
Creating Images with Self-Modifying
Cartesian Genetic Programming

Christoffer Tønnessen

Master of Science in Computer Science

Supervisor: Gunnar Tufte, IDI

Department of Computer and Information Science

Submission date: July 2016

Norwegian University of Science and Technology

Abstract

Self-Modifying Cartesian Genetic Programming (SMCGP) is a form of
genetic programming where the program can modify itself. This ability to
modify itself is thought to make the program do more complex calculations
from a simple starting point. Since its creating SMCGP has been used
to solve a smaller set of problems [HMB11] and its ability to self modify
has given good results.

In this thesis SMCGP’s ability to create images is explored. This is done
by having an evolutionary algorithm use SMCGP to look for images.
Images are split into four groups: single colored image, simple pattern
image, complex pattern image and random noise image, and the system
is trying to create an image for each group. Should this be possible, then
the system has shown it can create a wide variety of images with different
properties. The self-modification part is explored by seeing if there’s a
correlation between the initial graph size and the final product as well as
taking a look at whether this property helps evolution or not.

A framework to create images using SMCGP has been created for this
thesis and all experiments that have been run have used this framework.

Experiments show, that by having a simple fitness function to tell the
framework if the graph produces and image that is closer or further away
form a desired result, images in all four groups are easily found. The
ability for the graph to self-modify does seem to help with evolution.
These experiments were run with graphs that had different amount of
nodes in them at the start, and even the smallest graphs were able to
create all desired images. This shows that the initial graph size is not
the defining factor in the complexity of the resulting image.

Sammendrag

Selvmodifiserende Kartesisk-genetisk programmering (SKGP på norsk,
SMCGP på engelsk) er en type genetisk programmering hvor programmet
kan modifisere seg selv. Denne muligheten til å modifisere seg selv er tenkt
å gjøre programmet bedre rustet for å klare komplekse kalkulasjoner når
utgangspunktet ikke er komplekst. Siden dette sysemet ble laget har det
blitt brukt til å løse noen problemer [HMB11] og systemets evne til å
modifisere seg selv har gitt gode resultater.

I denne avhandlingen undersøkes SKGP-s evne til å generere bilder. Dette
er gjort ved å bruke en evolusjonær algoritme for å finne bilder. Bildene
har blitt splittet i fire hovedgrupper: ensfarget bilde, enkelt mønster på
bilde, komplekst mønster på bilde og tilfeldig støy i bilde, og systemet
prøver å finne minst ett bilde i hver gruppe. Skulle dette være mulig vil
det ha vist at systemet kan lage bilder med flere forskjellige egenskaper.
Selfmodifiseringsdelen blir utforsket ved å se om det er noen sammenheng
mellom startstørrelsen på grafen som lager bilder og bildet som blir laget.
Det blir også undersøkt om selfmodifiseringsegenskapen hjelper til med
evolusjonen som finner disse bildene.

Et rammeverk for å lage bilder ved bruk av SKGP har blitt laget for
denne avhandlingen, og alle eksperimenter som blir kjørt bruker dette
rammeverket.

Eksperimentene viser at det å bruke en enkel fitnessfunksjon til å fortelle
om et bilde er nærmere et ønsket bilde eller ikke, er nok til å generere
bilder i alle fire grupper. Evnen til å modifisere seg selv ser ut til å hjelpe
til med evolusjonen. Disse eksperimentene ble kjørt med grafer som startet
med flere forskjellige antall noder, og selv de minste grafene klarte å lage
alle ønskede bilder. Dette viser at startstørrelsen på grafene er ikke den
avgjørende faktoren i kompleksiteten til bildene som blir generert.

Acknowledgements

I would like to thank my supervisor Gunnar Tufte for guiding me through
this thesis.

I would also like to thank everyone close to me who have supported me
immensely.

Contents

List of Figures ix

List of Tables xi

List of Acronyms xiii

1 Introduction 1
1.1 Thesis Structure . 2

2 Background 5
2.1 Evolutionary Algorithms . 5
2.2 Genetic Programming . 6

2.2.1 Cartesian Genetic Programming 6
2.3 Self-Modifying Cartesian Genetic Programming 9
2.4 Self-Organization and Generation . 11

3 Experiment system 13
3.1 Executing the Graph . 13
3.2 Specifying a Problem That Should Be Solved 15
3.3 Running the Evolution . 16
3.4 Self-Modification . 17
3.5 Resilience Demands of Evolution . 17
3.6 Self-Modifying Graphs as Image Generators 18
3.7 Eliminating Bias in the System . 20

4 Experiments 25
4.1 Single Colored Image . 26
4.2 Repeating Pattern . 27

4.2.1 Striped Pattern . 28
4.2.2 Gradientual Repeating Pattern 29

4.3 Edge of Chaos . 30
4.4 Random Noise . 35

vii

5 Discussion 37
5.1 The Framework . 37
5.2 The Results . 38

6 Conclusion 41
6.1 Future Work . 42

References 45

Appendices
A Functions available in SMCGP 47

B Pseudocode 49

List of Figures

2.1 Genetic Programming as a tree. 6
2.2 Example crossover evolution. 7
2.3 A CGP node. 7
2.4 Sample CGP program. 8
2.5 Sample SMCGP program. 9
2.6 A SMCGP gene. 10

3.1 SMCGP feedback of results explained. 19
3.2 How the framework generates images. 21
3.3 Bias in image by saving the same pixels multiple times. 22
3.4 Bias in image by saving the first row multiple times. 22
3.5 Bias in image by RGB corruption. 23

4.1 Striped pattern images 32x32. 29
4.2 Repeating pattern 32x32 . 30
4.3 Repeating pattern 64x64. 31
4.4 Explainer for edge of chaos image. 32
4.5 Edge of chaos pattern 32x32. 33
4.6 Edge of chaos pattern 64x64. 34
4.7 Random noise in image. 35

ix

List of Tables

3.1 Available system configuration. 14

4.1 Default system configuration. 25
4.2 System configuration for single colored image. 26
4.3 Statistics for single colored image. 27
4.4 System configuration for repeating pattern image. 28
4.5 Statistics for simple repeating pattern in an image. 28
4.6 Statistics for gradientual repeating pattern image. 30
4.7 System configuration for edge of chaos image. 31
4.8 Statistics for edge of chaos image. 32
4.9 Statistics for random noise image. 35

A.1 SMCGP funciton set . 47
A.2 SMCGP overwrite function set . 48

xi

List of Acronyms

CGP Cartesian Genetic Programming.

EA Evolutionary Algorithm.

Fitness Function A function used to measure performance of an individual in EA.

NTNU Norwegian University of Science and Technology.

SMCGP Self-Modifying Cartesian Genetic Programming.

xiii

Chapter1Introduction

Many parts of nature shows signs of self-organization. Repetitive and random
patterns show up everywhere and they have all been created seemingly without
guidance [H+01]. These small patterns form simple rules for simple creatures with no
apparent rules for a bigger, more complex system. There seem to be no one guideline
that watches over everything and has steered evolution in any direction, yet these
complex structures exist. This is in great contrast to human engineering, where most,
if not all, are defined by rules that take the bigger picture into consideration from the
start. This is because human engineering in this regard uses a more of a top-down
approach to solving a problem rather than a bottom-up approach [DSM13].

Biological organisms that make up bigger systems like swarms are examples of
systems that are both self-organized and show tendencies that make them seem
architectured [DSM13]. Each individual shows little knowledge of the bigger picture,
and if separated from the group will not be able to show a great deal of intellect.
However when each individual is a part of the bigger swarm the swarm as a whole
shows complex emergent behavior by local interactions [DSM13]. This emergent
behavior is interesting because it shows that non-architectured systems can create
results that is similar to architectured systems. This shows that one can create a
great and complex system from simple rules, which will be very scalable. A simple
structure can produce a complex output as long as there is data transfer between the
participants of the structure. This is because each individual can do a small amount
of computation and pass on their result, when enough computation has been done,
the result is combined to produce the complex result.

This can be related to how a computer and programming works. While a pro-
grammer often writes in a high-level language with concepts that makes sense for
a human, a computer will deconstruct these commands into very simple, almost
atomic, commands that will be executed.

Current ways of creating software by human design, is approaching the complexity
ceiling, where we are approaching the upper limit on complexity of software [MT04].

1

2 1. INTRODUCTION

While software that can be constructed using current methods of creating software
can do some immense things, these are nowhere near the complexity of living systems
[MT04]. To be able to break the complexity ceiling and make more complex software,
one will need to mimic the biological development of multi-cellular organisms [MT04].

One big part of biological systems is that they can adopt to their environment [H+01].
This is done by having a number of stable stats for a system that is large enough to
react to all perturbations [H+01]. Self-Modifying Cartesian Genetic Programming
(SMCGP) is a type of genetic programming. This is an extension of Cartesian Genetic
Programming (CGP) [Koz92] with the main different being that SMCGP allows for
self-modification. What this self-modification allows for is to let evolution modify
extra parameters of the system, which hopefully can provide a way for find a small
and simple structure that over time can produce a large and complex structure.
This could make the system better at reacting to perturbations as well as giving the
evolution another parameter to change which can change the system immensely.

