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Abstract

Spectral imaging apparatus in current use are often cumbersome, costly and slow
in operation, which becomes a major obstacle to extensive use of spectral imaging
in several application areas. In recent years, the technical and commercial success
of color filter array (CFA) based imaging systems has motivated researchers to
generalise and expand the concept of CFA to achieve efficient spectral imaging
through the use of the spectral filter array (SFA). This dissertation expounds the
research into the filter array approach to spectral imaging based on a simulation
framework, from the development of demosaicking methods to the design and
evaluation at the system level.

The dissertation first presents the development of the field of spectral imaging from
its roots in spectroscopy and imaging, and explores the state-of-the-art solutions
based on SFA from design to realisation. It then proposes a simulation framework
composed of the major parts in a typical imaging pipeline. Based on this, the
influence of chromatic aberration on CFA demosaicking and the impact of filter
bandwidth on spectral reconstruction were evaluated. The results helped to better
understand the delicate interactions between the components in the pipeline and
verify the validity of the simulation framework. On the basis of the framework,
three novel SFA demosaicking methods were developed and evaluated. The meth-
ods differ fundamentally and thus featuring distinct properties, as confirmed by
the experimental results. The key to understanding the differences lies in the way
demosaicking methods deal with the spatial and spectral correlation between pixels
in a mosaicked image. An evaluation of the colorimetric performance shows that a
properly designed SFA-based imaging system may also be useful for colour image
acquisition. Lastly, performance of the proposed and conventional demosaicking
methods were scrutinised, given the characteristics and parameters of a real-world
SFA sensor design.

ix



x ABSTRACT

We conclude that, for a successful SFA-based spectral imaging system design, it
is important to consider carefully the joint influence of all the involved modules as
well as the requirements and constraints of applications. And we hope that the use
of SFA based spectral imaging is expected to be wider in the foreseeable future in
the light of technological advances and market demand.
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Chapter 1

Introduction

This chapter presents the motivation, methodology, contribution of the research
work, and illustrates the organisation of the dissertation.

1.1 Motivation
Spectral imaging, to wit the acquisition of spectral images, has its roots in both
spectroscopy and imaging. It provides not only spatial distribution of light of a
scene, but also its spectral composition, which are valuable to various applications
including astronomical observation, earth remote sensing, preservation of cultural
heritage, chemical analysis, military object recognition, etc.

Conceptually a spectral image is often characterised by a higher number of spec-
tral bands than its trichromatic counterpart. In practice, this often results in spec-
tral imaging systems of considerable size, weight and cost, as well as complex,
time-consuming and inconvenient operation. For instance, the filter wheel is a typ-
ical approach to spectral imaging using a rotatory filter wheel placed in front of
a monochromatic image sensor, whereas airborne and spaceborne remote sensing
systems often rely on push-broom scanning whilst flying. In the former case, one
exposure produces an image of a spectral band, and in the latter, one exposure cor-
responds to a line-scan of the object. Clearly both techniques require a sequence
of exposures in order to capture a complete spectral image, and mechanical move-
ment of the filters and/or sensor results in blur. Characters of such techniques, i.e.,
dimensions, complexity and cost, therefore become a major obstacle to a wider
range of practical uses for spectral imaging, such as on-site real-time imaging ap-

1



2 Introduction

plications.

The ubiquity of the digital still and video cameras owes much to the origination
of solid-state image sensor and CFA (colour filter array) in mid-1970s [13]. Es-
sentially an arrangement of colour filter tiles, CFAs enable an instantaneous ac-
quisition of trichromatic images with a single sensor, at the expense of reduce
spatial resolution. In practice, CFA based colour cameras are usually compact,
lightweight and easy to operate.

The technological and commercial success of CFAs has aroused academic and in-
dustrial interest in extending the simultaneous and in-plane spatio-spectral sampling
capability of CFAs into the spectral realm [148, 20]. The term SFA (spectral filter
array) may be coined to describe a generic filter array integrating certain types of
filter elements for the purpose of spectral image acquisition. To the best of our
knowledge, few, if any, SFA based spectral imaging system were commercially
available when the research commenced. We believe SFA is a viable solution to
spectral imaging for certain applications.

1.2 Contribution
Due to the practical and economical difficulties in engineering an imaging system
using filter array, the experiments and analyses are performed through computer
simulation on the implicit assumption that the simulation model represents the
rationale of a real system to a certain extent. In essence, the filter array is a spatio-
spectral sampling mechanism that works on the assumption that there exist spatial
or spectral correlations between samples. In other words, images sampled presum-
ably bear a continuous tone. This hypothesis allows us to utilise and extend the
CFA imaging pipeline [111, p. 7], which forms the basis of this study.

Based on general concepts of spectral imaging systems and empirical knowledge
of the CFA/SFA-based colour imaging pipeline, we establish a simulation frame-
work as a modular toolbox composed of a scene module (see Section 4.1), an
image taking module (see Section 4.2), an image processing module (see Sec-
tion 4.3) as well as an evaluation module (see Section 4.4), as depicted in Fig. 4.1.
Each module is defined by a set of parameters and/or routines, with standardised
interfaces between the modules in connection. This not only allows flexible design
and adjustments of the system components, but also permits an efficient and intu-
itive means of evaluation. Also analyses are carried out to ensure the radiometric
validity. Modules are developed with parameters determined quantitatively on a
combined empirical and theoretical basis. Limitations of the simulation are also
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discussed in detail (see Section 4.5). Subsequent examinations are carried out in
order to verify the predictions, and explore the influence of one factor on another.

As the foremost element of an optical imaging system, the imaging optics affects
the formation of optical images, thus influencing the input to the subsequent mod-
ules, in particular, the intra-band and inter-band correlation. And demosaicking
works on the assumption of intra-band and inter-band correlations. To our know-
ledge, little is known about the influence of chromatic aberration, a prominent op-
tical aberration, on CFA employed colour imaging, as it is normally considered in
lens design and largely compensated by lenses. Therefore we simulate chromatic
aberration in the image taking module, and studied how it affects the resultant
image quality and the system performance (see Chapter 6). The use of spectral
images as virtual scenes permits a sufficiently realistic simulation of both types of
chromatic aberration, namely axial and transverse. Thanks to the flexibility of the
simulation framework, we also conduct a survey on the impact of filter bandwidth
on the accuracy of spectral reconstruction (see Chapter 5). A varying number
of filters of a wide variety of bandwidths are simulated to mimic characteristics
of various practical filters, coupled with three spectral reconstruction techniques.
These two studies helped to examine the validity and practicability of the simula-
tion framework, and investigate the role of these two key elements in the pipeline.
This paved the way for the development of SFA demosaicking methods.

Rather than developing entirely new techniques, we focus primarily on extending
potential interpolation techniques for the purpose of SFA demosaicking. The em-
phasis is therefore placed on the scalability of approaches to CFA demosaicking.
Eventually three demosaicking methods on the basis of vector median filtering
(see Chapter 7), discrete wavelet transform (see Chapter 8), and linear minimum
mean square error estimation (see Chapter 9) respectively, are considered and se-
lected for extension. The application of vector median filtering to demosaicking
relies on pseudo-pixels artificially formed by a few adjacent pixels in the vicinity
of the pixel in question. As a result, the size of the neighbourhood plays a role in
both the demosaicking results and the computational complexity. Discrete wave-
let transform may decompose an image into multiple frequency bands. When the
high-frequency components in an image, i.e., edges and fine details, are highly cor-
related, they can be estimated with ease. Low-frequency components can be estim-
ated by low-pass filtering. A combination of the resulting high- and low-frequency
components may give rise to a reasonable demosaicked image. Unlike the two
aforementioned heuristic approaches, the last technique, a.k.a. linear minimum
mean square error, is a computational method that treats demosaicking as image



4 Introduction

restoration. This linear operation applies a priori information obtained through
training to demosaicking, with the aim of resulting in minimum mean square error
between the full resolution image and the demosaicked image.

As a spatio-spectral sampling apparatus, filter array can be considered as a com-
promise between spectral and spatial sampling rate. Thus a SFA sacrifices spatial
sampling rate for higher spectral sampling rate. In this case, would SFA be benefi-
cial to colour image acquisition? To answer the question, we placed the CFA and
SFAs in the pipeline, and evaluated the colorimetric performance of both respect-
ively (see Chapter 10). For the purpose of a comparative analysis of SFA demo-
saicking, three proposed methods are compared with three representative methods
given parameters of a real-world SFA based system design that covers both visible
and IR bands (see Chapter 11).

1.3 List of publications
The research work connected with this dissertation has by far resulted in 8 confer-
ence and journal publications. The interconnections between the chapters and the
publications are illustrated in Figure 1.4.

