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Assignment Text

Recent advancements in machine learning, and in particular Convolu-
tional Neural Networks (CNNs), have yielded excellent object detection
and classification models. However, these techniques require vast datasets
of labelled training images, which are very labour intensive to produce.

As a result, progress in new object domains with many potential
applications, such as mushroom detection in forest scenes, is limited by
lack of training data.

Based on a recent paper by Peng et. al. [PSAS14] and the performance
of object detection algorithms on art [RDGF15], this project will explore
reducing the dependence on manually collected and labelled datasets by
using 3D graphics to generate datasets which can be used as training
data for a model that detects real objects.

The thesis should comprise a literature review of related techniques
and propose a framework for data generation, labelling, and model training
for a specific class of objects. Evaluations against existing methods should
also be performed. Such a framework can then be used as a step towards
a system for real-time mushroom detection in forest scenes.






Abstract

Recent advancements in machine learning, and in particular deep
neural networks, have yielded excellent object detection models. However,
these techniques require vast datasets of labeled training images, which
are prohibitively labor intensive to produce.

This thesis explores an alternative approach to obtaining labeled
training data, namely using 3D models of objects and modern game
engines to generate automatically labeled synthetic training data. A
simple approach for generation similar to the one used by Peng et al.
[PSAS14] is presented requiring minimal user input, making dataset
generation virtually free.

The real-time CNN object detection model You Only Look Once
(YOLO) is trained with our synthetic data to detect cars, and its perfor-
mance is evaluated on real images of cars from the KITTI and PASCAL
Visual Object Classes (PASCAL VOC) public datasets, with up to 11.9%
and 22.2% Average Precision (AP) respectively. This is significantly lower
than state-of-the-art detection systems that use natural image training
data, but on par with the winner of the PASCAL VOC challenge in 2008,
and we outline multiple avenues for further research that we believe could
significantly boost the performance.

Performance of models trained on datasets with different features are
evaluated and compared. It is found that aspect ratio, realistic background
imagery, and object occlusion are important factors for performance. This
is partially contradictory to the findings of Peng et al. [PSAS14] where
they find their object detection system to be largely invariant to the
background imagery. This discrepancy is likely caused by differences
between the two object detection systems employed.

We argue that synthetic datasets can be valuable for training of
detectors of novel categories where there is a lack of training data, as
well as a technique for controlled experiments to get insight on how
Convolutional Neural Networks (CNNs) responds to different attributes
in training data.






Sammendrag

Nylige fremskritt i maskinlaering, og spesielt dype nevrale nettverk, har
gitt utmerkede objektgjenkjennings-modeller. Disse teknikkene krever
imidlertid store datasett med merkede treningsbilder, som er uoverkom-
melig arbeidskrevende & produsere.

Denne masteroppgaven utforsker en alternativ tilnserming til a skaf-
fe annotert treningsdata, ved & benytte 3D-modeller av objekter samt
moderne spillmotorer til & generere automatisk merket syntetisk trenings-
data. En enkel genereringsmetode, lignende den presentert av Peng et al.
[PSAS14], som krever minimalt med manuelt arbeid blir presentert og
gjor datasett-generering tilnsermet gratis.

You Only Look Once (YOLO), en sanntids CNN-basert objektgjenkjennings-
modell, blir trent med vare syntetiske datasett til & gjenkjenne biler.
Presisjon pa opp til 11.9% og 22.2% Average Precision (AP) blir méalt
pa ekte bilder av biler fra henholdsvis datasettene KITTI og PASCAL
Visual Object Classes (PASCAL VOC). Dette er signifikant lavere enn
state-of-the-art detekteringssystemer som benytter store datasett med
naturlige bilder som treningsdata, men pa niva med vinneren av PASCAL
VOC i 2008 samt andre metoder nar tilgang pa data er begrenset. Vi
skisserer flere veier for videre forskning som vi mener kan gke ytelsen
betraktelig.

Ytelsen til modeller trent pa datasett med flere ulike egenskaper
blir evaluert og sammenlignet. Vi finner at storrelsesforhold pa bildene,
realistiske bakgrunner samt tildekking av objekter er viktige faktorer
for ytelsen. Dette er til dels motstridende med funnene fra Peng et al.
[PSAS14] hvor de fant at deres objektgjenkjenningssystem var i stor grad
ikke avhengig av realistiske bakgrunner. Dette er sannsynligvis forarsaket
av forskjeller mellom de to objektgjenkjenningssystemene som benyttes.

Det argumenteres for at syntetiske datasett kan veere verdifulle for
& trene gjenkjenningssystemer i nye kategorier hvor det per i dag ikke
finnes treningsdata, i tillegg til & benyttes i kontrollerte eksperimenter
for & utforske hvordan CNN-er responderer pa ulike egenskaper ved
treningsdata.
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Introduction

Computer vision is the science of analyzing and understanding the content of images
automatically, using computers. There are multiple types of information that can be
extracted from images, including what objects are visible, detecting events happening
or finding the position of objects. Good vision systems can automate various manual
tasks and remove the need for human labour, or open up entirely new possibilities by
enabling applications that were previously too time consuming or data intensive to
accomplish. Object detection systems are already in use today in pedestrian detection
systems [SKCL13], face detection [VJ01] and in industrial processes|MK91].

As an example of a novel object detection application, we envision an embedded
system that uses a camera to take pictures or video of its surroundings and, employing
computer vision, identifies potential mushrooms and alerts the user. Such a system
could be deployed using autonomous scouting drones which would map mushroom
locations to reduce the time spent of commercial harvesters to find them. Chanterelles
for instance, are still commercially harvested in the wild, and with global chanterelle
commerce surpassing a billion dollars in the early 2000s [PNDMO03], effectivisation of
mushroom harvesting would be valuable.

However, there are numerous challenges involved in constructing such a system,
including building an accurate mushroom detection machine learning model and
making such a model fast enough to run in real time on an embedded system. These
challenges map onto three ongoing research areas that are far from solved: accurate
object detection models, embedded computer vision and real-time object detection.

In the case of accurate object detection models, advances in the machine learning
field of Convolutional Neural Networks (CNNs) have improved the accuracy of such
systems considerably in recent years [KSH12]. However, deep neural networks require
a vast amount of labeled training data to produce good detectors. For many problem
domains, including our mushroom detection proposal, no such dataset exists, and
creating it can be prohibitively labour intensive.
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When it comes to embedded platforms, computer vision techniques are constrained
by limited computational power, which is especially problematic when it comes to
using Deep Neural Networks (DNNs), since they are both computationally and
memory intensive. There is a lot of promise in using smart phone platforms, as they
come with powerful hardware, including Graphics Processing Units (GPUs), and a
camera. However, those development platforms are still immature, and we are only
now starting to see systems and libraries utilizing the GPUs on smartphones for such
applications [OGK™15].

Finally, real-time object detection has been possible for a long time, for certain
objects, using methods such as the Viola Jones face detector [VJ01]. These techniques
are heavily object specific and using them for a new object type is non-trivial. Recent
advances in CNN-based object detection have, however, also showed promise of real-
time behavior with state of the art performance. [RHGS15, RDGF15] Additionally,
efforts have been made to let CNNs take advantage of increasingly powerful mobile
GPU architectures.

Of the three challenges outlined, building an accurate object detection model with
the lack of good training data pose the most significant challenge, and it will have to
be solved in order to realize the envisioned mushroom detection system. Therefore,
this thesis will focus on exploring alternative solutions for training CNNs without
pre-existing datasets.

Various approaches have been used to reduce the amount of needed training
data. It has been shown that using Neural Networks (NNs) trained on a big
labeled dataset and then retrained for another purpose, reduces both the amount
of data needed [GDDM13, EBC'10], as well as the time to convergence. Another
established technique is augmenting the dataset by adding multiple versions of the
same pictures with minor variations, such as cropping, and brightness and coloring
changes [WG15, RDGF15, SSP03]. However, even with these methods one needs
thousands of labeled images.

While these means of data augmentation help increase the performance of networks
trained on small datasets, and reduce chances of overfitting, significant work is still
required to compose a dataset. We are therefore interested in alternatives that
can replace the data collection process altogether. Previous research [RDGF15]
have found that certain object detection systems perform well when trained on
natural image data and evaluated on datasets of paintings, such as the Picasso
Dataset [GHBM14]. This indicates that the abstractions learned by neural networks
are powerful enough to cross between real imagery and less photo-realistic images.
Further, Peng et al. [PSAS14] have investigated DNN detectors trained on images
rendered from 3D models of objects.
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Today, a large amount of 3D models are freely available online . Additionally,
multiple game engines have recently allowed free use for academic and non-commercial
projects. Downloading and importing models in game engines and then rendering
3D scenes to a large set of images is now a computationally trivial task, and can be
accomplished on a regular laptop computer. Several game engines support custom
scripting, which means that meta information such as the position of rendered objects
in 2D space can be exported along with the images.

Inspired by these findings, the goal of this thesis is to explore the viability of
training DNN-based object detection models on synthetic data generated with modern
game engines and to explore what factors are important to the quality of synthetic
datasets.

We hypothesize that if such a technique works well, it should work for any object
type. Since there are no good benchmarks for testing mushroom detectors, it was
decided to build a system for detecting cars in pictures and use the KITTI [GLU12]
computer vision competition data to measure the results. The rest of the thesis will
focus solely on exploring the viability of such an approach by conducting experiments
that investigate what is required of a synthetic dataset in order to train a network
that generalizes to natural images.

1.1 Structure of the Thesis

The thesis is structured as follows: The background chapter gives a brief introduction
to the history of object detection and public datasets before delving into Artificial
Neural Networks (ANNs) and how they are being used for object detection. It then
goes on to explore and compare relevant object detection systems and the use of
synthetic datasets. The methodology chapter goes into more detail on our method
for dataset generation and lays out the experiments to be performed. The results
chapter covers details about our setup and shows relevant results that the discussion
chapter goes on to discuss. Finally the conclusion chapter summarizes the thesis and
draws a conclusion followed by suggestions for further work.

Thttps://www.cgtrader.com/, http://www.turbosquid.com/, http://www.clara.io/






Background

2.1 Object Detection

Object detection is a subfield of computer vision where the goal is to create a computer
program that can identify and locate objects in an image. For instance, given the
image in Figure 2.1a the goal would be to predict the bounding boxes around the
objects as shown in Figure 2.1b.

(a) An example image (b) Detected bounding boxes overlaid,
with bounding boxes for each class in dif-
ferent colors. Cows are outlined in green,
and cars in red.

Figure 2.1: Example of image with and without detected bounding boxes applied

Object detection is different from the similar challenge of image classification
where the goal is to find labels that describe an image, which in the case of Figure 2.1a
could be cow, car and road.

