
Self-Localization of Lego Trains in a
Modular Framework

Henrik Heggelund
Svendsen

Master of Science in Communication Technology

Supervisor: Peter Herrmann, ITEM

Department of Telematics

Submission date: June 2016

Norwegian University of Science and Technology

Title: Self-Localization of Lego Trains in a Modular Framework
Student: Henrik Heggelund Svendsen

Problem description:

A specialization project was carried out at the Department of Telematics during the
fall semester of 2015, focusing on the development of an autonomous, distributed
control system for Lego trains operating on a model railroad located in an office at
the department. The system relied on Lego Mindstorms components and hardware.

In cyber-physical systems, the self-localization and actuator control mechanisms
are the portions that seal the gap between the abstract software and the real, physical
world. As discovered during the mentioned project, the reliability and accuracy of
these mechanisms have a strong influence on the safety properties of the system as
a whole. The primary focus of the thesis will be to increase the reliability of these
mechanisms, and to enhance the provisioning of environment descriptions, giving the
control system a more precise and realistic foundation to base its decisions upon.

Various sensors and strategies should be tested for improving the self-localization
mechanisms of the trains. If several techniques give promising results, combining
different sensor inputs to improve location approximation between reliable beacon
locations is of interest. Actuator control mechanisms should be made flexible so that
e.g. self-adaptive mechanisms can be implemented. As the hardware used in the
previously mentioned project forms a bottleneck both regarding performance and
this kind of flexibility, a new hardware platform should be introduced.

To enhance modifiability aspects of the system, the mechanisms should be imple-
mented using the modular framework OSGi.

Responsible professor: Peter Herrman, ITEM
Supervisor: Peter Herrman, ITEM

Abstract

The Department of Telematics of the Norwegian University of Science and
Technology has an Intelligent Transportation Systems (ITS) lab where
a model railroad layout built with Lego components is localized. The
railroad model has been the center of attention in a series of projects and
corresponding theses during the past year, where autonomous systems
are developed and deployed on the model railroad. The prior systems
have used a more or less common hardware platform based on the Lego
Mindstorms EV3 smart brick. A re-emerging safety issue in these systems
has been the self-localization systems, where characteristics related to a
color sensor which counts passed railway sleepers acts as a bottleneck.

The focus of this thesis is the self-localization subsystem. To increase
flexibility concerning peripheral connectivity, a new hardware platform
based on the Raspberry Pi 2 is introduced. To improve the reliability and
accuracy of the self-localization in the system, a variety of sensors are
introduced, including an NFC reader; an accelerometer; a magnetometer
and a color light sensor. Also, a motor controller under the direct control
of the Raspberry Pi is used.

As the OSGi framework is central to the chosen modular approach,
components from the previous systems are reused but is not adopted in
its totality. Software modules for each of the peripherals are developed and
tested, and their suitability as contributors to self-localization purposes
are discussed. Summarized, each of the sensors’ contributions to self-
localization is listed below:

– The NFC reader, combined with Mifare tags encoded with location
information placed underneath the railway surface functioning like
beacons, stands out as the equipment supplying the most precise
and reliable information.

– The color light sensor acts as a minor improvement compared to the
one in the preceding projects’ platform, thus it can aid in making
approximated updates to the positional data in between the more
precise beacons.

– The magnetometer provides data, which after processing reports the
current heading of the train. The calculated heading seems accurate
in the initial experiments, but as additional tests reveal it is subject
to the fluctuating magnetic interference from the surroundings. The
issue of interference may be diminished by physical isolation of the

model railroad. Suggestions for improvements are presented, but
the heading data is at this point only applicable for coarse position
approximations.

– The accelerometer output acceleration measurements, which are
analyzed in real-time to calculate changes in velocity. The analysis
turns out to be highly vulnerable for deviations in the acceleration
readings, resulting in unpredictable outputs. Although efforts are
made to migitate the deviations, satisfactory results are not achieved.

During the phase of testing the mentioned modules, the modular aspects
of the architecture are implicitly tested. Sensor modules are easily inter-
changeable with simulated modules, and published events are used for
logging experimental data.

Sammendrag

Institutt for telematikk (ITEM) ved Norges teknisk-naturvitenskapelige
universitet (NTNU) har en lab for intelligente transportsystemer (ITS),
hvor en modell-jernbane bygget av Lego-komponenter er huset. Denne
modell-jernbanen har vært sentral i flere prosjekter og tilhørende avhand-
linger de siste årene, hvor autonome systemer har blitt utviklet og anvendt
på modellen. De foregående systemene har brukt mer eller mindre en
felles fysisk plattform basert på smarte Lego Mindstorms EV3-enheter.
Et gjentagende problem relatert til delsystemene for selv-lokalisering har
vist seg å dukke opp, der karakteristikker relatert til en lys-fargesensor
som teller passerte jernbanesviller oppfører seg som en flaskehals.

Fokuset i denne avhandlingen er delsystemet for selv-lokalisering. For å
øke fleksibiliteten i forhold til tilkoblingsbarhet til perifere enheter som sen-
sorer er en ny fysisk plattform introdusert, basert på mini-datamaskinen
Raspberry Pi 2. For å forbedre påliteligheten og nøyaktigheten til selv-
lokaliseringssystemet er en rekke nye sensorer innført, som omfatter en
NFC-leser, et akselerometer, et magnetometer og en lys-fargesensor. I
tillegg brukes en motorkontroller som blir direkte styrt av Raspberry
Pi-en.

Siden OSGi-rammeverket står sentralt i den valgte modulære tilnærmin-
gen blir enkelte del-komponenter gjenbrukt fra tidligere systemer, men
komponentene kan ikke bli gjenbrukt i sin helhet. Programvaremoduler
for hvert av de perifere enhetene blir utviklet og testet, og brukbarhe-
ten deres som bidragsytere til selv-lokaliseringssytemet blir diskutert.
Hver enkelt av sensorenes bidrag til selv-lokalisering i systemet er kort
oppsummert her:

– NFC-leseren, kombinert med Mifare-transpondere som er kodet
med stedsinformasjon og plassert under selve jernbanemodellen som
landemerker, skiller seg ut som utstyret som leverer mest presis og
pålitelig posisjonsinformasjon.

– Lys-fargesensoren fungerer som en liten forbedring sammenlignet
med den som er brukt i tidligere prosjekter, og kan dermed bistå i å
levere anslagsvise oppdateringer av posisjonsdata i mellom de mer
presise landemerkene.

– Magnetometeret leverer data som etter prosessering rapporterer om
togets nåværende kurs. Den utregnede kursen virker korrekt i de
innledende eksperimentene, men videre testing avslører at sensoren

er utsatt for varierende interferens fra magnetiske felter som stråler
ut i omgivelsene. Problemet med interferens kan minskes ved å
adskille modellbanen fysisk fra kildene, men i skrivende øyeblikk
kan kompasskurs-data bare anbefales til å gjøre grove estimater for
posisjonsoppdateringer.

– Akselerometeret avgir akselerasjonsmålinger, som blir analysert i
sanntid for å regne ut endringer i hastighet. Analysen viser seg
å være veldig sårbar for avvik i akselerasjonsmålingene, noe som
resulterer i uforutsigbare utregninger. Selv om forsøk er gjort på
å forminske avvikene fra akselerometeret blir ikke tilfredsstillende
resultater oppnådd.

Under fasen med testing av de nevnte modulene blir også de modulære
aspektene ved systemarkitekturen testet implisitt. Sensormoduler er ved
enkelhet utbyttbare med simulerte moduler, og publiserte hendelser i
systemet blir brukt for å loggføre eksperimentelle data.

Preface

This master’s thesis was carried out by Henrik Heggelund Svendsen
during the spring semester of 2016 as the final part of the 5-year Master
of Science programme in Communication Technology at the Department
of Telematics of the Norwegian University of Science and Technology.
Peter Herrmann acted as both the responsible professor and the supervisor
during the conduction of this project.

I would like to thank Peter for providing valuable input through discus-
sions, Pål Sturla Sæther for supplying me with required material and
tools, and Alvaro F. Fernandez for sharing prototype source code for
the Xtrinsic sense board. Co-student Alexander Svae has been a great
sparring partner, and several ideas has been a product of our chats. At
last I would like to thank my girlfriend Caroline and our daugher Ella for
the encouragement, the laughter, for giving me an airing when needed,
and for bearing with me all the way.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xv

List of Acronyms xvii

1 Introduction 1
1.1 Intelligent Transportation Systems 1

1.1.1 Challenges . 1
1.2 Problem description and scope . 1
1.3 Motivation . 2
1.4 Methodology . 2
1.5 Structure of the report . 3

2 Background 5
2.1 European Rail Traffic Management System 5
2.2 Technology . 6

2.2.1 Publish/subscribe protocols 6
2.2.1.1 AMQP . 6

2.2.2 I2C protocol . 7
2.2.3 Reactive Blocks . 8
2.2.4 OSGi . 9

2.2.4.1 Layers of the OSGi framework 9
2.2.5 Radio technologies . 11

2.2.5.1 RFID . 11
2.2.5.2 NFC . 13

2.2.6 Raspberry Pi . 13
2.3 Related work . 14

2.3.1 A PRT system . 14
2.3.2 An autonomous train control software 15
2.3.3 A distributed, autonomous control system 15

vii

2.3.3.1 Interpretation of railway design 16
2.3.3.2 Collision avoidance 16

2.3.4 A self-adaptive sensor system 17

3 System Requirements 19
3.1 Functional requirements . 19
3.2 Non-functional requirements . 19
3.3 Inherited requirements . 20

4 Physical Composition 21
4.1 Components . 21

4.1.1 Raspberry Pi 2 . 21
4.1.2 Power supply . 24
4.1.3 Color light sensor . 24
4.1.4 NFC reader . 25
4.1.5 Xtrinsic sense board . 27

4.1.5.1 Accelerometer . 27
4.1.5.2 Magnetometer . 28

4.1.6 Motor controller . 28
4.2 Composition . 30

4.2.1 Construction of the vehicle 30
4.2.2 Schematic presentation . 31

5 Software Architecture 35
5.1 Architectural views . 35

5.1.1 Modular view . 35
5.1.2 Pipeline view . 36

5.2 Sensor-publisher communication . 39

6 Data processing 45
6.1 Sensor data processing . 45

6.1.1 Color light sensor data . 45
6.1.1.1 Collecting samples 46
6.1.1.2 Color classification 46
6.1.1.3 Timing . 48

6.1.2 MIFARE tag readings . 49
6.1.2.1 Timing . 50

6.1.3 Accelerometer data . 51
6.1.3.1 Derived event generation 51
6.1.3.2 Timing . 53

6.1.4 Magnetometer data . 54
6.1.4.1 Calibration . 54

6.1.4.2 Derived event generation 54
6.1.4.3 Timing . 55

6.2 Actuator control . 55
6.3 Strategies for data utilization . 55

6.3.1 Colored sleepers . 55
6.3.2 MIFARE balises . 56
6.3.3 Displacement based on acceleration readings 56
6.3.4 Magnetic heading as a position approximation assistant . . . 57

6.3.4.1 Using compass directions 57
6.3.4.2 Continuous comparison 58

6.4 Merging sensor data streams . 58
6.5 Integration with existing collision avoidance system 58

7 Results 63
7.1 Color light sensor . 63

7.1.1 Pre-collected samples . 63
7.1.2 Testing color classification . 64
7.1.3 Testing color sensor timing 68

7.2 MIFARE tag readings . 68
7.3 Acceleration based metrics . 68

7.3.1 Initial linear movement mapping 70
7.3.2 Accelerometer simulator . 70
7.3.3 Noise damping . 71

7.3.3.1 Low-pass filtering 72
7.3.3.2 Static low-pass filtering 72
7.3.3.3 Dynamic low-pass filtering 73
7.3.3.4 Investigating dynamic low-pass filtering further . . . 74
7.3.3.5 Simulating white noise 75

7.3.4 Accelerometer issues . 75
7.4 Magnetic heading measurements . 76

7.4.1 Calibration data and adjustments 76
7.4.2 Magnetic heading of the track layout 78
7.4.3 Magnetic interference . 79

7.4.3.1 From the motor . 79
7.4.3.2 From the environment 79

8 Discussion 83
8.1 Sensor strategy feasibility . 83

8.1.1 Colored sleepers and the color light sensor 83
8.1.2 MIFARE balises and the NFC reader 84

8.1.2.1 Omitted reading . 84
8.1.2.2 MIFARE classic attack 84

8.1.3 Accelerometer measurements and derived calculation 84
8.1.4 Magnetic heading utilization 85

8.2 Conclusion . 86
8.3 Further work . 87

References 89

Appendices
A Source code 93

A.1 Git repository . 93
A.2 Velocity delta . 93

List of Figures

2.1 ETCS Eurobalise ground equipment and train antenna module 5
2.2 Actors and flow in a publish/subscribe interaction scheme 7
2.3 An example application in Reactive Blocks 8
2.4 Illustration of an OSGi bundle . 10
2.5 The layers of OSGi . 11
2.7 Passive RFID system illustration . 12
2.6 RFID tag embedded in a sticker . 12
2.8 An overview of the Raspberry Pi 2 with its various interfaces 14
2.9 Screen capture from Bluebrick . 16

4.1 USB WiFi dongle . 22
4.2 The Skross Reload 5 battery . 24
4.3 The TCS34725 color light sensor . 24
4.4 The PN532 breakout board . 25
4.5 State diagram for the PN532 . 26
4.6 The Xtrinsic sense board . 27
4.7 State diagram for the MMA8491Q . 28
4.9 The physical composition of Overskeid’s PRT pods 28
4.8 The PWM driver board . 28
4.10 A Lego Power Functions extension cable 29
4.11 Wiring diagram for Lego PF extension cable 30
4.12 The TCS34725 breakout mounted to Lego 30
4.14 Schematic diagram showing the logic connections in the physical system. 33

5.1 Architectural modular view . 37
5.2 Architectural pipeline view . 38
5.3 UML Class diagram for the MIFARE sensor/publisher modules 41
5.4 UML Class diagram for the periodic timing of MIFARE reader sampling 42

6.1 Color mapping testbed . 47
6.2 Layout of the first three sectors of a MIFARE tag’s EEPROM memory 50
6.3 Relations between acceleration, velocity and displacement 52

xi

6.4 XML snippet showing structure of rail brick element 57
6.5 Positioning module’s application block 59
6.6 A case example for following trains . 61

7.1 Result set from color sampling on gray testbed. 64
7.2 Result set from color sampling on red testbed. 65
7.3 Result set from color sampling on blue testbed. 65
7.4 Result set from color sampling on yellow testbed. 66
7.5 Result set from color sampling on green testbed. 66
7.6 Result plots from color sensor test run on a circular track 67
7.7 Timing measurements results of the color sensor/publisher pair 69
7.8 MIFARE tag readings during test run on circular track 70
7.9 Acceleration measurements along with calculated velocity delta 71
7.10 Simulated acceleration measurement along with calculated velocity delta 72
7.11 Acceleration measurements and calculated velocity with static low-pass

filtering, α = 0.3. 73
7.12 Plot of alpha function of (7.2) for the range < 0, 1 > 73
7.13 Acceleration measurements and calculated velocity with dynamic low-pass

filtering . 74
7.14 Acceleration measurements and calculated velocity with dynamic low-pass

filtering, second run . 75
7.15 Simulated acceleration measurement passed through dynamic low-pass

filter, along with calculated velocity delta 76
7.16 Magnetometer calibration plots . 77
7.17 Railroad map from previous project . 77
7.18 Mapping directions to heading values . 78
7.19 Motor interference from the on-board motor unit 79
7.20 Magnetic heading calculation during circular test track run, first position 80
7.21 Magnetic heading calculation during circular test track run, second position 81

List of Tables

4.1 Specifications for the Raspberry Pi 2 [Rpi16] 23
4.2 Hardware addresses for Inter-Integrated Circuit (I2C) enabled equipment 31

5.1 Service contracts for peripheral equipment modules 40
5.2 Service contracts definitions . 43

6.1 Distances between color light sensor board and colored surface 46
6.2 Sleeper colors and their encoded information 56

7.1 Statistics from color testbed sampling 63
7.2 Statistical data for the color sensor sampling rate 68
7.3 Magnetometer calibration constant values 76

xiii

List of Algorithms

6.1 Color classification distance algorithm 48
6.2 Color classification filtering algorithm 49
6.3 Conversion of bit value acceleration in mg to SI-units 51
6.4 Generation of a linear function for a line intersecting two points . . . 53

xv

List of Acronyms

AMQP Advanced Message Queuing Protocol.

API Application Program Interface.

DC direct current.

EEPROM Electrically Erasable Programmable Read-Only Memory.

ERTMS European Rail Traffic Management System.

ETCS European Train Control System.

GPIO General-Purpose Input/Output.

GSM-R Global System for Mobile Communications – Railway.

GUI Graphical User Interface.

I2C Inter-Integrated Circuit.

IC integrated circuit.

ICT Information and Communications Technology.

IDE Integrated Development Environment.

ITS Intelligent Transportation Systems.

JDK Java Development Kit.

JSON JavaScript Object Notation.

JVM Java Virtual Machine.

LiPo Lithium Polymer.

LSB least significant bit.

xvii

NFC Near Field Communication.

PRT Private Rapid Transport.

PWM Pulse Width Modulation.

RFID Radio Frequency Identification.

RMS root mean square.

SASL Simple Authentication and Security Layer.

SCL Serial Clock Line.

SDA Serial Data line.

SOA Service-Oriented Architecture.

SPI Serial Peripheral Interface.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

UART Universal Asynchronous Receiver/Transmitter.

UHF Ultra High Frequency.

UML Unified Modeling Language.

XML EXtensible Markup Language.