Conference publications

(I) Xingbo Wang, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and Pierre
Gouton. Median filtering in multispectral filter array demosaicking. In Di-
gital Photography IX, volume 8660 of Proc. SPIE, pages 86600E–86600E–
10. SPIE, February 2013. [176]

(II) Xingbo Wang, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and Pierre
Gouton. A study on the impact of spectral characteristics of filters on multis-
pectral image acquisition. In Proceedings of 12th Congress of the Interna-
tional Colour Association, volume 4, pages 1765–1768, July 2013. [177]

(III) Xingbo Wang, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and Pierre
Gouton. Discrete wavelet transform based multispectral filter array demo-
saicking. In Proceedings of Colour and Visual Computing Symposium
(CVCS), 2013, pages 1–6, September 2013. [175]

(IV) Congcong Wang, Xingbo Wang, and Jon Yngve Hardeberg. A linear inter-
polation algorithm for spectral filter array demosaicking. In Abderrahim El-
moataz, Olivier Lezoray, Fathallah Nouboud, and Driss Mammass, editors,
Image and Signal Processing, volume 8509 of Lecture Notes in Computer
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Science, pages 151–160. Springer International Publishing, July 2014. [170]

(V) Xingbo Wang, Marius Pedersen, and Jean-Baptiste Thomas. The influ-
ence of chromatic aberration on demosaicking. In 5th European Workshop
on Visual Information Processing (EUVIP), pages 1–6. IEEE, December
2014. [174]

(VI) Xingbo Wang, Philip John Green, Jean-Baptiste Thomas, Jon Yngve Harde-
berg, and Pierre Gouton. Evaluation of the colorimetric performance of
single-sensor image acquisition systems employing colour and multispec-
tral filter array. In Alain Trémeau, Raimondo Schettini, and Shoji Tomin-
aga, editors, Computational Color Imaging, volume 9016 of Lecture Notes
in Computer Science, pages 181–191. Springer International Publishing,
March 2015. [173]

Journal publications

(VII) Xingbo Wang, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and Pierre
Gouton. Multispectral imaging: narrow or wide band filters? Journal of the
International Colour Association, 12(1):44–51, July 2014. [178]

(VIII) Pierre-Jean Lapray, Xingbo Wang, Jean-Baptiste Thomas, and Pierre Gouton.
Multispectral filter arrays: Recent advances and practical implementation.
Sensors, 14(11):21626–21659, November 2014. [100]

1.4 Organisation of the dissertation
The dissertation comprises four parts, as illustrated in Figure 1.1.

Part I presents background information in connection with the research. As an in-
troductory chapter, Chapter 1 outlines the research question, motivation and meth-
odology, presents the contribution and a list of associated publications, and de-
scribes the organisation of this dissertation. Chapter 2 locates the research work in
the scientific enterprise in an evolutionary point of view by illustrating the histor-
ical development of spectroscopy and imaging, the emergence of spectral imaging,
and then demonstrates a list of approaches to spectral imaging including the SFA
based techniques. Publication VI is connected with this chapter. Chapter 3 re-
views literature in regard to the design, development and realisation of SFA based
systems.
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Part II describes the construction of the simulation framework and gives results
on the interactions between the components. Details, assumptions and limitations
of the simulation framework are presented in Chapter 4. Chapter 5 shows how
bandwidths of filters affects the accuracy of spectral reconstruction by coupling
filters of various bandwidths and linear reconstruction techniques selected from the
state-of-the-art methods. Publication II and IV concern the bandwidth of filters and
its influence on reconstruction. Chapter 6 investigates the influence of chromatic
aberration on demosaicking, which is also covered by Publication VII.

Part III concerns methods for SFA demosaicking based on vector media filtering
in Chapter 7 and Publication I, discrete wavelet transform in Chapter 8 and Pub-
lication III, and linear minimum mean square error estimation in Chapter 9 and
Publication V respectively.

Part IV evaluates the system performance of a SFA based imaging system. Chapter 10
focuses on the colorimetric performance and the balance between spatial and spec-
tral resolution of SFA in comparison with that of CFA, which leads to publication
VIII. Chapter 11 studies the performance of the proposed SFA demosaicking meth-
ods given the characteristics and parameters of a real-world SFA based system
design.

Chapter 12 summaries the dissertation, presents the major findings, discusses rel-
evant issues and put forward a few suggestions for future work.
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Figure 1.1: Contributions and organisation.
The dissertation is composed of four parts. Part I provides the background to the dis-
sertation which supports the two following chapters. Part II describes the design and
verification of the simulation framework. Part III brings forward three SFA demosaick-
ing proposals on the basis of Part II. Part IV evaluates the colorimetric performance and
studies the performance of the SFA demosaicking techniques in a practical system.
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Background
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Chapter 2

Overview of spectral imaging
techniques

Solar radiation is the main source of energy on which nearly all life on earth sur-
vive. Direct and indirect sunlight also enables most animals to perceive the envir-
onment visually. From the viewpoint of evolutionary theory, the human eye is the
optimal sense organ that allows human beings that allows vision. The unfailing
interest of humans in exploring the nature and bettering their life, however, often
requires vision systems beyond the capability of the HVS (human visual system)
in terms of acuity, distance, precision, sensitivity, field of view, spectral range and
resolution, dynamic range, non-volatile recording, quantifiability, etc. This leads
to the development of optical devices and systems.

Light is considered as rays in geometrical optics, and waves in physical optics,
which are collectively known as classical optics. As a ray, light obeys the rules of
reflection and refraction. As waves, light has properties such as wavelength and
frequency, which explains phenomena like diffraction. Later study of quantum
mechanics reveals that light possesses both wave and particle properties, known
as wave-particle duality. In quantum optics, light, therefore, comprises photons
that may be absorbed and emitted by atoms or molecules in association with vari-
ations in the energy levels. These theories lay the foundation and pave the way for
the measurement of light, and foster the development of measuring systems and
techniques for various purposes.

11
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2.1 Measurement of power of radiation in space
Among various quantities of light, or in general optical radiation, that can be meas-
ured, energy is perhaps the most frequently used one. This is covered by the sub-
ject of radiometry, a technical subject concerning the measurement of optical ra-
diant energy [141]. The study of radiometry begins with fundamental units. Apart
from radiant energy (Qe) and radiant flux or radiant power (Φe), radiance (Le),
the elementary quantity of radiometry is defined by radiant power per unit area
per projected solid angle. Integration of radiance over solid angle yields radiant
existence (M ) or irradiance (Ee), and integration over area yields radiant intensity
(I). An associated subject, photometry, deals with the response of human eyes to
visible light by incorporating the luminous efficiency function defined by the CIE
into radiometric measurements [25]. Radiometry and photometry are the roots
in light measurement, and all measuring instruments of light should be calibrated
accordingly. The units in both disciplines are summarised in Table 2.1.

Table 2.1: Basic quantities, units and symbols used in radiometry and photometry.

Radiometric quantity Unit Photometric quantity Unit
radiant flux (Φe) watt (W ) luminous flux (Φv) lumen (lm)

radiant intensity (Ie) watt per steradian
(W · sr−1)

luminous intensity (Iv) candela (cd)

radiance (Le) watt per square
metre and
per steradian
(W ·m−2 · sr−1)

luminance (Lv) candela per
square metre
(cd ·m−2)

irradiance (Ee) watt per square
metre (W ·m−2)

illuminance (Ev) lumen per square
metre (lm ·m−2),
lux (lx)

2.2 Spectral measurement of light
In comparison with photometry, colorimetry can be seen as an extension of light
measurement to spectrum. Distinct from photometers that determine an photo-
metric quantity of light, colorimeters measure a set of three quantities, known as
tristimulus values, in accordance with the CIE colorimetry [27], as described be-
low:
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X = k
∑
λ

φλ(λ)x̄(λ)∆λ

Y = k
∑
λ

φλ(λ)ȳ(λ)∆λ (2.1)

Z = k
∑
λ

φλ(λ)z̄(λ)∆λ

In the above equations φλ(λ) denotes the spectral distribution of
the colour stimulus function (see CIE International Lighting Vocab-
ulary item 845-01-17 [26]). X , Y , Z are tristimulus values, x(λ),
y(λ), z(λ) are colour-matching functions of a standard colorimetric
observer, and k is a normalising constant. For reflecting or trans-
mitting object colours, the colour stimulus function, φλ(λ), is re-
placed by the relative colour stimulus function, φ(λ), evaluated as
φ(λ) = R(λ) · S(λ) or φ(λ) = τ(λ) · S(λ) where: R(λ) is the
spectral reflectance/radiance of the object colour. τ(λ) is the spectral
transmittance of the object colour. S(λ) is the relative spectral power
distribution of the illuminant. In this case, the constants, k is chosen
so that Y = 100 for objects for which R(λ), or τ(λ) = 1 for all
wavelengths, and hence k = 100/

∑
λ S(λ)ȳ(λ)∆λ.

