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Abstract

In this thesis we will study the mathematical models for the mechanical behaviour of

the heart. We will derive the non-linear partial differential equations involving the de-

formation of the cardiac tissue. Models for the different phases of the cardiac cycle will

be studied and developed. The cardiac cycle will be simulated both for an incompress-

ible and a compressible material model. A review of the underlying physiology and the

theory of continuum mechanics is also conducted.

The aim of this thesis is to investigate how to speed up the computations for the complex

non-linear mechanics of the heartbeat. This will be studied by testing different solvers

and different parameters for the form compiler within the finite element framework FEn-

iCS. The model will be run in parallel in order to see the benefit of running the code on

multiple cores. The solver will also be verified by different verification methods.
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Chapter 1

Introduction

Heart disease is the leading cause of death in almost all areas of the world. The ability

to mathematically model the heart may lead to deeper insight and understanding of the

diseases affecting it.

There are many mechanisms interacting on different levels in order to make the heart

beat regularly. A multiscale mathematical model is therefore needed in order to describe

these multiscale mechanisms. Multiscale models describe processes on very different time

and length scales and these complete models are very computationally expensive. For

clinical use the time efficiency of such solvers is crucial. We wish to investigate the

possibility for creating a time efficient solver for the complex non-linear mechanics of the

heartbeat.

In this master thesis, the main goal will be to implement a time efficient and realistic sim-

ulator of the mechanical events of the left ventricle during a heartbeat. The mechanical

events can be summarized in a pressure and volume loop (PV-loop). The PV-loop is a

two-dimensional plot describing the development of the pressure and volume throughout

a heartbeat.

The first aim of this thesis is to describe the basic theory of cardiac mechanics. In Chapter

2 we therefore give an introduction to the anatomy and physiology of the mechanics of

the heart. We focus on the microscopical mechanical contraction of the cells, and expand

to the macroscopic level. On the macroscopic level we explain the different phases of a

heartbeat that we will model. In Chapter 3 we provide a brief introduction to the field

of continuum mechanics, which is needed to describe the cardiac mechanics. In Chapter

4, we derive the mathematical model for the mechanical behaviour of the heart. The

implementation of our mechanical model for the contraction of the left ventricle will be

described in Chapter 5. In Chapter 6 we present the results from our model. We will in

1



Chapter 1. Introduction 2

this chapter verify our model, as well as investigate the pressure and volume development

throughout the heartbeat. Lastly, we will optimize the time efficiency of our model. This

will be done both for an incompressible and compressible material model.



Chapter 2

Anatomy and physiology: From the

contracting cells to the beating

heart

In this chapter we give a brief overview of the basic anatomy and physiology of the

heart, from the cell level to the macroscopic contraction of the heart. The main theory

presented in Chapter 2 is taken from [1].

2.1 Heart cell physiology

The cell contraction - cross bridge cycles

The cardiomyocytes are the contractile muscle cells of the heart, and are often referred to

as muscle fibers. A top-down view of the muscle structure is given in Figure 2.1. Within

the cardiomyocytes, we find long protein chains called the myofibrils. The myofibrils

consist of, among other proteins, the contractile proteins myosin and actin and the

regulatory proteins tropomysion and troponin. The myofibrils are in turn built up by

subunits called sarcomeres. The sarcomeres are divided into thick and thin filaments

which slide along each other to create muscle contraction. The thick filaments are built

up by myosin molecules and the thin filaments are built up by actin molecules. The

myosin molecules are motor proteins and consist of protein chains that form into a tail

and head. The thick filaments bind to the thin filaments through these myosin heads.

These connections are called crossbridges, and are illustrated in Figure 2.2. The troponin

protein controls the positioning of tropomyosin on the thin filament. When the muscle is

at rest, the tropomyosin blocks the binding sites for the myosin heads. When troponin-c

3
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binds to calcium, the tropomyosin is removed from the actin-myosin binding sites. This

enables the myosin heads to make strong, high-force bindings to the thin filaments. When

the muscle contracts, the myosin heads perform power strokes that make the thin and

thick filaments slide along each other. After the power stroke, the myosin heads release

the actin, bind to another actin molecule and perform a new power stroke. This process

is referred to as the crossbridge cycle. The crossbridge cycle continues until the calcium

concentration in the cell decreases. At this point the calcium unbinds from troponin,

and tropomyosin again block the actin-myosin binding sites and the sarcomers fall back

to their relaxed position.

The mechanical contraction of the cardiac muscle cells is initiated by the electrical im-

pulses from neighbouring cells. The increase in the intracellular calcium concentration

causes the contraction of the muscle cells. This increase is initiated by the action po-

tentials in the neighbouring cells. This calcium dependent contraction will be described

later in this master thesis by a very simplified phenomenological model.

Figure 2.1: A top-down view of muscle http://www.wisegeekhealth.com/what-is-the-
difference-between-cardiac-and-skeletal-muscles.htm.

2.2 Heart anatomy and physiology

Anatomy of the heart

The heart is a muscular organ and lies in the thoracic cavity between the lungs. It

functions as the pump in the cardiovascular system, and pumps blood through the blood

vessels into the organs and tissue of the body. The heart is divided into two distinct

parts - a left and a right part - that are separated by the interventricular septum. The

septum keeps the blood in the left and right part from mixing. The two sides of the heart

consist in turn of two chambers, the atrium and ventricle, which again is separated from

each other with the atrioventricular valves. These valves together with the semilunar

valves between the ventricles and the arteries, keep the blood from flowing back into the
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Figure 2.2: Illustration of the cross bridge cycle in the cardiac myocytes
http://thegaitguys.tumblr.com/post/117514727354/more-on-weak-muscles-just-why-

are-they-weak-know

heart and force the blood to flow in one direction. The two sides of the heart function as

two separate pumps. The right side of the heart receives deoxygenated blood from the

tissue into the right atrium. This blood then enters the right ventricle and from here it

gets pumped through the pulmonary arteries into the lungs to get oxygen. This newly

oxygenated blood flows back into the left atrium. From the left atrium the blood enters

the left ventricle, and from here the blood gets pumped through the arteries back into

the body.

The heart consists mostly of cardiac muscle called myocardium. The myocardium lies

between a thin layer of epicardium on the outside and endocardium on the inside of

the heart. The behaviour of the tissue of the heart is described by a material model

which will be further explained in Chapter 3. The base is the area between the atria and
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ventricles. The lower part is called the apex. An image of the heart is given in Figure

2.3.

Figure 2.3: Anatomic figure with a longitudinal section of the heart
https://lasersandtheheart.wikispaces.com/Mature+Heart+Anatomy.

The mechanical contraction of the heart - the PV-loop

The cycle of the left ventricle can be divided into four phases: the filling phase, the iso-

volumic ventricular contraction, the ventricular ejection and the isovolumic ventricular

relaxation. To visualize the different phases of this mechanical cycle it is common to

plot the pressure as a function of the volume. The resulting graph is referred to as a

pressure-volume-loop (PV-loop) and is illustrated in Figure 2.4.

The first phase of the cardiac cycle is the passive filling. The atria and the ventricles are

relaxing. The ventricles have just completed a contraction and the atria are getting filled

with blood from the veins. When the pressure in the atria is higher than the pressure

in the ventricles, the AV valves opens and the ventricles are passively filled with blood

from the atria. The action potential in the atrial cells makes the chambers contract and

squeeze blood into the ventricles. The passive filling in the late diastole stands for most

of the filling of the ventricles. The atrial systole stands for about 20 % of the filling of

the ventricles.
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The isovolumic ventricular contraction is the phase when the ventricles contract and force

the atrial valves to close. The vibration that occurs from this closure creates the first

heart sound. The semilunar valves are also still closed. The semilunar valves prevent

the blood from flowing from the arteries into the heart. The blood in the ventricles has

nowhere to flow so the pressure in the ventricles rises. When the atria have finished the

contraction the pressure in the atrias decreases and blood from the veins fill the atria

with blood.

When the pressure in the ventricles is higher than the pressure in the arteries, the

semilunar valves open. When these valves open, the blood in the ventricles is ejected

into the arteries. This phase is called the ventricular ejection.

The last phase of the heart cycle is the isovolumic ventricular relaxation. As the ventricles

relax after the contraction, the pressure in the ventricles fall. When the pressure is lower

than in the arteries, the blood flows backwards and shuts the semilunar valves which

creates the second heart sound. The phase is isovolumic as the pressure in the ventricles

are still higher then in the atria such that the AV-valves are still closed.

Wiggers diagram is illustrated in Figure 2.5, and gives a more detailed picture of the

electrical and mechanical events of the cardiac cycle.
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Figure 2.5: Wiggers diagram: pressure and volume plotted against time
https://en.wikipedia.org/wiki/Wiggers_diagram.

In this chapter we have developed a basic understanding of the physiology of the heart.

In the following chapter will describe the basic concepts of continuum mechanics, which

we need to develop the mathematical model describing the mechanics of the left ventricle.



Chapter 3

Continuum mechanics

We will here give a brief introduction to the theory of continuum mechanics, which is

necessary for understanding the mechanical models of the contracting heart. The main

theory is taken from [2] and [3].

Continuum mechanics is used to describe different physical phenomena without taking

internal micro structures into account. In continuum mechanics, the body B we are

modelling is considered to be a continuous medium with a continuous distribution of

particles. Both the mass and volume are considered to be continuous functions. A

particle is a collection of many molecules, and must not be confused with the Newtonian

point particle. In the following, we will define and describe important concepts that we

will use to build the mechanical model of the left ventricle.

3.1 Kinematics and fundamental concepts

Let Ω0 ⊂ R3 and let �X = κ0(P, t) be a homeomorphic correspondence between a particle

P ∈ B and a point �X ∈ Ω0 that B occupies at the initial time t = 0. A homeomorphic

function is a bijective function in which the function itself and the inverse are continuous.

Let now κ act on B to produce the region Ω at time t. The location that the particle

occupies for a given time t is given by

�x = κ
�
κ−1
0

�
�X, t

��
= χ( �X, t), ∀ �X ∈ Ω0 ∀ t.

The motion of the body B is denoted by χ. The motion takes a point �X in the reference

configuration Ω0 and maps it to the corresponding point �x = (x1, x2, x3) in the current

configuration Ω. The motion is a diffeomorphism, i.e a bijective function where the

9
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function itself and the inverse are smooth. The inverse of the motion maps a point in

the current configuration back to the reference configuration. The inverse of the motion

is defined as

�X = χ−1 (�x, t) .

An illustration of how the motion function operates is given in Figure 3.1.

Figure 3.1: Illustration of the motion function.

There are different ways to describe the motion of a body. In the material description,

also known as the Lagrangian description, we look at the different positions in space for

the same particle as time goes by. The Lagrangian description is a common approach

for solid mechanics, therefore this approach has been used in this master thesis.

Another alternative is the spatial description, also known as the Eulerian description,

where the attention is on a particular point x in space. Here, we observe what happens

at the same point in space as time goes by. The Eulerian description is typically used

for fluid mechanics, and will not be used in this work.

We define the displacement field �u is a vector field that relates the position vector in the

reference configuration to the current configuration for a particle at a given time t

�u
�
�X, t

�
= �x( �X, t)− �X. (3.1)
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The derivatives of the deformed configuration, with respect to each component of the

undeformed configuration, constitute a matrix that we call the deformation gradient.

The deformation gradient transforms vectors in the undeformed geometry into the cor-

responding vectors in the deformed geometry. The deformation gradient F is a second

order tensor, and is defined as

F =
dχ

�
�X, t

�

d �X
=

∂�x

∂ �X
=




∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3


 . (3.2)

As the displacement can be written in terms of �x we have that �x = �X+�u. The deformation

gradient can then be written as

F =
∂�x

∂ �X
=

∂ �X

∂ �X
+

∂�u

∂ �X
= I+∇0�u. (3.3)

Here, ∇0 = ∂
∂ �X

is the material displacement gradient. It is the differentiation operator

with respect to the reference configuration, I is the identity matrix.

