has not direct access to the service implementation.
This may seem strange, but it assures that the framework have control over the
services and follows the dynamic nature of OSGi. This also allows on to dynamically
bind bundles together at run-time.

2.4.4 Service Tracker

The Service Tracker is a utility class provided by OSGi that allows for easy monitoring
and access to services in a well-defined way. Its constructor takes in a bundle context,
the service type you want to track and optionally a customizer object. Defining the
service that will be tracked can be done in three ways. One can provide it with a
ServiceReference, a class or interface name or an LDAP filter [All16d]. LDAP
search filters is a human-readable string format described in RFC 1960 [For16].

ServiceTrackerCustomizer

The ServiceTrackerCustomizer is an interface with three methods. The three
methods corresponds to the addition, modification and removal of a service and the
Service Registry will trigger these methods when one of these events occurs for the
service being tracked by the ServiceTracker [All16e].

ServiceReference

Every service registered to the Service Registry has a unique ServiceReference
object. This can be obtained via the registry and used to examine service properties
and to access the service.

2.4.5 Event Admin Service

The Event Admin Service is a compendium service that allows one to distribute event
in a publish/subscribe fashion to other bundles running on the framework. An event
consists of a topic, which is a structured string, and event properties. When an event
is sent to the service it will distribute it to all Event Handlers subscribed to the topic.

12 2. BACKGROUND

An Event Handler is a class implementing the Event Handler interface[All16a]. It is
registered to the service registry as a regular service but with a special property that
allows the Event Admin to recognize it. This property contains the topic of which
the Event Handler wants to receive events from. Figure 2.3 is an example of how the
topic structure works.

Figure 2.3: An example of how a event is routed to a system using the OSGi
EventAdmin service

2.4.6 Apache Felix File Install

The Apache Felix File Install is a OSGi management agent. The user sets up a
directory where all non-core system bundles are placed and the File Install bundle
will monitor this directory. If a new bundle is added to the directory, it will be
installed into the framework and started. It updates a bundle if you update the
bundle file in the directory and if the bundle file is deleted it will stop and uninstall
the bundle. This automation goes well together with Git. One can update the
bundles running on the framework simply be pulling down the updated bundle files
from a code repository and have the File Install bundle manage them[Fou16c]. All
this can be done during runtime.

2.5 Git

Git is a distributed version control system that can be used to manage code projects
[Git16a]. In this thesis is Git together with the File Install bundle mentioned above
is used to distribute and manage bundles running on the trains.

All code developed in this thesis is located in public Git repositories on GitHub.

List of repositories:

– The runtime environment used by the trains [Gitb].

2.6. ECLIPSE 13

– The code developed in this thesis [Git16b]

– The code for the modified sensor control software used in this thesis [Gita].

2.6 Eclipse

The code in thesis was developed in the Eclipse IDE (4.5.1). To be able to run
Reactive Blocks inside of Eclipse one can follow the steps described here [AS16e].
OSGi is already integrated into Eclipse but in order to run it together with Reactive
Block some set up is required. Instruction on how this is done can be found here
[AS16d].

2.7 AMQP

Advanced Message Queuing Protocol is a open standard application layer mes-
sage queuing protocol designed to support a variety of messaging application and
communication pattern in an effective way. It provides a rich feature set that in-
clude support for different communication pattern, flow control, message delivery
guarantees, authentication and more [Wik16a].

AMQP version 0.9 is based on the AMQ model. The model consists of three
components; exchanges, message queues and bindings. Exchanges are the routing
mechanism of the model and routes incoming messages to their respective message
queues. Message queues are FIFO-buffers that hold messages on behalf of one or
more consumers. In order for the exchange to know which message queues a message
should be sent to are bindings used.

Exchanges can be of different types, one of them being topic based. When using
a topic based exchange will each message queue subscribe to one or more topics. A
topic is a structured string delimited by dots. When a message is sent to a topic will
all message queues subscribed to this topic receive the message [SA16].

2.8 RabbitMQ

RabbitMQ is open source polyglot message broker implementation. It supports
multiple messaging protocols like AMQP, STOMP, HTTP and MQTT.

RabbitMQ also provides a client library that can be used to interact with a
message broker. At its top-level do the library contain four packages [Inc16a].

Channel is an interface that is used to do protocol operation, like sending messages

14 2. BACKGROUND

Connection is used to manage the channels and register connection lifecycle event
handlers.

ConnectionFactory is used to instantiated connections and is used to configure
various information like hostname, port number, username and so forth for the
connection.

Consumer is used to all messages to be pushed to receiver instead of having the
receiver explicitly request it.

The client library is OSGi ready as it is also a OSGi bundle [Inc16b].

Chapter3Analyse of the existing
infrastructure

System analysis is a cornerstone in the development of all types of systems. The
analysis helps to form an understanding of how a system works, what its goals are
and its properties.

Since the adaptation module to be developed shall be implemented into an already
existing infrastructure, is it natural to divide the analysis into two parts. In the
following we will parts of the existing infrastructure and control system relevant to
the adaption be analysed. Having an understanding of the system’s capabilities and
limitations are factors that influences design decisions made later. In addition, you
get a better understanding of how the adapter will affect the system.

After that, we will look at the requirements for the adaption module.

3.1 Improvements to the train system

In Section 2.1 we briefly described the infrastructure that the trains will be running
on and its control system. As mentioned earlier is Svendsen conducting his master
thesis on improving this system. In particular, he is looking into how to improve
self location for the system [Sve16]. As apart of this work is most of the train’s
Lego-Mindstorm based hardware changed out. In this new iteration of the system are
Raspberry Pi’s [Fou16a] used as the processing unit on board the trains. In addition,
has he introduced a new set of sensors and software to utilize them. In particular, a
new improved color senor has been added along with a RFID/NFC reader chip and
a magnetometer. The control software for these sensors was developed to work with
OSGi.

A decision had to be made on whether the adaption module should be design
to be used with the improved version of the system. This was discussed with both
the supervisors and Svendsen. Using the old version of the system meant that we
would work on a finished system, reducing the risk of unexpected problems. However,

15

16 3. ANALYSE OF THE EXISTING INFRASTRUCTURE

there are some major drawbacks with this version of the system. The system was
developed without OSGi in mind, meaning that the entire system had to modified.
In Svendsen paper [Sve15] he discuss performance issues with the EV3 brick. This
performance issue is also a deal breaker, as introducing the adaption module together
with OSGi would increase the system load further.

3.2 Analyse of the train system

The goal of the train control system is to allow trains to operate autonomously in a
safe manner. In the current state of the system, each train will reserve a track leg
when it travels from one station to another. This means that while the trains are
traveling there should not be other trains in close proximity.

There are already formed a communication system that can be used to commu-
nicate with the trains and the adapter. Furthermore, each train will have a set of
sensors. These sensors will be a crucial for the adapter since this is where information
about contextual changes will come from. As said earlier shall the trains be able
to operate without a central coordinator, this must be taken into account when
designing the module. The adaption module can fail and it is therefor important
that the system is still able to operate to a certain level without it.

One of the improvements being done by Svendsen is the introduction of OSGi
into the system. OSGi offers a powerful toolkit that the module can and should
utilize.

3.3 Analyse of the adaptation module

Trains operate in highly dynamic environments where contextual properties may
unpredictably change. The goal of the adapter is that it should make trains able to
respond to these changes in a safe and efficient manner. Time is a crucial factor for
the system, it is therefor important that the adapter reacts in a timely manner. This
also means that the adaption must occur during runtime.

Another fundamental characteristic of the adapter is that it must always make
correct unambiguous decisions. Wrong decisions can lead to unwanted behavior and
may have serious consequences. Information about these changes will primarily come
from the sensors as mentioned earlier and it is thus necessary to find a way to use
them without affecting the rest of the system.

The train control system and its infrastructure is not static, but constantly
evolving and improving. It is therefore beneficial if the adapter is able to deal with
these changes and utilize them. This applies particularly to the introduction of new

3.4. SYSTEM REQUIREMENTS 17

sensors, as this is a natural progression for the system. Ideally, this should not lead
to major changes in the code and it should be intuitive how one can incorporate new
sensors into the adapter.

Although trains are autonomous situations may arise where is remote operator
must take control of the adapter. As previously mentioned there is communication
architecture already set up. Adapter should use this and allow for an operator to
remote control it.

The architecture of the module should be made in a way that allows it to be used
in similar systems. A way to reach this goal is to follow the high cohesion and low
coupling design principal.

3.3.1 Discussion with Henrik H. Svendsen

Initially it was discussed with the developer of the train control system how the
train adapter module best can be implemented into the system. As mention in
Section 2.1 is the train control system implemented in Reactive Blocks, therefor is
it natural that the train adapter is developed with Reactive Blocks. The adapter
can be implemented in smaller modules distributed throughout the system or as one
single building block. Due to the train control system already being complex, it was
agreed that the train adapter should be implemented into a single block making it
easier to include into the system. In addition, with having the adapter contained in
one block would allow for it to be used in other systems without major changes.

3.4 System requirements

3.4.1 Non-functional system requirements

1. Correctness - When a given event occurs should the correct action always be
carried out.

2. Timeliness - All events must be processed and action should be executed in a
timely manner.

3. Non-intrusive - The adapter module should not interfere with the existing
control system, meaning that the control system should be able to operate
without the adapter.

4. Adaptability- The adapter should be able to adapt to contextual changes during
runtime.

5. Flexibility - The adapter should be able to work in similar type of system
without extensive modifications.

18 3. ANALYSE OF THE EXISTING INFRASTRUCTURE

6. Modifiability - The design of the module should allow code to be modified while
the adapter is operating.

7. Configurability - The adapter should provide an easy way to configure properties
about the trains, environmental properties and so forth.