In fact, when light interacts with matter, absorption, emission and scattering of
light follow a specific pattern. Thus a measurement of transmittance, reflectance
or emissivity at one or more specific wavelengths may assist in determining the
composition of materials, identifying matter of interest, analysing certain proper-
ties of objects, etc. This is known as spectroscopy, according to a strict definition,
the branch of science which involves the use of spectroscope, or in modern use,
the investigation of spectra by any of various instruments. The first use of spectro-
scopy is attributed to Joseph von Fraunhofer who discovered in 1918 black lines
in the spectrum of sunlight with what he called a spectroscope [137, p. 24]. A
wide variety of measuring devices has since been realised under the umbrella of
spectroscopy, notably for chemistry, physics and astronomy.

In fact, spectroscopy may denote a few distinct principles [52], such as optical
spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry, etc.
In this dissertation, spectroscopy denotes optical spectroscopy and refers to all
techniques that use non-ionising radiation. This covers the spectral range from the
200 nm far ultraviolet (UV) all the way to the 500 µm far infrared (IR).
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Common spectroscopic instruments include spectrometer, spectroscope, spectro-
graph, spectroradiometer and spectrophotometer. What they share in common is
the ability to measure a specific quantity of light, i.e., intensity or polarization, as a
function of its wavelength(s), albeit with literally different etymologies. Similarly,
there are corresponding words referring to the subject where these instruments are
used. In practice, these are often used interchangeably, and it is not the intention
of the dissertation to distinguish one from another. And the term, spectrometer, is
used to refer to spectral measuring instruments hereinafter, unless otherwise indic-
ated.

In modern use, spectrometer refers to any of a wide range of instruments for pro-
ducing spectra and measuring the positions, etc., of spectral features [161]. Such
an instrument typically employs basic wavelength selective devices such as mono-
chromators, interferometers and polychromators.

2.2.1 Monochromators

Monochromators may be based on the following architectures.

Prism Prism is a transmitting optical component that has three major spectro-
scopic functions: dispersion, reflection, or polarisation. A dispersing prism
separates light into its constituent wavelengths, because the refractive index
of the prism’s material varies with wavelength. If the two interfaces of the
prism are non-parallel, the outgoing light rays of differing wavelength will
travel in slightly different directions, becoming dispersed by wavelength.

Gratings Gratings work in reflection or transmission mode, use of reflective is
quite common spectroscopy. A reflection grating is a surface that has been
lined with closely spaced grooves. Upon reflection of a collimated incoming
broadband light source, each groove acts as an independent slit. Reflections
from multiple slits constructively and destructively interfere so that light of
a particular wavelength constructively interferes at a particular angle. As
such, the broadband incoming light becomes angularly diffracted.

Filters Filters come in two types. A bandpass filter allows a range of wavelengths
to pass, while a cut-off filter only allows light above or below a certain
wavelength to pass. Most filters use either absorption or interference to elim-
inate all but the desired regions of light. An absorption filter contains a pig-
ment that absorbs all but a range (or ranges) of light. For a band-pass filter,
the range ∆λ is expressed by the wavelengths at which the transmission is
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half the maximum transmission for the full width of the range (abbreviated
"full width at half maximum,", or FWHM). A filter with an exceptionally
narrow ∆λ is a notch filter. Cut-off filters are either short-wavelength cut-
off or long-wavelength cut-off, depending on whether they absorb all light
below or above a specified wavelength.

Interference filter An interference filter uses destructive interferences of most
light to isolate and transmit a narrow range of wavelengths of light. One
type of interference filter is the Fabry-Pérot filter. It is a thin layer (several
hundred nanometers) of low refractive index, usually mounted between glass
sheets. Incoming polychromatic light experiences some internal reflection
and mostly undergoes destructive interference. However, light of a partic-
ular wavelength undergoes constructive interference and passes through the
filter. Interference filters are tunable, the exact wavelength that passes can
be varied by changing the characteristics of the filter, typically the angle of
incidence or the thickness.

2.2.2 Interferometer

In addition to monochromator, interferometer is also widely used in spectral meas-
urement where high spectral resolution is desired. Common types include Fabry-
Pérot interferometer and Michelson interferometer. Similar to a Fabry-Pérot fil-
ter, a Fabry-Pérot interferometer employs two pieces of highly reflective mirrors
separated by an air gap. Optical radiation of a certain wavelength constructively
interfere and thus passes through the interferometer. This wavelength and the exit
angle varies depending on the width of the gap and the index of refraction. A
Michelson interferometer consists of a beamsplitter, a fixed mirror and a movable
mirror [128]. The input polychromatic light is separated by the beamsplitter into
two beams, which are then reflected by the two mirrors respectively. Adjusting the
position of the moving mirror results in path difference. When recombined, the two
beams carrying all wavelengths interfere constructively or destructively depending
on the path difference. A plot of light intensity against the mirror position, an
interference pattern, is termed interferogram. In 1892, Rayleigh discovered that
a spectrum was related to its interferogram through Fourier transform, which was
first implemented by Fellgett in 1949 [11]. As a result, such an instrument is also
termed Fourier transform spectrometer (FTS).

Parameters developed to evaluate performance of spectrometers include spectral
resolution, spectral range, resolving power, throughput, signal-to-noise ratio, etc.
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2.3 Spatial measurement of light
The HVS is a stereoscopic system on the basis of two eyes that project the three-
dimensional world on the two-dimensional retina, as a result, acquisition of two-
dimensional images are expected. Technically, the group of techniques of form-
ing two-dimensional images is named imaging. An early attempt and illustrative
example of imaging is known as film photography thanks to photochemical pro-
cess. Nevertheless, it is the discovery of photoelectric effect that opens the door
to electronic imaging and later digital imaging, which makes possible the applic-
ations like television, fax, digital photography, digital cinematography, etc. The
basis of imaging lies in the form of the image sensor, also known as the imager,
and the means of scanning that arranges the spatial information on the imager.
Nowadays the majority of images is trichromatic due to the wide use of colour
imaging devices. Colour imaging makes use of the principle of colorimetry and
metameric colour reproduction, and interprets the spectrum of light with tristimu-
lus values in association with the cone fundamentals of human eyes.

Common image sensors are designed to discretise a one- or two-dimensional op-
tical image and convert it to an electronic representation by means of optoelec-
tronic conversion, namely an integration of incident power over the photosensitive
area, the spectral responsive range as well as the exposure time.

Spatial shape of an imager decides the way of image acquisition. Whisk broom
or zig-zag scan is required to capture a two-dimensional image when an indi-
vidual photodiode is used, and a historic example is Nipkow disk used in early
TV production. As linear (1-D) scanner becomes available, push broom or line
scan appears, and a notable example is flatbed desktop scanner. A large number
of imagers, seen in most digital still or video cameras, are solid-state area image
sensors, also known as staring array or focal plane array.

Parameters developed to evaluate performance of an image sensor include spatial
resolution, sensitivity, dynamic range, signal-to-noise ratio, uniformity, field-of-
view, etc.

2.4 Spatio-spectral measurement of light
Radiometry and photometry are not spatial, nor is spectroscopy. Likewise, ima-
ging lacks the ability to capture spectrum, although colour imaging can be regarded
loosely as spectral acquisition. Nevertheless the study of astronomy and in partic-
ular astrophysics in the nineteenth century was in need of a class of instruments
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that combines spectral and spatial measurement of light, thus measuring the spec-
trum at every point in an image. This leads to the development of various spectral
imagers and accordingly the discipline of spectral imaging.

Similar to trichromatic images used extensively in our daily life, spectral images
also take the form of a three-dimensional data matrix consisting of three image
variables. More specifically, a discrete image is an array ofm rows, n columns and
c spectral channels. An image where c ≥ 3 is generally called a spectral image.
In other words, a trichromatic image can be regarded as a particular instance of
spectral images where c = 3.

Spectral imaging, as its name implies, refers to the discipline in which a spatio-
spectral representation of a scene is formed and recorded. That is, each pixel
in a discrete spectral image represents a sampled spectrum. From technological
and historical points of view, spectral imaging has its root in and evolved from
both spectroscopy and imaging, both of which concern the measurement of light,
albeit purposed differently. In other words, spectral imaging can be intuitively seen
either as a spatial extension of spectroscopy, or as a spectral extension of imaging.
Figure 2.1 shows a concept of spectral imaging.

The first attempt to obtain a spectral image may date back to 1869 when the French
astronomer Pierre Jules César Janssen observed the solar corona with a spectro-
scope. A narrow-band spectral image was formed with the persistence of vision
by spinning the device rapidly, and adjustments could be made for viewing other
wavelengths [80, 81]. The evident pioneers who invented spectroheliograph, an in-
strument that captures a monochromatic photographic image of the sun at a single
wavelength, are American astronomer, George Ellery Hale, and French physicist,
Henri Alexandre Deslandres [19]. Hale designed and built a spectroheliograph for
a telescope in 1892 with which he discovered solar vortices, and a similar devel-
opment by Deslandres to record monochromatic images of the solar chromosphere
commenced at about the same time as Hale [71, p. 105]. The spectroheliograph
mentioned is essentially an imaging capable spectrograph, which can be regarded
as early efforts towards spectral imaging.