In this thesis a system for generating images using SMCGP has been created.
SMCGP was first introduced in 2009 [HMB09] and has not been used for many
things since then. There have been some experiments that show the basic capabilities
of SMCGP, as well as compare them to regular CGP with very favorable results for
SMCGP[HMB11]. One of these experiments touched on the possibility of creating
images with SMCGP and this path will be further explored in this thesis. To achieve
this task a framework for working with SMCGP has been created and used for
generating images.

Three main questions will be answered in this thesis:

1. Is SMCGP able to generate both simple and complex images, if so what types
of images?

2. Does SMCGP’s self-modification help in evolution?

3. Does the initial graph size have an impact on the images able to be created?

To answer these questions several experiments were done. Four groups of images have
been categorized: single colored images, repeating patterns in images, compound
images with multiple properties and fully random images. Images in all of these
categories were found, some easier than others. The discussion in Chapter 5 goes
into greater detail on what these result mean.

1.1 Thesis Structure

This thesis is structured in the following way. Chapter 2 provides background
information on evolutionary algorithms, genetic programming, Cartesian genetic

1.1. THESIS STRUCTURE 3

programming and self-modifying Cartesian genetic programming. Chapter 3 gives an
overview of the system used for the experiments and the methodology used for the
experiments. Chapter 4 shows the results of each experiment that was run and the
setup for those experiments. Chapter 5 discusses the results and what impact these
results have. Chapter 6 concludes the thesis and mentions what the future work for
this field can be.

Chapter2Background

2.1 Evolutionary Algorithms

Evolutionary Algorithms (EA) has been around for a long time and has taken various
forms up through the years [MHT14]. The main idea behind it is to mimic evolution
by having a pool of individuals with certain unique properties. Each individual or a
pair of individuals will then create offspring which are close to their parent, but not
entirely similar. The properties of these offspring are measured, and the best ones
will be the next generation’s pool.

The power of evolutionary algorithms is the ability to efficiently explore large solution
spaces. In contrast to real life, evolutionary algorithms on the computer can go
through tens of thousands of generations of evolution in a small amount of time. For
each individual the algorithm is told if it’s closer or further away from a desirable
solution.

One implementation of an evolutionary algorithm is to start off with one individual.
This individual’s performance is measured by some means. The function that
measures this performance is often called a fitness function. Then some number
of offspring is created from this one individual. The offspring are an exact copy of
the first individual, but there’s a chance some part of their properties are mutated
according to some mutation rate. The mutation can be anything, and it can cause
problems which will cause the system to crash or similar. When all offspring are
created, they are each measured with respect to the first individual and each other.
After everyone is checked the best one available is chosen to have as many offspring
as the first individual, and the process repeats itself. This is continued on until
a satisfactory performance is found or a hard limit of some sort, often amount of
evolution, is reached. One will then end up with the best solution found.

Since the technique used for finding solutions is based much off of randomness, it is
an idea to run multiple parallel experiments at the same time. Doing so will increase
the chances of finding a good individual that satisfies the demands set by the system,
since more solutions are checked.

5

6 2. BACKGROUND

2.2 Genetic Programming

Genetic Programming (GP) [Koz92] is an evolutionary algorithm-based method
[GH88] to create programs that fulfill a user-defined task. This is more often than
not a series of computations on numbers which tries to come up with a result that
is satisfactory. In GP the computations is called a program and is most often
represented by a tree [Cra85] as shown in Figure 2.1. In such a tree each node will
either have a function that manipulates values, or will have constant values. If the
node is a function node, it will use its child nodes as input values, execute its function
and pass on the result to its parent. Each node of the tree is executed one by one.

−

+

1 2

1

Figure 2.1: A program in Genetic Programming as a tree. Each node has either a
value or a function. This program is equivalent with the mathematical calculation
(1 + 2) − 1.

To find solutions in GP an EA is run. A population of random programs is generated
and executed. The results of these programs are measured by the fitness function to
see how well they are performing. The better the fitness, the closer the program is
to completing its task.

The usual way to do evolution in CGP is called crossover evolution [Koz92]. This
system works by starting off with a large population of random individuals. Each
individual is checked with respect to a fitness function to see who’s the best individuals
of their generation. When this is done two and two individuals are paired together,
either the best ones or one of the best of the best with the lowest scoring individuals
of the best. Then one part of the graph from one individual is merged with one part
of the other individual to create a new individual, see Figure 2.2 for a visual example.

2.2.1 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a form of Genetic Programming. In
Cartesian Genetic programming one has moved away from representing the program
as a tree and instead represents it as a combination of rows and columns of numbered
nodes [MT00]. Because of this, the implicit structure of the program is a graph

2.2. GENETIC PROGRAMMING 7

−

+

1 2

1

(a) Graph for individ-
ual one.

/

∗

20 −3

12

(b) Graph for individ-
ual two.

/

+

1 2

12

(c) Their child using
crossover evolution.

Figure 2.2: An example of crossover evolution with two individuals creating one
offspring.

instead of a tree. While early work with CGP used both columns and rows, the
number of rows quickly ended up being just one, which effectively reduces the program
to be a list of numbered nodes [HMB11]. This numbering of the nodes is what gives
the name "Cartesian" to CGP; nodes are numbered in the same way you can number
anything on a Cartesian plane. Since the list is ordered, the nodes in the list will
have a specific order of execution, which will guarantee that a each program has one,
and only one way to be executed.

Another way of representing a CGP program other than a list is as a directed asyclic
graph, as there is a direct mapping from the list of nodes to a graph. One motivation
for wanting to use a graph as representation for a program instead of a tree is that a
graph is more general than a tree [MT00].

Each node in a CGP program consists of a function, denoting the purpose of the node,
and what connections the node has, this means that the genotype of a node in CGP
can be as simple as a list of numbers which maps to each of these things. This simple
system with using only numbers makes it easy to do evolution programmatically, as
one will only need to split two lists and merge one part from one list with one part
of the other list.

0 1 2

FUNCTION CONNECTION CONNECTION

Figure 2.3: A possible representation of a node in CGP. This node has two
connections. Each number is translated into either a function to be executed or a
connection to another node.

Figure 2.3 shows one configuration of a genotype for a node in a CGP program. This
node consists of one function and two numbers denoting what other nodes this node

8 2. BACKGROUND

is connected to. The function part of the genotype denotes what type of node it
is, this is often implemented by having a list of possible functions for the node and
using the function number as a lookup in this list. The function node will execute
the function of the node with the inputs it gets from its connections and pass on
the result to any node that it’s connected with it. If the node is at the start of the
graph, it will get its values from the input to the graph. The connection part of the
node says what other nodes this node is connected to. There can possibly be more
than two connections to a node [MT00].

To start off the program a couple of inputs is needed. These are represented as one
or more values at the far left of the graph that is fed into the first nodes of the graph.
A full execution of the program will be going through each node one at a time and
execute its function then give the results to its connected nodes. Every node has the
same amount of inputs, and only one output. What node will give the output for
the whole graph can be specified, but often it is the last node of the graph. If the
output node of the graph is not the last node its value will still be passed on to the
other nodes and they will do their calculations.

2 1 + − Result

Figure 2.4: A CGP program where the first two nodes denote the input to the
graph. Each node is executed from left to right. Each node takes as input the values
passed to it, and passes its output on to the nodes they point at. The last node
is the output of the program, denoted by "Result". This program will output the
number 2 and can be represented by the mathematical function (2 + 1) − 1.

Figure 2.4 shows a CGP program which is equal to the tree program in Figure 2.1.
One great benefit with CGP is that one can reuse old values that have been computed
before. This would involve adding an extra edge where the extra value wants to be
used. The node with the value 1 is used twice in CGP (Figure 2.4), but is duplicated
in GP (Figure 2.1).

When evolving CGP there can be a lot of offspring that will produce the same result
as the individual they are evolved from, but still have a different genotype. This
happens for instance if a subgraph that produces an output which is fed into the first
input of a commutative function is moved to be fed into the second input instead
(like 2 + 1 versus 1 + 2). CGP can tackle this very well by having a concept of nodes
that contribute to change of output, called active, and nodes that do not contribute
to change in output, called inactive. The details of this is shown in [GP13], but the
takeaway is that one can be very efficient with evolution by not recalculating values

2.3. SELF-MODIFYING CARTESIAN GENETIC PROGRAMMING 9

2 1
CHF
1, 2, 0 − Result 1

(a) A SMCGP graph with a "change function node" with its
parameters. This is the first iteration of the graph.

2 1 ∗ − Result 2

(b) After the first iteration is done, the "change function node"
has changed its function to a multiply function, giving a different
output than the last iteration.

Figure 2.5: Two iterations of a SMCGP graph to create two different results. The
"change function node" (CHF) changes its function after the first run.

that are not needed to be recalculated. This will also guide the evolution process
towards creating evolution that contribute to change in output.