3.4.2 Functional requirements

1. The adapter module must be able to receive sensor input from all relevant train
sensors.

2. It must also be able to reason about the input and make decision based on
them.

3. The adapter must be able to change sensor properties without interfering with
the rest of the system.

4. The adapter must be designed in a way that allows modification of code related
to sensor, behavior and properties without having to restart the module.

5. It must be possible to control the module from a remote location.

Chapter4Adaption module design

We will in this chapter show the high-level design made for the module and go
through each of the components.

4.1 High-Level Design

In the system requirements specified in Section 3.4, it was stated that the adapter
module should be able to be used in similar systems. A good way to do this is
to allocate sensor management in a separate block. This will decouple the sensors
from the contextual reasoning and wrap sensor specific characteristics inside of one
component. The same arguments can be used about communication. The design
consists of four components, where one of them is used to wrap the three other
components into a single component. The design is presented in Figure 4.1.

Figure 4.1: High-level design of the adaption module

19

20 4. ADAPTION MODULE DESIGN

– Sensor Controller is responsible for handling and controlling the train sensors.
It must ensure that all sensor readings is received by the adapter as well as
provide a way to reconfigure the sensors. The Sensor Controller should also
provide the Context reasoning component with notification about sensor status
changes.

– Remote Controller is responsible for all communication to and from a
remote the adapter. The Remote Controller should take use of the existing
communication infrastructure and provide a well-defined way to interact with
the adapter module. Moreover, a message format must be defined that both the
adapter and the remote operator can understand and use. A set of commands
should be specified so that the remote operate knows what actions are available
to him. The remote operator can use these commands to controller and override
the context reasoning component. The component should also be made in a
way that also it to be used for train-to-train communication.

– Context reasoning is responsible for processing the sensor inputs and reason
about them. The component must keep track of contextual properties, access
necessary resources and react to changes in a correct and efficient way. It
should also be able to make use of the other components residing inside of the
adapter. By this, we mean that is should be able to receive commands sent to
the Remote Controller and act upon them. In addition, it should provide a
way for the Sensor Controller to send sensor readings and notifications to it.

– Train Adapter contains the three sub-components mentioned above. The com-
ponent is responsible for providing a way for the sub-components to cooperate.
The component will define the external API of the module.

Both the Remote Controller and the Sensor Controller are passive component in
that they only will respond to event internally. The Context Reasoning component
on the other hand will take action that changes the trains properties and behavior.

4.2 Services

In addition to components is a collection of services needed in order for the Context
Reasoning model to do its job. The services are developed without Reactive Blocks.
There are two reasons for this. Reactive Blocks is based on tokens being passed
around to the different blocks. This is not a problem when all modules can be coupled
in one application block. The problem arises when you have modules that is residing
outside of the system block. Since OSGi services are not implemented directly in a
system block, but rather is accessed through the service registry the notion of token
passing disappears. The second reason is that the services are mostly comprised of

4.2. SERVICES 21

advanced logic and do not require the synchronization and concurrency handling
that Reactive Blocks provides.

These services will be presented in the following chapter together with a complete
module design and implementation.

Chapter5Communication

The author and Svendsen had a conversation regarding how communications were
handled within the system. The control system used a single block that the author
made in a project assignment to handle communication. One problem noticed
with this was that it was difficult to route incoming messages around the system.
With the introduction of OSGi we could take advantage of its service platform to
make communication handling easier. It was therefore determined early on that
a communication service would be developed. Having a separate communication
service ensures that the system uses the same means of communication. It will also
make it easier to update the communication protocol, as you only need to create
a new service implementation. It is also possible to change to a different message
queuing protocol like MQTT it relatively ease.

5.1 Communication protocol

AMQP was chosen as the communications protocol. The reason for this is mainly
that it was already used with success in Svendsen system[Sve15]. In Section 2.7 is a
brief description of AMQP. To ease the development of the service was the RabbitMQ
client library used for interaction with the message broker. The reason RabbitMQ
was used over other client libraries like ActiveMQ and QPID was mainly that the
authors had used the library in an earlier project and that the library is already been
prepared for OSGi as it is also a OSGi bundle.

5.2 Service requirements

Although the service is mainly used in the train system, it was designed so that it
can be used in other systems. The service demanded four things in order to work.

1. The system must use OSGi.

2. The message broker must be able to handle version 0.9.1 of AMQP protocol.

23

24 5. COMMUNICATION

3. The broker must support topic based exchanges.

4. Message sent must either be strings or be possible to serialize to JSON objects.

5.3 Implementation

Technically, two communication services were implemented. Both uses the same core
code, but are designed for different purposes. The service uses AMQP version 0.9.1
and topic based exchanges, which are both described in Section 2.7. All classes and
interfaces that are referred to in this section can be found in Section A.1

5.3.1 TrainAMQPSendService

TrainAMQPSendService is a simple service that allows one to send but not receive
messages. Its service interface only offers two methods, one to connect to a broker
and one for sending messages. Connecting to a broker is done by providing the
service with an AMQPProperties object. The object contains information like broker
hostname, port number, username and so forth. The service requires only one service
consumer to connect to the broker. After that can all bundles use it to send messages
to the broker. The idea behind this was that one could set up the service when the
system started and then use the send method directly elsewhere in the system. To
simplify this event further was a ServiceTrackerCustomizer made that automatically
connected to the broker used by the trains.

To send a message one simple provides a string containing the topic on which the
message should be sent to and a serilizable object. This service was mainly used to
communicate with the adapter during testing.

5.3.2 TrainAMQPService

TrainAMQPService is a more advanced service. In addition to letting on send and
receive messages it also gives you more fine-grained control over the connection. The
service provides two ways to connect to a broker dependent of the level of control
one wanted.

When using openConnection(AMQPProperties properties) will the service check
if a connection factory with the given AMQPProperties exist. If the factory does not
exist will a new factory be initialized and a connection to the broker will be opened.
When the connection is made is a TrainAMQPConnection object be returned.

With the TrainAMQPConnection can the service consumer open new
TrainAMQPChannels. TrainAMQPChannels is needed in order interact with the bro-
ker and contains methods for sending and receiving of messages and to (un)subscribe

5.3. IMPLEMENTATION 25

to topics. The openConnection method is used when one wants to allocate multiple
channels to one connection. If only one channel is needed can the openChan-
nel(AMQPProperties properties) method be used instead. It will automatically
create a connection and open a channel for the user, meaning that the user do not
have to be concerned about connection management.

When a consumer receives the channel it can immediately start using it to send
messages via the provided send(Object message, String topic) method. As with
receiving it is a bit more complicated. Since reception of a message is triggered
by an external source one most decide if messages should be pushed to or pulled
by the receiver. Having the consumer pull for messages is the simplest way. For
example could the service offer a getMessage() method that would return all received
messages since last invocation. The obvious flow with this is that would have to
periodically call the service. This is especially a bad fit with time critical systems
like the one presented in this paper. In addition can it lead to lots of unnecessary
calls eating up resources. A better way to solve this is to push messages to the
consumer via a Callback function. This is done by using the TrainDefaultConsumer
utility class provided by the service. It allows the consumer to set a method that it
wants to be invoked when a message is received. The method must be defined with a
Function<AMQPMessage, Void> object. A benefit with having the consumer set
the method to be invoked with a Function object is that it can be changed during
runtime. The reason for this is that the service will call the run the method inside
of the Function object of the TrainDefaultConsumer and this Function object can
be changed by using the provided setFunction(Function<AMQPMessage, Void>
function) method.

5.3.3 AMQPMessage

AMQPMessage is a utility class is used by the service and by the RemoteControl
block, as we will see later. It acts as a multi purpose container object. When a
message is received, a set of properties is also received containing information about
the message. The AMQPMessage gather all this information so that is contained in
one object. When someone uses the RemoteControl block it takes in a AMQPMessage
object where the topic and the message is contained within the object.

26 5. COMMUNICATION

5.4 The RemoteControl block

Some will argue that the communication service could be used directly in the
Context reasoning components. In addition to the arguments made in Section 4.1
will implementing communication directly into the ContextChecker increase the
complexity of the block, which is already complex as it is. So, a communication
block was made tailored to work with the adapter. Its activity diagram is shown if
Figure 5.1

Figure 5.1: The RemoteControl block is responsible for all remote communication
with the train adapter

The block uses the TrainAMQPService described above to set up a two way
communication to a broker. A problem encountered during the development of the
block was how received messages were going to be passed to the block. To be more
specific, when a message is sent to the adapter it will be received by the service, and
not the block itself. Fortunately does the TrainDefaultConsumer allow one to provide
it a Function object that is invoked on message reception. This means that whenever
a message is sent to the adapter, a method defined in the Java class associated with
the block is executed. We now have gotten the message to the block, but we still
need to send it to the RECEIVED event reception node in order for it to leave the
block. Reactive Blocks already provides a method that does exactly this, namely
the sendToBlock method that was described in Section 2.3.1. Listing 5.1 shows the
Function object used in the RemoteControl block.

5.4. THE REMOTECONTROL BLOCK 27

private Function<AMQPMessage, Void> getCallbackFunction(){
return new Function<AMQPMessage, Void>() {

@Override
public Void apply(AMQPMessage t) {

TrainCommand cmd =
deserilizeBody(t.getRawBody());

logger.debug("Received message");
if(cmd == null) return null;
sendToBlock(received, cmd);
return null;

}

};
}

Listing 5.1: The RemoteControl uses this method to generate a function object to
be used with the TrainAMQPService

Figure 5.2 shows process of connecting to a message broker and how the Function
object generated by the function is used.

5.4.1 Message reception

When a message is received by the block it will deserialize the message using the
GSON library into a TrainCommand and send it to the ContextCheckes as shown
in Figure 5.3. The TrainCommand is a utility class to be used between a remote
operator and the adapter. The class defines a way for how one can control the
adapter. It is implemented as a tuple, with an Enum describing what action should
be taken and optionally a value.

5.4.2 Sending a message

To send a message must one provide an AMQPMessage object to the block containing
a topic and a message object. The block will simple then provide this information to
TrainAMQPService that will send the message.