In addition to planetary science, there were concomitant demands for, and devel-
opment of, imaging spectrometers in remote earth sensing in 1980s. As techno-
logy advances, such instruments were soon introduced to many applications which
helped to shape today’s spectral imaging.
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Figure 2.1: Concept of spectral imaging. The radiation emitted, reflected or transmitted
by an object passes through 8 arbitrary absorptive filters resulting in an 8-band spectral
image.

2.4.1 Multispectral, hyperspectral or ultraspectral?

The wide variety of spectral imaging devices may be classified into multispectral,
hyperspectral and ultraspectral according to their spectral characteristics. Breck-
inrige provides the following definitions within the framework of remote sens-
ing [18].

Though it is not straightforward to find out the origin of “multispectral”, the term
appearing in 1960s stemmed probably from “multiband spectral reconnaissance”.
In Colwell’s work [31], an example is illustrated where four surfaces, e.g., grass,
cement, asphalt, and soil, are distinguished solely from an examination of their
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Table 2.2: Definition of multispectral, hyperspectral and ultraspectral imaging.

Category Spectral
resolution
∆λ/λ

Number of
bands

Examples Application

Multispectral ≈ 0.1 10-20 LANDSAT maximises the contrast of
the object space irradiance
distribution

Hyperspectral ≈ 0.01 100-200 AVIRIS,
HYDICE

reveals chemical composi-
tion of solids and liquids

Ultraspectral ≤ 0.001 1000-
10000

ATMOS,
AES, TES

reveals chemical composi-
tion of gases

images as seen on aerial photographs taken at high altitude. Two types of photo-
graphic films and two filters are combined to take two photographs by comparing
both so that all four surfaces become distinguishable. Later the author examines
the uses and limitations of multispectral remote sensing through specific examples
including forestry, agriculture, geology, oceanography, meteorology, hydrology
and geography [33, 32]. The launch of the Landsat 1, the first Earth-observing
satellite, by NASA in 1972 opens the door to space-borne multispectral remote
sensing with the Multispectral Scanner System (MSS) it carries [135]. The MSS
responds to Earth-reflected sunlight in four spectral bands covering the spectrum
between 0.5 µm and 1.1 µm [136, 99]. As can be seen, multispectral imaging, in
a broad sense, can be any system capable of capturing images in multiple discrete
bands that may go well beyond the visible range of the electromagnetic spectrum.

As geologists found it difficult to discriminate among minerals on the earth’s sur-
face on MSS images, it became necessary to measure spectral reflectance and emit-
tance [58]. Hyperspectral imaging, first coined by Goetz et al. in 1985, refers to
the “acquisition of images in hundreds of contiguous, registered, spectral bands
such that for each pixel a radiance spectrum can be derived” [60]. In fact, few
materials, if any, require hundreds of spectral bands spread over several octaves
of the spectrum to be identified uniquely. However it turns complicated when the
region of interest is mixed with other surfaces viewed remotely through the un-
controlled atmosphere [59]. To that end, the Jet Propulsion Laboratory started de-
veloping the first imaging spectrometer for earth observation in 1980, which leads
to the implementation of the Airborne Imaging Spectrometer (AIS) and the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) that first flew in 1982 and
1986 respectively [63]. The AIS covers the 1.2-2.4 µm region with 128 spectral
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bands, while the AVIRIS covers 0.4-2.45 µm with 224 spectral bands [58]. Unlike
multispectral imaging, hyperspectral imaging requires the continuity of bands and
often a higher number of bands.

In comparison with hyperspectral imaging that produces contiguously sampled
spectra, multispectral imaging systems typically acquires images over a lower
number of broader bands that carry useful information in themselves and may
cover both visible and invisible portions of the spectrum. The so-called ultraspec-
tral imaging is not much different from hyperspectral imaging, yet involves even
higher spectral resolution, thus yielding more bands and shorter intervals. The
increase in spectral resolution and hence the data rate makes real-time data pro-
cessing and data storage two practical issues.

As seen, hyper- and ultra-spectral imaging systems sample the spectral domain
at a “rate” usually sufficient to develop unique spectral signatures capable for
use in direct surface materials identification on a pixel-by-pixel basis as well as
providing detailed information, e.g., for study of geophysical and biophysical pro-
cesses [157].

In spite of the discrepancies in spectral capabilities and characteristics, all of the
three types of systems mentioned above may be considered collectively as spectral
imaging techniques. In this dissertation, we focus on multispectral imaging.

2.4.2 Scanning spectral imaging devices

Thanks to the spatio-spectral essence, spectral imaging devices may be categorised
in a more systematic way by the methods they obtain information spatially and
spectrally.

Table 2.3: Classification of scanning spectral imaging devices by signal collection
method.

Spatial
whiskbroom pushbroom staring

Spectral
Filtering tunable filter

Dispersive grating/prism grating/prism tomographic
Interferometric Sagnac Michelson

Table 2.3 shows a few examples of spectral imaging devices commonly used. What
is common to these types of instruments is the need for scanning, i.e., a series
of exposures. Whiskbroom scanning works with 1-D (linear) detectors, whereas
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pushroom scanning and staring (focal plane array) function with 2-D (area) detect-
ors. In consequence, spectral scanning is necessary in the filtering class, and spatial
scanning is needed in the dispersive and interferometric classes, in order that these
devices may acquire 3-D spectral images with 1-D or 2-D sensors. Scanning de-
composes complicated 3-D imaging into viable 2-D image acquisition, since the
overwhelming majority of human made detectors till now are of up to 2-D.

It is not hard to imagine that the variety of scanning spectral imagers lies in the
way a 3-D spectral image is decomposed into a sequence of 2-D slices (and rarely
1-D slices in case of whiskbroom scanning). Consequently a scanning spectral im-
ager may be considered as a straightforward generalisation of non-imaging spec-
trometers or photographic imagers, predominantly driven by the maturity of 2-D
detectors in 1980s. The examples appearing in Section 2.4.2 are described below
respectively.

Filtering

Perhaps the most intuitive example of spectral scanning techniques is so-called
tunable filters. By capturing an image of one spectral band at a time with a staring
detector, a complete spectral image is produced after a sequence of exposures.

A common and illustrative instance is filter wheel where a series of desired op-
tical filters are installed [49]. When integrated with a monochromatic camera, and
typically inserted in the optical path, such a rotatory filter wheel may work in a
synchronised way with the camera, so that one exposure corresponds to a certain
type of filter, which yields an image at a certain spectral band. An illustrative
example of a filter wheel based spectral imaging system is outlined in Figure 2.2.

The rotatory speed of such filter turrets are limited by its mechanical nature, there-
fore tunable filters whose spectral properties can be controlled electronically are
developed [51]. Refractive indices of some materials vary in the presence of
electrical fields, magnetic fields or sound fields, which result in electro-optical,
magneto-optical and acousto-optical modulators. These principles are further util-
ised in electronically tunable filters, among which the two most used ones are
LCTF (Liquid Crystal Tunable Filter) and AOTF (Acousto-Optical Tunable Fil-
ter). In fact, both of them provide notch pass-bands, but they differ in the prin-
ciples [132]. The LCTF incorporates liquid crystal waveplate retarders tuned
by applying electronic voltage within a Lyot birefringent filter, whereas AOTFs
are solid-state birefringent crystals that vary in response to an applied acoustic
field [70]. The transition of these filters are much faster in comparison with the
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Figure 2.2: Illustration of a filter wheel based spectral imaging system. Inserted into the
optical path of a normal imaging system, the turret holds multiple absorptive filters. When
rotating, the scene is scanned spectrally and recorded by the image sensor synchronising
with the filters.

filter wheel solution. As an example, a multispectral imaging spectrometer with
millisecond resolution has been developed based on the use of an AOTF for spec-
tral filtering and a progressive scan camera capable of snapshot operation for re-
cording [88]. The use of LCTF is common in the multispectral imaging of cultural
heritage in the museums [76].

A typical scenario where spectral images are taken comprises a light source, an
object and an imaging device. The methods mentioned above depend passively
on filters integrated with the imaging device, and certainly they can be inserted
anywhere in the optical path, such as at the illumination end (see Figure 2.3). This
set up is widely used in cultural heritage [114] and medical imaging [84], although
it is usually customised and thus lacks scalability. To change the spectrum of an
illumination, however, filtering is not the only solution. Bouchard et al. present a
new LED-based system capable of high-resolution multispectral imaging at frame
rates exceeding 220 Hz [15]. Other examples of tunable illumination can be seen
in [114, 84].
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Figure 2.3: Illustration of tunable illumination. Dissimilar to filter wheels inserted in the
imaging device, they can also be placed at the illumination end which modulates the light
actively.

