Explanation-aware army builder for
Warhammer 40k

Nenad Zikic

TDT4501 - Fordypningsprosjekt 1 Datateknologi
Hgst /Fall Semester 2015

Artificial Intelligence Group

Department of Computer and Information Science

Faculty of Information Technology, Mathematics and Electrical
Engineering

Norwegian University of Science and Technology

Supervised by Anders-Kofod Petersen

Abstract

The goal of this project is to design an explanation-aware, case base reason-
ing system that can create a winning army in the Warhammer 40k strategy
board game when presented with the opposing army.

This system will use object oriented case based reasoning with general do-
main knowledge to simulate a Warhammer 40k domain. It will be able to
maintain itself through any changes in the game versions, as well as proac-
tively think and learn about the game, without any outside stimulus, by
using maintenance policies. Explanations are used to teach new users, help
expert users, and build trust towards new and expert users alike. State of
the art and a structured literature review protocol are used to approach this
project methodically.

The paper succeeds in fulfilling the goals and presents a designed system,
presenting the background knowledge necessary to understand it, the state
of the art, the architecture of the system and the actual design. The paper
evaluates and discusses the limitations of the design, its contributions, and
future work.

Preface

This is a project report written for the Fordypnings Emne, or Specialization
Course, for the Master in Computer Science (Datateknikk) at the Norwe-
gian University of Science and Technology (NTNU). It has been conducted
at NTNU, at the Department of Computer and Information Science (IDI),
in the Artificial Intelligence (Al) department, in the Fall semester of 2015.

This project was supervised by Anders Kofod-Petersen. I would like to ex-
tend my thanks to him first and foremost for helping me with the project
and providing me with the opportunity to work on the project.

I would also like to thank Agnar Aamodt for his help in case-based reasoning
and machine learning, as well as the faculty at IDI for their motivation and
assistance with writing a good project.

Finally i would like to thank my friend, Drikus Kuiper, for his assistance
with Warhammer 40k resources.

Contents

1 Introduction
1.1 Background and Motivation
1.2 Goals.
1.3 Research Method
1.4 Project Structure

2 Background Theory and Motivation
2.1 Warhammer 40k L
2.1.1 Equipment, Units and Unit Types
2.1.2 Creation of an Army
2.2 Case-Based Reasoning,
2.2.1 Case Representation
222 Retrieval
2.2.3 Reuse and Revision
2.24 Retention
2.2.5 Knowledge-Intensive CBR
2.3 Explanation-Aware Computing
2.3.1 Fundamentals of Explanation
2.3.2 Explanation in CBR Systems
2.4 Ever-Changing Environment
2.4.1 Maintenance of the Knowledge-Base
242 Metagaming
2.5 Stateofthe Art
2.5.1 Structured Literature Review Protocol
2.5.2 Motivationo

3 Architecture
3.1 Stakeholderso
3.2 Requirements oo
3.2.1 Functional Requirements
3.2.2 Non-Functional Requirements

i

11
13
14
16
17
19
20
21
21
22
24
25
27
31
31
36

3.3 Architectural Template

4 Design
4.1 Case Based Reasoning
4.1.1 Case Representation and Case Base
4.1.2 Retrieval
413 Reuseand Revise

414 Retain
4.1.5 General Knowledge .
4.2 Maintenance Policies

4.2.1 Utility Maintenance
4.2.2 Consistency Maintenance
4.2.3 Metagame Maintenance
4.3 Explanation
4.3.1 Explanations- CBR
4.3.2 Explanations - Maintenance
4.4 Prototype

5 FEwvaluation and Conclusion
5.1 Evaluation and Discussion .
5.2 Contributions
5.3 Conclusion and Future Work

Bibliography

Appendix
Appendix A - Glossary
Appendix B - Software Used . . .

Appendix C - The Rating System

48
48
49
52
o4
26
56
o8
o8
29
61
63
64
65
66

68
68
70
71

74

List of Figures

2.1 The CBR Cycle (Adapted from Aamodt and Plaza, 1994) . . 13
2.2 Classification of the cases 15
2.3 Knowledge Containers, adapted from (Richter, 2003) 23
2.4 Maintenance Policies o0 26
2.5 Tic-tac-toe, in this case the X player has won the game 27
3.1 Architectural Representation of the Class of Systems 45
3.2 Architectural Representation of the Project 46
4.1 The Unit Object 49
4.2 The Equipment Object 50
4.3 The Squad Object 51
4.4 The Army Class 52
4.5 Metagame Maintenance Policy Sequence 62

v

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3

4.1

Unit Characteristics 8
Non-Vehicle Unit Types 10
Vehicle Unit Types 10
Papers obtained from Experts 32
Papers obtained from Papers in Table 2.4 33
Search terms sorted in Groups 33
Inclusion and Quality Criteria 34
Papers obtained from online Search 35
Stakeholders 40
Functional Requirements 42
Non-Functional Requirements 43
General Domain Knowledge Uses Y

Chapter 1

Introduction

This project is an exploratory work into explanation-aware case-based rea-
soning. [will attempt to design a system that will build upon the basics
of Case-Based Reasoning (CBR) and the fundamentals of explanations, and
create a solution for an instance of a set of problems. The overarching class
of problems is creating an artificial intelligence system with complex, ever-
changing environments.

CBR has first emerged from the study of human memorization and under-
standing (Schank, 1982). At its core, a CBR system uses previous cases,
often called solutions, and applies them to new problems, when presented
with a problem. Since then, it has been worked and approached in many
different ways (de Mantaras et al. 2006).

Explanation-aware systems can reason about their actions. Reasoning of ones
actions is a sign of intelligence (Sormo et al. 2005). If we can reason about
our own actions, then we do not do actions out of instinct, but rather we do
them with a purpose. In the same sense, if the Al system can reason about its
actions, it has a purpose, and thus has to have some form of intelligence. As
we seek to build artificial intelligence, explanation aware systems should be
able to as closely as possible mimic intelligence. Furthermore, an explanation
aware system can teach both novice and expert users about the domain and
how the system reached this conclusion (Roth-Berghofer 2004).

The rest of this chapter will present my personal motivation for doing this
project in Section 1.1. The goals and research questions of the project are
presented in Section 1.2, while the research method is presented in Section
1.3. Finally, Section 1.4 briefly describes the rest of the project structure.

1.1 Background and Motivation

I have been playing video games since I was five years old. My interests
mostly as a child were in video games, and as such I wanted to enter an
education where developing games would be my job. Around high school I
also found myself drawn to board games, and especially role playing games.
From then on out, I had played many tabletop role playing games starting
from Dungeons and Dragons!, to home made systems, to Warhammer 40k?
in recent years. All the while, I had also maintained my love and interest for
video games.

In the past few years, I had been dissatisfied with the progression of Al, or the
computer player, in video games. Graphically, video games have progressed
significantly in the last two decades, but the computer player has in most
cases largely stayed the same. A good example of this is the Total War series,
especially Rome Total War, and Rome Total War 2 3, two games that I really
enjoy. However, in the span of a decade, the computer player is still the same
tool, just wrapped in a nicer package. In most strategy games, as well as
in general any video game, the Al is balanced out by simple cheating. The
AT can not win against better players, so they get more resources, whatever
the resources may be. This cheating Al has sparked my interest towards
AT and Al development. This has changed my goal from simple video game
programming, to Al programming in video games, and the hopes to create an
excellent video game AI. A long term goal evolving from this is the creation
of an Al that can teach itself while playing against other players.

thttp://www.wizards.com/default.asp?x=d20/article/srd35
http://www.games-workshop.com /en-GB/Warhammer-40-000
3http:/ /www.totalwar.com/

Turn based strategy games are very much like board games, except with
animation and graphical effects. Warhammer 40k is a turn based strategy
board game, and a very complex game as well. It features seventeen different
playable races and factions, a myriad of units in each race, and a great choice
of equipment for each unit. Furthermore, games are often done in different
scenarios or missions, and the choice of units and equipment may depend
heavily on the mission. Finally, before starting players agree on a resource
pool of points, usually between 1000 to 1500, and then they purchase units
and equipment to create an army.

This task of creating an army is, in my opinion, extremely well suited for
CBR. It is a very complex environment, with almost countless possibilities.
Eager generalization simply may not be possible in such a complex environ-
ment, but lazy generalization, which CBR is, may be. CBR largely mimics
the thought patterns of humans (Schank, 1982) and as such I believe is able
to function in this environment. Given cases, or previous armies, a CBR
system could deduce what army would be a good choice, when presented
with the opposing army. Not only that, but it could also explain how it
acquired the answer (Roth-Berghofer 2004, Sormo et al. 2005) and be able
to cope with the changes of rules, units and more, without having to rebuild
an entire knowledge base. Finally, the Al created here, if successful, could
have application in not only games, and potentially video games, but also
in any problem set that requires a division of resources in a complex, ever
changing environment. This is precisely the motivation for this project.

1.2 Goals

In this section I will present the main goal of the project, and the sub-goals
associated with the goal.

Goal 1 Design an explanation-aware CBR army builder for Warhammer 40k

The first goal of the project is the same as the title. I will aim to design
an explanation aware CBR system, that will be able to create armies in
Warhammer 40k. There are three important overarching aspects to this
system, and each one will be presented as a sub goal below.

Sub-Goal 1 Design a CBR army builder for Warhammer 40k

The first goal is to create the underlying system. This system will be based
on knowledge-intensive CBR methods, and given information about the op-
posing army, should be able to come up with an army structure that has a
good chance of beating it. The aim is to build a system that can reliably win
at least 50% of the games.

Sub-Goal 2 Design an explanation aware CBR system

The second goal goes hand in hand with the first. In order to create a system
that will be able to reason about it’s choices as well as an understanding sys-
tem (Schank, 1986) we need to have explanations. This will raise confidence
and trust towards the system from the user (Moore and Swartout 1988).
Therefore, I will aim to create an explanation system aimed towards novices
and experts alike, with additionally, having options and being able to have
a compromise-driven case-based method (McSherry 2003). The value of the
explanations will be critiqued by both novice and expert users.

Sub-Goal 3 Design a system that can evolve within the environment that
is Warhammer 40k

The third and final goal is to create a system that will be able to evolve.
Warhammer 40k was created in 1987, and has so far undergone seven different
editions, the last one being released in 2014. With small update packages
being released regularly, it is important that our system is able to analyze
new data, by reading it and integrating it into it’s knowledge base. Not only
that, but the metagame can constantly change, and therefore our system
needs to be able to constantly change to adapt to the new metagame. If the
system can be given new data, and it can subsequently integrate that into
both old and new cases, while at the same time adapting the old cases to
match new statistics and information, the system is able to constantly evolve
within the environment.

Goal 2 Present the state of the art

The second goal of the project is to present the state of the art of the system.
This project aims to be a methodical, scientific project, and the presentation
of the state of the art will greatly aid with this. Furthermore, the reuse of
knowledge is very important. By providing a methodical approach to the
project, we build a strong foundation for any other projects in the future.

1.3 Research Method

On the high-level of methodology, we will approach our goals using the scien-
tific method. In this project, the focus is on researching the goals, formulating
the hypothesis and designing the system. The master thesis to follow this
work will focus primarily on the implementation, experimentation, evalua-
tion and expansion of the hypothesis and formulating a general solution to
the problem.

On a more low-level approach, we will be using the set out steps by Paul R.
Cohen and Adele E. Howe, in their paper How Evaluation Guides AI Research
(1988). We will try to approach and evaluate each step of the research, as
often AI research evaluates empirical data, but not much more. The five
stages of evaluation are: Refining a topic to a task, Designing the Method,
Building the Program, Designing the Experiments, and Analyze their results.
The evaluation of the work done in this project will be presented in Chapter

D.

The main reason to follow this methodology is to evaluate all stages of re-
search. The secondary reason is to have a well documented solution to a
unique problem, that can hopefully be applied to further research in differ-
ent research and application fields.

1.4 Project Structure

Chapter 2 introduces background theory and motivation for the project in
detail. Chapter 3 focuses on the Architecture of the system and is closely
linked to Chapter 4, which focuses on design. Chapter 5 outlines the evalua-
tion of the project, contributions and future work to be done in the field, as
well as well as including any limitations of the project.

Chapter 2

Background Theory and
Motivation

This chapter will introduce the important theory topics for this project. The
project will build on the theory presented in this chapter. In Section 2.1 the
basic rules and important notions in Warhammer 40k will be presented. In
Section 2.2 we will discuss the basics of CBR and knowledge-intensive CBR.
Section 2.3 will cover explanation-aware computing. In Section 2.4 we will
discuss the ever-changing environment of systems in general, maintenance in
CBR systems, as well as the concept of metagaming. Section 2.5 contains
the state of the art, in which we will discuss the structured literature review
protocol and the motivation for this project.

2.1 Warhammer 40k

Warhammer 40k is a tabletop turn-based strategy game, played with two
or more people. It is set in the 41st millennium and the genre of the game
is strategy science-fiction. The game is intended for mature audiences, and
while the game itself has nothing that could be harming for younger viewers,
the core rulebook, as well as the additional books do deal with mature themes.

The game is played on a 6x4 foot table!, for a standard 1000-1500 point
match, and the distance is measured in inches. The game is played in turns,
where each player gets a player turn in a game turn. Once all the players
have had a turn, a new game turn starts. Each player turn is divided into
the start of the turn, movement phase, psychic phase, shooting phase, assault
phase, and the end of the turn. Within each phase of the turn, a player does
what they want and can, and when that phase is done they move onto the
next. The game is played using one type of die, the six sided die, though
two other die types are sometimes required. For a three sided die roll, the
six sided die result is halved and rounded up. For the special sixty-six sided
die, two six sided dice are rolled, one for the tens and the other one for the
ones.

Before starting the game players must first prepare a few things. First, they
must decide on a mission. Missions are the game goals, or objectives. They
have victory conditions, which when a player fulfills win him or her the
game. Missions can be pre-made by Games Workshop, or created by one of
the players. The missions are important, as they influence heavily what kind
of army composition the players will choose. Furthermore, most missions are
not fought in the open and usually have some sort of terrain features. These
terrain features also influence what kind of army the players will create. A
lot of open space might make the bring more tanks and other armored units,
where as a lot of trees or cover might impede these units and make the players
pick infantry over them. There are possibilities for playing without a mission,
but nonetheless the players have to agree on all the parameters before the
game starts.

Finally, the largest impact on the army is the race. There are nine races in
the Tth edition of Warhammer 40k, and each of them has unique equipment
and units, and therefore a unique army and play style that differs from one
another. Furthermore the human race, or the so called imperium armies, are
subdivided into an additional nine factions, which makes a total of seventeen
different armies. The imperium armies do not differ as much as the other
races do in between themselves. They still have different units units and
equipment, but there may be overlap between the armies.