2.3 Self-Modifying Cartesian Genetic Programming

Self-Modifying Cartesian Genetic Programming (SMCGP) is an extension to CGP
that includes the possibility for self-modification in the execution graph [HMB11].
This is done by expanding the functions a node can have to also include functions
that edit the graph itself. These types of functions is called functions are called
overwrite functions while the functions that do not change the graph is simply called
normal functions.

In SMCGP each node is specified by 6 genes [HMB11], one for the function of the
node, two for which other nodes the node is connected to and three parameters
required for some of the functions. The function gene works as with CGP where it
maps to a function that denotes what type of node it is, but it’s expanded to include
self-modifying nodes. The connections in SMCGP are relative to the current node,
and say how many nodes back the current node is connected to. If the connection
is 1, it will connect to the previous node. A connection must be a number which is
not 0, since the node can not be connected to itself. Should the connection point
outside of the graph, then that is treated as being connected to an input in general
SMCGP, this has been altered in the system created and is explained in Section
3.5. A node can be unconnected to another node in SMCGP, as the graph might

10 2. BACKGROUND

change after being run a couple of times, which could connect the node later on. If
a node have no other nodes connected to it, then it will not be executed and will
need the self-modification to connect it later on for it to be executed. A node in
SMCGP has always two inputs and one output, and the last node in a graph will be
outputting the output for the whole graph. The parameters of a node is given to
some of the functions if needed, and is mostly used in the self-modifying nodes and
other nodes that aren’t directly calculating a value. Figure 2.6 shows each part of a
node in SMCGP.

0 1 2 3 4 5

FUNC CONN CONN PARAM PARAM PARAM

Figure 2.6: A SMCGP graph node gene. The first value denotes the function,
the next two is two numbers denoting which nodes the given node is connected to
relatively to the node and lastly there are three parameters for the node.

All values in the node is checked to see if it is invalid, for instance if a node says
it should connect with a node that’s not a part of the graph. Should the value be
invalid, then the system will take the modulus of the value until it satisfies a range
of values that are valid. This makes for a resilient system where all values for a node
is transformed to a valid value. The relative values are made to make it as easy as
possible to duplicate and move subgraphs [HMB11], which makes self-modification
easier. Figure 2.5 shows an example of a SMCGP graph.

Evaluating SMCGP graphs

Evaluating SMCGP graphs starts by feeding the input to the nodes that needs it,
and then evaluating the nodes one by one, this is in a similar fashion to how CGP
does it. The evaluation will happen recursively from the last node and backwards,
fetching all the values that is needed [HMB09]. This way, only the nodes that are
connected to the end through nodes to the right of it, will be executed.

For function nodes that process data, like +, −, ∗ and so on, the input values are
passed to the function and the output value is the result of the mathematical function.
For modifying nodes, first the input values will be checked, if the first value is less
than the second value, there will be no modification of the graph and the execution
of the graph continues. If the first input is greater than the second, the modifying
function in the node will be added to a todo list of functions that should be executed.
After the each node in the graph has been fully executed, the todo list is scanned
and the modifications are done to the graph. The first modification that was added
to the list is executed first, i.e. a first-in first-out system [HMB11]. To avoid the list
growing too big in size, a limit can be introduced to limit the amount of changes
allowed in one run. Some of these modification nodes will need the parameters that
are encoded in the genotype, and these values are passed along to all functions. A

2.4. SELF-ORGANIZATION AND GENERATION 11

list of the node functions and their needed parameters are shown in table A.1 and
A.2 in Appendix B.

2.4 Self-Organization and Generation

There are other systems that show self-organization and other similar principles as
SMCGP. L-systems [RS80] are a type of formal grammar that is used to generate
structures. This system was created to describe how different types of yeast, fungi and
algae grows. The system works by having a small set of rules that define how growth
is done, and then a series of runs are done to see how the system grows. For instance
a system could consist of two letters, A and B. A set of rules can be that every A
can become a B or an AB and every B can become an A. So if you start off with A,
then the next run will become AB, the next run after that will become ABA, after 7
runs the result will be ABAABABAABAABABAABABAABAABABAABAAB.

This way of creating a simple set of rules that creates something complex over time
by self-modification is something SMCGP also is able to do. Instead of having a
complex rule to create a very complex result, one can only have a simpler set of rules
which will one step at a time come closer to the complex result.

Another important part of SMCGP is the ability for a node changes from one
node type to another. This is called cellular differentiation [Sla09] in developmental
biology. Usually this means that one node can change from a general node to a
more specialized type. This happens multiple times when developing a multicellular
organism and is one of the building blocks of evolution.

Chapter3Experiment system

To work with image generation in SMCGP, a framework for SMCGP manipulation
has been written in Python [pyt]. The system has been developed and run on a
MacBook Pro (Late 2013 model) [mac] with OS X El Capitan [elc] as its operating
system.

The framework is fed a configuration with information about the images that are
being generated. It will then create a new graph based on the configuration and
execute this graph. Each execution of the graph will generate a pixel for the resulting
image. The framework will continue to execute the graph for as many times as there
are pixels in the image. After an image is created the framework will save the image
so it’s available to the user of the image. If the framework is being asked to evolve
an image it will need a function to say if an image is better than another one. It will
create a graph and create an image, it will then check the image to say if it’s better
or worse than another image and will after a defined amount of tries save the best
image it found.

As mentioned, the framework supports executing a graph, specifying a problem that
should be solved and creating a list of changes that should be done to a graph, as
well as execute this list to change the graph. There can be an arbitrary amount of
functions defined that the graph can use, which can either change the graph or not
change it at all. This means that the framework can also be used for simple CGP
programs if the functions that change the graph are left out. Each run of the graph
takes in a specific configuration which tells the system how each run should be run
and what should be run, which simplifies testing multiple configurations of the same
system. A full overview of the available configurations is shown in Table 3.1.

3.1 Executing the Graph

To start off an execution the framework needs to take in a configuration for the run.
All available configurations are listed in Table 3.1, and all values are either optional
or have defaults implemented in the framework. This configuration includes useful

13

14 3. EXPERIMENT SYSTEM

Configuration Explanation
Genes If present the system will use this set of

predetermined genes.
Evolution Specifies if the evolutionary algorithm should be

run.
Offspring How many offspring each generation should

produce.
Mutation Rate Probability for a mutation to occur during the

evolution.
Epsilon Fault tolerance in the solution.
Initial Graph Length How big the initial graph is.
Maximal Changes to Graph An upper limit of the allowed changes to the graph

during a run.
Maximal Evaluations An upper limit of the maximum allowed

calculations done to a graph during a run.
Runs The amount of runs done in an experiment.
Image Dimensions The dimensions of the output image.
Parameters The amount of parameters for a node.
Max Arity How many inputs each node can take.
Memory Size How big the memory for the graph should be
Verbose If verbose logging is on or off.
Problem Function What function should be used to compute the

fitness.
Function List The total amount of functions a node can take.
Color If the output image should have color or not.
Randomize Input If the initial input to the graph should be random.

Table 3.1: All the available parameters to create different systems configurations.
Each value is either optional or has a default value in the framework, so any configu-
ration is accepted.

parameters like graph length, how many elements there are in a node, how many
nodes there should be in the graph, how many inputs to the graph and outputs from
the graph there are, a list of all the functions to map function number to function,
and the actual graph itself. This framework is as general as possible, so there’s a
lot of possibilities to change the amount of inputs, outputs, parameters and so on.
This means that using this as an SMCGP framework is a matter of locking some
of the configurations. When creating a new run, the configuration is read by the
framework, and several classes are spawned.

3.2. SPECIFYING A PROBLEM THAT SHOULD BE SOLVED 15

These classes handles everything from making sure each run is running correctly, to
the evolution part of the graph, to checking if an individual is better than another
or not. In the program, the graph itself is represented by four main parts: a list
of genes that represent the graph, a list of results from the various nodes, a list of
memory for the graph to read and write to and a second graph that acts as the list
of changes that will happen to a graph after each execution.

Each gene in the list of genes is exactly as each node in SMCGP and consist of
six numbers that represent what function is present in the node as well as two
connections and three parameters. Figure 2.6 gives a graphical overview of a node in
SMCGP. The list of results is created to be able to easily share values between nodes
and cache them during the same run. Each index in the list of results corresponds
to the index of the node in the graph. The list of memory for the graph is an
implementation of the memory system in SMCGP. The nodes can take on functions
to interact with this memory. Lastly the second graph starts off by being a copy of
the initial graph. When a node that modifies the graph is encountered, the second
graph will be immediately changed, while the execution continues on the first graph.
If a node that resets the changes list, the second graph is reverted to the same state
as the graph being executed on. The last thing that happens after an execution is
that the second, modified graph replaces the graph that was executed on this run.

To increase performance of the graph execution, the "active" and "inactive" system
from [GP13] has been implemented. If a node is connected to a path that leads to
the end of the graph it is considered active, and will be executed, if it’s not connected
to such a path it is considered inactive and will not be executed. This is determined
at the start of each execution of the graph, as well as after every change to the graph
that might result in a change of active nodes. All nodes that are considered active
are saved and a list of these are kept for increased performance, as nodes can be
skipped if they are inactive.