Dispersive

Non-imaging spectrometers employing gratings and prisms may easily be exten-
ded as imaging spectrometers by introducing a spatial scanning component and a
corresponding image detector. For instance, a point-scan spectrometer with two
scan mirrors oscillating in two orthogonal directions, when coupled with a lin-
ear image sensor, scans the scene, disperses each spatial element into a spectrum
and projects it on the sensor. Similarly one oscillating mirror is sufficient when
there is relative movement between the instrument and the scene. This is known
as whiskbroom scan in remote sensing. Alternatively a slit-shaped input aperture,
when accompanied by an area image sensor, allows an acquisition of the spectrum
of the image of the slit at one exposure, which is figuratively named pushbroom
scan.

Prisms make use of refraction while gratings take advantage of diffraction. Both
are capable of spectral dispersion, yet none of them is fully superior to the other.
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Though simpler, prisms are limited by non-linear and relatively low dispersion as
well as light absorption due to the substrate and refractions. Gratings outperform
prisms in the mentioned aspects, however they suffer from multiple order effects in
case a wide range of spectrum is required, and they exhibit polarisation effects that
are wavelength dependent. In practice, therefore, combinations of both of prisms
and gratings may avoid some of the drawbacks [8].

Motivated by the fact that the scan that slices a 3-D spectral image datacube into
a sequence of 2-D images is actually a tomographic process, Mooney discusses a
technique, that angularly multiplexes spectral and spatial information on the image
plane by a rotatory direct vision prism [131]. As the prism rotates along the optical
axis, the resulting imagery, a slant stack of chromatic images resulting from dis-
persion of the prism, also rotates. That is, the image of each spectral band moves
following a circular path and the radius is determined by the prism dispersion as
well as the focal length of the image taking lens. Accordingly, a sequence of im-
ages is formed by recording the images with an area image sensor. In subsequent
processing, a 3-D date cube can be restored by demultiplexing the resultant im-
agery in tomographic manner, which is in general computationally expensive.

Interferometric

Interferometers play an important role in spectroscopy because of its high spectral
resolution and high light collection efficiency. There are various types of inter-
ferometers, two of which broadly used in imaging spectrometers are Michelson
interferometers and Sagnac interferometers.

In a non-imaging FTS, a single detector is sufficient to scan the interferogram, and
each scan represents a linear combination of amplitudes at all wavelengths. Simil-
arly an imaging FTS, named FTIS, may be realised by introducing an area image
sensor to FTS [145, 181]. As the range of movement of the movable mirror is nor-
mally very short, the scan can be very fast. Such scans resembles spectral scanning
of tunable filters. Thanks to its multiplex advantage and therefore high signal-to-
noise ratio, use of FTS and FTIS is very common in infrared region where signal
is often weak, e.g., in astronomy.

To eliminate the movable mirror in the FTIS, Meigs et al. present a FTIS employ-
ing a Sagnac interferometer for deployment in a light aircraft [119]. This is an
instrument of pushbroom type that records the interferogram of a slit-shaped aper-
ture in a stationary configuration. Sagnac interferometer is a type of common path
interferometer in which the two beams travel along the same path in opposite dir-
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ections. In this instrument, the interferometer is implemented as a pentaprism-like
solid block with a beamsplitting layer built inside.

2.4.3 Snapshot spectral imaging devices

The examples illustrated in Section 2.4.2 are all based on scanning, either spectral
or spatial, due to the insufficient dimensionality of modern image sensors in com-
parison with 3-D spectral image data cubes. It is not hard to imagine that there
are important limiting factors to both of these two approaches. Spectral scanning
works properly only when there is no relative motion between the imager and the
scene. Similarly spatial scanning works on the assumption that the spectral prop-
erties of the object does not change in the course of scanning. In nature and human
activities, however, some very fast changing phenomena or fast moving objects
are of interest, for instance missile exhaust plumes, missile intercept events, and
lightning strikes, hypervelocity impacts, etc. In such cases, scanning operation,
i.e., multiple exposures, often yields motion artefacts. In addition, the operation of
scanning naturally weakens the light collection efficiency, thus not favourable in
sensor-noise-limited conditions, e.g., astronomical observation of remote planets.

Therefore a non-scanning approach to spectral imaging is preferable, which leads
to snapshot spectral imagers capable of acquiring a complete spectral image data
cube in a single integration period of a focal plane array. Though snapshot does
not necessarily mean shorter integration time than its scanning counterpart and
may still cause blur, it is easier to correct blur than dealing with motion artefacts
due to multiple exposures [68]. Further, non-scanning techniques do not rely on
moving parts and thereby in general leading to simpler and cost-effective design
of higher portability, accuracy and robustness. A comparison between these two is
demonstrated in Figure 2.4.

Snapshot spectral imagers make use of focal plane arrays, which implies that a
3-D data cube must be encoded and arranged in 2-D format. Inevitably subsequent
data processing is often of necessity to reconstruct the 3-D spectral image. And
most of them rely on a large detector array.

Hagen and Kudenov present a comprehensive review of 13 types of snapshot spec-
tral imaging technologies [68], listed in Table 2.4. As can be seen, most of the
technologies employ both spectral dispersing devices and beam splitting or image
slicing components. This is not unexpected, as a snapshot spectral imager is ex-
pected to multiplex spatial and spectral information on a single detector array. To
better understand the principles and characteristics of these methods, we shall here
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(a) Scanning spectral imaging (b) Non-scanning spectral imaging

Figure 2.4: Illustration of scanning and non-scanning spectral imaging. In a scanning
system, one exposure may form an image at a spectral band or a slice of the image at all
bands. In a non-scanning system, one exposure captures necessary information sufficient
to reproduce/estimate a full spectral image.

follow their numbering and nomenclature, and re-group the instruments into fewer
classes by the similarities in the principles.

Beamsplitting

The use of beamsplitters in television cameras dates back to 1950s when RCA
introduced its massive 3-tube colour camera consisting of a configuration of three
dichroic mirrors that direct incoming light into red, green and blue beams each of
which is projected through a lens onto a camera tube individually [74, p. 45]. To
reduce the complexity and the dimensions of a colour camera, Lang and Bouwhuis
propose a prism assembly for Plumbicon R© camera in 1965 [37], which comprises
three prism blocks and makes use of total internal reflection and dichroic filters.

Intuitively the technique of beamsplitting may generate more than three beams
(See Figure 2.5). A general multispectral beamsplitter is introduced in [159] where
a three-band example is presented. Later a similar approach is developed that
employs a stack of dichroic filters, thus reducing the dimensions and enabling a
single-sensor system [12]. Like previous configurations, the number of beams is
still limited due to the cumulative transmission losses. As the system described
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Table 2.4: Comparison of snapshot spectral imaging technologies.

1 2 3 4 5 6 7 8 9 10 11 12 13
re-imaging lens × × × × × × × ×
grating × × o × × × ×
prism o × ×
filter o
interferomter × ×
filter array × o
stacked/tunable sensor o
image slicer/mapper × ×
lenslet array × × × ×
coded aperture ×
polariser/waveplate × ×
optical reformatter ×
no. of detector arrays w 1 1 w 1 1 1 1 1 1 1 1 1

Please note that in the table above “×” indicates compulsory components, “o” denotes selective
components, and “w” denotes number of spectral bands. The numbering of spectral technologies is
consistent with that given by Hagen and Kudenov [68] for ease of comparison. The corresponding
full names represented by the numbers are listed below.

1 Integral Field Spectrometry with Faceted Mirrors (IFS-M)
2 Integral Field Spectrometry with Coherent Fibre (IFS-M)
3 Integral Field Spectrometry with Lenslet Arrays (IFS-L)
4 Multispectral Beamsplitting (MSBS)
5 Computed tomography Imaging Spectrometry
6 Multiaperture Filtered Camera (MAFC)
7 Tunable Echelle Imager (TEI)
8 Spectrally Resolving Detector Arrays (SRDA)
9 Image-Replicating Imaging Spectrometer (IRIS)
10 Coded Aperture Snapshot Spectral Imager (CASSI)
11 Image Mapping Spectrometry (IMS)
12 Snapshot Hyperspectral Imaging Fourier Transform Spectrometer (SHIFT)
13 Multispectral Sagnac Interferometer (MSI)

in [12] require some lenses to disperse and direct the beams, a stack of tilted fil-
ters can eliminate the dispersive lenses and further reduce the size as illustrated
in [140]. However, the filters operate in double-pass mode and therefore prevents
the increase of number of bands. A somewhat different strategy takes advantage
of multiplexed volume holographic gratings written in a thermally stable photo-
sensitive glass [116]. A 12-channel beam splitter is prototyped by multiplexing
three volume holograms in a 2×2 array, and another prototype is planned to cover
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Figure 2.5: Illustration of a 5-band beamsplitting spectral imaging system. Four dichroic
mirrors split the incoming beam into five, each projected to a separate image sensor, res-
ulting in five bands.

both visible and SWIR (short wave infra-red) region. These are termed MSBS
in [68].

