
Development of a General Purpose
Gamification Framework

Eivind Vea

Master of Science in Computer Science

Supervisor: Magnus Lie Hetland, IDI

Department of Computer and Information Science

Submission date: July 2016

Norwegian University of Science and Technology

Development of a General Purpose Gamification

Framework

Eivind Vea

July 21, 2016

ii

Abstract

This report describes the design and implementation of a general purpose
gamification framework developed in JavaScript on the Metor platform. Gam-
ification is described as the use of game elements in none-game contexts. The
purpose is to encourage and change user behaviour. Examples of existing gam-
ification use cases and frameworks are described. A demo game shows how a
general purpose framework can be used.

iii

iv

Abstract

Denne rapporten beskriver design og implementasjon av et generelt ramme-
verk for gamification utviklet i JavaScript p̊a plattformen Meteor. Gamifica-
tion er beskrevet som bruk av spillelementer i sammenhenger som ikke er spill.
Form̊alet er å oppfordre til handling og å endre brukeradferd. Det blir vist ek-
sempler p̊a bruk av gamification og eksisterende rammeverk. Et eksempelspill
viser hvordan et generelt rammeverk kan brukes i praksis.

v

vi

Preface

This Master’s thesis is the result of my Computer Science studies at Norwegian
University of Science and Technology (NTNU) in the spring semester of 2016.

I would like to thank my supervisor, associate professor Magnus Lie Hetland
for encouragment at all times. I have really enjoyed our always interesting
weekly conversations during the project period.

I also would like to thank my wife Kris for support, patience and setting
your own studies on hold while I’ve been working.

And finally, Ask, Idunn and Vegard - I can recommend studying Computer
Science when you one day leave home.

vii

viii

Contents

Preface vii

Table of Contents ix

1 Introduction 1

1.1 Motivation . 2

1.2 Examples of gamification . 3

1.2.1 Rewards . 3

1.2.2 EuroBonus . 3

1.2.3 Fabulous . 5

1.2.4 Nissan Leaf . 6

1.3 Framework . 8

2 Context 11

2.1 Existing gamification frameworks 11

2.2 Why Meteor? . 12

2.2.1 Licence and organization 14

2.2.2 JavaScript . 14

2.2.3 Reactive rendering libraries 14

2.2.4 Blaze . 15

2.2.5 MongoDB . 16

2.2.6 Apache Cordova . 16

2.3 Gameplay . 16

2.3.1 Challenge and response 17

2.3.2 User tracking . 17

2.3.3 Push notifications . 19

ix

3 Design and implementation 21
3.1 Definition of features in MondoLudo 21
3.2 Setting up a Meteor environment 23

3.2.1 Installation . 23
3.2.2 File structure . 23

3.3 Implementation . 25
3.3.1 Packages . 25
3.3.2 HTML and reactivity . 25
3.3.3 Styling with SCSS . 25
3.3.4 JavaScript code . 25
3.3.5 Collections . 27
3.3.6 Facebook integration . 27
3.3.7 Deployment . 30
3.3.8 Development issues . 30

4 Using the prototype 33
4.1 Creating a game . 33
4.2 Adding challenges, responses and managing players 35
4.3 Playing a game . 37

5 Conclusion and further work 41
5.1 Conclusion . 41
5.2 Further work . 41

5.2.1 Technology . 41
5.2.2 Coding issues . 42
5.2.3 Gameplay features . 42

5.3 Commercialization . 43

Bibliography 45

List of Figures 47

List of Tables 49

x

Chapter 1

Introduction

The goal of this Master’s project is to develop a framework for gamification
which, in time, can be extended to be a full-fledged gamification engine. This
project report describes my work with developing the Meteor-based working
prototype “MondoLudo”.1

Gamification is a term which has gained much attention recently. The most
common definition of gamification is “the use of game design elements in non-
game contexts”. (Sebastian Deterding et al 2011)[1]

Even though it is a quite new term, there is done increasingly more research
in the field. I have used the comprehensive anthology “The Gameful World”[2]
as a resource in getting to know the subject.

There are numerous appliances of gamification in action, and some of these
are described in this report. Surprisingly, there appears not to be any gami-
fication frameworks that can be used by anyone to create their own gamified
systems.

The next chapters discuss the concept of gamification, the features of Mon-
doLudo, the technology which is used to make the prototype, the development
of the prototype, an example of a created game, and further work that can be
made based on the prototype at a later stage.

1Mondo (latin “World”), Ludo (latin “Game”))

1

1.1 Motivation

Games are increasingly popular in most demographics. In the official statistics
for 2015, 36% of the Norwegian population play games daily, and as many as
80% of boys aged 9-15 and 73% of girls in the same age group play digital games
on an average day. (Statistisk sentralbyr̊a / Statistics Norway, 2015)[3]

There is an ongoing decrease in the same groups’ time spent on TV and
movies, both in Norway and abroad. (Entertainment Software Association,
2015)[4]

Since playing games is so common, there is a possibility that users also
would like to immerse in a gamified real world experience, given that the game
mechanics don’t differ too much from regular games. This is my main reason
for making a gamified framework. The actual gameplay should be intuitive and
easy to understand for all users.

The web application Kahoot![5] is an easy way of setting up and playing
games in teams. It was initially based on a Master’s thesis at Norwegian Uni-
versity of Science and Technology (NTNU). Kahoot! lets users create games
that can be played with friends, where the game questions are displayed on a
screen, TV or projector, and the participants use their mobile phones to guess
the right answer.