3.2 Specifying a Problem That Should Be Solved

To solve a problem, a specific class for this purpose is allocated. The main function
for this class is to set a function that will take in a set of values, and in some way
give a number indicating how close these values are to a desired result. For instance
a function can be fed data generated from the individual as well as proven data
that the individual should be able to create. In this case the fitness function would
calculate a difference which says how far off the data generated from the individual
is to the proven data. Another way of using the fitness function is to come up with
a mathematical function that determines different properties of the result. Both of
these cases have been implemented and used in this system.

16 3. EXPERIMENT SYSTEM

Another way to test how good a solution is is to provide a truth function which will
give the correct answer to a problem given an input. In this case the function would
give the same input to the truth function as the individual got, and would calculate
some difference between the two answers. This could be how far off the solution is
with respect to a tolerance or similar.

3.3 Running the Evolution

To run the evolution a runner class is a part of the framework. This class handles
the evolution and acts as en entry point as well as a manager for the framework. The
runner handles all the flow of data between the framework.

Firstly the runner gets the configuration (see Table 3.1 for a full list of configuration
possibilities) for the run as an input. It then prepares all the other classes based on
the configuration, this includes delivering the problem function to the correct class,
setting how many offspring each generation in the evolution will have and so on.
Should some required parameters be missing from the configuration, default values
are added.

When all the settings are set, the runner runs the program according to the spec-
ifications. There are two main paths that can be taken by the runner, either the
graph is pre-determined in the configuration, or the framework should create its
own graph. In the latter case all parts of the graph will be chosen randomly. Since
the framework has taken extra precaution to make sure the system is as resilient as
possible, explained in detail in Section 3.5, any value for any part of the genome for
each node in the graph, however some reasonable ranges for values chosen are being
used.

When the graph is set for the individual the runner checks if the evolutionary
algorithm should be chosen, or not. If the evolutionary algorithm should not be
run, the runner will feed any defined input to the individual and pass that on to
the fitness function. The result will then be an image which is created from the
individual given an input. However, should the evolutionary algorithm be run, the
runner will then continue on creating multiple offspring from this one individual and
run the process again for each of these individuals. A global list of all individuals
during one generation of the evolution will keep track of all individuals and their
fitness score. When one generation has finished evaluating, the best individual from
this generation is kept and used as the base for the next generation. This system
only keeps one individual from each generation and only one individual is carried
over to the next generations.

The configuration also determines the mutation rate for the individual. This number
represents the probability of one of the offspring of an individual to have a mutation
in its gene. The way this is implemented is that one random number in the genome

3.4. SELF-MODIFICATION 17

of the one node will be changed to a random value. Every value is a valid value, so
the mutation can take on any value. The same function that creates a random graph
is used for the mutation, so the values chosen are not so big that they could cause a
performance issue. Both functions, connections and parameters can be mutated.

Each run of the framework is completely isolated from every other possible run. This
means that multiple instances of the framework can be run in parallel on the same
computer with no issues at all. A common issue with running experiments in parallel
is the initial seed to the random number generator being the same, but this is one of
the issues that will not be an issue here because of the isolation.

3.4 Self-Modification

To run the self-modification of SMCGP in the framework a second graph is present
on each individual. Each run of the graph can introduce numerous changes to the
graph, and each of these changes are applied to the second graph. The modification
happens in a first in first out order, so the changes are immediately applied to the
second graph. Should the function of a node be a reset of the changes list, then the
second graph will be reset to the current graph. After one execution of the graph
is fully completed, which means one value is outputted from the graph, the second
graph will be set as the current graph. This ensures that the correct changes are
applied after each execution of the graph.

To ensure good performance and avoid endless runs of ever-growing graphs, a limit
is put on the number of changes that can be applied to a graph. If the limit is hit,
no more changes will be applied to the graph, and the run will be terminated. Doing
this extra graph will introduce unnecessary overhead if a node that resets the changes
to the graph is hit. There is nothing in the framework that takes this into account,
so this overhead is accepted.

All functions of the graph receives a reference to the individual that represents the
graph. This is done so that the functions that alters the graph can do so on the
individual itself for convenience. If the node doesn’t alter the graph, it simply ignores
the individual and manipulates the other values given to it. If it does alter the graph
no values for calculations are returned, but rather a status signal saying the change
was either successful or not, with the latter throwing an error.

3.5 Resilience Demands of Evolution

When evolving graphs in this system, one of the first things that become apparent is
the demands for safeguarding every single aspect of the evolution. Since the graph
can evolve itself, a whole new dimension of evolution is present. A graph can explode
and become too big to be handled by the computer, or implode on itself and end up

18 3. EXPERIMENT SYSTEM

being nothing. All of these cases have to be considered to make sure the program
doesn’t crash in the middle of an experiment. A big part of the evolution is to explore
as much of the possibility space as possible to see what is best which means there
will be a lot of these issues.

To combat this there are multiple safeguard throughout the framework. The nodes
are connected by a relative number to each other, if the relative number points
outside of the graph, it will loop around and connect to the last node of the graph.
This is different from the original SMCGP paper where nodes pointing outside of the
graph would connect to the first or last node of the graph, depending on what side
the relative number missed on. The reason for this change is results from experiments
where they did seem to produce more favorable results when the connections were
looping around. Another safeguard is a modulo calculation on every parameter fed
to a function which checks to see if this parameter is within a range of valid values.
Should it not be within these values the number will be moduloed and then fed to
the function. This check means that any value can be sent to any function. There
is also a timed limit to how long one run of the graph can take, if the time limit is
reached, the run will be deemed invalid and the system will move on to the next
calculation.

All of these safeguards makes not only life easier for the user of the framework,
but also lets the evolution explore more freely without the program crashing and
therefore stopping the evolution.

3.6 Self-Modifying Graphs as Image Generators

An SMCGP graph will produce one number from one run of the graph, and the
modify itself. On the basis of this, the system that was chosen to create images were
to have each run of the graph create one pixel for the image. This means that the
graph will be run for as many times as there are pixels in the image. With the graph
being able to modify itself in between each pixel generated, and the shared memory
of the graph will not reset until the whole image is created, the system will hopefully
be able to create images where one part of the image can be dependent on other
parts of the image.

To start off the graph is given two inputs, which can be arbitrarily chosen, but the
default values are 2, also chosen arbitrarily. When one iteration of the graph is
complete, the result of the run will be fed back into the graph and replace the oldest
of the two input values to the graph, see Figure 3.1 for a visual explanation. This
is done to give the graph more possibilities to create interdependence between the
different parts of the image.

The graph itself have no concepts about the different properties of the image, like
width and height. It will always create a sequence of pixels, and it’s the rest of the

3.6. SELF-MODIFYING GRAPHS AS IMAGE GENERATORS 19

1 1 NOR NAND
MOVE
1, 4, -2

CHF
0, 1, 3 Result 1

(a) An SMCGP graph will create a result from one run. The inputs to the graph is the first
two nodes right now with the values 1 and 1.

Result 1 1 NOR NAND
MOVE
1, 4, -2

CHF
0, 1, 3 Result 2

(b) The result from the first run is replacing one of the input values for the next run.

Result 1 Result 2 NOR NAND
MOVE
1, 4, -2

CHF
0, 1, 3 Result 3

(c) The oldest input value of the two inputs will always be replaced.

Figure 3.1: This is how the feedback system in the framework works. The graph
starts out at its initial state and produces a result. This result is then fed back into
the graph for its next run. The next result generated will then replace the oldest
input to the graph.

framework’s task to arrange these pixels in the correct format to create an image.
This leaves more work to be done by the fitness function to introduce these concepts
to the final result. Therefore the fitness functions needs to have a concept of image
height, width and other properties the final image should show The fitness function
will be fed a long list of pixels generated from the graph and analyze this. For

20 3. EXPERIMENT SYSTEM

instance, a fitness function to create a French Flag [Wol68] would divide the list of
pixels into rows with the length of the image width. Afterwards the contents of each
row will be scanned and split into three equally sized groups. Then the contents
of each group will be scanned to determine if it’s the same color of each pixels or
not. If there’s a threshold present this will be taken into account when examining
the contents of each group. Finally a check will be done to make sure none of the
three groups contain the same color. This will be repeated for each row, and the
wanted colors could either be pre-determined, or one could say that the first group
will determine the colors for the flag. Afterwards a fitness needs to be returned,
which can for instance be how many percent of the rows are the correct colors within
the given threshold.

The graph itself is operating on numbers, but the output of the graph should be a
pixel value, so a mapping from number value to a pixel value is present. There is a
fear here that the mapping will introduce a bias in the system, and this is discussed
more in-depth in Section 3.7. Each pixel generated is in the RGB format and consist
of three numbers ranging from 0 to 255 for the red, green and blue channels. The
way the mapping works is that the number is converted to binary form, and the
first 8 bits are put into the blue channel, the next 8 bits into the green and the next
8 into the red. Since the graph operates in floating numbers the values must be
converted into integers before the mapping to pixel values takes place. This is done
naively where the decimals of the number is cut away. Another possibility is to scale
the number up before doing this converting to capture more of the number before
converting it into a pixel. Both possibilities were tested but there were no immediate
advantage to any of the conversions, and the first one was chosen for this framework.