28 5. COMMUNICATION

Figure 5.2: The sequence diagram for the set up of the AMQP connection inside
of the RemoteControl block

Figure 5.3: The sequence diagram for the describing how the message reception is
handled

Chapter6Sensor software

Before we can go into the workings of the sensor controller, it is useful to know how
the sensors is realized in the system. As mentioned before is the software controlling
the train sensors was developed by Svendsen. We will in this chapter go briefly
through how data is retrieved and published to the system. For a more thorough
explanation please see Svendsen master thesis [Sve16].

Type Hardware
Color TCS34725 [Ada16b]
NFC PN532 [Ada16c]

Magnetometer MAG3110 [Ada16a]

Table 6.1: A list of the sensor hardware running on the trains

6.1 SensorSchedulerService

The SensorSchedulerService is a simple service that lets you schedule tasks to be
run periodically. The scheduler used by the service is defined by the ScheduledEx-
ecutorService and uses a Java ScheduledThreadPoolExecutor object to handle the
scheduling. Each of the tasks will be run on a separate thread managed by the
ScheduledThreadPoolExecutor.

To schedule a task one must provide an object implementing the Runnable
interface, a initial delay which can be set to 0 for immediate execution and the period
duration in microseconds between each execution. The service has developed by
Svendsen to be used by the publishers, this is explained below in Section 6.3. The
author expanded the service to enable it to remove already scheduled tasks. To do
this must the already scheduled task be provided and a Boolean value indicating if
the task should be interrupted if it is currently running.

29

30 6. SENSOR SOFTWARE

6.2 Sensor implementation

Each sensor has a bundle containing methods for retrieving raw sensor date. This
bundle is registered to the framework as a service. To publish the sensor data to the
system do each sensor also has a separate publisher bundle.

6.3 Sensor Publishers

The sensor publishers job is to publish sensor data to the system. It does this by
utilizing the Event Admin service described in section Section 2.4.5. All publishers
are registered as services to the Service Registry with a common interface named
PublisherService and a property describing the type of the sensor it is publishing
data on behalf of.

When a publisher is started, it will generate a task that access the sensor, retrieves
its raw data, processes the raw data and publish it to the Event Admin. This task is
sent to the SensorSchedulerService for it to be executed periodically.

Figure 6.1: The sequence diagram for how a sensor data is published to the system

As with the SensorSchedulerService added the author some features to the
publishers. These features is related to changing the time between readings, called
publish rate and support for doing a single sensor reading was also added. The
author added methods that notified the system if a sensor changed its status.

With the current implementation of the sensor software, it is not possible to
reconfigure a sensor directly; instead must its publishers be used. This limits what
the adaption module can do with regards to sensor reconfiguration.

6.4. SENSOR PROBLEMS 31

6.4 Sensor Problems

Henrik H. Svendsen discovered some issues related to the sensor hardware during his
work. These issues will impact what the adapter is capable to do and how it can
interact with the sensors.

The first problem he discovered was that all sensor shares the same data buss. In
order to get values from the sensors one has to explicitly read its values. The problem
with this if a multiple sensors have their values read frequently, it can cause the
sensors to block each other, meaning that events can be lost. This is especially critical
for the NFC sensor, as missing a NFC beacon will mean that context information
is lost. It was therefor decided that the best way to circumvent this was to use the
color sensor as the main train sensor and have its events trigger the other sensor.

There where also an issue with the magnetometer sensor being to sensitive. For
example would the electrical wiring in the lab effect the sensor. This limited the
usefulness of the sensor and it is only used to demonstrate certain features of the
adapter.

Chapter7Sensor handling

Sensor information is essential to gain an understanding of a train’s contextual
properties and forms the basis for the context reasoning. In this chapter will we
explain have the sensor handling is solved in the adapter.

7.1 Tracking the sensors

In Chapter 6 we described how the sensors are implemented into the system and that
each publisher is registered as a service with a common interface. We can utilize this
to monitor the publishers. This is done by the CustomeServiceTracker block.

7.1.1 The CustomeServiceTracker block

The CustomeServiceTracker is flexible block that can be used to track services. It
uses a ServiceTracker described in 2.4.4 to track the service since it is robust and
thread safe. . A LDAP filter is used to define what service should be tracked. LDAP
filters can be used to state what class or interface one wants to track. In addition to
this do they also allow service property requirements. This means that that one has
more fine-grained control over which service one wants to track.

When the block is started, it takes in a string representing the LDAP filter. It
will then get the BundleContext with the help of BitReactive’s Get BundleContext
block[AS16g]. When the BundleContext is acquired is the string validated and used
to create the LDAP filter. This again is used to set up a Service Tracker. Using a
ServiceTracker will only give access to already registered services. To be able to get
notification about services registration, updates and unregistrations a ServiceTrack-
erCustomizer is added to the tracker. Inside the ServiceTrackerCustomizer is code
that will send notification to the block when a tracked service is registered, updated
or unregistered.

33

34 7. SENSOR HANDLING

Figure 7.1: The activity diagram of the CustomServiceTracker block

When a service’s state is changed will the block forward its ServiceReference
instead of the service object. The reasoning for this is that the block can not use
generics since the class or interface of the tracked service is not decleared when the
block is started. A benefit with sending the ServiceReference is that it gives access
to the properties provided when the service was registered. This information is used
by the SensorController as we will see later. Lastly, since the block uses LDAP filters
and only sends ServiceReferences out does the block not need to have access to the
interface or class it is tracking.

7.2 Receiving sensor readings

Now that we can track the sensors publisher we need to retrieve the information
published by them. The sensor publisher uses the Event Admin to push sensor events
to the system. In Section 2.4.5 we described how event handlers are used with the
Event Admin to receive outgoing events. We will in in this section describe how
these Event Handlers is implemented. We will use the term handler to describe a
class implementing the EventHandler interface.

7.2.1 SensorHandlerController service

To simplify the management and allow for runtime updates of handlers was a service
containing the handlers made. A question that came up when mocking up the service
was whether a controller should be used to administer the handlers. If the service was
implemented without a controller then all handlers would have to be registered to
the framework. Although OSGi allows one to filter out services based on their service
properties it would make the bundle activator unnecessary complicated. Furthermore,
this would require the Sensor Controller to implement possible complex logic in order
for it to retrieve the correct handler for a sensor. For these reason was a controller

7.2. RECEIVING SENSOR READINGS 35

included into the service. The controller implements a set of methods that can be
used to retrieve handlers.

In order for the Context Reasoning component to be able to understand the
sensor data it must define how it except different sensor readings to be formatted.
This is done by having a sensor reading class for each individual sensor type. The
sensor handlers job is to receive the sensor data from the publishers and convert
them in to an appropriate reading object. In most cases is this a trivial task, as
shown in listing A.2. The benefit of using the handlers as converters is that you can
change sensors and/or their output format without changing the SensorController,
Context Reasoning component or the train states described later. Instead, one can
simply add a new handler for the sensor or modify the existing one. For example if
the train has backup sensors that gives out data in different format, one only need
to update the handler for that sensor.

7.2.2 Sensor reconfiguration

Sensor reconfiguration is one of the actions the adapter can take. As trains may have
different types of sensors, it will be unwise to implement the reconfiguration logic
inside of a block. We will therefor again use a service to handle this.

SensorConfiguratorController services

The SensorConfiguratorController service is responsible for reconfiguring train sensors.
The service is similar to the SensorHandlerController service in its architecture. It
has a controller that is registered to the system as a service. Each sensor will have its
own configuration class that is responsible for that sensor. In order to have a defined
way to reconfigure sensors is a utility class named SensorReconfiguration used. The
class contains properties regarding what sensor that should be reconfigured along
with what should be done and optionally a value.

To reconfigure a sensor must a SensorReconfiguration be provided to the controller.
The controller will route this object to the correct configurator that will execute
methods in the appropriate publisher.

As we mention earlier do all sensors publisher implement the same interface.
However, it is likely that the sensors will have custom properties that only can be
configured on one specific sensor type. A way to handle this is to let the publisher
implement two interfaces, one being the PublisherService A.3 and a specialized
interface defining the configuration option for a given sensor.

36 7. SENSOR HANDLING

7.3 The SensorController block

The SensorController block is a intermediary between the sensor publishers and the
ContextChecker 8.5. Its main purpose is to ensure that the ContextChecker receives
all sensor readings published to the system in addition to do sensor reconfiguration
on behalf of it.

Figure 7.2: The activity diagram of the SensorController block

When the SensorController is started it sets up two ServiceTracker 2.4.4 to gain
access to the SensorConfiguratorController and SensorHandlerController service. A
ServiceTrackerCustomizer is added to the ServiceTracker related to the SensorHandler
service. The custiomizer is need in case the SensorHandlerController service is down
when the block is started and the SensorController is not able to get its handlers.
Without a customizer, one would have to periodically check if a SensorHandlerCon-
troller service has been registered. With a customizer, this is no longer a problem as
it allows to add a function that will be executed when a tracked service is registered
to the framework. An added benefit with this is that if the service is updated will
the SensorController automatically update all the registered handlers.

The block is connected to the CustomServiceTracker so it can receive events
regarding publisher registration, updates and unregistration. This information is
used to maintain a set of handlers. It does this by using the SensorHandlerController
service to get appropriate handlers 2.4.5 for all sensor publisher registered to the
framework. In order to keep control over which handler is registered the different
publishers is a last containing all the parings used. This list is used when a publisher
is unregistered so that the block can remove and unregister the handler associated
with that publisher from the framework. It is also used when updating a handler.

7.3. THE SENSORCONTROLLER BLOCK 37

In Figure 7.3 can we see how the sensor controller is related to the other blocks
and services. Green indicates services and blue indicates blocks.

