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Abstract—While Quality of Experience (QoE) has advanced
very significantly as a field in recent years, the methods used for
analyzing it have not always kept pace. When QoE is studied,
measured or estimated, practically all the literature deals with
Mean Opinion Scores (MOS). The MOS provides a simple scalar
value for QoE, but it has several limitations, some of which are
made clear in its name: for many applications, just having a
mean value is not sufficient. For service and content providers
in particular, it is more interesting to have an idea of how the
scores are distributed, so as to ensure that a certain portion of the
user population is experiencing satisfactory levels of quality, thus
reducing churn. In this article we put forward the limitations of
MOS, present other statistical tools that provide a much more
comprehensive view of how quality is perceived by the users,
and illustrate it all by analyzing the results of several subjective
studies with these tools.

I. INTRODUCTION

Quality of Experience (QoE) is a complex concept, riddled
with subtleties regarding several confluent domains, such as
systems performance, psychology, physiology, etc., as well
as contextual aspects of where, when and how a service is
used. For all this complexity, it is most often treated in the
most simplistic way in terms of statistical analysis, basically
just looking at averages, and maybe standard deviations and
confidence intervals.

In this article, we extend our previous work [1], putting
forward the idea that it is necessary to go beyond these simple
measures of quality when performing subjective assessments,
in order to a) get a proper understanding of the QoE being
measured, and b) be able to exploit it fully. We present the
reasons why it is important to look beyond the Mean Opinion
Score (MOS) when thinking about QoE, as well as other
measures that can be extracted from subjective assessment
data, why they are useful, and how they can be used.

Our main contribution is in highlighting the importance of
the insight found in the uncertainty of the opinion scores. This
uncertainty is masked by the MOS, and such an insight will
enable the service providers to manage QoE in a more effective
way. We propose different approaches to quantify the uncer-
tainty; standard deviation, cumulative density functions (CDF),

and quantiles, as well as looking into the impact of different
types of rating scales on the results. We provide a formal proof
that user diversity of a study can be compared by means of the
SOS parameter a independent of the used rating scale. We also
look at the relationship between quality and acceptance, both
implicitly and explicitly. We provide several examples where
going beyond simple MOS calculations allows for a better un-
derstanding of how the quality is actually perceived by the user
population (as opposed to a hypothetical “average user”). A
service provider might be interested e.g. for which conditions
at least 95% of the users are satisfied with the service quality
– which may be quantified in terms of quantiles. In particular,
we take a closer look at the link between acceptance and
opinion ratings (for a possible classification of QoE measures,
cf. Figure 3). Such behavioral metrics like acceptance are
important for service providers to plan, dimension and operate
their services. Therefore, it is tempting to establish a link
between opinion measurements from subjective QoE studies
and behavioral measurements which we approach by defining
the θ-acceptability. The analysis of acceptance in relation to
MOS values is another key contribution in the article. To cover
a variety of relevant applications, we consider speech, video,
and web QoE.

The remainder of this article is structured as follows. In
Section II we discuss why a more careful statistical treatment
of subjective QoE assessments is needed. Section III discusses
related work. We present our proposed approach and define
the QoE metrics in Section IV, while in Section V we look
at several subjective assessment datasets, using other metrics
besides MOS in our analysis, and also considering the impact
of the scales used. We conclude the article in Section VI,
discussing the practical implications of our results.

II. MOTIVATION

A. Objective and Subjective QoE Metrics

It is a common and well-established practice to use MOS [2]
to quantify perceived quality, both in the research literature, as
well as in practical applications such as QoE models. This is
simple and useful for some instances of “technical” evaluation
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Figure 1: Different continuous distributions with identical
mean (2.5) which differ in other measures like standard
deviation σ or 90 % quantiles Q.

of systems and applications such as network dimensioning,
performance evaluation of new networking mechansims, as-
sessment of new codecs, etc.

There is a wealth of literature on different objective metrics,
subjective methods, models, etc, [3], [4], [5], [6], [7], [8].
However, none of them consider anything more complex than
MOS in terms of analyzing subjective data or producing QoE
estimates. In [9], the authors discuss the limitations of MOS
and other related issues.

Collapsing the results of subjective assessments into MOS
values, however, hides information related to inter-user vari-
ation. Simply using the standard deviation to assess this
variation might not be sufficient to understand what is really
going on, either. Two very different assessment distributions
could “hide” behind the same MOS and standard deviation,
and in some QoE exploitation scenarios, this could have a
significant impact both for the users and the service providers.
Figures 1 and 2 show examples of such distributions, contin-
uous and discrete (the latter type being closer to the 5-point
scales commonly used for subjective assessment), respectively.
As can be seen, while votes following these distributions
would present the same MOS (and also standard deviation
values in Figure 2), the underlying ground truths would be
significantly different in each case. For the discrete case, they
differ significantly in skewness and in their quantiles, both of
which have practical implications, e.g., for service providers.

When conducting subjective assessments, a researcher may
try to answer different types of questions regarding the quality
of the service under study. These questions might relate
to the overall perception of the quality (probably the most
commonly case found in the literature), some more specific
perceptual dimensions of quality (e.g., intelligibility, in the
case of speech, or blockiness in the case of video), or other
aspects such as usability or acceptability of the service. The
assessment itself can either explicitly ask opinions from the
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Figure 2: Different discrete distributions with identical mean
(3.5) and standard deviation (0.968). It can easily be seen that
e.g. the median (and other important quantiles, in fact) are
significantly different in each distribution.

subjects, or try to infer those opinions through more indirect,
behavioral or physiological measurements. Figure 3 presents
an overview of approaches to measuring and estimating QoE,
both subjectively and objectively.

B. The Need to Go Beyond MOS

Using average values (such as MOS) may be sufficient
in some application areas, for instance when comparing the
efficiency of different media encoding mechanisms (where
quality is not the only consideration, or is a secondary one),
or when only a single, simple indicator of quality is sought
(e.g., some monitoring dashboard applications). For most other
applications — and in particular from a service provider’s
point of view — however, MOS values are not really sufficient.
Averages only consider — well — averages, and do not
provide a way to address variations between users. As an
extreme example, if the MOS of a given service under a given
condition is 3, it is a priori impossible to know whether all
users perceived quality as acceptable (all scores are 3), or
maybe half the users rated the quality 5 while the other half
rated it 1, or anything in between, in principle. To some extent,
this can be mitigated by quantifying user rating variation via
e.g. standard deviations. However, the question often faced
by service providers is of the type: “Assuming they observe
comparable conditions, are at least 95% of my users satisfied
with the service quality they receive?”. As we will see, it
is a common occurrence that mean quality values indicated
as acceptable or better (e.g. MOS 3 or higher) hide a large
percentage of users who deem the quality unacceptable. This
clearly poses a problem for the service provider (who might
get customer complaints despite seeing the estimated quality
as “good” in their monitoring systems), and for the users,
who might receive poor quality service while the provider is
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Figure 3: Classification into opinion and behavioral metrics.
Perceptual quality dimensions include for example loudness,
noisiness, etc. Qualitative opinions are typically ’yes/no’ ques-
tions like for acceptance. Within the article we address the
bold-faced and blue colored opinion metrics. Some of the
opinion metrics are related to the behavioral metrics in italics
and colored in green. See Section IV for formal definitions
of some of the terms above.

unaware of the issue, or worse, believes the problem to be
rooted outside of their system.

Likewise, using higher order moments such as skewness
and kurtosis can provide insight as to how differently users
perceive the quality under a given condition, relative to the
mean (e.g. are most users assessing “close” to the mean, and
on which side of it).

Very little work has been done on this type of characteriza-
tion of subjective assessment. One notable exception is [10],
where the authors propose a generalized linear model able
to estimate a distribution of ratings for different conditions
(with an example use case of FTP download times versus link
capacity).

III. BACKGROUND AND RELATED WORK

The suitability of the methods used to assess quality has
historically been a contentious subject, which in a way reflects
the multi-disciplinary nature of QoE research, where media,
networking, user experience, psychology and other fields con-
verge.

Qualitative approaches to quality assessment, whereby users
describe their experiences with the service in question, have
been proposed as tools to identify relevant factors that affect
quality [11].

In other contexts (see [12] for a nice example related to sub-
jective validation of objective image quality assessment tools
via subjective assessment panels), pair-wise comparisons, or
preference rank ordering can be better suited than quantitative
assessments.

In practice, most QoE research in the literature typically
follows the (quantitative) assessment approaches put forward
by the ITU (e.g., ITU-T P.800 [13] for telephony, or ITU-R
Rec. BT.500-13 [14] for broadcast video), whereby a panel
of users are asked to rate the quality of a set of media
samples that have been subjected to different degradations.
These approaches have shown to be useful in many contexts,
but they are not without limitations.

In particular, different scales, labels, and rating mechanisms
have been proposed (e.g. [15]), as well as other mechanisms
for assessing quality in more indirect ways, for example, by
seeing how it affects the way users perform certain tasks [16],
[17], [18], [19]. These approaches provide, in some contexts, a
more useful notion of quality, by considering its effects on the
users, rather than considering user ratings. Their applicability,
however, is limited to services and use cases where a clear
task with measurable performance can be identified. This is
limiting in many common scenarios, such as entertainment
services. Moreover, the use of averages is still pervasive in
them, posing the same type of limitations that the use of
MOS values has. Other indirect measures of quality and how
it affects users can be found in willingness to pay studies,
which aim at understanding how quality affects the spending
behavior of users [20], [21].

Other approaches of quality assessment focus on (or at
least explicitly include) the notion of acceptability [22], [23],
[24], [25]. Acceptability is a critical concept in certain quality
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assessment contexts1 and application domains, both from the
business point of view (“will customers find this level of
quality acceptable, given the price they pay?”) and on more
technical aspects, for instance for telemedicine applications,
where applications often have a certain quality threshold
below which they are not longer acceptable to use safely.
Later in the article we discuss the relation between quality
and acceptability (by looking at measures such as “Good or
Better”, “Poor or Worse”, and introducing a more generic one,
θ-acceptability) in more detail.

A. QoE and Influence Factors on User Ratings

From the definition of quality first introduced by [27], it
follows that quality is the result of an individual’s perception
and judgment process, see also [28]. Both processes lead
to a certain degree of delight or annoyance of the judging
individual when s/he is using an application or service, i.e.
the Quality of Experience (QoE). The processes are subject
to a number of influence factors (IFs) which are grouped in
[28] into human, system and context influence factors. Human
IFs are static or dynamic user characteristics such as the
demographic and socio-economic background, the physical or
mental constitution, or the user’s mental state. They may influ-
ence the quality building processes at a lower, sensory level, or
at a higher, cognitive level. System IFs subsume all technical
content, media, network and device related characteristics of
the system which impact quality. Context IFs “embrace any
situational property to describe the user’s environment in terms
of physical, temporal, social, economic, task, and technical
characteristics” [28], [29] which impact the quality judgment.
Whereas the impact of System IFs is a common object of
analysis when new services are to be implemented, with
few exceptions little is known about the impact of User and
Context IFs on the quality judgment.

Two well-known examples of actually including context
factors into quality models are the so-called “advantage of ac-
cess” factor in the E-model [30], and the type of conversation
and its impact on the quality judgment with respect to delay
in telephony scenarios [31], [32]. Some of these contextual
factors, such as the aforementioned “advantage of access”
incorporated in the E-model might even vary with time, as
different usage contexts become more or less common.