Figure 3.2 shows how an image is created with this system. A program is run to
create a pixel and the values are fed back into the image, as shown in Figure 3.1.
When a list of values are created they are ordered according to the specified properties
of the image. When there’s enough values for all the pixels, the image is complete.

3.7 Eliminating Bias in the System

One problem of system like this is the possibility of a bias being a part of the system.
If a bias should be present then it could mean that it’s not the graph itself that is
creating these images, but rather another part of the system which is unintentional.
Since evolution has no concept of what is creating the images, it just gets values based
on a graph, it can not know what part of the system is actually responsible for the
way the image turned out. There must be a way to make sure that there’s actually
the graph that creates the images, and not the translation from floats to integers,
or maybe the mapping from number to a pixel value that creates the spectacular
images.

3.7. ELIMINATING BIAS IN THE SYSTEM 21

1 1 NOR NAND
MOVE
1, 4, -2

CHF
0, 1, 3

(a) An SMCGP graph will create a pixel for each run of the graph.

(b) These pixels are given in a sequence with no
concept of how the end image is going to look.

(c) The framework makes sure to order the pixels according to the specifications of the
image being generated. As shown here, the final result is a full image.

Figure 3.2: How the framework generates images. Firstly a graph is present that
generates a pixel for each run. The graph will generate as many pixels as there are
pixels in the resulting image. The framework itself takes this long list of pixels and
puts them together with the correct width and height to create an image.

One of the famous papers on SMCGP [HMB11] created an SMCP graph to evolve
the French Flag sequence. What the author did was to create integers that repeated
a pattern, but treated some of the values created by the graph as "dead values". This
meant that some of the values of the graph were thrown away without usage. Doing
this could have introduced a bias in that author’s system which could have altered
the results in that particular experiment.

When creating this system to evolve SMCGP some biases were found. Figure 3.3
shows one of the biases found. In this picture the mapping from one big list of pixels
to the actual image went wrong. Instead of splitting the list on the image width and
place the rows underneath each other, the system put the rows both horizontally

22 3. EXPERIMENT SYSTEM

and vertically. This created a diagonal from the top left to the bottom right of the
image where the image is mirrored over. While this property of mirroring is very
interesting, it should be noted that the graphs and SMCGP did not create this effect,
but it was the faulty mapping that caused this.

(a) (b)

Figure 3.3: Bias shown in two images. When saving these images the framework
read the same pixels multiple times and duplicated them on the same image. This
caused the top side of the image and the left side of the image to be the same. This
in turn made it look like the image had a twisting pattern.

Figure 3.4 had a similar problem with faulty mapping. In this case the system did
not advance a full row in the list of pixels when saving the image. This caused each
row of the image to be the last row plus one new pixel. The effects of this problem
was a striped pattern throughout the image which was not caused by the SMCGP
graph itself.

In both these two cases of bias the solution was to make sure the image was saved
correctly when going from data structure in the framework to image on disk. A
simple test to make sure this was done correctly was to read back the saved image
after a save and check that the values for the pixels in the image, put together as
one big list, was the same as the values for the image before being saved.

(a) (b)

Figure 3.4: Bias shown in two images. When these images were saved the first
row of the image saved onto all the other rows with a small offset. This caused the
striped pattern, so the graph itself has not created this striped image.

Figure 3.5 shows a bias in the actual saved format. When saving the first images
with this system these images were the result. The fault here is that the actual

3.7. ELIMINATING BIAS IN THE SYSTEM 23

format being saved is wrong, which caused each pixel to have the wrong color. While
this can look like interesting properties of the image, it is actually an image that
doesn’t correspond to the image being saved. To solve this problem a predetermined
image was put into the system, and the save function was tested isolated from the
rest of the system.

(a) (b)

Figure 3.5: Bias shown in two images. These two images were corrupted when
being saved. When the pixels were written to disk a bug occurred which caused some
of the data to be written faulty. This in turn caused the patterns shown in these
images. Had the saving gone correct, then the images would have been black.

To eliminate these biases a system were needed to prove that the graph itself were
responsible for the image generation. No system were found that gave rigorous
testing of a system similar to this one to make sure there were no biases. Having a
good rigorous system is a challenging task, since there’s a lot of moving parts in the
system and a lot of places where a bias might be.

The system to test if there’s biases in the framework consist of several tests. If an
image passes one version of the test it is deemed highly likely that the graph is the
main part in creating the properties of the image. This does not mean that there is a
rigorous proof that no bias exist, but it does mean that there are some data pointing
in that way.

When an image has been generated with an interesting property the graph that
created said image is saved. Since this image was created with a given set of inputs
as a starting point, this set of inputs is changed to something different. If there is a
slight change in the output image, but it still retains its properties, for instance say
the color changes, but the structure of the image is the same, it is deemed likely that
no bias exist. Should the image not be able to do such a thing multiple runs of the
experiment will be run. Should multiple runs turn up multiple images with the same
structure, but with some slight changes, for instance that the structure is moved
around, it is deemed less likely that a direct bias exist that created that one image.

These tests increases the likelihood of biases not being present in the system. The
idea of the tests is to try to remove as much of the uniqueness of the one experiment
being run, to see what general properties the graph has. All the results in Chapter 4

24 3. EXPERIMENT SYSTEM

has passed one of these tests, with the exception of Section 4.4 which seems to be a
special case of another experiment. In addition to these manual testing of the system
has been conducted with to make sure for instance the pixels are being placed on
the right places.

Chapter4Experiments

Four main types of experiments were performed to explore the ability of the SMCGP
to create images. The background for choosing these experiments was to show that
SMCGP is able to create a variety of different types of images.

The first experiment created a single colored image that changes color based on its
inputs. The second experiment is an experiment to see if the system could produce
repeating patterns. The third experiment was to create an image that is fully random
and has no apparent pattern. Lastly an experiment was done to create an image
that is in between total randomness and repeating patterns.

All of these experiments was done to test the capabilities of the system to produce
different types of images. The configuration used as a base for all experiments is
shown in Table 4.1. Any change that is specific to any experiment will be shown in
its respective section.

Parameter Configuration
Offsprings 100
Mutation rate 0.01
Epsilon 10
Initial graph length 4
Maximal changes to graph 1000
Maximal evaluations 1000
Image dimensions 32x32 pixels

Table 4.1: Default configuration of the system for the experiments done in this
thesis. All values that are not present are left to their default values.

A total of around two million experiments were run in total, including runs that were
done before biases were found in the system. The longest time an experiment run
were for over 6 hours. The results presented here have filtered out all experiments
that did not yield at least one image that was wanted. All tables displaying amount

25

26 4. EXPERIMENTS

of correct results allow duplicate images, so if 100 images were created and two of
them are identical as well as defined as correct solutions, it will be counted as 2
correct solutions.

4.1 Single Colored Image

Introduction

As a simple starting point to make sure that the graph is capable of creating images
that rely on input an image that produces a single color based on its input. The
configurations for this experiment is shown in Table 4.2.

Parameter Configuration
Offsprings 100
Mutation rate 0.01
Epsilon 0
Initial graph length 1, 4, and 20
Maximal changes to graph Unlimited
Maximal evaluations Unlimited
Image dimensions 32x32 pixels, 64x64 pixels and 128x128 pixels

Table 4.2: The configuration used for the single colored image experiment. All
values that are not present here are left to their default values.

Setup

The fitness function used for this experiment took the first pixel and declared this as
the color of the image. The next pixels were checked against this one pixel and the
fitness was calculated by how many percent of the rest of the pixels had the same
color as the first one.

Several different sized images were created and several different graph lengths were
tested.

Results

This task was easily solvable by the system. To solve this only one node is needed,
for instance an NOP node which just passes its value on. This was also reflected in
the results, as many of the graphs that produced a uniformly colored image based
on the input was just one node.

Three runs were done to see if the graph could produce an image with a similar color.
Each run had a different sized graph, with the number of nodes being 1, 4 and 20.

4.2. REPEATING PATTERN 27

Every size produced an image with the same color. Since the whole image has the
same color the output image can be any size as soon as one graph is found.

When the number of nodes in the graph increased, most of the graph was not being
executed. The active part of the graph was no more than a node or two while the
rest was either not connected to the rest, or didn’t have an effect on the output.

The success rate for this result is shown in Table 4.5. To be counted as a correct
solution in this experiment the whole image had to have one single color. This color
was defined to be any color that was not black. The reason for this is that the initial
values for the results of the graph is set to 0, so a graph that does nothing could be
able to create a black image. This is usually not a big deal, since the graph will do a
lot of work, but in this simple case the restriction seemed necessary.

Image Size Amount Created Correct Solutions Percentage
32x32 80 44 55.00%
64x64 70 37 52.86%

128x128 100 59 59.00%

Table 4.3: The results for the single colored image experiment.