Machine learning algorithms have become an integral part of object detection
research, as the problem is highly complex. Machine learning is the study and

5
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construction of algorithms that can learn from examples instead of being explicitly
programmed. This is especially useful for high-dimensional and complex problems
where it is much easier to get example data than to program a direct solution. Example
applications include voice recognition, natural language processing, classification of
DNA sequences, fraud detection on credit cards and computer vision.

Machine learning is often divided into supervised and unsupervised machine
learning. Unsupervised learning focuses on finding structure in data where you get
no extra information at all, an example is to cluster similar words given a lot of
textual data. Supervised learning, on the other hand, is given a labeled training set
with example pairs of input-output pairs. The goal is then to learn from this data
and be able to predict the right output when given new data that was not part of
the training data. For object detection, the training data would be pairs of images
(input) and bounding boxes for objects (output), and after training on this data it
should be able to predict bounding boxes on a previously unseen image.

2.2 Public Datasets

With the rise of the Internet, researchers started to compile large public datasets
that any other researcher could use for their computer vision research. This has
had a great impact for multiple reasons. Perhaps most importantly this has made it
possible to compare performance for different models, as they can now be evaluated
on the same data.

These datasets provide a large collection of varied images, depicting a defined
set of object categories. Along with the images, they provide annotations for each
image, denoting the position of these objects by listing the coordinates and sizes
of the correct bounding boxes. These correct bounding boxes are often referred to
as the ground truth bounding boxes. Because it is essential to test an algorithm
on data it has not seen during training, the datasets are divided into three parts:
training, validation and test data. Researchers train their models only on the training
data, and then measure their performance, how good they are at predicting the
right answer, on the validation data. If the performance is measured on data the
model has already seen during training, the results cannot be trusted because of a
common problem with machine learning known as overfitting. Overfitting is when
a model learns something that was specific to data it was shown, but which does
not generalize to other data. An extreme example would be if it had only seen red
cars on a road during training. It then might label anything red and call it a car as
that would work well for the data it was trained on. In this case it would achieve
very good results on the training data, but if it was tested on a separate validation
set, this overfitting would not be helpful any longer, and it might miss a gray car
or label a red house as a car. The reason for another separate test dataset is to
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prevent a more subtle form of overfitting problem. Every time a researcher makes a
choice of a hyperparameter — a parameter that affects performance but is not found
automatically — based on what value gives the best result for the validation set, she is
fitting the parameters to the validation set and might start overfitting after a while.
In the case of the public dataset competitions this test dataset is used to measure
the final scores and kept secret from the researchers.

2.3 Measuring Performance of Object Detection

To compare how well two different object detection systems perform on an evaluation
dataset, a score for the accuracy of each of them is useful. The measure used
is normally Average Precision (AP), a metric derived from two measures of false
positives and false negatives: precision and recall.

Recall denotes the amount of ground truth bounding boxes that were accurately
predicted:

True positives

(2.1)

Number of ground truth boxes

Precision denotes the number of predictions that were correct:

True positives

2.2
True positives + False positives (2:2)

A true positive is found when there is a significant overlap of a prediction made
by the detector and a ground truth bounding box. This is defined by the Intersection-
Over-Union (IOU) of a prediction and a ground truth box, the intersection of the
two boxes divided by the union of their areas. A typical threshold value signifying a
correct detection is an IOU of 50% [EEG™14].

Predictions made by the model are not absolute — each prediction has its own
confidence score denoting how certain the prediction is. By choosing a minimum
confidence value, the number of predictions will be reduced. Thus, the precision is
increased since the number of false detections decreases. However, higher threshold
values for confidence also mean that recall decreases. Selecting a good threshold
value is therefore a matter of finding a good balance between high recall and good
precision.

The AP measure handles the different threshold values by computing precision
and recall values for a high number of different thresholds, and averaging the precision
score for each recall value. This can also be seen as the area under a precision-recall
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curve. See Figure 2.2 for an example of two precision-recall curves, the 2.2a shows a
curve with an AP of less than 35% while 2.2b gives a curve with an AP of over 82%.
Notice the difference in area under the curve.

1\1\\\\\\\”1\\\\\\\7 17 L L L L L
0.8 | | 0.8 | |
o L i o [ i
206 - § 206 - -
2 N ] 2 N ]
Q [ i o [ -
E 0.4 ; *: E 0.4 ; *:
0.2 . 0.2 .
O:JJ\MHXL\LMHX\H: O:JJ\XH\XL\LX\HX\H:
0 02 04 06 08 1 0 02 04 06 08 1
Recall Recall

(a) A poor precision-recall curve with (b) A good precision-recall curve with
an AP of 34.96% an AP of 82.42%

Figure 2.2: Average Precision is defined as the area under the precision-recall curve.
The curve of a good model should be as close to the top-right corner as possible.

2.4 History of Object Detection Systems

Early object detection systems searched the image by comparing values with a picture
of the object they were looking for using some local feature descriptor like Sum of
Squared Differences (SSD), Scale-Invariant Feature Transform (SIFT) [Low99] or
Speeded Up Robust Features (SURF) [BTGO06]. These feature descriptors were then
combined with machine learning techniques. An example is the 2001 Viola and Jones
system where they used a simple feature descriptor combined with a supervised
machine learning technique to achieve fast and accurate face detection [VJO1]. This
technique worked so well it is still in use, but it does not generalize well and is highly
specific to front-facing faces. In 2005 Josef Sivic et al. used unsupervised learning
to cluster SIFT features into more powerful feature [SRE*05] inspired by the Bag
of Words machine learning technique. In the same year Dalal and Triggs published
a paper introducing a simple feature descriptor they called Histogram of Oriented
Gradients (HOG) and combined with a supervised learning algorithm known as
SVM [CV95] they outperformed previous algorithms for pedestrian detection [DT05].
Using the HOG feature Felzenszwalb et al. published a paper in 2008 introducing a
technique known as Deformable Parts Model (DPM) where they model an object as
a combination of multiple parts detectable with HOG.

In the early 2010s a machine learning technique known as Deep Neural Networks
(DNNs) — a type of large Artificial Neural Networks (ANNs) — started outperforming
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other techniques in multiple fields, such as speech recognition [GMH13] and in 2012
DNN-based methods caught the attention of the computer vision community, when
Krizhevsky et al. placed first in the ImageNet image classification challenge. With a
top-5 error rate! of 15.3% [KSH12], compared to 26.2% achieved by the second-best
entry for that same year, they showed that DNNs could outperform other methods
by a significant amount. The year after, Convolutional Neural Networks (CNNs)
were applied to object detection by Girshick et al. [GDDM13], achieving a mean
Average Precision (mAP) of 53.3% on PASCAL Visual Object Classes (PASCAL
VOC)2012, an improvement of over 30% relative to the previous best result of 35.1%
mAP reported by Uijlings et al. in their 2013 paper [UvGS13]. As of June 2016
the top object detection results for PASCAL VOC, ImageNet and KITTI Vision
Benchmark Suite (KITTI) are based on DNN.

As the object detection system utilized in this thesis, You Only Look Once
(YOLO), is a DNN the next section will give an overview of how they work as well
as introduce object detection systems based on DNNs including YOLO.

Artificial Neural Networks (ANNs)

Based on the early Neocognitron model by Fukushima [FM82] neural networks
gained popularity in the early 90s after three groups independently discovered a
very effective technique for training them known as back propagation in 1985 and
1986 [Par85, Cun85, RUMS6]. (Another group discovered a similar technique in 1974
[Wer74], without catching the attention of the machine learning community.) However,
while it remained the state-of-the-art for reading handwritten digits [CBD90], focus
shifted to other machine learning algorithms in the late 90s after the Neural Networks
(NNs) failed to achieve state-of-the-art performance.

The recent resurgence of neural networks is driven by the good result of big
networks that requires today’s fast Graphics Processing Units (GPUs) [RMN09] and
access to very large datasets, none of which were available in the 90s.

In addition to the extra data and computation, there has been a couple of key
innovations that enabled even deeper networks, some of which will be covered in
this section. Using rectified linear units as the nonlinearity instead of previously
common ones like tanh or the sigmoid function made networks converge quicker,
autoencoders allowed for unlabeled pre-training that lets you get away with less
labeled data [HOT06, HO6, BLPT07, PCCo06], and dropout (section 2.4.1) helped
reduce overfitting of big networks [HSK*12, SHK ™ 14].

1In the ImageNet image classification challenge each image has a correct label. The competing
algorithms are given five guesses per image and the top-5 error rate is the percentage of images
where five guesses did not include the correct answer. 0% is a perfect score.
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Input Hidden Hidden Output

layer layer layer layer
Input #0 — ?/}Z()]

Input #1 — g9

Input #2 — g9

Input #3 —

Figure 2.3: Graphical representation of an example neural network. Each circle
corresponds to a node with value y/. Each arrow represents a directional connection
between two nodes.

2.4.1 The Structure of Artificial Neural Networks

An artificial neural network contains multiple layers of “neurons”; or nodes, where
each node has connections to the nodes from the previous layer as seen Figure 2.3.
The first layer is referred to as the input layer since the nodes in this layer is set to
the input values. Conversely, the last layer is referred to as the output layer, since
this layer will contain the output of the neural network after evaluation. Any layers
in between are called hidden layers, as they are not directly observable when you run
an evaluation, but calculate intermediate results. Note that the number of hidden
layers as well as number of nodes in every layer, including the output layer, varies.
When a neural network has multiple hidden layers it is often referred to as a deep
neural network or DNN.

Each connection between nodes has an associated weight. Evaluation of the
network is done by setting the values of the nodes in the input layer to the input
data, and the values of the nodes in the next layer are then calculated according to
the following equation

Ni—1t

vl =F(OY wixyl™h) (2.3)
=0

where yf is the value, often referred to as the activation energy, of the ith node
in layer j, f is some non-linear function, N7 is the number of nodes in layer j, w;
is the weight of the connection between the current node and the ith node in the
previous layer that has the activation energy yg -1



2.4. HISTORY OF OBJECT DETECTION SYSTEMS 11

This is done for every layer in sequence until the output layer is reached, the
output of the network is the activation energies of this final layer.

To make classification predictions with a neural network one typically normalizes
the values of the last layer, using a function known as the softmax function, such
that the values of all the final nodes sum to one. Each node of the output layer is
then interpreted as the prediction probability, or confidence, of the input being of a
specific class. For instance, if the network is used to distinguish between cats, dogs,
cars and mushrooms, the output of the final layer [0.7,0.3,0, 0] might indicate a 70%
confidence that the input picture was a cat, 30% that it was a dog and 0% car or
mushroom.

There are different connection patterns possible between the different layers. In
Figure 2.3 and equation 2.3 layers are fully connected, that is, every node is connected
to every node in the previous layer, but this is not always the case. A closer look
at an important connection pattern for NNs that work well on images, known as
Convolutional Neural Networks (CNNs), is given in subsection 2.4.1.