B. Influence Factors in Subjective Experiments

In order to cope with the high number of IFs, subjective
experiments which aim at quantifying QoE are usually carried
out under controlled conditions in a laboratory environment,
following standardized methodologies [2], [14], [33] in order
to obtain quality ratings for different types of media and ap-
plications. These methodologies have been designed with con-
sistency and reproducibility in mind, which allow results to be
comparable across studies done in similar conditions. For the
most part, these methodologies result in MOS ratings, along

1Arguably, and going by the ITU-T definition of QoE, it is at the core
of QoE: “QoE is the overall acceptability of an application or service, as
perceived subjectively by the end user” [26].

with standard deviation and confidence intervals, whereas even
early application guidelines (such as the ones given in the
ITU-T Handbook on Telephonometry [34]) already state that
the consideration of distributions of subjective ratings would
be more appropriate, given the characteristics of the obtained
ratings.

Regarding the Context IFs, the idea of laboratory experi-
ments is to keep the usage context as far as possible constant
between the participants of an experiment. This is commonly
achieved by designing a common test task, e.g. perceiving pre-
recorded stimuli and providing a quality judgment task, with or
without a parallel (e.g. content-transcription) task, or providing
scenarios for conversational tasks [35]. A context effect within
the test results from presenting different test conditions (e.g.
test stimuli) is a sequence, so that the previous perception pro-
cess sets a new reference for the following process. This effect
can partially be ruled out by factorial designs, distributing test
conditions across participants in a mostly balanced way, or
(approximately) by simple randomization of test sequences.
Another context effect results from the rating scales which
are used to quantify the subjective responses.

System IFs also carry an influence on the test outcome, in
terms of the selection of test conditions chosen for a particular
test (session). It is commonly known that a medium-quality
stimulus will obtain a relatively bad judgment in a test where
all the other stimuli are of better quality; in turn, the same
stimulus will get a relatively positive judgment if it is nested
in a test with only low-quality stimuli. This impact of the
test conditions was ruled out in the past by applying the
same stimuli with known “reference degradations” in different
tests. In speech quality evaluation, for example, the Modulated
Noise Reference Unit (MNRU) was used for this purpose [36].

C. Service Provider’s Interest in QoE Metrics

In order to stay in business in a free market, ISPs and other
service providers need to maintain a large portion of their users
satisfied, lest they stop using the service or change providers
— the dreaded “churn” problem. For any given service level
the provider can furnish, there will be a certain proportion
of users who might find it unacceptable, and the perceived
quality of the service is one of the key factors determining
user churn [37]. Moreover, a large majority (∼ 90%) of users
will simply defect a service provider without even complaining
to them about service quality, and report their bad experience
within their social circles [38], resulting in a possibly even
larger business impact in terms of e.g., brand reputation. With
only a mean value as an indicator for QoE, such as the
MOS, the service provider cannot know what this number
of unsatisfied users might be, as user variation is lost in the
averaging process.

For many applications, however, it is desirable to gauge the
portion of users that is satisfied given a set of conditions (e.g.,
under peak-time traffic, for an IPTV service). For example, a
service provider might want to ensure that at least, say, 95%
of its users find the service acceptable or better. In order to
ascertain this, some knowledge of how the user ratings are
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distributed for any given condition is needed. In particular,
calculating the 95% quantile (keeping in line with the example
above) would be sufficient for the provider.

In the past, service providers have also based their planning
on (estimated) percentages of users judging a service as
“poor or worse” (%PoW), “good or better” (%GoB), or the
percentage of users abandoning a service (Terminate Early,
%TME). These percentages have been calculated from MOS
distributions on the basis of large collections of subjective test
data, or of customer surveys. Whereas the original source data
is proprietary in most cases, the resulting distributions and
transformation laws have been published in some instances.
One of the first service providers to do this was Bellcore [39],
who provided transformation laws between an intermediate
variable, called the Transmission Rating R, and %PoW,
%GoB and %TME. These transformation were further ex-
tended to other customer behavior predictions, like retrial (to
use the service again) and complaints (to the service provider).
The Transmission Rating could further be linked to MOS
predictions, and in this way a link between MOS, %PoW
and %GoB could be established. The E-model, a parametric
model for planning speech telephony networks, took up this
idea and slightly modified the Transmission Rating calculation
and the transformation rules between R and MOS, see [40].
The resulting links can be seen in Fig. 4. Such links can be
used for estimating the percentage of dissatisfied users from
the ratings of a subjective laboratory test; there is, however,
no guarantee that similar numbers would be observed with
the real service in the field. In addition, the subjective data
the links are based on mostly stem from the 1970-1980s;
establishing such links anew, and for new types of services, is
thus highly desirable.

In an attempt to go beyond user satisfaction and into user
acquisition, many service providers have turned to the Net
Promoter Score (NPS)2, which purports to classify users into
“promoters” (enthusiastic users likely to will keep buying the
service and “promoting growth”, “passives” (users that are
apathetic towards the service and might churn if a better
offer from a competitor comes along) and “detractors” (vocal,
dissatisfied users who can damage the service’s reputation).
While popular with business people, the research literature on
the NPS is critical of the reliability of such subjective test
assessments (e.g. [41], [42]). The NPS is based on a single-
item questionnaire whereby a user is asked how likely they are
to recommend the service or product to a friend or colleague,
which might explain its shortcomings.

IV. DEFINITION OF QOE METRICS

The key QoE metrics are defined in this section: the mean
of the opinion scores (MOS); the standard deviation of opinion
scores (SOS) reflecting the user diversity and its relation
to MOS; the newly introduced θ-acceptability as well as
acceptance; the ratio of (dis-)satisfied users rating good or
better %GoB and poor or worse %PoW, respectively. The

2http://www.netpromoter.com/why-net-promoter/know
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Figure 4: Relationship between MOS, %PoW and %GoB as
used in the E-model [40]. The ratio of users not rating poor
or worse as well as good or better is referred to as ’neutral’
and is computed by 1−%GoB−%PoW.

detailed formal definitions of the QoE metrics are added in
the technical report [43].

A. Preamble

In this article we consider studies where users are asked
their opinion on the overall quality (QoE) of a specific service.
The subjects (the participants in a study that represent users),
rate the quality as a quality rating on a quality rating scale. As
a result, we obtain an opinion score by interpreting the results
on the rating scale numerically. An example is a discrete 5-
point scale with the categories 1,’bad’, 2,’poor’, 3,’fair’,
4,’good’, and 5,’excellent’, referred to as an Absolute
Category Rating (ACR) scale [30].

B. Expected value and its estimate: MOS

Let U be a random variable (RV) that represents the quality
ratings, U ∈ Ω, where Ω is the rating scale, which is also the
state space of the random variable U . The RV U can be either
discrete, with probability mass function fs, or continuous,
with probability density function f(s) for rating score s. The
estimated probability of opinion score s from the R user
ratings Ui is

f̂s =
1

R

R∑
i=1

δUi,s (1)

with the Kronecker delta δUi,s = 1 if user i is rating the
quality with score s, i.e. Ui = s, and 0 otherwise.

The Mean Opinion Score (MOS) is an estimate of E[U ].

u = Û =
1

R

R∑
i=1

Ui (2)

http://www.netpromoter.com/why-net-promoter/know
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C. SOS as function of MOS

In [44], the minimum, S−(u), and the maximum SOS,
S+(u) were obtained, as a function of the MOS u. The
minimum SOS is S−(u) = 0 on a continuous scale, [U−;U+],
and

S−(u) =
√
u(2buc+ 1)− buc(buc+ 1)− u2 (3)

on a discrete scale, {U−, . . . , U+}.
The maximum SOS is, on both continuous and discrete

scales (the scales as above).

S+(u) =
√
−u2 + (U− + U+)u− U− · U+ (4)

The SOS hypothesis [44], formulates a generic relationship
between MOS and SOS values independent of the type of
service or application under consideration.

S(u) =
√
a · S+(u) (5)

It has to be noted that the SOS parameter a is scale invariant
when linearly transforming the user ratings and computing
MOS and SOS values for the transformed ratings. The SOS
parameter allows to compare user ratings across various rating
scales. Thus, any linear transformation of the user ratings does
not affect the SOS parameter a which is formally proven in
the Appendix B. However, it has to be clearly noted that if
the participants are exposed to different scales, then different
SOS parameters may be observed. This will be shown in
Section V-D e.g. for the results on speech QoE in Figure 12a.
The parameter a, depends on the application or service, and
the test conditions. The parameter is derived from subjective
tests, and in the Section V-D a few examples are included.

D. θ-Acceptability

For service providers, acceptance is an important metric
to plan, dimension and operate their services. Therefore, we
would like to establish a link between opinion measurements
from subjective QoE studies and behavioral measurements.
In particular, it would be very useful to derive the “accept”
behavioral measure from opinion measurements of existing
QoE studies. This would allow to reinterpret existing QoE
studies from a business oriented perspective. Therefore, we
introduce the notion of θ-acceptability which is based on
opinion scores.

The θ-acceptability, Aθ, is defined as the probability that
the opinion score is above a certain threshold θ, P (U ≥ θ),
and can be estimated by f̂s from Eq. (1) or by counting all
user ratings Ui ≥ θ out of the R ratings.

Aθ =

∫ U+

s=θ

f̂sds =
1

R
|{Ui ≥ θ : i = 1, . . . , R}| (6)

E. Acceptance

When a subject is asked to rate the quality as either
acceptable or not acceptable, this means that U is Bernoulli-
distributed. The quality ratings are then samples of Ui ∈

{0, 1}, where 1,’accepted’ and 0,’not accepted’. The proba-
bility of acceptance is then fu = P (U = u), U ∈ {0, 1}, and
can be estimated by Eq. (1) with u = 1:

f̂1 =
1

R

R∑
i=1

δUi,1 (7)

(this is equal to A1 in Eq. (6) with U− = 0 and U+ = 1 on
a discrete scale).

F. %GoB and %PoW

Section III-C describes the use of the percentage of Poor-
or-Worse (%PoW) and Good-or-Better (%GoB). These are
quantile levels in the distribution of the quality rating U , or
in the empirical distribution of U = {Ui}.

The two terms are used in the E-model [40] where the RV
of the quality rating, U ∈ [0; 100] is referring to Transmission
Rating R that represents objective (estimated) rating of the
voice quality. The E-model assumes that U ∼ N(0, 1), which
is the standard normal distribution.

Under this assumption, the measures have been defined as3

GoB(u) = FU

(
u− 60

16

)
= PU (U ≥ 60) (8)

PoW(u) = FU

(
45− u

16

)
= PU (U ≤ 45) (9)

The E-model also defines a transformation of the U onto a
continuous scale of MOS∈ [1; 4.5], by the following relation:

MOS(u) = 7·(u−60)·(100−u)·u·10−6+0.035·u+1 (10)

The plot of (continuous) MOS (∈ [1; 4.5]) in Figure 4 is an
example where this transformation has been applied to map the
MOS to %GoB and %PoW. Observe that the sum of %GoB
+ %PoW does not add up to 100%, because the probability
(denoted "neutral" in the figure), P (45 < U < 60), is not
included in neither %PoW nor %GoB. The quantiles used (i.e.
45 and 60) for the two measures, and the assumed standard
normal distribution, are chosen as a result of a large number of
subjective audio quality tests conducted while developing the
E-model [40]. Table I includes the MOS and the Transmission
Rating R, with their corresponding values4 of the %PoW and
%GoB.

The measures are estimated based on the ordered set of
quality ratings, U = {U (i)}, by using the θ-Acceptability
estimator from Eq. (6). First, discretise the quality rating scale
U ∈ {0, 100}. Then, using the Eq. (6), the following applies

ˆ%GoB = Aθgb (11)
ˆ%PoW = 1− Aθpw (12)

For example, in the E-model the θgb = 60 and θpw for U ∈
{0, 100}, and θgb = 3.1 and θpw = 2.3 on a U ∈ {1, 5} scale
(when using Eq. 10).

