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Abstract: This paper considers the challenge of applying reconfigurable robots in an underwater
environment. The main result presented is the development of a model for a system comprised
of N , possibly heterogeneous, robots dynamically connected to each other and moving with 6
Degrees of Freedom (DOF). This paper presents an application of the Udwadia-Kalaba Equation
for modelling the Reconfigurable Underwater Robots. The constraints developed to enforce
the rigid connection between robots in the system is derived through restrictions on relative
distances and orientations. To avoid singularities in the orientation and, thereby, allow the
robots to undertake any relative configuration the attitude is represented in Euler parameters.
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1. INTRODUCTION

The offshore industry is becoming technologically ever
more demanding and visions foresee production facilities
will move from the ocean surface to the seabed. Conse-
quently, robotic solutions will have to solve increasingly
diverse tasks and collaborating and reconfigurable robots
are envisaged to become important in support of this
technology evolution. This paper deals with modelling for
control of multi-robot systems with an aim of being able to
automate the modelling of vehicles that should be able to
connect or disconnect and form configurations required for
a specific task. The modelling should be able to be done
without human intervention other that the definition of
dynamics for the individual vehicle.

Present solutions focus on Remotely Operated Vehicles
(ROVs) for power demanding tasks such as positioning
of subsea modules during the installation phase Henriksen
et al. (2015). Several low-power tasks are, however, better
carried out by non-tethered vehicles, and in the long term
a modular reconfigurable multi-robot solution can provide
high control authority and flexibility. This means that sev-
eral autonomous vehicles work together to perform a joint
task. Multi-vehicle systems for underwater applications
were studied in Belleter and Pettersen (2014, 2015) where
formation control was the main objective. The focus in this
paper is modular reconfigurable multi-robot system that
is capable of physically changing its morphology. From a
reconfiguration point-of-view work has mainly focused on
modularity in the physical sense. An underwater platform
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with docking capability to offload data between a sensor
network and an Autonomous Underwater Vehicle (AUV)
was presented in Vasilescu et al. (2005), and Mintchev
et al. (2012, 2014) presented a system of anguilliform
AUVs with the ability of docking to each other, utilising
passive magnets to align the vehicles for docking. The sys-
tem resulting from physically coupling and de-coupling of
the vehicles is a multi-body system with dynamic topology.
The modular robotics community predominantly focus
on Fuzzy Logic control of multi-body systems, but when
high precision control is needed, modelling is a necessary
prerequisite. Generic modelling for individual underwater
vehicles has been extensively treated in Antonelli (2014)
and Fossen (2011), so the challenge for a multi-body
cluster is to be able to describe the nonlinear dynamics
of the cluster from the dynamics of individual members.
The objective of the present effort is hence to provide a
modelling tool that can describe the dynamic properties of
a morphology from the geometry of the cluster and prop-
erties of its’ members. The challenge with traditional mod-
elling methods is the difficulties that arise from constraints
when robots connect. The paper develops the equations
of motion for a system comprised of N rigidly connected
robots based on the Udwadia-Kalaba Formulation (Ud-
wadia and Schutte, 2012). We exploit this framework us-
ing quasi-velocities to derive the constraints imposed by
rigid connections, using a quaternion formulation to avoid
singularities. The contribution of the paper is to show
how the Udwadia-Kalaba methodology can be applied to
reconfigurable underwater robots, and in particular can
deal with redundant constraints in a robust manner. The
contribution of the paper is to show how automatic gener-
ation of models is possible for reconfigurable underwater



systems.

The paper first lists the notation along with the kinemat-
ics and kinetics needed. Section 3 discusses the general
problem of constrained dynamics and Section 4 shown
how the Udwadia-Kalaba approach can be applied to han-
dle the constraints of a generic morphology of connected
underwater robots. Finally, a series of simulations verify
the automated modelling concept, and Section 7 provides
conclusions and perspectives.