Note the following relationships between the material gradient and material divergence

and spatial gradient and spatial divergence of the smooth scalar, vectors and tensor fields

φ, u and A respectively:

∇φ = F−T∇0φ, (3.4)

∇�u = ∇0�uF
−1, (3.5)

∇ ·A = (∇0 ·A)F−T . (3.6)

The relations are derived by applying the chain rule.

3.2 The concept of strain

In order to get a precise measure of deformation of a continuum body, strain is introduced.

There are many different definitions of strain, we will go through the most common in

non-linear continuum mechanics.

Let �X and �Y be two neighbouring points in the reference geometry Ω0.
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Let us define d �X = �Y − �X, d� = �Y − �X� and �a0 =
�Y− �X

��Y− �X� . Then �Y can be written as

�Y = �X +
�
�Y − �X

�
= �X +

�
�Y − �X

�
��Y − �X�

��Y − �X|�
= �X + �dX = �X + �a0d�.

Further, we have that �a0 is the unit vector in the direction of the line element between

the points �X and �Y , and d� is the distance between the two points.

Let χ
�
�X, t

�
be the motion function acting on the point �X on the undeformed geometry.

The motion function maps �X on the undeformed geometry Ω0 into the corresponding

point �x on the deformed geometry Ω, such that �x = χ
�
�X, t

�
.

We want to investigate how the distance between the two neighbouring points �X, �Y in

Ω0 is changed during the motion.

First, we Taylor expand the motion function χ(�Y , t) :

�y = χ
�
�Y , t

�
= χ

�
�X + �dX, t

�
= χ

�
�X, t

�
+ �dX

∂χ
�
�X, t

�

∂ �X
+O

�
� �dX�2

�
.

The difference in the deformed geometry thus becomes

�y − �x = �dX
∂χ

�
�X, t

�

∂ �X
+O

�
� �dX�2

�
= �dXF+O

�
� �dX�2

�
= �a0d�F+O

�
� �dX�2

�
.

This shows that for small distances � �dX� = ��Y − �X�, the term �a0d�F is an approximation

for the relative motion �y − �x.

Now we define the stretch vector �λa0 = �a0F. The length of the stretch vector

λ = � �λa0� (3.7)

is called the stretch. The length of the vector between �x and �y has the following 1st

order approximation

��y − �x� =
�
(�y − �x)T (�y − �x)

� 1
2
=

��
�λa0d�

�T
· �λa0d�

� 1
2

= λd�.
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We are ready to introduce the right Cauchy-Green deformation tensor C = FTF. Let

us take the square of the stretch

λ2 = ( �a0F)
T · �a0F = �a0

TFTF �a0 = �a0
TC �a0. (3.8)

Using the right Cauchy-Green tensor, we only need the direction �a0 of the fiber in order

to compute the stretch of the fiber.

C is a symmetric matrix since

C = FTF = (FTF)T = CT .

C is a positive definite matrix since ∀ �V ∈ Ω0 \ {�0}, �V TC�V = �V TFTF�V = �F�V �2 > 0.

A different way to measure strain is to look at the change in the inner product prod-

uct between two vectors on the reference configuration, and two vectors on the current

configuration.

1

2

�
d�xT · d�y − d �XT · d�Y

�

=
1

2

�
d �XTFT · Fd�Y − d �X · d�Y

�

=
1

2

�
d �XTCd�Y − d �X · d�Y

�

= d �XT 1

2
(C− I) d�Y .

Here,

E =
1

2
(C− I) (3.9)

is the Green-Lagrange strain tensor. The tensors C will be used in the description of

hyperelastic material, whilst the tensor E will be used in the testing of our model in

Chapter 6.

We have now developed a way to measure the strain using a strain tensor operating on

points in Ω0.

The invariants of a tensor are quantities that are independent of the coordinate system.

They are the coefficients of the characteristic polynomial of a matrix. It can be shown

that the material model we will use for the myocardium depend on the invariants only.

The invariants of C are defined as
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I1(C) = ΣiCii = trC, (3.10)

I2(C) =
1

2

�
I1(C)2 − Σi,jCijCij

�
(3.11)

I3(C) = detC = J2, (3.12)

where J = det(F).

3.3 The concept of stress

There are different forces acting on a body. These forces can be divided into external and

internal forces. External forces are force fields, like gravity and magnetism, acting on

the whole of the body B. External forces may also include forces acting on the external

surface of the body. Internal forces are traction forces acting on "small" imaginary

surfaces within the body. Stress is a measure of average force per unit area at a point x

within, or on the boundary of the body B.

Let us look at the body B occupying some region in space Ω at time t. If we cut the

body in two halves and look at some infinitesimal imaginary surface ds on the lower half

containing the point x, the resultant force df acting on ds is defined as

df = �t · ds.

Here, �t is the Cauchy traction vector describing the force per unit area in the deformed

configuration

�t = lim
Δs→0

Δ�f

Δs
=

�df

ds
.

The corresponding traction vector on the undeformed geometry �T on a small surface

element on the undeformed geomtry dS is called the first Piola-Kirchhoff traction vector,

and is related to the Cauchy traction vector through the relation

�df = �t · ds = �T · dS, (3.13)

which is called Cauchy’s postulate.

The first Piola-Kirchhoff traction vector points in the directon of �t, and relates forces on

the deformed geometry to quantities on the undeformed geometry.
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This leads us to

Cauchy’s stress theorem. There exist unique second-order tensor fields σ and P such that

�t(�x, t,�n) = σ�n (3.14)

�T ( �X, t, �N) = P �N. (3.15)

Here, σ is the Cauchy stress tensor matrix and P is the first Piola-Kirchhoff stress tensor

matrix. The vectors �N and �n are the unit normal vectors on the reference and current

configuration, respectively. The Cauchy stress tensor matrix can be written as

σ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 . (3.16)

Here, σ11,σ22 and σ33 are normal stresses, and σ12,σ13,σ23,σ31,σ32 and σ21 are shear

stresses. The components of the stress tensor are illustrated in Figure 3.2.

Figure 3.2: components of the Cauchy stress tensor acting on a cubic element
https://en.wikipedia.org/wiki/Cauchy_stress_tensor.

We are now interested in a relation between the Cauchy stress tensor and the Piola-

Kirchhoff stress tensor.

Theorem. [4] Let U be an open set in RN and φ : U → RN be an injective differentiable

function with continuous partial derivatives, the Jacobian of which is nonzero ∀ x in

U. Then for all real valued, compactly supported, continuous functions f , with support
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contained in φ(U), �

φ(U)
f(v)dv =

�

U
f(φ(U))| det ∂φ

∂u
|du. (3.17)

We consider only bounded sets Ω, Ω0 ⊆ R3 and define Ω̄ = Ω+∂Ω. We also assume that
∂χ
∂X �= 0. This is a reasonable assumption for all practical purposes for this thesis.

We have that χ : Ω0 → Ω is injective and continuously differentiable with respect to

both time and space [2].

Let us now define the function

f : Ω → Ω0

f = 1.

Then supp f = Ω̄ so that f has compact support. Furthermore, f is continuous on the

open set Ω.

We can now write

�

χ(V )
f(v)dv =

�

V
f(χ(V ))| det

�
∂χ

∂X

�
|dV.

As we integrated over an arbitrary volume element, and as f(x) = 1, we have that

�

χ(V )
dv =

�

V
JdV,

as v is arbitarty

dv = JdV,

J = detF = det

�
∂χ

∂X

�
.

In this chapter we have described the basics concepts of continuum mechanics needed

to develop the mathematical model for cardiac mechanics. The derivation of the math-

ematical model for the cardiac mechanics will be given in the next chapter.
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We now look at some infinitesimal volume element in the reference configuration, ex-

pressed by an area �dS = dS �N and a vector �dY

dV = �dY
T �dS.

The corresponding volume in the current configuration is

dv = �dy
T �ds = JdV = J �dY

T
dS.

By expressing dy in terms of the deformation gradient, we obtain

�
F �dY

�T
�ds = J �dY

T �dS,

and further

�dY
T
FT �ds = �dY

T
J �dS.

This shows us that infinitesimal areas in the current and reference configurations are

related through

�ds = F−TJ �dS, (3.18)

which is referred to as Nansons formula.

Now, we can easily find a relation between the Cauchy stress tensor σ and the first

Piola-Kirchhoff stress tensor P.

From 3.13 and 3.15 we have that

σ�nds = P �NdS.

By applying Nanson’s formula we obtain

JσF−TdS �N = PdS �N.

This gives us the relation

σ = J−1PFT (3.19)

which is referred to as the Piola transformation.
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In this chapter we have provided an introduction to the basic concepts of continuum

mechanics. Next, we will apply these concepts and describe the mathematical model for

the cardiac mechanics.



Chapter 4

The mathematical model

In this chapter we will derive the partial differential equation for the mechanics of the

heart. We will also formulate the boundary conditions for the left ventricle geometry.

The incompressible and compressible Neo-Hookean model for the modelling of the passive

behaviour of the tissue will be introduced. We will also explain the mathematics behind

modelling the active contraction of the muscle fibers. Lastly, we will determine the

variational form for the heart equations, and the equivalent minimization of potential

energy formulation both for compressible and incompressible models.

4.1 Mechanical model for the heart

Newton’s second law applied to a material region on the current configuration is [5]

d

dt

�

Ω
ρ�vdV = Σ�F . (4.1)

Here, �v is the velocity of a volume unit, ρ is the mass density, and Σ �F is the resultant

force acting on the material region.

It is common to divide the forces acting on the region Ω into body forces �FB,

�FB =

�

Ω

�fB(�x, t)dV, (4.2)

and surface forces FS ,

�FS =

�

∂Ω

�fS(dS, t)dV. (4.3)

We know that for a small surface element dS, the force acting on dS is given by

19
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�fS(dS, t) = σ�ndS.

Hence, Newton’s second law can be written as

d

dt

�

Ω
ρ�vdV =

�

Ω

�fBdV +

�

∂Ω
σ · �ndS. (4.4)

By applying the divergence theorem to the surface forces we get

�

∂Ω
σ · �ndS =

�

Ω
∇ · σdV, (4.5)

where ∇ = ∂
∂�x is the spatial displacement gradient. This gives us the equation

d

dt

�

Ω
ρ�vdV =

�

Ω

�fBdV +

�

Ω
∇ · σdV. (4.6)

By assuming that �v is a continuously differentiable vector field we can interchange the

order of integration and differentiation and write

�

Ω

�
�fB +∇ · σ − ρ

d�v

dt

�
dV = 0. (4.7)

As we integrate over an arbitrary region and assume the integrand to be continuous

everywhere, this means, the integrand itself must be zero. This gives us Cauchy’s first

equation of motion:

�fB +∇ · σ − ρ
d�v

dt
= 0. (4.8)

The term ρd�v
dt represents the inertial forces. If we assume that both the inertial forces and

the body forces are neglectable compared to the surface forces representing the internal

stresses, the equation becomes

∇ · σ = 0. (4.9)

We are now interested in a relation between the reference configuration and the current

configuration.
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From (3.19) we have that P = JσF−T . Let us now look at the divergence of P. By

remembering that J is scalar and using the properties of the divergence (3.6), we can

write

∇0 ·P = ∇0 ·
�
JσF−T

�
= ∇0 ·

�
σ
�
JF−T

��

= (∇0 · σ) JF−T +
�
∇0 ·

�
JF−T

��
σ.

By applying the divergence theorem, we have that

�

Ω0

∇0 ·
�
JF−T

�
dV =

�

∂Ω0

JF−T �NdS.