Another approach to beamsplitting, named IRIS [68] (see Figure 2.6), makes use
of beamsplitting polarisers. Gorman et al. [62] describe a generalised Lyot fil-
ter that employs multiple cascaded birefringent interferometers to simultaneously
spectrally filter and demultiplex multiple spectral images onto a single detector
array. An example of an eight-band multispectral movie sequence is obtained
without further processing, as demonstrated in Figure 2.6. More spectral channels,
however, requires larger polarisers and may be affected by chromatic aberrations,
which may limit this approach to 16 spectral bands [68].

Although beamsplitting enables a snapshot solution, there are a few limiting factors,
such as the number of bands and the incident angle, apart from the space require-
ment and the manufacturing cost, due partly to the necessity of multiple sensors
and partly to the beamsplitter.
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Figure 2.6: Illustration of 8-band beamsplitting system incorporating generalised Lyot
filters. As a means of beamsplitting, a generalised Lyot filter splits the incoming beam
spatially and filters it spectrally. The use of a stack of them therefore produces a set of
spectral slices illustrated at the output.

Image mapping

Beamsplitters project an image into multiple ones, each corresponding to a spectral
band, which may be considered as spectral mapping. Similarly it is also intuitive
to map the image spatially by means of slicing or reformatting.

In astronomy spectral imaging is usually known as integral field spectrometry,
which varies in principle. One common method, labelled IFS-M in [68], is based
on image slicer, e.g., multifaceted mirrors, that slice an image into thin stripes and
translate each stripe to form a slit, which can then be measured by a slit spec-
trometer. This originates in Bowen’s image slicer based on a series of tilted mir-
rors [16] and may also be realised by a piezo-driven multifaceted mirror [180]
or multifaceted mirrors. Although commonly seen in astronomy, this approach
suffers from relatively low spatial resolution due to the limited number of manu-
facturable facets. Also the preparation of the image mapper of high precision is
challenging.

Another astronomical way of snapshot spectral imaging transforms the 3-D input
into 2-D output by physically rearranging a bundle of fibres [86]. Described as
IFS-F in [68], this technique relies on a coherent fibre bundle. At the image plane,
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the bundle is organised so that the end of the bundle forms a sampler. The other
end, however, is reformatted into a thin line, which can then utilised as inputs to
a slit spectrometer. One of the first implementation of this concept appears 1980
to extract spectroscopic information in nebulosities of quasars [167]. Later similar
systems for non-astronomical applications is developed [117]. Performance of
IFS-F solutions is affected by issues specific to optical fibres, such as lower F-
number at exit face than input face, broken fibres, and modal noise, etc.

Both of IFS-M and IFS-F techniques provide much higher spectral resolution than
spatial resolution. For applications where spatial resolution is more important,
such as microscopy, a solution termed IMS [68] is more appropriate. What IMS
and IFS-M share in common is a faceted mirror as an image mapper, whereas
IMS differs from IFS-M in that multiple facets may face the same angle. As a
result, multiple slices of images may be mapped to each individual pupil through
which each sub-image projected on the detector array. The final pattern incident
on the sensor is therefore an array of sub-images, each of which consists of spectra
of multiple dispersed image slices. An early implementation is realised by Gao
for microscopic applications [50]. Like IFS-M, the difficulty with IMS lies in its
dependence on highly precise image mapper.

Division of aperture

Apart from image mapping, there is another category of spatial splitting methods
utilising a lenselet array, namely multiple apertures. Again this idea has its roots
in astronomy when Courtes suggests placing a lenselet array at the telescope’s
focal plane [35], essentially an integral field spectrometer labelled IFS-L in [68].
Accordingly such a lenselet array results in a corresponding array of pupil images
on the detector array positioned at the conjugate plane. In other words, each pupil
image is a mixture of light incident on the corresponding lenselet, which can be
considered as a sub-sampling process. Thus a subsequent disperser, such as a
grating, may follow to generate spectra of the pupil images. Modern IFS-L design
is described in [36], and it has been employed in spectral imaging tasks other than
astronomy [14].

Introduced as SHIFT in [68], this instrument is actually a multiple-image Fourier-
transform spectrometer. To make it free of moving parts, thus insensitive to vi-
bration, it replaces Michelson interferometers used by traditional Fourier trans-
form spectrometers with a pair of Nomarski prisms covered by two linear polar-
isers [94]. Its birefringent nature results in a common-path interferometer sand-
wiched in between a lenselet array and a detector array [95]. Each lenselet pro-
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jects a scene through the optical assembly and forms a sub-image on the detector
array. A small angle formed between the detector array and the assembly makes
the optical path difference vary from one sub-image to another. An extraction and
concatenation of the sub-images would then give rise to a 3-D interferogram, to
which Fourier transform can be applied so as to reconstruct the spectral image.

Computational sensing

With the advances in modern computers, snapshot spectral imaging methods re-
lying on computationally intensive processing appeared. In [68] two of them
are described: computed tomography based CTIS and compressive sensing based
CASSI.

Unlike the tomographic approach described in [131] that depends on a rotatory
prism, non-scanning tomographic techniques have been proposed through which
all the slices of a 3-D image cube are imaged at the same time. The architecture of
such an imaging apparatus is featured by a rectangle-shaped field stop and a 2-D
disperser, but otherwise quite similar to that of a slit spectrometer. An objective
lens images the scene onto the field stop and then collimated and projected through
the 2-D disperser onto a detector array. The dispersed images of the field stop can
be interpreted as multi-order 2-D projections of the 3-D data cube. Therefore re-
construction of the cube can be achieved with tomographic techniques. Examples
of CTIS-type concepts or instruments differ in the implementation of the disperser
and the reconstruction method [139, 21, 38]. Limiting factors of CTIS include
computational complexity, calibration difficulty, and measurement artefacts [68].

Another computational approach to snapshot spectral imaging is compressive sens-
ing. By definition, compressive sensing “compresses” a signal by sampling it
with less samples then required by the Shannon-Nyquist theorem, and recovers
it by finding solutions to such underdetermined linear systems making use of the
sparsity of the signal [22, 39]. Similar to a coded aperture spectrometer that scans
the image of the binary-coded aperture, a CASSI also employs a coded aperture.
However, the binary code in the former case is an orthogonal matrix, whereas it is
a random binary matrix in the latter case. The binary coded image of the scene is
then collimated, dispersed and re-imaged onto a detector array. Clearly the sensed
image is modulated by the mask and formed by overlapped measurements of the
scene, which is equivalent to coded projections in the spectral domain, and hence
can be treated with the compressive sensing frameworks [55]. Nevertheless it is es-
sential to ensure compressibility of the scene, proper implementation of the mask,
apart from the already computationally intensive reconstruction algorithm, all of
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which limit the usefulness of CASSI [68].

Dispersive interferometer

From the very beginning of spectroscopy, interferometer has been one of the key
components extensively used in spectral imaging devices. There are a variety of
interferometers proposed, and some of them has been adapted to snapshot spectral
imaging. Two examples are TEI and MSI in [68].

The idea of combing a Fabry-Pérot interferometer (étalon) and a disperser for the
purpose of spectral imaging is realised by Le Coarer et al. [101]. Fabry-Pérot
étalon acts as a narrow-band transmissive filter that positions the bands in ac-
cordance with corresponding orders resulting from resonances of the étalon. Peak
transmittances of the pass-bands vary with the separation between the two reflect-
ive surfaces of the étalon. In order to further separate the ordered images spa-
tially, a dispersive element, such as an échelle grating, may be placed. Baldry and
Bland-Hawthorn describe a device, called Tunable Echelle Imager, consisting of a
Fabry-Pérot étalon coupled with a cross-dispersed échelle grating [10]. Eventually
what is incident on the detector array is a mosaic of band images, each of which
represents a thin spectral slice of the data cube. Therefore this setup only provides
images at discontinuous bands, the full spectrum may be estimated under the as-
sumption that the original spectrum is sufficiently smooth. An disadvantage of the
TEI is its relatively low transmission due to the optical inefficiency of the étalon
and dispersers.