!Games Workshop is based in the United States of America, and the game uses the
Imperial System for measurements. It is not necessary for the theory to convert these
units to metres and centimetres, and it would only confuse the players and the readers.
Nonetheless, the official conversion is 1 foot = 0.3048 metres, or 30.48 centimetres, and 1
inch = 2.54 centimetres. Furthermore, 1 foot contains 12 inches.

Once the players have prepared everything, they can begin playing the game.
The system that we are trying to create will mostly deal with this prepared-
ness phase and the army-building. Therefore, the next two subsections will
note the unit statistics, or attributes, and the unit types, as well as equip-
ment, and the actual process of creating an army.

2.1.1 Equipment, Units and Unit Types

The units in Warhammer 40k are the building block of any army. Units may
be grouped together as squads, either because of the history of the units,
or because they are weak individually, or because of the story and lore of
the units. Finally, most units and squads are grouped in a specific Unit?,
and rarely do singular units and squads go on their own. Each unit has a
characteristics block, in which the player can find all the characteristics of a
unit. The characteristics block is shown below in Table 2.1.

Unit Name |WS BS S T W I A Ld Sv
Space Marine | 4 4 4 4 1 4 1 8 3+
Ork Boy 4 2 3 4 1 2 2 7 6+

Table 2.1: Unit Characteristics

Table 2.1 shows the entire profile of a unit. Each unit has 9 characteristics,
but some units may have a 0 or a dash through a characteristic. This means
that that particular unit does not have that characteristic. These charac-
teristics are very important to the game, as they are the attributes of each
unit.

o WS stands for Weapon Skill and represents the ability of the unit to
hit another unit in melee combat. The higher the skill is, the higher
the chance to hit.

e BS stands for Ballistics Skill and represents the ability of the unit to hit
another unit in ranged combat. Similarly to Weapon Skill, the higher
the Ballistics Skill, the higher the chance to hit.

2In this case a Unit is a collection of squads with a purpose. An example is an anti-tank
Unit, which can contain many anti-tank squads.

S stands for Strength and represents the physical strength of a unit.

T stands for Toughness and represents how resistant a creature is to
damage and pain.

e W stands for Wounds and represents how many hits a target can take
before they fall down, either dead or wounded and are out of battle.
The larger the creature, the more wounds it usually has.

e [stands for Initiative and represents how fast the creature reacts. In
close combat, a higher initiative creature hits first.

e A stands for Attacks and represents how many attacks a creature gets
in close combat.

e Ld stands for Leadership and determines the morale of the unit. The
higher the characteristic, the more brave the unit is in combat.

e Sv stands for Armour Save and determines the chance to avoid damage
when getting hit. Unlike with other characteristics a lower armour save
is better. A creature may never have armour save that is lower than
24.

Units can, and usually do, have other special abilities not indicated in their
basic statistics, but indicated on the specific unit page. These abilities are
in addition to the creatures characteristics.

Units also fall into unit types. Unit types have their own special abilities
and rules. There are in total twenty four unit types, ten of these being non-
vehicle, and the other fourteen vehicles. Some unit types, like infantry, have
no special rules, while others, like bikes and jetbikes have special rules. Some
unit types even have special rules dependant on their race, and some races
lack certain types of units all together.

The unit types are listed below, in Table 2.2 and Table 2.3 but will not be
explained in detail, as they take over forty pages in the rule book. Rather,
it is noteworthy to state that unit types can influence and even win battles,
and are therefore an important factor to consider in making an army:.

Non-Vehicle Unit Type
Infantry
Bikes and Jetbikes
Artillery
Jump Units
Jet Pack Units
Beasts
Cavalry
Monsterous Creatures
Flying Monsterous Creatures
Gargantuan and Flying Gargantuan Creatures

Table 2.2: Non-Vehicle Unit Types

Vehicle Unit Type
Vehicle Squadrons
Transports
Flyers
Chariots
Open-Topped Vehicles
Heavy Vehicles
Fast Vehicles
Skimmers
Walkers
Tanks
Super-heavy Vehicles
Super-heavy Walkers
Super-heavy Flyers
Vehicle Upgrades

Table 2.3: Vehicle Unit Types

There is a last classification of unit types, which are Characters. These
special characters are named, and are usually very powerful and expensive
units. They usually represent army commanders, or warlords, and are dis-
cussed more in detail in Subsection 2.1.2.

Finally, units have equipment, which is the last major part of a unit. Each
unit comes with specific equipment, which in itself is dependant on the race
and the specific unit. Sometimes the units have the option of upgrading
their equipment at an extra cost as well. Equipment determines the range of
engagement, the number of attacks, the armour penetration power of these
attacks, their total damage and more. Equipment plays a vital role in the
game, and there is countless pieces of equipment. As an example, the Space
Marines, one of the factions of the imperium armies, have over fifty different
pieces of equipment, usable by the various units in their armies.

2.1.2 Creation of an Army

As mentioned before, the first thing the players need to do before creating
an army is to decide on how many points they will have to make the said
army. Different units have different costs, and this can influence how a game
progresses. The standard army creation points are 1000-1500, and the game
takes a few hours. Larger armies, of 2000-3000 points are possible but they
take longer to finish.

When the points are decided, the players decide on the second factor: Un-
bound or Battle-Forged armies. Unbound armies means that players can
take any units they wish from their selection, as long as the total combined
cost is not over the set point limit. Battle-Forged armies have strict organi-
zational requirements; all units must be organized in detachments, and these
detachments are presented in the rulebook.

A warlord unit is needed to lead the battle. Usually this is a special character-
type unit, and usually a unique unit, of which a player may only have one of
in an army. A non character-type unit can be selected to become the war-
lord, but does not gain any benefits other than the warlord traits. Warlord
traits further add complexity to the game by giving the players the ability to
change, or seize victory points and move closer towards winning the game.

Finally, when creating an army races matter substantially. As we discussed
before in Section 2.1 there are nine races, and nine sub-divisions inside the
imperium armies, or the human race, making a total of seventeen playable
factions. Fach race/faction has predetermined alliance rules, and multiple
races can feature on the same board. There are four alliance rules; Battle-
Brothers are races or factions that work extremely well together, and have
no penalties. Allies of convenience work fine together, but lose bonuses from
the warlord and are unable to come within one inch of one another on the
playing table. Furthermore, they usually can not interact with the other race
with their special abilities. Next is the desperate allies, which functions the
same as allies of convenience, but if they are within six inches of their allies
they must roll a six sided die. On a roll of one, the unit must either move
away or can not do almost anything this round. Finally, the last state of
alliance is come the apocalypse, where units function the same as desperate
allies, but can not deploy to battle within twelve inches of one another. These
alliances are important to consider when making an army; sometimes taking
a penalty might provide an edge against the enemy player, other times it
might be a double-edged sword and work unfavourably for the player.?

3All of the rules in this section were taken from the rulebook of Warhammer 40k 7th
edition. However, for a reader that would like to see the core rules, a shortened version of
the rules is available for free, courtesy of arbitorian@gmail.com. They can be found here:
https://dl.dropboxusercontent.com/u/4104995/Games/7edRef _V6.pdf and were last
updated in August 2015, as of the time of writing.

https://dl.dropboxusercontent.com/u/4104995/Games/7edRef_V6.pdf

2.2 Case-Based Reasoning

The basics of CBR are most easily explained through the original figure
presented in Aamodt and Plazas Case-Based Reasoning Foundational Issues
(1994). This cycle is sometimes also referred to as the 4 R’s of CBR, and
presented in Figure 2.1.

Problem

Menw
Case

b

revious
Cases

RETAIN

General
Knowledge

Confirmed Suggested
Solution Solution

Figure 1. The CBR Cycle

Figure 2.1: The CBR Cycle (Adapted from Aamodt and Plaza, 1994)

The CBR cycle that is presented in Figure 2.1 has four main steps: Retrieve,
Reuse, Revise and Retain. Furthermore, the cases are an important aspect
of any CBR System, and can be represented in many ways, depending on
the system and the complexity of the domain.

2.2.1 Case Representation

Before we discuss the four steps of CBR, we should first take a look at the
cases. There are six important points for a good case representation, and in
general for good representation in Al, as mentioned by Richter and Weber

(2013):

e Representational adequacy, which asks “Is it possible to represent ev-
erything of interest”?

e Inferential adequacy, which asks “Can new information or knowledge
be inferred”?

e Inferential efficiency, which asks “How easy (computationally) is it to
infer new knowledge”?

e Acquisitional efficiency, which asks “How easy is it to formalize new
information /knowledge”?

e (Clear syntax and semantics, which asks “How easy is it to clarify what
is allowed or not”?

e Naturalness, which asks “Are the representations easy to use and un-
derstandable”?

In order to have a good case representation, we will try to answer every single
one of these questions with our cases.

As mentioned in Section 2.1, each unit has a set of nine attributes. Further-
more, each unit has a unit-type and equipment. Each unit, can therefore be
presented as an object with several attributes: the basic nine attributes of
the unit, unit-type and the equipment it is wearing. However, while the basic
nine attributes and the unit-type are consistent, and fairly simple, the equip-
ment itself possesses various attributes. Therefore, the equipment should
also be presented as an object.

A squad inherits a unit object, and the army class inherits a squad object.
Squads consist of one or more units, and an army is a collection of multiple
squads. This is presented in Figure 2.2.

Squad Object] Army Class

Arrows show the ontology of
LInit Object the army. The Equipment
Qbject is a part of the Uinit
Qfject the Unit Objectis a
T part of the Squad O&ject,
and the Sguad Objectis a
pait of the Army Class.

Equipment Object

Figure 2.2: Classification of the cases

In Figure 2.2 the ontology is shown. An equipment object is a part of a unit
object, which is a part of a squad object, which is ultimately a part of the
army class. We can say that any changes at the bottom of the ontology affect
the objects above it. Therefore, a change in an Equipment Object changes
the Unit Object, Squad Object and Army class, while a change in the Squad
Object does not change the Unit Object and Equipment Object, but changes
the Army Class.

However, this is not enough for our system. We also need general domain
knowledge, which describes the mission and conditions on the mission, as
well as the alliance rules. The notion of general domain knowledge will be
further discussed in Subsection 2.2.5. With the general domain knowledge
and the object-oriented case representations, the question of representational
adequacy is fulfilled.

The next three questions have to do with inferring and acquiring knowledge
for the system. New information in the system can be inferred, either through
similarity measure or through analyzing the cases. Computationally, infer-
ring new knowledge is cheap. It comes naturally with the similarity, adaption
and inference from the problem presented. Finally, formalizing that knowl-
edge is creating a new object in the case base, which is a standard part of
the CBR cycle, the retention.

Object-oriented approach is a very natural way of representing the units, as
after all, this is how they are originally represented in the book, as blocks
of information. Furthermore, alongside with general domain knowledge, the
syntax for the cases should be very easy to clarify. This answers the two last
questions of Richter and Webers list, and complete the case representation.

2.2.2 Retrieval

The first step is to retrieve a previous case from the knowledge base. The
actual retrieval mechanism depends on what kind of system we want, the
performance of the said system, and our desired accuracy of retrieval. Re-
trieval has been the subject of much research (de Mantaras et al. 2006)
and many different retrieval mechanisms exist. They are in general, split
into surface similar and structurally similar retrievals. Typically a surface
similar retrieval is represented as a number, usually from 0 to 1, based on
the similarity measure. An example is the k Nearest Neighbour approach
(k-NN), which returns k nearest (most similar) cases. On the other hand
structural similarity goes deeper into domain knowledge, and are likewise
more computationally expensive, but also more accurate and relevant.

The case representation is very similar to Creek (Aamodt 1994). There too,
does the system have both cases and general domain knowledge. In Creek, a
two-step process is used to retrieve the cases: first a surface similarity assess-
ment, to retrieve a set of potentially similar cases, and then a structurally
deeper search involving the general domain knowledge on those cases. The
retrieval system in this project will attempt to use a similar notion when
retrieving the cases.

A final part to the discussion of retrieval is the notion of compromise. This
is a point raised in the initial stages of discussion with and by my supervisor,
and I wholeheartedly agree on it. If we assume that our retrieval system
works flawlessly, we are still hindered by one notion: player choice. A player
may not have all the miniatures to play with the retrieved case, in fact he
may not even possess any of them. Furthermore, a player may simply express
their dislike towards playing a certain race or faction. Therefore, we should
have a method that can provide an alternative answer, or modify our answer.
This small notion of freedom can raise the users satisfaction of the system
greatly, as they have control over the retrieved cases.

MecSherry in Similarity and Compromise (2003) proposes a compromise-
driven approach to retrieval. Though our system is not a recommender sys-
tem, the main idea stays the same; the system should be able to weigh the
different armies according to the player requirements and be able to retrieve
at least a set of cases using those requirements. Again, explanations will play
a key role in this retrieval; if we are able to retrieve an army, but that army
performs substantially worse than the retrieved army, then the user needs to
be informed of that.

2.2.3 Reuse and Revision

Reuse and Revision are the second and third steps of the CBR cycle. Reuse
in its simplest form is just applying the retrieved problem and solving the
problem presented. However, more commonly we need some form of adap-
tion of the knowledge, as after all, if we have the solution to every problem
in the system the system is already solved, and there is no notion of learning.
Revision is the actual testing of the (often) adapted solution and its perfor-
mance. As the name suggests, if the solution has not performed well it will
be revised, with possible changes to it.

Reusing a previous case in Warhammer 40k will almost always entail some
kind of adaption. Let us look at a simple example. Let us suppose that we
have an army of Space Marines and we are going to fight an army of Orks
and also suppose the army of Space Marines won the previous three battles
against Orks. The top suggestion would be to use the same army again.
However, this time the Orks brought vehicles with them and the mission
takes place in an open area. Our Space Marines do not have equipment to
handle armor, and if we do not adapt a solution to this new problem, by
giving our Space Marines equipment to handle heavy armor, we will not win.
Therefore, the solution is adapted, and the Space Marines are given a Missile
launcher with Krak Missiles (Krak missiles have higher armor penetration),
to combat the longer range and the armor that the vehicles have. Since this
also costs points, we will need to subtract some other equipment from other
units, or possibly even subtract some units in the army.

While this is a simple example, it illustrates that a small change can have
a big impact in army compositions. Even an addition of different kind of
equipment can already make a difference from one battle to another.

Therefore, we will almost always adapt solutions, but we will also need to
create some sort of threshold, so that the performance of the system does
not suffer, as this is a very expensive step of the CBR cycle.

The adaption method will in most cases be simple substitution. This means
that some parts of the solution will be exchanged for other parts. In our
example, some units equipment will be exchanged for a missile launcher.
Similarly units and squads will be exchanged for others based on the need
and performance.

Transformation adaption will be the second method to adaption, which will
be used closer to the start of the systems life-cycle. Once the system has
obtained sufficient data about a race, it will not need to use the transforma-
tion adaption as much, due to the knowledge it possesses. However, early
on, the system may need to develop different kinds of command structures
and detachments, as explained in the Subsection 2.1.2, which will change the
structure of the army.