However, although increasingly popular, Kahoot! might be regarded as a
game based learning platform and not a flexible gamification engine. It never-
theless serves as an example of a successful application which lets anyone set up
and play games. In the era of social media, playing simultaneously with friends
in a social context fits right in. Its gameplay is easy to understand, which makes
the platform suitable for anyone. This should also apply for MondoLudo

Motivation for making a general purpose gamification framework:

• No such thing is currently available

• It could be of interest to a lot of people

• Wide range of use cases

• Possible commercialization

2

1.2 Examples of gamification

Gamification is found in a wide range of applications. Not all of them are
exclusively on platforms like personal computers or mobile phones. Many tasks
can be gamified. The goal for gamification is to encourage a desired behaviour
which in turn can lead to actual real world change.

Arguably the first known gamification system is that of Napoleon Bonaparte
in 1795, when he first offered a reward for the person that could come up with a
solution for food preservation. This ultimately lead to the invention of canned
food2. In addition, soldiers at the time were usually paid, but money was scarce
and Napoleon instead started to award medals to the soldiers who were regarded
as being the bravest and strongest. This incentive allegedly motivated his armies
to perform better[6].

1.2.1 Rewards

The actual gameplay can be made in numerous ways, but common for most of
them is that the users get rewards or motivation during the game. The simplest
form is “pointification”, which means that the users gain points when playing.

Other rewards can be leveling, unlocking of features, awarded experience
points in different areas, or leaderboards showing other players’ results. All
these forms of rewards can be found in regular games. The main difference in a
gamified experience is that the game itself is not the main focus, it exists merely
as a tool to lead to a change of behaviour outside the game.

I present three current examples of gamification in this section.

1.2.2 EuroBonus

The frequent flyer program EuroBonus for the airline SAS and the Star Alliance
has had gamified elements at least since the 1990s. By collecting flights, a
EuroBonus member can accumulate points for later use as payment for bonus
flights or accomodation.

There are several tier levels: Member, Silver, Gold and Diamond, all with
different real world rewards. You get a level upgrade based on how many flights
or how many points you acquire during a one year period. This is a good
example of the concept of “pointification”, where the gameplay itself is based
on nothing more than collecting points.

2Napoleon III ran a similar challenge in 1866, which led to the invention of margarine.

3

Such frequent flyer programs are not new, but the advent of digital platforms
means that it is easier to implement and show gamification elements than it
used to be earlier. For instance, on SAS’ corresponding mobile app, you will
see the gamification in action: The requirements for moving up one level are
easily found, displaying how many points and flights the user has accumulated.
In addition statistics like total distance travelled and airborne hours are shown,
which also could be considered to be gamified elements encouraging more travel.
By having frequent flyer programs like EuroBonus, you can build loyalty and
get people to travel with your airline instead of competing carriers.

Figure 1.1: Screenshot from the SAS mobile app

4

1.2.3 Fabulous

Fabulous[7] is a personal motivation app for Android. It is marketed as a science-
based app incubated in Duke University’s Behavioral Economics Lab.

The main goal is to give its users the opportunity to learn how to get things
done by defining and following rituals at set times throughout the day.

On the Fabulous website there is this description of the system:

We’re building a tool to help you reset your habits, rewire your brain
and transform your life.

Figure 1.2: Screenshots from Fabulous’ Android app

The gamified aspect of Fabulous is hidden; the user doesn’t know anything
about what will happen next. There are no points to collect, or levels to achieve.
Instead, the app will at set times introduce new challenges according to what
the user marks as completed. The user gets encouraging messages to continue
using the app.

The players will be suggested new goals for their routines. It starts easy,
like buying a notebook to use for making plans and todo-lists every day. Later
it will introduce meditation as a new task to do before bedtime.

5

A key feature is that the app does not rely solely on text; it also uses speech
synthesis to let your virtual mentor speak directly to you. It also has ambient
background music while you perform your tasks.

1.2.4 Nissan Leaf

The electric car model Nissan Leaf has a gamified experience regarding eco-
friendly driving. Their system is called Carwings.

By driving energy efficiently, a symbol of a tree on the front display will
grow and change according to factors like speed and power usage. These driving
metrics can be uploaded so the driver can compare her driving to that of others
Carwings users both nationally and world wide.

Carwings uses a level system with badges and trophies, which the players
can achieve every month. It also has leaderboards where drivers can see how
efficiently they drive. Some statistics are shown directly on the main display
in the car, while others more thorough statistics can be found on the system’s
website.

Figure 1.3: Nissan Leaf’s tree on the drivers’ display

6

Figure 1.4: Carwings rankings

7

Figure 1.5: Carwings player achievements

1.3 Framework

The framework should have the following features:

• Available to anyone with a computer or smart phone

• Available for free

• Easy to use

• Developed in a common programming language

• Scalable

• Fast

8

• Easy to maintain

• Possible to commercialize

• Fun!

My framework has a few terms that should be defined.

9

Term Description

MondoLudo The gamification framework.

Game Could also be called quest, adventure, task or some-
thing else, but in this context I refer to any gamified
project as a game.

Gamemaster The person running the game, in this prototype also
the creator of the game.

Player The user playing the game.

Players The set of users playing a game.

Teams A group of players that are playing together.

Levels The levels of the game. For now these are linear and
incremental, but they could also be more complex
and nonlinear so that the next level could be decided
based on user input while playing the game.

Confirmation The feedback a player gets when a level is completed.

Rewards Achievements when completing a level or game.
These can be in the application itself or describe a
real world reward.

Points The number of points, if any, the user gets when
completing a level or game.

Table 1.1: Definition of framework terms

10

Chapter 2

Context

When starting a project, one should strive to find out what solutions currently
exists, as well as deciding which platforms and tools to use. In MondoLudo
this applies both to the design of the gamification framework and the technical
implementation.

2.1 Existing gamification frameworks

For the process of designing a gamified experience, there exist several frame-
works that can be used.