Figure 7.3: Overview of the SensorController

EventReceiver

A problem that came up when developing the SensorController was that the han-
dlers did not have a way to send sensor readings to the SensorController. This
was solved by introducing the EventReceiver interface shown in listing A.4. The
interface contains a series of method that can be used to forward the different sensor
readings from the handlers to the block. With this, can the handlers can take in
an EventReceiver object as a parameter in its constructor and use the methods
declared in the interface. The SensorController implements this interface and uses
the sendToBlock() method to get the event to the event receptors residing inside the
block. When the Sensor Controller is setting up an event handler, it sends a reference
of itself to the SensorHandlerController services that passes it to the constructor of
the handler.

Sensor registration events

When a sensor publisher is registered to the framework will the CustomServiceTracker
be notified. It will get the ServiceReference for the publisher and send it the
SensorController. The SensorController will then look up the PublisherType for the
sensor and send this to the SensorHandlerController. The controller will return the
appropriate handler to the SensorController, which then registers it to the framework.

38 7. SENSOR HANDLING

Figure 7.4: The sequence diagram for how the SensorController retrieves the
appropriate EventHandler when a train sensor is registered to the system

Chapter8Context modeling and reasoning

So far have we explained how sensor readings are received inside the adaption module
with the use of event handlers and how these handlers are controlled. The last piece
of the puzzle is to use the actual readings and reason about them. In the following,
we will explain how this is done.

8.1 Keeping track of the train

In order to make the adapter context aware it needs a way to model the trains
contextual properties. There is numerous ways to go about this, but for this
component, we opted to use an object to contain the information. The object, named
TrainInfo, contains variables for a train properties like its speed, heading, current
state, location and so fourth. To access the properties is variable getters and setters
used.

8.1.1 Train restrictions

In Section 8.2 we will describe how states are used to dictate a trains behavior. As
one of the goals for this system is to allow for code reuse, it is not desired that a train
state contains hard coded values related to specific train types. To tackle this problem
is a service containing characteristics and restrictions concerning the physical train
using the module proposed. The service, named TrainRestrictionsChecker inhabits
methods to be used by the train states to determine if the trains properties is valid
in regards to its context. The service can for example be used to check whether a
train is operating at a valid speed for the zone it is traveling in. Other information,
like sensor information is also contained in this service.

The service exposes a common interface, with each train type having its own
service implementation of the interface. To keep the code cleaner does each train type
implementation have two classes. The first class is an abstract class encompassing
the properties. The class follow the constant interface pattern described at [Wik16c].

39

40 8. CONTEXT MODELING AND REASONING

The second class is comprised of methods used to access these values as well as check
certain properties.

With this service can now the same train state implementation be used by different
train types running in the same environment.

8.1.2 Map properties

In Section 2.1 we explained that the train control system uses a BlueBrick map
for navigation. As of now do these maps only contain identification information,
like intersection id’s and how the track legs are connected. In order to make a
train’s location influential for its behavior we wanted to introduce zones and other
location information into the system. In order to do this was a service containing
this information made, named MapChecker.

The MapChecker provides a means to get information regarding the zones for
which the train operates. This information can for example be zone classification,
like City zones where stricter restrictions applies. These restrictions can then be
used to adapt the trains behavior accordingly. In practice, will the train use this
service upon entering a new zone to gain information about its classification. The
service also holds a simplified model of the railroad. This can be used to predict
what the next zone should be in case of a sensor error. The service is built up in the
same way as the TrainRestrictionChecker in that each railroad map has one class file
containing the its properties and a class containing methods to get and check these
properties.

8.2 Context reasoning

Now that we have a way to track and check a train’s properties all we need is to find
a way to reason about them. An important question for this thesis was how context
reasoning should be done.

A simple approach is to list up a set of logical clauses and then go through them
on an event. There are several problems with this approach. For one, every time
an event occurs you have to go through many unnecessary clauses. Gathering the
clauses into bulks concerned with certain events can solve this problem. Secondly,
the complexity of the logical clauses would increase significantly as the systems
complexity increases. Especially making sure that clauses are not conflicting can
be a major challenge. Lastly, code additions would require refactoring of the whole
code.

Amir et. al [AT] adaption framework uses the BeSpaced tool-set for its context
reasoning. The BeSpaced is a implemented in Scala, which the author has little

8.2. CONTEXT REASONING 41

knowledge about. Due to the limited time frame of this thesis it was decide that using
BeSpaced would be a to comprehensive task. After discussions with the supervisors
it was decided that using state machines could be a good solution for the context
reasoning. The implementation of the state machine used by the adapter is based on
the State Design Pattern [Jos15, Chapter 18].

State Design Pattern

"The State Design Pattern allows an object to alter its behavior when its internal
state changes" - Java Design Pattern, chapter 18

The State design pattern is a behavioral pattern, meaning that it encapsulate
behavior in an object and delegates request or event to it[Wik16b]. In the State
design pattern is the behaviors implemented in states which all implements a common
interface. The pattern fits well with systems where an objects behavior changes in
accordance with its internal state during runtime.

The object containing the state, often referenced to as the Context object, can
alter its behavior dependent on its internal state by only replacing its state object.
This replacement or state transition is triggered by the state them self and it is
their responsibility to keep the Context object in the correct state. Each state is
defined with a regular java class implementing a common interface. Having states
implemented in separate classes significantly simplifies additions and modifications
of states. It is important to notice that the state objects only contains the context
behavior that is specific for that state and not the overall behavior of the Context
object.

Figure 8.1: Structure of a state pattern system

42 8. CONTEXT MODELING AND REASONING

In listing 8.1 is a simple example of the state design pattern. The Context object,
in this case a Train, has three fields. The first one is to keep track of its current
state. The two other ones is to be used to change train state as we can is in the
stop() method inside the Running class.

public class Train{

private TrainState state;
private TrainState running;
private TrainState stopped;

public Train(){
this.running = new Running();
this.stopped = new Stopped();
this.state = running;

}

public void setState(TrainState state){
this.state = state;

}

public void start(){
state.start();

}

public void stop(){
state.stop();

}

public TrainState getRunning(){
return running;

}

public TrainState getStopped(){
return stopped;

}

}

public class Running() implements TrainState{

private Train train;

public Running(Train train){

8.2. CONTEXT REASONING 43

this.train = train;
}

@Override
public void start(){

System.out.println("Already running");
}

public void stop(){
System.out.println("Stopping train");
train.setState(train.getStopped());

}
}

Listing 8.1: An example implementation of the state design pattern

In the code example listed above one may notice that all train states are initialized
when the Context object is created. This means that it is not possible to change the
states during runtime. This in itself is not a problem but we could do even better if
we utilize the tools given to us by OSGi. Firstly, instead of keeping reference to all
the different TrainStates we could have a controller object that keeps track of the
states for us. In listing 8.2 is the modified code. We have taken out all references
to the different TrainStates and instead we use a TrainStateController to get the
different TrainStates. An enum, named States, is also introduced to be used by the
TrainStates to tell what the next TrainState should be.

public class Train{

private TrainState state;
private TrainStateController controller;

public Train(BundleContext context){
controller = new TrainStateController();
controller.open();
this.state = running;

}

public void setState(States state){
this.state = controller.getState(state);

}

public void start(){
state.start();

44 8. CONTEXT MODELING AND REASONING

}

public void stop(){
state.stop();

}

}

public class Running() implements TrainState{

private Train train;

public Running(Train train){
this.train = train;

}

@Override
public void start(){

System.out.println("Already running");
}

public void stop(){
System.out.println("Stopping train");
train.setState(States.Stopped);

}
}

Listing 8.2: An example implementation of the state design pattern using a state
controller

So far have we decopuled the TrainStates from the adapter module, but we still
do not have a way to update the states during runtime. This is where OSGi comes in.
If we implement the TrainStateController as a OSGi Service we are suddenly capable
of changing TrainStates without stopping the adapter module. Listing 8.3 show the
modified code that takes use of the service. Another benefit with this approach
is that all things state related are located in one place. This will help reduce the
complexity of the adaptation module.

public class Train{

private TrainState state;
private BundleContext context;

8.3. TRAIN STATE IMPLEMENTATIONS 45

private ServiceTracker<TrainStateController, TrainStateController>
controller;

public Train(BundleContext context){
this.context = context;
controller = new ServiceTracker<>(context,

TrainStateController.class, null);
controller.open();
this.state = running;

}

public void setState(States state){
this.state = controller.getService().getState(state);

}

public void start(){
state.start();

}

public void stop(){
state.stop();

}

}

Listing 8.3: An example implementation of the state design pattern using a state
controller with OSGi

8.3 Train State Implementations

8.4 Scope of states

A question that arose when work with the state implementation was how general
they should be. In simpler terms, what dictates a trains behavior running in our
system?

8.4.1 Location based states

As we talked about earlier in 8.1.2 can the trains location affect its behavior. For
example, in certain zones should certain sensors be read more often in order to detect
events faster. By location we mean the zone the train is operating.

46 8. CONTEXT MODELING AND REASONING

8.4.2 Sensor based states

In addition to its location do also a trains available sensors influence its behavior. How
a sensor’s data is reasoned about is dependent on its intended use and responsibility.
If a sensor should fail its responsibility must be delegate to the others sensors so that
the train still can maintain safe operation.

8.4.3 Train operation status based states

The last factor that can affect a trains behavior for our system is it operational
status. For example if a train is used it may ignore certain sensor readings as they
are no longer relevant.

8.4.4 Hierarchical states

To reduce code redundancy hierarchical state is used. Hierarchical state uses inheri-
tance between states so that common behavior does not need to be implemented in
all state, rather do the state classes inherits the behavior from a parent class.