When the army composition is adapted to the new problem it needs to be
tested. After playing, the data can be entered back. In our case, the per-
formance of the army is entered. If the army has won, then the adaption is
successful. If not, then we need to revise the adaption. Perhaps the vehicles
were slow, but extremely well armored. In such a case, a multi-melta would
be a better choice than the missile launcher, and a suggested revision of the
system. The revision is then possibly retained in the next step of the CBR
cycle.

Before we move on to the Retention step, we bring up an important point
regarding revision. We assume that the players are playing to the best of
their abilities, such that they will only be hindered by probability. While
this may seem like a very strict assumption, we only really assume that the
players are trying to win using all the knowledge on the board. If the players
are unable to play to the fullest capabilities, it is possible and probable that
the results of the learning process will suffer.

2.2.4 Retention

Retention is the fourth and final step in the CBR cycle. In this step the
system retains, or stores, the revised solution. The solution, however, need
not be the only thing stored in the retention step. Some systems store entire
derivation processes as well (de Mantaras et al. 2006).

While on the surface Retention seems simple, it is quite the contrary. While
the system is able to store every solution, after some time in the life-cycle
of the system, the system would get flooded with cases. This would increase
the retrieval step time, since there are more cases to search through, but the
adaption time would decrease. Once the retrieval time is higher than the
adaption time the performance of the system degrades. This is called the
utility problem.

There are ways to combat this. The simplest way is to simply delete cases.
This can, unfortunately, also delete pivotal cases - cases that are vital to the
systems knowledge. Smyth and Keane (1995) propose a competence model
to value cases before they are deleted. This helps identify the pivotal cases
and helps delete cases that do not contribute much to the systems problem
solving capabilities.

This kind of competence model is actually present in many games. The
traditional example is chess, which was the first to use the Elo rating, named
after its inventor Arpad Elo. The Elo rating is a ranking that is given to
players based on their skill levels. If two players have the equivalent Elo
rating, then the theoretical chance of winning for either player is 50%. The
actual rankings differ from game to game, but they follow a derivation of the
Elo rating.

Warhammer 40k, as explained in Subsection 2.4.2, also uses a ranking sys-
tem. If every army class has an attached property of rating, which could
be a derivation of the Elo rating, we have a competency system. With this
competency system we can filter out bad armies from the good armies. Fur-
thermore, we can then extend this system to squads, as an army is a squad
of squads. Then, as we reuse armies and squads, we track their performance
in battles.

The performance is a simple measure of the value of the squad versus the
value of the damage they have done on the battlefield, measured in points
used to purchase the units and equipment. In this way, as the squad is used
over and over again, it’s progress is tracked. If it proves that the rating of
this squad is low, the squad is not considered pivotal, and is deleted from
the system by the use of maintenance policies discussed in Section 2.4. The
formula is presented below.

ValueO f DamageDone
SquadV alue

SquadRating =

2.2.5 Knowledge-Intensive CBR

As discussed in Subsection 2.2.1, our domain needs to be enriched with some
general domain knowledge. In other words, to fully represent the Warhammer
40k domain, we need to have more knowledge than what the cases can provide
alone. Missions, terrain, time of day and alliances all play a key part in the
game, but they themselves can not be represented fully within the cases.
A domain knowledge is necessary if we want to have anything but unbound
armies and flat, empty terrain, with no mission, which is not how the majority
of Warhammer 40k games are played.

Aamodt describes that knowledge in a CBR system, and specifically in the
Creek system (2004), is difficult to separate from information. Knowledge
is then, our interpretation of the information present in the system. In the
same sense, our system will be enriched with information that will be used
to present the full Warhammer 40k domain.

With a knowledge-intensive CBR system, we will be able to create a system
that will completely, or at least as close as possible, match the Warhammer
40k domain, and thus possess little or no assumptions and limitations.

2.3 Explanation-Aware Computing

As mentioned before, a system that can reason about its actions is an intelli-
gent system. As artificial intelligence deals with trying to mimic intelligence,
this is a good starting point for designing artificial intelligence. In order to
make a system that can reason about its actions, we need to make a system
that can explain why it has done something.

2.3.1 Fundamentals of Explanation

Spieker (1991), presents the basic categories of useful kinds of explanations
and what are the good qualities of an explanation.

There are five basic categories of explanations:

Conceptual explanations, which describe the unknown concepts.

Why explanations, which provide justifications.

How explanations, which provide deeper explanations of how something
works.

e Purpose explanations, which provide the explanation for a goal.

Cognitive explanations, which explain or predict the behavior of intel-
ligent systems.

Of these, three are important for us: Conceptual, Why and How explana-
tions. The purpose of the system is generally clear: to provide an army that
can win against the opposing army. Therefore, providing an explanation is
not necessary. Cognitive explanations will not be helpful, as we do not need
to predict the behaviour of our system.

Furthermore, there are five good qualities of explanation, as presented by
Roth-Berghofer (2004):

e Fidelity - the explanation must be a representation of what the system
does.

e Understandability - the explanation must be understandable.
e Sufficiency - the system must know what it is talking about.

e Low construction overhead - explanation must not impose a load on
the system, or that load must be light.

e Efficiency - the system must not suffer in performance due to explana-
tions

These five categories must be considered during the design and the implemen-
tation of the system in order to reach good quality explanations. However,
the last two qualities no longer present a limitation or problem at the time
of writing of this project.

The paper presented by Roth-Berghofer, Fxplanations and Case-Based Rea-
soning: Foundational Issues, was written in 2004. The first commercial
dual-core system was released in April/May 2005, by the name of Intel Pen-
tium Extreme Edition 840*. Since then we have passed through ten years
of development, and quad-core processors are commonplace for commercial
use. An explanation can then be executed on a separate core of a system,
even on a home desktop, and thus efficiency and low construction overhead
are no longer issues that we must be concerned about.

2.3.2 Explanation in CBR Systems

Explanations in CBR have the advantage that the case is always proposed as
a solution. This means that we already have a part of the explanation pre-
pare, namely the case itself. We then need to fill in the gap with justification,
or the why explanation, and the how explanations. Richter (2003) defines
four knowledge containers that can help us with acquiring these explanations.
The knowledge containers are presented on Figure 2.3.

‘https://en.wikipedia.org/wiki/Pentium_D

https://en.wikipedia.org/wiki/Pentium_D

. Case base -~
/ > -~ k
f‘\-l_.ﬁ'.\i :I

L]
I'.. Similarity * Adaptation
.‘\ Measures knowledge «

Figure 2.3: Knowledge Containers, adapted from (Richter, 2003)

The four knowledge containers do not only contain information or a defini-
tion, but rather a set of knowledge with a purpose. The vocabulary container
contains the definition of the system. It contains the other four knowledge
containers, as it defines them. This is the conceptual explanation of our do-
main, or the what explanation of our domain. Each of the remaining three
knowledge containers interacts with one another, as it would be expected in
the CBR system. The similarity measures container contains the similarity
methods, and can help us justify why a case has been selected, as well as how
it has been selected. Similarly, the rules in the adaption container can help
us understand the system, and why it has adapted an old solution the way it
has. Finally, the case base container provides context for the explanations.
These knowledge containers provide us with a basis for the explanation in
our CBR system.

Beyond all of this, the users of the system are the most determining factor
when approaching explanation. For novice users, a justification of something
is often enough. Saying that a Space Marine has good shooting accuracy is
usually enough to justify that the Space Marine should be a unit of choice
in the upcoming long range mission. However, for more expert users this
will simply be an iteration of what they know. Instead, the system should
present an option, similar to a tell me more option, where the system can
present both a justification, and if a user is interested, go into detail about

how and why the system has selected this unit. The same principle is then
applied to squads, armies and equipment as well. One of the purposes of
explanations will be to teach newer users, and therefore, mixing low and
high level explanations is a good way to approach this, and at the same time
giving the user the ability to choose when to be presented with the low level
explanation gives the user control and lets them learn at their own pace.

2.4 Ever-Changing Environment

There are two final aspects to discuss within the system itself: the possibility
of a changing environment and the metagame.

The first edition of Warhammer 40k was released in 1987 under the name
Warhammer 40k Rogue Trader. Since then, another six editions have been
released every four to five years on average. With every new edition, new
rules, units and scenarios were released. With every new edition the game has
changed and the best armies may no longer be the best armies, and the worst
armies may become a lot better. This is the ever changing environment. For
our system, the consistent changes in the domain also mean, like for most
humans, the necessity to relearn concepts.

To make our system capable of coping with these changes we need to be
able to update the system when changes occur. This increases the flexibility
and the longevity of the system. However, it is important to note that the
updates have to be very flexible. In many scenarios, players prefer playing
older variants of games, especially if the newer variant is not completely
balanced. Furthermore, updates to the game can bring big changes in the
rules and make for a completely different game. Therefore, a future topic
of work for our system would be the addition of legacy support, which will
differentiate newer editions and updates from the older ones.

Richter discusses these problems and provides solutions within maintenance
policies (Richter and Weber 2013). There are three important aspects to
maintaining a knowledge-based system: Corrections, Improvement of Perfor-
mance and Adaption of changed environments and changed knowledge. All
three aspects are equally important to our system.

2.4.1 Maintenance of the Knowledge-Base

At the high level of maintenance we have the changes that appear in the
system and the techniques that show us when and how to cope with these
changes.

There are two basic categories in maintenance, as described by Richter and
Weber: Corrective actions, changes that require an immediate revision, and
adaptive actions, changes that slowly accumulate. Corrective actions are to
be applied to the system when we need an immediate change, while adaptive
actions will consistently be applied to the system, to cope with the metagame,
as described in Subsection 2.4.2.

An update to the game system is an immediate change. Therefore, corrective
actions need to be applied. These changes are visible and they are on demand.
Visible changes means that the changes are a direct result of observations and
messages, while on demand changes means that they are a direct observation.
This is in contrast to changes that are done to change the metagame, which
are invisible and proactive. Proactive reaction is a reaction made before an
observation or demand is made. Invisible changes are small changes to the
context. Both of these systems are presented in the Figure 2.4. They are
of vital importance for maintaining the longevity and the accuracy of the
system. The utility problem was discussed in Subsection 2.2.4, and it entails
the deletion of non-pivotal cases. Like the update, it is a corrective action,
visible and on demand maintenance policy.

] Maintenance Problem
Maintenance

Maintenance Problemnt
4 ¥ ¥

pdate I_Mility Metagame

Maintenance Maintenance
Classification Classification

¥

Carrective Action ¢ Adaptive Action
h 4 h 4
Yizible & On

Demand Invisible & Proactive

Figure 2.4: Maintenance Policies

The final part of the maintenance is the timing of the maintenance, or when
to perform the maintenance. In the case of the update to the system, the
maintenance is performed ad-hoc, meaning there is no systematic mainte-
nance. We simply perform it whenever the update to the system happens.
For the metagame, the maintenance can either be applied periodically or per
event, such as a new addition to the case base. Periodic maintenance would
put less of a strain on the system, and would also be able to maintenance
when necessary. On the other hand, extensive experience and knowledge is
required for setting the interval of maintenance. Event-based maintenance is
more expensive, but does not require previous experience, and it may prove
safer than periodic maintenance.

2.4.2 Metagaming

Even though the editions may change every four to five years, the game con-
tinues to change even between editions. Players keep creating and testing
new army combinations, in the hopes of bettering themselves and their un-
derstanding of the game, but most of all their chances of winning. The notion
of best strategy is called meta. Metagaming or the metagame in its essence
is predicting what the opponent will do and then making a counter-play or
counter-move towards the opponent. In a broad sense, the metagame is not a
part of the game itself, but rather the tactics and strategies thought outside
of the game, within the scope of the rules of course, and then applied to
the game. Metagaming works differently depending on the game system or
domain we apply it to.

To illustrate this, let us take a very simple example of tic-tac-toe. Tic-tac-
toe® is a simple game that is played on a 3x3 square board, where the first
player places an X in a square, the second places an O and then they alternate
until one player has three in a row, be it diagonal, horizontal or vertical, or
the game is tied. A typical game is shown in Figure 2.5.

X 0 X
x 0
O

Figure 2.5: Tic-tac-toe, in this case the X player has won the game

Tic-tac-toe is very simple, however. In fact there is a perfect answer to tic-
tac-toe and it is small enough to be placed on one page®. When a game is
complete, it is no longer a problem set. Since we know the perfect outcome
for every single move that can be made in the game we do not get any notion
of metagame. Every strategy is already known, and we need only follow it.

Shttps://en.wikipedia.org/wiki/Tic-tac-toe
Shttps://xked.com/832/

We define a complete game as a game where if a player plays the best strategy,
they will always win or draw, unless the game is such that a win or a draw
is impossible. As we have said, the meta is a notion of best strategy, and
in this case the meta is just to play the best move. However, there is no
metagame, as all of the moves are already known. Therefore, we can state
that any game that is complete has a meta, but loses the metagame.

Before we move on to the discussion of more complex games, we need to
first define two important subtypes of games. Perfect-information games,
or games where you can see your opponents moves, and partial-information
games, where you can not see your opponents moves. In perfect-information
games, like tic-tac-toe you can see what your opponent does, and thus you
can react accordingly. Furthermore, you have the full knowledge of all of the
opponents resources, for example chess pieces in chess. In partial-information
games you can not see the opponents "hand”, though you may be able to see
what the opponent does. In these games you do not have the full knowledge
of the opponents resources. This is fairly typical of card games, like poker or
blackjack.

The difference is quite powerful, and leads to different strategies. In perfect-
information games the metagame often focuses on making the best move
based on the opponents move. Although by no means easy, these types of
games can be solved given enough computing power and time, by brute force.
Partial-information games can be more difficult to solve, and most of the
times involve chance, and the metagame therefore revolves around increasing
the statistical probability of winning. Players have incomplete knowledge of
the game; either they can not see a players hand (like in poker), or they can
not see the opponents moves (like in mahjong”), but can theorize about the
strategy of the opponent.

Now we move onto the discussion of more complex games. As mentioned
before, perfect-information games can be solved, eliminating the need for
having a metagame. Once a game is solved, there is little point in playing
the game, assuming the players know the solution. For complex games like
chess a solution has still not been and may never be completed. Therefore,
one can still metagame about strategies during the game. Predicting what the
opponent will do next, either one or many turns ahead, is metagaming, as it
is playing the game outside of the actual board. In most perfect-information
games this is the only type of metagaming as the game is symmetrical and
balanced, save for the first opening move.

Thttps://en.wikipedia.org/wiki/Mahjong

In partial-information games on the other hand, one can only theorize about
the opponents moves. Since not all knowledge is present or visible, metagam-
ing here involves predicting what the opponent has, either through experience
or through what is present on the playing field. If the game is still absolutely
balanced, as for example poker is, then one can draw statistical information
about it. With this information, a player can calculate a probability and
decide, based on experience, if the risk outweighs the cost of the play.