Training Neural Networks; Backpropagation

The connection weights change the complex function calculated by the network as
a whole and are the parameters being optimized during training. This is where
the backpropagation algorithm [Wer74, Par85, Cun85, RUMS6] mentioned in the
introduction applies.

A cost function is defined that is to be minimized with regards to the weights
over a training set of examples (x,y). This is typically a measure of how wrong a
prediction is and is defined in terms of a prediction and the correct answer, which
is available during supervised learning. A number of minimization algorithms can
be used, a popular and effective algorithm is Stochastic Gradient Descent (SGD)
[LBOM12], where you shift the parameters a tiny amount in the opposite direction
of the gradient calculated over a random subset of the training data. Drawing a new
random subset of the training data for each iteration is the stochastic part of the
algorithm. While there are many optimization algorithms that are more advanced,
SGD has shown best performance for large scale networks [BB0S].

Using backpropagation to train a network, you can proceed in the following
manner with a training example (z,y):

1. Set the input layer to z and do a forward pass. This gives an estimated result
at the output layer v/’
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Figure 2.4: Selected units from two convolutional layers. Unit 1 in the second layer
has unit 1, 2 and 3 in the input layer as its receptive field. Note how changes to node
0 and 4 do not affect this node at all. The node in the last layer has a receptive
field of all three nodes in the second layer and all 5 input nodes. This is convolution
in one dimension, in two dimensions, the receptive fields would be rectangles. The
matching colors correspond to shared weights.

2. Calculate the gradient of the cost function of 3’ and y with respect to the
network weights by propagating the errors backwards through the network.

3. Use the gradient to perform a step in your chosen minimization algorithm.

4. Repeat.

Convolutional Neural Networks (CNNs)

From Hubel and Wiesels work on monkey brains in 1968, we know that their visual
cortex contains cells that are responsive only to a subset of the cells in the retina,
and these cells are spatially close [HW68]. Cells that affect a cell in the next level of
the hierarchy are called the cell’s responsive field. This organization makes sense,
as visual imagery is highly local, a mushroom in the center of your vision is still a
mushroom even if a lot changes in your peripheral vision.

Inspired by this, Lecun et al. introduced in 1990 a technique known as convolu-
tional neural networks, or CNNs. Their paper applied neural networks to handwritten
digit recognition [CBD*90], where they used the raw pixel values of a 16x16 pixel
image as direct input to the network.

A CNN is a neural network that contains one or more layers with a convolutional
architecture, as can be seen in Figure 2.4. In a convolutional layer each node is
connected only to a spatially confined area of the layer before it, its receptive field as
it were. As CNNs is an important technique for applying neural networks directly
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on pixel values in a 2D image, the receptive field is usually a NxN square. All nodes
share the size of the receptive field, but for each node the center is shifted by a given
offset. The offset and the size of the receptive field varies between architectures and
affects how much the receptive fields overlap. The great innovation from [CBD190]
was to group a set of nodes that cover the whole input with their receptive fields
into feature maps that share the exact same weights, as illustrated by the colors in
Figure 2.4, something that greatly reduces the amount of parameters in the model
and makes training large convolutional layers feasible. A convolutional layer usually
consists of multiple feature maps that each span the input with their receptive fields.

The name convolutional stems from the mathematical convolution operation
where you shift a window of weights over an image. The weights are multiplied with
the underlying values and summed together to produce a value in the new output
image. This is very close to what the convolutional layers are doing. It is easy to see
that the first few layers are performing operations, such as edge detection, which is
commonly achieved using convolution in image processing.

Subsampling with Max-Pooling

Convolutional layers are often followed by a subsampling layer, where the most
common technique is a mazx pooling layer. The goal of subsampling is twofold. Firstly
it reduces the size of any subsequent layer, reducing the complexity of the model
and thus allowing substantially deeper networks. Secondly it provides some location
invariance if the subsampling is performed in the right way. The most common
subsampling method in modern NNs is known as max-pooling and works as follows.
A node in this layer is connected to a number of nodes in the previous layer, say
a 2x2 "receptive field", and gets its value by choosing the maximum value of those
nodes.

While pooling layers give locational invariance which increases accuracy when
detecting objects, they are also inherently losing potentially valuable location infor-
mation that could be used for localization of the detected object. Some methods
have been proposed to use location information directly from a deep convolutional
neural network, but supplement it with a network that learns the offset [TGJT14].

Reducing Overfitting of Big Models Using Dropout

Overfitting occurs when a machine learning technique learns to distinguish classes
based on random noise in the training set that happens to be useful for the classifica-
tion, but which does not generalize outside the training data. When this happens,
the algorithm will perform very well on the test data, but will lose a lot of accu-
racy on previously unseen data. The risk of overfitting increases with the ratio of
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(a) A fully connected neural network. (b) The same network after applying
dropout. The dropout is applied ran-
domly for each iteration of training,
but not for evaluation.

Figure 2.5: A figure from [SHK™14] illustrating the dropout technique.

ber of t
DUImDEL of PATAINEESS . Thys, because deep neural networks have a vast number of
amount of training data ’

parameters, often in the millions or more, overfitting is a serious concern.

An effective technique to reduce overfitting in big networks known as dropout
was first introduced by Hinton and Srivastava et al. in 2012 [HSK*12] and later
improved in 2014 [SHK'14].

The dropout technique works by dropping random nodes and all their connections
during training. See Figure 2.5 for an illustration. This makes specific features from
the training set unreliable to the network as those units may be dropped, forcing it
to generalize better. In their 2014 paper [SHK*14] Srivastava and Hinton et al. show
significant improvement for a variety of applications, including handwritten digit
recognition from the MNIST dataset [LBBH98], image classification on ImageNet
and clean speech recognition on the TIMIT dataset [GLFT93]. They also showed
that it takes roughly 2-3 times as long to train compared to the same network
without dropout as each iteration has to calculate the gradient for a different random
architecture [SHK " 14].

Using Pre-trained Models

When training a deep neural network on different vision tasks with raw pixel data as
input, a lot of similar functionality will be found in the first few layers, even though
one network might be trained to distinguish between a thousand categories of images
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including dogs and cats [SLJT 14, HZRS15, ESTA13] while the other one can recreate
the artistic style of an artist on arbitrary images [GEB15].

Based on this intuition, it would seem wasteful to train new networks completely
from scratch each time. And experiments show that you can often save a lot of
training time as well as get away with much smaller training sets by setting the weights
of the first layers to the weights of a pre-trained model instead of using random initial
weights before training [GDDM13]. A lot of the object detection papers covered in
section 2.4.2, such as YOLO [RDGF15] and Faster R-CNN [RHGS15] use models
pre-trained on the ImageNet dataset [DDST09).

Another technique, known as autoencoding, to get good initialization weights in
the network before training by doing unsupervised pre-training was discovered by
Hinton and Salakhutdinov in their 2006 paper [H06]. It works by training a network
to produce the same output as it gets as input. This sounds trivial, but if any layer
is smaller than the size of the input, the network is forced to learn a compression,
which means it has to discover the structure in the images to be able to represent it
with less data. This compression is a good starting point for a CNN to be trained on
similar images.

2.4.2 Object Detection Networks

This section introduces a few different CNN-based object detection models leading
up to the YOLO system that we have chosen for this thesis.

R-CNN

;
. :
ol Py S R CNNIN, 5

2. Extract region 3. Compute 4. Classify
proposals (~2k) CNN features regions

Figure 2.6: Illustration of the R-CNN architecture from the paper [GDDM13]. It
illustrates how an input image is split into many regions, each region being warped
into the correct input size and fed through the CNN that produces a feature vector
which is fed to a number of linear Support Vector Machines (SVMs) in step 4.

In 2013, inspired by the work of Krizhevsky et al. on the CNN-based classifier
that outperformed earlier classification techniques [KSH12], Girshick et al. proposed
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an object detection system that combined a similar CNN with region proposals
[GDDM13]. In the period between 2010 and 2012, there had been little progress in
object detection performance, and the introduction of Deep Convolutional Neural
Networks (DCNNs) started a new era in object detection research. While the
then best-performing systems had been based on more low-level features like SIFT
[Low99] and HOG [DT05] combined with machine learning techniques such as SVMs,
the authors showed that a detection algorithm based on a neural network could
outperform existing systems. Measured in mAP, R-CNN saw a 30% increase over
the previous best result in VOC 2012 [EEGT14].

The R-CNN object detection system works in three steps. An overview of the steps
can be seen in Figure 2.6. The first step generates around 2000 category-independent
region proposals. In R-CNN, Selective Search [UvGS13] is used for this step, but
other region proposal algorithms may also be used interchangeably. The region
proposals are resized and warped into a 227x227 pixel size representation, which
are used as input to a CNN. The CNN then does forward propagation through five
convolutional layers and two fully connected layers, and outputs a 4096-dimensional
feature vector. The final step is a set of class-specific linear SVMs, that scores each
feature vectors for a specific class. Based on all the scored regions for all the classes,
only the highest-scoring classes for each overlapping region are kept.

What makes the algorithm efficient is the fact that the parameters in the CNN
are shared across all categories. This has the benefit that the first step is executed
only once for all classes, and the evaluation of the CNN is only done once per region
from the first step, significantly reducing the computational cost. Only the last
step, computing the dot product of features and SVM weights is done per-class.
The dimensionality of these feature vectors is also relatively low compared to other
approaches, at 4000 [UvGS13]. This lowers the memory demand and computation
required for the dot product operation in the last step.

R-CNN still has some drawbacks. Most importantly, the training is slow, and
can take up to 2.5 GPU-days? when training a deep network on 5000 images as
described in the paper. This is caused by the complexity of the training pipeline,
consisting of fine-tuning a convolutional neural network, fitting SVMs to the features
of the network, and learning bounding-box regressors. Detection is also slow, taking
47 seconds per image on a desktop GPU [Girl5]. One of the major bottlenecks of
the R-CNN system on evaluation time is the fact that it needs to run one full CNN
forward propagation for each region proposal, which is usually in the thousands for
any given image.

2A GPU-day is 24 hours on one GPU. For instance if a computation takes 12 hours on 4 GPUs,
then that is 2 GPU-days.
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Fast and Faster R-CNN

Outputs: bbox
softmax regressor

Rol
pooling

EG

Rol feature
vector

For each Rol

Figure 2.7: The Fast R-CNN architecture as illustrated in the paper [Girl5]. ConvNet
is another term for a CNN, Rol stands for regions of interest and FC for a fully
connected layer.

Fast R-CNN was proposed in 2015 by Ross Girshick [Girl5] to improve the training
and testing speed over R-CNN, while also improving the detection performance in
mAP from 62% to 66% on VOC 2012 [EEGT14]. The training speed is increased
by a factor of 9, and the testing speed is up to 213 times faster than the original
R-CNN implementation.

