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ABSTRACT 

Recent studies report an overall decline in northern populations of Atlantic salmon. 
As the winter in northern streams can be a critical period for juvenile salmonids, 
the cold season needs further attention to preserve sustainable populations of the 
species. Until today, most field and experimental studies have focused on open 
water conditions (e.g. spring, summer, fall), and less on winter conditions with 
presence of ice. As river ice has profound impacts on the lotic environment, 
interdisciplinary studies in natural environments focusing on the linkage between 
different types of ice and behavioral responses by salmon parr are thus needed. In 
this PhD study, a multidisciplinary approach have been used focusing on (1) 
formation of anchor ice and its influence on the physical habitat in steep streams, 
and (2) habitat use by Atlantic salmon parr in anchor ice affected streams. Results 
demonstrate that anchor ice formation significantly alter the in-stream 
heterogeneity by changing riffles into pools on a short temporal scale, leading to a 
dynamic environment despite stable discharge. Findings suggest that anchor ice 
may be distinguished between two types according to its formation process: Type I: 
less dense and forming on top of the substrata. Type II: Dense and forming 
between the substrata, filling interstitial spaces. Observations of habitat use by 
Atlantic salmon parr in anchor ice affected streams imply that despite hydraulic 
(depth, velocity) changes caused by ice formation, parr seem unaffected, and hence 
question the importance of hydraulic features as single habitat factors. However, 
findings also imply that parr inhabit two different strategies related to anchor ice 
formation: First, parr affected by anchor ice Type I demonstrate no or small 
changes in habitat use, and second, parr affected by Type II experience habitat 
exclusion and/or entrapment and are forced to relocate into other suitable areas, 
preferable surface ice covered stream margins. Moreover, observations indicate that 
pool habitats can be less important winter refuges, whereas riffle habitats are largely 
utilized, dependent on the type of anchor ice. In view of these findings, the degree 
of substrata shelter may be the predominant factor in habitat selection of parr 
during winter. Finally, results indicate that winter may not necessarily result in 
negative growth, whereas in contrast, the spring ice break-up may lead to a 
decrease in body mass and hence imply a critical period for parr. The results may 
be of importance to cold environment freshwater fisheries management in which 
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habitat evaluation and preservation are core objectives. Results may further be of 
importance in future development of cold water stream habitat modelling tools and 
in evaluation of thermal changes of natural and anthropogenic environments. 
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C h a p t e r  o n e  

INTRODUCTION 

Research reports an overall decline in Northern populations of Atlantic salmon 
(Salmo salar L.) (ICES, 2007). As streams play a vital role of the salmon life cycle 
providing spawning and rearing habitats (Schaffer, 2004), the importance of 
increasing our knowledge of these environments is evident. Today, winter 
conditions in streams with ice formation are known to have both physical and 
biological implications (Prowse, 2001) but limited knowledge exist on the matter, in 
particular knowledge about habitat use and performance of juvenile salmonids ice 
covered streams (Huusko et al., 2007). With future challenges as increased pressure 
from anthropogenic disturbances (hydro-regulation, land-use activities) and 
predicted climate change scenarios (Corell, 2006), northern streams and ecosystems 
will be put under pressure. During the winter period, fluctuating discharge and 
variable water temperature may increase the freezing-thawing shifts (Frauenfeld et 
al., 2007) and amplify the dynamics of in-stream conditions. These changes may 
have an adverse effect on populations of juvenile salmonids. Thus, to understand 
the effect of winter on northern stream populations of Atlantic salmon, the lotic 
winter environment needs further study. 

In the following, a multidisciplinary study focusing on habitat choice of Atlantic 
salmon parr in steep, ice covered streams is presented. A particular focus on 
dynamic ice formation (anchor ice) is given. The study has two main parts: (1) 
investigation of anchor ice formation and its influence on the physical habitat, and 
(2) the influence of anchor ice on habitat choice by Atlantic salmon parr. In this 
study, data collection in natural conditions has been emphasized. Studies conducted 
in natural environments are especially lacking within the literature, most probably 
due to difficulties of collecting data during winter, but such studies are nevertheless 
essential if we are to understand the dynamics of natural systems. The findings of 
this study should be of value both for those that work with cold climate freshwater 
fisheries, and for the development of existing and future hydraulic/habitat 
modelling tools.  
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STEEP STREAMS DURING WINTER 

In northern temperate (23·5˚ N to 66·6˚ N) streams, ice is commonly observed 
during the winter. Depending on local climate and physical conditions (flow, 
stream-gradient, morphology), various types of river ice may form and hence 
change the in-stream environment (Devik, 1944; Prowse, 2001). As ice influences 
the stream heterogeneity independent of discharge, characterization and 
quantification of these changes on the physical habitat is important, both in relation 
to freshwater management and to understand the dynamics of cold climate streams 
(Alfredsen & Tesaker, 2002; Shen, 2003; Morse & Hicks, 2005; Huusko et al., 
2007). 