4.2 Repeating Pattern

To explore the abilities of the system two experiments to produce repeating patterns
in the images was performed.

The first experiment was to create a predetermined pattern. This involved creating a
fitness function that explicitly said how close one was to a given result. The results
is shown in the subsection 4.2.1.

The next part of this experiment were to create another repeating pattern, however it
should be more complex than the first pattern. In this case a more complex repeating
pattern means the sequence can not simply be two fluctuating values. As the results
in the subsection 4.2.2 will show this ended up being a gradientual pattern.

Both parts of this experiment had the same configuration shown in Table 4.4, but
with two different fitness functions. This experiment was only done with two different
image dimensions. These images were created in two different dimensions, 32x32
pixels and 64x64 pixels. When trying to generate bigger images the time it took to
generate each image increased drastically being up to hours for each image. Because
of this the sizes settled upon were 32x32 pixels and 64x64 pixels.

28 4. EXPERIMENTS

Parameter Configuration
Offsprings 100
Mutation rate 0.01
Initial graph length 4
Maximal changes to graph 10 000
Maximal evaluations 10 000
Image dimensions 32x32 pixels, 64x64 pixels

Table 4.4: The configuration used for the for the repeating pattern experiment. All
values that are not present here are left to their defaults.

4.2.1 Striped Pattern

Introduction

Firstly a simple set of repeating patterns was created with the color of the image
being specified by the input of the graph. This was inspired by the "French Flag
Model" [Wol68] which involves creating a striped pattern in an output image. In
this case a striped pattern of two colors was found which changed color based on its
input.

Setup

The fitness function for this problem did a check on how much of the image contained
stripes and how much did not. It started off by checking the first four pixels to see if
two and two of these was the same color. After this the functions keeps matching the
rest of the pixels to the first four and gives a score based on how much of the image
is stripes. A pseudocode implementation of this function is shown in Algorithm B.1
in Appendix B.

Results

Image Size Amount Created Correct Solutions Percentage
32x32 200 16 8.00%
64x64 200 28 14.00%

Table 4.5: The result for the simple repeating pattern in an image experiment.

Some sample images created by this experiment is shown in Figure 4.1. Since this
image has a pattern that repeats after 4 pixels, each image created with this graph,
as long as its width is a multiple of 4, will look the same.

4.2. REPEATING PATTERN 29

The success rate for this experiment is shown in Table 4.5. To be counted as a correct
solution the image had to have stripes of two different colors throughout the whole
image, as show in Figure 4.1.

(a) Black and
White.

(b) Red and Light
Blue.

(c) Dark Red and
Light Blue.

(d) Black and
Light Purple.

Figure 4.1: A collection of different colored striped images of sizes 32x32 pixels
created in this experiment. All images are scaled to twice their size for increased
visibility.

4.2.2 Gradientual Repeating Pattern

Introduction

Another task in regards to repeating patterns in to create a more complex pattern
than the previous repeating pattern. What the resulting pattern should be was not
defined beforehand, but it quickly became apparent after a few experiments that a
gradient pattern was possible.

When the gradient was found, a fitness function was created especially to find
gradientual patterns.

Setup

The fitness function used for this checked one and one row of the image at a time. It
divided the given row into sections of three and took the average value of the pixels
in each region. It then checked to see if the average color of each section is darker
than their next section, with a threshold of epsilon from the configuration. For each
section of the row that were darker than its next section a good score was given that
was later normalized over the amount of sections the row was split into. After this
all these values were added together and normalized with respect to how many rows
there were. A pseudocode implementation of this function is shown in Algorithm
B.2 in Appendix B.

Results

The results are shown in Figure 4.2. Since the pattern will repeat itself at a given
point, any number of sizes of images is able to be produced from either of the graphs

30 4. EXPERIMENTS

Image Size Amount Created Correct Solutions Percentage
32x32 200 8 4.00%
64x64 200 18 9.00%

Table 4.6: The result for the gradientual repeating pattern in an image experiment.

that created the result images. However since the repeating pattern has a period, not
all sizes will look the same. If you double the image size, the height of the gradients
will be cut in half. Therefore a graph can create an image of any size, but they won’t
look like upscaled versions of the same image, but rather as different images with
slightly different properties.

The success rate for this experiment is shown in Table 4.6. To be counted as a correct
solution the image had to have a repeating pattern that was more complex than
two different colors. All the results shown here are various variations of a gradient
pattern shown in the results in Figure 4.2.

(a) Big, red gra-
dientual stripes.

(b) Small, red
gradientual
stripes.

(c) Big, light
blue gradientual
stripes.

(d) Medium sized
light blue gradien-
tual stripes.

Figure 4.2: A collection of different images with repeating patterns of sizes 32x32
pixels created in this experiment. All images are scaled to twice their size for increased
visibility.

4.3 Edge of Chaos

Introduction

To make sure the system is capable of creating more than a fully random image and
simple repeating patterns, another image with different properties was wanted. The
image should display a pattern that lies in between fully random and very repetitive.
If this system can create an image with such properties it can be argued that the
system is able to reach a phase where emergent computing is present [Lan90].

As the results will show, this other property became a noise-like effect. Like the
gradient pattern task, this task was not predetermined. When running the other

4.3. EDGE OF CHAOS 31

(a) Big, red gra-
dientual stripes.

(b) Small, red
gradientual
stripes.

(c) Medium sized
light blue gradien-
tual stripes.

(d) Very small,
light blue gradien-
tual stripes.

Figure 4.3: A collection of different images with repeating patterns of sizes 64x64
pixels created in this experiment. No scaling is done.

experiments an image that had pillars with a noise-like pattern on it. Afterwards a
custom fitness function was written and more experiments were done.

Figure 4.4 shows an image produced in which has pillars going downwards in the
image, with a noise-like effect going though the whole image. As with the repeating
pattern, when the images became too big, the runtime became too big to work with,
because of this images with the size of 128x128 and up were not created. Images
in sizes of 32x32 pixels as well as 64x64 pixels were created. Table 4.7 shows the
configuration for this experiment.

Parameter Configuration
Offsprings 100
Mutation rate 0.01
Initial graph length 4
Maximal changes to graph 10 000
Maximal evaluations 10 000
Image dimensions 32x32 pixels, 64x64 pixels

Table 4.7: The configuration used for the edge of chaos experiment. All values that
are not present here are left to their defaults.

Setup

The fitness function used for this experiment was largely based on the fitness function
for the repeating patterns, described in Section 4.2. The main difference between
the two is that this fitness function did another pass over the image after the main
fitness was found to see if the image contained small irregularities.

This pass took one and one row and counted each unique color in that row and gave
a score that was higher if there were more colors in the image and lower if there were

32 4. EXPERIMENTS

Figure 4.4: Image computed that shows signs of being on the edge of chaos [Lan90].
The arrows point at pillars running through the image, while the image as a whole
shows signs of a noise-like pattern.

fewer. The sum was in the end normalized with respect to how many rows there
were and how many pixels there were. At the end both values were given a weight to
see how much of the total they should count. In this experiment the first pass with
the repeating patterns were weighted at 30% and the last pass of random noise were
weighted at 70%. A pseudocode implementation of this fitness function is shown in
Algorithm B.3 in Appendix B.

Results

The results are shown in Figure 4.5 for the images of size 32x32 and Figure 4.6 for
the images of size 64x64.

With these images there are some variation in the results from the smaller to the
larger images. The smaller images have more clearly defined pillars which also takes
up more of the image. The bigger images have more discrete pillars that aren’t as
clear to see. This is in contrast to the other experiments where there were close to
no change in the different sized images.

The statistics for this result can be seen in Table 4.8. To be counted as a "Correct
Solution" in this case means that the image had to visibly have pillars in the image,
as well as looking mostly like a noise pattern. While there are some overlap, the
results yielded different images with the wanted properties.

Image Size Amount Created Correct Solutions Percentage
32x32 200 7 3.50%
64x64 200 3 1.50%

Table 4.8: Amount of correct solutions for an image that have pillars and a noise-like
pattern.

4.3. EDGE OF CHAOS 33

(a) Big red pil-
lar on the left,
smaller pillars on
the middle-right.

(b) Smaller red
pillars on the
right side of the
image.

Figure 4.5: A collection of different images with a pattern seemingly on the edge
of chaos [Lan90] of sizes 32x32 pixels created in this experiment. These images are
scaled to twice their size for increased visibility.

34 4. EXPERIMENTS

(a) Smaller red pillars located on
the right side of the image.

(b) Smaller red pillars located in
the middle of the image.

(c) Thinker red pillars in the cen-
ter with two smaller on the right
side of the image.

Figure 4.6: A collection of different images with a pattern seemingly on the edge
of chaos [Lan90] of sizes 64x64 pixels created in this experiment. These images are
scaled to twice their size for increased visibility.

4.4. RANDOM NOISE 35

4.4 Random Noise

Introduction

Another image that shows the capabilities of the system as a whole is being able to
create an image with no apparent image at all. This ability can be seen as a way of
creating a seemingly random sequence with no pattern at all. The results here were
found when running the edge of chaos experiment from Section 4.3.