However, there are partial-information games that are not balanced, or
perfect-information games that are not balanced either, at least not through
the entire domain. In computer fighting games, like street fighter®, a large
part of the metagame revolves around characters that are good at beating
other characters, or in a simplified variant, around rock-paper-scissors. At
high levels of play the metagame, or predicting what the opponent picks,
usually gives a player the competitive edge. However, in many of these
games there are characters or units that are so strong, that they are the
meta. In other words, if we were to take these characters as rock, they would
still beat paper most of the time in their games. Many research hours from
video gamers go into metagaming, by making lists of character strengths. In
another popular fighting game, super smash bros (specifically for the Wii U
console), an entire list is created ranking the characters by tiers?. One could
say that the first character, or the first two-three characters on the list are
the meta and until the game changes in some way, they will be picked more
often.

Quite like in fighting games, in between the editions of Warhammer 40k there
is a meta. There is an army that outperforms most other armies'®. However,
the more complex the game becomes, the harder it is to find the true meta,
and that is most definitely the case in Warhammer 40k. Unlike in fighting
games, there are a lot more variables in Warhammer 40k, and thus the meta
can be broken by an army that can counter the best army, though the counter
itself might not be a good army. Therefore, we can state that the metagame
of Warhammer 40k is constantly moving and constantly shifting. The aim
of our system will be, to no lesser degree, to try to make a system that can
continuously adapt its solutions to keep up with the trend of the changing
metagame.

8http:/ /streetfighter.com/
9http://www.eventhubs.com/tiers/ssb4/
Whttp:/ /www.torrentoffire.com /5612 /7th-edition-three-months-in

The concept of the metagame is quite important in Warhammer 40k and in
many other games. It should not be viewed as a concept limited to games,
however. Even when there is no direct upgrade in a domain or a system,
assuming the system is not perfectly solved, the system should continuously
and proactively work to reach a better solution, and not be satisfied with
the solution it has reached. Based on the knowledge-base of the system,
the system should explore different avenues and compare the solutions with
the top solution, or against it. If the system does this, then it continuously
betters the domain that it works in. Of course, there are limitations to this,
and the system would need to be diversified so that it does not reach the
same solution multiple times, but diversification has proven to be a strong
avenue of research in CBR (Smyth and McClave 2001), and with the help
and research of users this is a possibility.

To achieve this proactive metagame capable system, maintenance policies
can be applied. While maintenance policies normally deal with maintaining
the case base itself, we can apply them to the system periodically as new
cases. What is meant by this is that the maintenance policy will periodically
create a random, legal squad, and then run the system with this squad as
the problem against what the cases present in the system.

This can then be repeated over and over again, monitored by experts, but
without intervention. The system is attempting to fight these squads against
each other, using fair dice rolls, and see which one comes victorious multiple
times. Furthermore, the system can use different units and thus from one
active use of the system to the next, the system has passively already been
thinking and learning about the domain, much like a regular player would.
This would then fulfill the final sub goal of this project.

2.5 State of the Art

In this section we will present the Structured Literature Review (SLR) pro-
tocol and the non-personal motivation for the project. Combined, the SLR
and the motivation represent the state of the art of the system.

2.5.1 Structured Literature Review Protocol

To acquire the literature necessary to study this project, we followed the
Structured Literature Review (SLR) as presented in How to do a Structured
Literature Review in computer science by Kofod-Petersen (2014).

The first two phases, the identification of the need for a review and the
commissioning of a review were not necessary, as they were already in place
at the start of writing the project. In the third step, we have specified four
research questions for the SLR:

e Research Question 1 - What solutions exist to tackle our problem? That
is, designing an explanation-aware CBR system for creating armies in
Warhammer 40k.

e Research Question 2 - How do the solutions found in research question
1 compare to each other, in terms of our vision to create this project?

e Research Question 3 - What is the strength of the evidence in support
of different solutions found in research question 17

e Research Question 4 - What is the implication for designing our system
based on these solutions?

Following these questions, we have set out to find papers on explanation-
aware computing, case-base reasoning, especially knowledge intensive case-
based reasoning, maintenance policies, and any relations to Warhammer 40k.

To find the solutions, and be able to answer the other research questions, we
have searched two distinct sets of papers. The first set was papers obtained
from the seminars attended with Anders Kofod-Petersen and Agnar Aamodt,
who are experts in the field of AI. The second set was the papers obtained
from the Internet directly, without the help of an expert.

The papers obtained from the experts were obtained during the course of
the project. The experts were trusted to make sound judgements on their
choices of papers. Furthermore, these papers were discussed by fellow peers
and the experts. This meant that most of the drawbacks of the papers were
presented, and it was a choice of whether or not to use them. The experts
helped us obtain papers that were highly relevant to our fields of study, and
these were taken as a primary source for both knowledge and the state of
the art. The list of papers can be seen in Table 2.4, which also includes one

book.

Paper Author Year

The Omnipresence of case-based reasoning in sci- | Aha 1998

ence and application

Retrieval, reuse, revision, and retention in case- | de Mantaras | 2006

based reasoning et al.

Book: Case-Based Reasoning Richter and | 2013
Weber

Explanations and Case-Based Reasoning: Founda- | Roth- 2004

tional Issues Berghofer

Explanation in Case-Based Reasoning- | Sormo et al. 2005

Perspectives and Goals

Evaluating the effectiveness of explanations for | Tintarev and | 2012

recommender systems Masthoff

Learning from explanations in recommender sys- | Cleger et al. 2014

tems

Tagsplanations: Explaining Recommendations | Vig et al. 2009

Using Tags

Table 2.4: Papers obtained from Experts

Furthermore, we include seven additional papers acquired from the papers
mentioned in Table 2.4. The seven papers are relevant to the project and
are assumed to have already undergone a structured literature review, and
hence will not be scrutinized again. They are presented in Table 2.5.

Paper Author Year

Dynamic Memory: A Theory of Reminding and | Schank 1982

Learning in Computers and People

Explanation Patterns: Understanding Mechanically | Schank 1986

and Creatively

Explanation in expert systems: A survey Moore et | 1988
al.

Similarity and Compromise McSherry | 2003

Case-based reasoning, foundational issues, method- | Aamodt 1994

ological variations, and system approaches and Plaza

Remembering to forget: A competence-preserving | Smyth and | 1995

case deletion policy for case-based reasoning systems | Keane

Similarity vs. diversity Smyth and | 2001
McClave

Table 2.5: Papers obtained from Papers in Table 2.4

For papers obtained outside of these seminars, the key groups of terms that
were looked for were: Case-Base Reasoning, Explanation Aware, Knowl-
edge Intensive, Proactive and Warhammer 40k. The search engine used was
Google Scholar. The search-terms are presented in groups in Table 2.6.

Term Group 1 Group 2 Group 3 Group 4
Term 1 | Case-based Explanation Proactive Case based
reasoning aware com- | case based | reasoning
puting reasoning Warhammer
40k
Term 2 | Knowledge Explanation | Maintenance
Intensive aware case | in case based
Case Based | based reason- | reasoning
Reasoning ing systems systems
Term 3 | Architecture Self-Updating
in Case Based case based
Reasoning reasoning

Table 2.6: Search terms sorted in Groups

After searching for these terms in Google Scholar (the first three pages were
taken as the most relevant) and Google Search Engine (The first page taken
as most relevant), 102 papers were obtained.

From these 102 papers duplicates were removed, both in relation between
different search terms, and with the papers already presented in Tables 2.4
and 2.5. Furthermore, only the most recent publication of the same study
was kept. With this, 49 papers were removed from the aforementioned 102,
and 53 were left to scrutinize.

The 53 papers were then scrutinized, and if they passed a quality check they
would be used. The papers were read abstract first, then if proved relevant
the evaluation was read. Finally, if the paper was deemed plausible a full
quality check was performed. Weight was placed on discussion, evaluation,
methods, clear research goals and explanations of the papers, and hence
most workshop papers were not considered, due to the lack of such concise
information. From the 53 papers, 15 were kept, and are presented in Table 2.8
while the inclusion and quality criteria can be found below in Table 2.7. The
inclusion and quality criteria were applied to all the papers, including those
in Tables 2.4 and 2.5.

Criteria Identification Criteria

IC1 The study in the paper or book is con-
cerned with either CBR, explanation-
aware computing, maintenance, or a com-
bination of thereof

IC 2 The study has either a good theoretical
background for IC1 terms, or good empir-
ical results for IC1 terms, or both

QC1 The aim and results are clearly presented
in the abstract and paper

QC 2 The results are discussed in the evaluation
with respects to the aim of the paper

QC 3 At the time of writing of the paper the pa-

per has presented previous work relevant
to the aim of the paper

Table 2.7: Inclusion and Quality Criteria

Paper Author Year
Towards lifetime maintenance of case base indexes for | Zhang et al. | 1998
continual case based reasoning

Categorizing case-base maintenance: Dimensions and | Leake et al. | 1998
directions

Six Steps in Case-Based Reasoning: Towards a main- | Berghofer et | 2001
tenance methodology for case-based reasoning sys- | al.

tems

Mapping Goals and Kinds of Explanations to the | Roth- 2005
Knowledge Containers of Case-Based Reasoning Sys- | Berghofer

tems

An Evaluation of the Usefulness of Case-Based Ex- | Cunningham | 2003
planations et al.

An Architecture for Knowledge Intensive CBR Sys- | Diaz-Agudo | 2000
tems et al.
Knowledge-Intensive Case-Based Reasoning and In- | Aamodt 1994
telligent Tutoring

Different roles and mutual dependencies of data, in- | Aamodt et | 1995
formation, and knowledge — An Al perspective on | al.

their integration

A case-based reasoning with the feature weights de- | Park et al. 2002
rived by analytic hierarchy process for bankruptcy

prediction

Case-based reasoning is a methodology not a technol- | Watson 1999
ogy

Knowledge-Intensive Case-Based Reasoning in | Aamodt 2004
CREEK

Explanation-driven case-based reasoning Aamodt 1994
Knowledge-Intensive Case-Based Reasoning and Sus- | Aamodt 1990
tained Learning

Case-Based Reasoning in a System Architecture for | Tidemann 2012
Intelligent Fish Farming et al.

Myrmidia The Warhammer Fantasy Battle Army | Strandbraten| 2011

Builder

Table 2.8: Papers obtained from online Search

As a final note, websites were considered as helping knowledge and are in-
cluded in the footnotes throughout the report. where relevant. These web-
sites are not used as sources or are related to the state of the art as such; these
websites are additional information that the reader may pursue should he or
she wish to do so. Unfortunately, the information presented in these websites
is unavailable offline, though it, as stated before, only plays an informative
role in the project.

2.5.2 Motivation

The creation of the system is in itself motivation. As of now, no system has
been created to tackle the Warhammer 40k domain. There has been previous
work in a similar domain, the Warhammer Fantasy domain, but the domains
are significantly different for the creation of the Warhammer 40k system to
be novel. Especially with the year 2015, where Warhammer Fantasy Battle
has been replaced with a much more simplified Warhammer: Age of Sigmar.
To illustrate this point, the Warhammer Fantasy Battle had a rulebook of
over 200 pages, whereas the Age of Sigmar has a rulebook of 4 pages.

Nonetheless, the work done in Warhammer Fantasy Battle was done by a
previous master student at NTNU, and the system relating to that is called
Myrmidia (Strandbraten 2011). No papers were found relating Warhammer
40k and case based reasoning or explanation-aware computing.

The creation of this system will enable novice users to learn Warhammer 40k
easier, veteran users to get tips and metagame analysis, and in general, it
will create a learning Al. Therefore, in just creating the system the sub goals
and the main goal are fulfilled, and if anything, the system has potential of
teaching and assisting within the Warhammer 40k domain.

However, the practical application of the problem itself far surpasses the
Warhammer 40k domain. There is a large potential of application in video
games, as previously mentioned, to assist computer players in making de-
cisions. Decisions are typically created with if/else actions, and eventually
with some basic weights and sliders, or simply hard-coded into the computer
player, so that it always plays in a similar fashion (or a few similar fashions)
without much diversity. With the application of this system to strategy
video games, we can see an emergence of strong computer players that can
make complex decisions. It may be possible to reduce or even eliminate the
(sometimes massive) bonuses that computer players often get.

Furthermore, there are practical applications in non-entertainment related
sectors as well. Industry, for one, can benefit from this kind of decision
system. A system that can, given information, produce the best way to divide
resources, can potentially save costs on material or simply assist constructors
and architects in early planning phases. In medicine as well, the system can
aid in emergencies, where doctors have to respond to a numerous amount of
patients, by classifying the importance of emergency and the capabilities of
doctors on hand.

In general any situation where a limited set of resources has to be divided in
order to tackle a complex problem, this solution can be applied to. Further-
more, the system is designed, so that those problems can change over time
at no expense of the system itself. Finally, due to explanations the system
can be used as both a helping tool and as a stand alone system, thus not
necessarily taking over jobs while still being capable of aiding and improving
work.

According to Schank (1986) explanations need to be both inclusive and in-
structive. Many explanation aware systems focus on building trust and confi-
dence for the user, as they are often used in recommender systems. These ex-
planations are either used to help the user build trust in the system, through
various means (Tintarev and Masthoff 2012, Vig et al. 2009) or used in
attempting to improve such systems (Cleger et al. 2014).

Instructive explanations can also be interpreted as teaching. The explana-
tions are fairly high level in these recommender systems. In the Warhammer
40k domain, I will attempt to create an explanation-aware system that can
not only build confidence in the user, but also instruct them and teach them
about the domain itself. This is a core concept of explanations, and should
not be overlooked, especially in a domain and system that can facilitate such
explanations (Sormo et al. 2005).

Maintenance is another point of motivation for this project. Ramon Lopez de
Mantaras et al. (2006) points to a number of different uses for maintenance
that have been developed over time. All of them have to do with either
case deletion/case base maintenance, case inconsistencies or case acquisition.
While some of these approaches will be used to maintain the case base in this
system as well (Section 2.4) an important use of motivation is simulation.

Unlike the case acquisition solutions, this maintenance process actively cre-
ates new smaller subsets of problems following legal rules for creating squads.
This in turn consistently queries the system and the system is able to learn
and think for itself. Naturally, as with all exploratory work, this process
needs to be supervised by an expert or a team of experts.

If successful, this system could be further expanded to create full simulations,
and we will potentially have a system that can teach itself, following a set
of rules and doing so without interference, or in other words, teaching itself
proactively. The focus in this project would be to evolve the metagame with
this particular technique.

Finally, when it comes to the core knowledge-intensive CBR system, the sys-
tem takes inspiration from Creek (Aamodt 2004), with further implications
that the techniques and methods mentioned above will be integrated into
the system. Therefore, while the basic CBR system is not re-invented, the
additions will significantly change how it operates.

Chapter 3

Architecture

Software architecture is the highest level representation of a specific software
or system, that describes how the software functions without going into any
design details. Furthermore, the relations in between the different system
substructures and structures are captured, as well as the functional and non-
functional requirements of the system.