As shown in Figure 2.7 the Fast R-CNN network takes an entire image as input
along with a set of regions of interest. Several convolutional and max pooling layers
first generate a convolutional feature map. Next, a region of interest layer extracts
one feature vector from this map for each object proposal. These feature vectors
are finally passed through a series of fully connected layers that end in two output
layers: a softmax layer producing a probability estimate for each object class, and a
bounding box regressor returning refined bounding-box positions for each class.

Fast R-CNN shows significant speed-ups in detection time, but still relies on
slow algorithms like selective search for generating initial object proposals, which
limits its overall detection speed. Selective search [UvGS13] typically requires
around 1-2 seconds per image [RHGS15], limiting the frame rate to under 0.5fps and
overshadowing the benefits of speeding up the detection network further (e.g. using
smaller models).

Faster R-CNN; released shortly after Fast R-CNN [Girl5], presents a new tech-
nique that does away with the largest bottleneck remaining in Fast R-CNN, namely
the region proposal computation [RHGS15], while increasing the mAP from 66%
to 70.4% on VOC 2012 [EEG'14]. They introduce a Region Proposal Network
(RPN) which enables almost cost-free region proposals by having the RPN share
convolutional features with the detection framework.
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The idea for the RPN is based on the intuition that since object proposals are
not needed by Fast R-CNN before after the first convolutional layers, and the feature
maps outputted after these five layers can be used to generate region proposals, a
lot of computation may be saved by integrating the region proposals in the same
network. The RPN is constructed by adding two new convolutional layers on top of
the shared convolutional layers of Fast R-CNN.

Since most of the computation in the RPN is shared with the detection network,
only the cost of the two extra layers have an effect on the speed of the whole detection
pipeline. The effective running time for the RPN is therefore only 10 milliseconds.

The complete pipeline achieves 5 fps even on the very deep VGG16 [SZ14]. Using
the smaller ZFnet [ZF13], the frame rate increases to 17 fps, trading for a slight
reduction in mAP. All the timings are measured on a K40 GPU [RHGS15].

You Only Look Once (YOLO)

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 2.8: The YOLO system as presented in [RDGF15] is simple seen from the
outside since all the processing is accomplished by a single deep CNN.

YOLO, published in 2015 by Redmon et al. [RDGF15], takes a different approach
than the classifier-based systems we have looked at so far. Its predictions are based
on the entire image and made using only a single network evaluation, as shown in
Figure 2.8. This means that the NN in YOLO can be trained end-to-end directly
for detection. The reported detection frame rate is 45 frames per second, which
is more than 100x of Fast R-CNN and 3x of the fastest Faster R-CNN model. A
smaller version of the YOLO network even reports a detection speed of 155 frames
per second (fps).

YOLO works by dividing the input image into a S x S grid (Figure 2.9). Each grid
cell detects objects that fall within its bounds. The grid cells each predict B bounding
boxes with corresponding confidence scores, which reflect both the confidence that
the prediction contains an object and how accurate the location of the box is.

The standard YOLO network architecture is very deep, with 24 convolutional
layers and 2 fully connected layers. Fast YOLO uses a smaller network with only
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Figure 2.9: YOLO processes the image subdivided in a 7x7 grid structure. It predicts
two bounding boxes for each cell. As a post-processing step, non-maximal suppression
removes overlapping bounding boxes for the same class.

9 convolutional layers, and is thereby trading off prediction accuracy for higher
speed and lower memory consumption. Both versions have a final output tensor with
dimensionality S xS x 30 for 20 classes (S is set to 7 in the described implementation).

When images are processed by the NN, they are first scaled to a fixed resolution of
448 X 448 pixels. This means that images of differing aspect ratios will be stretched
in different ways. Therefore, it is important to consider the format of the images
where detection will be performed when constructing training data for YOLO.

The architecture of YOLO has some advantages, in addition to being very fast.
Since predictions are based on the entire image, YOLO is less likely to predict
background as objects, because YOLO sees the larger context of the image than
detectors which only classify regions. The grid architecture also has some drawbacks,
however, as it causes less precise localizations than region-based classifiers. In
addition, a limitation of only two predictions per grid cell means it can easily miss
small objects in cases where multiple objects are close together.

Another good property of YOLO that is especially interesting to us, is the way the
model generalizes to more abstract representations of objects. The paper describes an
experiment where the network is trained only on a subset of the VOC data [EEGT14]
(natural images) and then tested on the Picasso Dataset [GHBM14] for the person
class (paintings, see Figure 2.10). YOLO shows only a small reduction in AP from
VOC 2007 to the Picasso Dataset, from 59.2% to 53.3%. The paper attributes this
to the fact that YOLO models the size and shape of objects rather than low-level
cues like texture and lighting, since it looks at the whole image during detection.
Other object detection frameworks see a more dramatic reduction in performance,
such as R-CNN. R-CNN depends on selective search for bounding box proposals,
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Figure 2.10: YOLO detections on the Picasso Dataset [GHBM14, RDGF15]. This
shows that YOLO generalizes well to more abstract representations of the objects it
has been trained to detect.

which is highly tuned for natural images, and this may explain why R-CNN and
improvements based on R-CNN fail to generalize well.

2.4.3 Other Networks

Some notable systems not covered in detail here are the 2013 Overfeat network by
Sermanet et al. [SEZ'13] that is similar to R-CNN covered in section 2.4.2 but
instead of Selective Search for object proposals it uses a sliding-window approach,
leading to a much faster system with a significantly lower accuracy of 24.3% mAP

on PASCAL VOC.

The 2014 SPPNet by He et al. [HZRS14] that can be viewed as an improvement
of R-CNN by sharing computation between object proposals in a way that reduces
training time by a factor of 3 and speeds up testing by an order of magnitude. Even
so it is beat by later networks such as Faster R-CNN.

Single Shot Multibox Detector (SSD) by Liu et al. [LAE*15] published in
December 2015 is similar to YOLO in that it is done with a single CNN without a
separate region proposal step, and achieves somewhat better accuracies than YOLO

at comparable speed, but still far lower accuracy than the slower networks Fast
R-CNN and Faster R-CNN.
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2.5 3D Models and Synthetic Datasets

One of the big drawbacks of CNNs is that training them is expensive and a very
big set of training examples is needed. For reference ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2014 offers over 450 thousand labeled images for
training over a thousand categories, and in this paper we are using 5000 images per
training set. Producing such datasets with real photographs and manually drawn
bounding boxes is very costly. As an example, the labeling effort of MIT Street
Scenes, a dataset consisting of 3547 images, was done with a custom built tool and
took an average of 3 minutes per picture, totaling 177 man-hours for the labeling
alone. Taking the pictures was done by 13 people over 18 months, but it is unclear
how much time was spent in total [Bil06].

Data augmentation, where all the pictures in the dataset are copied and al-
tered with image processing, is related and can help increase the size of a dataset
that already exists. Common changes to the pictures include cropping, stretching,
adding noise and changing colors. This is easy to implement, has shown to increase
performance and has become a common method when training CNNs. Chatfield
et al. showed this technique to consistently give a mAP increase of 3% across
multiple CNN architectures on PASCAL VOC [CSVZ14], and it has become common
practice for most object detection systems [Sor14, KSH12, SZ14, SEZ"13, RDGF15].
The Darknet framework that is employed in this thesis applies data augmentation
automatically while training, so even our purely synthetic datasets are increased
in size by augmentation techniques. Data augmentation works well to increase the
performance of an already existing dataset, and might reduce the required amount of
data, but it is still far away from solving the problem of needing thousands of images.

This thesis attempts to solve this problem by investigating the usage of purely
synthetic data for training. This idea is not new, and this section will give an overview
of how it has been applied in the past.
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Figure 2.11: Randomly sampled data created by the synthetic text engine of Jaderberg
et al. [JSVZ14]

As an example of other computer vision areas where this has been successful,
Jaderberg et al. used synthetic datasets to greatly improve upon previous state-of-
the-art natural scene text recognition in their 2014 paper [JSVZ14]. Natural scene
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text recognition is a much harder challenge than normal OCR which is aimed at
reading black text on a white background. Text occurring in natural scenes has a
large amount of variations in color, fonts, shadows, perspective and surroundings.
Pre-existing datasets for this problem were made by cropping text from pictures
of real scenes, and one of the more popular ones is made from text visible from
Google Streetview [WBB11]. Jaderberg et al. generated images by writing a word
in one of over 1400 fonts, adding random shadows and borders, changing colors,
applying projective distortion and blending with a crop from a random natural image
from a training set. This generated a virtually infinite amount of very varied and
natural-looking data as seen in Figure 2.11. The sampling of random natural images
from big public datasets to use as backgrounds is similar to our approach, but since
we are generating cars and not text our methods for generating the foreground is
very different. The significant increase upon previous results with this technique
shows that even though there are datasets available for natural scene detection, the
previous models were limited by lack of data.

left front door
windshield
- -

right front
wheel _+

Figure 2.12: The use of 3d models to model the 3d relationship between different
parts of a car for viewpoint estimation by Stark et al. [SGS10]

Much of the recent research on the use of 3D models for computer vision has been
focused on pose and viewpoint estimation. Stark et al. [SGS10] used 3D models and
statistics to get a representation of the 3D models that they matched to 2D images to
do viewpoint estimation of cars. Using this probabilistic spatial model, as illustrated
in Figure 2.12, they demonstrated superior performance to previous records on the
cars dataset introduced by Savarese and Fei-Fei [SFF07]. This is fundamentally
different from our approach, as the 3D models are directly used for their 3D data,
while we only use them to render semi-realistic 2D images; our generated training
data is entirely 2D.
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Figure 2.13: Example of the scene understanding problem solved by Satkin et al.
On the right the best matching 3D objects are overlaid and color coded for type.
Pictures taken from their paper [SLH12]

Satkin et al. [SLH12] used 3D models for a novel approach to scene understanding
as shown in Figure 2.13. By calculating the intrinsic camera parameters® of the
picture in question, they can render a large number of 3D objects with the right
camera parameters to make them appear similar to what they would have looked
like if they were in the scene. Using these rendered pictures, they compute various
similarity scores that are used to pick the most similar 3D objects to the objects in
the scene, and in this way recreating the scene with 3D geometry knowledge. One of
the enabling factors of this technique is the utilization of the vast library of freely
available 3D object models, in the same way that is important to our approach.
However, while our approach was based on a few hand picked object models, they
created a system that automatically downloads models based on keywords and filters
out models that has a geometry that differs too much. For instance, if you search for
bed you might get an architectural model of a house with two beds, but that geometry
would differ widely from the geometry of an actual bed. Using this technique, they
filtered 8000 models down to 2000 models of more relevance. A clustering algorithm
was run on the 2000 models to discover synonym search terms that map to highly
similar 3D geometry, in this way the tags sofa and couch could be applied to models
found by the query love seat*. This systematic approach to gathering 3D models
is something that could be applied to our approach in the future to generate large
synthetic training sets across a large number of object classes, both to increase the
number of classes available and increase the intraclass variability of the datasets.
This is the inspiration for one of our suggestions for further work, section 6.1.