2. RIGID-BODY MODEL

2.1 Notation and Kinematics

This section summarises the notation broadly used in
the area of underwater vehicles, as this was introduced
in Fossen (2011). For the purpose of this paper the earth-
fixed North-East-Down (NED) frame, denoted {n}, will
be assumed inertial. The frame configuration variables
denoted η = [pnb/n,u]T ∈ R7 comprise of the position

pnb/n = [xn, yn, zn]T and the attitude represented as a

unit quaternion to avoid singularities u = [η, ε1, ε2, ε3]T .
Attached to each body in the system is a local body-fixed
frame denoted {b}. The body-fixed velocities denoted ν as

ν = [u v w p q r]
T ∈ R6 (1)

As with the configuration vector the body-fixed veloc-
ity vector can be separated into linear velocities ν1 =
[u, v, w]T and angular velocities ν2 = [p, q, r]T . To relate
the NED and body-fixed frame the rotation matrix Rn

b
defined below

Rn
b =

1− 2
(
ε22 + ε23

)
2 (ε1ε2 − ε3η) 2 (ε1ε3 + ε2η)

2 (ε1ε2 + ε3η) 1− 2
(
ε21 + ε23

)
2 (ε2ε3 − ε1η)

2 (ε1ε3 − ε2η) 2 (ε2ε3 + ε1η) 1− 2
(
ε21 + ε22

)

(2)

To relate the attitude change in the inertial frame {n}
with the angular velocities ωb

b/n around the principle axes

of the body-fixed frame {b} the angular transformation
matrix Tu is used.

u̇ = Tuω
b
b/n (3)

where Tu is defined as

Tu =
1

2
HT =

1

2

−ε1 −ε2 −ε3η −ε3 ε2
ε3 η −ε1
−ε2 ε1 η

 (4)

such that H is

H = [−ε ηI3 − S (ε)] ∈ R3×4 (5)

where S (ε) is the skew-symmetric matrix such that

S(λ)
T

= −S (λ) and it is defined as

S (λ) =

[
0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

]
(6)

To account for the environmental disturbances the model
will be formulated in relative velocity νr.

νr = ν − νc (7)

where νc is the velocity of the water current in the body-
fixed frame.

Assumption 1. The current is constant and irrotational in
the inertial frame.

Remark 2. Assumption 1 is reasonable in the sense that
both amplitude and direction of currents are slowly vary-
ing.

Assumption 3. The fluid is viscid, incompressible and ir-
rotational.

Remark 4. Assumption 3 is common in hydrodynamic
modelling.

Assumption 5. The cross-flow can be neglected in control
applications.

Remark 6. Assumption 5 is not strictly true, however for
the purpose of control oriented modelling, the assumption
is acceptable.

The kinetic model for marine systems in relative velocity
was derived in Fossen (2011) and is shown below

Mν̇r +D (νr)νr +C (νr)νr + g (η) = τ (8)

The model in Eq. (8) form the local model of a combined
system. This leads to Section 3, where the general problem
of constrained dynamics are presented.

3. CONSTRAINED DYNAMICS

The challenge of constrained dynamics is to ensure phys-
ically sound motion of a system where the states are
not independent due to imposed constraints. Different
approaches exist for solving the constraining forces and
thereby the resulting motion of the constrained system.
For reconfigurable robots, cyclic configurations can cause
redundant constraints to appear and, as a result, the
constraint matrix will no longer be full rank. When this
occurs, classical modelling methods will fail as they can-
not provide a unique solution for the constrained forces.
The Udwadia-Kalaba methodology, in contrast, does not
require a constraint matrix to be full rank. This section
discusses the issues related to modelling of constrained
dynamics.

Consider the generalised Newtonian system G

G :=

{
q̇ = v

Mv̇ = Q
(9)

where q ∈ Rnq is the vector of generalised coordinates,
M ∈ Rnq×nq is the system inertia matrix and Q ∈ Rnq is
a vector of generalised forces.
Constraints emerge in such system as a consequence of
physical restrictions. A system described by ordinary dif-
ferential equations (ODE) and with constraints forms a
differential-algebraic equation (DAE) system. Such DAE
systems are difficult to solve, and are not easily used as
basis for control design. The aim of modelling is to get a
system description that takes an ODE form.

If constraints appear in holonomic form, see definition
below, they can be eliminated by coordinate reduction,
that, however, results in high complexity descriptions that
can be viewed as ODEs on a manifold.

Definition 7. A constraint c is said to be holonomic iff
it can be represented independently of the generalised
velocities q̇ such as in the following equation

c(q, t) = 0 (10)



From a geometric point-of-view the motion of the dynam-
ical system of Eq. (9) would evolve on the sub-manifold
M defined as

M = {(q,v) : c(q) = 0, Oqc(q)v = 0} (11)

The motion on the manifold is constrained by Oqc(q)v = 0
which is often called a hidden constraint, since it does not
appear explicitly in Eq. (10).