 

Figure 1. River Sokna, Mid-Norway (62º98’ N, 10º23’ E, m.a.s.l.: 160 m) covered in anchor ice 
during a freeze-up winter 2005. 

The ice regime in northern steep streams is usually dominated by dynamic ice 
formation. Dynamic ice formation occurs during cold periods when the water 
becomes supercooled (TWater< 0ºC) (Barnes, 1906), and is described by the 
formation of tiny ice particles, termed frazil, and ice growth on the stream bottom, 
termed anchor ice (Altberg, 1936; Devik, 1944). The formation process may take 
place on a short temporal scale by growth at night and disappearance during day. 
As turbulence has been suggested to be a key-factor, the appearance of dynamic ice 
formation is conventionally related to riffles. Based on previous field investigations 
(see reviews by Shen, 1996; Tatinclaux, 1998; Beltaos, 2000; Prowse, 2001; Shen, 
2003; Morse & Hicks, 2005), two mechanisms of anchor ice formation has been 
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proposed: (1) Turbulent heat conduction (Altberg, 1936), and (2) direct nucleation 
(Michel, 1967). The first formation process, turbulent heat conduction, is defined 
as transport of frazil (tiny ice particles) from the water surface down to the stream 
bed, causing underwater ice formation by adhesion (Figure 2). The theory of 
turbulent heat conduction, (later extended to frazil adhesion, Tsang, 1982), has 
been supported both through a number of observations in natural environments 
(Devik, 1944; Schaefer, 1950; Michel, 1971; Arden & Wigle, 1972; Osterkamp et al., 
1975; Osterkamp & Gosink, 1983; Marcotte, 1984; Hiryama et al., 2002; Kerr et al., 
2002) and by laboratory experiments (see e.g. Carstens, 1966; Daly & Colbeck, 
1986; Ye & Doering, 2004; Qu & Doering, 2007). The second formation process, 
direct nucleation, or accretion, is based upon supercooled water crystallizing at the 
leading edge of underwater obstacles. Supercooled water is transported from the 
water surface by turbulence, and in contact with underwater objects, growth of ice 
crystals starts. However, direct nucleation has rarely been observed in natural 
environments (but see Arden & Wigle, 1972), but rather theoretically discussed (see 
Tsang, 1982; Qu & Doering, 2007).  

 

Figure 2. Formation of anchor ice by frazil adhesion (see text for details). 

In stream sections with severe anchor ice formation, anchor ice dams may form 
(Figure 3). These ice dams typically form in sections with large boulders and/or 
where the stream increases its steepness. Anchor ice dams act as in-stream barriers, 
affecting the hydraulic heterogeneity by increasing the water level leading to 
potential physical and ecological implications. The ice dams may temporally store 
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water causing losses in hydro power production (Eythorsson & Sigtryggsson, 1971; 
Osterkamp et al., 1975), lead to local flooding and freezing of the riparian zone 
(Prowse & Gridley, 1993) and may have potential negative effects on distribution, 
migration and survival of stream fish of different cohorts. Nevertheless, few 
quantitative field studies have focused on the effect of anchor ice dams on the in-
stream environment making general statements difficult. 

 

Figure 3. An anchor ice dam in Sokna river, Mid-Norway, during a freeze-up winter 2005. A large 
pool was established after the formation of an anchor ice dam. 