Yu-kai Chou’s Octalysis[8] is an example of how a gamification framework
can be a useful tool for game creation. It is based on analysis of regular games,
and places terms and concepts from games into eight categories. These are
displayed in an octagon, where you visually can see the different metrics of
a game based on how they score on each of the eight axes. You can use this
framework for analyzing existing games as well as using it as a tool for designing
a new game. In my opinion, this works well, and Octalysis’ website offers
analysis of a lot of popular regular games in addition to well known gamified
experiences.

Andrzej Marczewski’s Gamification Framework[9] is another tool for describ-
ing gamified systems. The framework is a step for step approach for the plan-
ning, design, execution and evaluation of a gamified experience. This is a dif-
ferent approach from Octalysis, but can serve as a useful checklist when making
a game.

11

Zachary Fitz-Walter’s PhD-thesis “Achievement Unlocked: Investigating
the Design of Effective Gamification Experiences for Mobile Applications and
Devices”[10] introduces yet another framework for the design of games. In this
thesis, the framework is a set of actions that should be followed when designing
a game. Step 1 is to “justify the motivation and requirements”, step 2 is to
“design the gamification experience”, concluding with step 3 where one should
“evaluate the effectiveness”. He uses these steps to make two working gamified
mobile apps.

All of these frameworks can be useful as guidelines and rules for how to
make games. However, my goal is to make an easy to use technical framework
for gamification, and not making the actual games themselves.

The company Funifier[11] offers gamified solutions for the business market
with their platform Funifier Studio, but they dont’t have any general and free
solutions available for public use. The customer can set up a gamified system by
choosing amongst pre-built widgets, like challenges, levels, badges, leaderboards
and other game elements. In addition, Funifier Studio can be used for evaluation
and analysis of games made on that platform. The games can be integrated on
websites, mobile apps and even Microsoft products like Word and Excel. The
system is powerful, but it is way too complex and expensive to be used by
anyone.

There are numerous applications utilizing gamification in a wide array of
fields, but I still haven’t found what I’m looking for - a free web based gamifica-
tion framework where users can make their own gamified applications to share
with friends.

2.2 Why Meteor?

The JavaScript framework Meteor is a full-stack platform for building web and
mobile applications. I briefly tested Meteor a while back and found it to be an
interesting technology that I wanted to explore further.

By using Meteor, users can focus on coding actual functionality instead of
writing a lot of code for tasks that are necessary in all web and mobile appli-
cations of this kind. Such tasks can be user login handling and administration,
database functionality and client-server interaction. Meteor offers available add-
on packages for a wide range of tasks.

12

Meteor features:

• Pure JavaScript on both client and server

• Many built in features, e.g. client-server communication based on DDP
(Distributed Data Protocol)

• Real time updating on all clients

• Option to compile to native formats for iPhone and Android, which means
easy distribution through App Store and Google Play

Figure 2.1: Meteor framework overview

13

2.2.1 Licence and organization

Meteor is open source and MIT licensed. When chosing software, one should
always make sure that development will continue. An example of this is Adobe
Flash, which had widespread use and ran on practically all platforms, but is
now more or less dead and deprecated in most areas.

In Meteor’s case the organization behind it (Meteor Development Group) is
well funded[12], and it profits from hosting Meteor-based systems. Combined
with a continuously more wide spread use, ongoing development of add-on pack-
ages and documentation, and a strong user community, I think that Meteor will
be more than yet-another-framework and be around in the future.

2.2.2 JavaScript

One could argue that there are other options than JavaScript and Meteor. Any
other back-end programming language could be used, like C# or Java. My view
is that knowledge of JavaScript will be necessary for all programmers, as this is
the only language used in all web browsers. The advent of Node.js means that
JavaScript also can be used server side. This means that a JavaScript based
solution is making sense when it comes to decide which platform to use.

A JavaScript platform is therefore suitable both for my work with Mon-
doLudo, as well as for gaining experience that can be put to use in later work
as a programmer. With the impact of HTML5 and CSS3 as client interfaces in
a wide range of applications, it will be increasingly important to master these
skills.

I’m experienced in HTML, CSS, jQuery, PHP and WordPress, and although
never seriously considering this as a viable option, it would - maybe surprisingly
- be possible to make MondoLudo on that platform as well. WordPress is not
just a CMS, but a powerful platform which can be used also for other purposes.

2.2.3 Reactive rendering libraries

To make updates of data appear instantly in the clients, one would use a reactive
rendering library. Any changes on the server will automatically also be updated
for all clients with access to this information.

Meteor has its built-in reactive rendering library called Blaze. There is also
the possibility to use Angular (created by Google in 2010) or React (created by
Facebook in 2013) instead of Blaze.

14

Blaze is easier to use than the others. For instance, React lacks the “Space-
bars” notation, meaning that reactivity is based on using the JSX format to
add JavaScript directly in the HTML code. Angular uses HTML with special
attribute syntax for logic and events. Performancewise Angular 2 is best, React
and Angular 1 are runners up, while Blaze is the least efficient [13].

Most official Meteor documentation and tutorials as well as textbooks are
based on Blaze, so getting a project up and running from scratch is faster than
if you use Angular or React. On the other hand, Angular and React has other
advantages. One feature of React is strict data control mechanisms, which in
turn is leading you to follow better programming practices.

The learning curve is steeper with Angular or React, but ultimately it is more
powerful and offers easier maintainability and componentizing code [14]. While
Blaze is Meteor specific, Angular and React are also used on other platforms.

There are rumours that Blaze version 2 will act as a wrapper for React, but
as of writing this report this is not implemented, and according to discussion
threads in the official forums, nobody is certain that there will ever be a version
2 of Blaze [15].

Blaze is easier both to learn and to use but might be deprecated (or at least
not encouraged), Angular is a good alternative, but most online sources agree
on React being the desired Meteor UI rendering library in the future.