If we now use Nansons formula and apply the divergence theorem again, we get

�

∂Ω0

JF−T �NdS =

�

∂Ω
I�nds =

�

Ω
∇ · Idv = �0.

This is true as ∇ · I is the zero vector �0. As we are integrating over an arbitrary volume,

the integrand ∇0 ·
�
JF−T

�
must be zero.

By applying (3.6) and using that ∇0 ·
�
JF−T

�
= 0, we get that

∇0 ·P = (∇0 · σ) JF−T = J∇σ. (4.10)

This means that we have the two equivalent problems

∇ · σ = ∇0 ·P = 0, (4.11)

which are referred to as the equilibrium equations of the heart.

4.1.1 Boundary conditions

The boundary conditions are chosen to reflect the physical reality. In the x−direction

on the base, we force the heart not to move. This is modelled by imposing a Dirichlet
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condition. In the y, z−direction of the boundary on the base we want an elastic dis-

placement condition, like a spring holding against the displacement. This is achieved by

applying a Robin condition in the y, z−plane. For the epicardium, we set a Neumann

boundary condition with a constant pressure σ1. This pressure is due to the pressure from

the blood vessels. For the endocardial boundary, we also impose a Neumann condition

with a time varying pressure σ2(t) to simulate the time varying pressure throughout the

cardiac cycle. A plot of the boundaries is given in Figure 4.1, where the endocardium is

marked in grey, the epicardium is marked in brown and the base in red.

Figure 4.1: Illustration of the left ventricle with color marking on the endocardium
(grey), epicardium (brown) and base (red).

4.1.2 Constitutive models for passive myocardium

In order to describe the real behaviour of the heart tissue, constitutive theories are

needed. To assure realistic tissue behaviour, the heart is usually modelled as a homoge-

neous, incompressible, hyperelastic and orthotropic material [6].

Different models for the passive behaviour of the myocardium have been proposed [7, 8].

The simplest and earliest models considered the myocardium to be linear and isotropic,

that is the material properties are equal along all basis vectors. There exist transversely

isotropic models [7], and also ortotropic models [6] which are considered to capture the

tissue behaviour realistic. In this master thesis, we will not consider material models

of high complexity, as the time efficiency is the key feature of our solver. The material

models considered are therefore non-linear and isotropic.
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For hyperelastic materials, the energy is conserved, and the work done during the defor-

mation is path independent. In other words the work done on a body is only dependent

on the initial state in the reference configuration at time t0 and the current state at

some time t. For hyperelastic materials there exists a strain energy function Ψ (F) . This

function describes the work done by the stresses from the reference configuration to the

current configuraiton. The strain energy function is defined per unit reference volume.

In hyperelastic theory, the first Piola-Kirchhoff stress tensor, and the Cauchy stress tensor

can be expressed in terms of the strain energy function as

P =
∂Ψ

∂F
, σ = J−1F

∂Ψ

∂F
. (4.12)

The modified Saint Venant-Kirchhoff material model will be used for verification. It is

one of the simplest hyperelastic material models and is given by

Ψ =
λ

2
(tr(E))2 + µ tr(E2). (4.13)

Here, E is the Green-Lagrange strain tensor, and µ and λ are material parameters.

The heart tissue can be assumed to be incompressible and hyperelastic. The Neo-

Hookean material model is often used to model materials that are undergoing large

deformations. It is a non-linear , hyperelastic and isotropic model. It exist in a com-

pressible and an incompressible version given by

Ψ = C1 (I1 − 3)− p (J − 1) . (4.14)

and

Ψ = C1

�
Ī1 − 3

�
−D1(J − 1)2, (4.15)

Ī1 = J− 2
3 tr(C), (4.16)

respectively.

Here C1 and D1 are material constants describing the stiffness of the material, the units

for these constants are Pascal.

4.1.3 Active force development

The heart cells contract due to electrical stimulation. The active stress can be described

in various ways. We will in the following describe the active stress in two ways. The first
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approach is to introduce an active part to the stress tensor. Such that the Cauchy stress

tensor can be decomposed into a passive and an active part:

σ = σpassive + σactive.

The active force is developed along the fiber direction. Let �f be a unit vector field

oriented in the fiber direction. We can define the active force with respect to either the

deformed or undeformed geometry. By defining the force with respect to the deformed

geometry, we get the following expression for the total Cauchy stress:

σ =
1

J

∂Ψpassive

∂F
+

σa
�
[Ca2+]

�

J

�
F�f0

��
F�f0

�T
. (4.17)

Here, σa
�
[Ca2+]

�
is some scalar function describing the calcium-dependent active force

development. The direction of the active force generation is described by the tensor

product �f �fT . In this thesis we will asume that the fibers are oriented along the circum-

ference of the undeformed geometry. The implementation of the circumferential fiber

field is given in Chapter 5.

Using the Piola transfrom: P = JσF−T , the Piola-Krichhoff stress tensor, decomposed

into an passive and active part, becomes:

P = Ppassive +Pactive

P =
∂Ψpassive

∂F
+ σa

�
[Ca2+]

�
F�f0 �f0

T
,

here, �f0 denotes the fibers on the undeformed geometry.

For hyperelastic materials the expression for the Piola Kirchhoff stress tensor can be

obtained by differentiating the strain energy function Ψ. The active contraction of the

fibers can be described from the scalar function Ψactive

Ψactive = σa
�
[Ca2+]

�
�f0

T
C�f0 = σa

�
[Ca2+]

�
λ. (4.18)

We decompose the strain energy function into an passive and active part:

Ψ = Ψpassive +Ψactive.

This is not a strain energy function as there is no conservation of energy, but this is a

practical tool that simplifies the analysis of the problem.
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4.2 Finite element formulation of the heart equations

We are now ready to formulate the finite element problem for the heart equations. We will

formulate the weak formulation, as well as the equivalent formulation of the minimization

of potential energy. This will be done both for compressible and incompressible material

models.

4.2.1 Finite element formulation for compressible material models

Let ∂H1(0) the base, ∂H2(0) the endocardium and ∂H3(0) the epicardium. The union

of the boundaries is written as ∂H =
3�

i=1
∂Hi.

The equilibrium equation for the heart on the undeformed geometry, together with the

boundary conditions, is given by

∇0 · P = 0 in H(0) (4.19)

u1 = 0 on ∂H1(0),

�T = −k�u in ∂H1(0),

�T = Jσ1F−T �N on ∂H2(0),

�T = Jσ2(t)F−T �N on ∂H3(0).

(4.20)

Here, �u = (u1, u2, u3), and k is a scalar value representing the stiffness of the spring.

The unknown is the displacement �u and P typically depends on �u in a non-linear way.

Hence, the problem is non-linear. The solution method is a non-linear finite element

formulation.

We search for a solution in the Sobolev space H1(H(0)), which is defined as

H1 (H(0)) = {�v ∈ L2 (H(0)) :

�

H
�v2dx < ∞ and

�

H
|∇�v|2dx < ∞}.

We define V̂ and V to be the test and trial space respectively as

V̂ = {�v ∈ H1 (H(0)) : �v = 0 on ∂H}
V = {�v ∈ H1 (H(0)) : �v satisfies (4.20) on ∂H}.

To derive the non-linear variational form of the equilibrium equation of the heart, we

multiply the differential equation with a test function �v ∈ V̂ . Thereafter we integrate

over the domain and use Green’s theorem to write the variational form:
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�

H(0)
∇ · (P) · �vdV =

�

∂H(0)
P · �N�vdS −

�

H(0)
P∇�vdV.

The boundary is divided into three separate parts which gives us that

�

∂H(0)
P · �N�vdS =

�

∂H1

P · �N�vdS +

�

∂H2

P · �N�vdS +

�

∂H3

P · �N�vdS.

We now insert the boundary conditions from the boundary value problem and get the

variational form L(u; v) = 0, where

L(�u;�v) =

�

H(0)
P∇�vdV +

�

∂H1

k�u�vdS−
�

∂H2

Jσ1F−T �N�vdS−
�

∂H3

Jσ2(t)F−T �N�vdS = 0.

(4.21)

Problem (4.19) can be formulated weakly as: find �u ∈ V such that

L(�u;�v) = 0 ∀�v ∈ V̂ .

The function L : V × V̂ → R is a semi-linear form, nonlinear in the argument �u, and

linear in �v.

In order solve this problem we construct a finite dimensional discretization of the test

and the trial spaces, respectively V̂h ⊂ V̂ and Vh ⊂ V.

The choices of discrete spaces depend on the selection of element type. A common

element type is linear tetrahedral elements. That is, we partition the domain H into a

finite number of tetrahedral elements K, where Th denotes the set of all elements K.

Then,

V̂h = {�v ∈ C (H(0)) : �v = 0 on ∂H,�v|K linear ∀K ∈ Th}
Vh = {�v ∈ C (H(0)) : �v satisfies (4.20) on ∂H,�v|K linear ∀K ∈ Th}.

Here, C(H(0)) is the space of continuous functions on H(0), and �v|K denotes the linear

basis functions on the elements. An illustration of these basis functions is given in Figure

4.2.
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Figure 4.2: Illustration of the basis functions �v|K on the tetrahedral elements.

The discrete non-linear problem reads: find �uh ∈ Vh such that

L(�uh;�v) = 0 ∀�v ∈ V̂h. (4.22)

Let φj denote the piecewice linear Lagrangian basis functions for Vh. Then �uh =
�N

j=1 Ujφj ,

and Uj are the coefficients.

We can write this as

Li(�uh, φ̂i) = b(Uj) for i, j = 1, ..., N.

We now have a non-linear system of equations with v = φ̂i with b(Uj) = 0 forj = 1, ..N,

and b : RN → RN .

4.2.2 Minimization of the potential energy

In this section we will derive the equivalent formulation of the weak form by applying

the principle of stationary potential energy [2]. The minimization of potential energy

formulation is easier to implement in FEniCS.

As we model the heart as a hyperelastic material, we assume the system that is modelled

to be conservative. By assuming this, we require the existence of an energy functional Π,

which describes the total potential energy of the system. The heart equations is derived

from Cauchy’s first equation of motion, and only the internal stresses are considered.

Hence, the total potential energy is given by

Π (�u) =

�

H(0)
Ψ (F (�u)) dV. (4.23)
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We are now interested in the equilibrium state of the system, that is stationary position of

the potential energy. The equilibrium state is found by requiring the Gâteaux derivative

of Π, with respect to the displacement �u to be zero in every direction:

lim
�→0

Π (�u+ ��v)−Π (�u)

�
= 0. (4.24)

In the following we will show that the minimal potential energy formulation is equivalent

to the weak formulation.

By inserting (4.23) into (4.24) we get the expression.

lim
�→0

�
H(0)Ψ (F (�u+ ��v)) dV −

�
H(0)Ψ (F (�u)) dV

�
= 0. (4.25)

As the composition of Ψ and F is continuously differentiable we can pull the limit inside

the integral. This leads us to the expression

�

H(0)

�
lim
�→0

Ψ (F (�u+ ��v))−Ψ (F (�u))

�

�
dV = 0. (4.26)

The deformation gradient F(�u+ ��v) can be written in terms of its argument as

I+∇0�u+ �∇0�v = F(�u) +ΔF.

Here, ΔF = �∇0�v.

lim
ΔF→0

Ψ(F+ΔF)−Ψ(F)

ΔF
=

∂Ψ

∂F

lim
ΔF→0

Ψ(F+ΔF)−Ψ(F)

ΔF

ΔF

�
=

∂Ψ

∂F

ΔF

�

We have that ΔF → 0 as � → 0.

This implies that
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lim
�→0

Ψ(F+ΔF)−Ψ(F)

ΔF
= lim

ΔF→0

Ψ(F+ΔF)−Ψ(F)

ΔF
=

∂Ψ

∂F
= P.

We also have that

ΔF

�
=

�∇0�v

�
= ∇0�v.