8.4.5 TrainState Interface

As we mentioned above must all states in the state machine implement a common
interface. For the states used in the adapter was the interface shown below used.

public interface TrainState {

public void colorUpdate(ColorReading color);
public void accelerationUpdate(AccelerometerReading acc);
public void magnetometerUpdate(MagnetometerReading reading);
public void temperaturUpdate(TemperatureReading temp);
public void nfcUpdate(NFCReading hex);
public void sensorUpdate(SensorStateEvent event);
public void dummyUpdate();

}

Listing 8.4: The TrainState Interface

8.4.6 States

In total was nine states implemented into the state machine. An overview of the
states is show in Figure 8.2. The double lined circles indicate that the state is abstract
and can not be used by the adapter. The states name indicates which zone types the
state is used in and the states with names ending with NFC are used when an NFC

8.4. SCOPE OF STATES 47

reader is not available or has failed. The train state named Stopped is used when a
train, as the name implies, as stopped or failed. More information about the states
and their interaction is provided in Chapter 9 and Chapter 10.

Figure 8.2: Overview of the states contained in the state machined used by the
adapter

48 8. CONTEXT MODELING AND REASONING

8.4.7 The TrainContext interface

The TrainContext states what methods the context object must provide in order for
the states to be able to reason about inputs and take actions.

public interface TrainContext {

public void setTrainState(TrainStates state);
public TrainStates getCurrentTrainState();
public void stopTrain();
public void sendSpeedRestriction(SpeedRestrictionLevel level);
public SpeedRestrictionLevel getSpeedRestrictionLevel();
public double getSpeed();
public TrainRestrictionsChecker getTrainRestrictionChecker();
public TrainStateController getTrainStateController();
public MapChecker getMapRestrictions();
public boolean isInTurn();
public void setInturn(boolean b);
public void increaseSpeedForTurn();
public void decreaseSpeedForTurn();
public double getHeading();
public void setHeading(double heading);
public String getCurrentLocationID();
public void setCurrentLocationID(String locationID);
public Status getSensorState(PublisherType type);
public void setSensorState(PublisherType type, Status status);
public void reconfigureSensor(SensorReconfiguration reconfiguration);
public void setLastSleeperColor(SleeperColor color);
public SleeperColor getLastSleeperColor();

}

Listing 8.5: The TrainContext Interface

8.5. CONTEXTCHECKER 49

8.5 ContextChecker

The ContextChecker is responsible to bind together all the resources need by the
state machine. It is this block that will receive the sensor information and make the
adaptation module context aware. As we explained in 8.2 is a TrainState object used
to hold the trains current state. In order for the states to interact with the block is
the TrainContext interface implemented by the block. In addition to the TrainState
object does the block also hold a TrainInfo object described in Section 8.1.

Figure 8.3: The activity diagram of the ContextChecker block

In order for the states to get access to the MapChecker, TrainStateController and
TrainRestrictionChecker is ServiceTrackers set up when the block is activated. To
allow both the SensorController and the RemoteControl to interact with it does the
block expose a set of incoming and outgoing pins. Each of the incoming pins have a
separate method for handling the data received. The outgoing pins are used to send
notifications and commands to the other blocks as well as to the train.

50 8. CONTEXT MODELING AND REASONING

Figure 8.4: Overview of the ContextChecker block

Chapter9Train Adapter

This chapter will describe how the components were composed together. We will
also explain how certain events are handled by the adapter.

9.1 The TrainAdapter block

The TrainAdapter block is the block that will be used by the train control system.
The block connects the three components described in the previous chapters into
one single block.

One of the blocks job is to ensure that the components are started in the correct
order and handle any errors related to this. The initialization of the block takes

Figure 9.1: The activity diagram for the TrainAdapter block

51

52 9. TRAIN ADAPTER

place in four steps.

1. When the block starts up it will first collect information about the train
and store these properties in a TrainInfo object A.5. This is then given to
ContextChecker block in order for it to be able to start. If the start up fails,
then the adapter will interrupt its start up since the ContextChecker is crucial
to the TrainAdapter.

2. Second step is to establish contact with the message broker to allow remote
control of the block. If a connection cannot be established will an event be
sent to the ContextChecker. It checks with the TrainRestrictionChecker if
the train is allowed to run without without the RemoteControl block. If the
block should fail while the system is running, the same check is made. This is
mainly implemented in order to be able to conduct simulated tests without a
broker present. It is not recommended to allow the adapter to run without the
RemoteControl block since you then have little control over the block. Ideally
should the RemoteControl block try to connect to a backup broker that it can
use if the primary broker goes down.

3. When a connection to the broker has been established will the SensorController
be activated. Since this component is critical for the ContextCheker will
the block be closed if the SensorController cannot be activated. The Sensor
Controller is started before the CustomeServiceTracker to ensure that it receives
all sensor registrations.

4. Finally will the block obtain a string containing an LDAP filter. This filter
ensures that only the train sensors will be tracked by the CustomeServiceTracker.
This filter will be given to CustomeServiceTracker so it can start. The block
assumes that the filter is valid, else will the block be closed. This could be
handled in a better way, but was not prioritized.

When the block is active will it operate by itself and is not dependent on inputs from
other blocks. The only control you have over the block is that one can stop it.

9.2. PROCESSING A SENSOR READING 53

Figure 9.2: The figure shows how the blocks and services are linked together. Blue
squares are used to represent blocks while the green squares represents services

We have in earlier chapters described how each individual components handles
different events. As it can be hard to see how it all fits together we will in the
following describe how

9.2 Processing a sensor reading

When a sensor publishes a reading will the following events be triggered. As an
example is a color reading used.

1. The color publisher gets the color sensor data and sends it as an event to the
Event Admin.

2. The handler responsible for the color sensor will receive the event from the
Event Admin. It process the data and creates a new ColorReading object. This
object is then sent to the SensorController.

3. When the SensorController receives the object will it simple forward it to the
ContextChecker via the colorEvent pin.

4. The ContextChecker receives the ColorReading object via its ColorEvent pin
and sends it to its current state.

54 9. TRAIN ADAPTER

5. The state will reason about the data inside of the ColorReading object and
then take appropriate actions if needed.

9.2.1 Changing train state

The process of changing a train’s current state is straight forwards. When an
event which requires a change of state occurs will the current state use the set-
TrainState(TrainStates state) method defined in the TrainContext interface. The
TrainStates parameter is a Enum which contains a list of all the available states for
the module. The ConxtextChecker will then take the TrainStates object and send it
to the TrainStateController. The TrainStateController will return a new TrainState
object linked to the provided TrainStates enum. Finally will the ContextChecker set
the new TrainState object as its state.

9.3 Reconfigure a sensor

1. The current train state will call the reconfigureSensor(SensorReconfiguration
reconfiguration) inside of the ContextChecker with a SensorReconfiguration
object as a parameter.

2. The ContextChecker send this object to the to SensorController that forwards
it to the TrainSensorConfiguratorController.

3. The TrainSensorConfiguratorController routes the object to the appropriate
SensorConfigurator.

4. The SensorConfigurator will then access the publisher for the sensor and call
the necessary methods.

5. If the reconfiguration leads to a status change for the sensor, will the publisher
send out an event with the sensors new state.

6. This event is be picked up by the event handler for the sensor. The handler
will send the event to the SensorController.

7. The SensorController creates a new SensorStateEvent object and send it to the
ContextChecker via its SensorStateEvent pin.

8. The ContextChecker will send the SensorStateEvent object to the train state
which will in most cases update the TrainInfo inside of ContextChecker with
the new sensor status.

Having the publishers send out an event after a reconfiguration is important so
the rest of the system knows that the properties of the sensor has changed.

9.4. PERFORM A SENSOR READING 55

9.4 Perform a sensor reading

As we talked about in Section 6.4 is the color sensor used to trigger the other sensors.
An example of this is that the NFC reader be in idle mode until a blue sleeper is
passed. Whenever a blue sleeper is passed will the current train state receive the
color reading as described in Section 9.2. The state will recognize that a blue sleeper
has been passed and that the NFC reader should be activated. The activation will
follow the step 1 to 4 of described above Section 9.3.

9.5 Handling failed sensor readings

During initial testing of the train adapter there was discovered some with the issues
with the NFC reader. Theses issues is critical as missing a NFC beacon can lead
to the train running with the wrong state. Thus was preventive measurements was
implemented to handle this.

9.5.1 The NFC sensor was not able to read the data from the
beacon

If the sensor reading is corrupted, will the train state request the MapChecker service
for the excepted value for the beacon. If multiple sensor readings are corrupted, it is
an indication that the there are something wrong with the sensor. In this case will
the adapter assumes that the senor is faulted and change state.

9.5.2 The NFC sensor was not able to detect the beacon

The states have a Boolean variable indicating if a NFC reading has been done.
Whenever a blue sleeper is passed, this variable will be set to false. It will then
start a timer in a separate thread. If the train state does not receive a NFC reading
when the timer expires, it will fetch the excepted value of the NFC beacon from the
MapChecker.

9.6 Handling sensor failure

Situation can arise where a sensor fails. It is important that the adapter can response
to this in a safe way. In the train restriction property file is the importance of each
sensor defined. A sensor can either be vital, important or peripheral. If a peripheral
sensor fails, no action is taken. If an important sensor fails it requires that the train
change its behavior, meaning that a change of state must be done. In the case of a
vital sensor failure will the train be stopped immediately. For the sensor available
for the trains in our systems are the color sensor defined as vital, the NFC reader as
important and the magnetometer as peripheral.

Chapter10Performance Tests

A series of test was conducted in order to test the performance of the adapter. This
chapter will go through each test and present the results.

10.1 Runtime environment used by the trains

To be able to use OSGi, one must of course have an OSGi framework implementation.
There are several options, most notably Apache Felix, Equinox OSGi and Knopflerfish.
For the trains was the Equinox implementations used. Equinox is the reference
implementation of OSGi, it is included with Eclipse and is also supported by Reactive
Blocks. A list of the included bundles can be found at [Fou16d].