Kudenov et al. [96, 97] design an extension of dispersion compensated polariz-
ation Sagnac interferometer (PSI), by including two multi-order diffraction grat-
ings in a standard PSI. In a Sagnac interferometer, an incoming beam is split into
two counter propagating beams, both of which are dispersed and collimated by
the gratings. When the two beams exit the interferometer and converge through
a re-imaging objective, an interference pattern is generated which is a superpos-
ition of unique spectral pass-bands amplitude modulated onto coincident carrier
frequencies. The spatial frequency is proportional to the diffraction order and thus
related to the spectral characteristics of a given order. Later modulated multispec-
tral images can be extracted in the Fourier domain. Similar to the TEI, MSI is also
multispectral, capable of forming inherently registered spectral slices of the data
cube simultaneously. The main disadvantage of this approach lies in the optical
design that utilises only one dimension in the Fourier space and ties the spectral
bands to the grating’s orders.
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Advanced detector array

The development of tunable or multi-layered sensors is desirable as it will elim-
inate the necessity of using external dispersive or wavelength selective elements,
thus reducing the size and simplifying the complexity of a spectral imaging system.

Figure 2.7: Illustration of multi-layered detector array. The multi-layered structure of
the sensor acts as a stack of sensors, each sensing a spectral band. This renders optical
dispersers unnecessary, nevertheless requires specific semiconductor design.

The transverse field detector (TFD) [98] is such a photosensitive device that exhib-
its different spectral responsivities at different depths by applying suitably biased
voltage, as illustrated in Figure 2.7. An analysis of 6-band TFD for spectral ima-
ging is carried out in [105], and one of the advantages of a TFD is the ability to tune
the spectral responses on a pixel to pixel basis. Similarly quantum-well infrared
photodetector (QWIP) is demonstrated for the purpose of multispectral infrared
imaging application [93].

Although convenient, spectral characteristics of such detectors are bound to struc-
ture of semiconductor, and therefore not flexible to change. Moreover an increase
in number of bands is also limited.

Image plane filtering - spectral filter array

The commercial success and wide application of colour imaging owe much to the
advent of CFA by Bryce E. Bayer in 1976 [13]. Till now, it remains the most
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widely used measure for colour imaging. The concept of CFA makes possible
simultaneous colour separation and thus enabling electronic acquisition of trichro-
matic images at one exposure by a single sensor, which produces colour images
in perfect registration, enables high-speed capture of fast moving objects or fast
phenomena, and makes portable, solid and cost-effective colour imaging devices
a reality. The advantages of CFA mentioned above are achieved at the cost of
reduced spatial resolution, which is then overcome by demosaicking, a process
where missing colour components are estimated, as introduced in Section 3.5.1. In
recent years, the benefit of CFA has arouse academic and industrial interest in ex-
tending CFA for the purpose of spectral imaging by integrating more types of filter
elements into the array, which results in SFA. That is, SFA sacrifices spatial resol-
ution for spectral resolution. In essence, a SFA is an array of filter elements that
spatio-spectrally sub-samples images formed on the focal plane, as demonstrated
in Section 3.3 and 3.4. Designing a SFA, therefore, concerns spectral character-
istics of filter elements, spatial arrangement of filter elements, and the associated
demosaicking technique.

Figure 2.8: Illustration of the principle of spectral filter array. Sandwiched between the
microlens array and the sensor, the spectral filter array filters the optical image on a pixel-
by-pixel basis. Namely spatial resolution is sacrificed for spectral resolution in such a
spectral imaging system.
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Hybrid solutions

The aforementioned approaches to snapshot spectral imaging have their pros and
cons, and a hybrid system may well overcome some drawbacks while still main-
taining the advantages.

Murakami et al. [133] suggest a hybrid-resolution spectral imaging device by mer-
ging a four-channel beamsplitter with filtered and mosaicked sensors. Conceptu-
ally this is equivalent to three R/G/B images of high resolution coupled with a SFA
mosaic image of low resolution. The image is then reconstructed on the basis of
small regions by linearly combining the regions in the R/G/B band images with
the weighting coefficients determined from SFA data.

Tamburrino et al. [162] integrate colour filter array and stacked photodiode struc-
ture of CMOS image sensor. The red and blue filter elements in the original Bayer
pattern are replaced with green-absorptive magenta filters under which lies the
two stacked and pinned diodes that mostly absorb blue and red light. Similarly
Martínez et al. [115] combine colour filter array with TFD to narrow down the
bandwidth of TFDs and improve the accuracy of spectral and colour reproduction.
A similar idea is presented in [158] where a vertically staked multi-layer sensor,
known as Foveon sensor [122], is covered by a 2-band filter array consisting of
two types of triple bandpass filters, which forms a 6-band spectral imager.

As in a plenoptic camera, a lenselet array permits simultaneous observations of a
point on the object by multiple photodetectors. Similarly, a filter array inserted
in front of the lenselet array or image sensor enables observations of the spectra
of the object when light passing through each lenselet is projected merely to the
corresponding area on the sensor and the observation distance is set properly [154]
(See Figure 2.9). Pixels in the captured image are geometrically rearranged onto a
multi-channel virtual image plane in order to reconstruct the multispectral image.
The resolution of the resultant images is slightly reduced in comparison with the
captured sensor image. Although simple in concept, this approach requires fairly
uniform irradiance in terms of angular distribution so that each filter and the cor-
responding lenselet capture similar power of the incident light. Another similar
idea, light field microscopy, is put forward by Levoy et al. [103], which integrates
adapts a light field camera with a pupil plane filter array. The latter is superior to
the former in that it allows the use of a normal objective lens, however the latter is
less compact than the former. Both of them are classified as MAFC in [68].

We have presented a variety of snapshot spectral imaging techniques that require
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Figure 2.9: Illustration of filtered lenselet array [154]. This approach combines the prin-
ciple of plenoptic camera, namely light-field camera, and spectral filter array. Its plenoptic
nature ensures a fairly uniform distribution of power across the lenselets, whereas resolu-
tion of the resultant image is sacrificed.

a certain degree of multiplexation due to the dimensionality of image sensors.
As a result, critical issues for imaging spectrometry include imaging foreoptics
design, choice of spectral dispersing technique and spectrometer optical design,
focal plane array detector technology as well as the complexity of subsequent data
processing.

2.5 Motivation for SFA based spectral imaging
Seeing that most of the snapshot spectral imaging techniques introduced in this
chapter require multiple specific optical elements or intensive data processing, we
consider the SFA as a promising candidate for snapshot spectral imaging in terms
of system simplicity, portability, cost effectiveness, robustness, ease of use and
requirement for data processing. It also allows a flexible design that is adjustable
between spatial and spectral resolution. These advantages are gained at the cost
of relatively low light throughput, reduced spatial resolution and relatively high
manufacture cost in case of small volume production.

The architecture of a SFA based imaging system bears a close similarity to that of
a CFA system. And there may not exist superficial differences between SFA and
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CFA systems. And a SFA based system is capable of reproducing trichromatic im-
ages. Some state-of-the-art SFA based systems and components will be examined
in detail in Chapter 3.



38 Overview of spectral imaging techniques



Chapter 3

SFA based spectral imaging

3.1 Introduction
In comparison with other snapshot spectral imaging approaches, SFA permits a
simple and compact system at a reasonable price in case of high-volume produc-
tion. Although mass production of SFAs remains to be seen, the concept of SFA
based imaging has aroused particular interest of the academia in extending the
success of CFA to spectral domain. In recent years, sustained research effort has
gone into the development of SFA-based spectral imaging. The core components
of a SFA based spectral imaging system are filter array and associated demosaick-
ing algorithms. Some focus on theoretical design of SFA, and others attempt at
fabrication of SFA. Demosaicking techniques are also developed independently or
as part of the systematic approach to functional SFA-based imaging systems. In
this chapter, we first introduce the concept of moxel, and review theoretical SFA
design and practical SFA development, before switching to SFA demosaicking.
Lastly, the chapter concludes with a brief analysis.

3.2 From pixel to moxel
A SFA is usually composed of recurring patterns of filter elements. The smallest
patterns are referred to as moxel (multispectral pixel) thereafter. A key distinction
between CFA and SFA lies in the number of bands in a filter array, which largely
determines the size of moxel.

39
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(a) Illustration of a moxel of 2× 2 pixels. (b) Illustration of a moxel of 4× 4 pixels.

Figure 3.1: Definition of moxel, the smallest recurring patterns that constitute a SFA. The
SFA in (a) comprises 64 moxels of 2 × 2 pixels, whereas the one in (b) comprises 16
moxels of 4× 4 pixels.

3.3 Theoretical SFA design
Unlike CFA mosaic design that mostly incorporates three types of primary colour
filters, number of band in a SFA may vary a lot and the choice of filters can be
rather specific to the application. In recent years, there have been quite a few
proposals for SFA mosaic patterns as well as methodology of design.

To the best of our knowledge, Ramanath et al. first present a 4-band hexagonally
arranged CFA for multispectral image acquisition [148] (see Figure 3.2j). Also
proposed is another 7-band SFA where each pixel of a certain spectral band is
surrounded by six pixels of distinct bands, depicted in Figure 3.2a. As a result, the
demosaicking for each pixel may be performed with the nearest neighbourhood
interpolation. This idea is further detailed in [149] along with the techniques in
designing spectral sensitivities for the sake of recognition and reconstruction of
certain objects.