There are two main goals with the architecture of a system. The first is to
give an overview of the system as a whole, so that the reader may read this
chapter without going into the design details, or read specific design details
that interest them. The second goal is to create a template that can then be
reused in future work.

Section 3.1 will present the stakeholders of the system and their roles. Sec-
tion 3.2 will present the functional and non-functional requirements of the
system. Section 3.3 will present the architectural template and the instance
of the class of problems.

39

3.1 Stakeholders

The stakeholders of the system are people that have some sort of interaction
with the system, be it direct interaction with the system (as is the case
with a user), or a complete interaction and creation of the system (as is the
case with the developer of the system). Table 3.1 shows the most important
stakeholders for this project and their roles.

Stakeholder | Role

End User | The end user is any user who uses the front
end of the system, in other words the user
that uses the system to help him or her create
an army

Developer | The developer is the author of this project
and the creator of the system

Supervisor | The supervisor oversees the creation of the
project and system and provides guidance

Games Is the owner of the Warhammer 40k domain
Workshop

Table 3.1: Stakeholders

Stakeholders are an important part of the system, as they can directly in-
fluence how a system is going to be designed. Therefore, it is important to
know the stakeholders before beginning the design phase of the system.

The end user is a person who uses the system to either learn or get help
with building an army. They determine largely how the explanations of the
system are handled, and which audience to target as described in Section 2.3.

The developer is the author of the project. The success of the project in
its entirety is important to the developer, both as their performance on the
project (the grade) as well as the validity of the system for possible future
research.

The supervisor oversees the construction of the project in all forms and of-
fers guidance when necessary. As a scientist in computer science, artificial
intelligence and especially explanation-aware computing, it is important to
the supervisor that this project provides results.

Games Workshop is the owner of the Warhammer 40k domain. All of the
domain belongs to them, and without their approval the project can only be
published with regards to the improvement of artificial intelligence and sci-
ences, and in no way used for any commercial or other distributive purposes.

3.2 Requirements

Functional requirements of a system indicate the tasks that the system needs
to perform. In other words, they are the requirements for our system in order
for it to function according to our needs. Non-functional requirements are
qualities that do not directly influence the behaviour of the system, but are
qualities that the system should possess in order for it to perform well. Non-
functional requirements can differ largely from system to system, and are
quite dependant on the end user.

Both the functional and non-functional requirements have an important sec-
ondary purpose. Once the design and the implementation stage of a system
is finished, they are used to create tests and the test plan. If the tests are
created with the purpose of testing each functional and non-functional re-
quirement, then we know that once the testing is complete the system will
work the way it was intended to work as detailed in the requirements.

3.2.1 Functional Requirements

A goal-driven approach was used to gather functional requirements of the
system. This means that the goals and sub-goals presented in Section 1.2
were used to create the functional requirements. This was then further ex-
panded on by the theory as presented in Chapter 2, and the requirements
that were finally created can be seen in the Table 3.2.

Number Name Description
1.1 Retrieve The system needs to be able to retrieve the
best-match case from the case base
1.2 Reuse The system needs to be able to present this
solution to the user, and adapt it to the new
problem
1.3 Revise The system needs to be able to revise the
solution if it did not prove useful
1.4 Retain The system needs to only retain a solution
that passes a certain quality metric
1.5 General The system needs to be able to store and
Knowledge use general knowledge in conjunction with
the cases to match the complexity of the
domain
2.1 Explanation: | The system needs to be able to explain and
Basics justify its choices
2.2 Explanation: | The system should present the explanation
Presentation | based on the user knowledge of the domain
and the user need of the explanation
3.1 Maintenance: | The system needs to have maintenance poli-
Utility cies to avoid the utility problem.
3.2 Maintenance: | The system needs to be able to maintain it-
Consistency self when given updates to the Warhammer
40k domain
3.3 Maintenance: | The system needs to be able to utilize main-
Metagame tenance policies to consistently improve its
case base.

Table 3.2: Functional Requirements

Table 3.2 shows the number, name and description of each functional require-
ment. The number is used as reference for test creation and test planning.
The name is the reference to the functional requirement, and it is a short
way of describing it. The description of the functional requirement is the ac-
tual requirement itself. Note that the functional requirements are split into
three distinct categories, as indicated by the numbering (1.x, 2.x and 3.x).
This represents the relation of the functional requirements to each of the sub
goals, presented in Section 1.2.

3.2.2 Non-Functional Requirements

As mentioned, non-functional requirements, sometimes called quality at-
tributes, can differ largely from system to system. However, representing
non-functional requirements is still a difficult task, and their classification is
a subject of research, but it is agreed that they are important (Glinz 2007).
The task of classifying non-functional requirements is beyond the scope of
this project, but as they are necessary the main six requirements that are
featured in almost any software-related project will be presented here as well.

Name Description

Reliability The system will function within a prescribed interval of
time

Usability The ease of use of the system by the user

Security The security of the system, or the unavailability to
change the system from any unauthorized source

Availability The readiness to use a system at any given random time

Portability The possibility of the system working in several different
environments, or platforms

Maintainability | The ease of which the system can be maintained

Table 3.3: Non-Functional Requirements

Table 3.3 shows the six most important non-functional requirements. From
it, we can discuss the non-functional requirements for this particular system.

Reliability is an important factor in our system. It needs to continue working
through a Warhammer 40k game at the very least, which can take a few
hours. Furthermore, if we are to follow our own maintenance policies, as
presented in Section 2.4, we need the system to run for at least a few days,
and we need it not to crash at any point of time, especially while doing
deletion or addition to the case base. From this, we can say that the system
should have a mean average error time of one week or longer.

Usability is largely covered by the explanations functional requirements. In
essence, the explanations have to be good enough to enable both novice and
expert users to use and learn from the system. This is a fuzzy requirement
to consider, and usability must be a subject of scrutinization from the users
and the developer in order to fulfill it. Furthermore, we need to make sure
that the user can use the system easily, and that the user does not need to
learn pages of instructions in order to use the system.

Security is very important to the system. Under no circumstance should the
case base, the system itself, or any of its parts, be prone to editing or changing
from any source but the developer. This means that the actual system end
should be protected, and that the source code and the functionality should
reflect this with password protection and good practice.

The system needs to be available at the time the user desires to use it. In
other words, the system needs to function when a user wants it to function,
so the availability has to be as high as possible (close to 100%).

The system need not be portable to other environments or platforms, and
there is no need for such actions in this stage of the project.

While maintenance is largely covered by functional requirements, the ease
of maintenance is represented in maintainability. As it is a large part of
the project, maintainability is very important to the system, and the sys-
tem needs to be near-automatic when it comes to maintenance, mostly with
observations and small changes from the developing team.

3.3 Architectural Template

Architectural templates are often used in software engineering so that they
may be reused and that it may be easy to adopt the system to other problems.
However, in complex or newer systems, like this project, it is very difficult
to find a completely matching architectural pattern. Rather than force the
system into a pattern, we will create a pattern that other systems can follow
and base themselves on. This is represented in Figure 3.1. The arrows in the
figure show which parts of the system interact with each other.

Core Al g— %! Explanation Core fg—

AlgorithmiMethod
A A
N
Auxiliary Al
Application 1
N / Auxiliary Explanation
i ‘-* Low Level Model a Application 1
Alxiliary Al
Application 2
A vy
Yy
Alxiliary Al Auxiliary Explanation
Application n-1 < Low Level Model b Application n
A vy
Alxiliary Al
Application n Low Level Model x Low Level Model z

Low Level Maodel n

Low Level Model 2

Low Level Maodel 1

Figure 3.1: Architectural Representation of the Class of Systems

In the figure we can see the most basic layout of the system, loosely adapted
from the techniques discussed Case-Based Reasoning in a System Architec-
ture for Intelligent Fish Farming (Tidemann et al. 2011).

At the very top we have the Core AT Algorithm/Method and the Explanation
Core. These two are mandatory for any explanation-aware system. The Core
AT Algorithm/Method defines any method or algorithm that the engineer
would like to implement. It exchanges information with the Explanation
Core, which is the part of the system responsible for explanations. Note that
the explanation core could potentially be integrated in the Core Al algorithm,
but since that is not the current practice, it is separated. The explanation
core has access to, in general, what the AI method or algorithm provides.

Next we have Auxiliary applications. These applications do not necessarily
have to be full applications or programs. They can be simple or complex tools
that aid the Core Al and Explanation systems to perform better. Again,
some of these systems can be integrated with the core, but that will depend
on the cores themselves. It is up to the developer to choose how many (or if
any) auxiliary applications he or she may want to add to the cores.

Finally we have the low-level models, which can both interact with the ap-
plications or the cores. These represent models and perhaps databases for
auxiliary applications, or even some domain knowledge. Much like the aux-
iliery applications, the developer has the choice to add the models to the
core.

Below, in Figure 3.2, the instance of our particular system is shown, based
on the architectural representation shown in Figure 3.1.

CBR Methaod lg— % Explanation System

A

Maintenance
Puolicies for Utility

p oy

Maintenance
Puaolicies for Updates

p vy

Maintenance

General

Puolicies for o Knowledge/Rules for
Metagaming Army Building
Case Base General Knowledge

Figure 3.2: Architectural Representation of the Project

Figure 3.2 represents the architecture of this project. The CBR Method is
the Core AI Method, and the Explanation System draws information from
the knowledge containers, as described in Section 2.3.

The three auxiliary applications are the maintenance policies for utility, up-
dates and metagaming and metagame improvement. The CBR System has
the general knowledge and case base as its own models, and the maintenance
policies for metagaming has its own general knowledge and rules for army
building.

Chapter 4

Design

In this chapter we will discuss the system design in detail. Each component
that was introduced in Section 3.3 will be discussed individually, as well as
how it combines with the rest of the system. At the end of this section a
simple prototype of the system in the form of a discussion will be presented,
to give the reader a general idea of how the system should look like and
behave when the system is finished.

4.1 Case Based Reasoning

The CBR part of the system is divided into case representation, the CBR
cycle and the general knowledge, similarly to how it is presented in chapter
2. The CBR part is designed to be stand alone. This means that it does not
rely on any other parts of the system to function, and it should be able to
perform its function as indicated in the sub-goal 1, in Section 1.2.

48

4.1.1 Case Representation and Case Base

The Case Representation needs to be clearly defined and designed before
we move onto the four steps of CBR. In Subsection 2.2.1 we have identified
four representations that are crucial for the system: the unit object, the
equipment object, the squad object and the army class.

The unit object is any one unit in Warhammer 40k. A unit will be represented
as an object, with various attributes attached to it.

Unit Object

Weapon Skill
Ballistics Skill
Strength
Toughness
Wounds
Initiative
Aftacks
Leadership
Armour Save
LInit Type
Cost
Race/Faction
Equipment
Special Rules
Warlord Traits

Figure 4.1: The Unit Object

Figure 4.1 represents the unit object. The first nine attributes, weapon skill
to armour save, were discussed in Section 2.1 and will not be repeated. They
are all integer values. The tenth attribute, unit type, was also discussed.
However, it is important to mention that some unit types get special rules
that modify some attributes of a unit. In the case of unit types the modifica-
tions are automatically applied to the attributes of the unit. The unit type
attribute is a string.

Furthermore, we have the cost of a unit, which represents the cost of the unit
in points, which is an integer value. Then the Race/Faction attribute, which
represents the race or faction that the unit belongs to. This is represented
as a string value. Then the Equipment, which is another object entirely. A
unit can possess several pieces of equipment, so it is vital that this attribute
of a unit is represented as an array of equipment objects.

Finally the two last attributes of a unit object are the Special Rules and
Warlord Traits. Both of these vary substantially from unit to unit, and the
majority of the units do not possess any Warlord Traits', while possessing
one or more Special Rules. As such these attributes are presented with an
array of strings to designate the Special Rules and Warlord Traits, and these
are contained within the general domain knowledge of the CBR system.

The Equipment object is represented below, in Figure 4.2

Equipment Object

Range
Strength
Armour Piercing
Type

Cost

Figure 4.2: The Equipment Object

The range of a piece of equipment is represented in inches, and is an integer
number. It can be represented as a - in the rulebooks, which just means that
the equipment has no range, and therefore can be represented with a 0 in the
object representation. The strength of the weapon is the strength with which
it attacks. The strength can range from 1 to 10, however, a weapon can also
use the users strength, or do some other modifications, such as multiply the
strength by 2. Therefore, strength must be represented as a string or as a
combination of integers and strings.

The armour piercing attribute is an indication of how good the weapon is at
penetrating through armor. Like armour save in the unit object, the lower
the number the better it is. The type of the weapon is a similar attribute to
the special rules of the unit, combined with the unit type. It is represented
as an array of strings, since a weapon can have multiple types. The weapon
type rules are contained within the general domain knowledge. Finally the
cost is represented as a integer, much like the cost is for the unit object.

The squad object is a collection of unit objects. As previously mentioned,
some units may be grouped into squads, either because they are too weak
individually, because of lore reasons, or because they simply perform better
as a squad. A squad object therefore, just inherits an array of unit objects.

!Typically only the units with the unit type that equals character possess Warlord
Traits.

A squad object also has a cost, which is inclusive of all the units. In other
words, the squad costs as much as the unit objects in it cost together, and
is represented as an integer. Some units do not have an individual cost, but
must come in a squad. Due to this the squad cost superceedes the individual
unit costs when doing any calculations. A squad also has special rules, much
like a unit object does.

Squads can also have options. These options range from adding more units,
to adding or changing equipment of those units. Knowing these options is
crucial for the system as they are used in case adaption in the reuse stage of
the CBR cycle. This is represented as a string of arrays, of which the rules
are again contained in the general domain knowledge.

Finally squads have a rating. This is something that is not normally present
in the Warhammer 40k domain, but is included in this system. The rating
is the notion of how well a squad performs. The ratings were discussed in
Section 2.4 and will be used to denote the performance of a squad?. The
squad object can be seen in Figure 4.3. A squad can only be one unit, in
which case the cost and special rules are inherited from the unit object, and
the options are none, since the squad inherently does not exist in Warhammer
40k, but it is an easier representation of a single unit in the system.

Squad Object

LInits

Cost

Special Rules
Cptions
Rating

Figure 4.3: The Squad Object

The army class is a collection of squads with a rating and a cost. Much like
the cost of the squad, the army cost attribute is inclusive of all the squads
inside the army. The rating is again, a representation of how well the squad
does in the game. The rating is only present in squads and armies, and this
is primarily due to the fact that units and equipment will not be retrieved
per object basis, but rather as a part of squads and armies. In the case of
one unit squads, the unit is usually so powerful that it can match squads
in power, and therefore does not deteriorate the system. The army class is
represented in Figure 4.4.

2More information on the rating can be found in Apendix C

Army Class

Squads
Cost
Rating

Figure 4.4: The Army Class

The case base will contain all of these objects, but the retrieval part will only
focus on retrieving armies. The reuse and revision parts will focus on using
the squad, unit and equipment objects to adapt and revise cases accordingly.

