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Problem formulation

Recent studies have shown that interfaces between different oxides can show new
electronic and magnetic properties. These nanostructures and interface engineer-
ing has many potential applications and is a large area of research internationally.

Density functional theory (DFT) calculations is a useful tool in this respect. DFT
is a quantum mechanical method to solve the many-body Schrödinger equation
numerically, and allows the derivation of properties like ferroelectric polariza-
tion, structure, magnetic properties etc. on length scales that can be difficult to
achieve experimentally. This makes DFT an appropriate tool to examine func-
tional interfaces. In this master thesis will examine thin slabs of BaTiO3, with
particular interest in studying how the crystallographic direction of the interface
affects ferroelectric polarization and order parameter.

Thomas Tybell
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Abstract

This thesis has explored some of the nuances of Density Funtional Theory, ferro-
electricity and oxide perovskites, BaTiO3 in particular. The effects of strain and
crystal orientation on phase diagram and polarization in BTO has been investi-
gated using DFT calculations and Berry phase analysis. There has been done
DFT calculations on bulk BTO as well as epitaxially strained BTO, and by using
Berry phase analysis the polarization magnitude and direction of the structures
have been estimated.
The polarization of (001) strained BTO increase for both compressive and ten-
sile strain as the favoured structure transition from a P4mm symmetry with
the extraordinary axis out of the strain plane via a Cm symmetry to a Amm2
symmetry with ion displacements along the pseudocubic [110] direction. For the
(111) strained samples the structure has a first order phase transition at 1.5%
tensile strain from a Cm symmetry with ion displacements in the out of plane
[111] direction to a P1 symmetry. The results from the tetragonal phase is used
to get an estimate of the behaviour at room temperature, as the tetragonal phase
is favoured between 5◦C and 120◦C. This shows similar results as for the rhom-
bohedral phase for (111) strained samples. The work done in this thesis lays the
theoretical groundwork for a polar phase for compressive strain in (111) strained
BTO, where all the polar phases converge to a polar out of plane phase for com-
pressive strain using the PBEsol functional [1, 2]. This is contrary to some of
the previous work done on (111) oriented BTO stating that BTO relaxes to a
non-polar R-3m symmetry for compressive strain values [3, 4] where the LDA
functional [5] has been used.
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Chapter 1

Introduction

This chapter seeks to lay a foundation of the state of the art in the field of ferro-
electrics, with special focus on perovskite oxides, strain effects on the ferroelectric
properties of ferroelectrics and the significance of strain directionality.

1.1 State of the art

Ferroelectrics

Ferroelectrics are considered good candidates for being promising materials for
many applications, such as memory[6], transistors [7], photovoltaics [8], capaci-
tors[9], multiferroicity and magnetoelectric coupling [10–12], colossal magnetore-
sistance [13] etc. BaTiO3 (BTO) is one of the most studied and interesting
perovskite ferroelectrics to date [14] and it has stayed interesting due to devel-
opements in maintaining hte ferroelectric response even for ultra-thin films[15].
The applications of BTO in heterostructures with other materials is also being
studied. Ferroelectric BTO has been shown to manipulate the orbital occupation
of electrons in LaNiO3, opening for the possibility of electrical control of orbital
polarization at an oxide interface [16].

1



1.1. STATE OF THE ART CHAPTER 1. INTRODUCTION

Strain vs. Polarization

Seeing as all ferroelectrics are piezoelectric, the coupling between strain and polar-
ization is imminent. The coupling was known as one of the discrepancies between
the ferroelectric and ferromagnetic effects from the onset, as magnetoelastic co-
efficients are generally measured in parts per million, whereas the electroelastic
coupling is in the order of percent [17]. Especially for thin film applications, the
strain-polarization curve is important, as thin films are subjected to the strain
of the substrate or crystal it is grown on. For compressive (001) strain values,
the out of plane polarization mode for tetragonal BTO is made stable on a se-
ries of substrates and bilayer structures, among others La0.7Sr0.3MnO3 [18]. A
group published a study in 2008 doing (111) strain calculations on both BTO and
PbTiO3, showing a strain dependence on the phases of both materials for strain
values between -1.5% and 1.5% done with DFT calculations. A similar calcula-
tions were done by Raeliarijaona and Fu [3], showing the strain dependence of
the polarization in (111) strained BTO.

(001) vs (111)

The orientation of a crystal structure submitted to strain has been shown to
have great effect on the physical properties of the material. Li et.al [19] showed
that the orientation of BiFeO3 greatly effected the phase diagram and the ferro-
electric polarization. In 2013, the effect of epitaxial orientation with respect to
piezoelectric properties in lead-free 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 was
explored, showing a piezoelectric response in (111) strained crystals similar to
that of (001) strained crystals. The study considered (001), (011) and (111)
strained samples, focusing on the change in piezoelectric coefficient as a function
of orientation and strain [20]. More recently, Wu et.al. [21] did similar studies
on BTO films using an expanded nonlinear thermodynamic theory model. The
BTO was shown to have more complicated phase transitions for (011)-oriented
films, increasing the Curie temperature dramatically for compressive strain. A
study from 2014 [3] suggested that the theoretical ferroelectric response in BTO
at grown at compressive (111)-strain larger than 1.75% disappears after going
through a ferroelectric-to-paraelectric phase transition. The study finds agreance
between these calculations and empirical results on superlattices of BTO and
STO, where the BTO is said to be compressively strained at 1.5%, and the fer-
roelectric response is measured to be is very small but non-zero at 1.35µC/cm2.
This is a reduction from the bulk value by a factor of 20. It further goes on to
state that tensile strain on (111) strained BTO is needed to enhance the polar-
ization of the BTO in heterostructures. The out of plane polarization for such
heterostructures was shown to increase even for high tensile strain states (3%)
for both R3m and Cm phases. These results were found using the local density

2



CHAPTER 1. INTRODUCTION 1.2. RATIONALE

approximation in Density Functional Theory.
For application in thin films, the study of how these materials are affected by
strain in the (111) planes is also of technological importance. Recent stud-
ies have indicated that ferroelectric materials with hexagonal crystal structures,
such as hexagonal manganites, can display hexagonal vortex domain generation.
These vortex domains are believed to make magneto-electrically coupled multi-
ferroic heterostructures a possibility, as the vortex domains are highly unstable
and can be influenced by external fields [22]. In combination with other func-
tional oxides showing properties like colossal magneto-resistance in (111) oriented
crystals[13], the promise of functional oxide heterostructures with multiferroic,
magneto-electric response is promising. Perovskite BTO shows hexagonal R3m
symmetry when grown along the (111) direction, and as it is one of the prototyp-
ical perovskite ferroelectrics and one of the most common ferroelectrics known to
date [23], making these vortex domains possible in BTO would be important for
the feasibility of producing multiferroic heterostructures for industrial purposes.

1.2 Rationale

Since its discovery in the 1940’s, the ferroelectric property of BaTiO3 (BTO)
has been one of the best candidates out of the lead-free alternatives [24]. Espe-
cially due to the interchangeability of perovskite oxides, BTO make an excellent
candidate to be stacked in heterostructures with other perovskite oxides, like fer-
romagnetic La1−xSxrMnO3 (LSMO), and rising to the benchmark of the best fer-
roelectrics, PbTiO3 (PTO) as a viable, lead free alternative. However, most of the
breakthroughs concerning ferroelectric films have been on structures grown in the
[001] direction. Understanding how other strain directions along with symmetry
and strain amount effects the favourability of the phases of BTO, can make these
multiferroic, magneto-electrically coupled hetrostructured LSMO/BTO stacks a
possibility. In my work on this master thesis, I will examine stuctures of BaTiO3
(BTO) using Density Functional Theory, with particular interest in studying how
the crystallographic direction of the interface affects ferroelectric polarization.
Ferroelectric perovskites grown along the (111) direction might be important for
technological application, as they show hexagonal R3m symmetry. Due to the
ABO3 structure, perovskite structures oriented in the (001) direction form al-
ternating layers of BO2 and AO planes, while in (111) oriented structures the
layering consists of alternating B and AO3 planes. The changing of the chemical
and physical interaction between the ions due to strain orientation may open for
changed functionality and new applications. Determining how the ferroeletric
behaviour in (111)-oriented materials is changed by orientation and strain is thus
of relevance.