My decision is still to use Blaze, mainly because of ease of use and the
excellent documentation and books available[16][17].

2.2.4 Blaze

Blaze is Meteor’s built in client rendering system. It uses the “Spacebars”
notation with curly braces defining objects. A simple example is {{object}}.
This can be used to let JavaScript render data in the client.

The corresponding client side code is made with template helper functions
that perform an operation and return data, in our setting usually a string.
These functions are the links both to session specific context as well as methods
defined on the server side.

Furthermore, it is used to define the inclusion and order of templates in the
HTML-file in the same manner. One would for instance use Spacebars-code,
e.g. {{>template}}, to include a template at a given place in the HTML code.

In addition, curly braces are also used for control flow and loops in the
HTML-code, like if-else-conditionals and each-in loops.

Blaze lets the developer focus on coding the app’s core functionality, with
all the behind the scenes features and heavy lifting done by Meteor.

15

2.2.5 MongoDB

Meteor uses MongoDB as its database. This is an open source NoSQL database.
Unlike relational SQL databases, it has collections instead of tables, and docu-
ments instead of rows. Entries are basically JSON objects.

Querying Mongo is done using the functions “find()” which returns a cursor,
and “findOne()” which returns an object. The cursor is a reactive data source,
and not the collection itself. The cursor can be used directly in the HTML
templates by using {{#each cursor}} to iterate through the results.

On the client, Meteor uses Minimongo, which works as a cache of the Mongo
database. Client queries are done in this cache, and not directly on the server.

2.2.6 Apache Cordova

Meteor integrates with the open source mobile application development frame-
work Apache Cordova. This makes it possible to develop apps that also can
be run on iOS and Android. Cordova employs HTML5, CSS3 and JavaScript
to wrap the Meteor code into apps that can be distributed on Apple Store and
Google Play.

Standard web apps could be an alternative option, but then the actual client
code has to be downloaded every time the app is used. Cordova will instead
bundle all the client side code, leading to loading times way faster than for web
apps. In addition, Cordova offers hot code push, which means that updating
the apps does not involve releasing new versions on Apple Store and Google
Play.

Native apps are extremely time consuming to develop, and the main reason
for making these native apps is usually to get access to phone specific features.
Cordova offers plugins to access these features, like for instance device cameras
or sensors.

2.3 Gameplay

MondoLudo should as far as possible be designed with a gameplay familiar to
regular users. In my first prototype, that means that it is a single page app,
where content is changed and updated without any page loads.

16

2.3.1 Challenge and response

I’ve used the terms “challenge” and “response” to describe the gamemaster’s
definition of the game tasks, and players’ game feedback. The challenge could
literally be describing any sort of action that is possible to track. Some examples
are shown in table 2.1.

In its simplest form, this could be a question and an answer, but Mon-
doLudo should also have functionality to describe more advanced tasks, as well
as responses that are not merely textual answers.

A more complex usage could for instance be to use a mobile phone’s sensors
to respond to a challenge. Zachary Fitz-Walter’s PhD-thesis[10] describes an
app used for orientation on a university campus, where newly enrolled students
use the app to get acquainted. This could be made in MondoLudo too, and
an interesting feature could be to automatically check in a player at events,
meaning that the player should be at a given place at a given time.

Motivation is key for gamification. An app should be able to automatically
encourage its players into trying to reach their goals. This could be textual, by
gaining points, and also according to hidden criteria defined by the gamemaster.
The players shouldn’t necessarily be aware of the behind the scenes mechanics.
There is also a fine line between being encouraging and being nagging, so care
must be taken when setting up these criteria.

However, in this first version the default usage is questions and answers, as
the implementation of other responses, like for instance geographical coordinates
or scanning of QR-codes are a little more challenging and time consuming to
implement.

There should also at a later stage be implemented a simple chat client where
gamemaster and player can communicate during the game. In addition, players
on the same team should be able to communicate in the same manner.

2.3.2 User tracking

I have implemented a simple tracking functionality of users where progress in a
game is shown. The gamemaster will se how many levels a player has completed.
This should be extended so that both gamemaster and users can be informed
of game status in real time. The gamemaster should at all times have the
possibility of checking the progress of all players and teams, while players should
see their own status and optionally those of co-players and teams. The order of
the players should be sorted according to game completion.

The tracking should show which level a player is on, how many points he

17

Challenge Response

Textual question Textual answer

Multiple choice Chosen element

Location GPS location on map

Location Scanned QR code at location

Location Picture taken at location

Image Response of some type that has to be accepted or
declined by the gamemaster

Sound clip Response of some type that has to be accepted or
declined by the gamemaster

Video clip Response of some type that has to be accepted or
declined by the gamemaster

Generic Response of some type that has to be accepted or
declined by the gamemaster

Table 2.1: Examples of challenges and responses

has achieved, a percentage of correct answers, how many tries the player has
used on a given level, and so on. The gamemaster can use this tracking also as
a tool for granting completion of a level if a player of some reason is stuck and
can’t unlock the next level himself.

Furthermore, by using Google Maps it is possible to implement a map show-
ing players’ location while playing a game. This could for instance be used
for a scavenger hunt where players physically should visit real world locations.
When reaching a given destination, the next level will be activated, showing the
next destination in the game. The gamemaster will at any given time see the
physical location of players. The recent extremely popular game Pokémon Go

18

shows that players will engage in such games.

2.3.3 Push notifications

MondoLudo should have the possibility to send user updates to mobile clients
while the app is not running. The main motivation for enabling push notifica-
tions is to give the player reminders and encouragement while playing a game. In
addition push notifications can be a tool to show other users’ progress, both for
single team players, competing players or teams, as well as giving the gamemas-
ter real time simple updates of players’ progress without having to run the app
at all times.