Chapter1Introduction

1.1 Intelligent Transportation Systems

Intelligent Transportation Systems (ITS) is, in general, a term used for all systems
where Information and Communications Technology (ICT) is applied to, or alongside
with, vehicular transport of personnel or goods, with an aim to increase safety,
convenience and efficiency of the (existing) transportation systems, as well as to
decrease socio-economic costs and environmental impact. ITS spans from automatic
toll road systems to self-driving cars and collision avoidance systems. Although the
idea of ITS was conceived in the 1980s, the boost in technological development and
hence a dramatic decrease in hardware cost the latest years makes ITS now more
relevant than ever. The debate concerning human-made climate changes combined
with population growth also contributes to this fact, as factors like these express the
need for improvements of the systems in use today.

1.1.1 Challenges

The appliance of ICT in physical systems such as moving vehicles results in what we
define as a cyber-physical system. In a system of systems, e.g. the co-operation of
’smart’ vehicles, strict spatiotemporal requirements apply as the sub-systems must
perform self-localization and communicate their location to sub-systems in their
proximity. Self-localization introduces challenges regarding the interpretation of the
real world and real-time analysis of data, combined with communication delay or
errors which add up to a complex whole.

1.2 Problem description and scope

A specialization project was carried out at the Department of Telematics during the
fall semester of 2015, focusing on the development of an autonomous, distributed
control system for Lego trains operating on a model railroad located in an office at
the department. The system relied on Lego Mindstorms components and hardware.

1

2 1. INTRODUCTION

In cyber-physical systems, the self-localization and actuator control mechanisms
are the portions that seal the gap between the abstract software and the real, physical
world. As discovered during the mentioned project, the reliability and accuracy of
these mechanisms have a strong influence on the safety properties of the system as
a whole. The primary focus of the thesis will be to increase the reliability of these
mechanisms, and to enhance the provisioning of environmental descriptions, giving
the control system a more precise and realistic foundation for decision-making.

Various sensors and strategies are to be tested for improving the self-localization
mechanisms of the trains. If several techniques give promising results, combining
different sensor inputs to improve location approximation between reliable balise
locations is of interest. Actuator control mechanisms should be made flexible to
prepare the implementation of e.g. self-adaptive mechanisms. As the hardware used
in the previously mentioned project forms a bottleneck both regarding performance
and this kind of flexibility, a new hardware platform should be introduced.

To enhance the modifiability aspects of the system, the mechanisms should be
implemented using the modular framework OSGi.

1.3 Motivation

The motivation for this thesis is to establish a reliable self-localization subsystem
for the model railroad system in the ITS lab. The subsystem should be of such a
nature that integrating it in future systems should be a straight forward task. This
requirement implies that a robust, modular architecture is needed. The overall aim
is that the model railroad can act as a realistic testbed for developing, analyzing and
deploying highly distributed, autonomous prototype technology that can, later on,
be used in larger scale systems.

1.4 Methodology

As a modular framework will be utilized, modularity is an important element in
the system architecture. A model-based approach is chosen for reactive modules
subject to simultaneous inputs from multiple sources. Modules that are of a simpler
nature can still be developed as pure Java/OSGi modules. Functional analysis of
modules and connected hardware is to be carried out by collecting and comparing
data samples comprising timing and measured physical metrics.

1.5. STRUCTURE OF THE REPORT 3

1.5 Structure of the report

In Chapter 2, background material that is required when studying the follow-
ing chapters is presented. The background material is relatively coarse, and the
reader is referred to specific material in case a more detailed presentation is of interest.

Chapter 3 presents the formal requirements set for the system, both of functional
and non-functional nature.

Chapter 4 describes in closer detail how hardware components are combined to
form the system’s physical model.

Chapter 5 presents the software architecture of the system, describing both the
use of software modules and the interactions between them.

Chapter 6 describes how data from the different sensors can be processed and
utilized to improve the self-localization of trains. At the end of the chapter, a
description of the integration with the distributed interlocking protocol introduced
in [Sve15c, 7.1] is given.

Chapter 7 deals with the results and issues experienced while testing the
individual components and the implemented software modules. An analysis of
collected data is presented.

Chapter 8 contains discussion regarding the results from the previous chapter,
and a conclusion sums up the thesis. Recommendations regarding further work are
made at the end of the chapter.

Chapter2Background

2.1 European Rail Traffic Management System

In a historical perspective, European railway consisted of twenty-three different
signaling systems distributed in fifteen countries. The diversity of solutions demanded
international train sets to carry multiple technical systems, occupying valuable
line capacity by requiring additional switching time. To counteract the pluralistic
evolution of systems, the European Commission introduced the European Rail Traffic
Management System (ERTMS), consisting of the two modules: the signaling system
European Train Control System (ETCS) and the communication system Global
System for Mobile Communications – Railway (GSM-R).

Figure 2.1: ETCS Eurobalise
ground equipment and train
antenna module, image from
http://www.siemens.com/press/
en/presspicture/

The ETCS specification defines four levels,
from level 0 which concerns backward compatibil-
ity with older systems, to level 3 where equipment
such as track circuits are deprecated. Typical for
the three highest levels are the introduction of the
"Eurobalise"1. The Eurobalise is a transponder
device mounted between the rails on the ground,
which transmits a datagram to passing trains.
The passing train picks up the signaling with an
underslung antenna, as seen in the picture in Fig-
ure 2.1. The datagram contains control data like
speed restrictions, gradient, and positioning in-
formation [Blo06]. In levels 2/3, the registered
data is made available for the centralized control
center in real time by continuous transmission on
the GSM-R radio link.

1A balise is an electronic beacon or transponder placed between the rails of a railway as part of
an system. The word "balise" is used to distinguish these beacons from other kinds of beacons

5

http://www.siemens.com/press/en/presspicture/
http://www.siemens.com/press/en/presspicture/

6 2. BACKGROUND

The ERTMS system has gradually been installed in European countries during
the last decade, and foreign stakeholders outside Europe has in the recent years
begun to embrace the technology. By 2014, the system comprised more than 80.000
kilometers of track, and nearly 10.000 equipped vehicles worldwide [ERT14].

2.2 Technology

2.2.1 Publish/subscribe protocols

In distributed systems, the use of traditional point-to-point and synchronous com-
munication often result in highly coupled, rigid systems[EFGK03]. The notion of a
publish/subscribe interaction scheme is a collective term for protocols alleviating this
burden by introducing a central component responsible for routing messages from
the producers of data, the "publishers", to the consumers of data, the "subscribers".
The central component is a software bus, an event manager. The publishers have no
relation to whom the subscribers are, and vice versa – they are only acquainted with
the event manager. Producers publish messages or events to the event manager, and
consumers inform the event manager which types of messages or events of interest
for the individual consumer. When publishing data, the event manager takes care
of routing data to the subscribing consumers. This flow of data is depicted in the
message sequence diagram in Figure 2.2.

The benefits of utilizing this kind of interaction scheme are decoupling concerning
both time, space, and synchronization.

2.2.1.1 AMQP

Advanced Message Queuing Protocol (AMQP) is an open protocol specification,
providing a variety of configurations. Among them, a publish/subscribe configuration
is possible. The protocol is aimed to act as a middleware between networked appli-
cations across all platforms[OAS15a]. AMQP is a binary application-level protocol,
and assumes to be running on a reliable transport protocol such as Transmission
Control Protocol (TCP). Additional functionality provided is cryptographic security
through Simple Authentication and Security Layer (SASL) and Transport Layer
Security (TLS), message queuing, and message-delivery guarantees such as at-most-
once, at-least-once or exactly-once, depending on configurable settings. A popular
multi-platform implementation of the protocol is RabbitMQ [OAS15b], which pro-
vides both client APIs in various programming languages, as well as server daemon
applications for multiple platforms.

2.2. TECHNOLOGY 7

Producer
Event

manager
Consumer

1
Consumer

2

Subscribe({ 'A', 'B' })

Publish(Event ('A'))

Subscribe({ 'B' })

Event ('A')

Publish(Event ('B'))
Event ('B')

Event ('B')

Figure 2.2: Actors and flow in a publish/subscribe interaction scheme

2.2.2 I2C protocol

I2C is a digital peripheral serial bus, supported by most digital peripheral devices
like sensors. The bus uses two wires for connectivity; a Serial Data line (SDA)
for data transfer and a Serial Clock Line (SCL) for clock synchronization. Data
can be transferred on the bus at rates from 100kbit/s to 3.4Mbit/s, depending on
mode. Equipment (slave) connected to a host (master) through an I2C bus has
a 7-bit hardware address2 represented by a two-digits wide hexadecimal number
spanning from 0x08 to 0x77. The excessive addresses are reserved according to
the I2C specification. The I2C bus is limited to 111 devices, which is sufficient in
most applications. Most equipment comes with the I2C address hard coded into the
integrated circuit (IC), which in practice means that only one unit can be connected
to each bus. The interested reader is referred to [Sem00] for an in-depth description
of the protocol, though it is not required for further reading and understanding of
this thesis.

2Both 7 and 10-bit address mode exists for I2C, though the latter one was added as an extension.
7-bit addressing is the standard mode.

8 2. BACKGROUND

Figure 2.3: An example application in Reactive Blocks posting received GPS data
updates to a HTTPS server

2.2.3 Reactive Blocks

Reactive Blocks is a model-based software development plug-in for the Eclipse Java
Integrated Development Environment (IDE). It provides a Graphical User Interface
(GUI) editor with drag-and-drop functionality where the developer can design the
flow of the program. The program flow is generally composed in building blocks
resembling an Unified Modeling Language (UML) activity diagram. Nesting of
building blocks inside other blocks like depicted in Figure 2.3, creates a hierarchy
of functionality – thus supporting the single responsibility principle[Mar03]. Blocks
are connected to Java code through operations or activities as they are called in the
UML context. Business logic can accordingly be written in pure Java code after the
flow of the block/program is defined.

2.2. TECHNOLOGY 9

Reactive Blocks is, as the name suggests, a tool aimed at the development of
reactive systems. The reason it’s suitable for reacting to inputs/impulses is that the
developer can focus more on the design of the application instead of details concerning
e.g. concurrency handling. The framework automatically analyzes the system during
the design phase, continuously supplying the developer with information and warnings
if e.g. deadlocks, race conditions or synchronization errors. The automatic analysis
uses formal verification techniques, relieving the developer from an entire phase of the
software development cycle. After designing the system, connecting the underlying
business logic and solving potential problems revealed by the analysis, Reactive Blocks
builds the executable program by examining the design and generating executable
code from it. Kraemer, being the originator of the Reactive Blocks project, presents
an in-depth study of these techniques in [Kra08].

Reactive Blocks support various development platforms, including OSGi, which
is described further in Section 2.2.4. With little extra effort, it can be used to
develop OSGi bundles ready to deploy into new or existing systems. Like regular
Java projects, the generated code outputted by Reactive blocks is accompanied by
a manifest file which defines the OSGi policies for the bundle. The use of Reactive
Blocks and the Model-based engineering method in relation to space-aware systems
have been studied in, among other, [HBHS15] and [HBHS16].

2.2.4 OSGi

OSGi3 is a technology acting as a modularity layer for Java based systems. The word
modularity represents the logical decomposition of a complete system into smaller
sub-systems – or modules, reducing the coupling and formalizing dependencies be-
tween the different modules [HPMS11].

2.2.4.1 Layers of the OSGi framework

The OSGi framework is a significant aspect of the OSGi technology. The framework
is the execution environment of the application and provides a standardized API for
the developer. As it is a multifaceted framework, it’s often described as a layered
architecture as shown in Figure 2.5. A short description of these layers is presented
below.

The module layer is the lowest level layer in OSGi, concerned with modules, or
bundles, and how code is shared between them. A bundle, or plug-in as it’s sometimes
referred to, is a single module with its own Application Program Interface (API). The

3OSGi was formerly an acronym for the Open Service Gateway Initiative, but the acronym was
dropped after the third specification release. OSGi is now a trademark for the technology.

10 2. BACKGROUND

Bundle

Executable code

Manifest

Resources

Figure 2.4: Illustration of an OSGi bundle

bundle is deployed as a .jar-file, which like regular Java JAR-files contains executable
binaries and resources, and additionally, a metadata text file called the bundle’s
manifest. The manifest provides information regarding the respective bundle’s fully
qualified name, the bundle’s version, which packages are exported, i.e. visible for
other bundles (API), in addition to which dependencies the particular bundle has. A
simple illustration of a bundle and it contents, along with an example of its manifest
is shown in Figure 2.4. To clarify the bundle definition, it is no more than a regular
Java project with it’s compiled class files, resources (e.g. images), in addition to the
mentioned manifest, compressed in a regular JAR file. In the OSGi context, the
bundle is a module.

The lifecycle layer deals with installing new bundles to the framework’s bundle
cache, resolving the bundles’ dependencies (i.e. verifying that the necessary bundles
are available and resolved), starting and stopping bundles, i.e. like the name of the
layer suggests: managing the lifecycle of the bundles.

The service layer is the part of the OSGi framework administering services.
Before describing the service layer any further, a short definition of the term service
is beneficial. A service is, in a software system context, nothing more than "work done

2.2. TECHNOLOGY 11

for another"[HPMS11, 4.1], i.e. in it simplest form nothing more than a method call
from a caller to a callee; the callee is doing work for the caller. The Service-Oriented
Architecture (SOA) is though something more than a simple method call. In OSGi,
a service entails a contract – a regular Java interface which defines the API for the
service. The service is registered to the framework’s service registry, and consumers
of the service need only to keep a reference to the framework component and have
knowledge of the service contract in order to use the service. This pattern resembles
the one mentioned in Section 2.2.1: a service is published (registered) to a software bus
(service registry), making it amenable to incoming requests from service consumers.
The consumers have no relation to who/where the service is, or how the service is
implemented, other than the service contract itself. The service layer deals with
service (de)registration, updates, and lookups.

Module

Lifecycle

Service

Figure 2.5: The layers of
OSGi

As the security functions of OSGi are out of the
scope of this paper, a description of the security layer
which lies side-by-side to the other layers mentioned
above is left out of this section. For more in-depth
reading material, the reader is referred to [HPMS11].

2.2.5 Radio technologies

2.2.5.1 RFID

Radio Frequency Identification (RFID) is a communi-
cation technology operating on short range via radio
signaling. The term is used for a mixed collection of
radio frequency and techniques used to enable this
communication. The typical employment of RFID
has simple transponders (often called tags) on one
end of the radio link, and more advanced devices
(often called readers) on the other end[Lan05]. The
tags are produced in the form of a microchip attached
to an antenna, some so small that the term RFID
powder has been introduced[Hor08].

Two sub-categories of tags exist; active and pas-
sive. The active tags have a built-in power source, typically a battery, powering the
tag’s operation. Power saving techniques exist to alleviate excessive drainage of the
battery, such as requiring the reader to send wake-up signals, so the transponder
only broadcasts its signal when it is within the range of the receiver, or by sending
periodical broadcasts e.g. once an hour. Active tags usually operate at high fre-
quencies and over relatively wide ranges up to 100 meters, and cost from $10 to $50,

12 2. BACKGROUND

Reader Tag

Bi-directional radio

communication

Electromagnetic
field

Figure 2.7: Passive RFID system illustration

depending on specifications. An example of a typical application of active tags is toll
roads, e.g. the autoPASS system of Norway.

Figure 2.6: RFID tag embed-
ded in a sticker

Passive tags, i.e. tags without an internal or con-
nected power supply, are a less expensive alternative,
with a cost of 20 cents to 40 cents in general. Fre-
quencies and ranges are varying and tightly coupled,
with 1/3 meters for low-frequency applications to 3
meters and more for Ultra High Frequency (UHF).
The advantage of using low frequencies when consid-
ering low-power applications is that the radio waves
penetrate materials more efficiently than higher fre-
quencies, that tend to behave more like light waves.
An example of a typical application to passive RFID
tags is passports, where personal information like
fingerprints, name, and address is encoded into the
tag, to complicate modification and fraud. The com-
munication between a reader and a passive tag is
illustrated in Figure 2.7.

Passive systems utilizing low and high-frequency
radio carriers use inductive coupling, i.e. a magnetic
field powered by the reader is formed between the reader and the tag, inducing

2.2. TECHNOLOGY 13

a current in the tag. The range of the electromagnetic field contributes to the
short ranges of these systems. Passive UHF systems use propagation coupling, or
backscatter, where the tag reflects an altered signal back to the reader[Vio05]. Passive
tags are generally quite compact, and are often mounted between a sheet of paper
and an adhesive surface, resulting in an RFID sticker, as shown in Figure 2.6. The
physical measurements of the depicted tag are 40mm * 25mm.

In short terms, the purpose of the communication is to transfer data from the
tag to the reader. This data is typically associated with the identity of the object
carrying the tag, hence radio frequency identification.

2.2.5.2 NFC

Near Field Communication (NFC) is a subset of the RFID technology, and is
comprised by short range communication and passive tag usage only. Because of
short range communication, secure data exchange is an inherited feature. NFC is
deployed in many modern mobile phones and other electronic home appliances like
network printers and Bluetooth speakers, and is used for identification purposes
when establishing links between the participants in e.g. the Bluetooth protocol. The
radio link in NFC applications operates at 13.56MHz[COO11, 3.4.1].

NFC is also enables contactless transactions with proximity smart cards, as defined
in the ISO/IEC 14443A/B standard[ISO16]. Although several proximity smart card
technologies exist, MIFARE is by far the most widely used system, developed and
owned by NXP Semiconductors. By 2011, MIFARE was used in more than 80%
of all contactless smart cards in the world[COO11, 3.4.1.2], spanning from public
transport ticketing to e-payment. The MIFARE smart card IC supports a typical
read/write range up to 10 centimeters, and generally includes an Electrically Erasable
Programmable Read-Only Memory (EEPROM) with capacity from 1 to 4 kilobytes
of memory which can be programmed wirelessly utilizing NFC.