This shows that

lim
�→0

Π (�u+ ��v)−Π (�u)

�
=

�

H(0)
P∇0dV.

Which shows the equivalence of the minimization formulation and the weak form of the

boundary value problem.

4.2.3 Mixed finite element formulation for incompressible material
models

Many materials can sustain finite strains without noticeable volume changes. The only

motions that are possible for these materials are isochoric, that is volume preserving mo-

tions. These materials are assumed to be incompressible. To model the incompressibility,

we impose a constant volume constraint through the determinant of the deformation gra-

dient J . In other words we solve ∇P subject to J = 1.

A mixed formulation is used to solve these kind of problems. The mixed formulation is

a two field variational principle. Besides the displacement field we introduce a pressure

field p ∈ L2(H(0)) which is treated as an independent variable. Here, p is the Lagrange

multiplier of the optimization problem.

The general strain energy function for incompressible materials can be written as

Ψ = Ψ(F) + p (J − 1) . (4.27)

We will decompose Ψ into a passive part, involving the passive behaviour of the tissue,

an active part, involving the active contraction of the cells, and an incompressible part.

We define Ψtot = Ψpassive +Ψactive +Ψincompressible.

The Piola-Kirchhoff stress tensor is also decomposed into
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P = Ppassive +Pactive +Pincompressible

P =
∂Ψpassive

∂F
+Pactive +

∂Ψincompressible

∂F

P =
∂Ψpassive

∂F
+Pactive + pJF−T

To solve this problem we need to formulate the Galerkin method for mixed problems.

In the compressible problem, we only solved for the displacement. In the incompressible

case we have a two field equation system, and we wish to solve the following problem:

find �u ∈ V and p ∈ L2(H(0)), such that

L(�u,�v) + b(�v, p) = 0 ∀ �v ∈ V̂

c(�u,w) = 0 ∀ w ∈ L2(H(0))

The functions L : V × V̂ → R, b : V̂ × L2(H(0)) → R and c : V × L2(H(0)) → R are

given by

L(�u,�v) =

�

H(0)

�
∂Ψpassive

∂F
+Pactive

�
∇�vdV +

�

∂H1

k�u�vdS

−
�

∂H2

Jσ1F−T �N�vdS −
�

∂H3

Jσ2(t)F−T �N�vdS,

b(�v, p) =

�

H(0)
pJF−T∇�vdV,

c(�u, �w) =

�

H(0)
p(J − 1)dV,

where we have used that ∂J
∂F = JF−T .

The mixed finite element formulation can also be described through the equivalent min-

imization of potential energy with the mixed formulation. The potential energy is de-

scribed through the functional

Π (�u, p) =

�

H(0)
Ψ (F (�u)) + p(J − 1)dV. (4.28)

When using the equivalent minimization of the potential energy, we wish to solve the

following problem:
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lim
�→0

Π (�u+ ��v)−Π (�u)

�
= 0, ∀ �v ∈ V̂ and lim

�→0

Π (�p+ ��w)−Π (�p)

�
= 0, ∀ �w ∈ L2(H(0)),

(4.29)

which is equivalent to solving

lim
�→0

�

H(0)
p
J (�u+ ��v)− J (�u)

�
+

Ψ (F (�u+ ��v))−Ψ (F (�u))

�
dV, (4.30)

and

�

H(0)
p (J − 1) �wdV. (4.31)

In summary the problem that we solve is

lim
�→0

Π (�u+ ��v)−Π (�u)

�
= 0, (4.32)

where

Π (�u) =

�

H(0)
Ψtot (F (�u)) dV. (4.33)

Ψtot = Ψpassive +Ψincompressible +Ψactive (4.34)

The mixed finite element problem may lead to a phenomena known as locking, in which

the material tend to be more stiff than it should. This is particularly a problem with

lower order finite elements. It has been shown in [9] that using second order Lagrangian

elements for the displacement �u and first order Lagrangian elements for the hydrostatic

pressure p, yields a stable numerical solution. This is also known as Taylor-Hood finite

elements.

In this chapter we have presented the mathematical framework needed to create a model

for the beating ventricle. The implementation of the mathematical model and the me-

chanical events throughout the PV-loop is given in the next chapter.
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Implementation

In this chapter we will give a brief introduction to the open-source program that have

been used to solve the heart equations. We will also go through the implementation of

our model for the heart beat. This will be done by presenting the implementation of the

anatomy of the left ventricle, and also the implementation of each phase in the pressure

volume loop.

5.1 FEniCS

To solve the partial differential equations for the mechanical behaviour of the heart, the

open-source program FEniCS was used. The FEniCS project was initiated in 2003 and

was originally a collaboration between the Universty of Chicago and Chalmers university

of technology. It is a an open-source program for scientific computing, and has a special

focus on solving differential equations by the finite element method. In this section, we

will explain the structure and main main components of FEniCS.

The structure of FEniCS is given in Figure 5.1, where the dashed lines indicate data flow

and solid lines indicate dependencies.

5.1.1 DOLFIN

DOLFIN is a C++ and Python library that serves as the main user interface of FEniCS.

DOLFIN wraps the functionality of other FEniCS components and external software,

and handles the communication between these components. In this master thesis, we

use the Python interface. DOLFIN is organized as a collection of modules, with each

32
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Figure 5.1: Structure of the FEniCS project https://fenicsproject.org/about/.

covering a certain area of functionality. Examples of these modules are functions and

function spaces, finite elements, linear algebra, meshes and variational forms.

5.1.2 Form compilers translating UFL to UFC

The unified form language (UFL) is one of the core components for the solving of partial

differential equations in FEniCS. It defines the language by which the PDE is expressed,

and is the input language and front end of the FEniCS form compiler (FFC). SFC

generates low level C++ code (UFC) from the high level mathematical description of a

variational problem written in UFL. The process is illustrated in Figure 5.2.
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Figure 5.2: The form compiler translates UFL code to UFC
https://fenicsproject.org/about/components.html#about-components-ufc.

5.1.3 Solving the heart equations in DOLFIN

In the following we will present a simple example using DOLFIN to solve the heart

equations on a unit cube slab of tissue. The material model we use is the compressible

Neo-Hookean model:

Ψ = C1(Ī1 − 3) +D1(J − 1)2

Ī1 = J
2
3 trC.

A Dirichlet boundary condition is imposed on the boundary at x = 0, and a Neumann

condition for the boundary at x = 1. The remaining boundaries have homogeneous

Neumann conditions:

∇0 · P = 0 in [0, 1]× [0, 1] ,

�u = 0 on {0} × [0, 1]

�T = JσF−T �N on {1} × [0, 1] .

To import all DOLFIN functionalities, this line of code is written in Python.

Python code
1 from dolfin import *

Here, we use a build in mesh generation function in DOLFIN which, creates a unit cube

mesh with 10×10×10 nodes.

Python code
1 mesh = UnitCubeMesh(10, 10, 10)

We now define the vector function space where we will search for our solution. The first

argument of V ectorFunctionSpace() is mesh, which defines the domain of the function

space. The second argument ”Lagrange” defines the element types we are using, whilst
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the third argument gives the degree of the elements. With degree 1, we have a node in

every corner of the tetrahedral elements. By increasing this argument we increase the

degree of the polynomial approximation, and also the computational expensiveness.

Python code
1 V = VectorFunctionSpace(mesh , "Lagrange", 1)

u = Function(V, name = "Displacement")

3 du = TrialFunction(V)

v = TestFunction(V)

In this part of the code, we define two classes for identifying the Dirichlet and Neumann

boundaries on the mesh. A mesh function boundaries = MeshFunction() is defined in

order to create a surface measure ds that can distinguish between the different bound-

aries. We mark the boundaries through the function .mark(boundaries,1) with the value

1 and 2 for the Dirichlet and Neumann part, respectively. This allows us to integrate

over the Neumann boundary writing ds(2). Next, the Dirichlet boundary condition is

initiated by the functin DirichletBC() which takes three arguments. The V.sub(0) tells

which part of the vector function space the boundary condition is valid for. By writing

V.sub(0), this access the x−component of the vector function. The second argument 0.0,

tells us the value at the nodes, and the third argument 1 tells us that this holds for the

nodes marked with the value 1.

Python code
# Create classes for defining parts of the boundaries

2 class DirichletBoundary(SubDomain):

def inside(self , x, on_boundary):

4 return near(x[0], 0.0)

6 class NeumannBoundary(SubDomain):

def inside(self , x, on_boundary):

8 return near(x[0], 1.0)

10 # Initialize sub -domain instances

DirichletBoundary = DirichletBoundary ()

12 NeumannBoundary = NeumannBoundary ()

14 # Initialize mesh function for boundary domains

boundaries = MeshFunction("size_t", mesh ,2)

16 DirichletBoundary.mark(boundaries , 1)

NeumannBoundary.mark(boundaries , 2)

18

bcs = DirichletBC(V.sub(0), 0.0, boundaries , 1)

20 ds = Measure(’ds’, domain=mesh , subdomain_data =boundaries)
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Here, we define the kinematics needed for the PDE. We see that the syntacs is close to

the mathematical formulation.

Python code
1 # Kinematics

I = Identity(3)

3 F = variable(I + grad(u))

J = det(F)

5 C = F.T*F

E = 0.5*(C-I)

7 N = FacetNormal(mesh)

In the following we define the compressible Neo-Hookean material model.

Python code
1 # The compressible Neo -Hookean material model

I_1 = pow(J, -float(2)/3)*tr(C)

3 psi = 1*(I_1 - Constant(3.0)) + 0.5*(J-1)**2

P = diff(psi , F)

Here, we define the variational form and use the built in solve function from DOLFIN to

solve non-linear variational form. An illustration of the displacement field on the cube

is given in Figure 5.3.

Python code
sigma = 0.1

2 T = -dot(J*sigma*inv(F).T, N)

L = inner(P, grad(v))*dx + inner(T, v)*ds(2)

4

a = derivative(L, u, du)

6 solve(L == 0, u, bcs , J=a)

5.2 Modelling the anatomy of the left ventricle

The geometry used throughout these experiments is an ellipsoidal surface of revolution

of different refinements. This geometry is a severe simplification compared to reality but

early models of the heart used such geometries. An illustration of the linear tetrahedral

mesh with 690 elements is given in Figure 5.4.
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Figure 5.3: Plots of the displacement of the unit cube with Dirichlet boundary con-
dition on the left boundary, and Neumann condition on the right boundary.

Figure 5.4: Linear tetrahedral mesh with 690 elements used to model the left ventricle

5.2.1 Implementing circumferential fiber field

The heart muscle cells are oriented in a complex but elegant manner. They spiral from

the endocardium to the epicaridum in a nonlinear way. From the outer to the inner part

of the heart wall, the orientation of the muscle fibres change, where the muscle fiber

rotate from +50 to +70 degrees from the sub-epicaridal region to 0 degrees in the middle

of epicardium to -50 to - 70 degrees with respect to the circumferential direction of the

left ventricle. [6]. We implement a simplified fiber field, and orient the fibers along the

circumference of the ellipsoid.

We get a Cartesian expression for the circumferential vector by forcing the inner product

between the radial �r = (x, y) vector and the circumferential vector �c = (xc, yc) to be
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x

y �r

�c

Figure 5.5: Illustration of the direction of the circumferential fibers

zero:

�r · �c = (x, y) · (xc, yc) = xxc + yyc = 0.

We easily see that the vector

�c = (x,−y)

satisfy this equation. The circumferential vector is defined in this way at every node of

the mesh.

In the implemetation of the fiber field we first initiate the vector function space for

the circumferential vectors for the fiber field. A function space for the components of

the circumferential vectors is also initiated. Each vector component v_c_x, v_c_y and

v_c_z have one degree of freedom.