Liebelt and Schmid [LS10] and Pepik et al. [PSGS12] both embed 3D models

3The intrinsic parameters of a camera are important parameters of the camera itself such as
focal length and image sensor format
4A couch with two seats
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into a DPM-like detection system. While Liebelt and Schmid utilize the extra 3D
information to increase their pose estimation accuracy, Pepik et al. simply shows that
they can embed this 3D understanding without sacrificing detection performance,
in an attempt to make it easier to extend to tasks that require more 3D reasoning,
such as scene understanding and pose estimation.

Figure 2.14: The two datasets generated by Sun and Saenko. Image taken from their
paper [SS14].

All the previously covered systems using 3D models have all done so in order
to explicitly utilize the knowledge of 3D geometry embedded in 3D models, which
is inherently different to our approach where the 3D models is a tool to create
representative 2D images with the objects of interest through modern 3D rendering
techniques. Closer to our approach is the work of Sun and Saenko [SS14], who used
free 3D models to render images for a training dataset of 2D pictures with automatic
labeling for an object detection system. They downloaded models from the Google
3D Warehouse ° where they selected two models for each of the 20 object categories
in the Office dataset [SKFD10]. Their datasets feature a single object in the center
of the image from various viewpoints, as seen in Figure 2.14. Surprisingly, and in
contrast to our results, they found that using realistic backgrounds and textures
did not increase performance. An important difference from our study is that they
used a different object detection system; instead of a CNN, they used a DPM model
with additional cross domain adaptation techniques. It is natural to believe that the
invariance to cues such as background texture will vary between object detection
systems, some systems might rely more on the surrounding textures, and HOG
in particular uses gradients of the image which map to edges, something that is
preserved even with highly unrealistic textures.

Peng et al. [PSAS14] also used free 3D models from the Internet of the 20 object
classes from PASCAL VOC to generate purely synthetic dataset and evaluate on

Shttps://3dwarehouse.sketchup.com
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Figure 2.15: An illustration of Peng et al. synthetic dataset generation pipeline.
Nlustration from their paper [PSAS14]

the PASCAL VOC2007 dataset. Similar to our approach, they place 3D models in a
scene with varied texture, background and pose. Their paper investigates both the
feasibility and performance of such a technique and use it to test the invariances of
the R-CNN object detection model cover in subsection 2.4.2. Somewhat surprisingly
they find the model to be largely invariant to the background, and their datasets
with a uniform color as background perform just as good, and sometimes even better
than the ones with photos as a background.

Figure 2.15 shows their dataset generation pipeline. Each training image contained
only one object, placed in the center of the image, with some variation in pose along
one or more predefined axes. They generated datasets with and without relevant
background images behind the objects. In the images that did have a texture, this
did not involve photo-realistic textures that rendered the model as a real-looking
car, but simply stretched a 2D car image across the texture, only giving the model
somewhat more realism than it would have had without textures.

Their dataset generation technique is similar to the one we have used, but we
include multiple objects, do not center them in the image, and use more realistic
textures. In addition, while the object detection system employed in this thesis,
YOLO, is faster, it also scores lower on accuracy than R-CNN when trained on real
images, which would make it likely that our reported mAPs might be lower.

A few weeks before this thesis was submitted, Xerox Research published a paper
by Gaidon et al. [GWCV16] that modeled some of the scenes from the KITTI
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Figure 2.16: Examples from the recreated scenes from Gaidon et al. [GWCV16].
Images on the left are from KITTT while images on the right are rendered in Unity.
Photo from the original paper.

benchmark in high detail using the same game engine as we used, Unity. They
created virtual replicas of a few of the videos in the KITTI benchmark by utilizing
the labeled training data to automatically place and move all the cars. As seen in
Figure 2.16, the rendered scenes are very similar to the actual training data. In these
virtual worlds they simulate different conditions, such as different camera angles or
weather, and test models trained on real data on them to measure how invariant the
models are to these factors. This novel use of generated data shows how synthetic
datasets can be very useful in building a deeper understanding of complex CNN
models by performing controlled experiments. The datasets also show the level of
photorealism you can achieve with rendered data using free models and software.
Generating datasets of this high fidelity is a lot more expensive than the datasets
we have generated, as they have to model realistic surroundings which will vary
depending on the object class. We have trained our models on their publicly available
dataset to compare with the performance of our models.



Methodology

This chapter starts by giving an overview of how data generation was approached using
the Unity game engine, followed by our setup of the You Only Look Once (YOLO)
Convolutional Neural Network (CNN) object detection model, before presenting the
experiments that have been performed.

Several experiments will be performed, investigating the importance of background,
texture, image sizes, occlusion and truncation. A sample of what the generated
images will look like is presented in Figure 3.1.

Figure 3.1: A sample of our generated images. The red box is the ground truth
bounding box overlaid the image.

27
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Figure 3.2: The 3D models used in all datasets downloaded for free from the Unity
Store, TurboSquid and CGTrader

3.1 Synthetic Datasets

3.1.1 Car Models

Multiple resources for 3d models in a variety of file formats exist online. Examples
of such sites that were used is the Unity Store!, TurboSquid?, CGTrader3. Most
of the resources have a large selection of models that are free for academic and
non-commercial use, and an even bigger library of cheap models. A search for ’car’
on CGTrader yields more than 2,000 results when searching for free models, and
around 13,000 when including paid models. 3D model prices range between $0-$400,

and there are also collections of models that can be purchased for $400-$800.

3.1.2 Unity Scripts

In order to automate dataset generation we have developed a collection of Unity
scripts. This section gives an overview of the scripts that were written. Unity scripts
can be written in C# or JavaScript, and have access to manipulate all parts of the
3D scene, in addition to being able to interact with the filesystem. The scripts are
able to render images of the scene to file through a virtual camera, calculate 2D

Thttps://store.unity3d.com
2http://turbosquid.com
Shttps://www.cgtrader.com
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bounding boxes for objects and export the metadata in a way that maintains the
references between bounding boxes and images. The full source code of our final
scripts is available on GitHub 4.

Object Placement

To generate images with objects in different positions in each image, we use a
stochastic approach where we randomly assign positions to all objects every frame.
In order to achieve this, a custom component is written that moves the objects,
by giving each of them a new sampled position from a user defined 3D volume.
While more deterministic means of object placement are possible, like simulating
video capture of a car driving through a virtual environment, this placement scheme
requires far less setup and gives directly control of distributions in the dataset, such
as the probability of having multiple cars in the same image.

In addition to random translation we also apply a random rotation around the
Y-axis. Other objects than cars should be rotated around more axes, but almost
every car in the evaluation sets, as well as in the real world, have all wheels on the
ground, so rotations around any other axis is highly unusual.

Camera and Scene Setup

Each dataset is generated by placing a camera in a scene that contains multiple
3D models of cars, and applying the placement script to each object described in
section 3.1.2. Figure 3.3 shows a top-down view of the scene setup in Unity. The
camera has a custom script that takes a picture every frame and writes it to disk
together with a file containing the bounding boxes of all relevant objects in the
picture as described in 3.1.2.

In order to achieve a varied number of visible cars in the pictures, we define the
3D volume in which the cars are uniformly distributed every frame to be larger than
the field of view of the camera. This leads to a variable amount of cars being outside
the field of view. If there is a need for more control over the distribution of the
number of visible cars, it is trivial to do this explicitly by adding or removing cars
from the scene instead.

Picture Backgrounds

To achieve various backgrounds behind the objects of interests, a large plane which
covers the camera’s viewport is placed behind the bounding volume of the randomly
placed objects. A collection of images is imported into Unity and applied as a texture
to this plane, with a different one for every frame.

4https://github.com/lionleaf/mastertools/tree/master/unityscripts
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Background Plane

Bounding Volume

Camera

Figure 3.3: The bounding volume for the possible positions of car models is larger
than the field of view of the camera, ensuring a random sample of cars to be visible
in each image.

Experimentation with full 3D-scenes of a city were considered, but deemed
too complex and domain-specific to represent a general approach for many object
categories.

Lighting

Lighting conditions is one factor that varies a lot in the real world, so in order to
generate a dataset with varying lighting conditions we have used the following setup.
The scenes are rigged with a skybox including a Hemisphere Light, a Point Light
and a Directional Light. The Hemisphere Light is completely static, and simulates
light reflected by the ground as well as sunlight from the sky. Next, the Point Light,
a light that shines in all directions, is positioned above the visible view volume. It
is switched on and off for different pictures with a defined probability. Finally, the
Directional Light rotates randomly around the Y axis to ensure that the models
are not always lit from the same direction. Together, the three lights give varying
reflections and amounts of light on models in different positions and rotations and
across different images.

Generating Bounding Boxes from 3D Models

The big advantage of using computer generated images as training data, in addition to
replacing manual photographing and/or collection, is the ease of generating accurate
object bounding boxes. In Unity these bounding boxes can be generated by projecting
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all vertices of a 3D model into 2D screen space, and then extracting the minimum
and maximum x and y position of all the vertices.

Producing a dataset using Unity can be done on a conventional laptop. Depending
on the complexity of the images (number of models, type of background), a dataset
consisting of 5000 images can be generated in under two hours. All our datasets
have been generated on a MacBook Pro 13” with an integrated Intel Iris Graphics
6100 GPU. Between 1 and 5 images are generated per second, depending on the
complexity of the images, mainly type of background and number of 3D models.
Using a more powerful desktop GPU would significantly speed this up.

3.2 Evaluation Datasets

In this thesis we have used two public datasets, KITTI Vision Benchmark Suite
(KITTI) [GLU12] and PASCAL Visual Object Classes (PASCAL VOC) [EEGT14].

3.2.1 KITTI

The KITTT [GLSU13] object detection dataset is a road and car specific benchmark
designed for autonomous vehicles. It contains annotated data for cyclists, pedestrians
and cars. KITTTI also provide a public highscore list where methods are ranked based
on their performance on the official KITTT test set.

The dataset consists of 7481 images with labels for the three object categories
car, pedestrian and cyclist. The labels are marked with a difficulty score of easy,
moderate and hard based on size and visibility, but the official KITTI benchmark is
ranked on the moderately difficult results. We base our car-only KITTI dataset on
the labels that are marked as moderately difficult, following the official ranking of
the KITTT results.

All images in the KITTI dataset are taken with the same camera and settings,
and have the resolution of 1242 X 375 px. A sample of the KITTI images is shown
in Figure 3.4.

The KITTI dataset was chosen as the main benchmark because of its realistic
scenes taken on real roads under real conditions, and performance on this benchmark
is expected to be close to what you would be able to get in a real system.