3When U ∼ N(0, 1) then FU (u) = 1 − FU (−u), which is applied for
the GoB definition

4Observe: all values of MOS on the ACR scale are included, even for
MOS=5 where the Transmission Rating R is not defined.
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Table I: E-model: MOS and Transmission Rating R with the
quantile measures for speech quality.

MOS R %PoW %GoB

1.00 6.52 99.192 0.041
1.50 27.27 86.611 2.039
2.00 38.68 65.349 9.139
2.32 45.00 50.000 17.425
2.50 48.57 41.176 23.747
3.00 58.08 20.685 45.221
3.10 60.00 17.425 50.000
3.50 67.96 7.563 69.062
4.00 79.37 1.585 88.699
4.50 100.00 0.029 99.379
5.00 undefined 0.000 100.000

The purpose of the example above is to demonstrate GoB
and PoW using an ACR scale (1-5). This is a theoretical exer-
cise (valid for the E-model) where we apply the transformation
from R to "MOS" (term used when E-model was introduced)
as given in Eq. (10), and transform Eq. (8)-(9) into Eq. (11)-
(12), using the notation introduced in Section IV-D. Samples
from Eq. (10) are given in Table I. The %GoB = P (R ≥ 60)
corresponds to %GoB = P (MOS ≥ 3.1) which on an
integer scale is %GoB = P (MOS ≥ 4). Correspondingly, for
%PoW = P (R ≤ 45) = P (MOS ≤ 2.32) = P (MOS ≤ 2).

It is important to note that the quantiles in the examples
are valid for speech quality tests under the assumptions given
in the E-model. The mapping of the MOS to the %PoW and
%GoB metrics in Table I are specific for this E-model, but the
%PoW and %GoB metrics are general and can be obtained
from any quality study, provided that the thresholds θgb and
θpw are determined.

In the following we demonstrate the use of %PoW and
%GoB metrics also for other quality tests.

V. APPLICATION TO REAL DATA SETS: SOME EXAMPLES

A. Overview on Selected Applications and Subjective Studies

The presented QoE measures are applied to real data sets
available in the literature5, comparing MOS values to other
quantities. To cover a variety of relevant applications, we
consider speech, video, and web QoE. The example studies
highlight which conclusions can be drawn from other measures
beyond the MOS, such as SOS, quantiles, or θ-acceptability.
The limitations of MOS become clear from the results. These
additional insights are valuable e.g., to service providers to
properly plan or manage their systems.

Section V-B focuses on the link between acceptance and
opinion ratings. The study considers web QoE, however, users
have to complete a certain task when browsing. Test subjects
are asked to rate the overall quality as well as answering
an acceptance question. This allows to investigate the rela-
tion between MOS, acceptance, θ-acceptability, %GoB, and
%PoW based on the subjects’ opinions. The relation between

5We ask the reader to take notice that we did not conduct new subjective
studies, but rather used the opinion scores from the existing studies to apply
the QoE measures and interpret the results in a novel way, obtaining a deeper
understanding of them.

acceptance as a behavioral measure and overall quality as
opinion measure is particularly interesting. To wit, it would
be very useful to be able to derive the “accept” behavioral
measure from QoE studies and subjects’ opinions. This would
provide a powerful tool to re-interpret existing QoE studies
from a different, more business-oriented perspective.

Section V-C investigates the ratio of (dis-)satisfied users.
The study on speech quality demonstrates the impact of rating
scales and compares %PoW and %GoB related to MOS
when subjects are rating on a discrete and a continuous
scale. The results are also checked against the E-model to
analyze its validity when linking overall quality (MOS) to
those quantities. Additional results for web QoE can be found
in the Appendix A-C in Figure 13. In this subjective study
on web QoE, page load times are varied while subjects are
viewing a simple web page. The web QoE results confirm the
gap between the %GoB and %PoW estimates (as defined e.g.
for speech QoE by the E-model), and the measured %GoB
and %PoW.

Section V-D relates the diversity in user ratings in terms of
SOS to MOS. Results from subjective studies on web, speech,
and video QoE are analyzed. As a result of the web QoE study,
we find that the opinion scores for this study can be very well
approximated with a binomial distribution – which allows us
to fully specify the voting distribution using only the SOS
parameter a. For the video QoE study, a continuous rating
scale was used and we find that the opinion scores follow
a truncated normal distribution. Again, the SOS parameter
a derived for this video QoE study fully describes then the
distribution of opinion scores for any given MOS value. Thus,
the SOS parameter allows to model the entire distribution and
then to derive measures such as quantiles. We highlight the
discrepancy between quantiles and MOS, which is of major
interest for service providers.

Section V-E provides a brief comparison of the studies
presented in the article. It serves mainly as an overview on
interesting QoE measures beyond MOS and a guideline how
to properly describe subjective studies and their results.

For the sake of completeness, the reader finds a detailed
summary of the experimental description in the Appendix A.

B. θ-Acceptability Derived from User Ratings

The experiments in [45] investigated task-related web QoE
in conformance with ITU-T Rec. P.1501 [46]. In the campaign
conducted, subjects were asked to carry out a certain task,
e.g. ’Browse to search for three recipes you would like to
cook in the given section.’ on a certain cooking web page
(cf. Table III). The network conditions were changed and
the impact of page load times during the web session was
investigated. Besides assessing the overall quality of the web
browsing session, subjects additionally answered an accep-
tance question. In particular, after each condition, subjects
were asked to rate their overall experienced quality on a 9-
point ACR scale, see Figure 11, as well as a binary acceptance
question. The experiment was carried out in a laboratory
environment, with 32 subjects.
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(a) MOS & Acceptance per Condition. The blue bars in the
foreground depict the MOS values per test condition on the left y-
axis. The grey bars in the background depict the acceptance values
for that test condition on the right axis. While the acceptance values
reach the upper bound of 100 %, the maximum MOS observed is
4.39. The minimum MOS over all test conditions is 1.09, while the
minimum acceptance ratio is 27.27 %.
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(b) Acceptance per Rating Category. The users are rating the overall
quality on a 9-point ACR scale and additionally answer an acceptance
question. All users who rate an arbitrary test condition with x are
considered and the acceptance ratio y is computed. The plot shows
how many users accept a condition and rate QoE with x. For each
rating category 1, · · · , 9, there are at least 20 ratings. Still, 20 % of
the users accept the service, although the overall quality is bad.
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(c) %GoB-MOS Plot. The markers depict θ-acceptability P (U ≥ θ)
depending on the MOS for θ = 3 ’♦’ and θ = 4 ’M’ i.e. %GoB. The
%GoB (solid line) overestimates the true ratio of users rating good
or better (θ = 4). This can be adjusted by considering users rating
fair or better P (U >= 3) which is close to the %GoB estimation. In
addition, the acceptance ratio ’�’ is plotted depending on the MOS.
However, the θ-acceptability curves as well as the %GoB estimates
do not match the acceptance curve. In particular, for the minimum
MOS of 1.09, the θ-acceptability is 0 %, while the acceptance ratio
is 27.27 %.
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(d) %PoW-MOS Plot. The markers depict the the ratio of users
not accepting a test condition ’�’ depending on the MOS for all 23
test conditions. The results are compared with %PoW estimation, but
again the characteristics are not matched. Especially, 27.27 % of users
are still accepting the service, although the MOS value is 1.09. The
%PoW is close to 0 %. Nevertheless, this indicates that overall quality
can be mapped roughly to other dimensions like ’no acceptance’.

Figure 5: Task-Related Web QoE and Acceptance. Results of the task-related web QoE and acceptance study [45] in
Section V-B. The data is based on a subjective lab experiment in which participants had to browse four different websites
at different network speeds resulting in different levels of experienced responsiveness. The network speeds determined the
page load times while browsing and executing a certain task. Defined tasks for each technical condition should stimulate the
interaction between the web site and the subject for each test condition, see Table III. In total, there are 23 different test
conditions in the data set. The overall quality for each test condition was evaluated by 10–30 subjects on a discrete 9-point
scale which was subsequently mapped into a 5-point ACR scale. Furthermore, subjects gave their opinion on the acceptance
(yes/no) of that test condition.
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Figure 5 quantifies the acceptance and QoE results from
the subjective study in [45]. This study also considered web
QoE; however, users must complete a certain task when
browsing. The test subjects were asked to rate the overall
quality as well as answering an acceptance question. This
allowed to investigate the relation between MOS, acceptance,
θ-acceptability, %GoB, and %PoW based on the subjects’
opinions.

Figure 5a shows the MOS and the acceptance ratio for
each test condition. The blue bars in the foreground depict
the MOS values on the left y-axis. The grey bars in the
background depict the acceptance values on the right y-axis.
While the acceptance values reach the upper bound of 100 %,
the maximum MOS observed is 4.39. The minimum MOS
over all test conditions is 1.09, while the minimum acceptance
ratio is 27.27 %. These results indicate that users may tolerate
significant quality degradation for web services, provided they
are able to successfully execute their task. This result contrasts
with e.g., speech services, where very low speech quality
makes it almost impossible to have a phone call, and hence
results in non-acceptance of the service. Accordingly, the
%PoW estimator defined in the E-model is almost 100 % for
low MOS values.

Figure 5b makes this even more clear. The plot shows how
many users accept a condition and rate QoE with x for x =
1, . . . , 9. All users who rate an arbitrary test condition with
x are considered and the acceptance ratio y is computed over
those users. For each rating category 1, · · · , 9, there are at
least 20 ratings. Even when the quality is perceived as bad
(’1’), 20 % of the users accept the service. For category ’2’
between ’poor’ and ’bad’ (see Figure 11), up to 75 % accept
the service at an overall quality which is at most ’poor’.

Figure 5c takes a closer look at the relation between
MOS and acceptance, θ-acceptability, as well as the %GoB
estimation as defined in Section IV-F. The markers depict θ-
acceptability P (U ≥ θ) depending on the MOS for θ = 3
’♦’ and θ = 4 ’M’ i.e. %GoB. The %GoB estimator (solid
line) overestimates the true ratio of users rating good or better
(θ = 4). This can be adjusted by considering users rating fair
or better P (U >= 3) which is close to the %GoB estimator.
In addition, the acceptance ratio ’�’ is plotted depending on
the MOS. However, the θ-acceptability curves as well as the
%GoB do not match the acceptance curve. In particular, for
the minimum MOS of 1.09, the θ-acceptability is 0 %, while
the acceptance ratio is 27.27 %.

The discrepancy between acceptance and the %GoB esti-
mator is also rather large, see Figure 5c. The estimator in the
E-model maps a MOS value of 1 to a %GoB of 0 %, as a
speech service is not possible any more if the QoE is too
bad. In contrast, in the context of web QoE, a very bad QoE
can still result in a usable service which is accepted by the
end user. Thus, the user can still complete for example the
task to find a wikipedia article, although the page load time
is rather high. This may explain why 20 % of the users accept
the service even though they rate the QoE with bad quality
(1).

We conclude that it is not generally possible to map
opinion ratings on the overall quality to acceptance6. The
conceptual difference between acceptance and the concept of
θ-acceptability is the following. In a subjective experiment,
each user defines his own threshold determining when the
overall quality is good enough to accept the service. Additional
contextual factors like task or prices influence strongly accep-
tance [47]. In contrast, θ-acceptability considers a globally
defined threshold (e.g. defined by the ISP) which is the same
for all users. Results that are only based on user ratings do
not reflect user acceptance, although the correlation is quite
high (Pearson’s correlation coefficient of 0.93).

Figure 5d compares acceptance and %PoW. The markers
depict the ratio of users not accepting a test condition ’�’
depending on the MOS for all 23 test conditions. The %PoW
is a conservative estimator of the ’no acceptance’ characteris-
tics. Especially, 27.27 % of users are still accepting the service,
although the MOS value is 1.09. The %PoW is close to 0 %.
This indicates that overall quality can only be roughly mapped
to other dimensions like ’no acceptance’.