3
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Chapter 2

Theory

The scope of this chapter is to lay the theoretical foundation for the applications
and further discussions described in subsequent chapters. In section 2.1 the
important aspects of ferroelectric materials will be presented. In section 2.2
and section 2.3, the significance strain and directionality of the interface will
be discussed. section 2.4 will discuss the properties of perovskites and explore
the importance of perovskite oxides to the realization of ferroelectric materials,
focusing on BaTiO3.

In section 2.5, we will consider density functional theory, describing the funda-
mental theoretical lines needed to understand the applications in the following
chapters. Finally section 2.6 will delve into the modern theory of polarization
with special weight on the theory behind the Berry phase analysis of polarization.

2.1 Ferroelectrics

2.1.1 Historical context

The ability for materials to display a temperature-dependent spontaneous elec-
tric polarization, known as the pyroelectric effect, has been known since ancient
times [17]. Attempts to understand and categorize this effect in the eighteenth
and nineteenth centuries lead to the discovery of the piezoelectrisity, a more gen-
eral effect where a polarity of a material is induced by a change in the stress
of the material. None of the first discovered pyroelectric materials showed fer-
roelectric properties, where the polarizations is spontaneous and re-orientable.

5
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This was mainly due to domain formation in ferroelectrics, hiding the effect on
a macroscopic level. The effect went unknown until 1920, when it was discov-
ered that the dielectric response of Rochelle salt to an external electric field was
analogous to the ferromagnetic response in iron to applied magnetic field, as a
hysteresis would appear in the field-polarization curve. For the first decades the
effect was understood as a result of dipole interaction between water molecules
in the crystal.
In the 1930’s the first series of isomorphous ferroelectrics were fabricated, namely
phosphates and arsenates, where the principal example is potassium dihydrogen
phosphate (KDP), KH2PO4. These new materials have only two formula units
per primitive cell, simplifying the understanding of the ferroelectric effect from
the 112 atom unit cells of Rochelle salt. There is no water of crystallization in
KDP, but there are hydrogen bonds where different orientations of the (H2PO−

4 )
dipolar units can result in net polarization of the unit cell. This became the
first microscopic model of ferroelectrics able to withstand the test of time [17].
Ferroelectrics were nonetheless considered a rarity in nature, and the apparent
necessity of the presence of a hydrogen bond resulted in little interest in looking
for ferroelectricity in materials such as oxides.
Titania had been considered a good contender for materials with high dielectric
constant. In the studies of BaTiO3 it turned out that it was not only highly
dielectric, but also ferroelectric at room temperature. The discovery of ferroelec-
tric response in BaTiO3 in 1945 represented important advances in the field of
ferroelectrics, as it was the first ferroelectric without hydrogen bonds, with more
than one polar phase, and with a paraelectric prototype phase. As a result of
the simplicity of the structure and the chemical an mechanical stability, BTO
became the most used ferroelectric and was extensively researched. It became
the prototype in the largest class of ferroelectrics known to date: The oxygen oc-
tahedral ferroelectrics. Other perovskites like KNbO3, KTaO3, LiNbO3, LiTaO3

and PbTiO3 were found to be ferroelectric in the following years. The micro-
scopic model became one of displacement. Especially for perovskites like BTO,
with high tolerance factor, the model of the oversized Ba2+-lattice expanding the
oxygen octahedra and the Ti4+ ion would have ample room to rattle inside it.

With the modern theory of polarization, see section 2.6, the understanding of
the ferroelectric effect has been increased to become a quantum mechanical phe-
nomenon. Even though oxides like PbTiO3 have shown stronger ferroelectric
effect, BaTiO3 has been the prototypical ferroelectric oxide up until present day.

2.1.2 Ferroelectric crystal systems

As the ferroelectric effect can be understood as a net displacement of charge, the
unit cell of the crystal structure can not be centro-symmetric. This eliminates 11
of the 32 possible crystallographic point groups. In addition the 432 cubic class
is non-centro symmetric but also not piezo electric. The 20 point groups that

6
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remain are all piezoelectric point groups, and develops a surface electric charge
when subject to strain. Further we can eliminate the 10 point groups having
no unique polar axis. The 10 remaining point groups all are pyroelectric, and
are characterized by a spontaneous charge even in the absence of any electric
field or strain. Ferroelectrics are a subgroup of the pyroelectric materials, having
the additional criterion that the spontaneous charge must be switchable [25].
Graphing the potential energy of the displaced atom as a function of the location
along the polar axis will result in a graph consisting of two ground states separated
by a barrier energy, ∆U , known as a dual well, see Figure 2.1.

Figure 2.1: Schematic of the dual well in the potential energy for a ferroelectric
as a function of displacement of the cation in an anion octahedron. ∆U signifies
the energy barrier needed to flip the polarization by moving the cation between
the two minima.

Ferroelectrics are defined by this hysteresis response, see Figure 2.2. The field
needed to flip the polarization is known as the coercive field, EC , and the spon-
taneous polarization is noted as PS .

In a simplified macroscopic model the loop can be imagined as a result of moving
a charged ion between the wells in the energy, where EC is the field needed to
clear the barrier. A further investigation of the modern theory of polarization is
found in section 2.6

2.1.3 Domain generation

The ordering of all the microscopic ferroelectric dipoles in a material determines
how the ferroelectric property can be utilized. To minimize free energy, dipoles

7



2.1. FERROELECTRICS CHAPTER 2. THEORY

Figure 2.2: Schematic of a hysteresis response in a ferroelectric material. PS
signifies the spontaneous polarisation in the material with no applied field, and
EC is the coercive field needed to reorient the polarization.

on a microscopic scale tend to line up with local dipoles, creating regions in the
material where the polarization is uniform. These regions are called domains. In
bulk material free energy is minimized by aligning domains in a way to minimize
the macroscopic electrical field strength, and with it the energy associated with
maintaining a large electric field. This energy is called a depolarization energy.
Domain generation is therefore driven by two forces. Microscopically, the dipoles
favor aligning with local dipoles, while macroscopically the free energy is mini-
mized by limiting the domain size. There also is an energy cost associated with
maintaining the domain wall. This cost is large in head-to-head domain walls
and less in anti-parallel walls. Domains in a material will therefore tend to align
side by side, anti-parallel to the neighbouring domains, as this minimizes the
depolarization field leaving the material in addition to generating energetically
cheap domain walls. These domains help in minimizing the depolarization field
created by electric field lines leaving the material. The domain structure is also
determined by the symmetry requirements of the material. For cubic materials
with polarization along the 〈001〉 directions, the domains will meet in angles that
are a multiple of 90◦. In hexagonal materials, where the polar axes has three-fold
symmetry, the domains will generate domain walls meeting at multiples of 120◦.

8
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2.1.4 Interface effects

The presence of an interface will influence the domain generation and ultimately
the ferroelectric effect in a material. The same depolarization field that limits
domain size will make domains facing the interface less favored, as this will create
a depolarization field. This is especially important for thin films, as the in plane
polarization directions will be much more favored than the out of plane polar
axes. The defavorization of out of plane polar axes is also influenced by the
favorability of aligning dipoles head to tail locally. In a thin film there is little or
no possibility to align dipoles head to tail out of the plane.

2.2 Epitaxial Strain

Macroscopic and microscopic effects can lead to stress on a crystal structure,
prompting a deformation from the bulk structure. A strain, ε, in a material is
the percentwise elongation of a spatial dimension as a result of this stress, defined
by Equation 2.1

∆ε =
∆l

l0
(2.1)

For a given material, the amount of strain a stress will induce is determined by
Hooke’s law, Equation 2.2

σ = Eε, (2.2)

where E is the Young’s modulus, defined as the slope in the stress-strain graph
[25]. For all stresses smaller than the yield point, the relation is linear and E is
constant. If this is the case, the material is considered ”Hookean”. As the stress
increases, the material will approach a yield point where the structure raptures,
breaks or irreversably deforms.
Near the crystal-substrate interface, the lattice parameter of the substrate is
adopted by the crystal. The mismatch in lattice parameter between a crystal
structure and the substrate it is grown on is a typical source for stress and thereby
strain. This can induce vacancies or defects, where the crystal will have structural
defects to compensate for the shear strain induced by the substrate. The crystal
will relax over a distance and revert to its bulk parameters sufficiently far from
the substrate interface. For a thin film, the thickness of the film is less than
this coherence length. The film will therefore adopt the lattice parameter of the
substrates in the planes parallel to the interface, and relaxing in the orthogonal
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Figure 2.3: When a 〈001〉-grown BTO perovskite crystal is submitted to epitaxial
strain, the chemical composition of the planes that are strained is alternating BaO
and TiO2 planes.

dimension. The strain for thin films becomes the mismatch between the lattice
parameters of the bulk crystal and the substrate it is grown on.