WINTER HABITAT FOR JUVENILE ATLANTIC SALMON 

The need for studying winter conditions in streams and their effects on stream fish 
was first pointed out in 1935 by Hubbs and Trautman. Since then, a number of 
studies have been carried out, both in natural environments and by using 
experimental set-ups in artificial flumes (for latest review, see Huusko et al., 2007). 
The discrepant findings suggest large differences in behaviour among both 
populations and between individuals, but also reflect the practical challenges that 
follow when studying behaviour in harsh conditions such as ice covered streams. 
Nevertheless, recent advances within radio telemetry have increased the efficiency 
and accuracy of monitoring stream fish, and thus enabled us to more efficiently 
conduct studies in cold climate stream environments. 
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Salmonids (family Salmonidae), and in particular the Atlantic salmon, are broadly 
studied within aquatic stream ecology, both in the perspective of their economic 
importance, e.g. commercial and recreational fisheries and aquaculture, and by the 
overall concern for the future perspectives of the northern populations of Atlantic 
salmon (Mills, 2003; ICES, 2007). To further increase our understanding and to 
improve the management of the salmonids, it is important to include seasonal 
differences when investigating their behavioural responses to various factors. 
Today, most studies on juvenile salmonids have focused on open water conditions 
(e.g. spring, summer, fall), and less on winter conditions including river ice. As the 
winter have been suggested to be a limiting factor for stream fish populations 
(Hubbs & Trautman, 1935; Maciolek & Needham, 1952; Hunter, 1992; Bradford, 
1997; Cunjak et al., 1998; Annear et al., 2002; Finstad et al., 2004), winter and ice 
conditions have received increased attention. Previous studies suggest that juvenile 
salmonids are mostly nocturnal in winter (active at night, sheltering during day). 
This strategy has been suggested to be a trade-off between predation avoidance and 
feeding activity (Metcalfe & Thorpe, 1992; Heggenes et al., 1993; Valdimarsson & 
Metcalfe, 1998). However, it can be discussed as nocturnal activity are not only 
limited to winter time but may occur throughout the year (Hutchings, 1993). Also, 
some predators, as e.g. minks (family Mustelidae), are predominantly nocturnal in 
winter (Zielinski, 1986) and less active in cold waters (Egglishaw & Shackley, 1977). 
Furthermore, the majority of previous research suggests that juvenile salmonids 
prefer sheltered, low velocity habitats (e.g. pools and stream margins), and are less 
attracted to riffle habitats. This may be explained by the energetic costs related to 
high water velocities that are found in riffle areas. A few studies, however, report 
juvenile salmonids inhabiting riffles during winter (brown trout, brook trout 
(Salvenilus fontinalis M.), rainbow trout (Onchorynchus mykiss W.):  Needham & Jones, 
1959; Atlantic salmon: Smirnov et al., 1976; Roussel et al., 2004), indicating that 
suitable conditions may exist in these areas. 

The impact of various types of ice (surface-, frazil- and anchor ice) on juvenile 
salmonids can be difficult to generalize as previous studies are few and report 
disparate findings. Static ice formation demonstrates positive effects, whereas 
dynamic ice formation may have negative effects on habitat use, performance and 
survival. Surface ice has been demonstrated to reduce the metabolic rates in salmon 
parr (Reimers 1963; Finstad et al. 2004b), and to be an important source of cover 
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(Young, 1995; Gregory & Griffith, 1996; Meyer & Griffith, 1997). Surface ice is 
also observed to increase the habitat use by juvenile Atlantic salmon parr in areas 
providing low substrata shelter (Linnansaari et al., In press). Dynamic ice formation, 
however, has demonstrated to decrease survival (Tack, 1938; Needham & Slater, 
1945; Maciolek & Needham, 1952), lead to habitat exclusion (Heggenes et al., 1993; 
Brown et al., 2000; Prowse, 2001; Barrineau et al., 2005) and freezing of both eggs 
and juveniles (Prowse & Gridley, 1993). Moreover, long-distance migration has 
been reported in relation to accumulation of frazil and anchor ice in preferred 
habitats (Brown et al., 2000; Simpkins et al., 2000; Lindström & Hubert, 2004), 
indicating unsuitable conditions. 

In short, literature at-hand suggests that juvenile salmonids are mainly active at 
night and prefer sheltered low velocity habitats. River ice may have both positive 
and negative effects, depending on its type and formation process. Nevertheless, 
the knowledge on behaviour of different cohorts, density dependent factors 
(competition, food) and the use of cover in ice-covered streams are still rather 
limited. Thus, making general statements on the effect of winter conditions on 
juvenile salmonids are difficult, and hence much remains to be learned.  

 

Figure 4. Is winter a “bottleneck”? An Atlantic salmon parr frozen to the ice, found in River 
Sokna, Norway, winter 2005. 
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C h a p t e r  t w o  

MATERIALS AND METHODS 

Study area 

This PhD study has been conducted in three different streams located on the 
northern hemisphere (between 48º - 63º N, Figure 5). The streams are 
characterized as steep (> 0.4%, (Tesaker, 1994; , 1996) with different physical 
characteristics (Table I), but with similar coastal climate conditions. The winter, 
here defined as a period from first appearance of ice to complete removal of ice in 
the spring (Wedel, 1990; Cunjak et al. 1998), usually lasts for 6 months from the 
freeze-up in late October to the thermal ice break-up in April. In the following, the 
study sites are described.  

 

Figure 5. Location of the three study sites A, B and C (see Table I for physical features). Study site 
A: Southwest Brook, Newfoundland Canada; B: Sokna River, Norway, and C: Orkla River, 
Norway. 