There are a couple of open source push notification libraries available for
Cordova apps built using Meteor. This is a work in progress, and as of writing
there are at least two ways of implementing this. For Android one can use the
library “meteor-cordova-notification”[18], and for both Android and iOS and
several other platforms the library “raix:push”[19] can be used. Both libraries
are hosted on GitHub.

19

20

Chapter 3

Design and implementation

I’ve decided to program the prototype in pure JavaScript, meaning that I’ve
avoided the usage of jQuery completely even though this is supported in Meteor.

Certain tasks would have been easier to implement with jQuery, but I think
it is a good thing to avoid external libraries or frameworks as much as possible
code wise, given that it is easy to implement similar functionality without them.

I’ve used Donald Crockford’s book “JavaScript - The Good Parts”[20] as a
valuable resource to help with best practices and which issues to avoid.

3.1 Definition of features in MondoLudo

I have defined the following key features of MondoLudo.

User:

• Create user based on Facebook credentials

• Create friend list for user

• Create game list for user

• Login/logout

Games:

• Create game

21

• Save game

• Add users to game

• Show progress for user (points or number of challenges done)

• Set if game is public or private

Teams:

• Create team/remove/invite

• Let user add friends to team

• Mark user as admin

Other:

• Track progress (gamemaster can see players’ status)

• Leaderboard pr game

– users

– teams

• Generate QR-code for invites and in-game usage

Media:

• Upload images

• Upload sound clips

• Google Maps

Gamemaster:

• Add Facebook friends to game

• Add game

• Add questions and answers for game

22

Player:

• Play game

• Respond to challenges

• Communicate with gamemaster

3.2 Setting up a Meteor environment

Starting working on a new platform often is cumbersome and frustrating (An-
droid app development springs to mind). Meteor, on the other hand, is easy to
set up and run.

3.2.1 Installation

Meteor can be installed from the terminal on OSX and Linux, and from running
an installer on Windows. Meteor commands and package installs are run from
the command line.

By entering the following commands

meteor create mondoludo

cd mondoludo

meteor

you will have your first app up and running on http://localhost:3000. No
additional actions are needed.

3.2.2 File structure

In a Meteor project, not many files are necessary to for making an app. I’ve
based my work on the documentation available, and kept the number of files to
a minimum, but for more complex versions in the future, it might be useful to
group code in different files.

Meteor projects have a default folder structure, where client side code is
placed in the folder “client” and server side code is placed in the folder “server”.
It’s also possible to mix the two in the same file, but for clarity this folder
structure is used. Assets are placed in the “public” folder.

23

Filename Description

mondoludo.html Contains the HTML code for the application. This
includes the Meteor-spesific templates based on Me-
teor’s templating engine Blaze.

mondoludo.scss Contains the visual styling in “Sassy CSS”-format.
This extends plain CSS3 with some much needed
functionality, like the use of variables.

mondoludo.js Contains the definition of MongoDB collections.

client.js Contains all the JavaScript functionality for client
side use, and describes control flow and what data
should be rendered in the HTML code.

server.js Contains server side code, mainly the publication of
the MongoDB collections.

methods.js Contains server side code serving as an interface from
the client to the manipulation of MongoDB. This is
mainly because one does not want direct database
operations exposed on the client side, but instead
wrap all of them as methods implemented with user
access control.

facebook.js Contains code needed to use Facebook for user au-
thentication.

Table 3.1: Description of source files

24

3.3 Implementation

The actual implementation of the prototype was a quite new experience. Earlier
I have mostly used jQuery and not pure JavaScript, and not in such a compre-
hensive project. I have also never used MongoDB before, but this proved to
be very straightforward to use, since the application is not very database heavy
and defining and querying collections is simple to achieve in Meteor.

3.3.1 Packages

There are numerous packages available for a wide array of tasks. A standard
Meteor project is from scratch set up with several built in default packages, so
additional packages are not necessarily required.

From Meteor 1.3 on it is possible to use npm packages instead of Meteor spe-
cific ones from their package system called Atmosphere. According to Meteor’s
web page[21] all packages will be migrated to npm in the future.

In MondoLudo I have used the packages shown in table 3.2.

3.3.2 HTML and reactivity

I used Blaze as the reactive rendering library. MondoLudo is a single page app,
and all templates are defined in just one HTML file. Templating with Blaze
takes some time getting used to, but is rather simple and straightforward. The
HTML code is not extensive, as all functionality is made in separate JavaScript-
files.

3.3.3 Styling with SCSS

By using the package “fourseven:scss” it is possible to use SCSS (“Sassy CSS”)
for styling instead of plain CSS. The SCSS file is compiled to CSS and minified.

SCSS offers the possibility of nested rules, mixins and the use of variables
in the stylesheet. I decided to not include too many flashy visual elements, the
styling itself is clean and easy to change, and also works on mobile devices.

3.3.4 JavaScript code

All templates from the HTML can have event handlers and functions defined
in “client.js”. This is the bridge between frontend and backend. The functions
that need database access gets this through the file “methods.js”.

25

Package name Version Description

accounts-facebook 1.0.10 Login service for Facebook accounts

accounts-ui 1.1.9 Simple templates to add login

widgets to an app

blaze-html-templates 1.0.4 Compile HTML templates into

reactive UI with Meteor Blaze

ecmascript 0.4.7 Compiler plugin that supports

ES2015+ in all .js files

es5-shim 4.5.13 Shims and polyfills to improve

ECMAScript 5 support

facebook 1.2.8 Facebook OAuth flow

fourseven:scss 3.8.0_1 Style with attitude. Sass and SCSS

support for Meteor.js.

insecure 1.0.7 (For prototyping only) Allow all

database writes from the client

jquery 1.11.9 Manipulate the DOM using CSS

selectors

meteor-base 1.0.4 Packages that every Meteor app needs

meteorhacks:npm 1.5.0 Use npm modules with your Meteor App

mobile-experience 1.0.4 Packages for a great mobile user

experience

mongo 1.1.9_1 Adaptor for using MongoDB and

Minimongo over DDP

npm-container 1.2.0+ Contains all your npm dependencies

random 1.0.10 Random number generator and utilities

reactive-var 1.0.10 Reactive variable

session 1.1.6 Session variable

standard-minifier-css 1.0.8 Standard css minifier used with

Meteor apps by default.

standard-minifier-js 1.0.8 Standard javascript minifiers used

with Meteor apps by default.

tracker 1.0.14 Dependency tracker to allow reactive

callbacks

utilities:avatar 0.9.2 Consolidated user avatar template

(twitter, facebook, gravatar, etc.)