3.2.2 Pascal VOC

Pascal PASCAL VOC is a large object detection competition that ran from 2005
to 2012. The datasets from later competitions, 2007, 2010 and 2012 are still being
used and can be combined to a dataset with 20 classes over 27090 images. While the
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Figure 3.4: Example images from the KITTI dataset with ground truth bounding
boxes for the car category overlaid

Figure 3.5: Sample images from the VOC dataset with ground truth boxes for the
car category overlaid

competition is over it is still regularly used to benchmark systems for papers and as
of 2016 there is still a live leaderboard with new results. We extract all the images
containing labels for cars from the training and validation data of VOC 2007 and
VOC 2012, which results in a dataset of 2595 labeled images containing one or more
cars. A sample of the images in VOC containing cars is provided in Figure 3.5.

The PASCAL VOC dataset consists mainly of pictures where the cars are easier
to detect than in KITTI. In many of the pictures the cars are closer to the camera,
under better lighting and framed alone in the middle of the picture.
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3.3 You Only Look Once

To evaluate and compare the performance of different types of computer-generated
datasets, we have chosen to use one specific neural network architecture, YOLO. All
experiments are performed using this network, so that the detection accuracies can
be measured against each other. YOLO [RDGF15] was chosen for its high accuracy
while still being real-time and small enough to possibly fit on an embedded device.
At the time of our choice, YOLO was the best performing real-time object detection
system available [RDGF15]. The paper [RDGF15] additionally mentions generalizing
detections to art and other abstract forms, as discussed in section 2.4.2 which made
it an interesting choice to investigate whether the generalization property also holds
when training on synthetic data. The downside with YOLO is that it is implemented
on custom Neural Network (NN) software that is not widely supported: Darknet.

3.3.1 Darknet

The reference implementation for the YOLO network presented by Redmon et al.
[RDGF15] was written in the neural network framework called Darknet °. Darknet
is open source, written in C, and takes advantage of CUDA for GPU acceleration.
The CUDA requirement means it can not directly run on non-NVIDIA hardware,
although alternative implementations of the necessary parts of YOLO are available
in other frameworks as well.

3.3.2 Training Time and Pre-Trained Weights

As explained in the background chapter (section 2.4.2) the YOLO-network is pre-
trained on ImageNet. This training takes multiple weeks on powerful hardware
according to Redmon et al. [RDGF15]. The resulting weights are distributed along
with the YOLO source code. This allowed us to use these weights already trained on
ImageNet instead of random initialization when training on our datasets. Because
this means the network does not have to learn basic image features from scratch,
this reduces the convergence time to around 13 hours for Fast YOLO and around 67
hours for the full YOLO-network. This allows for faster iteration faster than if you
have to spend multiple weeks per experiment.

3.3.3 Network Architecture Changes

The reference implementation of YOLO had a few hardcoded values that had to be
changed. This was mainly the size of the output layer, as it was implemented for
detection of 20 different categories, while we are only detecting a single class. For
a one-class detection objective, the final layer needs to be customized. It predicts

Shttp://pjreddie.com /darknet/
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bounding boxes within a 7 x 7 grid, and each grid cell predicts two bounding boxes
in addition to a class probability. Each bounding box consists of 5 parameters: z, y,
w, h, and confidence. This results in a 7 x 7 X 11 output tensor on the final layer.

3.3.4 Variation in training

Training CNNs with stochastic gradient descent is an optimization search that is
stochastic in nature and there are no guarantees to find the global optimum or to
find the same result each time. Additionally, built-in data augmentation features
in YOLO cause the training to result in a differently trained model each time. Two
types of data augmentation is done automatically by YOLO. First, a random crop
of the training images is selected by clipping a small part off of some of the edges.
Second, a small random amount of saturation and/or exposure distortion is applied
to some of the images. In order to draw any conclusions on our results we need to
ensure that the differences in results are not just caused by random variance.

We perform an experiment where we use the same dataset for training three
times, to investigate how much the resulting Average Precision (AP) varies. The
experiment is done using the KITTI training data on the Fast YOLO network, and
evaluated on the KITTTI validation data.

3.3.5 Fast YOLO vs YOLO

The YOLO detection system comes with several pre-defined network structures.
The reference network (hereafter YOLO), with 24 convolutional layers and two
fully connected layers; and Fast YOLO, with 9 convolutional layers and three fully
connected layers. The Fast YOLO model is designed to trade off detection accuracy
for lower memory usage and increased speed. Fast YOLO only uses about 611 MB
of GPU memory, which means it will fit on an embedded GPU like the Nvidia Tegra
K1 [Nvil4]. The reported mean Average Precision (mAP) for YOLO on VOC 2007
is 63.4%, while the mean Average Precision (mAP) for Fast YOLO is 52.7%, roughly
11 percentage points less.

We seek to investigate whether the difference is similar between the two networks
in terms of resulting detection performance when using synthetic datasets. To do
this, we use the same dataset as training data for both networks and compare their
results on several evaluation datasets. Additionally, we measure the training time
and the time they need to perform detections.

Using Fast YOLO instead of YOLO is interesting for several reasons. Foremost,
lower memory usage and faster detection speeds means it is more suitable for
embedded systems and much more likely to be able to give real-time results. Second,
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reduced training time means it allows for running a higher number of experiments in
the same amount of time as YOLO.

This experiment is aimed at exploring whether the trade-offs for using Fast YOLO
can be justified or if the performance is too detrimental. By running this over multiple
training datasets we will see if results on the Fast YOLO network can be used as a
proxy for how the full YOLO network will perform; that is, if training on a particular
dataset is better for Fast YOLO is it likely to be better for full YOLO as well? If
that is the case, we propose using Fast YOLO to test performance on datasets as
this allows much faster iteration.

3.4 Experiments

Several experiments were set up in order to investigate the viability of our proposed
approach. There are many parameters that can be tested and varied, but in order
to keep the focus on datasets and comparing as many different dataset strategies
as possible, only one set of parameters have been used for training networks. This
means using the same learning rate, dropout rate for all experiments, and limiting
the network architectures to the two reference networks provided by YOLO.

3.4.1 Aspect Ratio

As mentioned in the background, YOLO converts all input images to a 448x448
RGB image before processing them, which means that various aspect ratios lead to
different shapes of objects observed by the NN. As noted in the YOLO paper on page
4, YOLO struggles to generalize to objects in new or unusual aspect ratios. Further,
the KITTI dataset contains only images of the same aspect ratio, which is very wide
(3.31:1), whereas the PASCAL VOC dataset contains images of varying aspect ratios.

This experiment is designed to investigate how much the aspect ratio of images
affects detection performance. We generate pairs of datasets where all parameters
are equal except for the dimensions of the images. The groups of images are square
(448x448 pixels) and wide (1484x448 pixels).

3.4.2 Image Backgrounds

We want to test the importance of realistic environments around the target object
in the training data. Is only the object of interest itself needed in order to train
a good detection model, or is it necessary to fully imitate real images? Previous
work has shown that when using HOG features, natural backgrounds does not help
in gaining better detection accuracy [SS14]. Others have shown that Deep Neural
Networks (DNNs) are also largely invariant to backgrounds [PSAS14]. But because
we are using a different object detection system, and the other systems showed some
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Figure 3.6: Dataset images with backgrounds from ImageNet, labeled bounding
boxes for cars are highlighted as red rectangles

Figure 3.7: Dataset images with backgrounds from the KITTI Road/Lane Detection
Evaluation dataset. Labeled bounding boxes for cars are highlighted as red rectangles.

differences in results, we want to evaluate to what degree backgrounds matter, and if
so which ones are better.

The ImageNet classification challenge provides a dataset of images[DDST09], and
we pick 1000 images that are labeled as not containing cars. For each image that is
generated, a random image is applied as a background, as can be seen in Figure 3.6.
These images do not necessarily depict scenes where cars would normally occur, but
might still represent the variation of environments in which they should be detected.

We also create datasets where we use background images that are more relevant to
the object of interest: in this case road images from the KITTI Road/Lane Detection
Evaluation [GLSU13]. 43 of the images in the Road dataset are found to not contain
any cars, and are therefore selected as suitable background images representing
natural car environments. The datasets with KITTI-based backgrounds are shown
in Figure 3.7.

To examine the importance of natural image backgrounds, we generate datasets
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Figure 3.8: Dataset images with gray backgrounds

Figure 3.9: Dataset images with random noise backgrounds

where, instead of natural images, we use the simplest background possible: uniform
gray (Figure 3.8).

As another test of alternative background approaches, we apply random grayscale
noise in a separate dataset, as shown in Figure 3.9. This is different from the single
gray color in that the background will be different in all images. We will compare
the two alternative background strategies to see which produces the best results.

3.4.3 Texture Invariance

We have chosen to select only 3D models which comes with photorealistic textures.
However, many free 3D models come with no such option. Thus, if realistic textures
are unnecessary or have little impact on a model’s performance, finding 3D models
to use will be easier by relaxing this requirement. Notably, Peng et al. show that,
for their detection system, some object classes are highly invariant to texture, while
others depend heavily on it [PSAS14]. Stark et al. [SGS10] do not use textures when
training their viewpoint detector, as they explicitly model a shape representation
of objects. We generate a dataset with no textures on the models to investigate
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Figure 3.10: Dataset images with no texture on the 3D models

whether the NN will learn to detect cars in natural images based on shape alone
(Figure 3.10).

3.4.4 Occlusion and Truncation

Different datasets have different rules for how to label objects, and for how much of
the object must be visible in order to qualify for an annotation. If only a small part of
the object can be seen in the image, it might be considered very hard to detect or not
even necessary to detect, depending on the use case. For official benchmarks, which
provide both training and test data, the differences in when objects are labeled and
not are often the same for both datasets, thus object detection networks are typically
trained on data with roughly the same labeling style as the data their performance
will be measured on.

To understand how performance varies with differing levels of occlusion and
truncation in the training data we generate several datasets. First, we use one
baseline dataset containing only cars, where cars that are more than 65% out of
frame are ignored. Images where two cars overlap more than 25% are discarded from
this dataset. Overlap is measured by calculating the Intersection-Over-Union (IOU)
of the two bounding boxes. Second, a dataset where cars were labeled as long as
at least 5% of the object is visible. Here, images were kept as long as two objects
overlap less than 75%. Finally, a dataset where several new objects were introduced.
The same rules for overlap and truncation as in the previous set were used. Bounding
boxes for the cars do not take into account whether a car was occluded by a non-car
object. This means that for a lot of the objects, they are occluded by part of a tree,
or an abstract 3D shape, while the label still covers all of the object.
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Figure 3.11: Dataset images with occlusion and truncation. Labels, highlighted in
red, still outline the complete car shape within the bounds of the image.