2.2.6 Raspberry Pi

A Raspberry Pi 2 (from now on abbreviated RPi) is a pocket-sized, full fletched
computer with relatively high performance. It offers standard interfaces like Ethernet,
USB, and HDMI in addition to the pin header which provides access to power outputs,
General-Purpose Input/Output (GPIO) connectors and peripheral buses like I2C.
The GPIO connectors and peripheral buses can be utilized to connect both analog
and digital electronic equipment, including a variety of sensors and communication
equipment. The pin header is depicted alongside with the other connectors in
Figure 2.8.

14 2. BACKGROUND

Ethernet

4 x USB
2.0

HDMI

Header pinout

Micro USB power
input

Micro SD card slot

Figure 2.8: An overview of the Raspberry Pi 2 with its various interfaces

2.3 Related work

This thesis is the fourth in a line of reports written at the Department of Telematics,
dealing with an autonomous model railroad system composed of Lego equipment.
The model railroad itself has differed to some extent in the previous theses, regarding
layout and supported behavior. Although the previous projects have used a similar
physical architecture, the software architectures – and thus the implementations –
has been developed from scratch each time, re-using only small parts from the prior
systems. Although the system described in this thesis is independent of the earliest
theses, the experience gained from those are valuable for this project. Also, the third
of the preceding reports forms an essential foundation for the system in focus in this
thesis. On these bases, the reports are summarized in short terms in this section. For
more details concerning these systems, the reader is referred to the particular theses.

2.3.1 A PRT system

The first system is presented in Overskeid (2015)[Ove15]. Overskeid describes a model
of a Private Rapid Transport (PRT) system and introduces the physical hardware
architecture which is re-used in the following theses. The system is centralized

2.3. RELATED WORK 15

but distributed to the grade of having separate authorities controlling the vehicles
traveling within their respective area of control. The physical Lego railroad is used
as a model for a PRT guideway, which is uni-directional by nature. Self-localization
is in this system based on counting passed railway sleepers, using a Lego Mindstorms
color sensor directed towards the rail’s surface.

2.3.2 An autonomous train control software

Hordvik and Øseth (2015)[HØ15] presents in their thesis an autonomous control
software for trains. While sharing the hardware architecture and intelligence distri-
bution with the mentioned system composed by Overskeid, Hordvik, and Øseth’s
implementation introduces a detailed color scheme used for self-localization of the
trains. Based on which location the train had on the latest update, the current
position is verified if the expected colored railway sleepers are detected by the color
sensor. The localization data read by the trains are sent to centralized zone-controllers
responsible for planning the movement of the trains, preventing any conflicts between
intersecting trains. To reduce the complexity in the control system, this system is
too restricted to uni-directional traffic.

2.3.3 A distributed, autonomous control system

The author of this thesis designed and developed a third system, which is described
in [Sve15c]. Using the same hardware architecture as the two preceding projects,
the project thesis introduces two significant improvements: a general interface for
interpreting railroad layouts and allowing bi-directional traffic on the railway. Also,
a striking difference in design regarding intelligence distribution is presented, as the
control system is completely distributed with no centralized actors, besides the server
acting as a messaging hub for the trains. The trains are i.e. entirely autonomous,
each co-operating with the other trains as peers to prevent collisions.

In all three systems, WiFi is used for intercommunication between the trains,
utilizing different publish/subscribe protocols in the application layer, on top of TCP
in the transport layer. Publish/subscribe protocols are explained in greater detail in
Section 2.2.1.

While all the mentioned projects illustrate different, and quite interesting aspects
of autonomous transportation systems, they all point out the same components as
the weakness regarding self-localization: the Lego Mindstorms color sensor combined
with the performance of the on-board computer equipment of each train.

As some central parts of both design and implementation of the system in
[Sve15c] is re-used to a great extent in this particular thesis, a rough overview of

16 2. BACKGROUND

Figure 2.9: Screen capture from Bluebrick

the respective parts will be presented in the following paragraphs to provide the
necessary background for this thesis.

2.3.3.1 Interpretation of railway design

As mentioned, Svendsen describes a general method for designing and interpreting
railway layouts. An open-source developed tool called Bluebrick[MN15] is used for
creating and altering railway layouts in a user-friendly fashion, as shown in Figure 2.9.
Available parts are shown in the box to the right; the layout under construction is
shown in the main canvas to the left. The tool outputs the designed layout as an
EXtensible Markup Language (XML) structured file, which in turn is used as a basis
for generating a data structure interpretable by the trains’ control software. The
derived map structure is used as both a state context for self-localization in each
train, and as a contextual basis for the interactive train to train communication. The
generated data structure and the procedures used for the translation from XML and
Java object instances are described in greater detail in [Sve15c].

2.3.3.2 Collision avoidance

Svendsen proposes in [Sve15c] a protocol for distributed interlocking. It is based
on the two-phase commit protocol used for atomic, distributed transactions, and
its key functionality lies in guaranteed consensus regarding a shared interlocking
table where reservations can be made without vulnerability to timing issues like e.g.
network delay. The communication between trains utilizes AMQP via a designated

2.3. RELATED WORK 17

server acting as a message broker. Messages carry an object structure serialized as a
JavaScript Object Notation (JSON) string. The AMQP messages are transported
over the transport layer using TCP, and the link layer is composed of both IEEE
802.11 (WiFi) and Ethernet cabling.

The data structure mentioned in Section 2.3.3.1 is used as a basis for the shared
model. Before a train is allowed to depart a station, the train must initiate a
reservation procedure for the track it plans to cover during its next transfer, including
the station track it plans to stop at. Not until the distributed interlocking protocol
submit a positive confirmation, the train may start moving out of the station. Meeting
collisions will never occur, neither will incidents of trains catching up and colliding
with preceding trains, as long as the self-localization in trains reflects reality correctly
at all times. Using this technique Svendsen’s system maintain the necessary safety
properties, though increased efficiency could be a subject for improvement.

2.3.4 A self-adaptive sensor system

In parallel with the work presented in this thesis, co-student Alexander Svae is
designing and developing a self-adaptive system for the train model. Although his
work is presented in an individual thesis and is considered to be independent, sharing
the same physical framework and components has led to benefits in both camps.
Svae’s system focuses on how input from the surroundings and contextual data can
be used to alter the behavior and functionality of the components in a dynamic
manner. More specific, Svae’s system is developed towards the same OSGi framework
as this system, i.e. combining the two systems should be a relatively straightforward
task.

Chapter3System Requirements

The system requirements sums up the functional and non-functional requirements
the system is subject to.

3.1 Functional requirements

Functional requirements what the system should do, i.e. the explicit functionality.
The following functional requirements are identified:

– Self-localization – Provide real-time data processing which can be utilized for
improving accuracy and reliability of self-localization mechanisms

– Mobility – The system hardware must be of a compact nature, supporting the
mobility needed in a moving, vehicular system.

3.2 Non-functional requirements

Non-functional requirements are of a more abstract nature than functional require-
ments, and describes how the system should e.g. perform. The following non-
functional requirements are identified:

– Modularity – The system should be composed of modules which interact with
each other in a dynamic manner. Modules should be interchangeable, and
should provide valuable functions although the module is used in a different
context.

– Modifiability – It should not be complicated to extend the functionality of the
system.

19

20 3. SYSTEM REQUIREMENTS

3.3 Inherited requirements

As the self-localization subsystem must interact with e.g. an internal model of
the railway defined in preceding projects, the requirements identified in [Sve15c,
3] are inherited. The inherited requirements are however not in the scope of this
thesis but provides valuable background information insight. The inherited functional
requirements are safety; reliability; bi-directionality, while the inherited non-functional
requirements are autonomy; reconfigurability; and scalability.

Chapter4Physical Composition

As stated in Section 1.2 and Section 2.3, preceding projects related to the model
railroad has used a common physical composition subject to little variation. As the
physical components onboard the trains has proved to act as a bottleneck regarding
self-localization[Sve15c, 8.1.2], a new hardware platform is introduced here. Note
that the ground-based equipment from previous projects is re-used, as none of the
contributors pointed out problems in these sub-systems.

This chapter is an overview of the chosen physical components of the system,
and a presentation of the physical system composition is given. In the first section,
a technical description of each component is given. The second section addresses
how the different components are interconnected and assembled. At the end of the
chapter, a summarized presentation of the ground-based components re-used from
previous work[Ove15][HØ15]. How the raw data from physical components will be
used in the scope of Section 6, and will not be treated in this chapter.

4.1 Components

4.1.1 Raspberry Pi 2

The pocket-sized computer Raspberry Pi 2 (RPi) is briefly introduced in Section 2.2.6.
The RPi is chosen as the core component in the new hardware platform on the basis
of its versatility. Below are some key points that stand out as important abilities in
this system:

– Connectivity – As mentioned in Section 2.2.6, multiple standardized interfaces
are available on the RPi. USB 2.0 connectors in combination with a regular
WiFi-dongle, as depicted in Figure 4.1, allows for easy access to wireless
networks with hardly any efforts involved. Serial buses like I2C and SPI
provides important communication with digital peripheral devices like e.g.

21

22 4. PHYSICAL COMPOSITION

sensors. The GPIO connectors give further flexibility concerning connectivity
of external components.

– Mobility – The physical size of the RPi, described in Table 4.1, makes it ideal
for use in a small, mobile vehicular system. Also, it is powered through a micro
USB connector, which means that it can be powered by e.g. portable power
banks.

– Performance – Despite the size of the RPi, it has quite adequate performance
specifications, as shown in Table 4.1. Compared to the Lego Mindstorms EV3
used in the system of [Sve15c], the RPi has 16 times more memory and a
processor with multiple cores compared to a slower, single-core processor in
the EV3.

– Operating system – With the official operating system of RPi, Raspbian OS1,
installing needed software is uncomplicated. The versatility of the operating
system not only results in increased flexibility regarding e.g. middleware
platforms but also allows the use of off the shelf applications for deployment of
new executable code during runtime.

Figure 4.1: USB WiFi don-
gle, image from http://www.
edimax.com/

Many of the benefits of using the RPi is listed
above, but there are also other alternatives. The
Arduino2 stands out as the most relevant alterna-
tive but is discarded for several reasons. The most
obvious benefit of using an Arduino is that it offers
a higher level of control regarding precise timing of
sensors and switches than the RPi, as the operat-
ing system running on the RPi is not a real-time
operating system[Goo13]. However, there are many
disadvantages on selecting an Arduino to run this
system on, among them the restrictions put on the
developer regarding programming language; the Ar-
duino only speaks C. The use of Java and OSGi is
defined in the problem description of the thesis, and
hence the Arduino is discarded.

1Raspbian OS is a Linux Debian based operating system, made for the Raspberry Pi computers
2See https://www.arduino.cc/ for more information concerning the Arduino.

http://www.edimax.com/
http://www.edimax.com/
https://www.arduino.cc/

4.1. COMPONENTS 23

Table 4.1: Specifications for the Raspberry Pi 2 [Rpi16]

Processor
ARM Cortex-A7

900MHz
quad-core

Primary memory (RAM) 1 GB
Secondary memory micro SD card up to 32 GB

Operating system
A variety of Linux distributions

Windows 10 IoT Core
Size 85 mm * 56 mm * 21 mm
Weight 45g

24 4. PHYSICAL COMPOSITION

4.1.2 Power supply

Figure 4.2: The Skross Reload
5 battery, image downloaded
from http://www.skross.com/

As mentioned in the previous section, mobility is of
highest importance. As the RPi use a micro USB
connector for power input, a USB capable Lithium
battery is chosen. The battery, a Skross Reload
5[SKR16] which is depicted in Figure 4.2, has a
capacity of 5000 mAh and output voltage of 5 V
(standard USB). If the RPi was to constantly drain
its maximum current rating of 1A (which is highly
unlikely), the battery would still last for five hours,
which is acceptable for this system.

4.1.3 Color light sensor

As described in preceding theses, the previous sys-
tems have used a color sensor for updating speed and
position metrics. Although different sensors will be
utilized in this system, using colored railway sleepers
to some extent is still considered reasonable. The
color light-to-digital converter TCS34725[aos16], is
chosen as it is precise, fast and supports the I2C protocol.

Figure 4.3: The TCS34725
breakout board, image from
https://www.adafruit.com/
product/1334

The TCS34725 provides color component resolu-
tions from 8 to 16 bits precision, depending on chosen
integration time, where the detected light is are di-
vided into four component values: clear (unfiltered
light); red-filtered; green-filtered; and blue-filtered
light. The integration time can be set from 2.4 ms
to 700 ms. The fastest integration time results in a
color sampling rate of 417Hz, which is sufficient for a
model of this size, as described in [Sve15c, 8.1.2]. A
compact breakout board3 with the TCS34725 chip,
additional supporting circuitry including a bright
is used in the system to reduce the manual labor
required. The breakout, depicted in Figure 4.3, re-
quires 3.3 V supply voltage, which is appropriately

delivered by the RPi’s pin header.

3The TCS34725 breakout can be viewed at https://www.adafruit.com/products/1334

http://www.skross.com/
https://www.adafruit.com/product/1334
https://www.adafruit.com/product/1334
https://www.adafruit.com/products/1334

4.1. COMPONENTS 25

4.1.4 NFC reader

Figure 4.4: The PN532
breakout board, image from
https://www.adafruit.com/
product/364

In Section 2.2.5.2 the NFC technology is introduced,
characterized by communication between two distinct
counterparts; a reader and a tag/transponder. The
PN532 integrated transceiver from NXP Semiconduc-
tor is a compact reader with a variety of operating
modes, among other [Sema] an ISO/IEC 14443A
(MIFARE) reader/writer mode. The PN532 also sup-
ports three communication protocols: I2C bus; Serial
Peripheral Interface (SPI) bus and Universal Asyn-
chronous Receiver/Transmitter (UART), which is
suitable since the RPi supports all three of them. As
with the color light sensor, a breakout board4 with
support circuitry including an on-board, credit-card
sized antenna is chosen. The breakout is depicted
in Figure 4.4. Communication protocol is chosen by
using a jumper configuration on the breakout. A
3.3V/5V supply voltage is required, depending on
which protocol is being utilized. The PN532 has
several features for power saving, as listed below.

– LowVbat mode: The chip is in virtual card mode5 whenever an external
electromagnetic field is present, and in power down mode otherwise[Sem10,
2.5]. This is the startup default mode. A state diagram showing the relations
and transitions between operating modes is shown in Figure 4.5.

– Interrupt mode: The chip, and the breakout board, has a dedicated connector
pin for an interrupt signal (IRQ). When the chip is configured to so, it sends an
IRQ signal to the controller host whenever a tag enters its proximity, so that
the host avoids polling the reader periodically to detect potential tags nearby.

4The PN532 breakout can be viewed at https://www.adafruit.com/products/364
5Virtual card mode means that the NFC reader emulates a tag

https://www.adafruit.com/product/364
https://www.adafruit.com/product/364
https://www.adafruit.com/products/364

26 4. PHYSICAL COMPOSITION

Figure 4.5: State diagram for the PN532, showing the relations and transitions
between operating modes. The state diagram is presented in [Sem10, 2.5.2].

4.1. COMPONENTS 27

4.1.5 Xtrinsic sense board

Figure 4.6: The Xtrinsic sense
board, image from https://
megapowertech.blogspot.com

An accelerometer and a magnetometer can be utilized
either separately for measuring respectively proper
acceleration6 and magnetic vector field, or combined.
A combination of the sensors outputs can be used
for e.g. reading tilt compensated magnetic heading,
regardless of the tilt the magnetic sensor may be
subject to7. A breakout board containing multiple
sensors, among other a digital accelerometer and a
magnetometer, is used in this system. The Xtrinsic
sense board, depicted in Figure 4.6, has a common
connection for supply voltage, ground and the I2C
bus. As the sensors mounted on the board are im-
plemented in separate ICs they can be addressed
separately as if they did not have any common phys-
ical connections to the host. More information on
the Xtrinsic sense board can be found in [Semd].

4.1.5.1 Accelerometer

The accelerometer onboard the Xtrinsic sense board is the Xtrinsic MMA8491Q. The
accelerometer has two modes; it can be configured as a simplified 45◦ tilt sensor or
as a digital output accelerometer with 1/1000g sensitivity[Semc]. To maintain a low
power consumption the sensor has an enable (EN) pin which controls the sampling.
In Figure 4.7 a state diagram for the operational modes of the sensor is shown. When
powered on, the sensor enters a ’shutdown’ mode. It is now ready for sampling.
When the EN pin is set high, the sensor acquires one sample from each of the three
axis and stores them into a registry. The time elapsed from the EN pin is set high
to when the data is available on the I2C bus is referred to as T on in the data sheet,
and is stated to be 720µs in average. After the data has been transferred to the
host, the EN pin should be set to logical 0 again. The procedure is repeated for each
sample acquisition, but the time between a falling edge of EN and the subsequent
rising edge needs to be separated by at least the reset time (T rst) of 1000µs. This
results in a maximum sampling rate of fmax = 1

720µs+ 1000µs = 581Hz. Note that
this calculation of the sampling rate does not take the time required for transferring
the data from the sensor registry to the host into account, neither how much time
the host needs for activating/deactivating the EN pin of the sensor. Thus, the real

6Proper acceleration is a term in relativity theory describing the physical acceleration experienced
by an object relative to free fall, i.e. a stationary object will experience a proper acceleration
g = 9.81m/s2 straight upwards whilst an object in free fall would experience a proper acceleration
of zero.

7Tiling a magnetometer alters the outputted data as the magnetic vector field[Ozy15]

https://megapowertech.blogspot.com
https://megapowertech.blogspot.com

28 4. PHYSICAL COMPOSITION

Figure 4.7: State diagram for the MMA8491Q, showing the relations and transitions
between operating modes. The state diagram is presented in [Semc, 3].

Figure 4.9: The physical composition of Overskeid’s PRT pods, image from [Ove15,
4.2]. The controllable components are the EV3 smart brick (1); the color sensor (2);
the speed control servo (3); the battery (4); the motorized wheel set (5)

maximum sampling rate would be lower, but probably still over 250Hz (assuming up
to 2000µs for reading data and controlling the EN pin).