Python code
def Create_circum_Fiber(mesh):

2 # Function creates circumferential vector field

V = VectorFunctionSpace(mesh , "CG", 1)

4 F = FunctionSpace(mesh , "CG", 1)

# Function for x,y,z-coordinates for circumferential vector

6 v_c_x = Function(F)

v_c_y = Function(F)

8 v_c_z = Function(F)

vc = Function(V)

Here, dofs is a list that is reshaped such that it is containing the coordinates for the

x, y and z components of each nodes in the mesh. In this way, dofs is a correspondence

between the node number i and the coordinates of the node.
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Python code
1 dm = F.dofmap ()

dofs = dm.tabulate_all_coordinates(mesh). reshape ((-1,

mesh.geometry ().dim()))

The loop in the following code iterates over all nodes and creates the circumferential

vector �c = (x,−y) for each node. For the apex case, a simple vector of unit length is

defined.

Python code
for i,coord in enumerate(dofs):

2 norm = sqrt(coord[1]**2 + coord[2]**2)

# assigns value for circumferential vector at every node in mesh

4 if not near(norm , 0):

v_c_y.vector ()[i] = -coord[2]/norm

6 v_c_z.vector ()[i] = coord[1]/norm

else:

8 #Apex

v_c_y.vector ()[i] = 1

10 v_c_z.vector ()[i] = 0

Next, we assign the values for the components v_c_x, v_c_y and v_c_z to the vector

function v_c. This is done by using the built in function FunctionAssigner().

Python code

2 fax = FunctionAssigner(V.sub(0), F)

fax.assign(vc.split()[0], v_c_x)

4 fay = FunctionAssigner(V.sub(1), F)

fay.assign(vc.split()[1], v_c_y)

6 faz = FunctionAssigner(V.sub(2),F)

faz.assign(vc.split()[2], v_c_z)

8 return vc

A streamline plot of the circumferential fiber field is given in Figure 5.6.

5.2.2 Implementation of the class heartmodel

In order to structure the code, a class called heartmodel is implemented. A skeleton that

includes the headers of the most important functions in the class is given below.

Python code
class HeartModel(object):

2 def __init__(self ,mesh_name):
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(a) View from above. (b) View from the side.

Figure 5.6: Streamline plots of the circumferential fiber field.

self.iters = iters

4 self.mesh_name = mesh_name

self.mesh , self.fibers = self.get_mesh_and_fibers(mesh_name)

6 self.solver_parameters = solver_parameters

self.init_kinematics ()

8 self.set_boundaries ()

self.make_variational_form ()

10 self.solver_parameters = solver_parameters

12 def init_kinematics(self):

...

14 def get_mesh_and_fibers(self ,mesh_name):

...

16 def plot_mesh(self):

...

18 def set_boundaries(self):

...

20 def make_variational_form(self):

...

22 def set_sigma(self ,sigmaEndo):

...

24 def solve(self ,sigmaEndo):

...

26 def get_volume(self):

...
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5.2.3 Implementing the active contraction on the left ventricle

We simulate the active force development in the cells trough the intracellular calcium

concentration. The function may be described as a function of time which is based on

experimental [10]:

[Ca2+(t)]i = [Ca2+]i0 +
�
[Ca2+]imax − [Ca2+]i0

� t

τCa

e
1− t

τCa . (5.1)

Here, the resting level of the intracellular calcium concentration in the muscle cell is

denoted [Ca2+]i0 , the maximum concentration is denoted by [Ca2+]imax , and t = τCa is

the time when the maximum concentration is achieved.

This is a purely phenomenological model, and therefore a severe simplification of the

actual events. However, it is reasonable to assume that the active force development

depends on the intracellular calcium concentration, and in this case we assume a linear

dependency. A plot of the function [Ca2+(t)]i is given in Figure 5.7.

Figure 5.7: Scaled function for the intracellular calcium concentration as a function
of time.

With the fibers oriented in the circumferential direction, the active stress in the fiber

direction can be expressed through the tensor product

Pa = [Ca2+]i(t)

�
�c

��c� ⊗ �c

��c�

�
=

[Ca2+]i(t)�
x2 + y2




x2 −xy 0

−xy y2 0

0 0 0


 . (5.2)
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The initializing of the active part of the Piola-Kirchhoff stress tensor is done in the

function init_kinematics(). We first define the tensor function space for the stress.

This initialization gives us the possibility to assign the value of the stress in an external

file.

Python code
1 # from the function init_kinematics ()

self.W = TensorFunctionSpace(self.mesh ,’CG’,1)

3 self.P_active = Function(self.W)

The Piola Kirchhoff stress tensor is the assigned the value of (5.2) at each time step t.

Python code
1 # from external file

tensorActive = project(outer(vc ,vc),model.W)

3 model.P_active.assign(tensorActive *ca_transient(t)*0.00001)

When using the minimal potential energy formulation, the active contraction can also

be implemented through the scalar function

Ψactive = [Ca2+]i(t)]�f0
T
C�f0. (5.3)

As we are dealing with a scalar function, the function space is chosen to be the real space

R.

Python code
1 # from the function init_kinematics ()

self.sigmaActive = Function(FunctionSpace(self.mesh ,"R",0))

3 self.psi_active = self.sigmaActive *inner(self.fibers , C*self.fibers)

In the same way as for the implementation of Pative, the initializing of Ψactive inside the

class gives us the opportunity to impose the active force for some time t in an external

file.

Python code
1 #from external file

model.sigmaActive.assign(Constant(ca_transient(t)*1.5))

Computing the volume of the left ventricle

We calculate the volume of the left ventricular cavity in order to create the PV-loop. The

volume of the ventricular cavity is a function of the pressure through the displacement �u.
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The displacement depends on the endocardial σ2(t) and epicardial σ1 pressure through

the boundary conditions of the FEM formulation (4.21).

In order to compute the volume function, we use the fact that the surface area of the

endocardial wall is known. We also know that the divergence of �x with respect to the

deformed geometry is 3. By noticing this, and applying the divergence theorem, we get

V =

�

Ω
dv =

1

3

�

Ω
∇ · �xdv =

1

3

�

∂Ω
�x�nds.

We have that �x = �X + �u (3.1), and convert the integral on the deformed geometry

�

∂Ω
�x�nds =

�

∂Ω

�
�X + �u

�
�nds,

to the undeformed geometry by applying Nansons formula (3.18) and obtain

V =

�

∂Ω

�
�X + �u

�
�nds =

�

∂Ω0

�
�X + �u

�
JF−T �NdS.

The implementation is shown below.

Python code
def get_volume(self):

2 I = Identity(3)

F = variable(I + grad(self.u))

4 J = det(F)

6 N0 = -dot(J*inv(F.T),self.N)

x = SpatialCoordinate(self.mesh)

8

D = dot((x+self.u),N0)*self.ds(self.ENDO)

10 vol = (1./3)*assemble(D)

12 return vol

5.3 Implementation of the phases of the heartbeat - gener-

ating the PV-loop

We are now ready to implement the five phases of the heart beat. We start by simulating

the passive filling phase of the heart. The two isovolumic phases is modelled equally by
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a constant volume constraint using the Newton method. The ejection phase is modelled

with a 2-module Windkessel model. The ending time for the phases is chosen such that

we get the desired pressure volume development in each phase.

5.3.1 Implementation of the passive filling phase

During the passive filling, the volume and the pressure in the left ventricle increase as

blood flows passively into the ventricle after the semilunar valves have closed. To model

this, we simply increase the pressure linearly up to a chosen value for the end diastolic

pressure.

Python code
def passive_filling(model):

2

sigmaEndo = 0

4 sigmaEpi = 0

dsigmaEndo = 0.1

6 while (sigmaEndo <= 0.1 ):

8 v0 = model.solve(sigmaEndo ,sigmaEpi)

sigmaEndo = sigmaEndo + dsigmaEndo

10

sigmaEndo = sigmaEndo - dsigmaEndo

12 u_temp = model.u

vstart = v0

14

return u_temp , sigmaEndo , vstart

5.3.2 Implementation of the isovolumic contraction phase

During the isovolumic contraction, the volume of the ventricular cavity remains constant

while the pressure in the ventricle increases. To fulfill the isovolumic constraint and

simulate this part of the heart cycle, Newton’s method has been applied.

We define the function

f = V (p)− VEDV , (5.4)

V (p) is the volume of the left ventricle which depend on the endocardial pressure p, and

VEDV is the chosen end diastolic volume. We want to solve the problem: find p such

that f(p) = 0.

The Newton step becomes
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pn = pn−1 −
f(pn−1)

f �(pn−1)
. (5.5)

We use a finite difference approximation for the derivative

f �(p) = df

dV

dV

dp
≈ V (p+ �)− V (p)

�
. (5.6)

For each time step, we impose the time dependent active force under the constraint that

the volume must be constant. Newton’s method is then used to find the pressure that

fulfills this constraint.

We first import the calcium function for the force development (5.1). The function f

and the derivative fprime that are needed for the newton step are implemented.

Python code
1 from Force import ca_transient

3 def f(p, vstart ,model):

volNew = model.solve(p)

5 return volNew - vstart

7 def f_prime(p,model):

epsilon = 0.0001

9 volEps = model.solve(p+epsilon)

volNew = model.solve(p)

11 return (volEps- volNew)/epsilon

The functions f and fprime are used in the implementation of the Newton step:

Python code
1 def Newton_step(p0 ,model ,vstart):

j = 0

3 tol = 0.001

maxIterations = 4

5 y = 1

while (j < maxIterations) and (abs(y)> tol):

7 y = f(p0,vstart ,model)

y_prime = f_prime(p0, model)

9 p1 = p0 - y/y_prime

j = j + 1

11 p0 = p1

return p1

The complete code for the isovolumic contraction is shown below.
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Python code
def isovolumic(model ,sigmaEndo ,vstart):

2 vc = model.fibers

tensorActive = project(outer(vc ,vc),model.W)

4

epsilon = 0.0001

6 t = 0.006

dt = 0.01

8 tol = 0.000000001

10 maxIterations = 20

sigmaEpi = 0

12

while( (t < 0.035) ):

14 try:

model.sigmaActive.assign(Constant(ca_transient(t)*1.5))

16 u_temp = model.u.copy(True)

vAfterActiveStress = model.solve(sigmaEndo , sigmaEpi)

18 u_temp = model.u.copy(True)

volNew = vAfterActiveStress

20

sigmaEndo = Newton_step(sigmaEndo ,model ,vstart)

22

volNew = model.solve(sigmaEndo ,sigmaEpi)

24

t = t + dt

26

if dt < 0.01:

28 dt = dt*1.5

30 except RuntimeError :

dt = dt/2

32 t = t - dt

model.u.assign(u_temp)

34

if dt < DOLFIN_EPS :

36 raise

38 return sigmaEndo , volNew , t

5.3.3 Implementation of the ejection phase - the Windkessel model

There exist Windkessel models of different complexity. In this master thesis the 2-module

Windkessel model is applied to model the ejection phase of the cardiac cycle. The

Windkessel model consists of ordinary differential equations which relates the dynamics
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of aortic pressure and blood flow to various parameters such as arterial compliance,

resistance to blood flow and the inertia of blood.

The cardiovascular system can be modelled analogous to an electrical circuit, such that

electrical charge and currents represents blood volume and flow rates [11].

The arterial compliance comes from the blood vessels ability to accumulate and release

blood due to elastic deformations, this is modelled analogously to capacitors in electrical

circuits [12]. The resistance in the blood as it passes from the aorta into the narrower

arterioles, referred to as peripheral resistance, is modelled analogously to a resistor.

These resistors in the cardiovascular system is dependent on blood viscosity and the

diameter of the vessels. Using this analogy, a particular vessel can be described by a

combination of resistors and capacitors.

Figure 5.8: The 2-module windkessel model

Figure 5.8 shows the 2-module Windkessel model consisting of a capacitor C corre-

sponding to the arterial compliance and a resistor R corresponding to the resistance in

the blood. P represents the aortic pressure and F represents the blood flow rate in the

aorta.