C. %GoB and %PoW: Ratio of (Dis-)Satisfied Users

The opinion ratings of the subjects on speech quality
are taken from [48]. The listening-only experiments were
conducted by 20 subjects in an environment fulfilling the
requirements in ITU-T Rec. P.800 [2] using the source speech
material in [49]. The subjects assessed the same test stimuli on
two different scales: the ACR scale (Figure 6) and the extended
continuous scale (Figure 7). To be more precise, each subject
was using both scales during the experiment. The labels were
internally assigned to numbers of the interval [0,6] in such a
manner that the attributes corresponding to ITU-T Rec. P.800
were exactly assigned to the numbers 1, · · · , 5.

excellent good fair poor bad
5 4 3 2 1

Figure 6: Five point discrete quality scale as used for the
speech QoE experiments [48].

extremely
bad

bad poor fair good excellent ideal

Figure 7: Five point continuous quality scale as used for the
speech QoE experiments [48].

Figure 8a investigates the impact of the rating scale on the
ratio of dissatisfied users. For 86 test conditions, the MOS,
%PoW, and %GoB values were computed over the opinions
from the 20 subjects on the discrete rating scale and the
continuous rating scale. The results for the discrete scale are

6Note that θ-acceptability is defined on the user quality ratings on a certain
rating scale and a global threshold θ. In contrast, acceptance is the subject’s
rating on a binary scale whether the quality is either acceptable or not
acceptable.
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(a) %POW-MOS Plot. The markers depict the MOS and the
ratio P (U ≤ 2) from the subjective study on the discrete and
the continuous scale. The solid black line shows the %PoW ratio
depending on MOS for the E-model. The E-model underestimates
the measured %PoW on the discrete scale which is larger than the
%PoW on the continuous scale.

1 2 3 4 5

MOS

0

0.2

0.4

0.6

0.8

1

ra
tio

disc. P(U 6 4)
cont. P(U 6 4)
%GoB

(b) %GoB-MOS Plot. The markers depict the MOS and the ratio
P (U ≥ 4) from the subjective study on the discrete and the contin-
uous scale. The solid black line shows the %GoB ratio depending
on MOS for the E-model. The E-model overestimates the ratio of
satisfied users on the discrete scale which is smaller than the %GoB
on the continuous scale.

Figure 8: Speech QoE. Results of the speech QoE study
[48]. For the 86 test conditions, the MOS and %PoW, %GoB
values were computed over the 20 subjects for the discrete
5-point ACR scale (Figure 6) and the extended continuous
scale (Figure 7). The results for the discrete scale are marked
with ’�’, while the QoE measures for the continuous scale
are marked with ’♦’. The dashed lines represent logistic fitting
functions of the subjective data.

marked with ’�’, while the QoE measures for the continuous
scale are marked with ’♦’.

Although the MOS is larger than 3, about 30 % and 20 %
of the users are not satisfied rating poor or worse on the
discrete and the continuous scale, respectively. The results are
also checked against the E-model to analyze its validity when
linking overall quality (MOS) to %PoW. We consider the ratio
P (U ≤ 2) of users rating a test condition poor or worse.
For that test condition, the MOS value is computed and each
marker in Figure 8a represents the measurement tuple (MOS,
P (U ≤ 2) for a certain test condition. In addition, a logistic
fitting is applied to the measurement values depicted as dashed
line. It can be seen that the ratio %PoW of the subjects on
the discrete rating scale is always above the E-model (solid
curve). The maximum difference between the logistic fitting
function and the E-model is 13.78 % at MOS 2.29. Thus, the
E-model underestimates the measured %PoW for the discrete
scale.

For the continuous rating scale, the ratio P (U ≤ 2) is below
the E-model. However, we can determine the parameter θ in
such a way that the mean squarred error (MSE) between the
%PoW of the E-model and the subjective data P (U ≤ θ) is
minimized. In the appendix, Figure 12b shows the MSE for
different realizations of θ. The value θ = 2.32 > 2 leads to a
minimum MSE regarding %PoW. The E-model overestimates
the measure %PoW, i.e. P (U ≤ 2), for the continuous scale.
However, P (U ≤ θ) leads to a very good match with the
E-model.

In a similar way, Figure 8b investigates the θ-acceptability
and compares the results with %GoB of the E-model. Even
when the MOS is around 4, the subjective results show that
the ratio of users rating good or better is only 80 % and 70 %
on the discrete and the continuous scale, respectively. The E-
model overestimates the ratio P (U ≥ 4) of satisfied users
rating good or better on the discrete scale. The maximum
difference between the logistic fitting function and the %GoB
of the E-model is 17.49 % at MOS 3.34. For the continuous
rating scale, the E-model further overestimates the ratio of
satisfied users, with the maximum difference being 46.20 %
at MOS 3.49. The value θ = 3.01 leads to a minimum MSE
between the E-model and P (U ≥ θ) on the continuous scale,
as numerically derived from Figure 12b. Thus, for the speech
QoE study, the %GoB of the E-model corresponds to the ratio
of users rating fair or better.

In summary, the E-model does not match the results from
the speech QoE study for PoW, i.e. P (U ≤ 2), and GoB, i.e.
P (U ≥ 4), on both rating scales. The results on the discrete
rating scale lead to a higher ratio of dissatisfied users rating
poor or worse than a) the %PoW of the E-model and b) the
%PoW for the continuous scale. The %GoB of the E-model
overestimates the %GoB on the discrete and the continuous
scale.7 Thus, in order to understand the ratio of satisfied and
dissatisfied users it is necessary to compute those QoE metrics

7Similar results can also be found for the web QoE experiments with users
rating QoE for varying page load times on a discrete rating scale, see Figure 13
in the appendix.
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for each subjective experiments since the E-model does not
match for all subjective experiments. Due to the non-linear
relationship between MOS and θ-acceptability, the additional
insights get evident. For service providers, the θ-acceptability
allows to go beyond the ’average’ user in terms of MOS and
to derive the ratio of satisfied users with ratings larger than θ.

D. SOS Hypothesis and Modeling of Complete Distributions
We relate the SOS values to MOS values and show that

the entire distribution of user ratings for a certain test con-
dition can be modeled by means of the SOS hypothesis. A
discrete and continuous rating scale will lead to a discrete and
continuous distribution respectively.

1) Results for Web QoE on a Discrete Rating Scale:
Figure 9 shows the results of the web QoE study [50]. In
the study, the page load time was influenced for each test
condition and 72 subjects rated the overall quality on a discrete
5-point ACR scale. Each user viewed 40 web pages with
different images on the page and page load times (PLTs) from
0.24 s to 1.2 s resulting into 40 test conditions per user.8 For
each test condition, the MOS and SOS are computed over
the opinions of the 72 subjects. As users conducted the test
remotely, excessively high page load time might have caused
them to cancel or restart the test. In order to avoid this, only a
maximum PLT of 1.2 s was chosen. As a result, the minimum
MOS value observed is 2.11 for the maximum PLT.

Figure 9a shows the relationship between SOS and MOS
and reveals the diversity in user ratings. The markers ’�’
depict the tuple (MOS,SOS) for each of the 40 test conditions.
For a given MOS the individual user rating is relatively
unpredictable due to the user rating diversity (in terms of
standard deviation).

The results in Figure 9a confirm the SOS hypothesis and
the SOS parameter is obtained by minimizing the least squared
error between the subjective data and Eq. 5. As a result, a SOS
parameter of ã = 0.27 is obtained. The mean squarred error
between the subjective data and the SOS hypothesis (solid
curve) is close to zero (MSE 0.01), indicating a very good
match. In addition, the MOS-SOS relationship for the binomial
distribution (aB = 0.25) is plotted as dashed line. To be more
precise, if user ratings U follow a binomial distribution for
each test condition, the SOS parameter is aB = 0.25 on
a 5-point scale. The parameters of the binomial distribution
per test condition are given by the fixed number N = 4 of
rating scale items and the MOS value µ which determines
p = (µ − 1)N . Since the binomial distribution is defined
for values x = 0, · · · , N , the distribution is shifted by one
to have user ratings on a discrete 5-point scale from 1 to
5. Thus, for a test condition, the user ratings U follow the
shifted binomial distribution with N = 4 and p = (µ − 1)N
for a MOS value µ, i.e. U ∼ B(N, (µ − 1)N) + 1 and
P (U = i) =

(
N
i−1

)
pi−1(1 − p)n−i+1 for i = 1, · · · , N + 1

and µ ∈ [1; 5].
We observe that the measurements can be well approxi-

mated by a binomial distribution with aB = 0.25 (MSE=0.01)

8 More details on the experimental setup can be found in the Appendix A-C.
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(a) SOS-MOS Plot. The markers ’�’ depict the tuple (MOS,SOS) for
each of the 40 test conditions. The solid blue line line shows the SOS
fitting function with the SOS parameter a = 0.27. The resulting MSE
is 0.01. We observe that the measurements can be well approximated
by a binomial distribution with a = 0.25 (MSE=0.01) plotted as
dashed curve. The solid black curve depicts the maximum SOS.
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(b) Quantile-MOS Plot. The 10 %- and 90 %- quantiles ’�’ for
the web browsing study as well as the MOS ’�’ are given for the
different test conditions (increasingly sorted by MOS). There are
strong differences between the MOS and the quantiles. The maximum
difference between the 90 %-quantile and MOS is 4− 2.14 = 1.86.
The quantiles for the shifted binomial distribution •’ are also given
which match the empirically derived quantiles.

Figure 9: Web QoE for PLT only. Results of the web
QoE study [50]. The page load time was influenced for each
test condition and 72 subjects rated the overall quality on a
discrete 5-point ACR scale. Each user viewed 40 web pages
with different images on the page and PLTs from 0.24 s to
1.2 s resulting into 40 test conditions per user. For each test
condition, the MOS, SOS, as well as 10 %- and 90 %-quantiles
are computed over the opinions of the 72 subjects.



12

plotted as dashed curve. The SOS parameter of the measure-
ment data is only

√
a/aB = 1.04 higher than the SOS for the

binomial distribution. The SOS parameter a is a powerful ap-
proach to select appropriate distributions of the user opinions.
In the study here, we observe roughly a = 0.25 on a discrete
5-point scale which means that the distribution follows the
aforementioned shifted binomial distribution. Thus, for any
MOS value, the entire distribution (and deducible QoE metrics
like quantiles) can be derived.

Figure 9b shows the measured α-quantiles ’�’ as well as
the quantiles from the binomial distribution •’ compared to
the MOS values ’�’. The quantiles for the shifted binomial
distribution •’ match the empirically derived quantiles very
well. The 10 %- and 90 %-quantiles quantify the opinion score
of the 10 % of the most critical and the most satisfied users,
respectively. There are strong differences between the MOS
and the quantiles. The maximum difference between the 90 %-
quantile and MOS is 4− 2.14 = 1.86. For the 10 %-quantile,
we observe a similarly strong discrepancy, 2.90− 1 = 1.90.

This information, while very significant to service providers,
is masked out by the MOS. As a conclusion from the study, we
recommend to report different quantities beyond the MOS to
fully understand the meaning of the subjective results. While
the SOS values reflect the user diversity, the quantiles help
to understand the fraction of users with very bad (e.g. 10 %
quantile) or very good quality perception (e.g. 90 % quantile).

2) Results for Video QoE on a Continuous Rating Scale:
Figure 10 shows the results of the video QoE study [51].
A continous rating scale from 0 to 5 (cf. Figure 14) was
used. The two labs where the study was carried out are
denoted as “EPFL” and “PoLiMi” in the result figures. The
packet loss in the video transmission was varied in pL ∈
{0; 0.1; 0.4; 1; 3; 5; 10} (in %) for four different videos. In
total, 40 subjects assessed 28 test conditions. The MOS, SOS,
as well as the 10 %- and 90 %-quantile were computed for
each test condition over all 40 subjects from both labs. More
details on the setup can be found in the Appendix A-D.