4.1.5.2 Magnetometer

Figure 4.8: The PWM
driver board, image from
https://www.adafruit.com/
products/2348

The magnetometer located on the same board is the
MAG3110. The sensor has a sensitivity of 0.1µT,
noise is specified to a minimum of 0.25µT root mean
square (RMS), and the full scale range is stated to be
±1000µT . The magnitude of the geomagnetic fields
fluctuates from 25µT in South America to about
60µT over Northern China[Semb], i.e. well within
limit values of the sensors. Unlike the accelerometer
chip, the magnetometer does not require management
of an EN pin in order to read sensor data.

4.1.6 Motor controller

The preceding projects presented in Section 2.3 all
utilized the same hardware platform, including the

https://www.adafruit.com/products/2348
https://www.adafruit.com/products/2348

4.1. COMPONENTS 29

propulsion control. To control the motor driving the
train forward, the EV3 brick controlled a servo, which turned an adjustment screw8

on a Lego Lithium Polymer (LiPo) battery, which in turn outputted a subsequently
variable voltage supplied to the motorized wheelset. The design is shown in Figure 4.9.
As the RPi has no direct output compatible with the servo motor used, a different
approach is necessary here. By using a dedicated PWM driver chip, the voltage from
the battery in Figure 4.9 can be adjusted directly from executable code on the RPi.

The Adafruit direct current (DC) Motor HAT9 depicted in Figure 4.8 is chosen
as it’s designed for the RPi. Besides hosting a PCA9685 PWM chip and support
circuitry, it has a prototyping area facilitating connections to other peripheral devices.
The outputted PWM voltage can be adjusted with 8-bit precision in a bi-directional
manner. Further details on the Motor HAT can be found in [Ada].

Figure 4.10: A Lego Power
Functions extension cable, im-
age from http://shop.lego.
com/

In addition to the supply voltage, the Motor HAT
needs an external power source for driving the con-
nected motors. This power source should not be the
same that supplies power to the RPi, as electromag-
netic noise can propagate from the connected DC
motors. The battery used to power the motorized
wheel set, and the wheel set itself, is re-used from
preceding projects.

An extension cable, depicted in Figure 4.10, is
used to simplify the physical connections to both
the battery and the wheel set. The wire layout in
the extension cable follows the diagram shown in
Figure 4.11. The pins PWM1 and PWM2 is used
for providing a modulated voltage signal to a motor.

8The adjustment screw of the Lego battery has 15 settings: 7 levels of positive and negative
voltage, and an OFF setting. The output voltage is regulated by using Pulse Width Modulation
(PWM)

9A ’HAT’ (Hardware Attached on Top) is an add-on board for the RPi[Ada14]

http://shop.lego.com/
http://shop.lego.com/

30 4. PHYSICAL COMPOSITION

4.2 Composition

4.2.1 Construction of the vehicle

9V

PWM 1

PWM 2

Gnd

Figure 4.11: Wiring diagram
for Lego PF extension cable

The electronic components presented in the previous
section constitute the most central parts of the trains
in this system. However, a vehicle – the train itself
– is required to carry the hardware. Lego City train
sets are used as building bricks to construct custom
trains adapted to the on-board components.

As the color light sensor introduced in Sec-
tion 4.1.3 has to be directed towards the railway
surface, it is mounted to a Lego brick using a polymer-
based adhesive. The assembly is shown in Figure 4.12.
The remaining parts are placed either inside the ve-
hicle body or mounted on top of it, and so no further
adhesive fixtures are required.

The NFC reader described in Section 4.1.4 is
placed horizontally inside the vehicle, i.e. so the an-
tenna on the breakout board lies in parallel with the
railway surface, to maximize the reading distance.
Concerning the relatively low operating frequency of
the reader, 13.56MHz[Sem10], the antenna on break-

out board has a range of 10 centimeters. Mounted inside the vehicle, the reader has
a distance of 5 cm to the surface lying underneath the railway, which is considered
acceptable despite the Lego bricks obstructing a clear line of sight. The electromag-
netic field should be strong enough to penetrate the relatively thin layers of plastic
the Lego bricks are moulded of.

Figure 4.12: The TCS34725
breakout mounted to a 2*2
stud, flat Lego brick for inter-
facing

Other units placed inside the vehicle are the RPi,
the attached Motor HAT and the Lego LiPo battery.
As the environment has no direct influence on the
inputs of these units, there is no need for further
fixtures other than the containment of the units inside
the vehicle body. On top of the vehicle sits the
Xtrinsic sense board, clamped by Lego bricks. It
is important that the board is as flush with the
horizontal and vertical plane of the train as possible
so that the three logical axes of the accelerometer
coincides with the physical horizontal and vertical
plane, and the train’s direction of travel. The primary

4.2. COMPOSITION 31

Table 4.2: Hardware addresses for I2C enabled equipment

Device Hardware address (hex)
PCA9685 chip set 0x60
PN532 chip set 0x24

TCS34725 chip set 0x29
MMA8491Q chip set 0x55
MAG3110 chip set 0x0e

power source for the RPi and connected peripheral
equipment is carried in a separate train car due to physical size of the battery. The
resulting physical train construction is shown in Figure 4.13a and Figure 4.13b.

4.2.2 Schematic presentation

The peripheral equipment is connected to the RPi through the prototyping area on
the attached Motor HAT. As all selected equipment supports the I2C protocol, it is
used as the primary communication bus. As mentioned in Section 2.2.2, I2C enabled
equipment often comes with a pre-coded hardware address, as is the case for all
equipment listed in the previous sections. The addresses of the devices are listed in
Table 4.2. Note that the Motor HAT has a 5-bit hardware address selection, which
is not used here as multiple units are redundant for our system. More information
on how to use the address selection jumpers can be found in [Ada].

The physical connections between the RPi and the peripheral boards are made
according to the schematic logic diagram in Figure 4.14. As the Motor HAT has
a suitable prototyping area, the physical connections are wired from the soldering
points here. Wires run from the Motor HAT, which sits on top of the RPi, and to each
of the separate breakouts. As the complete system is intended to be accommodated
inside a moving vehicle, all connections are soldered to prevent weak couplings as a
result of vibration.

32 4. PHYSICAL COMPOSITION

Light color sensor

Lego LiPo battery

NFC reader

Raspberry Pi 2

Motor HAT w/prototyping area

Xtrinsic sense board

Lego extension wire splice

(a) Train side view, components annotated

Lego LiPo battery

Motor HAT

Raspberry Pi 2USB battery pack

Xtrinsic sense board

(b) Train top view, components annotated

4.2. COMPOSITION 33

R
a
sp

b
e

rr
y
 P

i

T
C

S
3

4
7

2
5

L
ig

h
t

co
lo

r
se

n
so

r

P
N

5
3
2

N
F
C

 R
e
a
d

e
r

P
C

A
9

6
8

5

M
o

to
r

H
A

T

M
M

A
8

4
9

1
Q

&

M
A

G
3

1
1

0

X
tr

in
si

c
S
e

n
se

b
o

a
rd

Gnd

SDA

SCL
3.3V

Gnd

SDA

SCL

3.3V

Gnd

SDA

SCL

3.3V

3.3V

SCL

SDA

Gnd

IRQ

EN

5
V

 D
C

B
a
tt

e
ry

5
V

 D
C

 B
a
tt

e
ry

 c
h

a
rg

e
r

M
ic

ro
 U

S
B

c
o

n
n

e
c
to

r

R
P

i
P

in
 H

e
a
d

e
r

Figure 4.14: Schematic diagram showing the logic connections in the physical system.

Chapter5Software Architecture

All software systems have some kind of software architecture, whether it is by design
or by chance. The software architecture is, in essence, an abstract way of defining
the structure of a system, where each level of abstraction can be said to describe
the software design in different ways, or in architectural views as coined by [BCK03].
The software architecture is a product of decisions made early in the design phase,
i.e. when the structure of the system is planned.

This chapter will describe the software architecture for the system, as well as the
underlying reasoning for the design decisions.

5.1 Architectural views

5.1.1 Modular view

As introduced in Section 2.2.4, OSGi is a modular framework for Java applications.
The modular framework is chosen not only for the advantages given regarding
modularity, but also for the robustness and agility provided by introducing lifecycle
management and a service layer as well as automatic dependency resolution which
is practical in a system where different modules may have a variety of different
dependencies.

In Figure 5.1, a modular architectural view is presented, showing how modules in
the system interact with each other through services and events. Each module, or
bundle as it’s coined in the OSGi context, is represented by a block in the diagram.
The inter-module communication paths are represented by lines and arrows, showing
the direction and type of communication.

35

36 5. SOFTWARE ARCHITECTURE

A central aspect in Figure 5.1 is the implementation of the whiteboard pattern. As
described in [KH04], the whiteboard pattern provides a decoupling of an event source
and the respective event receiver(s). The event source, which is coined publishers in
the diagram, gets a service reference to the Event Admin service1, which is events are
published to. The Event Admin can be viewed as a whiteboard, where event sources
would write on the whiteboard and anyone with interests in the topic could choose
to read what was written. Events posted to the Event Admin is redirected to those
registered as EventHandlers, based on an event topic. EventHandlers registers, or
subscribes to certain topics, based on what the target of interest is for the particular
EventHandler, i.e. what kind of events it would like to listen to. Using this technique,
the event source, and the event handler is completely decoupled, having no references
to the types or instances of each other. What we have introduced with the whiteboard
pattern is in other words an intra-Java Virtual Machine (JVM) publish/subscribe
protocol recognizable from Section 2.2.1.

The event publishers generate events based on external input, and is categorized
into two types:

– Event publishers associated with physical sensors and their corresponding
hardware interface. These publishers create events based on data received from
the sensor hardware interface, a procedure initiated by the publisher through a
service call to the hardware interface.

– Event publishers based on derived events, i.e. events are created by analyzing
received events published by other publishers. This category comprises both
derived sensor event publishers, like the velocity publisher; and modules related
to internal map and external communication like e.g. the Positioning module.

5.1.2 Pipeline view

While the previous section presented the modular structure, i.e. how modules relate
to each other, this section is intended to describe how data flows through the system.
As with the subsystem of [Sve15c, 5.2], the pipe-and-filter architecture presented in
[BCK03, p. 215-216] is used in this system. The pipe-and-filter pattern is suitable
for systems where streams of discrete data items are processed in a stepwise manner
from input to output. The architectural view is illustrated in Figure 5.2 , showing an
abstraction of how data flows in a pipe-and-filter manner through the system. The
small, consecutive blocks represent data streams entering and exiting the system.
The block denoted ’External systems’ represents co-operating trains

1The Event Admin service is a compendium service in the OSGi specification, i.e. provided as
an optional service by the framework provider.

5.1. ARCHITECTURAL VIEWS 37

N
FC

re

a
d

er

h
ar

d
w

ar
e

in
te

rf
ac

e

N
FC

p

u
b

lis
h

e
r

Li
gh

t
co

lo
r

se
n

so
r

h
ar

d
w

ar
e

in
te

rf
ac

e

C
o

lo
r

p
u

b
lis

h
e

r

A
cc

e
le

ro
-

m
et

er
h

ar
d

w
ar

e
in

te
rf

ac
e

A
cc

e
le

ra
ti

o
n

p

u
b

lis
h

e
r

M
a

gn
e

to
-

m
et

er
h

ar
d

w
ar

e
in

te
rf

ac
e

M
a

gn
e

ti
c

fi
e

ld

p
u

b
lis

h
e

r

O
SG

i E
ve

n
tA

d
m

in
 (

 "
W

h
it

e
b

o
ar

d
"

)

V
el

o
ci

ty

p
u

b
lis

h
e

r

D
is

p
la

ce
m

e
n

t
p

u
b

lis
h

e
r

Su
b

sc
ri

b
e

Se
rv

ic
e

ca

ll

P
u

b
lis

h

E
ve

n
t

P
o

si
ti

o
n

in
g

P
la

n
n

in
g

E
xe

cu
ti

o
n

M
o

to
r

co
n

tr
o

l
h

ar
d

w
ar

e
in

te
rf

ac
e

M
od

ul
es

 r
el

at
ed

 t
o

in
te

rn
al

 m
ap

 a
n

d
ex

te
rn

al

co
m

m
un

ic
at

io
n

Ph
ys

ic
al

 s
en

so
rs

 a
nd

as

sc
oc

ia
te

d
 e

ve
nt

 p
ub

lis
h

er
s

Ev
en

t
p

ub
lis

h
er

s
ba

se
d

 o
n

de
ri

ve
d

 e
ve

nt
s

Figure 5.1: Architectural modular view

38 5. SOFTWARE ARCHITECTURE

. . .

Se
n

so
r

1

Se
n

so
r

2

Se
n

so
r

n

Se
n

so
r

da
ta

 s
tr

ea
m

s

P
os

it
io

n
in

g

P
u

b
lis

h
e

r
fo

r
d

ir
ec

t
se

n
so

r
in

p
u

t

P
u

b
lis

h
e

r
fo

r
d

er
iv

e
d

e

ve
n

ts

P
o

ss
ib

le
 f

e
ed

b
a

ck

P
la

n
ni

n
g

Ex
ec

u
ti

o
n

Ex
te

rn
al

sy

st
e

m
s

M
o

to
r

co
n

tr
o

l

M
o

to
r

co
m

m
an

d
 d

at
a

st
re

am

Figure 5.2: Architectural pipeline view

5.2. SENSOR-PUBLISHER COMMUNICATION 39

The stage where publishers receive and process sensor data to create and publish
events is executed in a parallel manner, except for the publishers based on events
derived from other publishers receive such events in a serialized manner. The events
are fed through to the Positioning module, where the internal environment model is
updated accordingly to the input. A feedback loop from the Positioning module to
one or several publishers is feasible, considering the communication pattern presented
in Section 5.1.1. Such a feedback loop is desirable if machine learning techniques are
to be implemented at a later stage, e.g. to optimize sensor sample analysis.

The internal model update is tagged with a classification number, describing
the accuracy of the update depending on which sensor source that triggered the
update. The updated internal model is passed on to the Planning module, where the
present position is analyzed and compared to the current route plan. If necessary,
the Planning module communicates with the corresponding modules of other train
systems traveling in the same railway system and passes on a movement plan to
the subsequent module: the Execution module. At this stage, the movement plan’s
validity is guaranteed by the Planning module, and the Execution module decides
which speed level should be passed on to the Motor Control module.

5.2 Sensor-publisher communication

As mentioned, the publishers retrieve raw data from the sensor hardware interfaces
by service invocations. By letting the sensor hardware interfaces implement interfaces
defined in a mutual, public ’common’ module, no direct dependencies between
modules are introduced. The argument for using services, which differ from the
other inter-module communication in the system which relies on event propagation,
is that the timing of sensor readings must be defined somewhere. By extracting
timing implementations out of the sensor hardware interfaces, those modules become
interchangeable and timing control is kept under the authority of a publisher.

The publishers use service trackers provided by the OSGi framework to retrieve
temporary references to the service implementations of the sensor hardware interfaces.
As an example, the UML diagram in Figure 5.3 is presented, showing the classes
related to the MIFARE sensor (PN532) and the associated publisher. Note that
there are none direct relations between the MifarePublisher and the PN532 module,
which means that the sensor reading implementation is fully interchangeable. The
outer boxes represent Java packages, which in this case all belongs to separate OSGi
bundles except for the ones related to the OSGi framework.

Although some internal variations exist, all sensor/publisher pairs in the system
follow this pattern. With such a high decoupling, replacing the sensor implementation
with a sensor simulator can be managed solely by using the OSGi management console,

40 5. SOFTWARE ARCHITECTURE

Table 5.1: Service contracts for peripheral equipment modules

Device Service contract
PCA9685 chip set ActuatorControllerService
PN532 chip set MifareControllerService

TCS34725 chip set ColorControllerService
MMA8491Q chip set AccelerationControllerService
MAG3110 chip set MagControllerService

allowing for testing and debugging purposes. The only requirement on the sensor
simulator bundle is that it contains a class implementing the respective service
contract interface and that an instance of this class is registered as a service to the
framework’s service registry2.

As mentioned above, the responsibility for timing implementation is imposed to
the publisher. As multiple publishers have this requirement, a scheduling service is
introduced. Using the same context as above, namely the MIFARE sensor/publisher
pair, a UML class diagram is presented in Figure 5.4, showing how the MIFARE
publisher relates to a scheduling service. Details not concerning timing, e.g. the
implementation of the MifareControllerService and relations to the EventAdmin class
is not presented here to enhance the readability of the diagram.

Like the previous pattern displayed in Figure 5.3, this pattern is recurring in the
various sensor/publisher pairs. The scheduling service runs inputted sensor reading
implementation at a configurable rate until it is removed, or if an uncaught exception
occurs in the code.

The service contracts and the corresponding sensor hardware interfaces are listed
below in Table 5.1. The definition for each of the service contract Java interfaces is
listed in Table 5.2 All listed service contracts are contained in the ’common’-bundle,
and the package name no.ntnu.item.its.osgi.common.interfaces is skipped in
the tables.