The pressure difference P is in general non-linear. As we are modelling a laminar flow

the pressure difference can be assumed to be linear [13]. If we consider a cylindrical

blood vessel and look at the pressure difference between the two ends of the cylinder,

the resistance R, which is the proportionality constant between the pressure difference

P and the flow F can be written as

R =
P

F
. (5.7)

This is analogous to Ohms law for electrical circuits

R =
V

I
, (5.8)
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with, V representing the potential difference and I the current.

The compliance of the aortic vessel results in a net storage of blood which can be modelled

analogous to the capacitor in an electrical circuit. The net flow through a blood vessel

is denoted by F = Fin −Fout. We assume a linear relation between the rate of change of

pressure in the vessel and the net flow

F = Cc
dP

dt
. (5.9)

This is analogous to the relationship between the derivative of the potential with respect

to time in electrical circuits

I = Ce
dV

dt
. (5.10)

By combining the equations for the different components of the circuit

F = F2 + F3 (5.11)

P = F3R (5.12)

C
∂P

∂t
= F2, (5.13)

and applying Kirchhoff’s law for currents we get the differential equation

F =
P

R
+ C

∂P

∂t
. (5.14)

Here F represents the blood flow out of the left ventricle, and hence represents a negative

change of volume. Thus, we can write the Windkessel model as

−∂V

∂t
=

P

R
+ C

∂P

∂t
. (5.15)

Hence, we can define the residual f as

f =
∂V

∂t
+

P

R
+ C

∂P

∂t
= 0. (5.16)

We use a first order finite difference approximation for the volume and pressure change:

f =
Vn − Vn−1

tn − tn−1
+

pn − pn−1

R
+ C

pn − pn−1

tn − tn−1
, (5.17)
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and by factorizing with respect to the pressure we end up with the expression

f = Vn − Vn−1 +

�
C +

Δt

R

�
pn − Cpn−1. (5.18)

The derivative of the volume with respect to the pressure is approximated by the finite

difference approximation

dV

dp

dp

dt
≈ Vn − Vn−1

�
,

hence
∂f

∂p
=

Vn − Vn−1

�
+

�
C +

Δt

R

�
. (5.19)

The volume and pressure of the next step is then found by the Newtons method, where

the pressure and volume of the next step is given by

pn = pn−1 −
f(pn−1)

f �(pn−1)
,

with Vn = V (pn). The function f and f_prime are needed for the Newton step to be

implemented.

Below we show the implementation of the Windkessel model and the ejection phase.

Python code
1 from dolfin import *

from Force import ca_transient

3 from circumFiber import *

C = 40

5 R = 0.003

7 def f(p, vstart ,pstart ,model ,dt):

volNew = model.solve(p)

9 return volNew + (C + dt/R)*p - vstart - C*pstart

11 def f_prime(p,model ,dt):

epsilon = 0.0001

13 volEps = model.solve(p+epsilon)

volNew = model.solve(p)

15 return (volEps - volNew)/epsilon + C + dt/R
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The Newton step is implemented in the following.

Python code
1 def Newton_step(p0 ,model ,vstart ,dt):

j = 0

3 tol = 0.1

maxIterations = 20

5 y = 1

pstart = p0

7 while (j < maxIterations) and (abs(y)> tol):

y = f(p0,vstart ,pstart ,model ,dt)

9 y_prime = f_prime(p0, model ,dt)

p1 = p0 - y/y_prime

11 j = j + 1

p0 = p1

13 return p1

The ejection phase is implemented as a separate function in the same way as the isovo-

lumic contraction phase.

Python code
1 def ejection(model ,sigmaEndo ,Vold ,t):

3 tol = 0.000000001

dt = 0.1

5 epsilon =0.0001

maxIterations = 50

7 sigmaEpi = 0

j = 0

9 vol_underformed = model.get_volume_undeformed ()

volNew = 1000

11 u_temp = model.u.copy(True)

13 while t < 0.155 and volNew > vol_underformed :

try:

15

t = t + dt

17 model.sigmaActive.assign(Constant(ca_transient(t)*1.5)

vAfterActiveStress = model.solve(sigmaEndo , sigmaEpi)

19 u_temp = model.u.copy(True)

volNew = vAfterActiveStress

21 v_after_act = volNew

sigmaEndoOld = sigmaEndo

23 sigmaEndo = Newton_step(sigmaEndo ,model ,Vold ,dt)

volNew = model.solve(sigmaEndo ,sigmaEpi)

25 Vold = volNew



Chapter 5. Numerical experiments 51

27

except RuntimeError as ex:

29 print ex

31 dt = dt/2

t = t - dt

33 model.u.assign(u_temp)

35 return sigmaEndo ,volNew , t

5.3.4 Implementation of the isovolumic relaxation phase

The implementation of the isovolumic relaxation phase is equal to the isovolumic con-

traction phase. We solve for the function

f = V (p)− VESV = 0.

Here VESV represent the end systolic volume, which is the volume after end of ejection

phase.

Python code
1 def

isovolumic_relaxation(model ,pListPlot ,vListPlot ,sigmaEndo ,vstart ,t) :

3 epsilon = 0.0001

dt = 0.008

5 tol = 0.000000001

maxIterations = 20

7

while( (t < 0.5) ):

9

try:

11

model.sigmaActive.assign(Constant(ca_transient(t)*1.5))

13 vAfterActiveStress = model.solve(sigmaEndo)

15

volNew = vAfterActiveStress

17 sigmaEndo = Newton_step(sigmaEndo ,model ,vstart)

volNew = model.solve(sigmaEndo)

19

t = t + dt

21 if dt < 0.05:

dt = dt*1.5
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23

except RuntimeError :

25 dt = dt/2

t = t - dt

27

if dt < DOLFIN_EPS :

29 raise

31 return sigmaEndo , volNew , t

In this chapter we have presented the open source program FEniCS. We have also de-

scribed the implementation of our model for the left ventricle. In the next chapter we

will present the results from the verification and time optimization of our model.



Chapter 6

Numerical results

In this chapter we present the results. The main output will be the CPU-time for

the simulation of the pressure and volume loop. The PV-loop was modelled both for

the compressible and incompressible Neo-Hookean material model. The hyperelasticity

of the material models will be verified through measuring strain development in the

tissue. In order to verify the model we will, for small deformations, compare it to

analytical solutions from linear theory. The model will also be verified by the method

of manufactured solutions [14], where our model is compared with an analytic solution.

The model is then time optimized. This is done through optimizing the parameters

for the form compilers. Next, the linear solvers in FEniCS are compared with respect

to both CPU-time and number of Newton iterations for both the incompressible and

compressible model. The material models are tested for two different mesh refinements.

Lastly, the code is run in parallel on the two mesh refinements for the different linear

solvers.

The computer used throughout these experiments is a MacBook Pro, with 2.2 GHz intel

Core i7 processor and with 16 GB RAM. The visualization is done using the program

ParaView [15], the vtk library [16] and matplotlib [17].

6.1 Verification of hyperelasticity

In the next experiment we impose the active contraction force in the fiber direction on

a left ventricle geometry. The pressure on the endocardium and epicardium from the

boundary conditions is set to zero. This is not physical but the aim of the experiment is

to simulate the contraction and relaxation of the myocardium without taking the pressure

development throughout the cardiac cycle into account. This experiment is done both

for the incompressible and compressible Neo-Hookean model.

53
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Figure 6.1 and Figure 6.3 shows how the ventricle contracts and relaxes in the direction

of the circumferential fiber field for the incompressible and compressible Neo-Hookean

model, respectively. A plot of the strain development in time and in terms of the active

force development for the incompressible and compressible Neo-Hookean model is given

in Figure 6.2 and Figure 6.4. The strain measure used is the fiber strain λ from (3.7).

With the value of one, for the fiber strain, the fibers are at rest, with the value of 0.5,

the fibers have contracted to 50% of its undeformed length. We see how the strain

increases and decreases in response to the active force development. When the graphs

are marked with red color these figures shows the value of the strain as the fibers are

contracting, while the blue lines shows the strain value when the fibers are relaxing back

to their original shape. The fact that the strain follows the same path, independent of the

asymmetry of the active force function, illustrates the path independence of hyperelastic

material.

t →

Figure 6.1: The displacement and fiber strain development of the left ventricle with
circumferential fibers for different time steps during the active contraction induced by

5.1.

6.2 Verification of model

We will now verify our model through three different test cases. In the first test case

we will compare our model to a very simple analytic test case. In the second test case

we expect our model to behave like a linear elastic material for small deformations. In

the last test case we test our solver against a non-linear analytic solution through the

method of manufactured solutions.
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(a) Strain/stretch λ (3.7) as function of time (b) Strain/stretch λ (3.7) as function of stress
σa

Figure 6.2: Plots of the strain development in the left ventricle during the active
contraction and relaxation with incompressible Neo-Hookean Model.

t →

Figure 6.3: The displacement and fiber strain development of the left ventricle with
circumferential fibers for different time steps during the active contraction induced by

5.1.

Test case 1

To verify the model, we solve a simple analytic test case where we impose Dirichlet

conditions for x = 0 and x = 1 with u = (0, 0, 0) and u = (0.2, 0, 0), respectively. There

is only elastic displacement due the Dirichlet condition on x = 1, and there is no active

force contribution. For this case, we know that the x−component of the displacement

field �u will be a linear function in x. The plot of the x-component of the displacement

field is given in Figure 6.5. The plot shows that we get the expected linear function. In

this test case, both the strain and stress are constants on the domain, which is severe

simplifications, such that this test is not sufficient for verification.
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(a) Strain/stretch λ (3.7) as function of time (b) Strain/stretch λ (3.7) as function of stress
σa

Figure 6.4: Plots of the strain development in the left ventricle during the active
contraction and relaxation with compressible Neo-Hookean Model.

Figure 6.5: Plot of x-component of the displacement field against x.

Test case 2

In the second test case we impose a Dirichlet condition for the boundary x = 0. For

the boundary on x = 1 we impose a Neumann condition with a pressure σxx in the

x−direction. For the remaining boundary we impose homogeneous Neumann conditions.

The material model used in this test case is

Ψ =
λ

2
(tr(E))2 + µ tr(E2). (6.1)

The reason for this choice of material model is that for small deformations, 6.1 behaves as

a linear elastic material. We wish to compare the solution for our model with analytical

expressions for the components of the small deformations strain tensor �.
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For linear elastic materials the analytic expressions for the components � is

�xx =
1

Y
σxx (6.2)

�yy = �zz =
−ν

Y
σxx (6.3)

where

Y =
µ(3λ+ 2µ)

(λ+ µ)
, (6.4)

and

ν =
λ

2(λ+ µ)
. (6.5)

For small deformations, � and the Green-Lagrange stain tensor E (3.9) are approximately

equal. In Figure 6.6 and 6.7, a plot of the analytical expression for the components

of the small deformations strain tensor, together with the numerical solutions of the

components of the Green-Lagrange strain tensor from our model is given. We can see

that the solution from our model coincides with the linear analytic solution for small

values of the stress. As we increase the value of the stress, our model deviates from the

linear model as expected.

Figure 6.6: Plot of the x-component of the E against σxx together with analytic
solution for 6.4.

Test case 3

In this section we test our model against a known manufactured analytic solution. This

is called the method of manufactured solutions.

In this test case we impose an active force on a unit square geometry. The fiber field

is set in the direction of the y−axis, such that �f0 = (0, 1)T . We use the incompressible
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(a) (b)

Figure 6.7: Plot of the −Eyy and −Ezzagainst σxx together with analytic solution
−ν (6.5)

Neo-Hookean model. Such that our strain energy function is

Ψpassive = C1 (I1 − 3)− p (J − 1) .