In addition to the framework was some additional compendium service bundles
needed for the trains to work. To be able to use the Event Admin 2.4.5 is Apache
Felix’s implementation of the services used [Fou16b]. To allow automatic instal-
lation of new bundles and to update bundles during runtime is the Apache Felix
Fileinstall2.4.6 service bundle used. The entire runtime enviroment can be found at
[Gitb].

10.2 Logging results

The Equinox framework includes a logging service named Log Service [All16b]. The
service provides a general purpose message logger for the OSGi environment [Fou16d].
As default was the runtime environment set up to log all messages to console, which
is useful under testing. But their was also a need for custom log files for testing. A
useful feature of the Log Service is that it allows one to register a LogListener to the
service. The LogListener receives all messages being logged to the system. These
messages comes in form of a LogEntry [All16b]. Each LogEntry contains properties
that can be used to filter out wanted messages. It also contains the timestamp for
when the entry was created. In the following tests is this used to time the system. A

57

58 10. PERFORMANCE TESTS

bundle was made, named TrainAdapterLogger, that contains all the LogListeners
used under the testing.

10.3 Overview

The mean reason for this testing is to see if the adapter is able to react within a
reasonable time. One thing to keep in mind is that the results of the tests if specific
for this system and it hardware and results may differ if ran on a similar system.

The tests were divided into two parts. First was the reaction time for NFC and
color sensor tested, in other words how long it took from a sensor publishes a reading
until it is received by the train state. In the second part was the fully featured
adapter performance tested.

10.4 Response time on color events

10.4.1 Setup

– The trains ran on a circular track where blue sleepers was passed approximately
every 3 seconds.

– The color publisher was set to do a sensor reading every 10 ms.

– The state machine used in the test contained one state which only cared about
color events. When the state received a color event for a blue sleeper with
would send a speed restriction command to the train.

10.4.2 Results

The result of the test is presented in table 10.1 and 10.3. All times presented in the
table is in milliseconds.

From To Avg. Max Min
Publisher Event Handler 3.08 640 <1

Event Handler Train State 1.12 19 <1
Train State ContextChecker 0.47 8 <1

ContextChecker Train 0.49 10 <1
Publisher Train 5.17 641 <1

Event Handler Train 2.08 20 <1

Table 10.1: Response time on color events

10.5. USING COLOR EVENTS TO TRIGGER NFC READINGS 59

From the results can we see that on average it takes 5 ms for the adapter to react
to a sensor event. This result was better then what the author expected. However,
there seems to be an issue with some events being significantly delayed from the
EventAdmin. In table 10.2 is information about the time it takes form an event is
published to it is received by the handler

Interval Number of occurrences
Less then 2ms 2824

Between 2 ms and 10 ms 48
Between 10 ms and 100 ms 7

Greater then 100ms 18
Number of readings 2897

Table 10.2: Time for an event is published til it is received by the event handler

As we can see is more then 97% of the events received within 2 ms. However,
there where 18 instances where it took more then 100 ms, with the longest delay
being 640 ms. The most likely reason for this is that the EventAdmin can not handle
all the events sent to it. To reduce this problem was could the publish rate for the
color sensor be increased as we will see in the following test.

If we assume that the EventAdmin is well working and remove the 18 instance
mentioned above we get even better results for the adapter, as shown in table 10.3.

From To Avg. Max Min
Event Handler Train State 1.07 6 <1

Publisher Train 3.09 86 1

Table 10.3: Response time on color event where the events that took more then
100ms to get from the publisher to the event handler is filtered out

10.5 Using color events to trigger NFC readings

10.5.1 Setup

– The trains ran on a circular track where blue sleepers was passed approximately
every 3 seconds. Under each blue sleeper was a NFC beacon.

– The color publisher was set to do a sensor reading every 20 ms.

60 10. PERFORMANCE TESTS

– The state machine used in the test contained one state. When the state received
a color event for a blue sleeper it would activate the NFC sensor by following
the steps described in Section 9.4

The result is presented in table 10.4

10.5.2 Results
From To Average Max Min

Color Event
Publisher Event Handler 3.12 364 <1

Event Handler Train State 1.34 15 <1
NFC Event

Train State Start reading 0.69 5 <1
Start reading Finished reading 118.63 164 71

Finished reading Event Handler 4.86 416 <1
EventHandler Train State 1.44 9 <1

Number of readings 541

Table 10.4: Results from the test of the NFC and Color sensor

From the results we can see that increasing the publish rate of the color sensor
helped with the issues related to the EventAdmin. Out of the 541 readings, only
five them took more then 100 ms with the highest value being 364 ms. As with
the NFC readings we can see that it takes on average less then 1 ms from the train
state receives the event til it has activated the sensor. This means that the adapter
performed well enough to use the color events as triggers for the NFC event.

10.6 Complete performance test

10.6.1 Setup

– The train ran on the track displayed in Figure 10.1. The colored lines represent
sleepers with that color and the boxes indicates the different map zones. Under
each blue sleeper was a NFC beacon placed.

– The train traveled only on the outer perimeter of the track.

– The adapter reacted to different sensor readings in accordance to the adaptation
table shown in 10.5.

– The color sensor publish rate was increased to 25 ms.

10.6. COMPLETE PERFORMANCE TEST 61

– The magnetometer publish rate was between 600 ms to 680 ms depending on
with zone the train was traveling in.

Figure 10.1: Figure of the track layout. The figure is a modified version of a Figure
6.1 found at [Sve15]. The colored lines indicate the location of a sleeper with that
color. The boxes indicate track zones

State Event Condition Action
Out of turn Color Red Turn off magnetometer
In turn Color Red Turn on magnetometer

Out of turn Color Yellow Notice train about incoming turn
In turn Color Yellow Notice train that it is no longer in a turn

Everywhere Color Blue Read from NFC sensor
Everywhere NFC Location ID Change train state

Table 10.5: Adaptation table for sensor reading used by the train adapter

The results is presented below and as before are the times in ms. All the results
was obtained from the same test run.

62 10. PERFORMANCE TESTS

10.6.2 Noticing trains about turns

In this test we wanted to see how long it took the adapter to notify the train about
an incoming turn.

From To Avg. Max Min
Publisher Event Handler 1.05 156 <1

Event Handler Train State 1.02 4 <1
Train State Train 0.47 3 <1
Publisher Train 2.55 157 1

Event Handler Train 1.49 6 <1

Table 10.6: Response time on color events

From the results we can see that the adapter uses on average less then 3 ms to
notify the train, which is satisfactory. There is still a problem with the Event Admin,
however with the further increase of the publish rate was there only two occurrences
out of 287 yellow color readings where the Event Admin used more the 10 ms to
send the event to the handler. This se

10.6.3 Reconfigure a sensor

This test was used to see how long time it took to perform a sensor reconfiguration.
The recofiguration performed during this test was to start and the magnetometer
whenever a red sleeper was passed.

From To Avg. Max Min
Publisher Event Handler 2.79 247 <1

Event Handler Train State 1.06 8 <1
Train State Sensor started 0.69 3 <1
Train State Sensor stopped 0.65 3 <1

Number of color events Starts Stops
234 117 117

Table 10.7: Time used to reconfigure a sensor after receiving a color reading

Again we see that the adapter performance well. It uses less on average then 1
ms from it receives the event until the sensor is started/stopped.

10.6. COMPLETE PERFORMANCE TEST 63

10.6.4 Perform a NFC sensor reading and changing state

In this test we wanted to see how fast the adapter was able to change its state when
entering a new map zone.

From To Average Max Min
Color Event

Publisher Event Handler 0.46 10 <1
Event Handler Train State 0.99 3 <1

NFC Event
Train State Beacon read 110.53 142 89
Publisher Event Handler 0.85 4 <1

EventHandler Train State 0.87 3 <1
Train State State changed 0.52 3 <1

Color Publisher State changed 114.22 148 91
Number of readings 123

Table 10.8: Time used for the adapter to change state when entering a new map
zone

Again are the results very good for the adapter. One thing to notice is that
the EventAdmin used at max only 10 ms to send the event to the color handler.
As reason for this could be that in the track layout are the red and yellow colored
sleepers fairly close, while the blue colored sleepers is not close to any of them.

Chapter11Discussion and Conclusion

11.1 Discussion

11.1.1 Correctness

The adapter is reliant on sensors in order for it to be aware of contextual changes.
If the sensors provide erroneous information, it will affect the basis of the context
reasoning. However, this effect can be mitigated by having services that can provide
information that can be used to correct or predict the information. An example
of this is how the MapCheckerService is used when a NFC beacon reading fails.
However, this depends on the nature of the sensor.

Another factor for the adapter’s correctness is the state machine used to by the
train. It is the states that dictate the trains behavior and if they are implemented
poorly this can lead to unwanted behaviors. By defining the scoop of the train states
and using the services presented in this paper is the addition and modification of
states made more intuitive.

11.1.2 Performance

As seen in Chapter 10 do the adapter in it self perform very well and fulfills the
performance requirements required by the system. One of the reasons for this may
be the use of Reactive Blocks. Another positive thing to notice is that the OSGi
framework and the use of services to not seem to affect the performance in any
significant way with the exception of the Event Admin.

As we have seen in the tests, does the Event Admin present a bottleneck for the
module and is something that should be investigated further.

As mention before is the adapter performances dependent on the hardware it
is running on. These hardware limitations must be taken in to consideration when
using the module in other systems.

65

66 11. DISCUSSION AND CONCLUSION

11.1.3 Using services

Services is used to a large extend in the adapter. For now are most of the services
fairly simple, but it shows the potential of what services can be used for. The
SensorHandler service can for example be used to change handlers depended on some
contextual properties. Also, since the services are accessed through ServiceTrackers
can they all, except for the communication service, be updated at runtime without
having to restart the adapter. This together with the File Install bundle can for
example be used to dynamically download new map information.