Study site A, Southwest Brook, is an unregulated stream located in the Terra Nova 
National Park (48º36’ N, 53º58’ W) on the northeast coast of Newfoundland, 
Canada. The Southwest Brook is a small stream with an average winter discharge of 
0·4 m3s-1. The selected study section was approximately 300 m long, with a steep 
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 walk sections, and is largely 
influenced by severe anchor ice formation in winter.  

Max), average wetted width (WW), and dominant 
substrata (D50).  

Q (m3s-1) I (%) WW (m) YMax (m) D50 (mm) 

stream gradient favouring dynamic ice formation. In ice-free conditions, the reach 
is riffle dominated with sections of walks and pools (see Table II for definitions). 
Study site B, Sokna River, is an unregulated stream located in Mid-Norway (62º98’ 
N, 10º23’E). It is a small (average winter discharge of 2 m3s-1), steep stream 
favoring anchor ice formation. The field study was carried out in a 350 m long 
stream reach, consisting predominant of riffle with a smaller section of walk area. 
Study site C, Orkla River, Mid-Norway (63°17’ N, 9°50’E), is a regulated stream 
with a mean winter flow of 50 m3s-1. Due to the local climate, regulation regime and 
its steep stream gradient, the river system has a high production of frazil and 
anchor ice. The selected study site was located in the middle portion of the river 
system, approximately 10 km downstream of the nearest power plant outlet. The 
study site is 250 m long, representing riffle, glide, and

Table I: Summary of physical characteristics in the study sites given by their average winter discharge 
(Q), stream gradient (I), maximum water depth (Y

Study site 

Southwest 0·4 1·3 11·5 2·0 97 Brook 

Sokna 2·0 1·8 23·5 1·0 165 

Orkla 50·0 0·5 45·0 2·0 72 

 

Collection of physical data 

To describe the effect of dynamic ice formation on the physical habitat in steep 
streams, data of a number of physical characteristics have been collected. The data 
collection can be distinguished in two groups: (1) monitoring changes in the 
hydraulic heterogeneity caused by river ice, and (2) monitoring anchor ice and its 
formation process. In (1) changes in the hydraulic heterogeneity were observed as 
changes in discharge (pressure sensor and manual measure), water depth and water 
velocity (Sontek Flow meter, 10-MHz ADV, Acoustic Doppler Velocity profiler) 
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inutes, were made to investigate its 
effect on anchor ice formation and density. 

esohabitat classes, used in the 
study. The method is based on the system by Borsányi et al. (2004) 

Habi Name 

and by using a hydro-morphological unit (HMU) classification system (Borsányi et 
al., 2004). In the latter, four classes were employed: 1) shallow riffle; 2) shallow 
glide; 3) walk and 4) pool (see Table II for definitions). Substrata were measured by 
the b-axis (shortest axis) and classified using the Wenthworth scale. The substrata 
embeddedness was measured according to the method by Schälchli (2002) by visual 
determination using five classes: 0-20%, 20-40%, 40-60%, 60-80% and 80-100%, in 
which low values reflect low degree of embeddedness (i.e. high degree of interstitial 
spaces). In (2) anchor ice formation was monitored measuring spatial (total station: 
Sokkia SET 600, Leica TS 306, or DGPS (Differential GPS) and temporal 
distribution, thickness, density and its formation process, both on a micro (< 10 m) 
scale and on a meso (10 – 100 m) scale. Photo, video and underwater video 
recording was also conducted. In addition, high resolution temperature sensors 
(SeaBirds Electronics, SBE39, ± 0·002˚C) were used to quantify the amount of 
supercooling related to the formation of anchor ice, and underwater light meters 
(Onset Computer Corp., HOBO RH) to investigate underwater light changes due 
to ice formation (both surface- and anchor ice). Finally, measurements (Sontek 
ADV, 10 MHz, velocity range 250 ms-1) of turbulence, here defined as velocity 
fluctuations around its mean during two m

Table II: Physical features of hydro-morphological units (HMU’s), m

tat class of class Surface Depth Velocity 

G2 Shallow riffle Broken surface < 0·7 m > 0·5 ms-1 

B2 Shal -1

B1 Deep glide -1

-1

D Walk Smooth/rippled < 0·7 m < 0·5 ms-1 

low glide Smooth/rippled < 0·7 m > 0·5 ms  

Smooth/rippled > 0·7 m > 0·5 ms  

C Pool Smooth/rippled > 0·7 m < 0·5 ms  
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Monitoring of Atlantic salmon parr 