2.3 Interface directionality

The directionality of the crystal interface has both applicational and functional
significance. When a crystal structure is submitted to strain, the structure will
cope with the changed lattice parameter by relaxation, tilting of oxygen octahe-
dra, changing orbital directionality. For a thin film, the crystal will be submitted
to epitaxial strain in planes perpendicular to the direction of the growth, to com-
pensate for the mismatching lattice parameter of the crystal and the substrate
structure. The directionality of the plains can influence the structure’s ability to
compensate for the strain. The disability to compensate for strain can change the
favourable phases of the material at different temperatures, altering the phase
diagram. Due to the ABO3 structure, perovskite structures oriented in the (001)
direction form alternating layers of BO2 and AO planes as shown in Figure 2.3,
while in (111) oriented structures the layering consists of alternating B and AO3

planes, Figure 2.4.
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Figure 2.4: When a 〈111〉-grown BTO perovskite crystal is submitted to epitaxial
strain, the chemical composition of the planes that are strained is alternating
BaO3 and Ti planes.

In addition to changing the functionality, the direction of the crystal growth will
influence the ability to create interfaces with other materials, which has influence
on the application.

2.4 Perovskites

Perovskites has been one of the most active areas of research within material
science and solid state chemistry during the last decades due to the numerous
interesting properties that derives from the different possibilities in the structure.
[26] Among the properties shown is ferroelectricity, where PbTiO3 (PTO) and
BaTiO3 (BTO) have been the prototypical examples. [25] The structure gets its
name from the mineral perovskite, CaTiO3, and has a characteristic ABX3 unit
formula. The A-site cations create a pseudocubic unit cell, with face centered
X-site anions and a body centered B-site cation, see Figure 2.5. Generally A-site
ions are alkaline or rare earth elements, B-site ions are transition metals, and
generally the X-sites are occupied by oxygen. The structure is very versatile, and
most elements can be incorporated in a perovskite structure at either the A or
B-site, creating a large variety of possible materials and applications.

11



2.4. PEROVSKITES CHAPTER 2. THEORY

A defining characteristic of a perovskite crystal is the tolerance factor, t. The
accuracy of the factor is disputed, but it gives some insight into the behaveour of
perovskites with varying elemental constitution. Equation (2.3) is derived from
equating the sizes of the cubic close packed layers of the perovskite structure
with the relative ionic sizes. t is any deviation from this perfect size matching,
as given by equation (2.4).

a =
√

2(RA +RX) = 2(RB +RX) (2.3)

t =
RA +RX√
2(RB +RX)

=
dAX√
2dBX

(2.4)

where RA, RB and RX are the ionic radii of the A, B and X-site ions, and dAX
and dBX is the preferred inter-atomic distance between A and X and B and
X, respectively. Even though the tolerance factor is somewhat approximate, it
indicates the possible strain in the structure due to the mismatch of the ionic radii.
A tolerance factor close to unity, generally between 0.9 and 1.0 [27], signifies good
or perfect radii matching. Structures with a good lattice matching will give cubic
or pseudocubic structures and phases with limited octahedron tilting. SrTiO3

(STO) is the prototypical example of such a crystal, as STO is cubic at room
temperature. As a result of this, STO is the presumed substrate for most thin film
applications using functional oxides due to the regularity a perfectly cubic system
gives. A tolerance factor less than 0.9 will result in tilting of the octahedra, as
A-site ions want to shorten the covalent bond lengths, however a tolerance factor
between 0.8 and 0.9 will still be considered good for cubic perovskites [27] The
tilting of the octahedra lead to orthorhombic and rhombohedral crystal systems.
The tilting also suppresses ferroelectric responses [23]. A tolerance factor larger
than unity generally results in hexagonal crystal systems [27], however there are
notable exceptions, BTO being one of them.

2.4.1 BaTiO3 - Structure and ferroelectric properties

BaTiO3 (BTO) is the most common ferroelectric oxide in the perovskite structure
[29]. It occurs in four pseudocubic phases, of which the tetragonal is the most
stable at room temperature (5◦C < T < 120◦C), see Table 2.1.

In the tetragonal phase, the polar axis is parallel to one of the pseudocubic lattice
parameters, as one of the axes are stretched from the cubic state. Empirically,
the lengths of the lattice parameters in the BTO tetragonal phase is found to be
a≈ 0.3956 nm and c ≈ 0.4035 nm, giving c/a ≈ 1.02. There is no preference as to
which crystallographic axes becomes the polar direction, meaning that there are
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Figure 2.5: The unit cell of perovskite BaTiO3 in the cubic phase [28].

Table 2.1: Temperature region, point group and polar axis for the four perovskite
phases of BaTiO3. [17]

Phase Temperature Point group Polar axis

Cubic Above 120◦C m3m Non-polar
Tetragonal 5◦C to 120◦C mm4 〈001〉
Orthorhombic -90◦C to 5◦C mm 〈011〉
Rhombohedral Below -90◦C 3m 〈111〉

three equivalent polar axes, and six equivalent polar directions. [25] For lower
temperatures, BTO undergo phase transitions to orthorhombic (-90◦C < T <
5◦C) and rhombohedral (T < -90◦C) phases, both of which also show ferroelectric
responses. For the orthorhombic phase, the displacement is along the pseudocubic
〈011〉-direction, and for the rhombohedral the displacement is along the 〈111〉-
direction. The valency of the constituent ions are Ba2+,Ti4+ and O2−, with
interionic distances dBaO = 2.953, dTiO = 1.965. This gives a tolerance factor of
1.063, (2.5)

t =
2.953

1.965
√

2
. (2.5)

The tolerance factor being slightly higher than 1 indicates that the A-site Ba2+

cations are over-sized compared to the Ti4+ B-site cations. The ferroelectric
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property of BTO has been described as stemming from this discrepancy in size,
however it is a somewhat oversimplified model. [25] In the best ferroelectric per-
ovskite, PbTiO3 (PTO), the ferroelectric effect is explained by the hybridization
of lead and oxygen states, straining the material and stabilizing the tetragonal
phase and the charge displacement. In contrast, the barium and oxygen in BTO
interaction is completely ionic [24], and even though the tolerance factor is further
from unity, the c/a is lower.

Table 2.2: Experimental data on lattice parameters and volume for the four
phases of BaTiO3. [30]

Phase a[Å] b[Å] c[Å] α=β=γ[◦] Volume [Å3]

Cubic[31] 4.008 4.008 4.008 90 64.38
Tetragonal [32] 3.9972 3.9972 4.041 90 64.57
Orthorhombic [33] 3.98 4.01 4.02 9̃0 64.16
Rhombohedral [34] 4.0036 4.0036 4.0036 89.839 64.17

2.5 Density Functional Theory

This section will seek to introduce the theoretical background of density func-
tional theory (DFT). DFT is a quantum mechanical method to solving the
Schrödinger equation numerically. As the energy functional for the electron den-
sity maps the ground state of the Schrödinger equation, the many-body problem
is simplified to a function with three degrees of freedom. Numerical methods is
used to relax the system to its lowest energy state, equalling the ground state
energy for the crystal structure. DFT allows for the derivation of properties like
ferroelectric polarization, crystal structure and magnetic properties on length
scales difficult to achieve experimentally, and is an appropriate tool for examin-
ing the structures in question [35].

2.5.1 The Schrödinger Equation

Traditionally to find the ground state energy for any quantum mechanical system
one would have to apply the Hamiltonian on the wave function to get the time
independent Schrödinger equation Equation 2.6 [36]

Hψ = Eψ, (2.6)

whereH is the Hamiltonian operator, E is the energy eigenvalue and ψ is the wave
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function. For a single electron the Hamiltonian includes one term concerning the
kinetic energy and one concerning potential, Equation 2.7

− h̄2

2m

d2ψ

dx2
+ V ψ = Eψ, (2.7)

where V is the nuclei potential, m is the mass of the particle and h̄ is the re-
duced Planck constant. Single particle problems are instructive in understanding
the simple interactions between electron and nucleus but hold little value when
tasked with problems concerning atoms, crystal structures and nano particles. To
solve these problems a generalized version of the time independent Schrödinger
equation where each term is a summation of the contribution from all N particles
in the system is used:

[
− h̄2

2m

N∑
i=1

∇2 +

N∑
i=1

V (ri) +

N∑
i=1

VH(ri)

]
ψ = Eψ. (2.8)

When considering a many-body problem, we now also must take the electron-
electron repulsion into account. This repulsion gives rise to the Hartree potential,
VH . In a bulk material the number of electrons, N , becomes large and solving
the many-body problems needed to analyse the potential functionalities of a
material becomes exhaustive. DFT is a method to reduce the dimensionality of
the problem to make computational analysis manageable.