The pose of a rigid body in three dimensional space can be
described uniquely by six variables, hence, by six degrees of
freedom. The holonomic constraint results in a decrease of
the degrees of freedom nf by nf = nq−nc, where nc is the
number of constraints and nq is the number of generalised
coordinates.

To illustrate this in a geometric fashion Fig. 1 shows a par-
ticle constrained to a manifold by a holonomic constraint,
where q ∈ R3. The unconstrained motion of the particle
would follow the ODE, Eq. (9). The solution for the DAE
system requires the information of the constraint to be
injected into the ODE part.

One approach to injecting the constraint into the ODEs
is by re-parametrisation of the generalised coordinates to
obtain a new set of independent coordinates that take
the constraint into account. In this case the particles
coordinates are q = [a1, a2], such that the motion on the
sub-manifold c is uniquely defined. The disadvantage of
using coordinate reduction is an increase in complexity of
the resulting ODEs and the possible difficulty of finding a
new set of independent coordinates.

If the constraint is not holonomic or a suitable re-
parametrisation cannot be identified, the constraint must
be actively enforced. This is done by augmenting the
dynamic equation system Eq. (9) with a constraining force
Qc such that

Gc :=

{
q̇ = v

Mv̇ = Q+Qc
(12)

The difficulty of identifying the constraint force Qc de-
pends on the differential index of the DAE defined below

Definition 8. (Brenan et al. (1995)). Differential Index :
The minimum number of times that the constraint of
Eq. (10) must be differentiated with respect to the inde-
pendent variable t to transform the DAE into an ODE.

In Takamatsu and Iwata (2008) the authors state that the
difficulty in solving a DAE increases with the Differential
Index. Gear and Petzold (1984) suggested that an index
reduction is necessary for indices larger than one. Given
that a rigid constraint is holonomic, both coordinate re-
duction and constraint enforcement is possible. However,
the modular robotic system under investigation is subject
to structural changes during operations. Using coordinate
reduction to solve the problem would require a new set
of coordinates to be calculated each time a change is
introduced in the system. Furthermore, the complexity of
the individual robot dynamics can render the model un-
usable for analytical purposes. Conversely, the constraint
enforcement approach is not without flaws. Firstly the

a1

a2

Qc

Q

q3

q2 q1

c(q1, q2, q3) = 0

Fig. 1. Motion of a particle constrained to a surface
c(q1, q2, q3) = 0. There exists an algebraic relationship
between the generalised coordinates.

constraint forces required to sustain the solution to the
constraint sub-manifold have to be identified. There exists
a variety of methods to identify such constraint forces.
Bauchau and Laulusa (2008) gave an overview of meth-
ods used to enforce constraints in multi-body systems —
the most classical approach being Lagrange’s multipliers.
In Wojtyra and Fraczek (2013) investigated the problem
of redundant constraints in relation to multi-body systems
and rank deficiency of the resulting constraint matrix.
In a modular robotic system a redundant constraint can
appear if a series of connection between different robots
leads to a loop-closure. If such a situation occurs, the
constraint matrix will become rank deficient and a unique
solution may not be possible. The solution is then to
manually remove as many redundant constraints until the
constraint matrix becomes full rank. In Kalaba and Ud-
wadia (1994) another approach modelling of constrained
multi-body dynamics based on Gauss’s Principle of Least
Constraint was presented. This approach does not require
the constraint matrix to be full rank, at the cost of being
slightly more computationally heavy. The main feature of
this method is the use of a single global equation for mod-
elling, which can be extended to include quasi-velocities.

4. UDWADIA-KALABA EQUATION

In this section, the general Udwadia-Kalaba formula-
tion is presented in quasi-velocities. This is based on
the work in Udwadia and Phohomsiri (2007) where the
Udwadia-Kalaba formulation was extended to include
quasi-velocities and quasi-accelerations. Consider a trans-
formation G (q) ∈ Rns×nq such that

s = G (q) q̇ (13)

where s ∈ Rns is a vector of quasi-velocities and q ∈
Rnq and q̇ are generalised coordinates and generalised
velocities respectively. A general unconstrained Newtonian
system can be described in terms of quasi-coordinates as
in Eq. (14).