Atlantic salmon parr monitored in the present study ranged from 75 – 170 mm 
(fork length, LF). Two different techniques were used to monitor parr: (1) Radio 
telemetry (paper IV) and (2) Passive Integrated Transponder (PIT) technology 
(paper V and VI). In the respective studies, a number of salmon parr (see paper IV, 
V, VI for details) were caught by electro fishing within the study sites using a 24 V 
backpack electro fisher (Smith Root Inc., model 12-B). Salmon parr were kept in 
captivity for observation of any potential effects from electro-fishing before 
tagging. Tagging was conducted using radio transmitters (Model Lotek MBFT 7M; 
7.3·18 m, 1.4 g in air, and 9M; 8.2·19 mm, 1.8 g in air, Lotec Wireless) and Passive 
Integrated Transponders (Texas Instruments, RI-TRP-WRHP; length: 23·1 mm; 
diameter: 3·9 mm; weight: 0·6 g in air). As the size of tags have been discussed to 
have potential effects on fish behaviour (Jepsen et al., 2004), procedures suggested 
by Robertson et al. (2003) (radio) and Roussel et al. (2000) (PIT) has been followed 
to ensure minimal impacts of tagging. All parr were kept for 24 hours before 
releasing them into their respective habitats where they had been captured. No 
post-mortality was observed in any of the conducted studies.  

Tracking of salmon parr were conducted using radio telemetry (Lotek Wireless) 
and PIT technology (Texas Instruments Inc.; TIRIS S-2000 RI-CTL-MB2A), 
following procedures described by Robertson et al. (2003) (radio transmitters), 
Roussel et al. (2000) (PIT) and Linnansaari et al. (2007) (PIT). When using PIT 
technology, manual in-stream tracking was performed concurrently with two sets 
of hand-held antennae. Maximum reading distance (70 cm) and spatial accuracy (± 
15 cm in x-y-direction, Linnansaari et al., 2007 and personal experiences) were 
tested on each survey using a test tag on the stream bank. Water, ice, substrata and 
metal seemed to have no impacts on the reading distance whatsoever. All tracking, 
both radio and PIT, was done in an upstream direction to reduce the possibility of 
driving individuals from their positions. When an individual was detected, a marker 
was dropped and its position (x-, y-coordinate) was subsequently geo-referenced 
(morning positions were geo-referenced in the afternoon, and afternoon/night 
positions were geo-referenced the following morning) using a theodelite (total 
station; paper V: Leica 307, paper V/VI: Sokkia SET 600; spatial accuracy = ± 2 
cm).  
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Statistical analysis 

In this study a quantitative approach has been implemented. Both parametric and 
non-parametric analyses have been used, although the latter was most frequent as 
highly skewed distributions were observed in most cases (violation of normality 
was determined by the Shapiro-Wilk’s test). In cases with non-normal distributions, 
the median, range, skewness and kurtosis were used to examine trends and 
clustering. Furthermore, although classical experimental design would have 
included replication in the presented research (Underwood, 1993), conducting 
studies under natural conditions with ice formation makes replication by its 
definition impractical. Despite this shortcoming, studies under natural 
environments are important to further understand natural processes across 
temporal and spatial scales. However, the importance of replication has been 
considered through repeated measures over time and space using fixed 
experimental set-ups. Statistical analyses were performed using SPSS 15·0 for 
Windows (SPSS Inc. 2006), and considered significant at the level of P = 0·05. 
Graphs and illustrations have been made in Sigma Plot 10·0 (Systat. Software, Inc. 
2006) and Arc Info 9·2 (ESRI Inc. 2006), respectively. 
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C h a p t e r  t h r e e  

ORGANIZATION OF THE THESIS 

This PhD study is based upon a multidisciplinary approach in two steps: (1) 
Investigation of anchor ice formation in streams and its influence on the physical 
stream habitat, and (2) the influence of anchor ice on habitat use by Atlantic 
salmon parr.  A natural part of this progress has been to review the state-of-the-art 
research within winter behaviour of stream salmonids and hence is included in this 
thesis as a basis for the given studies (paper I). The first step (1) is reflected by 
papers II - III. Paper II considers controlling factors of anchor ice formation in 
natural environments, and paper III demonstrates the effect of anchor ice 
formation on the physical habitat in a steep stream. The second step (2) is reflected 
by papers IV - VI. Paper IV considers the effect of dynamic ice formation on 
movement and habitat use of Atlantic salmon parr in a steep regulated stream. 
Paper V considers the effect of anchor ice dams on distribution of salmon parr in a 
natural, steep stream, and paper VI considers stream gradient-related movement 
and growth of salmon parr during winter in a natural, steep stream. In the 
following, main findings from each individual paper are given:  