The case base will initially be filled with two or three armies, at least twelve
or more squads, and all of the units and equipment for the Space Marines
faction. This should provide a good learning simulation, as most of the play-
ers that start playing Warhammer 40k pick one race and usually a previously
constructed army described in the rule books. Then, this case base will be
expanded on within the life cycle of the CBR system, by the addition of new
units and equipment from other races/factions, new squads and armies, and
their respective ratings.

4.1.2 Retrieval

Retrieving the cases from the case base will be a two step process, as men-
tioned in Subsection 2.2.2.

The first step to retrieval will use a very simple k-NN algorithm. The cases
retrieved will be the armies with the highest rating that match the required
cost. Nothing else is retrieved from the army class. The rating will have a
maximum value, represented by 1 for similarity, and a minimum value, rep-
resented by 0 for similarity. For the cost, same or lower costs are acceptable,
with similarity declining linearly, but rapidly, for lower costs, and similarity
nullified for higher costs, as it would be an illegal army.

This means that the first step of retrieval will retrieve the k number of armies
with the highest rating and the required cost as indicated by the user.

This can, and will, be changed by the compromise driven retrieval. As men-
tioned in McSherrys Similarity and Compromise (2003), a most similar case
need not be the best case. In our system this also holds true. While the top
k rated armies may be good armies, if a player wishes to play with another
race or army, the option should be available to them.

Therefore, the retrieval is modified to include compromise based on the race
or faction the player wishes to play. If the player has no particular wishes,
the k armies are returned without any change. If the player, however, desires
a specific race or faction, the system retrieves the armies and then checks
the squads attribute, and subsequently the unit object, to see which race the
army is consistent of. It is important to note that the armies may consist
of multiple races or factions, so each squad needs to be checked, and the
compromise system has to ask the player if they are in agreement with playing
with those multiple races or factions. The armies that have the same race
or faction have a similarity index of 1, where as the others have 0. Then a
k set of those armies is retrieved, with same parameters as before, regarding
the costs and ratings.

Once these armies are retrieved we will have a much smaller subset of armies,
or cases, to work with. Based on performance the subset number, or k, will
be adjusted. The bigger the k the better the likelihood of finding more similar
armies to our query, as the best armies do not necessarily have to be able to
beat, and usually are not able to beat, every army. The subset of armies will
then undergo a structural similarity search by the use of a structure-mapping
engine.

The structure-mapping engine is a robust algorithm that uses both the gen-
eral domain knowledge and the army classes to produce the best answer. It
compares the ratings of the individual squads on both teams and their main
purpose, then looks through the armies to see which army would be best
suited to combat the problem army. The rating of an army is an influential
factor in this, but not the only deciding factor. The statistics and capabilities
of the units in either army, and the composition of an army is also vital to
finding an army that has the best chance of defeating the enemy army. In
the case that the retrieval can not find an army that has an increased chance
against the problem army, it will simply retrieve the best rated army.

4.1.3 Reuse and Revise

We have mentioned in Subsection 2.2.3 that reusing a case will almost always
lead to adaption in Warhammer 40k. This is usually true for humans, as the
task of finding comparisons is a lot easier for us, than it is for the Al (de
Mantaras et al. 2006). From a design perspective this kind of adaption would
definitively be difficult to create, as we would never have an army that is the
same, and thus retention would be useless. Alternatively retention can store
everything we adapt, but then we reach the utility problem.

Another point to consider when designing the adaption is that Warhammer
40k is still a chance based game. While there is a large amount of strategy
involved in the game, ultimately everything is decided by the dice rolls. The
strategy creates the best statistical advantage for the player.

With these two points in mind, we can say that adaption is not necessary all
the time. To represent this, the reuse step will only adapt cases that pass
a certain threshold. The threshold is acquired from the retrieval step. If
the retrieved army is a good match for the problem army, we will reuse the
army as it is without adaption. If the retrieved army is not a good match,
then we will perform adaption. If we assume that retrieval is simplified to
a similarity index between 0 and 1 a good match is any army that has a
similarity of over 0.6. The value is derived from analyzing the metagame
statistics. The worst army in the current edition of Warhammer 40k has a
40% chance to win. That means that if we determine our army has a 60%
chance or more of winning by the nature of similarity, then we will not adapt
this solution. This is a variable that is subject to change, both from the
metagaming perspective, but also from a design point.

Once we decide adaption should take place, the adaption method is in most
cases going to be a simple substitution, with one squad in the army taking
place of another, or a unit exchanging equipment. The adaption is done by
targeting the weakest part of the army, by analyzing squads that matched
the worst against the problem army. Then these squads are exchanged with
others that are known to perform better, by comparing the special rules,
options and the rating attributes of a squad, as well as general knowledge.

Transformation of squads is also a possibility, where the options attribute of
a squad and the general domain is used to adapt the squad to the problem.
This is likely to get done closer to the life cycle of the system, and as we
create more and more squads, we will create more and more knowledge in
the system, and thus require less transformation adaptions, which is also the
more expensive adaption in the system.

It is important to note that at every step of the adaption process the system
checks if the army is legal and if it is within the rules of the general domain
knowledge, based on what kind of battle is played. Unbound battles need
to be checked for points, where as battle forged armies need to be checked
for the legality of the divisions. If the adaption is not correct, the adaption
proposes another solution. This is done until a legal army is created.

After playing a game of Warhammer 40k with the recommended army from
the previous two steps of the CBR cycle, the data about the performance
is entered back into the system. Each squads performance is entered in the
system, and thus we need to keep track of each squads performance during the
game. The victory or defeat of the armies is also entered into the system.
The chance, or dice rolls, are assumed to be fair and thus we ignore that
factor. This is done for both the problem and the solution army, as we want
our system to be able to learn about different armies from the games.

Once each squad has their performance entered, the system calculates the
ratings of each squad. The ratings are calculated by using the formula:

ValueO f DamageDone
SquadV alue

SquadRating =

Once all of the performances are calculated, the revision looks at the lower
half of the ratings, that is at the SquadRating that is less than 1. If the
squad rating is less than 0.5, the squad is replaced with another, similar
purpose squad. Squads that have not participated in battle for any reason
are considered to have a rating of 1. This calculation is performed for all of
the squads in both of the armies.

4.1.4 Retain

Once all of the performances are entered and the army revised, the system
adjusts the ratings for all the squads that have existed in the system. Ratings
are increased for the squads that have a SquadRating greater than 1, while
ratings are reduced for squads with SquadRating less than 1. SquadRating
of 1 does not change the ratings of squads.

The armies and squads, alongside their rating attributes, are then retained
in the system. For the armies, both armies are retained in the system, and if
the army has been directly reused its rating attribute is changed. This helps
with the retrieval steps, as well as with further reuse and revision steps. If
the squads did not previously exist in the system, the squads are retained
in the system with the initial value rating attributes. Squads of the solution
army that did not exist in the system are only retained if their performance
is greater than or equal to 1. New squads in the problem army are always
retained, even if they had performed poorly, as they are a part of the retained
army.

4.1.5 General Knowledge

General knowledge has been mentioned several times through the design
phase already, and it is established that the general knowledge is necessary
to simulate a complex environment like Warhammer 40k.

Here is a short example to illustrate this point. Many Space Marine units
have an ability called And They Shall Know No Fear. This ability falls under
the special rules of the unit object. The ability makes it so that this unit
automatically passes fear and regroup checks in the game. This means that, if
we are facing another army that can create fear, the particular units have the
advantage, as they do not need to take a chance on this roll, but automatically
succeed it. There are around sixty of these rules just for units. If we take into
consideration that there are also rules about equipment, options for squad
creation, missions and terrain, it should be clear that some sort of general
domain knowledge is necessary. The general domain knowledge is possible
to implement as it is still finite, and it does not change often, only when the
system is updated. Table 4.1 shows the uses of general domain knowledge in
our system.

Knowledge of Description

Rules The rules of Warhammer 40k, including the
rules for constructing armies

Special Abilities Special abilities and rules of all units and
equipment

Options Extra options provided to squads for chang-
ing them

Missions Mission objectives and victory conditions for
missions

Terrain Terrain uses, types and heuristics for terrain
advantage

Strategy Heuristics gathered from experts which ad-
vise on general strategy for Warhammer 40k
army creation

Table 4.1: General Domain Knowledge Uses

The rules are all of the rules for Warhammer 40k that are important to us.
This includes most of the rules for army creation, such as alliance rules for
factions/races, battle forged and unbound armies, and the detachment rules,
amongst others. This domain knowledge is mostly used in the retrieve and
reuse steps, but it is also sometimes used in the revise step.

The special abilities rules are used in the retrieval and reuse steps, and they
contain rules for the abilities that the units possess. If used properly, abilities
can present a great advantage for an army. The options rules are used in
a similar fashion, and in the similar stages of the CBR cycle. A unit with
options is more diverse, and can be more adapted to different situations. It
is necessary to know what options a squad provides in order to utilize it fully.

The missions knowledge contains knowledge of victory points and objectives.
This is used, again, mostly in retrieve and reuse steps. Sometimes a weaker
army can be victorious by focusing on the objectives, rather than the combat
and elimination of the enemy army. The terrain knowledge holds knowledge
of what terrain can do, and how the terrain will benefit or hinder a specific
army. It is also used in the first two steps, but as most others has some uses
in revision.

Finally, the strategy knowledge is used in the retrieval, reuse and revise steps,
and it is one of the most important factors in determining the retrieved
army. The strategy knowledge is a set of heuristics retrieved and aggregated
from experts in the Warhammer 40k domain. It contains information on
the benefits and drawbacks of specific army compositions and how to use
these benefits to gain an advantage and limit the drawbacks. It is next to
impossible to capture all of the strategy, but a good deal can be acquired
by a few simple heuristics, and can greatly aid the system in choosing the
correct army during retrieval.

A final use of general domain knowledge is to provide context and term expla-
nations for the explanations in the system. The explanations are discussed
in Section 4.3.

4.2 Maintenance Policies

The three maintenance policies that we will consider are the utility, consis-
tency and metagame maintenance. The maintenance policies are an addition
to the CBR system, and in terms of the architecture are the Auxiliary Al
applications. This means that the maintenance policies do not operate on
their own, and require the CBR system to function. The maintenance poli-
cies target both sub-goal 1, by helping the system operate, and sub-goal 3,
by proactively improving the system.

4.2.1 Utility Maintenance

The utility problem was discussed in Subsection 2.2.4. The maintenance for
the utility problem will essentially solve the problem of utility for the system.

The policy will run two timers, most likely on different cores or threads
as to not interfere with the CBR system, that will measure the retrieval
and adaption step. As the utility problem is defined as the retrieval step
becoming greater than the adaption step, we need to stop the problem before
it happens. The two timers are compared to each other after each run of the
system. Should the retrieval step be within 10% of the adaption step, or
in other words should Zetricvallimer 100016 greater than or equal to 0.9, the

i ;) AdaptionTimer
maintenance policy will be started.

The maintenance policy is performed after the retention step of the cycle
when the timers reach the threshold. The maintenance policy will then delete
army and squad cases from the case base. The cases that are deleted are the
cases with the lowest rating attribute. Furthermore, each faction or race,
will have a minimum set of armies and squads in the case base. This means
that if we have hundreds of Space Marine armies, but only a handful of Ork
armies, the low rated Space Marine armies will get deleted, even if the Ork
armies are lower rated. This is done so that the system would not forget
about armies and squads that are lower rated, but are still quite different
from one another. Armies that boast multiple races will have a count of
which race is larger by cost, and that will be considered the primary race of
the army, as far as the maintenance policy is concerned. The same principle
is applied to squads, only that many more squads are kept than armies, due
to the fact that many squads make up armies. On average, we expect to have
at least five to ten times the amount of squads than armies in the system, at
all times.

Units and equipment, being finite, are never deleted from the case base. As
they are not collections and they are much simpler objects, their deletion
would have to come from a system update, and they generally have little to
no impact on the utility problem.

4.2.2 Consistency Maintenance

In Section 2.4 we discussed the consistency, or update maintenance. Updat-
ing our system involves updating the case base and the general knowledge of
the CBR system.

One of the things that we did not discuss is the process of the update to
the Warhammer 40k system. A Warhammer 40k edition update does not
happen in one day. Rather, over the course of some time, usually a year to
two years®, each faction receives an update. This means that in the period
between the releases the game is in a mixed state of the previous, and next
edition.

3For the 7th edition, the Orks codex was released in June 2014 (ISBN 9781782533290),
whereas the Dark Angels codex was released in July 2015 (ISBN 9781782537526) with
more codex releases pending in the future.

This unfortunately, makes it hard to time a system update. We can not wait
one or two years to update the system if the new edition is being played, yet
we have to take special care of the rules and units, to make sure they are all
legal in the new systems.

Fortunately, since third edition of Warhammer 40k this has not been a prob-
lem. Considering that the third edition has been released in 1998, this trend
has been going on for over 17 years, at the time of writing. Thus it is safe to
assume that all new updates to the system can be made as they come, and
they will not interfere with the basic rules of the system. This means that
as each update is released, we can subsequently update the system to that
version.

An update to the system is performed ad-hoc and is not at all tied to the
CBR cycle. The update is created by the developer and then applied to the
system, and thus the system will have some downtime while the update is
performing.

The first part of the update is the update to the general domain knowledge.
All of the parts of the general domain knowledge are updated whenever a
new edition is released, assuming there is change. Furthermore, the strategy
in the general domain knowledge is updated every two months, regardless
of the update to the system itself, so that if there has been any change in
strategy the system will be aware of that as well.

The second part of the update is the update to the case base of the CBR
system. The case base is updated with new units and equipment whenever
the system itself is updated. As the squads and armies inherit units and
squads respectively, we do not need to update them. Since the armies and
squads fill the majority of the case base, the update itself should perform
quite quickly. However, while the squads and armies do not need to be
updated, the rating attributes tied to the specific faction or race, are reset.
This essentially means that the system does not forget about these armies
and squads, but it does forget about their ratings. This is done to prevent
the system from using high rated armies that are no longer good, or not using
lower rated armies since they were so bad. The system will then, during its
life cycle, rate these armies accordingly to their new, updated version.

As the explanation system is tied directly to the CBR system, it needs no
updates. Any updates to the CBR system automatically update the expla-
nation system as well.

4.2.3 Metagame Maintenance

Unlike the two other maintenance policies, the metagame maintenance does
not actually change the core system in any way. The maintenance policy is
not a traditional maintenance policy. Rather, it is more of a simulation that
serves as the last auxiliary application in the architecture.

The metagame maintenance is completely separated from the CBR system,
much like the update maintenance. It will only start when the user is finished
with the system, and indicates that they are finished by allowing the main-
tenance to run. This will ensure that the maintenance does not run when
the system needs to be available to the user. If the user wishes to interact
with the system the maintenance shuts down, nullifying any recent changes.