We have that the analytic expressions for the displacement and deformation gradient,

which satisfies the incompressibility constraint, are given by:

�u =

�
αy2

2

0

�
,F =

�
1 αy

0 1

�
.

The Piola-Kirchhoff stress tensor with active contribution then becomes

P = 2C1F+ σa
�
[Ca2+]

�
F�f0 �f0

T − pJF−T . (6.6)

Here, we have used that for the incompressible Neo-Hookean model

∂Ψpassive

∂F
=

∂Ψpassive

∂I1

∂I1
∂F

= 2C1F.

We have also used without proof that

∂ det (F)

∂F
= det (F)F−T = JF−T ,

this holds for all invertible second order tensors [2].
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We have that the analytic expressions from the matrix calculations in the expression for

(6.6) becomes

F�f0 �f0
T
=

�
1 αy

0 1

��
0 0

0 1

�
=

�
0 αy

0 1

�
,

and

F−T =

�
1 0

−αy 1

�
.

The expression for the Piola-Kirchhoff stress tensor now becomes

P = 2C1

�
1 αy

0 1

�
+ σa

�
[Ca2+]

�
�
0 αy

0 1

�
− p

�
1 0

−αy 1

�
.

We are now ready to find the analytic solution to this problem

∇ ·P = .

�
∂P11
∂x + ∂P12

∂y
∂P21
∂x + ∂P22

∂y

�
=

�
0

0

�
.

The expression for the components of the stress tensor becomes

P11 = 2C1 + pJ, P12 = 2C1αy + σa
�
[Ca2+]

�
αy

P21 = −pαyJ, P22 = 2C1 + σa
�
[Ca2+]

�
+ pJ

We now calculate the divergence of this tensor, and end up with two separable ordinary

differential equations

∇ ·P =

�
−J ∂p

∂x + 2C1α+ σa
�
[Ca2+]

�
α

− ∂p
∂xαyJ + J ∂p

∂y

�
=

�
0

0

�
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The first differential equation gives us the function

p(x) = J−1α
�
2C1 + σa

�
[Ca2+]

��
x+K(y),

here, K(y) is some function of y, this expression is found from the second differential

equation. The total analytic expression for the Lagrange multiplier becomes:

p(x, y) = J−1α
�
2C1 + σa

�
[Ca2+]

��
x+

α2

2

�
2C1 + σa

�
[Ca2+]

��
y2 +K.

A plot of the analytic expressions for �u and p together with a convergence plot through

the relative error for ��u− �uh�H1 , the pressure field �p− ph�L2 and the incompressibility

constraint �J − 1�L2 is given in Figure 6.8 and Figure 6.9. We can see the order for

the convergence is quadratic for the pressure field and with a exponent of 2.6 for the

displacement field. The values of the parameters was set to: α = 0.6, C1 = 0.1925

and σa
�
[Ca2+]

�
= 0.9. The analytic solutions was first derived by Rossi in [18]. The

implementation of this test case was based on a previous implementation [19].

Figure 6.8: Plot of the convergence of the method through the relative error of the
displacement field the pressure field and the compressibility condition.
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(a) (b)

Figure 6.9: Plot of the analytic solutions for the displacement field �u the pressure
field p.

6.3 The PV-loop

We will now comment on the process of developing the PV-loop. We will go through each

phase of the cycle of the left ventricle. The material parameter of the incompressible

Neo-Hookean model

Ψ = C1 (I1 − 3)− p (J − 1) .

was set to C1 = 0.45 kPa. For the compressible model

Ψ = C1

�
Ī3 − 3

�
−D1(J − 1)2,

Ī3 = J− 2
3 tr(C),

the parameters was set to C1 = 1.0 kPa and D1 = 0.5 kPa.

6.3.1 Passive filling

During the simulation of the passive filling phase we want the volume to double with

respect to the undeformed geometry. The undeformed volume is of 134.5 mL. We also

want the the pressure to be at a realistic end diastolic level of 1000 kPa. The stability of

the rest of the loop is strongly dependent on the volume of the ventricle after the passive

filling phase is completed, so that in order for the method to converge, the volume can

not be arbitrary large after the passive filling. The incompressible model the loop is more

stable when it comes to increasing the volume in the passive filling phase but the volume

is lower than a realistic end diastolic volume. The volume reaches 161.5 mL at end

diastolic volume, which is an 20 % increase of volume. For the compressible model has a
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end diastolic volume of 155.04 mL, which is a 15 % increase of the undeformed volume.

The material parameters are tuned manually to get a volume increase and a material

stiffness that can go through the isovolumic contraction phase without collapsing.

6.3.2 Isovolumic contraction

After finishing the passive filling phase, the left ventricle goes into its next phase, the

isovolumic contraction. The heart valves are closed, and the heart is contracting without

volume change, such that the pressure increases rapidly. The goal of this phase is to get

a pressure increase of minimum seven times the end diastolic pressure. The isovolumic

contraction phase is the most unstable part of the PV-loop. The bigger the volume of

the heart is after the passive filling, the more unstable the isovolumic contraction phase

is. The modelling of this stage is also very unstable regarding variation of the material

parameters and time step increase. If the tissue is too soft, the pressure will not increase

as desired, and if the tissue is too hard the method will diverge. To achieve convergence

of the method the material parameters and time steps are tuned manually such that we

aim for a time efficient and realistic pressure and volume development in each phase. For

the incompressible model the pressure is increased from 1000 kpa to 7450 kPa after the

isovolumic contraction phase is over. The compressible model reaches the level of 8140

kPa after the isovolumic contraction phase is ended. The pressure rise after this phase

is sufficient for both models.

6.3.3 Ejection

During the ejection phase of the left ventricle the blood is ejected from the left ventricle

into the aorta. This process is modelled by a 2-module-Windkessel model. Which is a

realistic differential equation for modelling the pressure and volume development when

the blood is ejected from the left ventricle into the aorta. The Windkessel model has two

parameters: R, which describes the blood vessels resistance depending on the diameter

of the blood vessels and the viscosity of the blood, and the paramter C, describing the

capacitance of the vessels, which is the ability to accumulate and release blood due to

elastic displacement. These parameters are tuned in order to get both convergence and

a realistic pressure volume development. For the incompressible Neo-Hookean model

the parameters are set to C = 40, R = 0.0015, whilst for the compressible Neo-Hookean

model the paramters was set to C = 40, R = 0.002. When the volume of the heart has

reached its original undeformed size the ejection phase is finished.
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6.3.4 Isovolumic relaxation

The last phase of the cycle is the isovolumic relaxation phase. This is implemented in

the same way as the isovolumic contraction phase; by a constant volume constraint and

using the Newtons method to find the pressure in the next time step. The stability of

the isovolumic relaxation phase is much higher than the isovolumic contraction phase.

The reason for this is that the steepness of the active force function is much lower than

for the contraction phase for this time interval. This phase is ended when the pressure

reaches its end systolic value.

6.3.5 Comparing results for incompressible and compressible material
model

We created a model both for the incompressible and compressible Neo-Hookean model.

The PV-loop for the incompressible Neo-Hookean model is given in Figure 6.10, and the

loop for the compressible Neo-Hookean model is given in Figure 6.11.

Figure 6.10: Pressure Volume loop for incompressible Neo-Hookean model

The displacement and the strain development throughout the PV-loop of the left ventricle

for the incompressible and compressible Neo-Hookean model is given in Figure 6.12

and Figure 6.13, respectively. The figures contain pictures seen both from above and

from the side of the ventricle, and include pictures for five different snapshots of the

PV-loop. The first snapshot is when the mitral valve is opening (MVO) and blood

starts flowing passively into the left ventricle, this is the start of the passive filling

phase. The second snapshot is when the mitral valve is closing (MVC) and the ventricle
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Figure 6.11: Pressure Volume loop for compressible Neo-Hookean model

starts to contract isovolumic. The third picture is when the aortic valve is opening

(AVO) and the ejection of the blood into the aorta is starting, this is the end of the

isovolumic contraction phase and the beginning of the ejection phase. The forth picture

is when the aortic valve is closing (AVC), the ejection phase is ending and the isovolumic

relaxation phase is starting. The last picture illustrates how the loop repeats itself

after the isovolumic relaxation phase is over. The plot illustrates how the ventricle is

contracting in the direction of the fiber field. We can see for both models, that the

strain development is highest in the start and at the end of the ejection phase, when

the left ventricle is contracting and ejecting blood into the aorta. For the incompressible

model, we can see, in snapshot at AVO, that the myocardial wall has gotten thinner

as the ventricle have contracted isovolumic. We can also observe that the ventricle is

getting stretched more than for the compressible model. The strain development during

the isovolumic contraction is more regularly distributed throughout the entire ventricle

for the incompressible model. For the compressible model the strain is highest around

apex and gradually fades upwards at AVO. At the end of the ejection phase both models

show an evenly distributed strain throughout the ventricle.

The CPU-time and the number of newton iterations for the two material models are given

in Table 6.1 and Table 6.2. We can see that the compressible Neo-Hookean model is over

six times as fast as the incompressible model. This is as expected as the incompressible

model solves a system both for the displacement �u and for the pressure p. We evaluate

how realistic the models are based on the pressure and volume development throughout

the loop. Based on this criterion the two models are almost equally realistic. Although,

the incompressible Neo-Hookean has a better volume increase during the passive filling
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MVO MVC AVO AVC MVO

Figure 6.12: Displacement and fiber strain development for pressure volume loop
with incompressible Neo-Hookean model

MVO MVC AVO AVC MVO

Figure 6.13: Displacement and fiber strain development for pressure volume loop
with compressible Neo-Hookean model

phase with 20 % increase with respect to the undeformed volume, compared to 15%

increase for the compressible model.

Table 6.1: Incompressible Neo-Hookean model

CPU time PV-loop # Newton iterations per time step

76.68 495

Table 6.2: Compressible Neo-Hookean model

CPU time PV-loop # Newton iterations per time step

12.25 555
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Table 6.3: Time efficiency gain from FFC optimization for incompressible Neo-
Hookean

Compiler properties CPU time PV-loop

FFC optimized 76.68 s
FFC default 939.48 s

Table 6.4: Time efficiency gain from FFC optimization for compressible Neo-Hookean

Compiler properties CPU time PV-loop

FFC optimized 12.25 s
FFC default 388.40 s

6.4 Optimization

6.4.1 Optimization of the form compiler

The performance of the default FFC paramters was very poor. The reason for this is

that the default integration scheme of FFC compiler uses a high number of integration

points per cell. By adjusting the form compiler parameters the efficiency improved very

much. The FFC optimization parameters were switched on and specified as follows:

Python code
flags = ["-O3", "-ffast -math", "-march=native"]

2 parameters ["form_compiler"]["quadrature_degree"] = 4

parameters ["form_compiler"]["representation"] = "uflacs"

4 parameters ["form_compiler"]["cpp_optimize"] = True

parameters ["form_compiler"]["cpp_optimize_flags"] = " ".join(flags)

This has an extreme impact on the time efficiency of the solver. The time comparison

is given in table 6.3 and 6.4. For the incompressible Neo-Hookean the time efficiency

increases is by 12.25 times, from 939.48 seconds to 76.68 seconds. The compressible

increases the time efficiency by 31.7 times, from 388.40 seconds to 12.25 seconds.

6.4.2 Optimizing by testing the linear solvers in FEniCS

The most time consuming part of solving the heart equations are the assembling of

matrices and solving of linear systems. Hence, we wish to investigate the possibility to

gain time efficiency by changing the linear solvers. In order to optimize this, we write
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a program that iterates over all the linear solvers in FEniCS and compares the time for

the entire PV-loop. This is done on two different mesh refinements, a coarse mesh with

690 elements, and a fine mesh with 5520 elements.

DOLFIN has several different linear solvers that can be specified in the solver parameters.