2Registering a service to the framework’s service registry is possible through the static Bundle-
Context property

5.2. SENSOR-PUBLISHER COMMUNICATION 41

MifareControllerImpl

<<Interface>>

MifareControllerService

-write(int block, MifareKeyRing

keyRing, String content)

-EVENT_TOPIC

-read(int block, MifareKeyRing
keyRing)

-LOC_ID_KEY

<<Interface>>

IPN532

-authenticateMifareBlock(byte block,
MifareKeyType keyType, byte[] key,

byte[] uid)
-writeMifareBlock(int blockNumber,

byte[] content)
-readMifareBlock(int blockNumber,

byte[] buffer)
-readPassiveTargetID(byte

cardbaudrate, byte[] buffer)

PN532Factory

-getInstance()

PN532

-SAMConfig()

-PN532_COMMAND_GETFIRMWAREVERSION
-PN532_COMMAND_SAMCONFIGURATION
-PN532_COMMAND_INLISTPASSIVETARGET
-PN532_COMMAND_INDATAEXCHANGE
-MIFARE_CMD_AUTH_A
-MIFARE_CMD_AUTH_B
-MIFARE_CMD_READ
-MIFARE_CMD_WRITE

-MIFARE_CMD_TRANSFER

PN532I2C

-writeCommand(byte[] header, byte[] body)

-DEVICE_ADDRESS

-getFirmwareVersion()

-begin()

-waitForAck(int timeout)
-readResponse(byte[] buffer, int

expectedLength, int timeout)

MifareActivator

MifarePubActivator

MifarePublisher

-publish(String content)

-stop()

<<Interface>>

Activator

-start(BundleContext arg0)

-stop(BundleContext arg0)

ServiceTracker

-getService()

EventAdmin

-sendEvent(Event event)

-postEvent(Event event)

-BundleContext

-BundleContext

-CHARSET

Figure 5.3: UML Class diagram for the MIFARE sensor/publisher modules

42 5. SOFTWARE ARCHITECTURE

MifarePubActivator

MifarePublisher

-publish(String content)

-stop()

<<Interface>>

Activator

-start(BundleContext arg0)

-stop(BundleContext arg0)

ServiceTracker

-getService()

-BundleContext

<<Interface>>

SensorSchedulerService

-add(Runnable r, long period)
-remove(Runnable r)

<<Interface>>

MifareControllerService

-write(int block, MifareKeyRing

keyRing, String content)

-EVENT_TOPIC

-read(int block, MifareKeyRing
keyRing)

-LOC_ID_KEY

SchedulerServiceImpl

-BundleContext

Figure 5.4: UML Class diagram for the periodic timing of MIFARE reader sampling

5.2. SENSOR-PUBLISHER COMMUNICATION 43

Table 5.2: Service contracts definitions

Service contract Declared methods

ActuatorControllerService void send(MotorCommand c)
void send(MotorCommand c, int speed)

MifareControllerService

void write(int block,
MifareKeyRing keyRing, String content)

String read(int block,
MifareKeyRing keyRing)

ColorControllerService int[] getRawData()

AccelerationControllerService int[] getRawData()
int[] getCalibratedData()

MagControllerService double getRawData()

Chapter6Data processing

As the title unveil, a central aspect in this thesis is to address problems concerning
self-localization in the model Lego railroad system of the Department of Telematics.
In an outdoors environment with full-scale vehicles, self-localization can be assisted by
positioning systems like . However, when dealing with model scale equipment placed
inside a building, such positioning systems offer neither the required signal intensity
nor necessary accuracy and precision needed in a small scale environment. This
chapter presents techniques to realize a self-localization mechanism, using raw data
from the peripheral sensors and architecture introduced in the previous chapters. The
sensor data processing presented in this chapter is logically located in the Publishers
described in Chapter 5, except for the processing of MIFARE data.

As the source code for the modules which relates to the following sections is
considered too comprehensive for inclusion in the thesis, the reader is referred to
Section A.1.

6.1 Sensor data processing

6.1.1 Color light sensor data

The raw data delivered from the ColorControllerService is, as specified in Table 5.1
of the type int[]. More specific, the integer array is a collection of the component
values of the perceived light, as described in Section 4.1.3. The order of the values are
clear (index 0), red (1), green (2) and blue (3). A precision of 8 bits per component is
considered sufficient to separate the various colors available in the Lego train context,
as it results in 256 possible values per component. By managing with 8 bit precision,
a maximum sampling frequency of 417Hz is possible1.

1As other equipment use the same I2C bus for communication, excessive sampling rates should
be avoided

45

46 6. DATA PROCESSING

Table 6.1: Distances between color light sensor board and colored surface

Surface Distance [mm]
Colored sleepers 7

Lego railroad bricks (gray) 11
Table 14

The raw color data is very detailed, but processing is necessary before publishing
an event based on a sample further into the system. A color sample needs to be
categorized, hence the introduction of discrete color constants, the EColor enum in
the common bundle. The values of the EColor enum follows the colors of the flat Lego
bricks placed on the railroad, and the Lego railroad bricks themselves. The colors are
listed in Table 7.1. To classify the colors a two-stage procedure is presented, of which
the first step involve sample collection and the second stage consist of constructing
an algorithm.

6.1.1.1 Collecting samples

As the human interpretation of a color (e.g. ’green’) is, in fact, a range of colors
rather than a single unique dot in a color map, we need to define what colors to
expect when reading the sensor data. As the multitude of colors in the system is
limited, each single color should be mapped. A testbed is constructed to provide
a continuous colored surface the color light sensor can travel back and forth over
to simulate realistic movement. The testbed is depicted with a yellow surface in
Figure 6.1, and the distances from the sensor board to the colored surfaces follows
Table 6.1.

For each color in Table 7.1, 10.000 sensor samples is collected and stored while the
vehicle is moved back and forth over the colored area of the testbed in a fluctuating
rate, to cover scenarios with various speeds, etc. The sample set is analyzed using
statistical methods to produce a result set consisting of mean values and standard
deviations for the components, which forms a basis for a color classification algorithm.

6.1.1.2 Color classification

Using the results from the color testbed experiment, an algorithm for color classifica-
tion is presented in Algorithm 6.1. The distance between a color sample and each of
the pre-collected colors from the previous stage is calculated. The pre-collected color
that is evaluated to lie closest to the sampled color is considered to be the estimated
color of the surface and is returned by the algorithm unless the distance is too large
(above an appropriate boundary level), and the algorithm evaluates to UNKNOWN. A

6.1. SENSOR DATA PROCESSING 47

Figure 6.1: Color mapping testbed

(a) Testbed constructed for color mapping, with vehicle on top.
The distance between the sensor board and the colored surface
is the same as when the vehicle travels on the model railroad.

(b) Testbed for color mapping, with measure. The colored surface
is 14 Lego studs wide, i.e. 112 millimeters.

boundary level of 20 would correspond to a precision requirement of 2.6%, which is
quite strict.

A different approach than calculating the color distance between sampled and pre-
collected colors is to use the pre-collected color values as filters. For each component,
if the raw color value lies within one standard deviation from the pre-collected mean,
it passes the filter, else the filter is discarded. If a single filter remains when the
procedure is over, the color is found. The process is presented in Algorithm 6.2. In a
normal distribution, 68% of the values lies within one standard deviation from the
mean.

The technique giving the most promising results is tested on a circular test track

48 6. DATA PROCESSING

Algorithm 6.1 Color classification distance algorithm

Sub classify(rawColor):
Let ColorStatistics be List of FixedColors

% where each fixed color is represented by an
% EColor type enum and a List of
% [clear, red, green, blue] component mean values

Let minDiff = 10000
Let minColor = Null

For fixedColor in ColorStatistics:
Let diff = compare(rawColor, fixedColor)
If diff < minDiff:

Let minDiff = diff
Let minColor = fixedColor

End If

If minDiff > DiffBoundary:
Return UNKNOWN % Do not approximate too much

End If

Return minColor.Type
End Sub

Sub compare(rawColor, fixedColor):
Let redDiff = rawColor.Red*255/rawColor.Clear -
fixedColor.Red*255/fixedColor.Clear
Let greenDiff = rawColor.Green*255/rawColor.Clear -
fixedColor.Green*255/fixedColor.Clear
Let blueDiff = rawColor.Blue*255/rawColor.Clear -
fixedColor.Blue*255/fixedColor.Clear

Return Abs(redDiff) + Abs(greenDiff) + Abs(blueDiff)
End Sub

where a variety of colored sleepers are mounted to investigate if any sleepers are
bypassed during operation.

6.1.1.3 Timing

Periodic readings of the sensor are useful when the vehicle is moving for continuous
detection of the change in surface color, i.e. the passing of sleepers. According to

6.1. SENSOR DATA PROCESSING 49

Algorithm 6.2 Color classification filtering algorithm

Sub filter(rawColor):
Let ColorStatistics be List of FixedColors
% where each fixed color is represented by an
% EColor type enum and a List of
% [clear, red, green, blue] component mean values,
% and a List of
% [clear, red, green, blue] component standard deviation values.
Let Filters = ColorStatistics

For component in rawColor:
For fixedColor in Filters:

If rawColor.component not within fixedColor.componentMean +-
fixedColor.componentStdev:

Filters.remove(fixedColor)
End If

If Filters.size = 1:
Return Filters.getFirst.getType

Else:
Return UNKNOWN

End If
End Sub

[Sve15c, 8.1.2], a timing period of 16ms would allow the model train to travel at
speeds up to 1 m/s and still register all passed sleepers, which is satisfactory.

6.1.2 MIFARE tag readings

As described in Section 2.2.5.2, Mifare-enabled tags has a built-in EEPROM with a
capacity between 1 to 4 kilobytes of memory. A layout map of a small portion of the
memory is depicted in Figure 6.2. When writing to MIFARE memory, operations
are executed on block-level, which means that data of less than 16 bytes has to be
padded with leading 0’s before writing. Likewise, when reading from the MIFARE
chip leading 0’s should be trimmed before passing the data on to the recipient. As
mentioned at the beginning of this chapter, this processing of byte array data does not
take place in the publisher module, but rather in the MifareControllerImpl class
of the pn532 bundle. The reason for this design choice is that it makes the API for
the PN532 bundle more universal and easier to use for others2. The implementation

2An experimental version of the bundle was provided to prof. Alexander Kraemer at the
Department of Telematics for educational purposes

50 6. DATA PROCESSING

Figure 6.2: Layout of the first three sectors of a MIFARE tag’s EEPROM memory.
Each block consists of 16 bytes, each sector consists of four blocks, where the last
block contains encryption keys for access to the preceding blocks.

allows the service consumers of the MifareControllerService to write and read
Java strings in the UTF-8 character encoding. With UTF-8, all "regular" characters
and digits are encoded with an 8-bit length encoding, i.e. a single MIFARE block
can accommodate strings up to 16 characters length.

6.1.2.1 Timing

In Section 4.1.4 the interrupt signal of the PN532 chip was introduced. Ideally, one
would use this signal to trigger a MIFARE reading, i.e. read a tag whenever it is
within the range of the PN532 card. Other possibilities are periodical, continuous
retries, or using other sensor input to trigger the reading. Periodical readings should
be kept at half the pace required for the color sensor, taking the size of the antenna
and thus, the proximity area for the NFC reader into account, i.e. reading at 32ms
intervals.

6.1. SENSOR DATA PROCESSING 51

6.1.3 Accelerometer data

The raw data read from the accelerometer is an array of binary values with one value
per axis. The least significant bit (LSB) of each array element has a resolution of
1mg. The accelerometer data can be useful for multiple purposes, e.g. emergency
situation detection (tilt or sudden stop). To provide valuable data to other modules
in the system, the Accelerometer Publisher is tasked to convert the raw data into
SI-units before publishing the data wrapped in Events to the EventAdmin. The
conversion to SI-units is presented in Algorithm 6.3.

Algorithm 6.3 Conversion of bit value acceleration in mg to SI-units

Sub convert(bitValue):
Let g = bitValue / 1024.0
Return g * 9.81 % meters per square second

End Sub

The Accelerometer Publisher wraps the data from each of the axes in an Event
accompanied by a time stamp denoting at what time the data was read3,4, and pass
the event on to the EventAdmin, which notifies the potential modules subscribing to
those events.

6.1.3.1 Derived event generation

In the case with the accelerometer, a processed event makes little sense by itself.
However, along with the time stamp, a sequence of events can provide insight in
the relative change of velocity and further on, the displacement of the vehicle. The
relations between relative acceleration a, change in relative velocity, ∆v, and change
in relative displacement, ∆s, is illustrated in Figure 6.3. The y-axis denotes both
acceleration in m/s2 , velocity in m/s and displacement in m.

v(t) =
∫
a(t)dt =⇒ ∆v =

∫ t1

t0

a(t)dt (6.1)

s(t) =
∫
v(t)dt =⇒ ∆s =

∫∫ t1

t0

a(t)dt (6.2)

3The time stamp is generated by use of the static System.nanoTime() method, in the form of a
long.

4As the passing and reception of events are executed in an asynchronous manner; events may
arrive out-of-order or be delayed. Timestamps must, as a consequence, be appended as early as
possible after the sensor data is read.

52 6. DATA PROCESSING

Displacement

Velocity

Acceleration

0 2 4 6 8 10
t0

5

10

15

Figure 6.3: Relations between acceleration, velocity and displacement

The mathematical relations are given in equations (6.1) and (6.2). Both equations
are based on the function for acceleration with respect to time, which is a function
with unknown coefficients as a variable acceleration is expected. By looking at two
consecutive events from the Accelerometer Publisher, both events containing axial,
momentary acceleration and the timestamp for the event, a linear function can be
found for the secant line intersecting both (a0, t0) and (a1, t1) by applying the two
point formula solved for a(t) in (6.3). Note that the following formulas must be
applied to each axis to find the vectorial acceleration in three-dimensional space.
However, as the vehicles movements are restricted to a single horizontal dimension5,
these calculations are only applied for the x-axis value, as it is this axis that is of
interest when looking at normal train operation.

f(x)− f(x0) = f(x1)− f(x0)
x1 − x0

(x− x0)

⇒ a(t)− a(t0) = a(t1)− a(t0)
t1 − t0

(t− t0)

⇒ a(t) = a0 + (a1 − a0) t− t0
t1 − t0

(6.3)

5Although the trains move in three-dimensional space, in reality, the accelerometer chip sits in a
fixed position relative to the vehicle body, thus will the x-axis of the sensor be the only effective axis

6.1. SENSOR DATA PROCESSING 53

As (a0, t0) and (a1, t1) will differ for each event received, so will the coefficients
of the function in (6.3), which means dynamically generating a new function for
each iteration is required. The implementation of such a feature is quite straight
forward using the functional programming features of the Java Development Kit
(JDK) version 8, as shown in Source Code 6.4.

Source code 6.4 Generation of a linear function for a line intersecting two points

public Function<Double, Double> getAccelAsFuncOfTime(
double a_0,
double a_1,
double t_0,
double t_1)

{
return new Function<Double, Double>() {

@Override
public Double apply(Double t) {

return a_0 + (a_1 - a_0) * ((t - t_0) / (t_1 - t_0));
}

};
}

Using the Function dynamically generated in each iteration, the change in veloc-
ity during the time period between two samples can be found by numerical integration.
The library org.apache.commons.math.analysis.integration is utilized to facil-
itate the numerical integration. More specific, the class TrapeziodIntegrator is
chosen, as it implements the trapeziodal rule which suits the linear acceleration in
this context. As the source code for this implementation is more comprehensive, the
reader is referred to Section A.2.

As the calculation of the displacement delta, ∆s, only requires an extra integration
step as shown in (6.2), the details of an implementation is omitted here as it would
be repetitive. Following the modular architecture, the derived event generation is

6.1.3.2 Timing

The accelerometer has to be frequently polled to record motions of significance. The
maximum sampling rate mentioned in Section 4.1.5 is considered to be multiple times
higher than what is needed to register necessary changes in acceleration. As the
acceleration measurements aren’t used directly, but as a basis for further processing,
the time required for data processing has to be taken into account to prevent a
situation where data is read faster than it can be processed, leading to a system
congestion. The sampling rate is suggested to be set at 50ms.

54 6. DATA PROCESSING

6.1.4 Magnetometer data

The magnetometer sensor provides, like the accelerometer, raw data in three axes.
In the case for magnetic field readings, the unit used is Tesla, and in this particular
case, the sensor has a precision of 0.1µT/LSB. As mentioned in Section 4.1.5
the geomagnetic fields fluctuates within the microTesla-scale. Consequently, it is
decided that the MagPublisher should provide events containing magnetic field data
denominated in the µT scale, which is achieved by dividing the raw values by 10.
As with the acceleration events, the magnetic field reading events should also be
accompanied by a time stamp.

6.1.4.1 Calibration

The magnetometer may need to be calibrated before use. For simplicity, the as-
sumption of a horizontal alignment of the magnetometer chip is made, which means
that only the x and y-axis needs to be calibrated. The calibration procedure chosen
is manual, but simple, as briefly described in [Zam11]. The procedure consists of
iterating through two phases:

Periodically log magnetometer readings to a formatted file, with the readings’ x
and y values comma separated on each line, while turning the magnetometer 360◦

clockwise, in a horizontally stable position.

Plot the file to a point plot with the corresponding axis values. The points should
form a circle. The center of the circle should be (approximately) positioned in the plot
origin point (0, 0). Add the necessary constant values to the magnetometer publisher
to adjust the published values. Repeat until a satisfactory result is achieved.

6.1.4.2 Derived event generation

Based on the raw magnetic field readings, a magnetic heading can be calculated. As
described in [Ozy15], the 23 equations for calculating a tilt-compensated compass
heading using accelerometer data requires quite many mathematical operations,
and is out of the scope of this paper. A simpler variant where a magnetic heading
is calculated using only the x and y-axes components from the magnetometer is
presented in (6.4), taken from [Hon], which is based on the magnetometer chip to be
horizontally positioned. The result of the calculation is a magnetic heading denoted

6.2. ACTUATOR CONTROL 55

in degrees, as a number 0 < θ < 359.

heading =

90− arcTan(xy) 180

π y > 0
270− arcTan(xy) 180

π y < 0
180.0 y = 0, x < 0
0.0 y = 0, x > 0

(6.4)

As the magnetometer picks up electromagnetic fields, it is interesting to investigate
if there are any resulting interference when the motor unit is switched on and off, as
electromagnetic motors are known to produce electromagnetic noise.

6.1.4.3 Timing

The heading of a vehicle will not be subject to rapid change, as the traveling speed
is restricted. This implies that a low sampling rate of e.g. 5Hz is satisfactory for
this sensor.