Mṡu = S (14)

Where M ∈ Rns×ns is the inertia matrix, ṡu are the un-
constrained quasi-accelerations of the system and S ∈ Rns

is the generalised forces. In case the system is subjected to
constraints the formulation in Eq. (14) can be transformed
into the constrained formulation of Eq. (15) by augmenting
with an additional constraining force Sc ∈ Rns .

Mṡc = S + Sc (15)
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Fig. 2. Constraint vector loop, On is the origin of the
inertial space, Oi for i ∈ {A,B} the origin of each
vehicle

There exists multiple approaches for calculating the con-
straint forces Sc. Given nc constraints on the form in
Eq. (16) that is linear in the accelerations.

A (q, s) ṡ = b (q, s) (16)

In Udwadia and Schutte (2012) the problem of finding
the constraint force was transformed into an optimisation
problem using Gauss’s Principle of Least Constraints. In
this way, the problem of constraint handling becomes a
minimisation problem that can be solved using the Moore-
Penrose pseudo-inverse. In the end, the constraint vector
Sc can be determined by Eq. (17).

Sc = M1/2
(
AM−1/2

)+
(b−Aṡu) (17)

where (·)+ represents the Moore-Penrose pseudo-inverse.
Finally the constrained accelerations of the system can be
identified by insertion into Eq. (15) and solving for sc

ṡc = ṡu +M−1/2
(
AM−1/2

)+
(b−Aṡu) (18)

It is clear from Eq. (18) that Udwadia-Kalaba is a global
method as opposed to most impulse based methods.

In many robotic applications quasi-velocities are advanta-
geous compared to generalised velocities. In Klausen et al.
(2014) the Udwadia-Kalaba formulation was used to model
a system of N multi-copters for the purpose of slung-load
transportation using local coordinates.

5. RIGID CONSTRAINT

A main challenge with rigid connected vehicles is that the
constraint, which is needed to describe the connection, is
restricting all six DOF. This section derives the generic
formulation of such rigid constraint. Each of two connected
vehicles will have a local body-fixed frame, denoted {A}
and {B}, respectively. The rigid constraint is divided into
two parts. The first part retains a relative distance between
each vehicle to a common point s in the inertial frame. This
permits a formulation for a vector loop-closure as shown
in Fig. 2.
The second part retains a relative orientation between the
vehicles. For quaternions, this relative orientation is the

Hamilton product ⊗ between the orientation of vehicle A
and vehicle B. The constraints are summarised as follows

c1 : pnA/n + pns/A − p
n
B/n − p

n
s/B = 0 (19)

c2 : uA ⊗ u∗
B = urel (20)

where uA is the unit quaternion of vehicle A and u∗
B is

the quaternion conjugate of vehicle B.
The second-order time-differentiation of the constraints
are required to be brought on the form of Eq. (16). Con-
ducting the time-differentiation on Eq. (19) and recalling

that Ṙn
b = S(ωn

b/n)Rn
b yields

ṗnA/n = Rn
Aν

(A)
r (21)

ṗns/A = ωn
A/n × p

n
s/A (22)

The time-differentiation of the expressions (21) and (22)
yields

p̈nA/n = Rn
Aν̇

(A)
r + ωn

A/n ×R
n
Aν

(A)
r (23)

p̈ns/A = ωn
A/n × p

n
s/A + ωn

A/n ×
(
ωn

A/n × p
n
s/A

)
(24)

The derivations of the constraints for vehicleB yields equal
result as that of vehicle A with opposite sign. Combining
the resulting expression for the constraint matrix A for
constraint c1 yields

A1 =
[
Rn

A −S(pns/A) −Rn
B S(pns/B)

]
(25)

The remaining terms of the expression is included in the
constraint vector b which then becomes

b1 = −ωn
A/n × (Rn

Aν
(A)
r + ωn

A/n × p
n
s/A)

+ ωn
B/n × (Rn

Bν
(B)
r + ωn

B/n × p
n
s/B)

(26)

For constraint c2 the Hamilton product between the unit
quaternion of A and the conjugate of the unit quaternion
of B yields the relative rotation between the vehicles. The
time-differentiation of the attitude constraint yields

u̇A ⊗ u∗
B + uA ⊗ u̇∗

B = 0 (27)

Performing the second time-differentiation of the con-
straint along with a reduction yields

üA ⊗ u∗
B + uA ⊗ ü∗

B + 2 (u̇A ⊗ u̇∗
B) = 0 (28)

Transforming this expression into requires additional
terms from the change of frame