2.5.2 DFT fundamentals

The field of Density Functional Theory is built on a body of work done in the
latter half of the 20th century, resulting in two theorems by Hohenberg and
Kohn [35]. The first Hohenberg and Kohn-theorem states that there exists an
energy functional giving a one-to-one mapping between the resulting value of the
electron density and the wave function ground state. This mapping has profound
effects on the computational power needed to find the ground state of materials
and particles with well defined atomic positions: As a result of the relative mass
difference between atom nuclei and electrons, a crystal system can be simplified
to a fixed ionic lattice and a sea of electrons constantly moving around. Still with
this simplification, the simplest case of a BaTiO3 structure will give a Schrödinger
equation with 306 dimensions, three dimensions for each of the 102 electrons in
the unit cell. Density functional theory utilizes the electron density functional’s
ability to produce a one-to-one mapping of the wave function energy ground state,
simplifying the problem from an equation with 102 variables to only considering
the electron density, a function in three dimensions: [37]
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n(r) = 2

120∑
i=1

ψ∗
i (r)ψi(r) (2.9)

Hohenberg and Kohn’s second theorem imposes an important property on the
electron density corresponding to the true ground state: The electron density
that minimizes the energy of the overall functional is the true electron density
corresponding to the full solution of the Schrödinger equation. [35] This means
that the ideal electron density can be found by minimizing the result of the
electron density functional.

The energy functional used are derived from the Kohn- Sham equations[
− h̄2

2m
∇2 + V (r) + VH(r) + VXC(r)

]
ψi(r) = εiψi(r) (2.10)

where V and VH are the nuclei and Hartree potentials from the Schrödinger
equation respectively, and VXC represent the exchange and correlation residuals.
The first two are well-defined, while the latter is a collection of all the unknown
potentials and corrections for e.g. compensation for self-repulsion included in
VH . The complete analytical energy functional is therefore unknown, so in stead
approximate forms are used. These approximations vary in sophistication, com-
plexity and accuracy. In the work outlined in this report, local density (LDA) and
generalized gradient (GGA) approximations have been utilized. Local density ap-
proximation assumes the exchange correlation potential scales linearly with the
local electron density, giving

VXC(r) = V electron gas
XC [n(r)] (2.11)

where V electron gas
XC is the electron gas potential. This is considered the crudest

of the approximations but it has been shown to be accurate for certain systems.
The generalised gradient approximation also takes into account the local gradi-
ent of the electron density. As the GGA can not be done uniquely, there are
many variants of GGA functionals, varying in the implementation of the gradi-
ent component. The GGA functional used in this work has been a variant of the
Perdew–Burke–Ernzerhof (PBE) functional, PBEsol, revised for solids.

2.5.3 Using DFT

Finding the energy minimum is an iterative process, relying on algorithmic pro-
cedures. [35]
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1. An initial guess of the crystal structure and the corresponding electron
density is made and fed into the electron density functional.

2. Solve the Kohm-Sham equations.

3. Find the electron density corresponding to the Kohn-Sham equations.

4. Compare output and input, and measure against convergence criteria.

5. Repeat from step 2 if the calculation is not yet converged.

This process is iterated until the specified precision is reached. In VASP the
precision is determined by the EDIFF and EDIFFG tags. Generally this is re-
ferred to as being self-consistent or converged. The level of convergence relies
on the calculations including enough information to correctly and reliantly find
the energy minimum. A well converged calculation has found the correct energy
minimum.

2.6 Berry Phase Analysis

2.6.1 The modern theory of polarization

The modern theory of polarization arose from the contradictory nature of the
classical description of periodic solids. Classically, the polarization is understood
to be a displacement of the ions in a solid, and by adding up the charge dis-
tribution in a given volume, the total polarization per unit volume could be
derived. However when considering periodic solids, the same structure can give
a plethora of valid polarization values dependent upon what unit volume is con-
sidered. Consider a one-dimensional row of alternating positive and negative
charges, Figure 2.6.[38] Since the material is repeating, one is free to chose any
cell to integrate the charge distribution over as long as one integrate over a whole
multiple of unit cells. By choosing the two different unit cells shown in Figure 2.6
we get both Equation 2.12 and Equation 2.13, where a is the unit cell parameter,
xi is the position and qi is the charge.

p =
1

a

∑
xiqi =

1

a
(−1× a

4
+ 1× 3a

4
) =

1

2
(2.12)

p =
1

a

∑
xiqi =

1

a
(1× a

4
− 1× 3a

4
) = −1

2
(2.13)
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We see that by shifting this unit cell by one half unit cell parameter we can see
that the same structure can give two or more valid solutions to the polarization,
whereas in reality, there ought to be a unique answer. Fundamentally this prob-
lem boils down to the definition of polarization. It seems that the polarization of
a periodic solid is not well-defined, and has an infinite set of valid values. Only
the change in polarization has a well-defined value, as it can be derived no matter
what unit cell position is chosen, as we see in Equation 2.14 and Equation 2.15

p =
1

a

∑
xiqi =

1

a
(−1× a

4
+ 1× (

3a

4
+ d)) =

1

2
+
d

a
(2.14)

p =
1

a

∑
xiqi =

1

a
(1× (

a

4
+ d)− 1× 3a

4
) = −1

2
+
d

a
(2.15)

When subtracting Equation 2.12 from Equation 2.14 and Equation 2.13 from
Equation 2.15 we se that we get d

a in both cases. The results in Equation 2.12
and Equation 2.13 are one polarization quantum, pq, apart at +

pq
2 and −pq2 re-

spectively. The polarization quantum represent the value added to a polarization
calculation by moving one charge one whole unit cell. The polarization quanta
are calculated by Equation 2.16, where ai is the lattice parameter, Ω is the unit
cell volume and C is a conversion constant.

pqi =
aiC

Ω
(2.16)

C = 1602.176462µC/cm
2

e/Å2

As the quantum is dependent on the lattice parameter, each of the three Cartesian
directions will have a polarization quanta associated with it, giving a polarization
lattice of viable polarization values. Finding the correct value comes down to
adding the correct amount of polarization quanta in each direction. In practice
the calculations are done with intermediate steps to ensure that the calculations
are on the same branch of the polarization lattice, as seen in Figure 2.8 [38].

Figure 2.6: A chain of charges analysed by two different unit cells [38].
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2.6.2 Born Effective charge

In addition to the contribution from the ionic displacement we need also consider
the electronic displacement as a function of the displacement of the ions. Consider
again the row of alternating charges, and substitute their mathematical point-
charge by a real-world ions of Na+ and Cl−. By moving the positively charged
Na+ in the positive x-direction, it attracts the negatively charged electron cloud
around the Cl−-ion, see Figure 2.9. When calculating the final value of the po-
larization we need to also account for the movement in the negative direction of
negative charges, that contribute considerably to the total charge displacement.
We find that the resulting charge displacement can be approximated by an ef-
fective charge. For most solids the Born effective charge contribute to the ions
having a bigger charge contribution than the formal charges.

Quantifying these electronic contributions is done by Wannier functions Equa-
tion 2.17 [38]

wn(r−R) =
Ω

(2π)3

∫
BZ

d3ke−ik.RΨnk(r)

=
Ω

(2π)3

∫
BZ

d3ke−ik.(r−R)unk(r)

(2.17)

where Ψnk(r) = eik.runk(r) are the Bloch function substitution done for periodic
solids and Ω is the unit cell volume. The Wannier functions are, unlike Bloch
functions, centralized. The center of the distribution is calculated by averaging
the position of the electron distribution and is called the Wannier center, rn. The
total polarization is found by summing the contribution for the displacement of
both point charge ions and the Wannier centers:

p =
1

a
(
∑
i

(qixi)
ions +

occ∑
n

(qnrn)WFs) (2.18)

Figure 2.7: A change in polarization in a chain of charges analysed by two different
unit cells.[38]
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Figure 2.8: Schematic of the branches in the polarization lattice. To ensure the
right polarization value is obtained, the change in polarization from a centro-
symmetric unit cell along a single branch is used, as this is a uniquely defined
value.

Figure 2.9: A change in polarization in a chain of charged ions analysed by two
different unit cells [38].