Fiugre 10a provides a SOS-MOS plot. The markers depict
the tuple (MOS,SOS) for each of the 28 test conditions (PoliMi
’�’ and EPFL ’♦’). The dashed lines shows the SOS fitting
function with the corresponding SOS parameters for the two
labs which are almost identical. When merging the results from
both labs, we arrive at the SOS parameter a = 0.10. Due to the
user diversity, we observe of course positive SOS values for
any test condition (the theoretical minimum SOS is zero for the
continuous scale), but the diversity is lower than for web QoE.
Subjects are presumably more confident on (or familiar with)
how to rate an impaired video, while the impact of temporal
stimuli i.e. PLT for web QoE is more difficult to evaluate.

For each test condition, we observe a MOS value and the
corresponding SOS value according to the SOS parameter.
We fit the user ratings per packet loss ratio with a truncated
normal distribution in [0; 5] with the measured mean µ (MOS)
and standard deviation σ (SOS). Thus, the user ratings U
follow the truncated normal distribution, i.e. U ∼ N(µ;σ; 0; 5)
with U ∈ [0; 5]. We observe a very good match between
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(a) SOS-MOS Plot. The markers depict the tuple (MOS,SOS) for
each of the 28 test conditions (PoliMi ’�’ and EPFL ’♦’). The dashed
lines shows the SOS fitting function with the corresponding SOS
parameters for the two labs which are almost identical. When merging
the results from both labs, we arrive at the SOS parameter a = 0.10.
But the diversity is lower than for web QoE. Subjects are more sure
how to rate an impaired video, while the impact of temporal stimuli
i.e. PLT for web QoE is more difficult to evaluate for subjects. The
solid black curve depicts the maximum SOS.
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(b) Quantile-MOS Plot. The markers depict the empirically derived
90 %-quantiles ’•’ and 10 %-quantiles ’◦’, respectively. Furthermore,
we plot the quantiles depending on MOS for user ratings following
a truncated normal distribution and SOS parameter a = 0.1, 0.5, 1.
The SOS hypothesis returns for each MOS value µ the related SOS
value σ which allows to compute the quantiles of the truncated normal
distribution, i.e. U ∼ N(µ;σ; 0; 5). The solid and dashed lines depict
the 90 %- and 10 %-quantiles, respectively.

Figure 10: Video QoE. Results of the video QoE study [51].
A continous rating scales from 0 to 5, cf. Figure 14, was used
in the experiments for subjects evaluating the quality of videos
transmitted over a noisy channel [51]. The study was repeated
in two different labs denoted as ’EPFL’ and ’PoLiMi’ in the
result figures. The packet loss in the video transmission was
varied in pL ∈ {0; 0.1; 0.4; 1; 3; 5; 10} (in %) for four different
videos. In total, 40 subjects evaluated 28 test conditions.
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the empirical CDF and the truncated normal distribution,
see Figure 15b in the appendix. This is not obivous and
no trivial result, although the first two moments of both
distributions are identical, the underlying distributions could
be very different, as pointed out in Section II. Thus, together
with the SOS parameter a, the user voting distribution is
completely specified for any MOS value µ on the rating scale
i.e. µ ∈ [0; 5].

Figure 10b shows the quantiles as a function of the MOS.
The filled ’•’ and non-filled markers ’◦’ depict the empirically
derived 90 %- and 10 %-quantiles for the 28 test conditions,
respectively. Furthermore, we plot the quantiles depending
on MOS for user ratings U following a truncated normal
distribution and SOS parameter a = 0.1, 0.5, 1. Note that we
measure a = 0.10 in the experiments on video QoE. The SOS
parameter 0.5 leads to

√
0.5/0.1 = 2.24 higher SOS values

for an observed MOS. The SOS parameter 1 leads to the
maximum possible SOS which is 3.16 times higher than in the
subjective data. Due to the SOS hypothesis and a given SOS
parameter a, we obtain for each MOS value µ the related SOS
value σ(µ; a), see Eq.(5). Thereby, the MOS value represents
the outcome of a concrete test condition. The parameters µ and
σ are input parameters of the truncated normal distribution
which allows us to compute the α-quantile of the truncated
normal distribution, i.e. U ∼ N(µ;σ; 0; 5). The solid and
dashed lines depict the 90 %- and 10 %-quantiles, respectively.
We observe that the truncated normal distribution correspond-
ing to the SOS parameter a = 0.1 fit very well the empirical
quantiles. With the information of the SOS parameter, the
quantiles, etc., can be completely derived for any MOS value.
Similarly to the discrete rating scale results from the web
QoE study, we observe strong differences between the MOS
and the quantiles when using a continuous rating scale. The
maximum difference between the 90 %-quantile and MOS is
3.62 − 2.42 = 1.20. Also on the continuous scale, the MOS
masks out such meaningful information for providers.

3) Results for Speech QoE – Comparison between Contin-
uous and Discrete Rating Scale: When comparing the SOS
values from the web and video study, we observe that the
discrete rating scale leads to higher SOS values than the
continous scale. However, the higher user diversity may be
caused by the application [44]. Therefore, we briefly discuss
the speech QoE study (as already discussed in Section V-C
and described in the Appendix A-B). Subjects rate the QoE
for certain test conditions on a discrete and a continuous scale
which allows a comparison.

As a result (cf. Figure 12a), the SOS parameter ad = 0.23
and ac = 0.12 are obtained for the discrete and the continuous
scales, respectively. For the discrete scale, we observe larger
SOS values than for the continous scale, which can also be
seen by the larger SOS parameter ad > ac. In particular, on
the discrete scale, the SOS values are larger by a factor of√
ad/ac ≈ 1.38. This observation seems to be reasonable, as

the continuous scale has more discriminatory power than the
discrete scale. Subjects can assess the quality more fine gran-
ular on the continuous scale by choosing a value x ∈ [i; i+1],

while the subject has to decide between i and i+1 on a discrete
scale. The minimum SOS for a given MOS value is zero for a
continuous scale, while the minimum SOS is larger than zero
and depends on the actual MOS value, cf. Eq.(3).

Although the results seem to be valid from a statistical
point of view, the literature shows conflicting results. In
[52], subjective studies on the image aesthetic appeal were
conducted using a discrete 5-point ACR scale as well as
a continuous scale. However, similar SOS parameters were
obtained for both rating scales. [53] compared two different
subjective quality assessment methodologies for video QoE:
absolute category rating (ACR) using a 5-point discrete rating
scale and subjective assessment methodology for video quality
(SAMVIQ) using a continuous rating scale. As a key finding,
SAMVIQ is more precise (in terms of confidence interval
width of a MOS value) than ACR for the same number of
subjects. However, SAMVIQ uses multiple stimuli assessment,
i.e. multiple viewing of a sequence. There are further works
[54], [55], [56], [57] comparing different (discrete and con-
tinuous) rating scales as well as assessment methodologies
like SAMVIQ in terms of reliability and consistency of the
user ratings. We note, however, that they do not address
the issues of using averages to characterize the results of
those assessments. A detailed analysis of the comparison of
continuous and discrete rating scales and their impact on QoE
metrics is left for future work.

E. Comparison of Results

All experiments and some key quantities are summarized in
Table II, which may serve as a guideline to properly describe
subjective studies and their results in order to extract as much
insight from them as possible. For comparing the key measures
across the experiments with different rating scales, the user
ratings in all experiments are mapped on a scale from 1 (bad
quality) to 5 (excellent quality).

The user rating diversity seems to be lower when using
a continuous rating scale than a discrete one. This can be
observed from the SOS parameter a, but also the maximum
SOS at a certain MOS. It should be noted, however, that in
more interactive services such as web QoE, there might be
an inherently higher variation of user ratings, due e.g., to
uncertainty on how to rate the overall quality.

The MSE-optimal parameter θ is determined by minimizing
the MSE between the θ-acceptability of the measurement data
and the %GoB-MOS. The discrete rating scale can only find a
discrete value θ and therefore stronger deviations between the
%GoB estimator and the θ-acceptability arise. We see that
for the task-related web QoE, the MSE-optimal parameter
is θ = 3. This means that the ratio of users rating fair or
better match the %GoB curve. For the continous rating scales,
optimal continous thresholds can be derived. For the speech
QoE and the video QoE on continous scales, a value of θ
around 3 matches the %GoB curve.

The limitations of MOS are made evident by the minimum
%GoB ratio P (U ≥ 4) for all test conditions which lead to
a MOS value equal or larger than 4. The ratio shows how
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Table II: Description of the subjective studies conducted for analyzing QoE for different applications. Key QoE metrics for
the subjective results are depicted. For comparing the metrics across the experiments with different rating scales, the user
ratings in all experiments are mapped on a scale from 1 (bad quality) to 5 (excellent quality). The MSE-optimal parameter θ
is determined by minimizing the MSE between the θ-acceptability of the measurement data and the %GoB (Eq. (8)).

Experiment Speech QoE Disc. Speech QoE Cont. PLT Web QoE Video QoE Task-related Web QoE

Rating Scale Type Discrete Continuous Discrete Continuous Discrete
Ω – Rating Scale {1, · · · , 5} [0; 6] {1, · · · , 5} [0; 5] {1, · · · , 5}
R – #subjects 20 20 72 40 10–30 per test condition
J – #conditions 86 86 40 28 23
a – SOS parameter 0.230 0.123 0.268 0.099 0.266
Max. SOS (at MOS) 1.342 (2.700) 0.954 (3.953) 1.153 (2.903) 0.709 (2.420) 1.335 (3.000)
MSE-optimal θ 4 3.014 4 3.065 3
Min. %GoB P (U ≥ 4) 0.700 0.500 0.806 0.950 0.688
Max. difference between
90 %-quantile and MOS

5-2.700=2.300 4.840-3.426=1.414 4-2.139=1.861 3.623-2.420=1.203 4.900-3.000=1.900

Max. difference between
MOS and 10 %-quantile

3.300-1.5=1.800 3.953-2.423=1.530 2.903-1=1.903 3.416-2.397=1.020 3-1.100=1.900

many users accept (or do not accept) the condition, although
the MOS exceeds the threshold.

Another limitation of the MOS is highlighted by the quan-
tiles. In particular, the maximum difference between the 90 %-
quantile and the MOS values is shown to reach up to 2
points on the 5-point scale. This highlights the importance
of considering QoE beyond the MOS.

VI. CONCLUSIONS

In this article, we argued for going beyond MOS when
performing subjective quality tests. While MOS is a practical
way to convey QoE measures and a simple to interpret scalar
value, it hides important details about the results. These details
often have a significant impact in terms of the service technical
performance, and on the business aspects of the service.

Our contributions are many-fold. Firstly, while there are
many works in the literature dealing with subjective and
objective quality assessment, they are mostly limited to MOS,
while ignoring higher order statistics and the relation between
quality and acceptance. Our first contribution is thus that there
are other tools available for understanding QoE besides the
MOS, their importance, and how they are used. A second
contribution is a survey of the available QoE measures, their
definition and interpretation. Using these tools brings more
insight into QoE analysis. Our third contribution is a showcase,
by means of analyzing several concrete use cases, of how
these analysis tools are used, highlighting the extra insight they
bring beyond that of the MOS. We analyze e.g., the impact
of using continuous vs. discrete scales on the accuracy of the
assessment, the relation between quality and acceptance.