Table 3.2: Meteor packages used in MondoLudo

By default, all collections are available for all clients, meaning that users will
have access to all content in the database. This can be turned off by removing
the “autopublish” package, but is handy in the start phase of development.
With no autopublishing you need to explicitly publish all relevant collections in
“server.js” and subscribe to them in “client.js”.

Also by default the client gets access to writing to the database, with calling

26

insert, update and remove functions. The removal of the “insecure” package
fixes this issue. Once again, it is useful in the start of a project, but is a
security risk that should be taken care of. All database operations should be
wrapped in “methods.js” for added security.

To call methods from the client, you use “Meteor.call()” or “Meteor.apply()”.

3.3.5 Collections

I have defined the following collections in the Mongo DB:

Games = new Mongo.Collection(’games’);

GameUsers = new Mongo.Collection(’gameusers’);

Questions = new Mongo.Collection(’questions’);

AnswerQuestions = new Mongo.Collection(’answerquestions’);

UserQuestions = new Mongo.Collection(’userquestions’);

Friends = new Mongo.Collection(’friends’);

Table 3.3: Collections used in MondoLudo

3.3.6 Facebook integration

Meteor has is own user management options, but I decided to use an external
OAuth service. The main reason for this is to avoid making functionality from
scratch which does not bring any advantages to the table. External OAuth
providers include services like Facebook, Google and Twitter.

The fact that Facebook is so wide spread, and in addition makes available
your friend list for corresponding apps, is suitable for this project and it is my
only supported way of authentication at the moment.

To use Facebook’s OAuth service, you must first make a Facebook app at
https://developers.facebook.com.

27

Figure 3.1: Creating a Facebook app

Figure 3.2: Configuring Facebook OAuth settings

You have to enable Client OAuth Login and Web OAuth Login, and enter
a redirect URI to tell Facebook where to return after login.

To use Facebook OAuth in Meteor you need to do the following:

• Install the Meteor packages “accounts-ui” and “accounts-facebook”

28

• add the template {{> loginButtons}} in your main HTML file

• Run once in browser

• Type in your Facebook app ID and app secret when prompted

This works fine in theory and numerous public examples, including several
of my own test projects.

Unfortunately, I nevertheless ran into some serious problems getting this to
work in MondoLudo. First of all, I have not succeeded in making this login
method work in Internet Explorer. Authentication works in Chrome, Firefox
and Opera, but IE hangs when redirecting. Secondly, with all necessary plugins
installed, the login hangs in the other browsers with a loading symbol displayed
where the user avatar, username and sign out button should be.

At first I thought that it could be the Facebook OAuth redirect URI that
was wrong, so I tried several different online suggestions to no avail. I also
thought that there might be something in my code causing the problem, but
when logging in without any of the other external Meteor packages installed in
the first place, login works as it should.

Uninstalling all plugins does not solve the problem, which means that there
probably is some sort of configuration that is not reverted when unistalling.
Login also worked in a previous version using the same packages, so I think
that there might have been a recent package update that might have caused the
problem.

The current temporary workaround is as follows:

• Install a new Meteor project from scratch

• Copy all project source files to the clean install

• Install the packages “accounts-ui” and “accounts-facebook”

• Log in

• Install all other packages

This is obviously a huge setback, meaning that as of now MondoLudo can not
be used by the public. I have narrowed down which package is the culprit, and
it turned out to be actually two of them. The first one is the “utilities:avatar”
package, which fortunately is not necessary to include as it only displays the
avatar image for the logged in user.

29

The other one is the “session” package, and this is critical for MondoLudo
to work. From the release log I found out that it was recently updated. I’ve
tried installing an older version, but of some reason I get an error message, and
have not succeeded in fixing the problem. I’ve searched in forums, but I haven’t
found any useful suggestions.

This might be an indication of Meteor still being a young platform which is
not as robust as one should expect and desire.

3.3.7 Deployment

Development and testing was run locally on my computer. When going public,
you have to deploy to an external server.

There are several providers of Meteor hosting. Until spring of 2016, Me-
teor offered its own free deployment option where you could deploy to their
servers simply by running the command meteor deploy <subdomain>. You
would then have your app running at subdomain.meteor.com, which I’ve used
for testing until the service was stopped. This service was increasingly popu-
lar and presumably costly, so Meteor replaced this service with their Galaxy
hosting environment.

By deploying to Galaxy you can map your DNS name to their server, for
instance www.mondolodu.com. However, rather surprisingly you need a differ-
ent hosting provider for the Mongo database. There are several cloud based
solutions for this, you can use AWS, Azure, Google or your own server. Galaxy
and Mongo hosting is not expensive, but I haven’t set up an external app since
I’m currently having problems with user authentication and have to figure that
out first.

Three runtime environments should be used. One for development on your
own computer, secondly a staging server as intermediate used for testing, and
finally a production server where you run the publicly available app.

3.3.8 Development issues

Several issues and challenges in addition to the bedore mentioned Facebook
problem arose during development.