2.6.3 The Berry Phase

A quantal system in an eigenstate transported slowly round a closed circuit C
by changing the spatial parameters R in the Hamiltonian Ĥ(R) will acquire a
phase factor exp{iγ(C)} in addition to the dynamic phase factor known as the
Berry phase [39]. The electronic contribution to the difference in polarization can
be described by the Berry phase of a finite adiabatic change in the Kohn-Sham
Hamiltonian of the system, see Equation 2.10.

∆Pe =

∫ λ2

λ1

∂Pe

∂λ
dλ (2.19)
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∂Pe

∂λ
=

i|e|h̄
NΩ0me

∑
k

M∑
n=1

inf∑
m=M+1

〈ψ(λ)
nk |p̂|ψ

(λ)
mk〉〈ψ

(λ)
mk|V (λ)|ψ(λ)

nk 〉
(ε

(λ)
nk − ε

(λ)
mk)2

+ c.c. (2.20)

where me and e is the mass and charge of the electron respectively, Ω0 is the
unit cell volume, N is the number of unit cells in the crystal, M is the number of

occupied bands, p̂ is the momentum operator and ψ
(λ)
nk are the Bloch solutions

of the crystalline Hamiltonian. Using DFT, V (λ) is substituted with the Kohn-

Sham potential, V
(λ)
KS [40]. For simple cases, the Berry phase integrals simplify

to the Wannier fuctions [38].
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Chapter 3

Methodology

This chapter detail the methodology used to obtain the results discussed in chap-
ter 4. Firstly section 3.1 will outline the process of performing DFT calculations
using the Viena Ab-initio Simulation Package (VASP) [41–44], detailing the files
needed and specifics on the settings used to perform the calculations in this the-
sis. This section will also contain result from the preliminary calculations sone in
my project work [45], and lay out the reasoning for setting certain variables for
later calculations. In section 3.2 the specifics of the volumetric relaxations done
is laid out. section 3.3 outlines the methods used to set up and carry out calcula-
tions on strained crystals of BTO with both (001) strain and (111) strain. finally,
section 3.4 describes how the Berry phase analysis of all the relaxed volumetric
and strained samples were done.

3.1 DFT

The data for this thesis result from Density Functional Theory (DFT)-calculations,
using the Viena Ab-initio Simulation Package (VASP) [41–44]. VASP initializes
the calculations using input files, outlying the limits of the calculation. The
VASP software can accept a lot of input files, but at the very least four input
files are needed to run a successful VASP calculation.

• INCAR

• POSCAR

• POTCAR
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• KPOINTS

These files serve each their own purpose in initializing and controlling the calcu-
lation.

3.1.1 INCAR

INCAR is the central input file of VASP. It determines ’what to do and how
to do it’.[46] The INCAR file is a list of variables, called tags. These tags pa-
rameters for convergence criteria, select which functional is used for the density
approximation, determine the precision of symmetry determination. An example
of an INCAR-file is found in section A.1 of Appendix A. The INCAR-file also
determine which quantities are calculated. This influences the complexity of the
calculation, influencing how long it takes to converge etc.
In the project work leading into this thesis [45] a study of various input values
was carried out hoping to determine the appropriate values in order to both get
convergence while not wasting CPU hours on needlessly accurate, heavy or com-
plex calculations. As BTO contains oxygen an energy cut-off ENCUT of 550eV
is needed. This tag sets the cut of energy for the plane waves considered in the
calculations, where all plane waves with a kinetic energy smaller than ENCUT
are included in the calculation. An ENCUT of 550ev is fairly high, but for struc-
tures containing oxygen it is needed.
In general the calculations in this thesis is done using the PBEsol functional [1,
2]. The exception is for volumetric calculations, where also the LDA functional
[5] is used.

3.1.2 POSCAR

The POSCAR file holds the lattice parameters and structure of the unit cell
in addition to the position and element of all the atoms in it. The POSCAR
files are generated using VESTA [28]. An example of a BTO POSCAR file is
found in section A.3 of Appendix A. These files are the difference between the
calculations done on different phases, and are also the piles manipulated in the
strain calculations. This is done by using the script found in ??. It functions
by setting the lattice parameter values needed to correspond to certain strain
values. As the ion positions are given by fractional coordinates, only the a and
b parameters need to be changed.
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3.1.3 POTCAR

The POTCAR file entails a list of the pseudopotential used. The potentials for a
crystal structure are concatenated from files containing potentials for individual
elements in a catalogue provided by VASP. Most elements have several pseudopo-
tential files, corresponding to different valency and softness levels. The order the
potentials are added to the POTCAR must be in accordance with the order they
are listed in the POSCAR file, to ensure that the right pseudopotentials are
linked to the right element. The POTCAR-files for the work done in this thesis
is composed of the potentials listed in ??

3.1.4 KPOINTS

The KPOINTS file specifies the distributions and density of K points in the
Brillouin zone (BZ). The KPOINTS file allows to vary the amount of K-points
that occur in each of the three dimensions in reciprocal space, whether the mesh
shall be evenly distributed and whether the Gamma point will contain a point,
i.e. the mesh is centered in the BZ. An example of a KPOINTS file is found
in section A.2 of Appendix A. In the calculations done in this thesis, the K-
point density is in the order of 200 per reciprocal unit cell in accordance with
the results found in my project work [45]. As the K-points in each direction are
integers it is hard to get the K point density constant. In general, the amount of
K-points should be halved when the volume is doubled [35]. For the single unit
cells used in the strain calculations and volume relaxations, the k-point value has
been set to 6 in each direction. As the larger supercells used in the (111) strained
calculations are 6 formula units, the amount of K-points is lowered to 3, 4 and 3
to account for the decreased BZ of a larger unit cell.

3.1.5 Other relevant files

In addition to the four essential files, there are other files that can be used to speed
up the calculations. One such file is the WAVECAR file, containing information
about the electron wave modes in the structure so that VASP is not required to
calculate it. This file is also generated by VASP, and is used between consecutive
calculations on the same structure, saving VASP the need to calculate the wave
functions present in the structure for all the calculations.
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3.2 Full volumetric relaxations

The DFT analysis on the volumetric calculations are done with both LDA[5]
and PBEsol functional [1, 2]. EDIFF and EDIFFG are set to 1E-6 and 1E-2
respectively. Full volumetric relaxations in VASP are done by setting the ISIF-
tag to 3, allowing the algorithm to change the cell volume and shape, along with
allowing for the ions to relax.

3.3 Strain calculations

To simulate the application conditions the sample is submitted to cubic strain,
meaning the a and b parameters are set equal with a 90 degree angle between
them. This is done to simulate the conditions of thin film growth, where the
film is grown on a typical cubic substrate like SrTiO3. The cubic strain makes
the investigation of which phase is favoured mainly focused on the position of
the ions and the polarization direction, as the unit cell has a tetragonal-like
shape for all phases. An orthorhombic phase submitted to cubic strain will no
longer have a 6= b 6= c, and will only be orthorhombic-like in the sense that the
polarization direction still will be in the pseudocubic 〈011〉-direction. The strain
values are normalized to the lattice constant of the rhombohedral phase found in
the volumetric relaxation, as this is the lowest energy phase.

The strain calculations differ from normal volumetric relaxations in the allowed
amount of volumetric relaxation using a mode of the VASP software called vasp-
ab-fix.x. Using this mode, the structure is prohibited from relaxing in the ab-
plane, whereas the c-parameter can relax freely. In addition the angle of the
lattice parameter out of the strain plane is set constant at 90 degrees. The ions
can relax freely, and with them also the polarization direction and magnitude.
To initialize crystals with strain in the (111) plain, the supercell entered in the
POSCAR file must have the 〈111〉 direction along the POSCAR c-axis. This is
done by rotating the unit cell of the various phases in VESTA using a set of
transformation matrices.

rectifying1 −1 0
1 1 0
0 0 1


[111] rotation−1 0 −1
0 1 −1
1 −1 −1


[001] cella 0 0
0 b 0
0 0 c


rectifying1 −1 0
1 1 0
0 0 1


[11-1] rotation 1 0 1

0 1 −1
−1 1 1


[001] cella 0 0
0 b 0
0 0 c


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Because straining the sample breaks the symmetry of the structure, several cal-
culations is done for different rotational permutations of the structures. For
instance, the tetragonal phase will relax differently depending on the direction
of the extraordinary axis, and if it is in the polarization plane or perpendicular
to it. For the calculations done in (111) strained systems, this consideration be-
comes more important as most of the polarization directions has some non-trivial
component of its polarization in the strain plane, making the structures less sub-
ject to symmetry degeneration. The two rotation matrices reorients the [111]
and the [11-1] to the supercell c-axis respectively with a and b vectors along the
〈011〉 pseudocubic directions orthogonal to the c-axis, resulting in a hexagonal
supercell. The rectifying matrix is used to make α=β=γ=90◦, simplifying fur-
ther manipulation of the super cells and processing of polarization. The resulting
super cell has 6 formula units as opposed to the single formula unit for the (001)
strained cells.