Figure 3.12: An example of a small bounding box from the KITTI dataset.
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3.4.5 Small Objects

In detailed scenes, many current object detection algorithms are better at detecting
larger objects than smaller objects, this is evident in that detection accuracies on
bottles, which are often small, is significantly worse than bigger classes on the
PASCAL VOC challenge as noted by Uijlings et al. in their Selective Search paper
[UvGS13]. YOLO struggles even more with small objects than comparable systems
for two major reasons. Firstly, the model can only predict two bounding boxes per
grid cell, so if there are multiple small objects close together it is simply not possible
to correctly detect all of them. Secondly, in the error analysis of the original paper
[RDGF15] they show that localization errors, that is a bounding box that is further
away from the ground truth than a set threshold, accounts for more than half of the
errors, and smaller bounding boxes are harder to hit since a miss by a fixed amount
of pixels will lead to a much lower overlap percentage than on a larger object.

The KITTI benchmark has a number of small bounding boxes, as well as multiple
bounding boxes close together as seen in Figure 3.12

To investigate the impact of object sizes on our performance we create a filtered
version of the KITTI evaluation set where all small bounding boxes have been
removed and compare the performance to the full benchmark. We expect some
difference here, but the magnitude of this difference would offer some insight as to
how big this problem is.

3.4.6 Comparison to Virtual KITTI

The Virtual KITTT dataset, which was released during the final stages of this project,
consists of 3D models of cars placed in complete 3D environments, and is made as
a virtual replica of a subset of the KITTI training set. The dataset differs from
our datasets in that its cars are positioned, lit and occluded more similar to KITTI.
Therefore it will be interesting to compare the performance of a model trained on
Virtual KITTI with the performance of models trained on our datasets.

3.4.7 Variability of Training

Because the training process of YOLO is stochastic in nature, every training will
result in a different network. To measure this effect we re-run training with the same
parameters three times in a row and calculate the standard deviation.



Results

4.1 Setup

4.1.1 Hardware & Frameworks

For running training and experiments, we use two desktop computers with Nvidia
GTX 980 graphics cards, which run Ubuntu 14.04. Datasets are generated using
Unity version 5.3.4f1.

Darknet

All experiments have been executed with the same version of Darknet. We have
forked the original Darknet library on GitHub !, and the experiments have been run
on commit 228464c. Darknet has been compiled with CUDA support, using CUDA
version 7.0 and cuDNN version 3.0.

4.1.2 Running Experiments

To prepare datasets for training, a line-separated list of filepaths for images in the
dataset must be created. The images must be stored in a folder named images,
and all labels must be stored with filenames equal to their corresponding images
substituting . jpg for .txt in a folder called labels next to the image folder.

To start training, the following command is executed:

./ darknet yolo train cfg/singleclass.cfg singleclass.weights
> output.txt 2>&1

This will use the images references from the file train.txt in the same folder,
use the configuration file singleclass.cfg and the pre-trained weights stored in
singleclass.weights.

Thttps://github.com/stianjensen/darknet
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To evaluate the performance of a fully trained model, run the following:

./ darknet yolo valid cfg/singleclass.cfg singleclass_final.
weights evaluation_dataset.txt

evaluation_dataset.txt should contain one image path per line, the same way
as the list of training images. This will output a text file containing all predicted
boxes in the format specified by PASCAL Visual Object Classes (PASCAL VOC)
[EEGT14].
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4.2 Dataset reference

An overview of all synthetic datasets that we will be looking at results from in this
chapter is given in Table 4.1 for reference.

Name Description

Gray—BG Gray Background

IN-BG ImageNet Background

K-BG KITTI Background

K-BG (t) KITTI Background, w/Truncation

K-BG (t&O) KITTI Background, w/Truncation

and Occlusion

Noise-BG Noise Background

Noise-BG (O) Noise Background, w/Occlusion

No-Tx White Background, no texture on - - N / A

models

Table 4.1: Several of the datasets are generated in both square and wide variants.
We will refer to the datasets by the names defined in column one throughout out the
rest of the thesis.
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4.3 Results

KITTI Gray-BG IN-BG K-BG K-BG (t) K-BG (t&o)
Square 0.1 0.5 2.0 - -
Wide 0.1 1.4 5.1 5.9 11.9
KITTI Filtered | Gray-BG IN-BG K-BG K-BG (t) K-BG (t&o)
Square 0.8 0.6 15.5 - -
Wide 0.7 10.4 20.5 25.9 38.0
PASCAL Gray-BG IN-BG K-BG K-BG (t) K-BG (t&o)
Square 1.6 6.7 7.4 - -
Wide 10.4 13.6 19.6 22.2 16.3

Table 4.2: The full YOLO network results measured in Average Precision (AP) on
the KITTI Validation set, KITTI Filtered (ignoring all bounding boxes smaller than
3% of the image) and the PASCAL VOC dataset.

KITTI Gray-BG IN-BG K-BG Noise-BG ~ Noise-BG (0) No-Tx
Square 0.0 0.1 0.5 0.0 0.3 0.0
Wide 0.1 1.3 2.6 - - -
PASCAL | Gray-BG IN-BG K-BG Noise-BG ~ Noise-BG (0) No-Tx
Square 0.5 3.0 0.9 1.5 1.4 0.1
Wide 6.3 2.3 8.6 - - -

Table 4.3: Fast YOLO results measured in AP on the KITTI Validation set and the
PASCAL VOC dataset.

Table 4.2 shows the results for the full YOLO network trained on our synthetic
datasets while Table 4.3 displays the results obtained from training with the smaller
Fast YOLO network. Recall that the experiments run on Fast YOLO is done for
comparisons between datasets, not in order to achieve the highest possible AP,
because running an experiment on Fast YOLO is much faster. Wide datasets scored
consistently better than their square counterparts for both networks. It is also evident
that all the models trained on the datasets with natural image backgrounds, K-BG
and IN-BG significantly outperformed the datasets with gray or noise as background,
Gray-BG, Noise-BG and No-Tx. Nonetheless, Gray-BG Wide performed better on
PASCAL than any of the square datasets with natural backgrounds.

The introduction of occlusion in K-BG (t&o) doubled the performance on KITTI
from 5.9% to 11.9%, but decreased performance on PASCAL, while the truncation
increased performance for both datasets.
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Figure 4.2: Detections on VOC by K-BG (t)

In KITTI Filtered we have removed all bounding boxes that cover less than 3%
of the area of the image as explained in section 3.4.5. This increased the AP of all
the experiments by a wide margin, and in many cases more than quadrupling it,
showing that a disproportionate amount of the errors are on small objects.

4.3.1 Example Detections

Figure 4.1 shows an image where our best-performing model, K-BG (t&o), on KITTI
has accurately detected four cars in the KITTI dataset, and an image where two
small cars are incorrectly misclassified as one. Note that for this second picture
this detection will be counted as a total miss for the purpose of AP calculation.
In Figure 4.2 we show detections made by the model we have trained with best
performance on PASCAL. In the image on the left, a car in the background is correctly
detected, and none of the buses in the foreground are misclassified as a car. In the
image on the right, the predicted bounding box completely misses the car in the
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center of the frame. A larger random sample of detections performed by both of
these models are presented in Appendix A.

4.4 Comparison to Virtual KITTI

Virtual KITTI
KITTI Validation 20.6%
PASCAL 0.5%

Table 4.4: Results from training YOLO on the Virtual KITTI dataset.

Table 4.4 shows the results for YOLO trained on the Virtual KITTI dataset
[GWCV16]. We see that performance on KITTI Validation is almost twice as high
as for our best-performing dataset. On VOC however, Virtual KITTI performance is
very poor, lower than all YOLO models trained on our datasets.

4.5 Variation

First training Second training Third training
Kitti validation performance 54.24% 53.76% 52.92%

Table 4.5: AP on the KITTI validation data on three independently trained Fast
YOLO-based models using the same training data.

We present the results in Table 4.5 showing the performance of a Fast YOLO-network
when trained on the same training data three times. The resulting mean is 53.64%
with a standard deviation of 0.67%.

We have not trained on all datasets multiple times to calculate the mean and
standard deviation, but we use this calculation as a basis for the expected amount of
variation in the performance of all models.



Discussion

We set out to explore the viability of using synthetic datasets to train object detection
models and explore what factors are important for the performance of such datasets.
We argue that our results suggest that this method could be viable in cases where
access to good training data is limited.

The results show a top Average Precision (AP) of 22.2% on the PASCAL Visual
Object Classes (PASCAL VOC) dataset and 11.9% on KITTI Vision Benchmark
Suite (KITTI). State of the art detection results on these benchmarks are 87.8% AP!
and 90.06% 2 respectively. However, these results are using different object detection
models, so it is more natural to compare with the results of You Only Look Once
(YOLO) trained on the data from the benchmarks. YOLO achieves 82.8% AP? on
KITTI and 55.9%* on PASCAL VOC. So it is evident that training on our synthetic
datasets in place of high quality photographic datasets leads to significant drop
in performance. This is not surprising, as training a model on a different domain
than the one you are evaluating on is known to cause significant performance drops
[KFS16]. Our performance on VOC is on par with the winner of the PASCAL VOC
challenge in 2008° and close to the recent 100 fps DPM implementation of Sadegy
and Forsyth [SF14] that got 25% mean Average Precision (mAP).

Comparing our results with that of Peng et al. [PSAS14] it would seem that
their datasets are superior, as they report AP on car detection up to 36.0%, a big
improvement over our 22.2%. However, when the RR-RR dataset from their paper
which achieved 33.0% when trained on by R-CNN was trained on by YOLO instead,
it only got 15.8%, significantly lower than our results, which is more in line with the
lower sophistication of the image data. This illustrates how important the object

Lhttp://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

2http:/ /www.cvlibs.net/datasets/kitti/eval__object.php

3Trained and evaluated by us.

4http://host.robots.ox.ac.uk:8080/leaderboard /displaylb.php?challengeid=11&compid=4

5The old highscore site is no longer available, but a graph of the results was found here:
https://people.eecs.berkeley.edu/~rbg/slides/renn-cvprl4-slides.pdf
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detection network itself is, and makes it natural to believe that replacing YOLO by
the the top performing networks would lead to a significant boost in accuracy.

Interestingly, the drop in performance of RR-RR from the Peng et al. paper when
trained on YOLO is disproportionately large compared to the difference between
YOLO and R-CNN on the VOC benchmarks. Hence R-CNN appears to be better at
generalizing from synthetic to real data, opposite of what we thought when choosing
YOLO over R-CNN based on their performance on synthetic data when trained
on real data. The YOLO paper suggests that the reason R-CNN performs poorly
when trying to detect objects in synthetic datasets is because its object proposal
algorithm, Selective Search, is fine-tuned for natural images [RDGF15]. This might
actually be a benefit the other way around; when trained on synthetic data it is
only the CNN part that is retrained for the objects from the synthetic dataset and
Selective Search maintains its tuning towards natural images and will still suggest
high quality bounding boxes. The R-CNN network used by Peng et al. has been
significantly improved in later versions known as Faster R-CNN [RHGS15] and testing
our datasets on this network would be a natural next step.