The maintenance policy includes the unit, equipment and squad objects,
much like the CBR system does. It also includes rules, special ability and
options knowledge from the general domain knowledge in its knowledge base.
Furthermore, it includes a combat simulation that actually simulates fighting
in between units, and the necessary knowledge to simulate this fighting. It
is not another CBR system, nor an Al system, but an application.

When allowed to run, the maintenance policy creates a legal army with a
cost of 100 to 150 in points. This is the approximate cost of, at most, three
or four squads, or about a tenth of a normal sized army. Two criteria are
very important in the creation of this small army. The first criteria, is that
the army is completely legal, which is why the system has the background
knowledge that it does. The second is that the army created must be created
randomly and it must not follow any specific pattern. This means that if the
maintenance policy has the knowledge to create a hundred small armies,
each army should have a one in a hundred chance of being created. This
will ensure that the system is always learning, and not iterating the same
solution over and over again.

When the army is created, the maintenance policy automatically presents
it as the new problem army in the CBR system. It connects to the CBR
system, and feeds it data, in a similar manner that the user would, without
the user interface. The CBR system responds by retrieving an army that
best matches the problem army, as described in Subsection 4.1.2. The CBR
system then uses the Reuse step, as described in Section 4.1.3 to adapt the
army, if need be, to the problem army. This adapted army is then taken as
data by the maintenance policy.

After the CBR system gives its response, it waits on the maintenance policy,
that is acting much like a user, to enter the data back after testing. The
maintenance policy now starts the combat simulation, following the phases
of combat and player turns described in its knowledge base. The simulation
has fixed parameters, no terrain and no missions. It is a simple test of how
units perform in combat. The simulation lasts until one army has won.

After the simulation is finished, the maintenance policy enters the data back
into the system in the Revise step. The maintenance policy is then finished,
as the CBR system performs the Revision and Retention of the case, ad-
justing the ratings accordingly. This entire process can be seen in 4.5. The
maintenance policy steps are represented with squares, and the CBR system
steps are represented with ellipses. The arrows in the figure represent the
work flow, which loops at the end of a cycle.

Maintenance Palicy
Initiated

Sending of Data to

! Legal Army Creation ——3m CBR System

Combat Simulation Reuse Step Retrieve Step

Revise Step Retain Step

Figure 4.5: Metagame Maintenance Policy Sequence

To simplify the combat simulation the smaller armies are used instead of
correct point armies. Furthermore, this kind of policy is highly experimental,
and it is safer to use smaller armies and increment the system slower, rather
than teach the system poorly with larger armies.

This maintenance policy does require some explanation to the user. In this
case, we must amend our architecture to state that the explanation system
will also generate explanations to what has happened in this maintenance
policy. This should be considered a special case of our architecture, and not
something that should be normally done.

4.3 Explanation

The explanations in the system will focus on explaining how the system
has derived a solution, and why it has chosen that particular solution. The
conceptual part is automatically derived from the content of the retrieved
solution, and does not need to be made explicit. Each of the four steps of
the CBR cycle will be explained by the system to the user. Each of the
steps will use the context from the knowledge containers, and also use the
general domain knowledge is included in the vocabulary container, to explain
its actions. Furthermore, the maintenance policies will all be explained to
the user as well.

The explanations in the system work as a two-stage method. The first ex-
planation that is shown is a simple explanation generated as the system
functions. This explanation is the why explanation, or the justification of
a systems actions. The explanation is usually not longer than a sentence.
For example, after retrieving the army the system will say: This army has a
rating of 2083 and has a 67% chance to win against the enemy army. This
kind of explanation fulfills all of the criteria of what a good explanation is
supposed to be, as presented in Section 2.3.1. It is a representation of what
the system does; it is understandable to a normal user; since the system drew
the explanation from the knowledge containers it knows what it is talking
about, therefore it is sufficient; the explanation is generated as the system
runs, probably on another core, and it does not deter the performance of the
system, so it is efficient and has low construction overhead.

While the explanation is a good explanation for newer users, it is not sufficient
for experts. It is also not very instructive, other than allowing the player
to learn exactly why the solution is good by playing. Therefore, the second
stage of the explanation is created. This stage is done in conjunction with the
first, and again, fulfills the criteria, though it is somewhat more demanding
performance-wise than the first explanation due to the verbalisation of the
longer explanation.

This second stage explanation is presented to the user in the form of a button
captioned tell me more. If the user clicks on the button, a longer explanation
is provided, using more terms and features. In our example of retrieval, the
system might say something like: This army is good against the enemy army,
because units have And They Shall Know No Fear, and the enemy army
has Fear as special abilities. This army is good against the enemy army,
because units have longer range and blast equipment, and the enemy army
has numbers advantage and so on. This button will be present on every stage
of the system, and the user will have to initiate the explanation, since the
length and terms may be overwhelming to a new user.

4.3.1 Explanations - CBR

The first step of the CBR cycle that is explained is the retrieval step. The
justification part of the explanation is drawn entirely from the rating. There-
fore, the similarity measures of the k-NN algorithm provide context for the
justification. For the how explanation, the system uses context from the simi-
larity mapping engine, determines the most valuable features of the retrieved
army, and explains them by simply presenting them, alongside the vocabu-
lary container which provides context for the special abilities, rules, missions
and so on. An example of the retrieval explanation was presented already.
In the case of compromise-driven retrieval, the system will explain the dif-
ference between the compromise army and the best army, if the difference
would be worse for the user.

Adaption is explained in a similar manner, using the adaption knowledge con-
tainer and the vocabulary container. A justification of the adaption merely
states why, or why not, an army was adapted. An example of the system
dialogue could be: The army had no blast equipment to fight the enemy army
with larger numbers, so blast equipment was added instead of single target
equipment. If the adaption step does not change the army, then a message
is shown explaining this. For a more in depth explanation, the entire adap-
tion process is shown, showing exactly what has been changed. The same
example would then be: The army had no blast equipment to fight the enemy
army with larger numbers. Strateqy states that blast weapons are very effec-
tive against enemy army. Equipment with (Strength greater than 8, Single)
has been removed, and replaced by (Strength 5, Blast 2). These are simple
examples and the length of the in depth explanation can be expected to
increase in the actual implementation of the system.

Justification in revision is presented in a simple fashion. Any squads that are
replaced are simply noted as bad performing, and they have been replaced
by better performing squads. The system would say: Some squads that have
performed badly have been replaced with other, better performing squads. If
none of the squads have been replaced, the explanation is fairly static. The
in depth explanation, however, goes into the detail of rating attributes, and
which squad has taken the other squads place, their ratings and why that
particular squad was chosen. For example: Tank Squad has been replaced
with Artillery Squad. Tank squad has had a performance rating of 0.4 in the
game and is rated at 1403 points. Artillery squad performs the same role
according to Strategy and is rated at 1836 points.

Finally, when retaining squads and armies, the system will explain, in the
form of a message, that the system has adjusted squad ratings, and will state
that squads with a poor rating were not saved. A more in depth explanation
will show an explanation that includes a list of squads and their previous
ratings, and their new adjusted ratings, as well as how they were adjusted.

4.3.2 Explanations - Maintenance

The maintenance policies themselves will need some kind of explanation as
well, as we are performing changes on the system directly.

The first maintenance policy, which addresses the utility problem, has to do
with case deletion. Subsection 4.2.1 outlines the details of this implemen-
tation. As this is done outside of the CBR cycle, the explanation is a pop
up window, which indicates what has been done. The explanation in this
case is a middle ground between justification and transparency. The system
will indicate which armies it has deleted and provide those deleted armies as
cases for the user to view if they wish. This is the transparency part of the
explanation. The system will then justify that the deletion was done because
of its low rating attribute. In this way both the novice and the expert users
can look over the maintenance policy, and possibly try to reintroduce the
armies deleted back to the system at a later date.

The second maintenance policy, to address consistency, does not need an
explanation. The developer is aware of exactly what is updated as he is the
one doing the update to the system. An update manifesto will be presented
to the user, that indicates what changes have been done in the system as
well as the version of the current system. The only control over the update
that the user has is whether or not they wish to apply the update.

The last maintenance policy, which addresses the metagame simulation, will
create explanations in a log form. As the maintenance policy is intended
to mostly run when the user is not using the system, it is assumed that
the user will not be next to the system to read the explanations. Instead,
the system will write two log files in the form of simple text files. One log
file will indicate basic explanations followed by a tag number that will be
incremented for each run of the maintenance policy. The other log file will
be a longer list of the entire process of the maintenance policy. This process
is derived from the other explanations in the CBR system, and from the log
of actions and dice rolls in the army creation and combat simulation. In this
fashion a user can look at the simple log file, and if there is an interest for
any particular run of the maintenance policy, the user can look that up in
the longer log file by finding the tag number.

4.4 Prototype

The implementation of the system is outside the scope of this project, and
so is the creation of a prototype. However, having some kind of prototype is
useful for understanding how the system works first hand. This section will
showcase a dialogue between a user and the system. Italics represent actions,
while non formatted text represents the actual on-screen prompts.

In this scenario, the enemy army is an Ork army, featuring large numbers
of melee and short ranged units, with high strength and high armour saves
(remember that the higher armour saves the worse it is for the unit). The
terrain is an open field with trenches and rocks for cover. The mission is to
defeat the other army. The battle is unbound, so no divisions are needed.

User: FEnters the enemy army into the system.

System: Performs the retrieval step calculation.

System: This army is a high rated Space Marine army. It has a 79% chance
to win this match.

User: Tell me more.

System: This Space Marine army has seven Tactical Squads of Space Marines,
one Captain Squad, one Captain Sicarius squad, one Assault Squad. Strategy
suggests that mid ranged units with high strength and low armor save and
high initiative defeat short ranged units. Strategy suggests that mid ranged
units with high strength and low armor save and high initiative defeat melee
ranged units. Strategy suggests using warleader. Strategy suggests using
equipment that has Blast 1, Blast 2, Blast 3 against short ranged and melee
units in groups of more than five. Terrain indicates open field where units
with mid or long range perform well. Each squad is 61% or more better than
the enemy squad when comparing ratings per squad. Enemy squad contains
unknown squads, they are rated at neutral rating (1500). Normal rating com-
parison indicates win rating chance of 74%. This has been modified with:
+5% because of advantages. There are 7 unused points out of 1000.

User: Continue.

System: This army has a high chance of winning. adaption is not necessary.
User: Continue.

User: Enters post combat data. The army performed better than the enemy
army. Fach squads rating is entered. The Tactical Squads average rating is
1.8, The Captain Squad is 1.1, Captain Sicarius 1.8, and the Assault Squad
0.7. The enemy squads performances are also entered

System: The army will not be improved. The ratings have been registered.
User: Tell me more.

System: No squads have performed below the threshold rating of 0.5. The
squad that has performed the worst is the Assault Squad with a rating of
0.7.

User: Continue.

System: Performs the Retention Step

System: The army ratings have been stored. The Space Marine rating has
increased by 6.4. The enemy army is retained.

User: Tell me more.

System: The army rating has increased by 6.4. Space Marine army was
rated at 1780 rating points. Enemy Army was rated at 1500 rating points.
Assault Squad rating has been reduced from 1680 to 1651 with a rating
change of -29. Tactical Squad rating has been increased from 1710 to 1719
with a rating change of +9. Captain Squad rating has been increased from
1578 to 1592 with a rating change of +15. Captain Sicarius Squad rating has
been increased from 1790 to 1796 with a rating change of 6. Enemy army
was rated at 1500 since it was not present in the system. Enemy army was
retained in the system because of loss. Enemy army is now rated at 1493.

Chapter 5

Evaluation and Conclusion

In this chapter we will evaluate and conclude the project. Section 5.1 will
evaluate and discuss the project. Section 5.2 will discuss the contributions of
this project to the state of the art, and Section 5.3 will conclude the project
and discuss the future work to be done based on the study done in this
project.

5.1 Evaluation and Discussion

The goal of this project is to design an explanation-aware CBR army builder
for Warhammer 40k. As such, the scope of this project ends where imple-
mentation begins, and no formal or informal tests have been performed on
the system, and thus there are no direct results to evaluate.

The project has succeeded in the goals it has set out to do. We have designed
an explanation-aware CBR system that constructs armies in the Warhammer
40k domain, and we have presented the state of the art in this domain and
the domains of the sub-goals. The project has done this by following the
formula of Cohen and Howe (1988). We have refined a topic to a task and
designed the method. We have constructed a design and an architecture for
the system, but we have not implemented a program, and therefore do not
have experiments or a discussion of such, as that is outside of the scope of
this project.

68

As we have shown with the state of the art, there is no Al system currently
in place that concerns itself with the Warhammer 40k domain. This is both
good and bad at the same time. It is good because the research is new
and it explores a domain that was not explored before. However, without
a present state of the art, we can only guess and make assumptions that
the domain will fit the system, and that it will work in the fashion we have
designed it. The system will most likely change as it progresses through the
development, and while we can anticipate the change, we can not anticipate
exactly what will change. Any numerical values, such as squad rating, are
also assumed and will most likely be subject to change. The project will
require future work placed into it to prove the hypothesis, and we have only
reached the halfway point of the scientific method. This project should be
therefore looked at as a foundation for future research.

The first limitation of the system is its implementation complexity. The
CBR part of the system is quite complex. While many k-NN algorithms
exist, creating a structure-mapping engine will be difficult. It requires expert
knowledge in the form of the general knowledge, and the creation of this
general knowledge will take time. Assuming we could potentially insert all
of the rules, special abilities, options, missions and terrain easily, the general
strategy and heuristics will take some time to collect from the experts in the
field. Furthermore, to create the structure-mapping engine we will need to
discuss with the experts and create a list of most important concepts, so that
we may as accurately as possible, retrieve a good army. In comparison, once
this up front work is done, the Reuse and Revise steps will use the same
knowledge, thus no extra work needs to be done for these two steps.

The second limitation lies in between the Reuse and the Revision step. In
Section 2.2.3 we have stated that the players are playing to the best of their
abilities. As we are targeting both novice and expert users, it should be clear
that the skill levels of these players will differ, and sometimes differ greatly.
Unfortunately, there is no feasible way for us to predict or gauge the skill
of the users, so we must take this limitation as is. This limitation can, and
most likely will hinder the learning process. A possible solution to this is to
allow players to enter their own expertise into the system, and based on that
adjust the ratings of squads and armies by a smaller or larger percentage.
However, we risk that the users will under or overstate their skill levels, and
create an even worse learning situation. Therefore, we must accept that this
is a limitation to the system.