When doing strain calculations it is important to consider how the strain orien-
tation breaks the symmetry. For bulk calculations the orientation of the phase is
irrelevant. When straining a sample, the component parallel to the strin plane
will react differently to strain than the component out of the strain plane. The
tetragonal phase of BTO has a six-fold symmetry, where the extraordinary axis
conceivably can be oriented along any of the pseudocubic axes, with the ferroelec-
tric polarization pointing in either the positive or negative direction. For (001)
strained crystals this means that there are two orientations to concider: [001] and
[100]. As [001] is orthogonal to the strain plane when straining in the ab-plane,
it will conceivably relax to another energy and symmetry than the [001] oriented
tetragonal phase. However, when the crystal is (111) strained, this considera-
tion changes. Around the [111]-axis, all of the 〈001〉 axes become equivalent,
due to an equal 35◦ angle of polarization with the strain plane. We therefore
only need consider one orientation of the tetragonally initialized structures when
doing (001) strained calculations.

The bulk polarization of the orthorhombic phase of BTO has a 〈011〉-direction,
meaning that the Ti4+ is displaced towards one of the edges of the oxygen oc-
tahedra, giving 6 polar axes and 12 polarization directions. For (001) strained
crystals two of the polarization axes are oriented in the polarization plane, while
4 are oriented partially out of the plane. Given that there is cubic strain, the
four out of plane polarizations become equivalent with a 45◦ agle to the plane,
meaning we have to consider two orientations of the orthorhombic phases: one in
plane and one partially out of the plane. For (111) strain 3 of the polar axes lie
parallel with the strain plane and 3 form an angle with the strain plane of 55 ◦.
The rhombohedral phases have a displacement along the 〈111〉-direction, mean-
ing the ion displacement points towards the faces of the octahedra. For (001)
strained crystals the axes become equivalent, and only one rhombohedral ori-
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Figure 3.1: An example of a rotated crystal structure, with [111] along the su-
percell c-axis. The planes marked correspond to the (111) strain planes.

entation needs to be considered. (111) strained rhombohedral phases have two
orientations needed to be considered: One with the polarization normal to the
strain plane and one where the polarization direction forms a 19◦ angle with the
polarization plane.
All the strain calculations were relaxed with the INCAR-file in section A.1 using
PBEsol functional [1, 2] and EDIFF and EDIFFG to 1E-7 and E1-3 respectively.

3.4 Berry phase analysis

To calculate the polarization in a sample using DFT, Berry phase analysis is
used. VASP includes the tag LCALCPOL, calculation the total polarization in
the supecell submitted to the calculation. In effect VASP integrates the charge
density over a unit cell, finding the net charge displacement. Adding this cal-
culation makes the total relaxation more CPU intensive, so for all the results in
this thesis the structure is first relaxed with the appropriate amount of freedom,
and then a separate polarization calculation is done on the resulting structure,
where VASP only allows electronic relaxation. In practice this is done by setting
the NSW-tag to 0, as it dictates the amount of ionic steps allowed before the
calculation exits the relaxation loop. Both the electronic and ionic polarization
values are calculated and added to the OUTCAR-file. The calculations are done
with PBEsol functional [1, 2] and and EDIFF and EDIFFG to 1E-6 and E1-2
respectively.
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Figure 3.2: The distortion of a unit cell from -100% to 100% via the centro-
symmetric reference cell.

When analyzing the effective charge, the ionic and electronic contribution is
added together. As discussed in section 2.6, the Berry phase integral has an infi-
nite number of valid results, as the absolute polarization is not uniquely defined,
while the change in polarization can be quantified uniquely when accounting for
polarization quanta. A series of calculations is therefore done where the goal is to
measure the change in polarization between a non-polar reference and the sample
we want to probe. The calculations are identical, except from the POSCAR-file,
see subsection 3.1.2. A reference structure, POSCAR-ref, is made where the ions
are placed centro-symmetrically in the correct unit cell. By distorting the unit
cell from the reference to the actual structure, POSCAR-pol, by set distances,
we can assure that we can account for polarization quanta. As the polarization
quanta is defined by the structural parameters of the crystal , Equation 2.16, some
structures will have larger Pq than others. To assure the calculated polarization
is placed on the correct branch of polarization, as seen in Figure 2.8, the steps
between the POSCAR-pol and the POSCAR-ref needs to be small enough. For
simple unit cells, 25% distortion is chosen. In practise this means that the ions
are moved from the high symmetry centro-symmetrical positions to the positions
in the structure we want to examine with three equidistant intermediate steps, in
addition to extending the distortion to 150% on each side. These calculations are
unphysical, but serves as guide to adjust for the correct amount of polarization
quanta. Calculations for negative distortion is also carried out. These extend
the line beyond the zero point, and even though they might be redundant for the
calculations carried out in this thesis they can help discover artifacts and help
adjust samples where the Berry phase calculation of the non-polar sample equals
one half of a polarization quantum.

The calculated polarization contribution from the ionic displacement and elec-
tronic distribution are added together. By dividing by the unit cell volume the
total polarization per unit cell volume is found. The final polarization vector
is derived by adding the appropriate number of polarization quanta to ensure
the polarization at 0% and 100% distortion is on the same branch. [38] This is
done separately for each of the spatial directions. The final polarization vector is
derived as the vector sum of the polarization along each unit vector. For phases
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where the polarization is not aligned with one of the unit vectors it is especially
important to ensure that the appropriate amount of polarization quanta are added
in each of its spatial components before combining the components because the
amount of polarization quanta needed will differ. The calculations are initialized
with the initialize script found in Appendix C, and the interpolation between the
reference an polar POSCARS are done with the posinterpol.pl-script, also found
in Appendix C

30



Chapter 4

Results and Discussion

Here all the results from the calculations described in chapter 3 will be presented.
The chapter will contain the results from the initial calculations from the project
thesis, as they serve to explain the importance of choosing parameters values.
In section 4.1, the results from the volumetric relaxations will be presented and
compared to experimental data.

section 4.2 will contain the results from the strain calculations for both (001)
oriented and (111) oriented films. These calculations will be done with higher
precision than the ones done in the project thesis.

subsection 4.2.4 will show the results form the berry phase calculations on both
relaxed bulk BTO and strained BTO in (001) and (111) planes. These results are
included to ensure the polarization in the strained films is as expected in terms
of magnitude and direction.

4.1 Full volumetric relaxations

The full volumetric relaxations, were done with both LDA [5] and PBEsol[1, 2]
exchange correlations for all four phases. The resulting lattice parameters and
unit cell volumes are detailed in Table 4.1 and Table 4.2. The fully relaxed
unit cell volume differs between the two exchange correlations. Comparing to
experimental data, Table 2.2, we can see that LDA generally underestimates the
volumes, while PBEsol have relatively good accordance with the experimental
data, although slightly overestimate the experimental values. However, the rela-
tive energy differences between energies calculated with the same approximation
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Table 4.1: Relaxed unit cell parameters for all four phases of BTO using LDA.
For the full relaxations, all the angles α, β and γ are equal.

Phase a [Å] b[Å] c [Å] α=β=γ[◦] Volume [Å3]

Cubic 3.92074 3.92074 3.92074 90 60.2706311
Tetragonal 3.91655 3.91655 3.93474 90 60.3563364
Orthorhombic 3.91653 3.92603 3.92792 90 60.3972963
Rhombohedral 3.92403 3.92403 3.92403 89.98 60.4222479

Table 4.2: Relaxed unit cell parameters for all four phases of BTO using PBEsol.
For the full relaxations, all the angles α, β and γ are equal.

Phase a[Å] b[Å] c[Å] α=β=γ[◦] Volume [Å3]

Cubic 3.99597 3.99597 3.99597 90 63.8069332
Tetragonal 3.97885 3.97885 4.08358 90 64.6481649
Orthorhombic 3.97178 4.03238 4.04952 90 64.8560878
Rhombohedral 4.01899 4.01899 4.01899 89.833 64.9150326

seems more reliable.