IDs

All Meteor objects are assigned their own ID, including users. My solution for
Facebook integration is to use Facebook’s own user ID for managing players

30

when playing a game, and this led to a few problems.
When a user responds to a challenge, she uses the Meteor.userID() as owner

to store the data about the game in the database. The gamemaster does not
have access to all user IDs, he only has access to his friends’ Facebook IDs.
This in turn means that the gamemaster does not have access to the players’
answers.

I solved this by automatically adding the Facebook ID as soon as the user
responds to a challenge. From then on the gamemaster will have access to the
status of the player’s game progression. There are other ways of achieving the
same thing, but this turned out to be an easy way out of the problem.

Return values from Meteor.call() and Meteor.apply()

The asynchronous functions Meteor.call() and Meteor.apply() caused a few
problems. The code flow in the client does not stop and wait for returned
values. Sometimes one can assign the result to a variable, which works fine
most of the time, but some of the methods return undefined instead of the
expected values.

Calling Meteor.apply() with the argument {returnStubValue: true} which
should give a result value does not necessarily work, unfortunately. This will
be even more of a problem when deploying to a production server because of
latency issues. I’ve tried several online suggestions, including using the recom-
mended callback functions, but there are still some calls that don’t work in this
manner.

The easy way to fix this is by publishing the relevant collections and then
do queries with find() and findOne() from the client without going through the
corresponding methods in “methods.js”. Methods should mostly be used where
no return value is necessary, like for database writing, or for operations where
you would set a session variable with the result.

Making iOS and Android apps

I had originally planned to make mobile phone apps in addition to the web
based version, but I’ve postponed this because of the Facebook issues. I have
on the other hand read a fair bit of information about Apache Cordova, and I
think it shouldn’t be too difficult to implement phone apps.

31

32

Chapter 4

Using the prototype

In this first version of the prototype I have implemented the simplest type of
challenges and responses: Questions and answers. This serves to show how a
game is set up and played. In later versions there will be the possibility of
choosing between several different types of challenges and responses (see table
2.1 on page 18).

As a father of three, I decided to make a demo game for doing household
chores. Any parent knows how difficult it can be to outsource tedious chores to
their children. In my family we use a sticker achievement system placed on the
fridge door as motivation. When the children have collected a given number
they get a reward. This can easily be made in MondoLudo instead.

4.1 Creating a game

The default start screen consists of little more than a Facebook login button and
a button for creating a game. In a full version it should be possible to choose
from existing public games here.

The visual look and feel should be possible to change, based on a number of
available templates. Ideally it should be possible to customize everything, like
adding your own logo and changing colour schemes.

If you already are a gamemaster and/or a player, you will see your games
here. In this case, we have not been logged in before, so there are no games
here yet.

A new game is added by clicking the “create game” button and typing in a

33

Figure 4.1: The start screen of MondoLudo

Figure 4.2: Adding a new game

game name. This in turn gives you three options: Manage players, add questions
or delete game.

34

Figure 4.3: Main game creation window

4.2 Adding challenges, responses and managing
players

Figure 4.4: Adding a question to a game

35

The gamemaster can enter game questions and answers, enter congratulation
message and rewards, as well as the question’s points. In a future version it
should be possible to include pictures, videos and soundclips both as challenges,
congratulation messages and rewards.

In addition it should be possible to have some sort of Google Map function-
ality, like adding geographical coordinates used as challenges, and automatically
completing a level when the user physically is at the requested location. This is
somewhat like geocaching and Pokémon Go, and could be used for setting up a
scavenger hunt. Another use case could be to track hiking, where users have to
visit physical locations, like in the Norwegian “TellTur”[22] application.

Figure 4.5: Managing players

The player list is based on which of your friends that have already signed up
and logged in at least once in MondoLudo. An invitation functionality should
be added at a later stage. In addition it should be possible to see player teams
here.

36

Figure 4.6: Playing the game

4.3 Playing a game

A new question added by the gamemaster in an ongoing game will show up
instantly on the players’ clients. The same applies the other way around; when
a player completes a level, the gamemaster will see this immediately on his client
as well. This is one of the key features in Meteor, instantly reactive updating
of data.

Ideally players should be automatically sorted and placed on a real time
leaderboard when playing.

37

Figure 4.7: Completing a question and getting a reward

Figure 4.8: Gamemaster’s view of current players

38

Figure 4.9: Adding a new question in ongoing game

Figure 4.10: Gamemaster’s view of a completed game

39

40

Chapter 5

Conclusion and further
work

5.1 Conclusion

I have implemented a web-based gamification framework in the JavaScript
framework Meteor. The first version of the framework is simple, but shows
that it is possible to use Meteor for these purposes. I’ve had a few challenges
while developing, and it is possible that Meteor is not a mature framework quite
yet. On the other hand, this is likely to change, as it is continuously developed
further, and has a strong user community.

5.2 Further work

5.2.1 Technology

As for now, Blaze is sufficient as the reactive client-server layer, but I think that
future versions should employ React or Angular instead. The main motivation
for this is to be an early adopter of the frameworks Meteor will focus on from
here onwards. In addition, both React and Angular are also used on other
platforms, so programming skills in these areas are useful in a real world work
situation for projects not based on Meteor.

41

5.2.2 Coding issues

Facebook integration issues must be resolved. I have to continue searching for
solutions to this problem. Stack Overflow has so far been unsuccessful, but I
will post a question there in hope of ideas about what might be the cause of the
problem.

Code wise I have wrapped all database write operations in methods. This
should be further investigated to make sure that users don’t get unauthorized
access to the database.

To avoid getting undefined return values from methods, the client functions
should query directly when possible.

5.2.3 Gameplay features

MondoLudo-games could be run in three modes:

• Personal - the user is both gamemaster and player. This could be used
for todo-lists or personal encouragement.