Setup

The setup for this experiment were exactly the same as the edge of chaos experiment.
Each one of the 400 images created in that experiment were checked manually to see
what interesting images were present. A few times an image popped up that looked
like the it was fully random and this is the image that is presented here.

Results

The system were able to create an image that was seemingly random, however it was
only able to create this image with an image size of 32x32. This might suggest that
this result is a special case of a pillar image from Section 4.3. Only one form for this
image was found, each of the results under "Correct Solutions" in Table 4.9 refers to
the same image.

The results of this experiment can be seen in Figure 4.7. The statistics for this result
can be seen in Table 4.9.

Image Size Amount Created Correct Solutions Percentage
32x32 200 2 1.00%
64x64 200 0 0.00%

Table 4.9: The random noise image was found only when the image was 32x32
pixels, and there were only one variation of the image.

Figure 4.7: Random noise in image of size 32x32 created in the other experiments
in this thesis. It is scaled to twice its size for increased visibility.

Chapter5Discussion

The results of the experiments show a variety in the properties of the images created.
The same system, with different graphs are able to create several different patterns.
This includes a simple single colored image (see Section 4.1), two different types of
repeating patterns (see Section 4.2), complex patterns that shows multiple properties
in one image (see Section 4.3) and even seemingly fully random noise in images (see
Section 4.4).

5.1 The Framework

All the images were able to be created with a small initial graph length. With a
graph of length 4, all types of images were found. This suggest that the graph length
is not a defining factor when it comes to being able to produce images. Seeing it as a
node can spawn multiple more nodes and other nodes can change their function this
seems plausible. In nature a small cell can through cell differentiation and growth
create a complex creature, and these results suggest this might also be present here.
There might be one "base graph" that can turn into all other graphs, similar to how
stem cells work in the human body. However, no such graph has been found in these
experiments.

Each experiment, except for the experiment to find one single color for the whole
image, was only done for images with the size of 32x32 and 64x64 pixels. The
reason for this was that the runtime for each experiment became too long for any
image bigger than that. The exact reason for this time increase is not known. One
suggestion is that it could be that the search space for the evolution becomes so
big when the image is 128x128 pixels, that a much more powerful computer is
actually needed to solve these problems. Another possible reason for this is that
the framework itself is not good enough optimized and may even have bugs which
increases the runtime significantly. Both possibilities are plausible and it might even
be a combination of the two that is the exact reason. While this did mean that

37

38 5. DISCUSSION

bigger images were off the table, smaller images were still created, so principles were
able to be shown.

As seen by the results, the images that were 32x32 have the same overall properties.
The edge of chaos experiment have pillars and random noise in both the 32x32 and
64x64 images. The same goes for the repeating patterns as well as the single colored
image. The odd one out is the random noise image, and this will be mentioned more
later. Having all the same properties just scaled up with a bigger image suggest that
the size of the image does not necessarily mean that the size of the image directly
affects what can be generated in the image. One can say that images bigger than
64x64 pixels could have the same properties as the images seen here. This can not
be said certainly, however, as the dataset for this idea is just two sizes. One would
have to test a lot more images to see an exact trend.

While there has been a lot of work gone into making the possibility of a bias being in
the system as small as possible, there is no way to be certain of this. A non-obvious
bug in the system could pollute the framework in ways that are hard to tell. All
the results here are subject to these errors. This can be implementation errors,
framework errors, operating system errors and so on.

5.2 The Results

The system was easily able to create a single colored image from Section 4.1 of various
sizes. A fully black image was deemed not a correct solution since a graph that did
nothing will create a fully black image. The results shown in Table 4.5 shows how
many of the images created was deemed a correct solution. This table shows that
more than half of all images created were correct solutions. This high number makes
it likely that the system and the evolution has worked together to find these images.

The repeating patterns in Section 4.2 have a much lower success rate. This means
that a lot more images had to be created to find a suitable solution. It can with a
reasonable be assumed that creating an image with a repeating pattern is harder
than creating an image with just one color, so it makes sense that the success rate is
lower here. Exactly how much less this number should be is hard to say. There are
a lot of moving parts in this system, so pinpointing exactly what part impacts the
results is not an easy task and have not been the focus of this thesis.

The success rate was higher for bigger images when evolving repeating patterns.
This could be just random variation, but it could also mean that it is easier to find
repeating patterns in bigger images. One reason that could support this theory
is that bigger images have more in them, which makes it easier to find something
repeating in them. The predetermined pattern were a shorter pattern than the
gradient pattern, and this was found at a higher rate than the other. Based off of

5.2. THE RESULTS 39

this one can assume that a smaller repeating pattern is easier to find than a bigger
one, however the basis for this is only two experiments of two sizes each.

The edge of chaos images from Section 4.3 images were very rare to find. They
showed up in only 3.50% of the images generated to find those images when the size
was 32x32, and only about half of that when the size was 64x64. This can either
mean that finding these images is very hard, or it could simply be pure luck that
these images were found at all. Given that the percentage is low, but not insignificant,
we can assume, but not say for sure, that these images are hard to find. This also fits
with the other results that an image that has more in it shows up less when evolving
images.

The random noise image from Section 4.4 only showed up two times when the
experiment was to find an image on the edge of chaos. Given its resemblance to the
edge of chaos images, and its rarity it might just be a special case of an edge of chaos
image. There were no variations of this image found, just that one version, while all
other images have been found in multiple versions. This suggest even more that this
image is a special case of another experiment.

Chapter6Conclusion

The SMCGP system has shown the ability to create a vast array of different types of
images. It was done so with a very limited starting point through various techniques
inspired by biology.Both complex and simple images were able to be created by the
experiments.

The evolution did seem to help along with finding these images with varying success
rate. It is hard to estimate what the success rate should be for finding such an
image, since there are a lot of moving parts in the system as well as calculating the
probability of randomly creating this image is also complex. While there might be
sheer luck that some of the images were found, and that the evolution part of the
system might not have any part to do with this, it will not change the fact that the
images were still found and therefore confirms that this system is capable of creating
these images.

The single colored image was found almost immediately after the framework was
completed. When the simple fitness function was complete the results were instantly
either black images, or images of a different color.

The same goes for the striped pattern. While the actual amount of correct results
was smaller the results were found after a few experiments and tuning of the fitness
function.

When trying to find the edge of chaos images, it was a bit harder. Not only did the
system have to run quite a few experiments, but the tuning of the fitness function
was very important. The weighing of the different parts of the fitness function had a
big impact on the results. After a series of testing the weighing shown in the results
were found to produce the best results. This also led to the random noise image to
be found.

All types of images were able to be found with a graph length of just 4 nodes. This is
not the same size as the ending graph for all of the experiments, but it does say that
the complexity of the output image is not directly tied to the graph length. This

41

42 6. CONCLUSION

harmonizes well with the fact that the graph is able to increase its own size if needed
and is not bound by its starting size.

One point to take into account is the fact that eliminating bias in this system is not
an easy task. There have been some work done on eliminating bias and try to locate
possible biases, but there is no rigorous test yet available. However the precautions
done suggest the probability of there being bias in the system is less than there not
being bias in the system.

The system does suffer from a significant slowdown when the images become big.
This can either be because of bugs in the framework or because the search space
becomes so big that more powerful computers are needed. However the two sized
images that were created did show interesting properties in between them, notably
that one could see the same properties scaled up when looking at the bigger images
in contrast to the smaller ones.

The two images of different sizes show the same properties, but scaled according to
how big the images are. While this does not prove that all images will have the same
properties regardless of size, it does show that there is a trend starting.

Overall this system is able to generate a wide range of different images that show
different properties related to these types of evolving systems. Its self-modification
properties seem to assist the evolution when trying to find correct images, which
is has also been seen in other experiments [HMB11]. The initial graph size is not
directly linked up to the complexity of the resulting images.

6.1 Future Work

The problems experienced when the images become too big are interesting issues to
tackle. It could either be an optimization issue, since there are a lot of data being
moved around during execution, or it could be a more significant bug. While there
is done work to cache values being calculated, there is done less work in regards
to smart solutions when evolving the graph itself. Work in this area could provide
valuable insights into how to efficiently change the structure of large data structures.

One very interesting part is to analyze what graphs create what images and see
if there is some correlation between properties of the graphs and properties of the
image. This could be for instance one subgraph that causes a certain color to appear,
or another subgraph that creates a triangle at a given spot. If such a graph can be
found this would open the possibilities to create a grammar that explains a mapping
from graph to result.

To further explore the possibilities of SMCGP an interesting question is to see if
these results are replicable with a graph that never grows more than a given amount

6.1. FUTURE WORK 43

of nodes. Right now there are no restriction on how big the graphs can be, only
restrictions on how much calculation is allowed.

Lastly an interesting problem is to see if the mapping from graph result to pixel
color can be done differently, and see if this has any impact on the system. Right
now there has only been one mapping, but a different mapping could provide other
properties.

References

[Cra85] Nichael Lynn Cramer. A representation for the adaptive generation of simple
sequential programs. In Proceedings of the First International Conference on
Genetic Algorithms, pages 183–187, 1985.