SUMMARY OF THE SCIENTIFIC PAPERS 

Paper I: Life in the ice lane: The winter ecology of stream salmonids 

What is the state of research on winter habitat of juvenile salmonids? 
A review of winter behaviour of salmonids states that future winter research should 
focus on (1) being able to predict the dynamics of freezing and ice processes at 
different scales, especially at the local scale, (2) studying fish behaviour, habitat use 
and preference under partial and full ice cover, (3) evaluating the impacts of man-
induced environmental modifications (e. g. flow regulation, land-use activities) on 
the ecology of salmonids in winter, and (4) identifying methods to model and 
assess winter habitat conditions for salmonids. 
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Paper II: Anchor ice formation in streams: A field study 

What are the main factors controlling anchor ice formation in steep streams? Is anchor ice only 
restricted to high turbulent reaches, i.e. riffles? Are there differences between anchor ice formation 
and its density? 
This paper presents a field study focusing on anchor ice formation in three 
different stream environments with different physical characteristics. Distribution 
and formation of anchor ice was investigated under various hydraulic, morphologic 
and climatic conditions. Particularly, the formation process and density of anchor 
ice versus level of turbulence and supercooling has been emphasized. Findings 
demonstrate that anchor ice formation in natural environments is not restricted to 
riffles, but may form in low turbulent reaches such as ‘walk’ and ‘glide’ areas (see 
Table II for definitions). Thus, using boundary conditions based on water depth 
and/or water velocity as criteria for spatial distribution of anchor ice formation 
should be employed with care. Furthermore, anchor ice may be distinguished by 
two types: Type I: Less dense, forming on top of substrata, Type II: Dense, 
forming between substrata filling interstitial spaces. Here, the findings suggest that 
the spatial distribution of the two types of anchor ice is linked to the level of 
turbulence, and may be expressed by the Reynolds number.  

Paper III: The influence of dynamic ice formation on the hydraulic 
heterogeneity in a steep stream 

How do anchor ice and anchor ice dams affect in-stream heterogeneity? 
The formation of anchor ice and anchor ice dams was monitored throughout a 
freeze-up in a small, steep stream. A differential GPS combined with a HMU 
system were used to quantify in-stream changes caused by anchor ice formation. 
During the study, extensive dynamic ice formation occurred leading to the 
formation of a number of anchor ice dams (max height: 190 cm) within the study 
site. The anchor ice dams significantly altered the in-stream hydraulic heterogeneity 
by changing riffle sections into a series of pools. Anchor ice dams increased the 
water level and the wetted area by 44% and 60%, respectively, despite constant 
discharge. The increase in water depth reduced the overall water velocity and 
initiated further static ice formation. Hence, anchor ice formation may play a key 
role in further development of surface ice on steep streams. The findings suggest 
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that the current paradigm that emphasizes the role of discharge as the main 
controller of hydraulic heterogeneity may call for a modification in streams that 
experience seasonal ice formation. 

Paper IV: Mid-winter activity and movement of Atlantic salmon parr during 
ice formation events in a Norwegian regulated river 

How does anchor ice formation affect the distribution and movement of Atlantic salmon parr in a 
regulated stream? 
Distribution and movement of Atlantic salmon parr was monitored mid-winter 
using radio telemetry in a steep, regulated stream. Within the study site, extensive 
anchor ice formation occurred by formation at night and disappearance during day. 
The anchor ice displayed high density forming between the substrata and filling 
interstitial spaces. Monitored radio tagged parr displayed large movements both 
night and day, thus no clear nocturnal behaviour was evident. Furthermore, parr 
were observed to relocate from anchor ice exposed areas (riffles) at night seeking 
cover along surface ice covered stream banks. Also, a group of parr were observed 
to be trapped within a small pool along the bank due to a rapid decrease in 
discharge. Findings from this study indicate a potential negative impact by anchor 
ice formation on habitat use of parr in terms of forced relocation and large 
movements. This can be explained by that anchor ice observed in this study 
formed between the substrata and hence excluding potential substrata cover. Also, 
the findings imply that hydropeaking during winter may be critical towards parr by 
potential stranding, particularly in shallow stream bank habitats. Hence, overall 
findings imply that in steep, regulated streams the physical conditions may be 
especially harsh during winter. This may further pose a challenge towards 
performance (growth, survival) of parr during winter in such systems, although not 
investigated in this study. 