• Private - game with a gamemaster that invites friends.

• Public - anyone can play.

– Open - anyone can join a particular ongoing game.

– Closed - anyone can start a game and become gamemaster of games
defined and made public by other users.

Media

Functionality for the upload and usage of media like images, soundclips and
videos should be implemented. This can be used both in the visual look of
the application, as well as being used as custom challenges and rewards. Such
media should probably be hosted on an external provider other than Meteor’s
own architecture, as this has limitations when it comes to storage capacity,

The user experience will improve significantly if users can tailor their own
look and feel of their games, so a good start would be to make more templates.
The use of SCSS means that this should be fairly easy.

42

Geographical location

There should be implemented the possibilty of using geographical locations as
challenges and responses. In addition, it would be interesting to experiment
with augmented reality.

Chat client

A simple chat client should be added. This would allow communication between
gamemaster, players and teams while playing a game.

5.3 Commercialization

I would like to continue the development of MondoLudo after my thesis is sub-
mitted. Since there are, as far as I’ve found out, currently no similar products,
it would be interesting to see if there is a possibility of commercialization. The
domains mondoludo.com and mondoludo.no have been acquired for later use.

MondoLudo should be made available in three versions, both on web
and mobile:

• Free basic version with ads.

• Premium version without ads.

• Custom version for customers that would like to have implemented their
own design or have requirements not offered in the standard versions.

43

44

Bibliography

[1] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. From
game design elements to gamefulness: Defining ”gamification”. In Proceed-
ings of the 15th International Academic MindTrek Conference: Envision-
ing Future Media Environments, MindTrek ’11, pages 9–15, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0816-8. doi: 10.1145/2181037.2181040.
URL http://doi.acm.org/10.1145/2181037.2181040.

[2] Steffen Walz. The Gameful World : Approaches, Issues, Applications. The
MIT Press, Cambridge, Massachusetts, 2014. ISBN 978-0-262-02800-4.

[3] Odd Frank Vaage. Norsk mediebarometer 2015. Statistisk sentralbyr̊a
(SSB) / Statistics Norway, 2015. URL https://www.ssb.no/kultur-og-

fritid/artikler-og-publikasjoner/_attachment/262805.

[4] Entertainment Software Association. Essential facts about the com-
puter and video game industry, 2015. URL http://www.theesa.com/wp-

content/uploads/2015/04/ESA-Essential-Facts-2015.pdf.

[5] Kahoot! URL http://www.kahoot.it.

[6] Christopher Cabrera. Game the Plan : every sales rep’s dream, every
CFO’s nightmare. River Grove Books, Austin, TX, 2014. ISBN 978-
1938416545.

[7] Fabulous. URL http://www.thefabulous.co.

[8] Yu kai Chou. Octalysis. URL http://yukaichou.com/gamification-

examples/octalysis-complete-gamification-framework/.

[9] Andrzej Marczewski. Gamification Framework. URL http://www.

gamified.uk/gamification-framework/.

45

[10] Zachary Fitz-Walter. Achievement Unlocked: Investigating the Design of
Effective Gamification Experiences for Mobile Applications and Devices.
PhD thesis, Queensland University of Technology, 2015.

[11] Funifier. URL http://www.funifier.com/.

[12] Klint Finley. TechCrunch, 2012. URL https://techcrunch.com/

2012/07/25/andreessen-horowitz-keeps-eating-the-software-

world-with-11-2-million-investment-in-javascript-framework-

company-meteor/.

[13] Meteor Development Group, . URL https://guide.meteor.com/ui-ux.

html#view-layers.

[14] Discover Meteor. URL https://www.discovermeteor.com/blog/blaze-

react-meteor/.

[15] Meteor Forums. URL http://forums.meteor.com/t/why-blaze-2-if-

we-go-for-react.

[16] Isaac Strack. Getting started with Meteor.js JavaScript framework : learn
to develop powerful web applications in minutes with Meteor. Packt Pub-
lishing, Birmingham, UK, 2015. ISBN 978-1-78528-554-7.

[17] Stephan Hochhaus. Meteor in action. Manning Publications, Shelter Island,
NY, 2016. ISBN 978-1-617292-47-7.

[18] Richard Silverton (richsilv). URL https://github.com/richsilv/

meteor-cordova-notifications.

[19] Morten N.O. Nørgaard Henriksen (raix). URL https://atmospherejs.

com/raix/push.

[20] Douglas Crockford. JavaScript : The Good Parts. O’Reilly, Beijing Cam-
bridge, 2008. ISBN 978-0-596-51774-8.

[21] Meteor Development Group, . URL https://guide.meteor.com/using-

npm-packages.html#using-npm.

[22] TellTur (Friluftsr̊adenes Landsforbund). URL http://telltur.no.

46

List of Figures

1.1 Screenshot from the SAS mobile app 4
1.2 Screenshots from Fabulous’ Android app 5
1.3 Nissan Leaf’s tree on the drivers’ display 6
1.4 Carwings rankings . 7
1.5 Carwings player achievements . 8

2.1 Meteor framework overview . 13

3.1 Creating a Facebook app . 28
3.2 Configuring Facebook OAuth settings 28

4.1 The start screen of MondoLudo 34
4.2 Adding a new game . 34
4.3 Main game creation window . 35
4.4 Adding a question to a game . 35
4.5 Managing players . 36
4.6 Playing the game . 37
4.7 Completing a question and getting a reward 38
4.8 Gamemaster’s view of current players 38
4.9 Adding a new question in ongoing game 39
4.10 Gamemaster’s view of a completed game 39

47

48

List of Tables

1.1 Definition of framework terms . 10

2.1 Examples of challenges and responses 18

3.1 Description of source files . 24
3.2 Meteor packages used in MondoLudo 26
3.3 Collections used in MondoLudo 27

49