6.2 Actuator control

The Motor HAT with the on-board PWM chip has, as mentioned in Section 4.1.6,
8-bit precision on the output voltage adjustment. As a software service, the hardware
interface module provides a setSpeed method which takes two arguments: a com-
mand describing the direction6; and an integer between 0 and 255 inclusive describing
the actual speed.

6.3 Strategies for data utilization

In the following paragraphs, strategies for how the collected data is utilized to improve
the self-localization function of the Lego train system. The functionalities described
in this section is primarily the responsibility of the Positioning module.

6.3.1 Colored sleepers

As in related projects, information embedded in the coloring of the railway surface
itself is utilized. In addition to registering the regular sleepers (gray color), signal
colored sleepers are used. The information expressed by the various colors are listed
in Table 6.2. Note that the information in a gray sleeper also applies to the other
colors, as it too indicates movement.

6Direction commands can be either Forward|Backward|Release.
7The connector definitions are explained in [Sve15c, 4.2]

56 6. DATA PROCESSING

Table 6.2: Sleeper colors and their encoded information

Color Encoding
Gray, * Moved 32mm in travel direction
Blue NFC tag in proximity
Red Point section entry connector7

Green Point section through connector7

Yellow Point section divert connector7

6.3.2 MIFARE balises

By placing NFC tags beneath the railroad surface at designated positions, the passing
vehicles can read location data out of the MIFARE memory of the tag. The tags are
encoded with the unique identifier of the individual railway brick it’s positioned under;
an identifier searchable in the internal railroad model introduced in [Sve15c, 6]. A
brick identifier is an eight-digit number represented as a string generated during the
railroad layout design phase by the design tool Bluebrick8, and subsequently stored
in block 42 in the memory of a tag. The tag is placed underneath the corresponding
physical railroad brick in a centered fashion. The middlemost sleeper of the same
brick is marked with a blue sleeper color by Table 6.2.

When the passing vehicle reads the location information stored in block 42 of the
tag, a reliable position update can be made without the concerns of being ’out of
sync’ with counting sleepers, etc. This strategy has a resemblance to the Eurobalises
of ERTMS introduced in Section 2.1.

6.3.3 Displacement based on acceleration readings

As described in Section 6.1.3, the accelerometer can be used to calculate both changes
in velocity and displacement delta, i.e. how far the vehicle has moved in the interval
[t0, t1]. The VelocityPublisher keeps a state concerning momentary velocity, which
is synchronized and reset before starting the engine. It publishes then velocity each
time it is updated, and so follows the periodic timing of the accelerometer readings.
The velocity events can be used for publishing information relevant for other vehicles
in proximity, as it may give an estimate on how long time this vehicle will use to
finish the ongoing railroad track section.

Calculating displacement delta is the task of the DisplacementPublisher. The
displacement delta calculation is as shown earlier the double integral of the accel-

8To alleviate this process, the source code of Bluebrick has been modified by adding a button
to the context menu of a right mouse click on a selected brick. The identifier of the selected brick is
consequently copied to the clipboard.

6.3. STRATEGIES FOR DATA UTILIZATION 57

eration function of time, and can be derived from two subsequent velocity delta
events. If a displacement delta with tolerable accuracy can be calculated from the
acceleration readings, a position update can be executed based on the distance the
vehicle has moved in the interval [t0, t1]. Object instances at a layer of the internal
model coincide with the physical railroad bricks, so interpreting how far the vehicle
has moved in the internal model based on a calculated metric is feasible as long as the
accuracy of the calculation is relatively precise compared to the actual displacement.

As depicted in Figure 5.2 a feedback loop from the Positioning module is possible.
In the case of a displacement delta module, the feedback loop can carry information
on actual displacement whenever a reliable position update based on e.g. a MIFARE
balise passing. The ’actual displacement’-information can, in turn, be analyzed
and compared to the displacement calculations made in the same time frame, and
optimization of the calculation can be evolved over time. This optimization is,
however, a complex subject, and further investigation is thus precluded in this thesis.

6.3.4 Magnetic heading as a position approximation assistant

Figure 6.4: XML snippet show-
ing structure of rail brick element.
In addition to type description
(PartNumber) and connected ele-
ments (Connexions), the orienta-
tion is given in clockwise degrees
from relative north in the map
(upward).

The magnetic heading can be used in several ways
to improve the positioning of the vehicle. Below
are two proposals to such strategies.

6.3.4.1 Using compass directions

In the design phase, the compass directions of the
physical Lego layout may be embedded in the log-
ical map. By comparing last known position and
travel direction with a sampled magnetic heading
and the information embedded in the map, the
positioning system can estimate whether or not it
has e.g. entered or left a turn, and thus what the
position should be updated to. The structured
map XML data provided by Bluebrick already
contains some information regarding the orienta-
tion of bricks, as depicted in the XML snippet
in Figure 6.4. To use this orientation directly,
the layout must be placed so that north coincides
with what is upward in the map design, or mea-
surements must be made so that the deviation
between relative north in the map and magnetic
north is found and the information must be in-
cluded in the logic map structure. As both the
magnetic heading and the orientation of a rail

58 6. DATA PROCESSING

brick is denoted in degrees, resolving the mag-
netic direction of a brick is a simple procedure as
long as the mentioned deviation is found.

6.3.4.2 Continuous comparison

A simpler, but a less precise method is to compare incoming samples continuously
to previous samples. In its most trivial form, this approach would involve only the
previous and the current sample, and the comparison may conclude whether or not
the vehicle is turning or driving straight forward. More sophisticated methods can
be utilized, e.g. interpolating through a set of samples, let’s say the ten most recent
samples, and analyzing the result to conclude.

6.4 Merging sensor data streams

The sensor data streams flow in parallel in the system, and must at one point be
merged in the Positioning module. As multiple events may be received by the module
concurrently, the module is well suited to be subject to model-based design and is thus
developed in Reactive Blocks. The OSGi project no.ntnu.item.its.osgi.train.positioning’s
application block is depicted in Figure 6.5.

The module handles the published sensor events and converts them into map
updates, which is returned to the event bus. Alongside with the map update is a
number indicating the grade of estimation the particular map update is subject to,
which is based on what kind of method was used to generate the update. This way
the receiver of the map update, in this case, the Planning module, can compare an
incoming update to previously received updates and resolve how to relate to the
update. E.g. if an update with a high approximation grade is received two seconds
after an update with significantly higher certainty, and the second update claims
a position which is unrealistic concerning the recently received update, the second
update can be viewed as excessive and may be rejected by the Planning module.

6.5 Integration with existing collision avoidance system

When the position is updated, using one or several of the techniques presented in the
previous sections, the vehicular system needs to communicate its updated position to
the other train in the system, at least the ones in its vicinity. As the same structure
for describing the internal model of the map is used here as in [Sve15c], no breaking
changes has to be introduced to the collision avoidance system. However, with a
more precise and reliable positioning system, the collision avoidance system can be
modified to take advantage of the mentioned improvements.

6.5. INTEGRATION WITH EXISTING COLLISION AVOIDANCE SYSTEM 59

Figure 6.5: Positioning module’s application block

60 6. DATA PROCESSING

In [Sve15c, 7.2], Lockable resources are introduced along with the implementation
of a LockHandler. As the LockHandler is implemented in Reactive Blocks, re-using
those same components in this system is trivial, integrating the LockHandler block
into the Planner module of this system. The LockHandler takes Lockable Resources
as inputs and provides output to the system when it has communicated with the
corresponding modules of the other trains in the system. What the context of the
Lockable Resources is, is up to the surrounding system to define.

Previously, the Lockable Resources has been intersections and entire stretches
of railroad track in between intersections. The coarse partitioning resulted in a
restriction of a single train per track section, even if waiting trains was traveling in
the same direction and hence could follow the leading train. The waiting trains had
to wait their turn at stations/intersections at the end of these tracks until the train
occupying the track had finished.

By defining Lockable Resources to be a smaller building block than a complete
section, i.e. a single rail brick, a more efficient system is within reach. Algorithms
needs to be adapted in the Planner module for this behavior to cope with possible
meeting collisions before such situations occur, but it is more a technicality than
a real obstruction. The increased efficiency can be accounted for in a situation as
depicted in Figure 6.6. If e.g. a train is waiting for another train to finish the track
in front of it, both trains traveling in the same direction. The waiting train can
commence on the first part of the track when it receives a release message on those
track parts from the train in front, i.e. when the first train has e.g. passed a MIFARE
tag along the track. This way tracks are sectioned into smaller pieces whereas safe
transit is a fact as long as only one train is occupying a section at a time. Releasing
segments can also be based on other sensor signals, e.g. the detection of a completed
turn. Velocity readings from the first train can besides act as an upper limit for the
speed allowed for the second train, as there’s no point for the second train to ride
faster than the first.

6.5. INTEGRATION WITH EXISTING COLLISION AVOIDANCE SYSTEM 61

Mifare tagMifare tag

Mifare tagMifare tag

Mifare tagMifare tag

Mifare tagMifare tag

Mifare tagMifare tag

Figure 6.6: A case example for following trains

Chapter7Results
The sampled data that forms the statistical basis for this chapter is collected utilizing
the architecture defined in Chapter 5 by registering an EventHandler to the framework,
handling the events of interest. The EventHandler implementation takes care of
logging the properties in focus for the specific experiment. Using this approach, not
only the sensor hardware interfaces and publishers are tested, but the interaction
with the framework as a whole as well.

In this chapter, experimental results are presented and explained, while the
discussion regarding the results is carried out in Chapter 8.

7.1 Color light sensor

7.1.1 Pre-collected samples

As mentioned in Section 6.1.1.1, a sampling procedure on a testbed must be carried
out prior to defining the color enumerations. The samples are collected using a
sample interval of 10ms, and a total of 10.000 samples are collected for each color.
In Table 7.1, the results from the various testbed configurations are presented. Each
testbed configuration result is listed with the respective color component sample
means, x̄, and standard deviations, σ.

Table 7.1: Statistics from color testbed sampling

Testbed clear [x̄, σ] red [x̄, σ] green [x̄, σ] blue [x̄, σ]
Gray 21.64, 0.91 6.91, 0.27 8.10, 0.41 7.45, 0.52
Yellow 138.16, 6.52 59.47, 2.60 55.81, 2.66 24.97, 1.23
Green 35.53, 1.84 7.18, 0.70 18.40, 0.77 11.21, 0.74
Blue 50.99, 2.29 6.48, 0.62 16.96, 0.81 29.67, 1.36
Red 35.52, 2.19 24.22, 1.19 7.37, 0.74 7.10, 0.80

63

64 7. RESULTS

Figure 7.1: Result set from color sampling on gray testbed.

C
le

a
r

R
e

d

G
re

e
n

B
lu

e

0

5

10

15

20

V
a

lu
e

Gray

(a) Each bar represents the mean values of a compo-
nent, the error bars represent the respective standard
deviation.

(b) Gray mean val-
ues as RGB color

In Figures 7.1, 7.2, 7.3, 7.4, 7.5, the statistics from Table 7.1 are presented. The
data from each testbed color configuration is shown in it’s own bar chart, where the
bars represent the mean values of the respective color’s components including error
bars which shows the standard deviations. In addition, a colored circle is presented,
where the color is obtained by converting the mean values into RGB colors1.

7.1.2 Testing color classification

Both techniques mentioned in Section 6.1.1.2 were applied at to find the most suitable
one. The filtering technique resulted in very unstable color readings, returning e.g.
Yellow when the concrete sleeper was green. The color distance calculation gave
more promising results, and a test run was carried out on a circular track. The track
consists of 16 curved Lego rail bricks with the following colored sleepers attached, on
top of some of the 64 gray sleepers:

– Red: One sleeper, also marking the end of a completed round.

– Blue: Three sleepers.

– Green: Two sleepers.

– Yellow: Two sleepers.
1The RGB color code is obtained by multiplying each of the color components [red, green, blue]

with 255, and dividing by the ’clear’ value. The resulting numbers are rounded to the closest integer
and converted to a hexadecimal value. The hex numbers are concatenated in the order given by the
acronym: Red; Green; Blue, resulting in an RGB hex value.

7.1. COLOR LIGHT SENSOR 65

Figure 7.2: Result set from color sampling on red testbed.

C
le

a
r

R
e

d

G
re

e
n

B
lu

e

0

5

10

15

20

25

30

35

V
a

lu
e

Red

(a) Each bar represents the mean values of a compo-
nent, the error bars represent the respective standard
deviation.

(b) Red mean val-
ues as RGB color

Figure 7.3: Result set from color sampling on blue testbed.

C
le

a
r

R
e

d

G
re

e
n

B
lu

e

0

10

20

30

40

50

V
a

lu
e

Blue

(a) Each bar represents the mean values of a compo-
nent, the error bars represent the respective standard
deviation.

(b) Blue mean val-
ues as RGB color

66 7. RESULTS

Figure 7.4: Result set from color sampling on yellow testbed.

C
le

a
r

R
e

d

G
re

e
n

B
lu

e

0

20

40

60

80

100

120

140

V
a

lu
e

Yellow

(a) Each bar represents the mean values of a compo-
nent, the error bars represent the respective standard
deviation.

(b) Yellow mean
values as RGB
color

Figure 7.5: Result set from color sampling on green testbed.

C
le

a
r

R
e

d

G
re

e
n

B
lu

e

0

5

10

15

20

25

30

35

V
a

lu
e

Green

(a) Each bar represents the mean values of a compo-
nent, the error bars represent the respective standard
deviation.

(b) Green mean
values as RGB
color

7.1. COLOR LIGHT SENSOR 67

0 5 10 15 20
Round54

55

56

57

58

Samples

Gray samples�round

0 5 10 15 20
Round0.0

0.5

1.0

1.5

2.0

2.5

3.0

Samples

Green samples�round

0 5 10 15 20
Round0.0

0.5

1.0

1.5

2.0

2.5

3.0

Samples

Yellow samples�round

0 5 10 15 20
Round0.0

0.5

1.0

1.5

2.0

2.5

3.0

Samples

Blue samples�round

0 5 10 15 20
Round0.0

0.5

1.0

1.5

2.0

2.5

3.0

Samples

Red samples�round

Figure 7.6: Result plots from color sensor test run on a circular track

The results of the test run on the circular track are shown in the plots in Figure 7.6.
The plots show how many sleepers the color sensor/publisher pair detected in each
round on the circular track. Each color is represented in it a separate plot. As it
appears from the plots, only the Red sleepers are detected without any deviations
during the test run. All in all, 63 sleepers are recognized each round in average,
though this mean value is somewhat drawn up by the fact that gray sleepers are
over-reported in some rounds.

68 7. RESULTS

Table 7.2: Statistical data for the color sensor sampling rate

Property Value [ms]
Mean 15.999
Variance 0.261
Standard deviation 0.511
99.9 percentile 21.003

7.1.3 Testing color sensor timing

During the test run mentioned above, the time delta between sensor samples was
logged to document the relative performance of the application. The results of the
timing test can be seen in the plot and survival count histogram of Figure 7.7. The
plot shows the time delta between color samples over time, while the histogram shows
the survival count, i.e. how large quantities of the samples are less than a given value
on the x-axis. As can be observed in the histogram, less than ten samples are delayed
more than 5ms after the planned 16ms periodic delay, and the worst case is 32.5ms.
The statistical properties of the sample set are seen in Table 7.2. The phenomenon
in the plot where a delayed sample is followed by an equivalent reduction in delay of
the next sample is caused by the implementation of the SchedulerService.

7.2 MIFARE tag readings

As with the color sensor/publisher pair, a circular test track is used to test the
NFC-reader/publisher pair. Three Mifare-capable tags are encoded with different
ID’s using the pn532 bundle, and placed with equal distances from each other under
the test track. The Location IDs used are (99999995;99999996;99999997). The train
is set to run for 26 rounds, resulting in 77 read Location IDs. As the observant reader
may notice, 77 readings is one reading short when there are three readings per round
for 26 rounds. The readings are plotted in Figure 7.8. The values on the y-axis
represent different Location IDs. As evident in the plot, one tag reading out of the
total of 78 possible readings were omitted.

7.3 Acceleration based metrics

As described in the previous chapter, the accelerometer can potentially function as a
basis to calculate changes in velocity and displacement in a real time manner. To
test the accuracy and identify the potential of the accelerometer, several tests are
conducted. The test procedures and results are described in the following sections.

7.3. ACCELERATION BASED METRICS 69

1000 2000 3000 4000 5000 6000
Sample n

10

15

20

25

30

Sleep time @msD
Time delta between sensor samples

10 15 20 25 30
Time delta @msD

1

10

100

1000

10 000

Number of readings

Survival count for time delta between sensor samples

Figure 7.7: Timing measurements results of the color sensor/publisher pair

70 7. RESULTS

Missing reading

17 400 17 420 17 440 17 460 17 480 17 500 17 520
Time@sD

99 999 995

99 999 996

99 999 997

Location ID

Figure 7.8: MIFARE tag readings during test run on circular track

7.3.1 Initial linear movement mapping

For this test a 40cm long, straight track is used. The train is set to movement from
a stationary position and stopped after approximately one second. After a pause of
one second, the movement is reversed, bringing the train back to the initial position
one second later. This procedure is repeated once. The result from this test is shown
in Figure 7.9. The green circles indicate the time frame where the train is accelerated
forward and then decelerated to a stationary position. The red circles indicate the
time frame where the opposite (reverse) movement occurs. The y-axis denotes both
acceleration in m/s2 and velocity in m/s.

As the result presented in Figure 7.9 shows, the acceleration measurements can
be interpreted to describe the movements of the train. The calculated velocity does
however never return to zero, which in reality is the case during the pause after all
four movements when the train is stationary. During the reverse movements marked
with red circles in the figure, the velocity should be negative as the train accelerates
in a negative x-axis direction.