Paper V: Habitat use of Atlantic salmon Salmo salar L. parr in a dynamic 
winter environment: the influence of anchor-ice dams 

How do changes in stream heterogeneity caused by the formation of anchor ice dams affect 
distribution of Atlantic salmon parr?  
The effect of anchor ice dams on the physical habitat and distribution of Atlantic 
salmon parr was investigated by Passive Integrated Technology to monitor parr 
during two freeze-up periods in a small, steep stream. During the study, changes in 
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the hydraulic heterogeneity (i.e. depth, velocity, mesohabitat composition) caused 
by anchor ice dams demonstrated small/no effects on distribution of Atlantic 
salmon parr. Results question the importance of depth and velocity as single 
factors in habitat choice and distribution of salmon parr in steep streams, although 
the degree of anchor ice formation should be considered. Furthermore, large 
individual variation in habitat use among parr was observed; however, overall small 
home ranges in low embedded areas indicated high site fidelity to these habitats. 
The findings imply that access to suitable substrata shelter (low embeddedness) 
may override other habitat characteristics such as water depth and velocity.  

Paper VI: Stream gradient-related movement and growth of Atlantic salmon 
parr during winter 

Are there within-population differences in habitat use and performance of Atlantic salmon parr 
during winter in steep streams? Are pool habitats preferred habitats, while in contrast; riffles are 
less utilized or even avoided? 
Habitat use and growth of Atlantic salmon parr were monitored throughout the 
winter (November – May) in two sub reaches with different stream gradients (low 
and high gradient), and hence different ice regimes, in a small natural stream. The 
low gradient stream section was characterized by static ice formation (stable 
conditions), whereas the high gradient was characterized by dynamic ice formation 
(unstable conditions). Passive Integrated Technology was implemented by using 
both fixed antennae and manual tracking devices monitoring between- and within-
gradient movement, respectively. Throughout the winter, parr demonstrated 
nocturnal activity, small movements and high site fidelity in both stream sections 
confirming the consensus of low winter activity. However, salmon parr inhabiting 
the less steep stream gradient section demonstrated larger movements than salmon 
parr in the high gradient stream section. Furthermore, salmon parr were less 
attracted to pools, whereas in contrast, parr showed high site fidelity to riffle areas. 
Findings suggest that low embedded substrata can be the key component in habitat 
selection by salmon parr during the winter. Finally, winter growth by parr was 
found to be stable/slight positive, whereas the spring (thermal) ice break-up may 
cause body mass reduction indicating a critical period. 
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C h a p t e r  f o u r  

CONCLUSION 

The main objective in the present study was to investigate the influence of dynamic 
ice formation on habitat choice by Atlantic salmon parr in steep streams. In the 
following, the main conclusions from the present study can be summarized by five 
main points: 

1. The formation of anchor ice has profound impacts on steep stream 
heterogeneity, and should be considered when evaluating physical 
conditions in such environments. Discharge, as the controlling factor for 
changes in the hydraulic heterogeneity, may therefore require modification 
in streams that experience seasonal ice formation, particularly in areas with 
dynamic ice formation. This is especially important for cold-climate stream 
habitat modelling. In figure 6, changes in water level caused by dynamic ice 
formation, but with stable discharge, are illustrated.  

 

Figure 6. Changes in water level caused by dynamic ice formation in a small, steep 
stream during a freeze-up (figure from paper III). “Reference” indicates ice-free 
condition, and “t” accumulated time during the freeze-up.  
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2. Anchor ice can be distinguished by two types: i) Type I: Less dense, 

forming on top of substrata, ii) Type II: Dense, forming between substrata 
and filling interstitial spaces. The two anchor ice types can further be 
indirectly expressed by the Reynolds number. In figure 7, the two anchor 
ice types are given according to their densities. As the two types modify the 
substrata embeddedness different, the characteristics of anchor ice 
formation are important to consider when conducting in-stream 
assessments in steep streams. 

 

Figure 7. Two types of anchor ice are distinguished according their densities. Boxes 
imply the inter-quartile range, whiskers the 90th percentile and the solid line median 
value. 

 
3. The effect of dynamic ice formation on habitat use of Atlantic salmon parr 

depend on the type of anchor ice. Type I has small/no impact in which 
habitat choice by parr are almost unaffected. In contrast, Type II 
demonstrates negative effects in terms of habitat exclusion with increased 
movement activity and enlarged home ranges. Therefore, the type of 
anchor ice may have different effects on parr winter performance. Figure 8 
reports home range sizes of parr in stream environments affected by 
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anchor ice Type I and Type II. Home range sizes related to Type II can be 
found in Alfredsen et al. (2004) 

 

Figure 8. Size of home ranges by Atlantic salmon parr in areas affected by anchor ice 
type I (median = 16 m2) and Type II (median = 1163 m2). Bars represent median value 
and whiskers the 90th percentile. 

4. Riffle habitats are suitable for Atlantic salmon parr during winter, whereas 
pools are less utilized. However, the degree of dynamic ice formation and 
size of winter floods should be considered. A potential explanation for parr 
using riffles is the shelter availability in these areas. Coarse, low embedded 
substrata provide refuge against energy demanding water velocities and 
potential diurnal predators. Thus, low embedded substrata may be the 
controlling factor in habitat choice by parr during winter in steep streams, 
and thus offset the need to change habitat, even in dynamic environments 
caused by dynamic ice formation.  