Concerning acceptability ratings, we note the following
difference between acceptability (as an explicit question to
the users) and the concept of θ-acceptability. In a subjective
experiment, each user defines their own threshold reflecting
the point where QoE is good enough to accept the service.
This is the result of a complex cognitive process. In contrast,
θ-acceptability considers a globally defined threshold (e.g.
defined by the ISP, or whoever designed the subjective test
scale used) which is the same for all users. This leads to

a discrepancy with the subjective results, which can vary
significantly with the application considered. For instance, in
the case of Web QoE with a task, the discrepancy is rather
large. In the case of speech, the E-Model-inspired %GoB
estimator in Eq. (8) maps a MOS value of 1 to a %GoB of 0 %,
as a speech service is not possible any more if the quality is too
degraded, and hence it is unacceptable. In contrast, in the Web
QoE case, a very bad QoE can still result in a usable service
which is accepted by the end user. Thus, the user can still
complete for example the task of finding a wikipedia article,
although the page load times are very high. This may explain
why 20 % of the users accept the service although they rate
the QoE with bad quality (1). From this, we can recommend
that acceptability be included explicitly as part of subjective
assessment, as it cannot be directly inferred from user ratings
on the quality of a service, e.g., on a 5-point MOS scale.

These differences in the way that users accept (or not)
the service quality, and how this relates to MOS values can
provide key insights to providers when assessing the QoE
delivered to their users, and how it may relate to issues such
as churn. Asking explicitly about acceptability seems like a
necessary step to consider in certain use cases (where business
considerations are important, for example). Likewise, thinking
in terms of distributions, or at least quantiles, provides more
actionable information to service and content providers, as it
allows them to better grasp how their users actually perceive
the quality of the service, and how many of those users
may be happy or unhappy (or, in following with the QoE
definition, delighted or annoyed) with it. This implies that
existing quality models that provide MOS estimates should
be complemented (or eventually replaced) by new models that
estimate rating distributions, or key quantiles. These results
are directly relevant to several aspects of service provisioning,
from the more technical ones, such as network management,
to marketing and pricing strategies, to customer support.

In summary, we have made the case for going beyond the
MOS, and delving deeper into the analysis of QoE assessment
results, with practical applications (e.g., business and engineer-
ing considerations on the service providers’ part) in mind.
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VIII. SUPPLEMENTARY MATERIAL

Matlab scripts for computing the QoE metrics for given data
sets are available as supplementary material to this publication
as well as in GitHub [58]. The formal definition of the QoE
metrics is available as supplementary material as well as
technical report [43].

REFERENCES

[1] T. Hoßfeld, P. E. Heegaard, and M. Varela, “QoE
beyond the MOS: Added Value Using Quantiles and
Distributions”, in 7th International Workshop on Qual-
ity of Multimedia Experience (QoMEX 2015), Costa
Navarino, Greece, May 2015.

[2] ITU-T Recommendation P.800.1, Mean Opinion Score
(MOS) Terminology, International Telecommunication
Union, Mar. 2003.

[3] U. Engelke and H.-J. Zepernick, “Perceptual-based
Quality Metrics for Image and Video Services: A Sur-
vey”, in 3rd EuroNGI Conference on Next Generation
Internet Networks, Trondheim, Norway, May 2007.

[4] A. Van Moorsel, “Metrics for the Internet Age: Quality
of Experience and Quality of Business”, in 5th In-
ternational Workshop on Performability Modeling of
Computer and Communication Systems (PMCCS 5),
Erlangen, Germany, Sep. 2001.

[5] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J.
Karam, “Objective Video Quality Assessment Methods:
A Classification, Review, and Performance Compari-
son”, IEEE Transactions on Broadcasting, vol. 57, no.
2, 2011.

[6] P. Mohammadi, A. Ebrahimi-Moghadam, and S. Shi-
rani, “Subjective and Objective Quality Assessment
of Image: A Survey”, Arxiv preprint arxiv:1406.7799,
2014.

[7] J. Korhonen, N. Burini, J. You, and E. Nadernejad,
“How to Evaluate Objective Video Quality Metrics
Reliably”, in 4th International Workshop on Quality
of Multimedia Experience (QoMEX 2012), Melbourne,
Australia, Jul. 2012.

[8] M. Mu, A. Mauthe, G. Tyson, and E. Cerqueira,
“Statistical Analysis of Ordinal User Opinion Scores”,
in IEEE Consumer Communications and Networking
Conference (CCNC 2012), Las Vegas, USA, Jan. 2012.

[9] R. C. Streijl, S. Winkler, and D. S. Hands, “Mean Opin-
ion Score (MOS) Revisited: Methods and Applications,
Limitations and Alternatives”, Multimedia Systems, vol.
22, no. 2, Mar. 2014.

[10] L. Janowski and Z. Papir, “Modeling Subjective Tests
of Quality of Experience with a Generalized Linear
Model”, in 1st IEEE International Workshop on Quality
of Multimedia Experience (QoMEX 2009), San Diego,
USA, Jul. 2009.

[11] A. Bouch, M. A. Sasse, and H. DeMeer, “Of Packets
and People: A User-centered Approach to Quality of
Service”, in 8th International Workshop on Quality of
Service (IWQOS ’00), Pittsburgh, USA, Jun. 2000.

[12] H. Nachlieli and D. Shaked, “Measuring the Quality
of Quality Measures”, IEEE Transactions on Image
Processing, vol. 20, no. 1, 2011.

[13] ITU-T Recommendation P.800, Methods for Subjective
Determination of Transmission Quality, International
Telecommunication Union, Aug. 1996.

[14] ITU-R Recommendation BT.500-13, Methodology for
the Subjective Assessment of the Quality of Television
Pictures, International Telecommunication Union, Jan.
2012.

[15] A. Watson and M. Sasse, “Measuring Perceived Quality
of Speech and Video in Multimedia Conferencing Ap-
plications”, in ACM Multimedia ’98, Bristol, UK, Sep.
1998.

[16] H. Knoche, H. G. De Meer, and D. Kirsh, “Utility
Curves: Mean Opinion Scores Considered Biased”,
in 7th International Workshop on Quality of Service
(IWQoS ’99), London, UK, Jun. 1999.

[17] L. Gros, N. Chateau, and A. Macé, “Assessing Speech
Quality: A New Approach”, in 4th European Congress
on Acoustics (Forum Acusticum), Budapest, Hungary,
Aug. 2005.

[18] L. Gros, N. Chateau, and V. Durin, “Speech Qual-
ity: Beyond the MOS Score”, in Measurement of
Speech and Audio Quality in Networks Workshop
(MESAQIN’06), Prague, Czech Republic, Jun. 2006.

[19] V. Durin and L. Gros, “Measuring Speech Quality Im-
pact on Tasks Performance”, in 9th Annual Conference
of the International Speech Communication Association
(INTERSPEECH 2008), Brisbane, Australia, Sep. 2008.

[20] A. Sackl, P. Zwickl, and P. Reichl, “The Trouble with
Choice: An Empirical Study to Investigate the Influence
of Charging Strategies and Content Selection on QoE”,
in 9th International Conference on Network and Service
Management (CNSM 2013), Zürich, Switzerland, Oct.
2013.

[21] T. Mäki, P. Zwickl, and M. Varela, “Network Quality
Differentiation: Regional Effects, Market Entrance, and
Empirical Testability”, in IFIP Networking 2016, Vi-
enna, Austria, May 2016.

[22] M. H. Pinson, S. Wolf, and R. B. Stafford, “Video
Performance Requirements for Tactical Video Applica-



REFERENCES 16

tions”, in IEEE Conference on Technologies for Home-
land Security (HST), Woburn, MA, USA, May 2007.

[23] M. A. Sasse and H. Knoche, “Quality in Context – An
Ecological Approach to Assessing QoS for Mobile TV”,
in 2nd ISCA/DEGA Tutorial and Research Workshop
on Perceptual Quality of Systems (PQS 2006), Berlin,
Germany, Sep. 2006.

[24] P. Spachos, W. Li, M. Chignell, A. Leon-Garcia, L.
Zucherman, and J. Jiang, “Acceptability and Quality
of Experience in Over The Top Video”, in IEEE ICC
2015 - Workshop on Quality of Experience-based Man-
agement for Future Internet Applications and Services
(QoE-FI), London, UK, Jun. 2015.

[25] T. D. Pessemier, K. D. Moor, A. J. Verdejo, D. V.
Deursen, W. Joseph, L. D. Marez, L. Martens, and
R. V. de Walle, “Exploring the Acceptability of the
Audiovisual Quality for a Mobile Video Session based
on Objectively Measured Parameters”, in 3rd Interna-
tional Workshop on Quality of Multimedia Experience
(QoMEX 2011), Mechelen, Belgium, Sep. 2011.

[26] ITU-T Recommendation P.10/G.100, Amendment 2,
Vocabulary and Effects of Transmission Parameters on
Customer Opinion of Transmission Quality, Interna-
tional Telecommunication Union, 2006.

[27] U. Jekosch, Voice and Speech Quality Perception: As-
sessment and Evaluation. Springer Science & Business
Media, 2005, ISBN: 9783540288602.

[28] P. Le Callet, S. Möller, and A. Perkis (eds.), “Qualinet
White Paper on Definitions of Quality of Experience”,
European Network on Quality of Experience in Multi-
media Systems and Services (COST Action IC 1003),
Mar. 2013.

[29] S. Jumisko-Pyykkö and T. Vainio, “Framing the Context
of Use for Mobile HCI”, International Journal of Mo-
bile Human Computer Interaction, vol. 2, no. 4, 2010.

[30] S. Möller, Assessment and Prediction of Speech Quality
in Telecommunications. Springer US, Aug. 2000, ISBN:
0792378946.

[31] S. Egger, P. Reichl, and K. Schoenenberg, “Quality
of Experience and Interactivity”, in Quality of Experi-
ence: Advanced Concepts, Applications and Methods,
S. Möller and A. Raake, Eds. Springer International
Publishing, 2014, ISBN: 978-3-319-02681-7.

[32] ITU-T Recommendation G.107, The E-Model, a Com-
putational Model for Use in Transmission Planning,
International Telecommunication Union, Apr. 2011.

[33] ITU-T Recommendation P.910, Subjective Video Qual-
ity Assessment Methods for Multimedia Applications,
International Telecommunication Union, Apr. 2008.

[34] ITU-T Handbook on Telephonometry, International
Telecommunication Union, 1992.

[35] ITU–T Recommendation P.805, Subjective Evaluation
of Conversational Quality, International Telecommuni-
cation Union, Apr. 2007.

[36] ITU-T Recommendation P.810, Modulated Noise Ref-
erence Unit (MNRU), International Telecommunication
Union, Feb. 1996.

[37] H.-S. Kim and C.-H. Yoon, “Determinants of Subscriber
Churn and Customer Loyalty in the Korean Mobile
Telephony Market”, Telecommunications Policy, vol.
28, no. 9-10, 2004, ISSN: 0308-5961.

[38] D. Soldani, M. Li, and R. Cuny, QoS and QoE Man-
agement in UMTS Cellular Systems. Wiley, 2006, ISBN:
9780470016398.

[39] ITU-T P.Sup3 – Suppl. 3 to ITU-T Series P Recommen-
dations, Models for Predicting Transmission Quality
from Objective Measurements, International Telecom-
munication Union, Mar. 1993.

[40] ETSI Technical Report ETR 250, Transmission and
Multiplexing (TM); Speech Communication Quality
from Mouth to Ear for 3,1 kHz Handset Telephony
across Networks, European Telecommunications Stan-
dards Institute, Jul. 1996.

[41] T. L. Keiningham, B. Cooil, T. W. Andreassen, and L.
Aksoy, “A Longitudinal Examination of Net Promoter
and Firm Revenue Growth”, Journal of Marketing, vol.
71, no. 3, Jul. 2007.