ü = Tuω̇
b
b/n + Ṫuω

b
b/n (29)

To simplify notation an additional matrix is defined below

H̄i = [−εi ηiI3 + S (εi)] for i ∈ {A,B} (30)

The sign change of the skew-symmetric matrix in H̄
compared to H of Eq. (5) results in a change of reference
frame from body {b} to {n} as shown below

ωb
b/n = 2Hu̇ (31)

ωn
b/n = 2H̄u̇ (32)

The relative quaternion rotation can be expressed in
matrix form, linear in either quaternion as follows

uA ⊗ u∗
B =

[
(uB)

T

H̄B

]
uA = GBuA

=

[
(uA)

T

−H̄A

]
uB = GAuB (33)

Expanding each term of Eq. (28) combined with Eq. (29)
yields



2 (u̇A ⊗ u̇∗
B) = 2

(TBω
B
B/n

)T
˙̄HB

TAω
A
A/n

= 2ĠBTAω
A
A/n (34)

Each of the terms introducing the quaternion acceleration
are brought on linear form as shown below

üA ⊗ u∗
B = GBTAω̇

A
A/n +GBṪAω

A
A/n (35)

uA ⊗ ü∗
B = GATBω̇

B
B/n +GAṪBω

B
B/n (36)

Finally, the A matrix and b vector for constraint c2 can
be displayed as follows

A2 = [04×3 GBTA 04×3 GATB ] ∈ R4×12 (37)

b2 = −GAṪBω
B
B/n −

(
GBṪA + 2ĠBTA

)
ωA

A/n (38)

This concludes the development of the rigid constraint and
leads to the model verification of the approach.

6. SIMULATION

6.1 Cases

Two main simulations are conducted to verify the con-
straint handling and the overall model validity.

Table 1. Initial conditions and thrust output for each
vehicle in each simulation

Cases Initial States Thrust

Case A
η(A) = [0, 0, 0, 1, 0, 0, 0]

η(B) = [0, l, 0, 0.707, 0.707, 0, 0]

τ (A) = [0, 0, 0, 0, 0, 0]

τ (B) = [0, 0, 0, 0, 0, 0]

Case B
η(A) = [0, 0, 0, 1, 0, 0, 0]

η(B) = [0, 1, 0, 1, 0, 0, 0]

τ (A) = [1, 0, 0, 0, 0, 0]

τ (B) = [1, 0, 0, 0, 0, 0]

Two cases 3a and 3b are considered, which are shown in
Figure 3.

Case A: Hydrostatic Tests
Case A simulates two vehicles A and B connected by
a mass-less rod of length l with relative attitude of 90◦

in roll. The mass of each vehicle is 20kg, the buoyancy
point rbb = [0, 0,−0.1] in each vehicles local frame and
both vehicles are neutrally buoyant. The initial attitude
of vehicle B is set to 90◦ roll. Hence the initial attitude
of vehicle A is 0◦ roll. The purpose of the simulation is
to test the interaction between the vehicles exposed to
different restoring forces. This simulation is repeated three
times, where each iteration changes the length l between
the vehicles such that l ∈ {1, 2, 3}.

Case B: Hydrodynamic Tests
Case B simulates two vehicles A and B connected by a
mass-less rod of length 1 with zero relative attitude. Both
vehicles exerts force in positive surge direction xb of each
vehicle. As with Case A the simulation is conducted three
times with increasing surge damping Xu of vehicle B. The
purpose of the simulation is to test the interaction between
the vehicles when changes occur in the damping. The surge
damping of vehicle B is chosen as Xu ∈ {5, 10, 15}.

zA

xA yA
yB

xB

zB
P

BA

BB

urel

l

(a) Hydrostatic Test Configuration: Vehicle B is rotated relative
to vehicle A such that axis yA and zB coincide.

zA

xA

yA

zB

xB

yB

l

P

(b) Hydrodynamic Test Configuration: The attitude of both
vehicles are identical such that axis yA and yB coincide.

Fig. 3. Two configurations containing two vehicles denoted
A and B. In both configurations vehicle A is colored
blue and vehicle B is colored red.