[DSM13] René Doursat, Hiroki Sayama, and Olivier Michel. A review of morphogenetic
engineering. Natural Computing, 12(4):517–535, 2013.

[elc] Os x. http://www.apple.com/no/osx/. Accessed: 2016-07-04.

[GH88] David E Goldberg and John H Holland. Genetic algorithms and machine learning.
Machine learning, 3(2):95–99, 1988.

[GP13] Brian W. Goldman and William F. Punch. Reducing wasted evaluations in
cartesian genetic programming. In Krzysztof Krawiec, Alberto Moraglio, Ting
Hu, A. Sima Etaner-Uyar, and Bin Hu, editors, EuroGP, volume 7831 of Lecture
Notes in Computer Science, pages 61–72. Springer, 2013.

[H+01] Francis Heylighen et al. The science of self-organization and adaptivity. The
encyclopedia of life support systems, 5(3):253–280, 2001.

[HMB09] Simon Harding, Julian Francis Miller, and Wolfgang Banzhaf. Self modifying
cartesian genetic programming: Parity. In Evolutionary Computation, 2009.
CEC’09. IEEE Congress on, pages 285–292. IEEE, 2009.

[HMB11] Simon L Harding, Julian F Miller, and Wolfgang Banzhaf. Self-modifying carte-
sian genetic programming. In Cartesian Genetic Programming, pages 101–124.
Springer, 2011.

[Koz92] John R Koza. Genetic programming: on the programming of computers by means
of natural selection, volume 1. MIT press, 1992.

[Lan90] Chris G. Langton. Computation at the edge of chaos: Phase transitions and
emergent computation. Physica D: Nonlinear Phenomena, 42(1):12 – 37, 1990.

[mac] Macbook pro. http://www.apple.com/no/macbook-pro/. Accessed: 2016-07-04.

[MHT14] Julian F Miller, Simon L Harding, and Gunnar Tufte. Evolution-in-materio:
evolving computation in materials. Evolutionary Intelligence, 7(1):49–67, 2014.

45

http://www.apple.com/no/osx/
http://www.apple.com/no/macbook-pro/

46 REFERENCES

[MT00] Julian F Miller and Peter Thomson. Cartesian genetic programming. In Genetic
Programming, pages 121–132. Springer, 2000.

[MT04] Julian F Miller and Peter Thomson. Beyond the complexity ceiling: Evolution,
emergence and regeneration. In Proc. GECCO 2004 Workshop on Regeneration
and Learning in Developmental Systems, 2004.

[pyt] Python, about. https://www.python.org/about/. Accessed: 2016-07-04.

[RS80] Grzegorz Rozenberg and Arto Salomaa. Mathematical Theory of L systems.
Academic Press, Inc., 1980.

[Sla09] Jonathan MW Slack. Essential developmental biology. John Wiley & Sons, 2009.

[Wol68] Lewis Wolpert. The french flag problem: a contribution to the discussion on
pattern development and regulation. Towards a theoretical biology, 1:125–133,
1968.

https://www.python.org/about/

AppendixAFunctions available in SMCGP

Function Parameters Description
NOP None Passes the first connection value to the output.
+ None Returns the sum of the input values.
− None Returns the subtraction of the second input

value from the first.
∗ None Returns the product of the input values.
DIV None Returns the first input values, divided by the

second.
AND None Performs a logical AND of the input values.
OR None Performs a logical OR of the input values.
NAND None Performs a logical NAND of the input values.
NOR None Performs a logical ANOR of the input values.
CONST Value Returns the first parameter.
INP InputIndex Returns the (InputIndex modulo the number

of inputs) input value.
READ Address Returns the value stored in memory location

(Address modulo memory size).
WRT Address Stores the first input value in memory location

(Address modulo memory size).
PRC Start, End Executes the subgraph specified by Start and

End as a separate graph with the calling nodes
input values used as the graph inputs.

Table A.1: SMCGP function set, taken from Table 8 in paper [HMB11].

47

48 A. FUNCTIONS AVAILABLE IN SMCGP

Function Parameters Description
MOVE Start, End,

Insert
Moves each of the nodes between Start and
End into the position specified by Insert.

DUPE Start, End,
Insert

Inserts copies of the nodes between Start and
End into the position specified by Insert.

DELETE Start, End Deletes the nodes between Start and End
indexes.

ADD Insert, Count Adds Count number of NOP nodes at
position Insert.

CHF Node, New
Function

Changes the function of a specified node to
the specified function.

CHC Node,
Connection1,
Connection2

Changes the connections in the specified
node.

CHP Node, Param-
eterIndex,
New Value

Changes the specified parameter and a given
node.

FLR None Clears any entries in the pending
modifications list.

OVR Start, End,
Insert

Moves each of the nodes between Start and
End into the position specified by Insert,
overwriting existing nodes.

DU2 Start, End,
Insert

Similar to DUPE, but connections are
considered to absolute, rather than relative.

Table A.2: SMCGP Overwrite function set, taken from Table 9 in paper [HMB11].

AppendixBPseudocode
Algorithm B.1 Fitness function for evolving stripes.
assume ‘image‘ is a list of pixels as numbers, i.e. 0x0000ff for red.

function fitness_for_stripes(image):
p1, p2, p3, p4 = get_first_4_pixels(image)

give 0.5 score for each pair that matches
starting_score = (0.5 if p1 == p2) + (0.5 if p3 == p4)

check the first four pixels against the rest of the image
rest_of_image_score = 0
runs = 0
while image.has_more_pixels():

get the next 4 pixels
n1, n2, n3, n4 = get_next_4_pixels(image)

rest_of_image_score += 0.25 if n1 == p1
rest_of_image_score += 0.25 if n2 == p2
rest_of_image_score += 0.25 if n3 == p3
rest_of_image_score += 0.25 if n4 == p4

runs += 1

normalize checks from the rest of the image
normalized_rest_of_image_score = rest_of_image_score / runs

add the sums together and normalize
total_score = (starting_sore + normalized_rest_of_image_score) / 2

return total_score

49

50 B. PSEUDOCODE

Algorithm B.2 Fitness function for evolving gradientual repeating patterns.
assume ‘image‘ is a list of pixels as numbers, i.e. 0x0000ff for red.

function fitness_for_stripes(image, epsilon):

score = 0

for row_index in image.get_amount_of_rows():
row = image.get_row(row_index)

first, second, third = row.split_in_three()

x = average_value(first)
y = average_value(second)
z = average_value(thrid)

score += 0.25 if x < y
score += 0.25 if abs(x-y) < epsilon

score += 0.25 if y < z
score += 0.25 if abs(y-z) < epsilon

normalized_result = score / image.get_amount_of_rows()

return normalized_result

51

Algorithm B.3 Fitness function for evolving an image on the edge of chaos.
assume ‘image‘ is a list of pixels as numbers, i.e. 0x0000ff for red.

function fitness_for_stripes(image, epsilon):
score = 0

Part I: the same as the striped image one
p1, p2, p3, p4 = get_first_4_pixels(image)

give 0.5 score for each pair that matches
starting_score = (0.5 if p1 == p2) + (0.5 if p3 == p4)

check the first four pixels against the rest of the image
rest_of_image_score = 0
runs = 0
while image.has_more_pixels():

get the next 4 pixels
n1, n2, n3, n4 = get_next_4_pixels(image)

rest_of_image_score += 0.25 if n1 == p1
rest_of_image_score += 0.25 if n2 == p2
rest_of_image_score += 0.25 if n3 == p3
rest_of_image_score += 0.25 if n4 == p4

runs += 1

normalize checks from the rest of the image
normalized_rest_of_image_score = rest_of_image_score / runs

add the sums together and normalize
total_stripe_score = (starting_sore + normalized_rest_of_image_score) / 2

Part II: random noise, new pass thorugh the image
pixels_seen = {} # Empty dictionary: This dictionary will map from

pixel color to amount of times that color is seen

for pixel in image:
if pixels_seen.hasValue(pixel):

pixels_seen[pixel] += 1
else:

pixels_seen[pixel] = 1

how many of the 0xffffff possible colors have been seen
total_randomness_score = pixels_seen.amount_of_entries / 0xffffff

weigh the randomness score 70\% and the stripes score 30\%
return total_randomness_score * 0.7 + total_stripe_score * 0.3

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Thesis Structure

	Background
	Evolutionary Algorithms
	Genetic Programming
	Cartesian Genetic Programming

	Self-Modifying Cartesian Genetic Programming
	Self-Organization and Generation

	Experiment system
	Executing the Graph
	Specifying a Problem That Should Be Solved
	Running the Evolution
	Self-Modification
	Resilience Demands of Evolution
	Self-Modifying Graphs as Image Generators
	Eliminating Bias in the System

	Experiments
	Single Colored Image
	Repeating Pattern
	Striped Pattern
	Gradientual Repeating Pattern

	Edge of Chaos
	Random Noise

	Discussion
	The Framework
	The Results

	Conclusion
	Future Work

	References
	Functions available in SMCGP
	Pseudocode