7.3.2 Accelerometer simulator

To identify the source of the problem detected in the previous section, a simulator
is developed. The physical accelerometer is replaced by a simulated accelerome-
ter simply by substituting the MMA8491 bundle with the simulator bundle, having
the simulator bundle registering the same service as the initial sensor bundle, the

7.3. ACCELERATION BASED METRICS 71

11 276 11 278 11 280 11 282 11 284 11 286

t

-6

-4

-2

2

4

Acceleration

Velocity

Figure 7.9: Acceleration measurements along with calculated velocity delta

AccelerometerControllerService. For each time the AccelerationControllerMocker ’s
getRawData() method is called, a new integer array is returned. All three axis are
simulated similarly, but it is the x-axis that is in focus. The values returned by
the simulated service forms a triangular pulse signal which means the simulator
imitates the initial, forward directed movement made in the previous experiment. By
inputting the triangular pulse signal to the calculation logic in the VelocityPublisher,
verification of the mathematical functions can be done. Note that no changes are
made to the VelocityPublisher, i.e. the sampling rate is unchanged.

The output from the VelocityPublisher is shown along with the input to the
algorithm, i.e. the simulator output, in Figure 7.10. Note that there is no change in
velocity as long as the acceleration is zero. The y-axis denotes both acceleration in
m/s2 and velocity in m/s.

Analyzing the resulting velocity delta, the correctness of the speed calculation is
verified. The velocity rises to 1m/s before it stabilizes due to a positive triangular
peak acceleration of 1m/s2 with two seconds duration, and then decreases back to
0m/s and stabilizes due to a negative triangular peak of the same size.

7.3.3 Noise damping

As the erroneous velocity delta is confirmed not to originate in the velocity calculation
algorithm, the deviations are suspected to be a result of sensor noise and inaccuracy.
As inaccuracy is a static factor that follows the sensor hardware, sample noise will be
the center of attention in the following attempts. Below are the attempts to cancel
the instabilities seen in Figure 7.9 described in detail.

72 7. RESULTS

743 630 743 635 743 640 743 645 743 650

t

-1.0

-0.5

0.5

1.0

Acceleration

Velocity

Figure 7.10: Simulated acceleration measurement along with calculated velocity delta

7.3.3.1 Low-pass filtering

To stabilize the output of the AccelerationPublisher, thus avoiding publishing possibly
erroneous events, the low-pass filter in (7.1) is implemented in the AccelerationPub-
lisher. The coefficient α determines to which extent the output should be smoothened;
an α = 0 entails no smoothing while an α = 1 results in a static output[Nic11].

outputn = an + αn(an−1 − an) (7.1)

7.3.3.2 Static low-pass filtering

An experiment is carried out using a fixed value of α = 0.3 while moving the train
forward from a stationary position for approximately six seconds before bringing
it to a halt again, in which the resulting outputted acceleration measurements and
calculated velocity delta is presented in Figure 7.11. The green and the red circle
shows a drift in calculated velocity when the train is stationary, caused by a bias of
the measured acceleration. The y-axis denotes both acceleration in m/s2 and velocity
in m/s.

As the results indicate, the calculated velocity drifts in the highlighted circles,
while the physical train is stationary. This is caused by an apparent bias of the
measured acceleration in the same time periods, which in Figure 7.9 was more stable.
The intermediate period does, however, show a rise and consecutive fall in calculated
velocity, which resembles the actual movement of the train during the experiment.

7.3. ACCELERATION BASED METRICS 73

126 128 130 132 134 136

t

-0.6

-0.4

-0.2

0.2

0.4

Acceleration

Velocity

Figure 7.11: Acceleration measurements and calculated velocity with static low-pass
filtering, α = 0.3.

0.0 0.2 0.4 0.6 0.8 1.0

an0.0

0.2

0.4

0.6

0.8

1.0

Αn

0.2 -
Log@xD

10

Figure 7.12: Plot of alpha function of (7.2) for the range < 0, 1 >

7.3.3.3 Dynamic low-pass filtering

Further pursuing the smoothing approach to achieve reliable acceleration measure-
ments, the fixed alpha value is substituted with the function in (7.2). The variable
range of the function is plotted in Figure 7.12.

αn =

1 |an| < 0.001
0.2− 1

10 log an 0.001 < |an| < 1
0.2 |an| >= 1

(7.2)

The purpose of an adapted alpha-value is to stabilize the outputted acceleration

74 7. RESULTS

3028 3030 3032 3034 3036 3038 3040

t

-1.0

-0.5

0.5

1.0

Acceleration

Velocity

Figure 7.13: Acceleration measurements and calculated velocity with dynamic low-
pass filtering

when the actual momentum acceleration is close to zero. An experiment similar to
the one last described is conducted, and the results are presented in Figure 7.13. The
green circles show a slight drift in calculated velocity when the train is stationary.
The calculated velocity has some variations relative to the actual movement. The
y-axis denotes both acceleration in m/s2 and velocity in m/s.

As the plot in Figure 7.13 shows, the calculated velocity is in this case quite
near the actual velocity in the physical experiment. Some variations are present, e.g.
the minor drop in velocity while moving forward, but the calculations represent the
overall movement in general.

7.3.3.4 Investigating dynamic low-pass filtering further

As the latter result seems promising, a similar experiment is carried out to determine
whether or not the results are representative of the chosen approach of dynamic low-
pass filtering. The results from this experiment can be seen in Figure 7.14. The green
circle shows a slight drift in calculated velocity when the train is stationary. As the
train is halted, the impact on the acceleration output is so small that the calculated
velocity delta experiences a minor drop. The y-axis denotes both acceleration in
m/s2 and velocity in m/s.

As can be seen in Figure 7.14, the calculated velocity delta lies slightly lower
initially than in the previous test run but rises towards the end. When the train is
brought to a halt, the calculation of the velocity delta falls through as the outputted
acceleration measurement indicate a too short negative pulse. This shows that the
apparent reliability observed in the previous experiment was a more or less random

7.3. ACCELERATION BASED METRICS 75

Train

halted

7355 7360 7365 7370

t

-0.5

0.5

1.0

Acceleration

Velocity

Figure 7.14: Acceleration measurements and calculated velocity with dynamic low-
pass filtering, second run

outcome.

7.3.3.5 Simulating white noise

To provide a comparative basis, the simulator of Section 7.3.2 is modified to include
white noise and is passed through the dynamic low-pass filter with the same charac-
teristics as in the latter experiments. The output of this simulation can be viewed in
Figure 7.15. The orange, dotted line represents a function f(t) = 1.6 sin 1

37 t. The
y-axis denotes both acceleration in m/s2 and velocity in m/s.

As the results from the simulated test run with white noise generation on the
simulated signal shows, the calculated velocity delta drifts, approximately following
the sine function f(t). This result emphasizes the observations from Figure 7.14,
i.e. that the implementation of the dynamic low-pass filter is insufficient to achieve
reliable velocity calculations.

7.3.4 Accelerometer issues

Due to the discovered intricacies concerning the acceleration measurements pointed
out in the sections above, the approach of velocity calculation is not pursued any
further. This implies that calculations of displacement delta are too out of the
question in this thesis.

76 7. RESULTS

Acceleration

Velocity

747 950 748 000 748 050 748 100 748 150 748 200

t-4

-2

0

2

4

Figure 7.15: Simulated acceleration measurement passed through dynamic low-pass
filter, along with calculated velocity delta

Table 7.3: Magnetometer calibration constant values

Axis Value
x 65
y -85

7.4 Magnetic heading measurements

7.4.1 Calibration data and adjustments

As introduced in Section 6.1.4.1, magnetometers may need to undergo a calibration
procedure before reliable operation can be initiated. The outputs of the two-step
procedure is presented in Figure 7.16a,7.16b. In Figure 7.16a the sampled values
forms an approximate circle far away from the plot origin point (0, 0), whilst in
Figure 7.16b the origin point is the approximate center of the circle formed by the
sampled values. The calibration constant values required to achieve the result in
Figure 7.16b for the Mag3110 chip on-board the prototype train is shown in Table 7.3.

7.4. MAGNETIC HEADING MEASUREMENTS 77

Figure 7.16: Magnetometer calibration plots. Note the values on the x/y-axes

-90 -80 -70 -60 -50 -40

60

70

80

90

100

110

(a) Magnetometer calibration output
prior to adjustments

-20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

(b) Adjusted magnetometer calibration
output

Figure 7.17: Railroad map from previous project, image from [Sve15c]

78 7. RESULTS

Up

Left

Down

Right

940 950 960 970 980 990 1000
t

50

100

150

200

250

300

350

heading

Figure 7.18: Mapping directions to heading values

7.4.2 Magnetic heading of the track layout

The Lego track layout used in [Sve15c], depicted in Figure 7.17, has four general
directions if curved track pieces are not accounted for. These directions are described
by ’Up’; ’Right’; ’Down’; and ’Left’. To map values for these four directions and to
verify proper functionality of the magnetometer sensor/publisher pair, an experiment
is carried out where the train is first rotated slowly 360◦ clockwise, starting at
an ’Up’-bound position. After the rotation is completed, the train is rotated 90◦

clockwise for four iterations, holding the position for approximately three seconds in
each post to get stable readings in each position (’Up’;’Right’;’Down’;’Left’).

As the results in Figure 7.18 shows, stable output values are present at all four
direction headings. The magnetic heading level of each direction is indicated in the
plot. The vertical shifts at approx. t = 938 and t = 987 is a result of the train
rotating past the magnetic north, which lies at heading = 0. The slow, complete
rotation results in a smooth, rising curve in the plot.

7.4. MAGNETIC HEADING MEASUREMENTS 79

3310 3320 3330 3340 3350
t

154

156

158

160

162

164

heading

Figure 7.19: Motor interference from the on-board motor unit

7.4.3 Magnetic interference

7.4.3.1 From the motor

An experiment is carried out to investigate whether or not the electromotor onboard
the train introduces any magnetic interference to the magnetic heading calculation.
The train is placed on top of blocks to remain stationary throughout the experiment.
The motor unit is turned on and off twice, running in about 10 seconds each time with
an intermediate pause of approximately 18 seconds. The result from this experiment
is presented in Figure 7.19. The red, shaded areas indicate that the motor unit is
running, while the other regions show that it is turned off.

As can be seen in Figure 7.19, the magnetic noise the sensor is subject to does
not change dramatically while the motor is switched on. If anything, the overall
calculated heading seems to lie a bit lower during engine operation contrary to when
the motor is turned off, observing the area under the curve in Figure 7.19, but this
may be a coincidence.

7.4.3.2 From the environment

In everyday life, the environment one is surrounded by is packed with magnetic fields
related to electric current, which became evident during a test run on the circular

80 7. RESULTS

3710 3712 3714 3716 3718 3720
t0

50

100

150

200

250

300

350

heading

Figure 7.20: Magnetic heading calculation during circular test track run, first position

track mentioned in Section 7.1.2. As can be seen in Figure 7.20, interference is visibly
recognizable in the data set. The green circle indicates the point where magnetic
interference causes a negative spike in the calculated heading.

The event repeatedly occurs for each round the train travels around the circular
track. More particular, the event occurs whenever the train has an approximately
westbound heading. A closer look at the surroundings of the circular track reveals
a cable trunking running a few centimeters away from where the train passes in a
westbound position, in the exact height as the magnetometer sensor is mounted. The
experiment is repeated after re-positioning the circular track so that the train passes
with approximately 25 centimeters clearance to the cable trunking while headed
westbound. The results of this second test run can be seen in Figure 7.21. The green
circle indicates where magnetic interference by power cables are smaller than before,
but can still be identified by visual inspection of the data plot.

7.4. MAGNETIC HEADING MEASUREMENTS 81

3926 3928 3930 3932 3934 3936
t0

50

100

150

200

250

300

350

heading

Figure 7.21: Magnetic heading calculation during circular test track run, second
position

Chapter8Discussion

In this chapter, the results presented in Chapter 7 is discussed. Each sensor is
dedicated its own section in Section 8.1, and a conclusion with regard to the problem
description is drawn in Section 8.2. In the end, Section 8.3 presents proposals for
further work related to the system.

8.1 Sensor strategy feasibility

8.1.1 Colored sleepers and the color light sensor

The pre-collection of color samples forms a basis for categorizing future samples
made by the color light sensor. As can be observed in Table 7.1, most of the sample
sets has a relatively low standard deviation, i.e. the variation in the measurements
from the test bed is low. The color with the highest variation is yellow, which is also
the color which has the least resemblance to the actual color when the mean values
are converted to an RGB color code, as depicted in Figure 7.4b.

As seen in the previous chapter, an average of 63 sleepers is detected for each
round on the circular track, i.e. one less than the actual number. Also, the number
of gray sleepers are frequently over-reported, so that the actual number of missing
sleepers are greater than 1/64. Comparing this result with the time delta between
color samples in Figure 7.7, the absent sleeper detections may be partially explained
by reading delay.

Compared to the results in [Sve15c, 8], the ten worst samples were delayed with at
least 100ms, with a worst case at almost 700ms, while the numbers, in this situation,
are in contrast 5ms and 32.5ms. This shows that the newly introduced hardware
platform is more suitable than the previous, at least when only regarding the color
sensor timing issues experienced in the prior project.

Experiments show that the use of colored sleepers can not be fully trusted as

83

84 8. DISCUSSION

a sole basis for self-localization, though it can be a useful aid to make movement
approximations.

8.1.2 MIFARE balises and the NFC reader

8.1.2.1 Omitted reading

The output from the MIFARE related modules in the proposed system constitute the
most reliable position data, as the information embedded in the MIFARE memory
reports a unique location identity to the passing train. The implementation of the
sensor/publisher pair is though not entirely reliable, as we observed a single absent
tag reading during the 26 test rounds. As the empirical data set is quite small in
this context, it’s hard to say whether the failure is of a repetitive nature or not, or if
the failure could occur even more frequently in long-lasting operation.

What is certain, though, is that there is a possibility that a balise might be
neglected while the train passes it. There are two probable causes of this malfunction:
the reading is delayed as in the case of the color sensor; the timing of the NFC
reader is too infrequent. Either way, this problem could most likely be solved by
implementing handling of the interrupt signal from the pn532 chip. An attempt was
made to implement the interrupt processing, but the time frame for the thesis did
not allow for further efforts. The implementation was impeded by timing issues as
the interrupt signal is affected not only by having tags entering the readers proximity
but also when sending commands to it through the I2C interface.

8.1.2.2 MIFARE classic attack

The security of the MIFARE classic cards are based on symmetric-key cryptography,
and a non-public security scheme that goes under the term ’security by obscurity’.
History has shown that such an approach to implementing security functions will be
broken sooner or later.

In 2008, the security features of the MIFARE classic cards were reverse engineered
[GdKGM+08] and a practical attack on it was published [dKGHG08], making the
onboard memory susceptible to e.g. manipulation by unauthorized parties. Choosing
this technology to enhance the self-localization function of trains opens up for
potential unwanted, undesirable modification, thus introducing vulnerability towards
sabotage. However, this being only a model system, restricted physical access to the
system in addition to the small consequences in the case of sabotage compensates
for the security issue.

8.1. SENSOR STRATEGY FEASIBILITY 85

8.1.3 Accelerometer measurements and derived calculation

As seen in the previous chapter, the accelerometer delivers quite unstable measure-
ments. Although suitable to measure horizontal tilt, the experiments reveal that the
sensor’s erroneous behavior propagates, and is amplified through calculations, which
results in unpredictable velocity readings.

Initiatives to mitigate the mentioned problems are taken, but with mixed results.
Some experiments have more promising outputs than others, and the experiment
which output presented in Figure 7.13 is by far the most successful one. The result
is though not representative for the technique, it shows that it might be possible to
achieve satisfactory results using the chosen approach, requiring a deeper investigation
than provided in this thesis.

As the velocity calculations from the simulated data experiment in Section 7.3.3.5
seems to drift at a rate similar to a sine function, the possibility of exploiting this
phenomenon in real input operations has been assessed. The systematic fluctuation
is likely to be caused by the simulated signal’s triangular waveform, and the pattern
has probably no relation to the actual calculations or dampening implementations.

Based on the demonstrations presented in this thesis, the accelerometer is assumed
to be a far too unreliable source to calculate velocity and displacement metrics from,
even if these parameters are used only for approximations.

8.1.4 Magnetic heading utilization

The magnetometer provides magnetic heading information to the train and is in the
initial experiment quite precise. Relatively steady levels are outputted when the
direction is fixed, and the resulting plot in Figure 7.18 shows smooth, rising curves
as the magnetometer is subject to clockwise rotation.

The motor in the train prototype has seems to have little impact on the calculated
magnetic heading. The general level of the heading appears to have a marginal
decrease when the motor is on versus off if looking at the area under the curve in
Figure 7.19. The increase is so small that it could as well be a result of the random
variation in the outputted value from the magnetometer.

A source of magnetic interference that has an impact on the heading levels is
close proximity power cables. It is conceivable that cables with larger cross sections
and with a higher current load would have an even greater influence as the magnetic
field surrounding it would be more powerful. Other appliances, such as a transformer,
would probably also be a problem.

The results from the previous chapter show that the magnetometer may, in fact,

86 8. DISCUSSION

be used as a basis for deriving representative magnetic heading metrics, which in turn
could be utilized in relation to the abstract model of the railroad. Full utilization
depends on an interference-free environment for the Lego railway, which is considered
unlikely. The information could be used to make assumptions regarding whether or
not the train is moving straight forward or if it’s turning.

8.2 Conclusion

Based on the results previously presented, it is evident that even though the Raspberry
Pi (RPi) is a relatively cheap, lightweight computer, the introduced hardware platform
performs better than the one used in previous projects. As the RPi has more generic
interfaces than the Lego Mindstorms EV3 bricks used earlier, connectivity versatility
is highly increased.