6.2 Numerical Considerations

Numerical errors in integration procedures cause drift of
the constrains. This has profound impact on both the force
compensated constraints, but also on the unit constraint
in the quaternion.
Constraint drift is a recognised problem in the literature.
Braun and Goldfarb (2009) investigated methods for con-
straint drift removal in the Udwadia-Kalaba equations.
The unity constraint on the quaternions can be imposed
continuously from the following equation given in Fossen
(2011).

u̇ = Tu (u)ωb
b/n +

γ

2

(
1− uTu

)
u for γ ≥ 0 (39)

In this paper the Dormand-Prince scheme for integration
is used with low tolerance and thereby the error build-up
is mitigated.

6.3 Results & Discussion

Case A: Hydrostatic Tests
The simulations of Case A are conducted and the results
are shown in Fig. 4 and Fig. 5.

In Fig. 4 the roll angle of both vehicle A and B are
shown for each length l ∈ {1, 2, 3}. The relative angular
displacement between the vehicles are 90◦ in relative roll.
Since the dynamic profile of the vehicles are identical,
the restoring forces will exert an equal and opposite
torque on each vehicle when the roll angles are equal
and opposite. In the specific case, this angle is φA =
−45◦ and φB = 45◦. Further, as the length between the
vehicles increases so does the period of the roll oscillations.
To evaluate the accuracy of the simulation, the results
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Fig. 4. Roll angle of vehicles A and B for three different
rod lengths l. Peak times for vehicle A are marked
and coincide with those of vehicle B.

are compared to a simplified analytical solution. The
analytical solution is constructed by transforming the two
vehicles into a combined system. The inertia of each vehicle
is transformed into the centre of mass P of Fig. 3a. The
combined buoyancy point is then calculated such that the
restoring force of the combined system can be calculated.

Table 2. Comparison of peak times between analytical
approximation and simulation.

Peak Time tp1 tp2 tp3
Analytical 2.07s 3.874 s 5.733s
Simulation 2.107 s 4.013 s 6.02s

The results of the analytical investigation is compared to
the simulations in Table 2. Since the roll rate is largely
dependent on the inertia of the system, the Huygens-
Steiner theorem provides the majority of the contribution
to the roll period increase. The deviation of the peak
time is attributed to the linearisation of the restoring
force vector. This is reasonable since the roll angle of
each vehicle depends on the positions and as the distance
between them increases they must move further to change
the roll angle.

Fig. 5 shows the linear velocity in heave for vehicle A and
sway for vehicle B. The results agree with the roll angle
since the positive initial roll angle of vehicle B results in
a negative torque which acts through the lever arm on
vehicle A. In the end vehicle A is forced down in positive
heave (zA) direction while vehicle B will move in negative
sway (yB) direction.

Case B: Hydrodynamic Tests
To verify the hydrodynamic behaviour of the constrained

system another simulation is conducted. Here two vehicles
are connected by their local sway-axis, such that the
relative attitude is zero. This is shown in Fig 3b. The
distance between them are fixed at one meter, such that
vehicle B is right of vehicle A. Three open-loop simulations
are conducted with variation in the hydrodynamic surge
coefficient Xu. First a baseline simulation is conducted,
where the dynamic profile of the vehicles are identical.
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Fig. 5. Heave w of vehicle A and sway v of vehicle B for
each simulation at different rod lengths l.
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Fig. 6. Three trajectories of open-loop simulations with
varying surge damping of vehicle B.

The resulting trajectory is shown as case one in Fig. 6. The
centre of mass of the connected systems is right between
the vehicles denoted with P in Fig. 3b. Given that the
hydrodynamic behaviour is identical, both vehicles will act
on the centre of mass with equal and opposite torque and
hence the sum of torques are zero. The results is a straight
trajectory.

Doubling the surge damping Xu of vehicle B and con-
ducting another simulation yields the results of Fig. 6
Trial 2. Evidently the trajectory is dragged eastwards.
The increased surge damping of vehicle B, which is the
east positioned vehicle, induces a higher yaw torque on
the centre of mass and as expected the trajectory drags
eastwards.

Finally the surge damping of vehicle B is further increased
to thrice the initial value and the simulation is conducted
again. As is expected from previous argumentation, the
eastward turn is increased even further.



7. CONCLUSION

This paper has presented an application of a modelling
methodology for efficiently describing a system of modular
reconfigurable underwater robots. The modelling approach
by Udwadia-Kalaba was adopted because it is robust when
redundant constraints arise, as is the case for underwater
reconfigurable robots, and the approach was shown to
maintain the sparsity in the model description and thus
make the resulting model feasible for control design and
analysis.