4.2 Strain calculations

4.2.1 (001) oriented crystals

The relative ground state energy for the polar (001)-strained BTO phases are
contained in Figure 4.1.

The non-polar centro-symmetric cubic phase is disfavored for all strain values.
The phases with polarization axes in the strain plane are more favored for tensile
strain, while the phases with polarization normal with the strain plane are more
favored at compressive strain. The rhombohedral phase, which has a polarization
along the 〈111〉-direction is favored for all strain values. However, we see a
gradual shift in the symmetry from a P4mm symmetry at high compressive strain,
where the polarization only lies in the direction normal to the strain plane, via
a Cm phase at no strain or low tensile strain with polarization in the 〈111〉-
direction, to a Amm2 symmetry at high tensile strain, where the polarization
direction is contained to the 〈011〉-direction in the strain plane. The tetragonal
and orthorhombic out of plane phases relax to the same P4mm symmetry and
the same energy level at sufficient compressive strain. In the same manner,
the in plane orthorhombic phase becomes symmetry and energy degenerate with
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Figure 4.1: The results of the energy relaxations on (001)-oriented strained BTO
by initialized unit cell.

the rhombohedral-initialized crystal at sufficient tensile strain. The tetragonal
phases show due to their polar axis either polarization fully in the strain plane or
fully normal to the strain plane. This limits their ability to switch polarization
direction as a function of strain, and they become disfavored as long as the strain
is not complimenting their polarization direction. The resulting symmetries of
the strain is contained in Figure 4.3.

We find the lowest energy state of the BTO phases at 1.5% tensile strain. As the
calculations are normalized to the lattice parameter of the rhombohedral phase
as discussed in section 3.3, the mismatch between lattice parameters of the other
phases and the rhombohedral will shift the energy curves relative to the mismatch.
The rhombohedral phase normally has a unit cell angle of α = β = γ = 89.8334◦.
This means that the unit cell is elongated along the axis of polarization, the [111]
axis. By enforcing cubic strain, the angles are set to 90◦, compressing the unit
cell in the axis of polarization. The energy curve is shifted towards tensile strain
to compensate for the compression.

4.2.2 (111) oriented crystals

As seen in Figure 4.2, there is no phase that is favored for all (111)-strain values.
All the calculations done with polar initiation phases become degenerate for large
compressive strain values. At 1.5% compressive strain the rhombohedral in plane
phase, initialized as the rhombohedral (11-1) phase, find another phase. The
tetragonal and orthorhombic phases relax to this phase at 1% tensile strain. The
symmetries of the relaxed phases of (111) strained BTO is contained in Figure 4.3.
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Figure 4.2: The results of the energy relaxations on (111)-oriented strained BTO
by initialized phase.

The Cm-symmetric crystal with polarization along the [111]-direction normal to
the strain plane is favored for all strain values less than 1.5% tensile strain,
where there is a 1st order phase transition to the P1 symmetry. This phase has
polarization components both in the strain plane and out of the strain plane.
As for the (001) strained crystals the strain is normalized to the lattice parameter
of the rhombohedral phase. The unit cell angles α = β = γ = 89.8334◦ are set to
90◦ to account for cubic strain conditions. The polar axis is therefore compressed
just as for the (001) oriented phase. When it’s rotated, the strain effects As all
the polar phases converge to the same unit cells and energies as the rhombohedral
phases for all strain values.

4.2.3 (001) vs (111)

For (001)-strained crystals, the rhombohedral phase is favored for all strain val-
ues. However, as sees in Figure 4.3, the symmetry changes as a function of strain.
For sufficient compressive strain, the phase has a P4mm- with polarization mainly
normal to the strain plane. For tensile strain values larger than 2%, the phase has
a Amm2-symmetry, and the polarization is mainly contained in the strain plane
along one of the pseudocubic 〈001〉 directions. This transition is gradual, as we
can see from Figure 4.5. For (111)-strained crystals, there is a 1st order phase
transition at 1.5% tensile strain, where the favored state shifts from being a Cm-
symmetry, with polarization normal to the strain plane to being a P1-symmetric
phase with ion displacement along an axis forming a 19◦ angle with the strain
plane.
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Figure 4.3: Comparison of the relaxation energy of different of symmetries in
(001) and (111).
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Figure 4.4: Polarization as a function of (001) and (111) strain respectively.
(001)-strain induces a gradual phase transition, while (111)-strain leads to 1st
order transitions at 1.5% tensile strain.

4.2.4 Polarization

The following section contains the results from the berry phase analysis on the
phases of BTO, strained in both (001) and (111) planes. The polarization for
the energetically favoured phase for both (001) and (111) strained crystals for
each strain value is summed up in Figure 4.4. The detailed Berry phase analysis
of the energetically favoured phases are included in this section. The detailed
results of the Berry phase calculations on the less favoured phases are found in
Appendix B.

Figure 4.5 displays the Berry phase analysis on the rhombohedral (001) strained
BTO crystals. Each series consists of the resulting polarization found in struc-
tures initialized as a (001)-strained rhombohedral cell, where each data point is a
structure distorted between a non-polar reference and the fully relaxed structure
in 25% steps, as discussed in section 3.4. The rhombohedrally initialized calcu-
lations are favored for all strain values and goes through two 2nd order phase
transitions as shown in Figure 4.4. From both figures the gradual transition from
polarization completely out of the plane to polarization completely in the plane
is apparent.

The rhombohedral phase has a polarization along the 〈111〉 direction, meaning
that the Ti4+ is displaced towards one of the faces of the oxygen octahedra. For
(111)-strained samples, this results in two possible polarizations with respect to
the strain plane: one where the polar axis is the [111]-direction and is normal
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Figure 4.5: Berry phase analysis results from rhombohedral-initialized structures
oriented in the (001)-direction. All polarization directions of the rhombohedral
phase are symmetry equivalent for (001)-oriented crystals.
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Figure 4.6: Berry phase analysis results from rhombohedral-initialized structures
oriented in the (111)-direction, with polarization oriented orthogonal to the strain
plane.
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Figure 4.7: Berry phase analysis results from rhombohedral-initialized structures
oriented in the (11-1)-direction, with polarization oriented partially in the strain
plane.

to the plane, and one where the polarization is the [11-1] direction and forms an
approximately 19◦ angle with the strain plane. Figure 4.6 and Figure 4.7 show
the results of the Berry phase analysis on the strained rhombohedral (111) and
(11-1) initialized samples respectively. Each series consists of the resulting polar-
ization found in structures initialized as a rhombohedral cell and (111) strained.
The phase transition in (111) strained BTO described in Figure 4.4 is between
these two phases when the [11-1] phase becomes energetically favored at 2% ten-
sile strain. Strain values lower than 2% tensile strain, the in plane polarization
is negligible. For lattice parameters smaller than 2% compressive strain, the two
phases relax to the same structure, that are energetically degenerate with equal
polarization.

As these are 0 kelvin calculations, the results from the relaxations only give the
favorability of the phases at 0 kelvin. The tetragonal phase of BTO is favoured
between 5◦C and 120◦C, so to get an estimate of the polarization as a function
of strain at room temperature we might look at the results from the tetragonal
phase, summarized in Figure 4.8. When only looking at the tetragonal phase,
there is only one phase transition between P4mm and Pmm2. It is a 1st order
transition and the polarization flips from being sprightly out of the plane to
being sprightly in plane. For (111) the 1st order transition between Cm and P1
symmetries happens earlier than when the rhombohedral phase is allowed.
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Figure 4.8: Polarization as a function of (001) and (111) strain respectively when
only looking at the tetragonal phases.

In Figure 4.9 both the tetragonal and orthorhombic phases are allowed. For (001)
the transition to Amm2 is no longer gradual. For (111) the 1st order transition
comes for compressive strain. There is also a possibility the polarization drops
entirely for compressive strain larger than a certain value. The relative energy
difference between the phases decrease as a function of increasing compressive
strain, indicating a decrease in coercive energy.