11.1.4 Using Reactive Block and OSGi

Throughout the development process has Reactive Blocks together with OSGi shown
to be useful tools to reduce development time and open opportunities that else would
not be possible. Furthermore, both technologies fit well with ITS system. Reactive
Blocks abstracts away most of the synchronization and concurrency management
that would else had to be developed. From the tests can we also see that it generates
efficient code as it promise. OSGi is a powerful framework that made runtime
configuration and modification of code possible.

Without these technologies would it be very hard, if not impossible, to develop a
module that has the same possibilities as the adapter presented in this paper.

11.2 Conclusion

The adapter module in it self fulfils the functional requirements and serves as an
example of how context reasoning can be solved in an autonomous train system. The
test result shows that the adaption module performs well. With this and the use
of states it is able to maintain safety properties that ensure safe operations for the
trains.

Although the flexibility and configurablity of a system is hard to quantify until a
modification to the system is made, do the system design follow the low coupling and
high cohesion principle that should help with these properties. Combining this with
Reactive Blocks visual representations should help with understanding the systems
behavior.

The utilization of OSGi services gives a means to separate system concrete
characteristics that allows for code and/or block reuse in similar systems. It also
provides the opportunity to develop services that are shared by the different parts of
the system, like the communication service described in Section 5.3.1. This together
with blocks mostly relaying on interfaces and general propose utility classes should

11.3. FURTHER WORK 67

make for a flexible system where changes to the existing operation environment
should lead to limited code modification.

The proposed adaption model architecture makes use of modularization where
sub-functionality is implemented in components that can work independent of each
other. This should make it easier to allow for having multiple developers working
on the module, as long as they agree on the service contract used between the
components.

11.3 Further work

11.3.1 Improving the MapChecker service

The current implementation of the service only contains a simplified model of the
railroad map. If the service instead could hold a complete model of the railroad map
it could be used predict more events and give valuable information to the adaptation
module.

11.3.2 Considering the other trains

For now does the adapter only consider itself and not other trains. A very interesting
project would be to incorporate information about the other trains running on the
same track. The adapter has already means to receive this information with its
RemoteControl block. The only thing that needs to be done is to define how the
information should be processed by the ContextChecker and optionally services that
can help with this. If the improvement of MapChecker mentioned above is done,
then the adapter could warn the system about trains in close proximity, reconfigure
certain sensors and thereby help with collision avoidance.

11.3.3 Introducing concurrent state machines

If the complexity of the system increases further it can lead to many and complex
states. A way to solve this problem could be to use concurrent state machines. With
concurrent state machines can the ContextChecker use two or more state machines
dedicated to different contextual properties.

11.3.4 Having a separate bundle management service

The only way for the system to updates is bundle during runtime is to manually
download the updated bundles to the trains via Git. A feature that should be added
to the system is a service that can automate this process. A way this could be done
is to send a TrainCommand to the ContextChecker and have it contact the service.
Another feature that could be useful is to add methods that allow the adapter to

68 11. DISCUSSION AND CONCLUSION

start and stop bundles. As for our system, there was not much incentive to do this,
but in the future it may be needed.

References

[Ada16a] Adafruit. Data sheet for the magnetometer sensor used in the trains.
https://www.nxp.com/files/sensors/doc/data_sheet/MAG3110.pdf, Accessed:
June 2016.

[Ada16b] Adafruit. Description of the color sensor used in the trains.
https://www.adafruit.com/products/1334, Accessed: June 2016.

[Ada16c] Adafruit. Description of the nfc/rfid sensor used in the trains.
https://www.adafruit.com/product/364, Accessed: June 2016.

[All16a] OSGi Alliance. The specification for the eventhandler interface.
https://osgi.org/javadoc/r4v42/org/osgi/service/event/EventHandler.html,
Accessed: June 2016.

[All16b] OSGi Alliance. The specification for the loglistener interface.
https://osgi.org/javadoc/r4v42/org/osgi/service/log/LogListener.html, Accessed:
June 2016.

[All16c] The OSGi Alliance. About us. https://www.osgi.org/about-us/, Accessed: June
2016.

[All16d] The OSGI Alliance. The documentation for the servicetracker class.
https://osgi.org/javadoc/r4v42/org/osgi/util/tracker/ServiceTracker.html, Ac-
cessed: June 2016.

[All16e] The OSGI Alliance. The documentation for the servicetrackercustomizer interface.
https://osgi.org/javadoc/r4v42/org/osgi/util/tracker/ServiceTrackerCustomizer.html,
Accessed: June 2016.

[All16f] The OSGI Alliance. Osgi service platform core specification release 4 version 4.3.
https://osgi.org/javadoc/r4v43/core/index.html, Accessed: June 2016.

[AS16a] Bitreactive AS. Activity nodes. http://reference.bitreactive.com/reference/activity-
nodes.html, Accessed: June 2016.

[AS16b] Bitreactive AS. Bitreactive joins the osgi alliance.
http://www.bitreactive.com/bitreactive-joins-osgi/, Accessed: June 2016.

69

70 REFERENCES

[AS16c] Bitreactive AS. General information about reactive blocks.
http://www.bitreactive.com/technology/, Accessed: June 2016.

[AS16d] Bitreactive AS. Information on have to run reactive blocks together with osgi.
http://reference.bitreactive.com/reference/develop-osgi-app.html, Accessed: June
2016.

[AS16e] Bitreactive AS. Installation. http://reference.bitreactive.com/reference/installation.html,
Accessed: June 2016.

[AS16f] Bitreactive AS. Java code for building blocks.
http://reference.bitreactive.com/reference/java-code-for-blocks.html, Ac-
cessed:June 2016.

[AS16g] Bitreactive AS. Overview of the osgi related blocks provided by bitreactive.
http://blocks.bitreactive.com/preview/#/library/_mIv8UBIvEeKMseuZHQ_fDA/1.6.2,
Accessed: June 2016.

[AS16h] Bitreactive AS. Reactive blocks documentation. http://reference.bitreactive.com/,
Accessed: June 2016.

[AS16i] Bitreactive AS. Types of building blocks.
http://reference.bitreactive.com/reference/types-of-blocks.html, Accessed:
June 2016.

[AT] Jan Olaf Blech Álvaro Férnandez Amir Taherkordi, Peter Herrmann. Architectural
virtualization for self-adaptation in mobile cyber-physical systems. Unpublished
at the submission of this thesis.

[For16] The Internet Engineering Task Force. The rfc1960 documentation.
http://www.ietf.org/rfc/rfc1960.txt, Accessed: June 2016.

[Fou16a] Raspberry Pi Foundation. Raspberry pi 2 model b.
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/, Accessed:
June 2016.

[Fou16b] The Apache Software Foundation. The specification for the apache felix event ad-
min implementation. http://felix.apache.org/documentation/subprojects/apache-
felix-event-admin.html, Accessed: June 2016.

[Fou16c] The Apache Software Foundation. The specification for the apache felix file install
implementation. http://felix.apache.org/documentation/subprojects/apache-felix-
file-install.html, Accessed: June 2016.

[Fou16d] The Eclipse Foundation. List of included bundles in the equinox framework.
http://www.eclipse.org/equinox/bundles/, Accessed: June 2016.

[Gita] GitHub. Git repository containing the modified modified sensor code.
https://github.com/henrihs/osgi-train/tree/alexander.

REFERENCES 71

[Gitb] GitHub. Git repository containing the runtime used on the trains.
https://github.com/Svae/TrainRuntime/tree/alexander.

[Git16a] Git. Homepage for git. https://git-scm.com/, Accessed: June 2016.

[Git16b] GitHub. Git repository containing the code developed in this thesis.
https://github.com/Svae/TrainAdapter, Accessed: June 2016.

[Gro16] Lego Group. Lego mindstorms ev3. http://www.lego.com/en-
us/mindstorms/products/31313-mindstorms-ev3, Accessed: June 2016.

[HPMS11] Richard S Hall, Karl Pauls, Stuart McCulloch, and David Savage. Osgi in action.
Creating Modular Applications in Java, 2011.

[Inc16a] Pivotal Software Inc. Java client api guide. https://www.rabbitmq.com/api-
guide.html, Accessed: June 2016.

[Inc16b] Pivotal Software Inc. Rabbitmq java client library.
https://www.rabbitmq.com/java-client.html, Accessed: June 2016.

[Jos15] Rohit Joshi. Java design patterns. Reusable solutions to common problems, 2015.

[NTN16] NTNU. Homepage of the ntnu’s its lab. https://www.ntnu.edu/telematics/its,
Accessed: June 2016.

[Par10] The European Parliment. Framework for the deployment of intelligent transport
systems in the field of road transport and for interfaces with other modes of
transport. Official Journal of the European Union, 2010.

[SA16] Matthew Arrott et al. Sanjay Aiyagari, Alexis Richard-
son. Advanced message queuing protocol protocol specification.
https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf, Accessed: June
2016.

[Sve15] Henrik Heggelund Svendsen. Model-based engineering of a distributed, au-
tonomous control system for interacting trains, deployed on a lego mindstorms
platform. NTNU, 2015. Project assignment.

[Sve16] Henrik Heggelund Svendsen. Self-localization of lego trains in a modular frame-
work. Master’s thesis, NTNU, 2016.

[Wik16a] Wikipedia. Advanced message queuing protocol.
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol, Accessed:
June 2016.

[Wik16b] Wikipedia. Behavioral pattern. https://en.wikipedia.org/wiki/Behavioral_pattern,
Accessed: June 2016.

[Wik16c] Wikipedia. Constant interface. https://en.wikipedia.org/wiki/Constant_interface,
Accessed: June 2016.

72 REFERENCES

[Wik16d] Wikipedia. Osgi. https://en.wikipedia.org/wiki/OSGi, Accessed: June 2016.

[Wik16e] Wikipedia. Software prototyping. https://en.wikipedia.org/wiki/Software_prototyping,
Accessed: June 2016.

AppendixAJava code

This appendix contains code referenced to in the paper.