A rigid constraint was developed using quasi-accelerations
such that the forces acting on each body in the system
were applied in local frames. We formulated a combined
model of a system of N rigidly connected reconfigurable
underwater robots using the Udwadia-Kalaba Equation.
To allow the robots to connect in any relative attitude with
respect to each other, the attitude representation used was
the Euler parameters.

The model was verified using two simulations cases. One
considered hydrostatic behaviour between two robots con-
nected by a rod with variable length, a second considered
the hydrodynamic behaviour of two connected robots with
different properties. Results compared favorably with an-
alytical solutions and physical intuition.

The method is believed to be sufficiently robust to allow
for unsupervised automated modelling of connected un-
derwater vehicles.

REFERENCES

Antonelli, G. (2014). Underwater Robots, volume 2 of
Springer Tracts in Advanced Robotics. Springer Berlin
Heidelberg, Berlin, Heidelberg. doi:10.1007/978-3-662-
14387-2.

Bauchau, O.A. and Laulusa, A. (2008). Review of contem-
porary approaches for constraint enforcement in multi-
body systems. Journal of Computational and Nonlinear
Dynamics, 3(1), 011005. doi:10.1115/1.2803258.

Belleter, D. and Pettersen, K. (2014). Path following
for formations of underactuated marine vessels under
influence of constant ocean currents. In 53rd IEEE
Conference on Decision and Control, 4521–4528. IEEE.
doi:10.1109/CDC.2014.7040095.

Belleter, D. and Pettersen, K. (2015). Underactuated
leader-follower synchronisation for multi-agent systems
with rejection of unknown disturbances. In 2015
American Control Conference (ACC), volume 2015-
July, 3094–3100. IEEE. doi:10.1109/ACC.2015.7171808.

Braun, D.J. and Goldfarb, M. (2009). Eliminating con-
straint drift in the numerical simulation of constrained
dynamical systems. Computer Methods in Applied Me-
chanics and Engineering, 198(37-40), 3151–3160. doi:
10.1016/j.cma.2009.05.013.

Brenan, K.E., Campbell, S.L., and Petzold, L.R.
(1995). Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations. Society

for Industrial and Applied Mathematics. doi:
10.1137/1.9781611971224.

Fossen, T.I. (2011). Handbook of Marine Craft Hydrody-
namics and Motion Control. Wiley and son, Trondheim,
1st edition.

Gear, C.W. and Petzold, L.R. (1984). ODE Methods for
the Solution of Differential/Algebraic Systems. SIAM
Journal on Numerical Analysis, 21(4), 716–728. doi:
10.1137/0721048.

Henriksen, E.H., Berge Gjersvik, T., and Thorkildsen,
B. (2015). Positioning of subsea modules using an
automated ROV. In OCEANS 2015 - Genova, 1–8.
IEEE. doi:10.1109/OCEANS-Genova.2015.7271545.

Kalaba, R.E. and Udwadia, F.E. (1994). Lagrangian me-
chanics, Gauss’s principle, quadratic programming, and
generalized inverses: new equations for nonholonomi-
cally constrained discrete mechanical systems. Quar-
terly of Applied Mathematics, 52(2), 229–241.

Klausen, K., Fossen, T.I., and Johansen, T.A. (2014). Sus-
pended load motion control using multicopters. In 22nd
Mediterranean Conference on Control and Automation,
1371–1376. IEEE. doi:10.1109/MED.2014.6961567.

Mintchev, S., Ranzani, R., Fabiani, F., and Stefanini, C.
(2014). Towards docking for small scale underwater
robots. Autonomous Robots. doi:10.1007/s10514-014-
9410-3.

Mintchev, S., Stefanini, C., Girin, A., Marrazza, S.,
Orofino, S., Lebastard, V., Manfredi, L., Dario, P., and
Boyer, F. (2012). An underwater reconfigurable robot
with bioinspired electric sense. In 2012 IEEE Interna-
tional Conference on Robotics and Automation, 1149–
1154. IEEE. doi:10.1109/ICRA.2012.6224956.

Takamatsu, M. and Iwata, S. (2008). Index reduction for
differential-algebraic equations by substitution method.
Linear Algebra and Its Applications, 429(8-9), 2268–
2277. doi:10.1016/j.laa.2008.06.025.

Udwadia, F.E. and Phohomsiri, P. (2007). Explicit
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