[42] E. de Haan, P. C. Verhoef, and T. Wiesel, “The Predic-
tive Ability of Different Customer Feedback Metrics
for Retention”, International Journal of Research in
Marketing, vol. 32, no. 2, 2015, ISSN: 0167-8116.

[43] T. Hoßfeld, P. E. Heegaard, M. Varela, and S. Möller,
“Formal Definition of QoE Metrics”, Arxiv cs.MM, Jul.
2016.

[44] T. Hoßfeld, R. Schatz, and S. Egger, “SOS: The MOS is
not enough!”, in 3rd International Workshop on Quality
of Multimedia Experience (QoMEX 2011), Mechelen,
Belgium, Sep. 2011.

[45] R. Schatz and S. Egger, “An Annotated Dataset for
Web Browsing QoE”, in 6th International Workshop
on Quality of Multimedia Experience (QoMEX 2014),
Singapore, Sep. 2014.

[46] ITU-T Recommendation P.1501, Subjective Testing
Methodology for Web Browsing, International Telecom-
munication Union, Apr. 2013.

[47] P. Reichl, S. Egger, S. Möller, K. Kilkki, M. Fiedler,
T. Hoßfeld, C. Tsiaras, and A. Asrese, “Towards a
Comprehensive Framework for QoE and User Behavior
Modelling”, in 7th International Workshop on Qual-
ity of Multimedia Experience (QoMEX 2015), Costa
Navarino, Greece, May 2015.

[48] F. Köster, D. Guse, M. Wältermann, and S. Möller,
“Comparison between the Discrete ACR Scale and an
Extended Continuous Scale for the Quality Assessment
of Transmitted Speech”, in Fortschritte der Akustik -
DAGA 2015: Plenarvortr. u. Fachbeitr. d. 41. Dtsch.
Jahrestg. f. Akust., Nürnberg, Germany, Mar. 2015.

[49] D. Gibbon, “EUROM. 1 German speech database”, ES-
PRIT project 2589 Report (SAM, Multi-Lingual Speech



17

Input/Output Assessment, Methodology and Standard-
ization), 1992.

[50] T. Hoßfeld, R. Schatz, S. Biedermann, A. Platzer, S.
Egger, and M. Fiedler, “The Memory Effect and Its
Implications on Web QoE Modeling”, in 23rd Inter-
national Teletraffic Congress (ITC 23), San Francisco,
USA, Sep. 2011.

[51] F. De Simone, M. Naccari, M. Tagliasacchi, F. Dufaux,
S. Tubaro, and T. Ebrahimi, “Subjective Assessment of
H. 264/AVC Video Sequences Transmitted over a Noisy
Channel”, in 1st International Workshop on Quality of
Multimedia Experience (QoMEX 2009), San Diego, US,
2009.

[52] E. Siahaan, J. A. Redi, and A. Hanjalic, “Beauty is in
the Scale of the Beholder: Comparison of Methodolo-
gies for the Subjective Assessment of Image Aesthetic
Appeal”, in 6th International Workshop on Quality
of Multimedia Experience (QoMEX 2014), Singapore,
2014.

[53] S. Péchard, R. Pépion, and P. Le Callet, “Suitable
Methodology in Subjective Video Quality Assessment:
A Resolution Dependent Paradigm”, in 3rd Interna-
tional Workshop on Image Media Quality and its Ap-
plications (IMQA2008), Kyoto, Japan, Sep. 2008.

[54] T. Tominaga, T. Hayashi, J. Okamoto, and A. Takahashi,
“Performance comparisons of subjective quality assess-
ment methods for mobile video”, in 2nd international
workshop on quality of multimedia experience (qomex
2010), Trondheim, Norway, 2010.

[55] M. H. Pinson and S. Wolf, “Comparing Subjective
Video Quality Testing Methodologies”, in Visual Com-
munications and Image Processing 2003, International
Society for Optics and Photonics, 2003.

[56] M. D. Brotherton, Q. Huynh-Thu, S David, and K.
Brunnstrom, “Subjective Multimedia Quality Assess-
ment”, IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, vol.
89, no. 11, 2006.

[57] Q. Huynh-Thu and M. Ghanbari, “A Comparison of
Subjective Video Quality Assessment Methods for Low-
bit Rate and Low-resolution Video”, in Signal and
Image Processing (SIP 2005), Honolulu, Hawaii, USA,
Aug. 2005.

[58] T. Hoßfeld, P. E. Heegaard, M. Varela, and S. Möller,
Scripts for the Computation of QoE Metrics beyond the
MOS, Jul. 2016. [Online]. Available: https://github.com/
hossfeld/QoE-Metrics.git.

APPENDIX A
EXPERIMENTAL SETUP & ADDITIONAL RESULTS

A. Experimental Setup for Task-Related Web QoE

The experiments in [45] investigated web QoE. In the
campaign conducted, subjects were asked to carry out a certain
task, and the impact of page load times (PLT) during the web
session was investigated. Besides assessing the overall quality
of the web browsing session, subjects additionally answered
an acceptance question. The experiment was carried out in
a laboratory environment, with 32 subjects. In contrast to the
PLT experiments on web QoE in Section A-C, subjects carried
out a task and evaluated the overall quality of the complete
web session related to the task in Section V-B – as opposed
to giving their opinions based on the PLT of a single page.

Four different websites (encyclopedia, cooking community,
news portal, travel portal) were used in the test, with strongly
varying page complexity in terms of number of visual elements
and modalities (textual, visual, audio-visual). For each of the
websites, subject were asked to perform a certain task (cf.
Table III), while network conditions were changed. In partic-
ular, six downlink bandwidth conditions were tested, leading
to different page load times for the presented web pages
during each session. In total, 23 different test conditions (i.e.
website and bandwidth condition) were tested. However, each
participant rated only a subset of those conditions, resulting
in 418 opinion ratings and acceptance answers with 10–30
opinions per test condition.

After each condition, subjects were asked to rate their
overall experienced quality on a 9-point ACR scale, see Fig-
ure 11, as well as acceptability. Note that this test methodology
conforms with ITU-T Rec. P.1501 [46].

Each session lasted for approximately two hours, including
a briefing, training conditions, debriefing interviews and a
break of roughly 10 min halfway through the test. For the
web browsing tasks, the test operator set different maximum
network downlink bandwidth conditions to be experienced,
remotely started a browser session with the corresponding
website, asked the user to perform a certain browsing scenario
on a notebook Windows PC and triggered electronic rating
prompts after each condition. The session duration for each
condition, from starting the browser session until the display
of the electronic rating prompt was approximately 180 s.

9 excellent
8
7 good
6
5 fair
4
3 poor
2
1 bad

Figure 11: 9-point quality scale as used for the task-related
web QoE experiments [45] in Section V-B.

https://github.com/hossfeld/QoE-Metrics.git
https://github.com/hossfeld/QoE-Metrics.git
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Table III: Subjects conducted a certain task in the web
browsing experiments in Section V-B.

Encyclopedia Find the article [GIVEN TERM e.g New York City]. Try to
answer the following five questions .... by browsing through
the article by clicking on links

Cooking Browse to search for three recipes you would like to cook in
the given section.

News Try to get an overview of the current news in the given section.
Travel Browse through the hotels in ....... and select five you would

like to stay in.

B. Speech Quality on Discrete and Continuous Scale

The opinion ratings of the subjects on speech quality are
taken from [48]. We briefly describe the experimental setup
and focus only on the details relevant for our analysis. The
listening-only experiments were conducted by 20 subjects in
an environment fulfilling the requirements in ITU-T Rec. P.800
[2]. As source speech material, recorded sentences by one
male and one female German speakers from the EUROM
database [49] were used and sampled at 8 kHz (narrowband)
and 16 kHz (wideband), respectively. The narrowband test
consisted of 18 conditions including different loudness levels,
noise types (babble and hoth), bandpasses, codecs, codec
tandems, MNRUs, and packet losses. The wideband tests
consisted of 25 conditions including clean speech and different
loudness levels, noise types (babble and hoth), bandpasses,
wideband codecs, codec tandems, wideband MNRUs, and
packet losses. The test conditions were rated for the male
and the female speaker content resulting into 86 different test
conditions in total.

The subjects assessed the different test conditions on two
different scales: the ACR scale (Figure 6) and the extended
continuous scale (Figure 7). To be more precises, each subject
was using both scales during the experiment. The scales were
incorporated in a software program that led the participants
through the experiments. The ACR scale was realized with
software buttons pre-annotated with the numbers 5 to 1 and
labelled according to ITU-T Rec. P.800 [2]. The extended
continuous scale was depicted as a bitmap, together with a
software slider. The labels were internally assigned to numbers
of the interval [0,6] in such a manner that the attributes
corresponding to ITU-T Rec. P.800 were exactly assigned to
the numbers 1, · · · , 5.

The test was split into four sessions, i.e. narrowband and
wideband test for the discrete and the continuous scale. The
samples of the different test conditions were randomized
per session, so as to avoid learning effects. The first two
sessions always consisted of the narrowband context, whereas
the last two sessions consisted of the wideband context. For
both contexts, the scales were presented in random order.
The order of narrowband and wideband context was fixed to
consider internal quality expectation of the participants when
migrating from traditional narrowband to modern wideband
speech. Dedicated training samples were asked to be rated in
prior to each session in order to foster the sense for the range
of quality to be expected.
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(a) SOS-MOS Plot. The markers depict the tuples (MOS,SOS) for
any test condition of the subjective study on the discrete and the
continuous rating scale. The dashed lines show the fitting function
according to the SOS hypothesis with the SOS parameter a specified
in the legend. The solid black line shows the maximum SOS for
a given MOS value. For the discrete scale, we observe larger SOS
values than for the continous scale.
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(b) Parameter θ fitting. For the continuous rating scale, the parame-
ter θ is determined which minimizes the mean squarred error (MSE)
between the E-model and the subjective data. For the ratio %PoW
of dissatisfied users rating poor or worse in the E-model, the value
θ = 2.32 leads to a minimum MSE. For the ratio %GoB of satisfied
users rating good or better in the E-model, the value θ = 3.0140
leads to a minimum MSE. Obviously, the MSE optimal value is larger
than 2 for %PoW and smaller than 4 for %GoB, respectively. The
E-model overestimates %GoB for given MOS values.

Figure 12: Speech QoE. Results of the speech QoE study
[48]. For the 86 test conditions, QoE metrics were computed
over the 20 subjects for the discrete 5-point ACR scale
(Figure 6) and the extended continuous scale (Figure 7). The
results for the discrete scale are marked with ’�’, while the
QoE measures for the continuous scale are marked with ’♦’.
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C. Web QoE and Discrete Rating Scale

The opinion ratings from the subjective user study on web
QoE is based on the experiments in [50]. Subjects sequentially
browsed a set of web pages while the page loading times (PLT)
were varied in order to quantify the impact of PLT on web
QoE. In total, 72 subjects completed the online test in their
preferred environment. The test was implemented by means
of a Java applet to ensure that all participants experienced
the same pre-defined sequences of PLTs – regardless of their
Internet access’ performance. The participants interacted with
the Java applet that already contained the contents of the
websites. The applet simulated the download of various web
pages with predefined page load times.

The content consisted of a simple photo web page display-
ing a single image in order to avoid any content specific
influences on user quality perception and rating behavior.
During the tests, a user downloaded and viewed sequentially
40 different web pages with predefined page load times. The
maximum PLT was 1.2 s. The minimum and the mean PLT
were 0.24 s and 0.66 s, respectively.

After the download of each web page, the user was
prompted for his or her opinion about the overall QoE on
a given rating scale. The web page contained rating buttons
from 1 to 5 (similar to Figure 6), which were used by the test
subjects to give his/her personal opinion score on the overall
quality during the browsing session. In particular, subjects
were asked to answer the question “Are you satisfied with
this download speed?”.