The bulk polarization of BTO is known to be around 26µC/cm2 [lines]. For
strained structures, the polarization tends to increase for both compressive and
tensile strain. The magnitude of the polarization calculated in these results ex-
ceeds this value by a factor of 3-4 in general, however the trends found seem to
align with the literature on polarization in BTO.
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Figure 4.9: Polarization as a function of (001) and (111) strain respectively when
only looking at the tetragonal and orthorhombic phases.
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Chapter 5

Conclusions

In summary, this thesis has been an exploration into some of the nuances of
Density Funtional Theory, ferroelectricity and oxide perovskites, BaTiO3 in par-
ticular. The effects of strain and crystal orientation on phase diagram and polar-
ization in BTO has been investigated using DFT calculations and Berry phase
analysis. There has been done DFT calculations on bulk BTO as well as epitaxi-
ally strained BTO, and by using Berry phase analysis the polarization magnitude
and direction of the structures have been estimated. The polarization of (001)
strained BTO increase for both compressive and tensile strain as the favoured
structure transition from a P4mm symmetry with the extraordinary axis out of
the strain plane via a Cm symmetry to a Amm2 symmetry with ion displace-
ments along the pseudocubic [110] direction. For the (111) strained samples the
structure has a first order phase transition at 1.5% tensile strain from a Cm
symmetry with ion displacements in the out of plane [111] direction to a P1 sym-
metry. These results are summarized in Figure 4.4. The relative energies are
calculated using the PBEsol functional [1, 2]. Polarizations are calculated using
Berry phase analysis in VASP.

As the DFT calculations are 0 kelvin calculations, they do not accurately repre-
sent the phase diagram at room temperature. To get an estimate of the behaviour
at room temperature the tetragonal phase alone is considered, as we know that
this is favoured for temperatures between 5◦C and 120◦C. When considering the
tetragonal phase alone, the phase transitions were 1st order for both (001) and
(111) strained structures. Further a study of the polarization when both tetrag-
onal and orthorhombic phases are allowed shows the some of the same character-
istics as the purely tetragonal results. The magnitude of the polarization found
is 3-4 times larger than the 26µC/cm2 described in literature, however the trends
of the polarization as a function of strain is in accordance with the litterature on
(001) strained BTO. The work done in this thesis lays the theoretical groundwork
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for a polar phase for compressive strain in (111) strained BTO, where all the po-
lar phases converge to a polar out of plane phase for compressive strain. This is
contrary to some of the previous work done on (111) oriented BTO stating that
BTO relaxes to a non-polar R-3m symmetry for compressive strain values [3, 4].
This study has been conducted using the PBEsol functional [1, 2] as opposed to
the LDA functional [5] used in earlier studies. As these results have been shown
without considering the effects of domain generation and interface effects, they
serve as a first-principle study of the effects of strain and interface orientation on
the phases of BTO.
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Appendix A

Example of input files

A.1 Example of an INCAR file

$system = BaTiO3
PREC = Normal
NELMIN = 4
NELM = 60
EDIFF = 1E-6
EDIFFG = -1E-3
IBRION = 2
ISIF = 3
LREAL = .FALSE.
NSW = 80
ISMEAR = -5
SIGMA = 0.01
ENCUT = 550

ICHARG = 1
ISTART = 1
LWAVE = .FALSE.
LCHARG = .FALSE.

LORBIT = 11

LASPH = .TRUE.

LMAXMIX = 4
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A.1. EXAMPLE OF AN INCAR FILEAPPENDIX A. EXAMPLE OF INPUT FILES

NPAR = 4
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APPENDIX A. EXAMPLE OF INPUT FILESA.2. EXAMPLE OF KPOINTS-FILE

A.2 Example of KPOINTS-file

Automatic mesh
0
Gamma
6 6 6
0 0 0

A.3 Example of POSCAR-file

New structure
1.00000000000000
3.9171506866909613 0.0000000000000000 0.0000000000000000
0.0000000000000000 3.9171506866909613 0.0000000000000000
0.0000000000000000 -0.0000000000000000 3.9356236092533665
Ba Ti O
1 1 3
Direct
-0.0000000000000000 -0.0000000000000000 0.0049526062869387
0.5000000000000000 0.5000000000000000 0.4964831816930917
0.5000000000000000 0.5000000000000000 0.0167104331358777
0.5000000000000000 0.0000000000000000 0.5133768749420493
0.0000000000000000 0.5000000000000000 0.5133768749420493

0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
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A.3. EXAMPLE OF POSCAR-FILEAPPENDIX A. EXAMPLE OF INPUT FILES
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Appendix B

Graphs of Berry phase
calculations for less favoured
phases
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B.1. (001) TETRAGONAL IN-PLANE
APPENDIX B. GRAPHS OF BERRY PHASE CALCULATIONS FOR LESS

FAVOURED PHASES

B.1 (001) Tetragonal in-plane
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Figure B.1: Berry phase analysis results from tetragonal-initialized structures
oriented in the (001)-direction with polarization along the c-axis.
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APPENDIX B. GRAPHS OF BERRY PHASE CALCULATIONS FOR LESS
FAVOURED PHASES B.2. (001) TETRAGONAL OUT OF PLANE

B.2 (001) Tetragonal out of plane
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Figure B.2: Berry phase analysis results from tetragonal-initialized structures
oriented in the (001)-direction with polarization along the a-axis.
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B.3. (001) ORTHORHOMBIC OUT OF PLANE
APPENDIX B. GRAPHS OF BERRY PHASE CALCULATIONS FOR LESS

FAVOURED PHASES

B.3 (001) Orthorhombic out of plane
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Figure B.3: Berry phase analysis results from orthorhombic-initialized structures
oriented in the (001)-direction with polarization in the bc-plane.
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APPENDIX B. GRAPHS OF BERRY PHASE CALCULATIONS FOR LESS
FAVOURED PHASES B.4. (001) ORTHORHOMBIC IN-PLANE

B.4 (001) Orthorhombic in-plane

-150 -100 -50 0 50 100 150

Distortion [%]

-100

-50

0

50

100

P
o
la

ri
z
a
ti
o
n
 [
µ

C
/ 
c
m

2
]

In plane

-150 -100 -50 0 50 100 150

Distortion [%]

-1

-0.5

0

0.5

1

P
o
la

ri
z
a
ti
o
n
 [
µ

C
/ 
c
m

2
]

Out of plane

-150 -100 -50 0 50 100 150

Distortion [%]

-100

-50

0

50

100

P
o
la

ri
z
a
ti
o
n
 [
µ

C
/ 
c
m

2
]

Total

  -4

-3.5

  -3

-2.5

  -2

-1.5

  -1

-0.5

   0

 0.5

   1

 1.5

   2

 2.5

   3

 3.5

   4

Strain [%]

Figure B.4: Berry phase analysis results from orthorhombic-initialized structures
oriented in the (001)-direction with polarization along the ab-plane.
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B.5. (111) TETRAGONAL
APPENDIX B. GRAPHS OF BERRY PHASE CALCULATIONS FOR LESS

FAVOURED PHASES

B.5 (111) Tetragonal
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Figure B.5: Berry phase analysis results from tetragonal-initialized structures
oriented in the (111)-direction. All polarization directions of the tetragonal phase
are symmetry equivalent for (111)-oriented crystals.
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APPENDIX B. GRAPHS OF BERRY PHASE CALCULATIONS FOR LESS
FAVOURED PHASES B.6. (111) ORTHORHOMBIC

B.6 (111) Orthorhombic

-150 -100 -50 0 50 100 150

Distortion [%]

-100

-50

0

50

100

P
o
la

ri
z
a
ti
o
n
 [
µ

C
/ 
c
m

2
]

In plane

-150 -100 -50 0 50 100 150

Distortion [%]

-100

-50

0

50

100

P
o
la

ri
z
a
ti
o
n
 [
µ

C
/ 
c
m

2
]

Out of plane

-150 -100 -50 0 50 100 150

Distortion [%]

-100

-50

0

50

100

P
o
la

ri
z
a
ti
o
n
 [
µ

C
/ 
c
m

2
]

Total

  -4

-3.5

  -3

-2.5

  -2

-1.5

  -1

-0.5

   0

 0.5

   1

 1.5

   2

 2.5

   3

 3.5

   4

Strain

Figure B.6: Berry phase analysis results from orthorhombic-initialized structures
oriented in the (111)-direction, with polarization oriented partially out of the
strain plane.
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B.6. (111) ORTHORHOMBIC
APPENDIX B. GRAPHS OF BERRY PHASE CALCULATIONS FOR LESS

FAVOURED PHASES
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Appendix C

Scripts used

C.1 Initstrain
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C.2. INITIALIZE BP APPENDIX C. SCRIPTS USED

C.2 Initialize BP
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APPENDIX C. SCRIPTS USED C.2. INITIALIZE BP
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C.3. POSINTERPOL.PL APPENDIX C. SCRIPTS USED

C.3 Posinterpol.pl
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