As discussed in the previous sections, the variety of sensors leads to multiple
challenges and experienced issues. The NFC reader combined with MIFARE balises
encoded with location information stands out as the most precise and reliable
alternative but provides little movement approximations in between balises. The
magnetometer and the color sensor is applicable for such approximations, while the
accelerometer’s lack of accuracy makes it unsuitable for even making coarse estimates
in this system. The Mifare-based approach has as mentioned earlier resemblance with
the Eurobalises in the real-world system ERTMS. Even though the implementation
of the NFC reader module is of experimental nature, the functioning strategy opens
up for encoding other kinds of control data into the balises. Thus, the model system
obtains similar characteristics as the ERTMS system, making it applicable to a
prototyping and testing platform for e.g. future expansions of the ETCS. This is
mentioned as an overall motivation in Chapter 1.

During sensor measurement experiments the framework and architecture in
Chapter 5 has implicitly been put to a test. Although quantifying non-functional
aspects of a software architecture is hard, the seamlessness in developing and deploying
sensor simulators to replace the original sensor implementations shows that the
system’s architecture really offers modifiability. This has also been the experience
when sharing modules across projects in the collaboration with co-student Svae.

The modules presented in this thesis acts as a sound basis for self-localization in
an autonomous train system.

8.3. FURTHER WORK 87

8.3 Further work

All of the tested sensors should be investigated further to improve the data processing
succeeding each sensor sample. In addition to the individual elements described
below, there are common factors of the sensors that should be taken into closer
account. More particular, the dependability of the sensor related implementations
in interaction with the hardware should be analyzed and, if feasible, quantified.
Concurrent execution of the different modules should be studied more carefully. The
fusion of sensor data, which is solved in a quite simplistic manner here as it is not
the main scope of the thesis, could also be of interest to increase data utilization.

The NFC interrupt signal could provide additional stability improvements of
the MIFARE tag readings. The schematic description in Section 4.2.2 shows how the
physical connection should be rendered, the challenge is mere to analyze the timing
issues more thoroughly to compose a functioning implementation.

Acceleration measurement processing should be subject to deeper analysis
before it can be turned to account. Different approaches can be used, e.g. exper-
imenting with other kinds of accelerometer chips or using different techniques for
processing the accelerometer data. A different, more sophisticated approach is to use
machine-learning to ’teach’ the application categories of movements so that it can
classify an experienced movement a posteriori. As the accelerometer measurement
plots can be studied, deducing the movements causing the acceleration ’by hand’, it
should be possible to achieve by using machine-learning as well.

The magnetic interference in the railroad’s surrounding environment can be
mapped by carrying through experimental runs where the train stops at frequent,
known positions1 to log the measured heading relative to the known position in the
abstract model. By learning the interference pattern along the track, the pattern
could be used to recognize areas and positions.

1Positions can be known through utilizing e.g. MIFARE readings

References

[Ada] Adafruit. Adafruit dc stepper motor hat for raspberry pi - mini kit. Adafruit,
https://www.adafruit.com/products/2348, (accessed May 10, 2016).

[Ada14] James Adams. Introducing raspberry pi hats. RaspberryPi.org, https://www.
raspberrypi.org/blog/introducing-raspberry-pi-hats/, (accessed May 10, 2016),
July 2014.

[aos16] Texas advanced optoelectronic solutions. Tcs34725 color light-to-digital converter
with ir-filter. Adafruit.com, https://cdn-shop.adafruit.com/datasheets/TCS34725.
pdf, (accessed May 13, 2016), 2016.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.
Pearson Education, 2003.

[Blo06] Robin Bloomfield. Fundamentals of european rail traffic management system
(ertms). In Railway Signalling and Control Systems, 2006. The 11th IET Profes-
sional Development Course on, pages 165–184. IET, 2006.

[COO11] Vedat Coskun, Kerem Ok, and Busra Ozdenizci. Near Field Communication
(NFC): From Theory to Practice. John Wiley & Sons, 2011.

[dKGHG08] Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D Garcia. A practical
attack on the MIFARE Classic. Springer, 2008.

[EFGK03] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The many faces of publish/subscribe. ACM Computing Surveys (CSUR),
35(2):114–131, 2003.

[ERT14] ERTMS. Ertms deployment statistics - overview. ERTMS.net, http://www.ertms.
net/?page_id=58, (accessed April 21, 2016), 2014.

[GdKGM+08] Flavio D Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter Van Rossum,
Roel Verdult, Ronny Wichers Schreur, and Bart Jacobs. Dismantling mifare
classic. In Computer Security-ESORICS 2008, pages 97–114. Springer, 2008.

[Goo13] Steven Goodwin. Smart home automation with Linux and Raspberry Pi. Apress,
2013.

89

https://www.adafruit.com/products/2348
https://www.raspberrypi.org/blog/introducing-raspberry-pi-hats/
https://www.raspberrypi.org/blog/introducing-raspberry-pi-hats/
https://cdn-shop.adafruit.com/datasheets/TCS34725.pdf
https://cdn-shop.adafruit.com/datasheets/TCS34725.pdf
http://www.ertms.net/?page_id=58
http://www.ertms.net/?page_id=58

90 REFERENCES

[HBHS15] Fenglin Han, Jan Olaf Blech, Peter Herrmann, and Heinz Schmidt. Model-based
Engineering and Analysis of Space-aware Systems Communicating via IEEE
802.11, volume 2. 2015.

[HBHS16] Peter Herrmann, Jan Olaf Blech, Fenglin Han, and Heinz Schmidt. A model-based
toolchain to verify spatial behavior of cyber-physical systems. pages 40–52, 2016.

[HØ15] Simon Hordvik and Kristoffer Øseth. Control software for an autonomous cyber-
physical train system. Master’s thesis, Norwegian University of Science and
Technology, Department of Telematics, June 2015.

[Hon]

[Hor08] Tim Hornyak. Rfid powder. Scientific American, 298(2):68–71, 2008.

[HPMS11] Richard Hall, Karl Pauls, Stuart McCulloch, and David Savage. OSGi in action:
Creating modular applications in Java. Manning Publications Co., 2011.

[ISO16] ISO/IEC). 14443-1/4:2016 identification cards – contactless integrated circuit
cards – proximity cards. ISO.org, http://www.iso.org/iso/home/store/catalogue_
tc/catalogue_detail.htm?csnumber=70170, (accessed May 10, 2016), 2016.

[KH04] Peter Kriens and B Hargrave. Listeners considered harmful: The “whiteboard”
pattern. Technical whitepaper, OSGi Alliance, 2004.

[Kra08] Frank Kraemer. Engineering reactive systems, July 2008.

[Lan05] Jeremy Landt. The history of rfid. Potentials, IEEE, 24(4):8–11, 2005.

[Mar03] Robert Cecil Martin. Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[MN15] Alexander McKenna and Alban Nanty. "bluebrick documentation". Blue-
brick.lswproject.com, http://bluebrick.lswproject.com/help_en.html, 2015.

[Nic11] Tom Nichols. Smoothing sensor data with a low-pass filter. ThomNicols.org, http:
//blog.thomnichols.org/2011/08/smoothing-sensor-data-with-a-low-pass-filter,
(accessed May 13, 2016), August 2011.

[OAS15a] OASIS. "AMQP is the internet protocol for business messaging". Amqp.org,
https://www.amqp.org/about/what, (accessed November 5), 2015.

[OAS15b] OASIS. "RabbitMQ - what can RabbitMQ do for you?". RabbitMQ.org, https:
//www.rabbitmq.com/features.html, (accessed November 5), 2015.

[Ove15] Kristian Overskeid. ITS using Lego Mindstorm. Master’s thesis, Norwegian
University of Science and Technology, Department of Telematics, March 2015.

[Ozy15] Talat Ozyagcilar. Implementing a tilt-compensated ecompass using accelerometer
and magnetometer sensors. November 2015.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=70170
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=70170
http://bluebrick.lswproject.com/help_en.html
http://blog.thomnichols.org/2011/08/smoothing-sensor-data-with-a-low-pass-filter
http://blog.thomnichols.org/2011/08/smoothing-sensor-data-with-a-low-pass-filter
https://www.amqp.org/about/what
https://www.rabbitmq.com/features.html
https://www.rabbitmq.com/features.html

REFERENCES 91

[Rpi16] "raspberry pi faqs - frequently asked questions". RaspberryPi.org, https://www.
raspberrypi.org/help/faqs/, (accessed May 13, 2016), 2016.

[Sema] NXP Semiconductors. Pn532/c1 near field communication (nfc) controller data
sheet. NXP.com, http://cache.nxp.com/documents/short_data_sheet/PN532_
C1_SDS.pdf, (accessed May 13, 2016).

[Semb] NXP Semiconductors. Xtrinsic mag3110 three-axis, digital magnetometer.
NXP.com, https://www.nxp.com/files/sensors/doc/data_sheet/MAG3110.pdf,
(accessed May 13, 2016).

[Semc] NXP Semiconductors. Xtrinsic mma8491q 3-axis multifunction digital accelerome-
ter. NXP.com, http://cache.nxp.com/files/sensors/doc/data_sheet/MMA8491Q.
pdf, (accessed May 13, 2016).

[Semd] NXP Semiconductors. Xtrinsic-sense board. Element14.com, https:
//www.element14.com/community/servlet/JiveServlet/downloadBody/
65488-102-1-287915/XTRINSIC-SENSE%20User%20Manual%20v0%205.pdf,
(accessed May 13, 2016).

[Sem00] Philips Semiconductors. The i2c-bus specification. Philips Semiconductors,
9397(750):00954, 2000.

[Sem10] NXP Semiconductors. Pn532 c106 application note. Adafruit.com, https://
cdn-shop.adafruit.com/datasheets/PN532C106_Application+Note_v1.2.pdf, (ac-
cessed May 13, 2016), January 2010.

[SKR16] SKROSS. "skross reload 5 datasheet". Farnell.com, http://www.farnell.com/
datasheets/1935853.pdf, (accessed May 13, 2016), 2016.

[Sve15a] Henrik Heggelund Svendsen. "henrihs/bluebrick-id-fork - a fork of alban nanty’s
bluebrick". Github.com, https://github.com/henrihs/BlueBrick-id-fork, (accessed
December 18, 2015), 2015.

[Sve15b] Henrik Heggelund Svendsen. "henrihs/bluebrick4j - a library for reading bluebrick
files in java". Github.com, https://github.com/henrihs/BlueBrick4J, (accessed
December 18, 2015), 2015.

[Sve15c] Henrik Heggelund Svendsen. Model-based engineering of a distributed, au-
tonomous control system for interacting trains, deployed on a lego mindstorms
platform. Master’s thesis, Norwegian University of Science and Technology,
Department of Telematics, December 2015.

[Vio05] Bob Violino. The basics of RFID technology. RFIDJournal.com, http://www.
rfidjournal.com/articles/view?1337, (accessed May 10), 2005.

[Zam11] Tim Zaman. Easy magnetometer calibration. TimZaman.nl, http://www.
timzaman.nl/?p=994&lang=en, (accessed May 13, 2016), April 2011.

https://www.raspberrypi.org/help/faqs/
https://www.raspberrypi.org/help/faqs/
http://cache.nxp.com/documents/short_data_sheet/PN532_C1_SDS.pdf
http://cache.nxp.com/documents/short_data_sheet/PN532_C1_SDS.pdf
https://www.nxp.com/files/sensors/doc/data_sheet/MAG3110.pdf
http://cache.nxp.com/files/sensors/doc/data_sheet/MMA8491Q.pdf
http://cache.nxp.com/files/sensors/doc/data_sheet/MMA8491Q.pdf
https://www.element14.com/community/servlet/JiveServlet/downloadBody/65488-102-1-287915/XTRINSIC-SENSE%20User%20Manual%20v0%205.pdf
https://www.element14.com/community/servlet/JiveServlet/downloadBody/65488-102-1-287915/XTRINSIC-SENSE%20User%20Manual%20v0%205.pdf
https://www.element14.com/community/servlet/JiveServlet/downloadBody/65488-102-1-287915/XTRINSIC-SENSE%20User%20Manual%20v0%205.pdf
https://cdn-shop.adafruit.com/datasheets/PN532C106_Application+Note_v1.2.pdf
https://cdn-shop.adafruit.com/datasheets/PN532C106_Application+Note_v1.2.pdf
http://www.farnell.com/datasheets/1935853.pdf
http://www.farnell.com/datasheets/1935853.pdf
https://github.com/henrihs/BlueBrick-id-fork
https://github.com/henrihs/BlueBrick4J
http://www.rfidjournal.com/articles/view?1337
http://www.rfidjournal.com/articles/view?1337
http://www.timzaman.nl/?p=994&lang=en
http://www.timzaman.nl/?p=994&lang=en

AppendixASource code

A.1 Git repository

The complete source code for the modules developed in the context of this thesis is
comprehensive, counting over 5.000 lines of code if the parts re-used from preceding
projects are not accounted for. The source code for each of the modules is co-located
in a single git repository at https://github.com/henrihs/osgi-train. Other repositories
related to in the thesis is [Sve15a] and [Sve15b].

A.2 Velocity delta

public class VelocityData<T extends UnivariateRealIntegratorImpl> implements
Comparable<VelocityData<?>> {

private long timestamp;
private final double a_x;
double v_delta = 0;
private T integrator;
// The integrator used in the implementation using this class is
// the TrapeziodIntegrator, but other integrators like
// the SimpsonIntegrator are also supported

public VelocityData(double a_x, long timestamp, T integrator) {
this.timestamp = timestamp/1000; // microsecond accuracy
this.a_x = a_x;
this.integrator = integrator;

}

public long getTimestamp() {
return timestamp;

}

93

https://github.com/henrihs/osgi-train

94 A. SOURCE CODE

public synchronized void calculateVelocityDelta(VelocityData<?>
priorEvent) {

try {
double a_0 = priorEvent.a_x;
double a_1 = this.a_x;

// If a_0 and a_1 are polar opposites,
// the change in speed is always equal to zero
// In addition, integration over such an interval

fails,
// iff a_0 is negative and a_1 = -(a_0)
if (a_1 == -(a_0)) {

v_delta = 0;
return;

}

double t_0 = priorEvent.getTimestamp()*1E-6; // second
resolution (SU-unit)

double t_1 = getTimestamp()*1E-6; // second resolution
(SU-unit)

AccelFunction a = new AccelFunction(a_0, a_1, t_0,
t_1);

v_delta = integrator.integrate(a, t_0, t_1);
} catch (FunctionEvaluationException |

IllegalArgumentException | ConvergenceException e) {
((LogService)VelocityPubActivator.logServiceTracker.getService())
.log(LogService.LOG_ERROR, "Could not integrate

acceleration expression: ", e);
} catch (Exception e) {

((LogService)VelocityPubActivator.logServiceTracker.getService())
.log(LogService.LOG_ERROR, "Unknown error occured: ",

e);
}

}

public String toString() {
return String.format("Time: %d ms, Acceleration: %f m/s^2,

delta V: %f m/s", timestamp, a_x, v_delta);
}

@Override
public int compareTo(VelocityData<?> o) {

return Double.compare(this.timestamp, o.timestamp);

A.2. VELOCITY DELTA 95

}
}

public class AccelFunction implements UnivariateRealFunction {

private Function<Double, Double> accelAsFuncOfTime;

public AccelFunction(double a_0, double a_1, double t_0, double t_1)
{

accelAsFuncOfTime = getAccelAsFuncOfTime(a_0, a_1, t_0, t_1);
}

@Override
public double value(double t) throws FunctionEvaluationException {

return accelAsFuncOfTime.apply(t);
}

public Function<Double, Double> getAccelAsFuncOfTime(double a_0,
double a_1, double t_0, double t_1) {

return new Function<Double, Double>() {
@Override
public Double apply(Double t) {

return a_0 + (a_1 - a_0) * ((t - t_0) / (t_1 -
t_0));

}
};

}

}

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Intelligent Transportation Systems
	Challenges

	Problem description and scope
	Motivation
	Methodology
	Structure of the report

	Background
	European Rail Traffic Management System
	Technology
	Publish/subscribe protocols
	AMQP

	I2C protocol
	Reactive Blocks
	OSGi
	Layers of the OSGi framework

	Radio technologies
	RFID
	NFC

	Raspberry Pi

	Related work
	A PRT system
	An autonomous train control software
	A distributed, autonomous control system
	Interpretation of railway design
	Collision avoidance

	A self-adaptive sensor system

	System Requirements
	Functional requirements
	Non-functional requirements
	Inherited requirements

	Physical Composition
	Components
	Raspberry Pi 2
	Power supply
	Color light sensor
	NFC reader
	Xtrinsic sense board
	Accelerometer
	Magnetometer

	Motor controller

	Composition
	Construction of the vehicle
	Schematic presentation

	Software Architecture
	Architectural views
	Modular view
	Pipeline view

	Sensor-publisher communication

	Data processing
	Sensor data processing
	Color light sensor data
	Collecting samples
	Color classification
	Timing

	MIFARE tag readings
	Timing

	Accelerometer data
	Derived event generation
	Timing

	Magnetometer data
	Calibration
	Derived event generation
	Timing

	Actuator control
	Strategies for data utilization
	Colored sleepers
	MIFARE balises
	Displacement based on acceleration readings
	Magnetic heading as a position approximation assistant
	Using compass directions
	Continuous comparison

	Merging sensor data streams
	Integration with existing collision avoidance system

	Results
	Color light sensor
	Pre-collected samples
	Testing color classification
	Testing color sensor timing

	MIFARE tag readings
	Acceleration based metrics
	Initial linear movement mapping
	Accelerometer simulator
	Noise damping
	Low-pass filtering
	Static low-pass filtering
	Dynamic low-pass filtering
	Investigating dynamic low-pass filtering further
	Simulating white noise

	Accelerometer issues

	Magnetic heading measurements
	Calibration data and adjustments
	Magnetic heading of the track layout
	Magnetic interference
	From the motor
	From the environment

	Discussion
	Sensor strategy feasibility
	Colored sleepers and the color light sensor
	MIFARE balises and the NFC reader
	Omitted reading
	MIFARE classic attack

	Accelerometer measurements and derived calculation
	Magnetic heading utilization

	Conclusion
	Further work

	References
	Source code
	Git repository
	Velocity delta