Figure 13a depicts the %PoW in relation to MOS. The
markers depict the MOS and the ratio P (U ≤ 2) for each
of the test conditions. The dashed blue line represents the
corresponding ratio for the shifted binomial distribution. The
solid black line shows the %PoW ratio depending on MOS
using the definitions in Section IV-F. The empirical results
highlight the averaging effect of the MOS, clearly showing
that it is not a sufficient measure to fully understand the results
of a subjective study. It can be seen that even for fair or good
overall MOS values, a significant number of users perceives
the quality as poor or bad. Simply using the %PoW estimator
underestimates the ratio of dissatisfied users P (U ≤ 2) with
a maximum difference 11.01 % at MOS 2.731.

Figure 13b illustrates the results for ratio %GoB of users
rating good or better i.e. P (U ≥ 4). The markers depict
the MOS and the %GoB for each test condition. The dashed
blue line represents the corresponding ratio for the binomial
distribution. The solid black line shows the %GoB ratio
depending on MOS. Even for good MOS values larger than 4,
up to 20 % of the users are rating fair or worse. The %GoB
again overestimates the ratio of satisfied users P (U ≥ 4) with
a maximum difference 17.24 % at MOS 3.572. In summary,
the web QoE results confirm the observations for the speech
QoE results on the discrete scale.
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(a) %PoW-MOS Plot. The markers depict the MOS and the ratio
P (U ≤ 2) for each of the test conditions. The dashed blue line rep-
resents the corresponding ratio for the shifted binomial distribution.
The solid black line shows the %PoW ratio estimation depending on
MOS as defined in Eqs. (9). For the minimum MOS 2.111 observed,
37.50 % if the users are rating fair or better. The %PoW estimator
underestimates the ratio of dissatisfied users P (U ≤ 2) with a
maximum difference 11.01 % at MOS 2.731.
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(b) %GoB-MOS Plot. The markers depict the MOS and the %GoB
i.e. P (U ≥ 4) for each test condition of the web QoE study. The
dashed blue line represents the corresponding ratio for the shifted
binomial distribution. The solid black line shows the %GoB ratio
estimation depending on MOS, see Eqs. (8). Although the MOS is
larger than 4, up to 20 % of the users are rating fair or worse. The
%GoB estimator overestimates the ratio of satisfied users P (U ≥ 4)
with a maximum difference 17.24 % at MOS 3.572.

Figure 13: Web QoE for PLT only. Results of the web
QoE study [50]. The page load time was influenced for each
test condition and 72 subjects rated the overall quality on a
discrete 5-point ACR scale. Each user viewed 40 web pages
with different images on the page and PLTs from 0.24 s to
1.2 s resulting into 40 test conditions per user. For each test
condition, the MOS, SOS, entropy, %GoB, %PoW, as well
as 10 %- and 90 %-quantiles are computed over the opinions
of the 72 subjects.
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D. Video QoE and Continuous Rating Scale

The subjective results on the experiments on video QoE
are publicly available and taken from [51]. The study aimed
at investigating the impact of transmitting video sequences
over a noisy channel on the video quality experienced by the
end users. Subjects were in a room with controlled lighting
and color temperature, and seated directly in line with the
center of the video display at a fixed viewing distance. The
test was conducted in two different laboratories with identical
test conditions which resulted into 40 subjects in total.

In the analysis, we consider four different video sequences
of 10 s available at CIF spatial resolution (352 × 288 pixels)
at a frame rate of 30 fps. Additionally two other sequences
were used for training the subjects (and subsequently not
used in the actual test session). The video sequences were
encoded with H.264/AVC. Details on the encoding parameters
and other experimental parameters can be found in [51]. For
each of the original H.264/AVC bitstreams, corrupted test
sequences were generated by dropping IP packets according
to a two-state Gilbert’s model to generate burst loss pattern
due to the noisy channel. Six different packet loss ratios were
applied [0.1 %, 0.4 %, 1 %, 3 %, 5 %, 10 %]. This results into a
reference sequence and the six degraded ones for each of the
video contents. In total, 28 different test video sequences were
considered.

Each test session involved only one subject per display
assessing the test material. The subject was asked to rate the
quality of the presented test sequence using the 5-point ITU
continuous scale in the range [0; 5] as described in ITU-R
Rec. BT.500-13 [14]. The five point continuous rating scale is
depicted in Figure 14. The presentation order of test sequences
for each subject was randomized, taking care that consecutive
conditions did not use the same content. A training session
was performed during which the meaning of the labels were
explained by the test moderator. After the training, the actual
test session was carried out.
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Figure 14: Five point continuous quality scale as used for
the video QoE experiments [51]. It has to be noted that the
numerical values (0, · · · , 5) attached to the scale were used
only for data analysis and were not shown to the subjects
during the test.
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(a) Box Plot. A graphical illustration of the subjective ratings on a
continous scale is a box plot. For each test condition, the user ratings
represent a continuous random variable. The box ’2’ quantifies the
lower quartile and the upper quartile values as box. The median is
provided as line ’-’ in the box. Whiskers (dashed lines) extend from
each end of the box to the most extreme values within 1.5 times the
interquartile range from the ends of the box. Outliers ’+’ are data
with values beyond the ends of the whiskers. This plot shows also
the test settings (four videos, seven packet loss settings) for the two
labs (upper and lower subplot).
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(b) CDF Plot. The user ratings represent a continous random variable
which can be visualized by a cumulative distribution funtion (CDF).
For each of the seven packet loss ratios, we consider the user ratings
for the four videos used in the test and plot the empirical CDF as
solid line. In addition, we fit the user ratings per packet loss ratio
with a truncated normal distribution in [0; 5] with the measured mean
(MOS) and standard deviation (SOS). The marker ’#’ indicates the
MOS value for that packet loss condition.

Figure 15: Video QoE. Results of the video QoE study [51].
A continous rating scales from 0 to 5, cf. Figure 14, was used
in the experiments for subjects evaluating the quality of videos
transmitted over a noisy channel [51]. The study was repeated
in two different labs denoted as ’EPFL’ and ’PoLiMi’ in the
result figures. The packet loss in the video transmission was
varied in pL ∈ {0; 0.1; 0.4; 1; 3; 5; 10} (in %) for four different
videos. In total, 40 subjects evaluated 28 test conditions.
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Figure 15a shows a box plot of the results — an appropriate
graphical illustration of the subjective ratings on a continous
scale. For each test condition, the user ratings represent a
continuous random variable. The box ’2’ quantifies the lower
quartile and the upper quartile values. The median is depicted
as a line ’-’ in the box. Whiskers (dashed lines) extend from
each end of the box to the most extreme values within 1.5
times the interquartile range from the ends of the box. Outliers
’+’ are data with values beyond the ends of the whiskers. This
box plot also visualizes the test settings (four videos, seven
packet loss settings) for the two labs (upper and lower subplot).

Figure 15b shows the cumulative distribution function
(CDF) of the user ratings for the packet loss ratios tested in
the video QoE study. The user ratings represent a continous
random variable which can be visualized by a CDF. For each
of the seven packet loss ratios, we consider the user ratings for
the four videos used in the test and plot the empirical CDF
as solid line. In addition, we fit the user ratings per packet
loss ratio with a truncated normal distribution in [0; 5] with
the measured mean µ (MOS) and standard deviation σ (SOS).
Thus, the user ratings U follow the truncated normal distribu-
tion, i.e. U ∼ N(µ;σ; 0; 5) with U ∈ [0; 5]. The marker ’#’
indicates the MOS value for that packet loss condition. We
observe a very good match between the empirical CDF and the
truncated normal distribution. This is not obivous and no trivial
result, althought the first two moments of both distributions are
identical, the underlying distributions could be very different,
as pointed out in Figure 1 in Section II.

APPENDIX B
INVARIANCE OF SOS PARAMETER FOR LINEARLY

TRANSFORMED RATINGS

In a subjective experiment, we observe the random variable
Uc which represents the quality ratings of the subjects for a
certain test condition c. In the experiment, a continuous rating
scale is used with lower bound L1 and higher bound H1, i.e.
Uc ∈ [L1;H1]. We observe the SOS parameter a.

Now, the user ratings are linearly transformed to another
rating scale [L2;H2] by the transformation function

τ(u) =
u− L1

H1 − L1
(H2 − L2) + L2. (13)

Then, the transformed user ratings τ(Uc) for any test
condition c will lead to the same SOS parameter a.

We consider a certain test condition Uc. Then, the expected
value is E[Uc] = x and V ar[Uc] = V1(x) according to the
SOS hypothesis with

V1(x) = a1(−x2 + (L1 +H1)x− L1 ·H1). (14)

The variance of the transformed user ratings is

V ar[τ(Uc)] = V ar

[
Uc − L1

H1 − L1
(H2 − L2) + L2

]
(15)

= V ar

[
H2 − L2

H1 − L1
Uc

]
(16)

=

(
H2 − L2

H1 − L1

)2

· V ar[Uc]. (17)

However, the latter term is equivalent to the variance
according to the SOS hypothesis with SOS parameter a on
the transformed rating scale, i.e.

V2(τ(x)) = a2(−τ(x)2 + (L2 +H2)τ(x)− L2 ·H2) . (18)

For the user ratings transformed on the second rating scale,
it holds

V2(τ(x)) = V ar[τ(Uc)] (19)

which leads to
a2 = a1 = a . (20)

As a result, the SOS hypothesis holds with the same SOS
parameter a. The SOS parameter a is scale invariant when
linearly transforming the user ratings in a mathematical way.
However, it has to be clearly noted that subjective studies using
different rating scales may lead to different SOS parameters.
This has been observed e.g. for the results for speech QoE in
Figure 12a.

As an implication, the numerical derivation (by solving the
optimization problem) of the SOS parameter a for given MOS
and SOS values can be done with linearly transformed user
ratings, see Figure 16. Thus, the SOS parameter reflects the
user rating diversity independent of the rating scale.

0 1 2 3 4 5 6

MOS

0

0.5

1

1.5

2

2.5

3

S
O

S

cont. [0;6], a=0.122812
cont. [1;5], a=0.122812

Figure 16: Transformation of user ratings from speech QoE
results from rating scale [0; 6] to rating scale [1; 5] leads to the
same SOS parameter a. However, the values of MOS and SOS
(tuple depicted as diamond marker) as well as the maximum
SOS for a given MOS (solid lines) are changing of course.


	Introduction
	Motivation
	Objective and Subjective QoE Metrics
	The Need to Go Beyond MOS

	Background and Related Work
	QoE and Influence Factors on User Ratings
	Influence Factors in Subjective Experiments
	Service Provider's Interest in QoE Metrics

	Definition of QoE Metrics
	Preamble
	Expected value and its estimate: MOS
	SOS as function of MOS
	theta-Acceptability
	Acceptance
	GOB and POW

	Application to Real Data Sets: Some Examples
	Overview on Selected Applications and Subjective Studies
	theta-Acceptability Derived from User Ratings
	GOB and POW: Ratio of (Dis-)Satisfied Users
	SOS Hypothesis and Modeling of Complete Distributions
	Results for Web QoE on a Discrete Rating Scale
	Results for Video QoE on a Continuous Rating Scale
	Results for Speech QoE – Comparison between Continuous and Discrete Rating Scale

	Comparison of Results

	Conclusions
	Acknowledgements
	Supplementary Material
	Appendix A: Experimental Setup & Additional Results
	Experimental Setup for Task-Related Web QoE
	Speech Quality on Discrete and Continuous Scale
	Web QoE and Discrete Rating Scale
	Video QoE and Continuous Rating Scale

	Appendix B: Invariance of SOS Parameter for Linearly Transformed Ratings