A.1 TrainAMQPService

public interface TrainAMQPService {

public TrainAMQPChannel openChannel(AMQPProperties properties)
throws IOException, TimeoutException;

public TrainAMQPConnection openConnection(AMQPProperties properties)
throws IOException, TimeoutException;

}

public interface TrainAMQPSendService {

public void connect(AMQPProperties properties) throws IOException,
TimeoutException;

public void send(Object body, String topic) throws IOException;
}

public interface TrainAMQPChannel{
public void setConsumer(TrainDefaultConsumer consumer) throws

IOException;
public void subscribe(String topic) throws IOException;
public void subscribe(List<String> topics) throws IOException;
public void unSubscribe(String topic) throws IOException;
public void send(Object message, String topic) throws IOException;
public void closeChannel() throws IOException, TimeoutException;
public Channel getChannel();

}

73

74 A. JAVA CODE

public interface TrainAMQPConnection {

public TrainAMQPChannel getChannel() throws IOException;
public void closeConnection() throws IOException;

}

public class AMQPMessage {

private String consumerTag;
private Envelope envelope;
private AMQP.BasicProperties properties;
private byte[] rawBody;

private String topic;
private Object body;

public AMQPMessage(String consumerTag, Envelope envelope,
AMQP.BasicProperties properties, byte[] rawBody) {

this.consumerTag = consumerTag;
this.envelope = envelope;
this.properties = properties;
this.rawBody = rawBody;

}

public AMQPMessage(String topic, Object body){
this.topic = topic;
this.body = body;

}

public String getConsumerTag() {
return consumerTag;

}

public Envelope getEnvelope() {
return envelope;

}

public AMQP.BasicProperties getProperties() {
return properties;

}

public byte[] getRawBody() {

A.1. TRAINAMQPSERVICE 75

return rawBody;
}

public String getTopic(){
return topic;

}

public Object getBody(){
return body;

}

public class AMQPProperties {

public AMQPProperties() {
}

public AMQPProperties(String hostname){
this.hostname = hostname;

}

public AMQPProperties(String hostname, int port){
this(hostname);
this.port = port;

}

public AMQPProperties(String hostname, int port, String username,
String password){

this(hostname,port);
this.username = username;
this.password = password;

}

public AMQPProperties(String hostname, int port, String username,
String password, String exchange){

this(hostname, port, username, password);
this.exchangename = exchange;

}

public String getHostname() {
return hostname;

}

public int getPort() {
return port;

76 A. JAVA CODE

}

public String getExchangename() {
return exchangename;

}

public String getUsername() {
return username;

}

public String getPassword() {
return password;

}

public boolean equal(AMQPProperties other){
if(!this.hostname.equals(other.getHostname())) return false;
if(!this.exchangename.equals(other.getExchangename())) return

false;
if(!this.username.equals(other.getUsername())) return false;
if(!this.password.equals(other.getPassword())) return false;
if(this.port != other.getPort()) return false;
return true;

}
}

public class TrainDefaultConsumer extends DefaultConsumer {

Function<AMQPMessage, Void> function;

public TrainDefaultConsumer(Function<AMQPMessage, Void>function,
TrainAMQPChannel channel) {

super(channel.getChannel());
this.function = function;

}

@Override
public void handleDelivery(String consumerTag, Envelope envelope,

AMQP.BasicProperties properties, byte[] body)
throws IOException {

AMQPMessage msg = new AMQPMessage(consumerTag, envelope,
properties, body);

synchronized (function) {
function.apply(msg);

}

A.2. SENSOR EVENT HANDLERS 77

}

public void setFunction(Function<AMQPMessage, Void> function){
this.function = function;

}

}

Listing A.1: Interfaces and classes used by the TrainAMQPService

A.2 Sensor Event Handlers

public class DefaultColorEventHandler implements SensorHandler{

private EventReceiver receiver;

public DefaultColorEventHandler(EventReceiver receiver) {
this.receiver = receiver;

}

@Override
public void handleEvent(Event e) {

if(e.getProperty(ColorControllerService.STATE) != null){
receiver.sendSensorStateEvent(

(Status)e.getProperty(ColorControllerService.STATE),
PublisherType.SLEEPER);

return;
}
if(e.getProperty(ColorControllerService.COLOR_KEY) == null ||

!(e.getProperty(ColorControllerService.COLOR_KEY)
instanceof EColor)) return;

EColor ec =
(EColor)e.getProperty(ColorControllerService.COLOR_KEY);

if(ec != EColor.GRAY && ec != EColor.UNKNOWN)
HandlersActivator.getLogger().log(LogService.LOG_DEBUG,
String.format("[%s] %s", this.getClass().getSimpleName(),
ec));

ColorReading cr = new ColorReading(convert(ec));
receiver.sendColorEvent(cr);

}

private SleeperColor convert(EColor c){
return SleeperColor.valueOf(c.name());

}

78 A. JAVA CODE

}

Listing A.2: The DefaultColorEventHandler used to receive events from the color
sensor

A.3 Sensor Publishers

public interface PublisherService {

public Status getStatus();
public PublisherType getType();
public long getPublishRate();
public long getDefaultPublishRate();
public void setPublishRate(long rate);
public void stopPublisher();
public void read();
public void write(String content);

}

Listing A.3: The PublisherService interface

A.4 ContextChecker

public interface EventReceiver {

public void sendColorEvent(ColorReading color);
public void sendNFCEvent(NFCReading locationID);
public void sendAccelerationEvent(AccelerometerReading acc);
public void sendMagnetometerEvent(MagnetometerReading direction);
public void sendDummyEvent();
public void sendTemperaturEvent(TemperatureReading temp);
public void sendSensorStateEvent(Status status, PublisherType type);

}

Listing A.4: The EventReceiver interface

public class TrainInfo {

private double speed = 0;
private boolean inTurn = false;
private double heading = Double.MAX_VALUE;

A.4. CONTEXTCHECKER 79

private TrainStates state;
private SpeedRestrictionLevel speedRestrictionLevel;
private String currentLocationID = "00000000";
private HashMap<PublisherType, Status> sensorStatus = new

HashMap<>();
private SleeperColor sleeperColor;

public void setSensorStatus(PublisherType type, Status status){
sensorStatus.put(type, status);

}

public Status getSensorStaus(PublisherType type){
return sensorStatus.get(type);

}

public double getSpeed() {
return speed;

}
public void setSpeed(double speed) {

this.speed = speed;
}
public boolean isInTurn() {

return inTurn;
}
public void setInTurn(boolean inTurn) {

this.inTurn = inTurn;
}
public double getHeading() {

return heading;
}
public void setHeading(double heading) {

this.heading = heading;
}

public TrainStates getTrainState() {
return state;

}

public void setTrainState(TrainStates state){
this.state = state;

}
public SpeedRestrictionLevel getSpeedRestrictionLevel() {

return speedRestrictionLevel;
}

80 A. JAVA CODE

public void setSpeedRestrictionLevel(SpeedRestrictionLevel
speedRestrictionLevel) {

this.speedRestrictionLevel = speedRestrictionLevel;
}
public String getCurrentLocationID() {

return currentLocationID;
}
public void setCurrentLocationID(String currentLocationID) {

this.currentLocationID = currentLocationID;
}

public SleeperColor getLastSleeperColor() {
return sleeperColor;

}

public void setLastSleeperColor(SleeperColor sleeperColor) {
this.sleeperColor = sleeperColor;

}

}

Listing A.5: The TrainInfo utility class

	List of Figures
	List of Tables
	List of Glossary
	List of Acronyms
	Introduction
	Problem outline and scope
	Methodology
	Limitations
	Terminology
	Structure of the thesis

	Background
	The Lego-Mindstorm Train System
	Related work
	Reactive Blocks
	Building Blocks

	OSGi
	Module layer
	Life cycle layer
	Service layer
	Service Tracker
	Event Admin Service
	Apache Felix File Install

	Git
	Eclipse
	AMQP
	RabbitMQ

	Analyse of the existing infrastructure
	Improvements to the train system
	Analyse of the train system
	Analyse of the adaptation module
	Discussion with Henrik H. Svendsen

	System requirements
	Non-functional system requirements
	Functional requirements

	Adaption module design
	High-Level Design
	Services

	Communication
	Communication protocol
	Service requirements
	Implementation
	TrainAMQPSendService
	TrainAMQPService
	AMQPMessage

	The RemoteControl block
	Message reception
	Sending a message

	Sensor software
	SensorSchedulerService
	Sensor implementation
	Sensor Publishers
	Sensor Problems

	Sensor handling
	Tracking the sensors
	The CustomeServiceTracker block

	Receiving sensor readings
	SensorHandlerController service
	Sensor reconfiguration

	The SensorController block

	Context modeling and reasoning
	Keeping track of the train
	Train restrictions
	Map properties

	Context reasoning
	Train State Implementations
	Scope of states
	Location based states
	Sensor based states
	Train operation status based states
	Hierarchical states
	TrainState Interface
	States
	The TrainContext interface

	ContextChecker

	Train Adapter
	The TrainAdapter block
	Processing a sensor reading
	Changing train state

	Reconfigure a sensor
	Perform a sensor reading
	Handling failed sensor readings
	The NFC sensor was not able to read the data from the beacon
	The NFC sensor was not able to detect the beacon

	Handling sensor failure

	Performance Tests
	Runtime environment used by the trains
	Logging results
	Overview
	Response time on color events
	Setup
	Results

	Using color events to trigger NFC readings
	Setup
	Results

	Complete performance test
	Setup
	Noticing trains about turns
	Reconfigure a sensor
	Perform a NFC sensor reading and changing state

	Discussion and Conclusion
	Discussion
	Correctness
	Performance
	Using services
	Using Reactive Block and OSGi

	Conclusion
	Further work
	Improving the MapChecker service
	Considering the other trains
	Introducing concurrent state machines
	Having a separate bundle management service

	References
	Java code
	TrainAMQPService
	Sensor Event Handlers
	Sensor Publishers
	ContextChecker