The third limitation of the system is the complex rules of Warhammer 40k.
Even with the general domain knowledge, it may be difficult to address ev-
ery single aspect of the domain. The primary example to this is the warlord
unit, discussed in Section 2.1.2. The warlord unit can bring more benefits
than just the strength of the unit. The warlord special abilities can enhance
all the friendly units on a battlefield in some way, or simply move the army
closer to victory. However, our retention and revision steps only count the
damage done by this unit, and not the other benefits it brings to the army.
These small nuances are hard to capture, which is why we must use a general
formula, and why this is a limitation. A possible solution would be to include
all the benefits in the calculation of squad rating, but this would make the
calculation step very complicated and would in most cases result to the for-
mula we already have. Furthermore, it would make the entry of the revision
step even more taxing on the user than it already is, which is yet another
limitation of the system.

Two of the three maintenance policies are fairly well known. The utility
problem and the consistency updates have both been created and used before,
and it should be no problem to adopt them to this system, since the system
is created with these policies in mind. The third maintenance policy, the
metagame policy, is different. It will require the creation of another program,
one with general knowledge, rules, as well as combat simulation. This will
require more initial work to produce a tangible result.

Finally, if the maintenance policies and the CBR system is implemented,
the explanation part of the system can draw information and context from
these systems, and does not need any additional work or sources besides
implementation. However, it does depend on a good implementation of both
the CBR system and the maintenance policies, and any lack of information
there will reflect itself in the explanation system.

5.2 Contributions

The design of the system as a whole is the main contribution of this project.
The project analyses theoretical knowledge, the state of the art and designs
the architecture of the system. The design of the Warhammer 40k domain
becomes an instance of the class of problems, and this instance is further
then designed and discussed.

As previously mentioned, the state of the art is created and presented. Often,
the state of the art is overlooked and Al projects lack documentation about
the state of the art (Cohen and Howe, 1988) or the method at which they
have achieved their result. The presentation of the state of the art means that
not only this project, but future projects as well, have firm legs to stand on
when designing and implementing an instance of this system. This alongside
the creation of the architecture and the class of problems is an important
contribution to explanation aware CBR systems.

The use of maintenance policies to update the system and make it think is
an idea that can be applied to multiple systems, creating proactive systems
that can think and work when not interacted with. This is a significant step
forward from machines that simply react when a button is pressed by the
user.

Finally, work is done on showing that explanation aware computing is vitally
important for these kinds of systems. As users without AI knowledge are the
primary users of this system, it is important that they are able to understand
and trust the system, in order for the system to be taken seriously. This
extends to not only this system, but to other Al systems as well.

5.3 Conclusion and Future Work

This project has set out to design an explanation aware case based reasoning
system, and has succeeded in doing so. It has also presented the state of
the art concerning the system. It has done this methodically, and it has
approached the problem from a general view first, and domain view second,
so that this project may further be used for designing similar instances of
this kind of system.

In Section 1.2 we have defined the goals for this project. To conclude this
project, we will look at and discuss these goals again.

Goal 1 Design an explanation-aware CBR army builder for Warhammer 40k

The first goal was subdivided into three goals, Designing a CBR army builder
for Warhammer 40k, Designing an explanation aware CBR system and de-

signing a system that can evolve within the environment that is Warhammer
40k.

Sub-Goal 1 Design a CBR army builder for Warhammer 40k

We have designed the underlying architecture for the class of problems and
we have taken an instance of this architecture and designed a CBR system
that can create armies in Warhammer 40k. The limitations of the design are
presented in Section 5.1, and the fulfillment of the goal should be considered
with those limitations in mind. Furthermore, this part of the project has
designed the hypothesis, and for it to have any scientific value the system
will need to be implemented and tested.

Sub-Goal 2 Design an explanation aware CBR system

We have designed an explanation aware part of the system, and discussed
how it is implemented within the architecture and the design itself. We have
shown how we will extrapolate the knowledge necessary for the explanations
and how these explanations will be presented, in order to build trust and
confidence towards any kind of user. Again, much like with the first sub-
goal, we will need to implement and test the system in order to be assured
that it is correct.

Sub-Goal 3 Design a system that can evolve within the environment that
is Warhammer 40k

We have designed a system with three maintenance policies. Two of these,
the update and the metagame maintenance policies, are a crucial part in
fulfilling this goal. The update maintenance policy handles the frequent
updates to the domain, while the metagame policy simulates active usage of
the system, and thus proactively betters the system. We have also shown how
and when these policies will run, and their respective properties. Similarly
to the first two sub-goals, we must implement and test this design before we
can be assured that it is correct.

It should be noted that even though implementation and testing is necessary
to prove the hypothesis and complete the first goal of our project, all of these
sub goals have been designed with the state of the art in mind, and we have
no reason to believe that they will not function from a theoretical point of
view.

Goal 2 Present the state of the art

The state of the art has been presented in Section 2.5. The process of ac-
quiring the state of the art is also present within the same section.

This project is the first step towards creating and fully implementing a army-
building system for Warhammer 40k. The next step is the implementation
of the system, the collection of test data, and the refining and testing of the
hypothesis. Past this, the system should also be capable of legacy support,
to allow users to switch between different versions of the game.

Bibliography

1]

Schank, R.C. 1982 Dynamic Memory: A Theory of Reminding and
Learning in Computers and People, New York, NY: Cambridge Uni-
versity Press.

Ramon Lopez de Mantaras et al, May/June 2006 Retrieval, reuse, revi-

sion, and retention in case-based reasoning, IEEE Intelligent Systems,
pp- 39-49.

Thomas R. Roth-Berghofer, 2004 Ezplanations and Case-Based Rea-
soning: Foundational Issues, P. Funk and P.A. Gonzales Calero (Eds.):
ECCBR 2004, LNAI 3155, pp. 389-403. Copyrighted by Springer-Verlag
Berlin Heidelberg 2004

Richter and Weber, 2013 Case-Based Reasoning, eBook, Springer Hei-
delberg New York Dordrecht London Copyrighted by Springer-Verlag
Berlin Heidelberg 2013

Cohen and Howe, 1988 How Fvaluation Guides Al Research. Al Maga-
zine Volume 9 Number 4 (1988), Copyrighted by AAAL

Schank, R.C 1986 FEzplanation Patterns: Understanding Mechanically
and Creatively, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

Johanna D. Moore and William R. Swartout 1988 FExplanation in expert
systems: A survey, Research Report RR-88-228, University of Southern
California, Marina Del Rey, CA.

McSherry, D. 2003 Similarity and Compromise. In proceedings of
the Fifth International Conference on Case-Based Reasoning, Berlin:
Springer, pp. 291-305.

74

[9]

[10]

[11]

Wizards of the Coast 2014, Warhammer 40k, 7th Edition, Games Work-
shop Ltd. Willow Road, Lenton, Nottingham, NG7 2WS, Copyrighted
by Wizards of the coast and associates.

Aamodt A. and Plaza E. 1994 Case-based reasoning, foundational issues,
methodological variations, and system approaches, Al Communications

7(1), 39-59

Aamodt A. 2004 Knowledge-intensive case-based reasoning in
Creek. In Proceedings of the Seventh European Conference on Case-
Based Reasoning, Berlin: Springer, pp. 1-15

Peter Spieker. 1991 Naturlichsprachliche Erklarungen in technischen Fx-
pertensystemen, Dissertation, University of Kaiserslautern.

Anders Kofod-Petersen, October 8 2004, How to do a Structured Liter-
ature Review in computer science.

Tintarev N. and Masthoff J. 2012, FEwvaluating the effectiveness of
explanations for recommender systems, copyrighted by Springer Sci-
ence+Business Media B.V.

Vig J. and Sen S. and Riedl J. 2009, Tagsplanations: FExplaining Rec-
ommendations Using Tags, ITUI'09, Sanibel Island, Florida, USA.

Cleger S. and Fernandez-Luna J.M and Huete J. F. 2014, Learning from
explanations in recommender systems, Elsevier Inc. All rights reserved.

Smyth B. and Keane M. T. 1995, Remembering to forget: A
comptence-preserving case deletion policy for case-based rea-
soning systems. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence San Mateo, CA: Morgan Kauf-
mann, pp. 377-383.

Smyth B. and McClave P. 2001 Simailarity vs. diversity. In Pro-
ceedings of the Fourth International Computational Intelligence 17(2),
196-213.

Glinz M. 2007 On Non-Functional Requirements, 15th IEEE Interna-
tional Requirements Engineering Conference, New Delhi, India.

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

Tidemann A. and Bjornson O. and Aamodt A. 2011 Case-Based Reason-
ing in a System Architecture for Intelligent Fish Farming, a joint work of
SINTEF Fisheries and Aquaculture AS Trondheim, Norway and the De-
partment of Computer and Information Science, Norwegian University
of Science and Technology, Trondheim, Norway

Sormo, F. and Cassens, J. and Aamodt, A. 2005 Ezplanation in Case-
Based Reasoning—Perspectives and Goals, Artificial Intelligence Review
(2005) 24: 109-143.

Bass, L. and Clements. P, and Kazman, R. 2013 Software Architecture
in Practice: Third Edition, Copyrighted by Pearson Education, Inc.

Zhang, 7Z. and Yang, Q, 1998 Towards lifetime maintenance of case base
indexes for continual case based reasoning, Volume 1480 of the series
Lecture Notes in Computer Science pp 489-500.

Leake, D. B. and Wilson, D. C, 1998 Categorizing case-base mainte-
nance: Dimensions and Directions, Volume 1488 of the series Lecture
Notes in Computer Science pp 196-207.

Roth-Berghofer, T. and Iglezakis, I. 2001 Siz Steps in Case-Based Rea-
soning: Towards a maintenance methodology for case-based reasoning
systems, Includes the Proceedings of the 9th German Workshop on Case-
Based Reasoning.

Roth-Berghofer, T. and Cassens, J. 2005 Mapping Goals and Kinds
of Explanations to the Knowledge Containers of Case-Based Reasoning

Systems, Volume 3620 of the series Lecture Notes in Computer Science
pp 451-464.

Cunningham, P. and Doyle, D. and Loughrey, J. 2003 An Evaluation of
the Usefulness of Case-Based Ezxplanation, K.D. Ashley and D.G. Bridge
(Eds.): ICCBR 2003, LNAT 2689, pp. 122-130, 2003. (©) Springer-Verlag
Berlin Heidelberg.

Diaz-Agudo, B. and Gonzales-Calero, P.A. 2000 An Architecture for
Knowledge Intensive CBR Systems, E. Blanzieri and L. Portinale (Eds.):
EWCBR 2000, LNAT 1898, pp. 37-48, 2000. (¢) Springer-Verlag Berlin
Heidelberg.

Aamodt, A. 1994 Knowledge-Intensive Case-Based Reasoning and In-
telligent Tutoring.

[30] Aamodt, A and Nygard, M. 1995 Different roles and mutual dependen-
cies of data, information, and knowledge — An Al perspective on their
integration, (©) 1995 Elsevier Science B.V. All rights reserved

[31] Park, C.S and Han, I. 2002 A case-based reasoning with the feature
weights derived by analytic hierarchy process for bankruptcy prediction,
(© 2002 Elsevier Science Ltd. All rights reserved.

[32] Watson, 1. 1999 Case-based reasoning is a methodology not a technology,
© 1999 Elsevier Science B.V. All rights reserved

[33] Aamodt, A. 1994 Explanation-driven case-based reasoning.

[34] Aamodt, A. 1990 Knowledge-Intensive Case-Based Reasoning and Sus-
tained Learning, Published in ECAI-90, Proceedings of the 9th European
Conference on Artificial Intelligence, edited by Luigia Aiello, Stockholm,
August, 6-10,1990. Pitman Publishing, London, 1990. Pages 1-6.

Appendix

Appendix A - Glossary

AT - Artificial Intelligence

CBR - Case Based Reasoning

ISBN - International Standard Book Number

k-NN - k nearest neighbour algorithm. This algorithm retrieves the k near-
est most similar neighbours

NTNU - Norwegian University of Science and Technology /Norges teknisk-
naturvitenskapelige universitet

SLR - Structured Literature Review

Warhammer 40k - Warhammer 40000, often referred to in text as Warham-
mer 40k, as it is easier to read

78

Appendix B - Software Used

Latex, a word processor and document markup language used to write this
document. www.sharelatex.com was used to write the document. First ac-
cessed on September 10, 2015.

draw.io to draw flowcharts, from https://www.draw.io/. First accessed on
October 22, 2015.

Fide Chess Rating calculator to help calculate ratings and understand the rat-
ing system for chess, from https://ratings.fide.com/calculators.phtml. First
accessed on October 27, 2015.

Appendix C - The Rating System

The rating attribute of armies and squads is calculated using the same
method that is used for chess players and the calculation of elo ratings. The
K number in this case is 40.

Armies and Squads are introduced into the system at an even rating. This
rating is an integer number that equals 1500. The ratings are adjusted iden-
tically for the squads and the armies.

The rating goes up if a win is recorded, or the performance of a squad is
greater than 1. A performance less than 1 is considered a loss, and a per-
formance of more than 1 is considered a win. For every 1 performance over
1 the squad gains an additional win, to represent that it did exceptionally
well. Squads that have a rating of 1 remain even.

Due to the fact that a squad is very likely to engage other, varied rated
squads, the squads rating is compared to that of an army in order to calculate
the points. This assumes that the base average value of the rating of an army
is typically an average value of its squads, over time. While this may be a
limited assumption, especially since we can create a new 1500 rating with
very good squads, due to complexity reasons we simply have to accept it.

The rating system does not increase linearly. The bigger the difference is
in between the armies, the less points are gained for the winning army if
that army was the higher rated army. At equal rating, a win is considered
20 rating points, a loss is considered -20 points, and a draw is considered 0
points. A rating that differs by 400 points is the maximum difference that
the system calculates. Any larger rating differences are set back to 400. At
this rating, a win for the higher rated army is only 3.2 points, while a loss
is 36.8 points. This is done to prevent any army from reaching incredible
ratings by fighting only weak rated armies.

	Introduction
	Background and Motivation
	Goals
	Research Method
	Project Structure

	Background Theory and Motivation
	Warhammer 40k
	Equipment, Units and Unit Types
	Creation of an Army

	Case-Based Reasoning
	Case Representation
	Retrieval
	Reuse and Revision
	Retention
	Knowledge-Intensive CBR

	Explanation-Aware Computing
	Fundamentals of Explanation
	Explanation in CBR Systems

	Ever-Changing Environment
	Maintenance of the Knowledge-Base
	Metagaming

	State of the Art
	Structured Literature Review Protocol
	Motivation

	Architecture
	Stakeholders
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Architectural Template

	Design
	Case Based Reasoning
	Case Representation and Case Base
	Retrieval
	Reuse and Revise
	Retain
	General Knowledge

	Maintenance Policies
	Utility Maintenance
	Consistency Maintenance
	Metagame Maintenance

	Explanation
	Explanations - CBR
	Explanations - Maintenance

	Prototype

	Evaluation and Conclusion
	Evaluation and Discussion
	Contributions
	Conclusion and Future Work

	Bibliography
	Appendix
	Appendix A - Glossary
	Appendix B - Software Used
	Appendix C - The Rating System