5. The winter in steep streams is not necessarily a limiting factor in parr 
performance (i.e. growth). The access to cover and food can be adequate 
thereby reducing the potential of less success. In contrast, the physical 
conditions during the spring ice break-up may be especially severe. Ice-runs 
and increased discharge may exceed the holding-velocities for parr leading 
to unsuitable conditions due to increased energetic costs. Thus, the spring 
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ice break-up may lead to a decrease in body mass, and hence imply a critical 
period (Figure 9. 

 

 

Figure 9. Change in body mass of Atlantic salmon parr before (pre, median = 4·8%) and 
after (post: median = -14·5%) the thermal ice break-up (April/May). Boxes imply inter-
quartile range, whiskers the 90th percentile and the solid line the median value. 

FUTURE RECOMMENDATIONS 

The interaction between the physical habitat and the behaviour of juvenile 
salmonids is complex. In winter time, a stream environment may change radically 
by the formation of different types of ice, even on a short temporal scale, leading 
to a dynamic environment. Furthermore, juvenile salmonids, as reflected by the 
disparate findings from previous work, may demonstrate large individual 
behavioural differences both in time and space. Thus, to study, observe and 
interpret winter behaviour of juvenile salmonids is indeed a challenge. To further 
understand winter behaviour of stream fish and the dynamics of the environment 
they are utilizing, future research should focus on the following main issues: 
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• Anchor ice formation and its effect on the physical habitat: Although the effect of 
anchor ice on the physical habitat of stream salmonids has been 
investigated in this and some previous studies, more studies are needed. In 
particular, relations between anchor ice formation, density and turbulence 
should be investigated. How does the turbulence affect the anchor ice 
density in natural streams? Can density differences of anchor ice be linked 
to hydro-morphological units (HMU’s)? Are dimensionless numbers less 
accurate to forecast anchor ice formation? 

• The effect of restoration on winter regimes in streams. Restoration and remedial 
actions are today a common procedure of freshwater fisheries management 
to increase the habitat quality of degraded streams. However, the influence 
of restoration of streams on the ice regime has gained limited attention 
despite its importance. Studies focusing on changes in the ice regime and 
ice formation due to restoration should be emphasized 

• Incorporation of anchor ice formation in habitat modelling tools. The effect of ice 
formation, and in particular dynamic ice formation, needs to be addressed 
in future use of stream habitat modelling tools. Ice formation has profound 
impacts on the in-stream heterogeneity, and is thus critical to be 
considered.  

• Performance by salmon parr in regulated stream systems during winter: In many 
northern countries hydro-power is the dominant energy source. The river 
systems controlled by hydro-power largely affect the physical in-stream 
conditions and their ecosystems. In future, the energy demand is expected 
to increase which will further increase the pressure on these environments. 
Although a few winter studies have been conducted in regulated streams, 
including the present study, the temporal scale and number of individuals 
being investigated are generally low and more knowledge is needed. In 
particular, to investigate growth and survival rates of juvenile salmonids in 
regulated streams that experience extensive dynamic ice formation during 
winter are recommended.  
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• The effect of mid-winter dynamics and spring ice-break-up on salmon parr behavior and 
performance: With future climate predictions, northern stream systems and 
their ecosystems will be put under a particular pressure. Also, future energy 
demand and potential increase in energy production and hydropeaking will 
increase the dynamics of northern streams and alter the natural ice regime. 
Although multiple mid-winter ice break-ups and changed timing and 
severity of the spring ice-break-up can be expected in these systems, both 
their physical and biological implications in winter conditions are largely 
unknown. Studies focusing on these periods are recommended, in 
particular the effect of the spring ice break-up on growth and survival of 
parr. 

• Habitat use and performance during winter of adult Atlantic salmon. Today, studies 
on adult salmon and their life phase in stream environment during winter 
are largely lacking. Studies considering their habitat use and performance 
related to various stream environments and ice formation, in particular 
extensive dynamic ice formation, are recommended. 

In view of previous winter work, including the present study, knowledge on 
dynamic ice formation under natural conditions and its impact on the lotic 
environment is still limited. If we are to understand the dynamics of northern 
streams affected by ice formation and its environmental impacts, future 
multidiscipline studies are needed. More importantly, to avoid scale inconsistency 
(Folt et al., 1998) future field studies should include multiple year-sampling in 
streams that are subjected to both static and dynamic ice formation. Different 
sampling techniques should be avoided if possible. 
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