5.1 Aspect Ratio

The KITTI dataset contains only images of the same very wide aspect ratio (3.31:1),
whereas the PASCAL VOC dataset contains images of various aspect ratios. Looking
at the results, we see a strong indication that performance of the models increases
when the aspect ratio of the training data is similar to that of the evaluation data.
This is in line with what can be expected from the design of YOLO, where every
input image is scaled to the same resolution and aspect ratio, something that changes
the shape of objects. In YOLO individual predictors in the grid structure specialize
on objects in certain aspect ratios [RDGF15], making the network especially sensitive
to aspect ratio changes.

5.2 Backgrounds

Datasets with natural images as backgrounds show better performance than datasets
with gray and random noise backgrounds. The difference between single-color and
natural image backgrounds is in contrast to what has been found by Peng et al.
[PSAS14] and Sun et al. [SS14]. They showed that for several object categories per-
formance was better when training on images with white background, and concluded
that Convolutional Neural Networks (CNNs) are largely invariant to backgrounds.
For the car category, their best accuracy was produced by training on images with
white background and no texture on models. Their overall accuracy across 20 classes,
the mAP, was however somewhat higher for natural image backgrounds and with
image textures on models. Our dataset with white backgrounds and no textures
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has the lowest performance of all our datasets. One of the main differences between
YOLO and R-CNN, the YOLO CNN processes the whole image in one pass, while
R-CNN starts with around 2000 region proposals which are individually scored
by a CNN as covered in section 2.4.2 and 2.4.2. The initial region proposals are
generated by Selective Search [UvGS13], which is already highly tuned for proposals
in natural images. A possible explanation might be that since the Selective Search
proposes bounding boxes that are then fed to CNN, this leads to a much more
localized approach, while YOLO does more affected by the global structure. Another
explanation is that since we are retraining the whole YOLO network, overfitting
becomes easier than with R-CNN where the object proposal step is not retrained.

5.3 Occlusion and Truncation

We saw that adding occlusion using other 3D models than cars increased performance
on the KITTI Validation dataset, while reducing performance on PASCAL VOC. We
hypothesize that this is due to KITTI images containing high amounts of occlusion,
and that training with occlusion is therefore important. However, there may be
one more reason why other 3D models than cars in training data might increase
performance, even when the models do not actually occlude any car models. Especially
in the case where backgrounds are simple, a CNN that is trained on images which
contains only cars can achieve good performance on the training data simply by
detecting the part of the image that is not uniformly gray. It does not necessarily
have to learn any features specific to cars in order to detect them. For datasets with
more complex backgrounds, it is not sufficient to detect non-gray areas, however.
Still, it is possible that the CNN mainly learns to detect the difference between a
natural-image background and a 2D rendering of a 3D model, regardless of specific
features of the object. Our results do show that most trained models have learned
to detect actual cars in natural images to some degree, although it is possible that
the effects of training with only one class of 3D models have reduced the need for
learning and prioritizing important object features such as wheels and windows in
favor of general attributes of rendered 3D models.

Introducing non-car 3D renderings in the training data, as in the K-BG (t&o)
dataset, might therefore have increased performance not only because it forced the
CNN to recognize occluded cars, but because it needed to prioritize car-specific
features in order to increase performance during training.

5.4 Small Objects

From the big AP boost of removing the smaller bounding boxes from KITTI it is
evident that detecting small objects is a substantial issue for models trained on all
of our datasets. As discussed in section 3.4.5 this is a weakness of YOLO, and our
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experiment showed how important this is for the KITTI benchmark. Using a model
with better performance on small objects would likely give a significant performance
boost on KITTTI.

5.5 Comparison to Virtual KITTI

We saw that the model trained on Virtual KITTI [GWCV16] performed almost twice
as good as the result of our best dataset on KITTI Validation. This shows that
higher performance than what we achieved using our datasets is possible with purely
synthetic datasets. Not all scenes from the original KITTI training data have been
replicated, and the dataset does therefore not contain as much variation as the full
KITTI training data. Creating a synthetic dataset with properties similar to the
Virtual KITTT dataset with more variation may therefore be able to produce even
higher accuracy than what we achieved here.

5.6 Variability of Training

As seen in Table 4.5 retraining the same network multiple times gives very similar
results. While this is far from a thorough analysis of the variability of training, it
should be enough to give some confidence in our results. Running every experiment
multiple times was simply not feasible when one experiment took between one and
three days, and a total of 39 models were trained during the course of this thesis®

5.7 Pretraining on ImageNet

We have presented the use of synthetic training datasets as a method of training
detectors for new object classes which currently do not have natural image datasets.
In our evaluation we have used cars as a benchmark of the possible performance of
this approach. Since the YOLO network is already pre-trained on ImageNet, however,
the weights of the network are already tuned to detect the 1000 object classes in
the ImageNet dataset, one of which is cars. We are not certain how much this has
affected the results, and whether training on synthetic datasets for a category not
present in the ImageNet dataset will perform worse. It is possible that pre-training
on ImageNet will yield an initialization of the network that is helpful not only for
the specific ImageNet categories, since the first layers learn very basic features that
are present in all natural images.

6Many of which were early calibration, minor bounding box annotation errors and exploration



Conclusions

In this thesis the use of synthetic datasets for training CNN-based object detection
systems has been investigated. Our results on the PASCAL Visual Object Classes
(PASCAL VOC) and KITTI Vision Benchmark Suite (KITTI) datasets, while far
from state of the art, show promising accuracy that indicates that this method can
be viable and is an exciting area for further research.

Compared with two other papers employing synthetic datasets, we have achieved
high performance and are to the best of our knowledge the only one with a randomly
generated synthetic dataset system that places additional objects in the scene for
occlusion, something that doubled our performance.

Somewhat surprisingly we observed different behaviour with regards to background
images from earlier research. Previous research has shown that their CNN-based
object detection systems were largely invariant to different types of backgrounds
in their synthetic datasets [PSAS14], while datasets with realistic backgrounds
performed consistently better in our experiments.

Only a first exploratory step has been taken into this field and it is believed that
there is potential for significant improvements with further research, which would
make this technique a valuable tool for creating object detection systems where
training data is lacking. There are also many cases, such as the mushroom detection
system discussed in the introduction, where high accuracy is not too important, and
in such a case our approach works as a close to free off-the-shelf solution to get a
reasonable object detection system.

Further, we believe that the use of synthetic data to explore what factors are
important for object detection systems can prove very valuable, because they enable
controlled experiments with large datasets that are simply not possible to do with
real data.
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6.1 Further work

Having shown that there is a lot of promise in generating synthetic datasets, there
are many paths that can be followed for future research, and this section will suggest
some of the ones the authors believes to be most promising.

For our initial proposal of creating an object detector for mushrooms, we have
shown that it is possible to generate fully synthetic datasets using only a few 3D
models. As mentioned in the discussion we have used an initialization of the You
Only Look Once (YOLO) network pre-trained on ImageNet data, which in addition
to cars do contain some images of mushrooms. Since both cars and mushrooms are
present in the pre-trained data, any possible advantage of pre-training should remain
for the mushroom category. Our results on detecting small objects accurately do
however pose a challenge for mushrooms. Investigations into other object detection
models should perform the same evaluations with respect to small objects as we have
done with our filtered KITTT dataset.

Generating synthetic datasets for mushroom detection would be the next step in
the pursuit of a mushroom detection system, followed by research into getting the
system to run on an embedded device. At this point, a handheld device that alerts
the user when it sees mushrooms could be evaluated before moving on to drone flight.

The current top-performing object detection model on PASCAL VOC is Faster
R-CNN, the most recent, fastest and best-performing variant of the R-CNN system
[RHGS15, GDDM14]. While Peng et al. used R-CNN in their experiments [PSAS14],
and we employed the YOLO system [RDGF15], it would be interesting to see how
well Faster R-CNN performs with different types of synthetic datasets. Although
Faster R-CNN is not as real-time as YOLO with a reported 5fps vs. 45fps, Faster
R-CNN also provide a smaller version of the network which trades off some accuracy
for an increase in speed to 17fps. This could be useful for many real-time and
near-real-time applications.

Synthetic datasets introduce a whole new range of hyperparameters that can
be adjusted to boost the detection performance, such as occlusion, truncation,
object density and distance to camera, number of different objects of the same
class, backgrounds and rendering parameters such as lighting among others. It is
therefore possible to create a very large collection of datasets with small variations
in properties, and thereby boost the performance of the detector on a validation
set. While generating datasets is relatively fast, training a new model on each of
them is costly, thus limiting the granularity of parameters that may be tested with
constrained time. However, it is possible to prematurely end the training and get
a network that might still be useful as an indication of how good the dataset will
perform. Using this combined with a smaller network such as Fast YOLO, it is
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possible to systematically test these hyperparameters one step at a time. Plotting
the AP performance with small changes for any number of these hyperparameters
could prove valuable.

A deeper understanding of the connections between the hyperparameters of the
datasets and the statistical distributions of the evaluation data is needed, and insights
here could help remove much of the guesswork from choose these hyperparameters.
We envision a future system that enables a two-stage approach to building object
detection systems for novel objects. First a small but representative dataset is
captured, and then statistics are calculated on this small dataset that guides the
hyperparameter choice for synthetic dataset generation. Such an approach would be
a huge reduction in cost, possibly even enabling the use in new domains where it is
currently too expensive.

Looking at the training images generated it is evident that they do not look
realistic. One obvious way to increase realism is to model a whole 3D environment,
like Gaidon et al. did for Virtual KITTI [GWCV16]. This is far more labor intensive,
especially if you want to generate datasets for hundreds of different objects that occur
in different kind of scenes, but it could boost detection performance and hopefully
lead to insights as to what factors are important.

A venue that has been left unexplored by this thesis is the effect of adding simple
filters to the generated images, such as noise or compression artifacts. In the same
category is variations on the textures of the objects, such as random colors or strong
colored lighting.

To get a better understanding of the importance of pre-training when using
synthetic data, experiments could be done without using a pre-trained network
to compare the performance. We would expect these networks to be inferior, as
the basic features learned from the neural network might be severely overfitted for
simple synthetic data, but it is still worth attempting. Additionally, generating
synthetic datasets for a category not present in ImageNet would show how much the
pre-training helps for completely new categories. It would however be difficult to
directly compare the results of a new category with the results on existing categories
since they can not be evaluated on the same benchmark.
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Figure A.1: Randomly sampled detections made by our best performing detector on
KITTTI Validation K-BG (t&o), from the KITTI Validation dataset.
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Figure A.2: Randomly sampled detections made by our best performing detector on
Pascal VOC, K-BG (t), from the VOC dataset.
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