There are both Krylov-method based solvers and LU-based solvers. The Krylov solvers

did not converge for our method. The available LU based solvers that converged were

the default lu-solver, the multifrontal massively parallel sparse direct solver (MUMPS),

the built in LU solver from the PETSc library and the unsymmetric multifrontal sparse

LU factorization method UMFPACK.

The PV-loop running in serial

We will first run the code in serial for both the incompressible and compressible Neo-

Hookean model. This is done on the two different mesh refinements. The results for

CPU-time and the number of Newton iterations for the incompressible model for the two

refinements are given in Table 6.5, and Table 6.6. The LU-solver has the fastest solution

time with 76.68 seconds for the complete PV-loop. The MUMPS and UMFPACK solvers

follows closely with 78.77 seconds and 76.77 seconds, respectively. The PETSC solver is

clearly the slowest one, and uses 395.80 seconds to complete the loop. The number of

newton iterations is the same for all solvers. For the medium resolution mesh there is a

much clearer difference between the different solvers. MUMPS is the fastets solver and

uses 1113.63 seconds, while the slowest solver for this mesh is also the PETSC solver

which uses 18091.90. The numbers of Newton iterations are 553 iterations for all solvers.

The reason for this is probably that the small time steps causes the built in non-linear

solver in FEniCS to converge for one Newton iteration for each time step for all solvers,

such that the Newton steps are the same for all solvers.

The results for the compressible Neo-Hookean is given in Table 6.7 and 6.8. The com-

pressible Neo-Hookean model is much faster than the incompressible version. This is as

expected, as the compressible version only solves a system of equations for the displace-

ment, whilst the incompressible version also has the pressure variable as unknown. For

the low resolution mesh the fastest solver is the LU-solver from the PETSC library. The

PV-loop is finished in 12.13 seconds using the PETSC solver as the specified linear solver.

The other linear solvers are using almost identical amount of time. For the medium reso-

lution mesh, the loop is finished in 61.70 seconds, where the LU-solver finished first. For

this mesh refinement the PETSC solver is very slow, using twice the time as the other

solvers. The number of Newton iterations are the same for all solvers on both mesh,

which shows how the number of Newton iterations is dependent on the time step size.
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Figure 6.14: The PV-loop for the incompressible Neo-Hookean material model on
different mesh refinements.

Table 6.5: Incompressible Neo-Hookean model,resolution mesh: low, number of cores
= 1.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 76.68 495
MUMPS 78.77 495
PETSC 395.80 495

UMFPACK 76.70 495

.

The PV-loops for both mesh refinements for the incompressible and compressible model

is given in Figure 6.14 and Figure 6.15. For the incompressible Neo-Hookean the loops

almomst coincides. The PV-loops are not identical but the volume and shape of the

ventricle will vary slightly when the number of elements is increased. For the compressible

model the loop for the coarse mesh is the most realistic, the loop for the finer refinement

only has two points for the ejection phase, and hence lacks a realistic pressure volume

development for this phase. The reason for this is most likely the values of the Windkessel

parameters C and R. They were adjusted but the method is very sensitive regarding

convergence such that this was the best loop that was achieved for this mesh resolution.
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Figure 6.15: The PV-loop for the compressible Neo-Hookean material model on dif-
ferent mesh refinements.

Table 6.6: Incompressible Neo-Hookean model,resolution mesh: medium, number of
cores = 1.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 1811.91 553
MUMPS 1113.63 553
PETSC 18091.90 553

UMFPACK 1784.012 553

Table 6.7: Compressible Neo-Hookean model,resolution mesh: low, number of cores
= 1.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 12.25 555
MUMPS 12.40 555
PETSC 12.13 555

UMFPACK 12.15 555
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Table 6.8: Compressible Neo-Hookean model,resolution mesh: medium, number of
cores = 1.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 61.70 375
MUMPS 61.98 375
PETSC 120 375

UMFPACK 62.25 375

6.4.3 Optimization by running the PV-loop run in parallel

We will now investigate the possibility for time optimization through running the PV-

loop in parallel. During the parallelization the mesh is partitioned and distributed on

multiple cores. The problem is then solved in parallel on the different cores. A picture

of the partition of the fine mesh is given in Figure 6.16.

Figure 6.16: The division of the mesh with the code run in parallel

We test the code by running it in parallel on two and four cores for both incompressible

and compressible material model. It is only the LU-solver and the MUMPS solver that

are working in parallel for both models.

We will first discuss the results for the incompressible material model. We see from Table

6.9, that for the low resolution mesh, the PV-loop has the lowest run time in parallel

on four cores, the LU-solver uses 58.21 seconds and 495 Newton iterations. From Table

6.11 we see that the same solver is fastest for the medium resolution mesh, using 763.28

seconds and 555 Newton iterations to complete the PV-loop. For the medium resolution

mesh The MUMPS solver do not increase its time efficiency from two to four cores. The

reason for this is that division of the mesh is probably more time demanding than the

solving efficiency that is gained from running the model on four cores. Table 6.13 shows

how the execution time for the different phases of the PV-loop is distributed, the solver
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Table 6.9: Incompressible Neo-Hookean model, resolution mesh: low, number of cores
= 2.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 59.83 495
MUMPS 61.75 495
PETSC - -

UMFPACK - -

Table 6.10: Incompressible Neo-Hookean model, resolution mesh: low, number of
cores = 4.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 58.21 495
MUMPS 61.13 495
PETSC - -

UMFPACK - -

Table 6.11: Incompressible Neo-Hookean model, resolution mesh: medium, number
of cores = 2.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 789.49 553
MUMPS 798.23 553
PETSC - -

UMFPACK - -

that is used is the MUMPS solver, and the code is run in parallel on four cores on the low

resolution mesh. We can see that the isovolumic contraction and isovolumic relaxation

is the most time demanding phases for the incompressible Neo-Hookean model.

For the compressible model, and the low resolution mesh the best time is 10.59 seconds.

This CPU-time was achieved while using the MUMPS solver on two cores. When running

the loop on four cores it takes more time to divide the mesh, and communicate between

the different cores, than it is to gain from solving it faster. For the finer refinement

mesh the best time reached using the LU-solver was 42.46 seconds. The results for the

code run in parallel for the compressible Neo-Hookean model are given in the Table 6.14,

Table 6.15, Table 6.16 and Table 6.17.

The time efficiency for the different linear solvers run in parallel and series for the two

mesh refinements with the incompressible and compressible Neo-Hookean are summarised
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Table 6.12: Incompressible Neo-Hookean model, resolution mesh: medium, number
of cores = 4.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 763.28 555
MUMPS 808.97 555
PETSC - -

UMFPACK - -

Table 6.13: Newton iterations in each phase, incompressible Neo-Hookean, resolution
= low, LU,# cores = 4

Phase CPU time # Newton iterations

Passive filling 0.73 4
Isovolumic Contraction 24.16 211

Ejection Phase 11.77 101
Isovolumic relaxation 21.56 179

Total 58.21 495

Table 6.14: Compressible Neo-Hookean model, resolution mesh: low, number of cores
= 2.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 10.8 555
MUMPS 10.59 555
PETSC - -

UMFPACK - -

Table 6.15: Compressible Neo-Hookean model, resolution mesh: low, number of cores
= 4.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 11.8 555
MUMPS 11.89 555
PETSC - -

UMFPACK - -
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Table 6.16: Compressible Neo-Hookean model, resolution mesh: medium, number of
cores = 2.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 42.46 375
MUMPS 43.09 375
PETSC - -

UMFPACK - -

Table 6.17: Compressible Neo-Hookean model, resolution mesh: medium, number of
cores = 4.

Linear solver CPU time PV-loop # Newton iterations PV-loop

LU 45.26 375
MUMPS 44.61 375
PETSC - -

UMFPACK - -

Table 6.18: Newton iterations in each phase, compressible Neo-Hookean, MUMPS,#
cores 2

Phase CPU time # Newton iterations

Passive filling 0.21 4
Isovolumic Contraction 3.30 160

Ejection Phase 3.478 175
Isovolumic relaxation 3.81 216

Total 10.59 555

in the histograms in Figure 6.17 and 6.18.

The optimal version on our test cases is the compressible Neo-Hookean model run in

parallel on two cores using the MUMPS as specified linear solver. The CPU-time for

each phase together with the number of Newton iterations are given in Table 6.18. We can

see that the three last phases of the heartbeat is the most time demanding. The passive

filling phase uses only four Newton iterations and 0.21 seconds. Whilst the isovolumic

relaxation uses 216 newton iterations and is the most time demanding. During the

passive filling phase there is no active contraction while in the other phases there is a

Newton step solving a constraint problem for each time step. This makes the last three

phases more time demanding.
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(a) (b)

(c)

Figure 6.17: The solution time for the different linear solvers in FEniCs run in series
an in parallel on two and four cores.
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(a) (b)

(c)

Figure 6.18: The solution time for the different linear solvers in FEniCs with series
and parallellization on two and four cores.



Chapter 7

Conclusion and further work

In the numerical experiments presented in this master thesis, we have modelled the my-

ocardium as a hyperelastic isotropic material. The active contraction and relaxation of

the myocardium have been simulated on a left ventricle geometry for both incompressible

and compressible Neo-Hookean material model. The geometry used was an ellipsoidal

surface of revolution. The fiber field for the cardiac muscle cells have been implemented

along the circumference of the ellipsoid. In these numerical experiments the mechan-

ical contraction of the heart is activated by a purely phenomenological model for the

intracellular calcium concentration. We have compared our model to an analytic linear

model and the results coincides, as expected, for small deformations. The method have

also been verified trough the method of manufactured solutions, where the results also

coincides.

The implementation of the PV-loop was done on two different mesh refinements. These

models where compared with respect to time efficiency and how realistic the PV-loop

was.

In the simulation of the passive filling phase the convergence problems of the model pre-

vents the volume from increasing as much as desired. For the isovolumic contraction the

pressure development is sufficient. The ejection phase shows a realistic pressure volume

development for all cases except for the medium resolution mesh for the compressible

Neo-Hookean model. For this case it was only two points for the entire phase. This is

not realistic, as the model is very sensitive to adjustments of the parameters, we did

not manage to get better results for this case. The isovolumic relaxation phase did not

have convergence problems and managed to reduce the pressure to the start value for all

cases. The reason for the higher stability of this phase is probably the lower steepness

of the active force curve during the time interval for the relaxation phase.
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The time efficiency of the code was optimized by manually increasing the time steps

such that convergence and time efficiency was achieved. The most time demanding part

of the code was the assembling of the matrices and solving the linear systems of the

problem. Hence, all linear solvers of FEniCS was tested to find the most time efficient

solver for this problem. The compiler parameters were also changed. This resulted in

a great gain in time efficiency. This is by far the adjustment that had most impact on

the time efficiency. For the incompressible model the time CPU-time improved with

over 12 times, and for the compressible model the CPU-time increased by over 31 times.

The fastest generation of the PV-loop was done in ca 10 seconds for the low resolution

mesh, runnning in parallel, with the compressible Neo-Hookean material model, using

the MUMPS solver.

We are interested in output that is close to reality. The PV-loop was the main output

that was analysed for this model. As both the incompressible and compressible model

had very similar pressure volume developments, the compressible version is clearly the

preferred model to use in order to provide time efficiency. In order to further analyse the

model it should be compared with known physical quantities for the heart.

The material model used throughout these numerical experiments is the Neo-Hookean

model. This an isotropic material model. The choice of the material parameters was

based on the convergence of the method. The myocardium is known to be orthotropic,

therefore a more realistic material model and fiber field could be implemented in order

to achieve physical output. The geometry used throughout this master thesis is an

ellipsoidal surface of revolution. In order to have a more realistic model patient specific

geometries could be used.

The model could also be coupled to the Eikonal Diffusion model [20] for electro physiology

to activate the contraction of the cardiac cells.
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