To the best of our knowledge, the first systematic work in this regard is conducted
by Miao et al.. Miao et al. put forward a generic method of SFA design where
spectral bands’ probability of appearance in the array can be represented in a binary
tree [127, 123]. It starts from a checkerboard patten and further splits the pattern
into children by the power of 1/2 following the binary-tree. An accompanying
generic demosaicking algorithm is also developed [124, 126]. These two proposals
complement each other and are the very first systematic attempts on SFA based
spectral imaging [125]. Also presented in [123] is a framework of evaluation of
SFA design, and another similar quality metric is explained in [153].

In contrast to a complex pattern designed with e.g., the binary-tree approach,
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Brauers and Aach [17] propose a 6-band SFA arranged in 3×2 moxels in a straight-
forward manner which is aimed at faster linear interpolation, shown in Figure 3.2b.
Another simple SFA is from Aggarwal and Majumdar who arrange 4 filters in di-
agonal stripes [4], demonstrated in Figure 3.2c.

The spectral sensitivity of modern solid-state photodetectors range from ultraviolet
through the visible region all the way to LWIR (long wavelength infrared). Thus
Hershey and Zhang [72] design a camera integrating both visible light and non-
visible light photodetectors in a single SFA. In fact, the mosaic is mostly the same
as the Bayer pattern except one green in a 2×2 moxel is replaced with a non-visible
filter element (see Figure 3.2k).

When consisting of sufficient types of narrowband filter elements, a SFA mounted
sensor can be used as a spectrometer. Wang et al. design a 8 × 16 SFA that
comprises 128 distinct narrow bandpass filters for capturing NIR (near-infrared)
spectra [172], shown in Figure 3.2d.

In remote sensing applications, the band of LWIR plays an important role in mater-
ial identification. In contrast to the conventional line-scan MSI sensor, Mercier et
al. examine the usefulness of SFA snapshot LWIR imager [121]. Both the optimal
number and width of the spectral channels are analysed with simulated typical
background signals.

For the purpose of jointly capturing RGB and NIR images, Lu et al. formulate
the design of SFA as an optimisation problem in spatial domain [109] and provide
an iterative procedure to search for locally optimal solutions, considering that the
spectral sensitivity of modern solid-state image sensors extends from visible range
to IR region. The resulting mosaic pattern consists of 16 bandpass filters arranged
in 4 × 4 moxels, 15 of which are visible and 1 IR, demonstrated in Figure 3.2e.
An improved algorithm is later developed that takes into account the correlation
between visible and NIR bands where the optimisation problem is addressed by
means of regularisation [151], which results in SFA pattern drawn in Figure 3.2f.

Following the concept of a generalised assorted pixel (GAP) camera where post-
capture adjustment is possible to find the best comprise among spatial resolution,
spectral resolution and dynamic range, Yasuma et al. design a 7-band SFA com-
posed of 3 primary-colour filters and 4 secondary-colour filters [184] (see Fig-
ure 3.2l).

Monno et al. propose a 5-band SFA [129] (see Figure 3.2m). In the moxel, the
green-like channel is distributed in the form of quincunx, as in the Bayer CFA.
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Other channels follow the binary-tree approach [127] so that the adaptive kernel
can be estimated directly from the raw data for the purpose of subsequent demo-
saicking.

The spatial arrangement of the filter elements plays a more important role in SFA
than in CFA, as reported by Shrestha and Hardeberg [155]. It has been found the
influence of mosaic layout tends to be more prominent as the number of bands
increases. Further, the authors design a particular SFA pattern comprising of two
sets of trichromatic filters (see Figure 3.2n).

To integrate one more band, i.e., IR or UV, into a common CFA and maintain its
compatibility with the CFA to the maximum, Kiku et al. propose a modified Bayer
pattern where the additional band is sparsely sampled and the filter elements are
arrayed on a slightly slanted square grid [89], presented in Figure 3.2g.

To verify the usefulness of compressive sensing in SFA demosaicking, Aggarwal
and Majumdar present two 5-band SFAs [5]. One of them is a random pattern
where each channel has equal probability of appearance (see Figure 3.2h), which
is supposedly conducive for CS recovery since the measurements are incoherent.
Another one is a uniform filter array similar to the one proposed in [4] (see Fig-
ure 3.2i). In theory, such uniform sampling patterns are not conducive to CS re-
covery, so it is experimented with for comparative purposes only. Both of the two
SFAs are easily extendible to any number of channels.

3.4 Practical SFA realisation
SFA has not been as widely accepted by the industrial community as CFA. Among
other difficulties, the production and fabrication of SFA present a major technical
challenge. Sustained effort, therefore, went into realising the SFA.

In [20], a production process is presented where dichroic filter array can be pro-
duced on a wafer and later bonded to an image sensor for the purpose of spec-
troscopic imaging. Dichroic filters, also known as interference filters, enable cus-
tom filters with spectrally sharp transitions, thus better selectivity of colour. A
compact imager with a lithographically patterned dichroic filter array is presen-
ted [44, 43, 42, 40] where at most 10 wavelength bands can be incorporated.

A 4-band SFA imager dedicated to medical application is described by Sprigle et
al. [160]. The optical filter is fabricated with traditional multi-film vacuum depos-
ition and modern micro-lithography technologies [186]. Further a means of evalu-
ating the spectral interference between adjacent channels is also developed [188].
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Further information and application is detailed later in a series of articles concern-
ing the detection of erythema and bruising which are important to the prevention
and diagnosis of pressure ulcers [91, 92, 185, 146, 187].

To fabricate the 128-band SFA [172], Wang et al. develop a technique named
combinatorial deposition [171] that combines the techniques of deposition and
etching in order to produce the spacer arrays with different thickness required by
the corresponding Fabry-Pérot type filter element. Such a device makes possible
in situ spectral measurement of NIR spectra ranging from 722 nm to 880 nm.
Walls et al. design, fabricate and characterise a 23-band SFA of narrowband Fabry-
Pérot filters with FWHM (full-width half-maximums) of 22-46nm covering the
visible range (400-750nm) [169]. The fabrication is suitable for direct integration
onto CMOS image sensors in industrial foundries, and the cost and complexity
is reduced in comparison with other solutions that vary the physical cavity length
only. Another Fabry-Pérot interferometer based snapshot multispectral imager is
developed by Gupta et al. [67]. The imager employs a 16-band SFA arranged in
4 × 4 moxels that operate in the SWIR (short wavelength infrared) range from
1487 to 1769 nm with a spectral bandpass of about 10 nm. The SFA is installed
in a commercial handheld InGaAs camera coupled with a customised micro-lens
array with telecentric imaging performance in each of the 16 channels.

Geelen et al. introduce a SFA imager integrating tiled filters and optical du-
plication [53]. It is demonstrated that a prototype camera can acquire 32-band
multispectral images of 256 × 256 pixels in the spectral range of 600-1000nm at
a speed of about 30 cubes per second in daylight conditions and up to 340 cubes
per second in typical machine vision applications of higher illumination levels.
Later, Geelen et al. propose another SFA imager by depositing interference filters
per pixel directly on a CMOS image sensor [54]. The monolithic deposition leads
to a high degree of design flexibility, so that an application specific compromise
between spatial and spectral resolution can be achieved.
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Figure 3.2: Illustration of spectral filter array design.
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3.5 Development of SFA demosaicking
As CFA may be considered as an instance of SFA, SFA demosaicking is naturally
an extension of CFA demosaicking. In this chapter, therefore, a brief description,
and a means of classification, of CFA demosaicking methods are first presented in
Section 3.5.1.

3.5.1 CFA demosaicking

Study of demosaicking arises from the advent of CFA in 1970s. Decades of re-
search and development on CFA based colour imaging has resulted in a large
number of evolving demosaicking algorithms. Many of them are present in re-
search papers, and others have been filed as patents. Quite a few, embedded in
commercial cameras, may never get published. Although it is rather difficult to
obtain a complete list of demosaicking methods, they can be well classified into a
few groups according to the techniques they are developed from, the assumptions
on which they function, or the intrinsic properties of the images they take as input.
The methods are classified differently in the literature [147, 65, 104, 108, 120].
Here we adopt the classification by Menon and Calvagno [120], and select a few
representative techniques as candidates for SFA demosaicking, as shown in Fig-
ure 3.3.

The assumptions on which a variety of CFA demosaicking methods are based
are very often not applicable to SFA demosaicking [126]. As an example, the
luminance-chrominance colour space utilised by a number of CFA demosaicking
techniques becomes ambiguous for SFA demosaicking, as a result of the diffi-
culties in extracting luminance and chrominance information separately in spectral
images.

The primary consideration in selecting the candidates is therefore the scalability of
a CFA demosaicking algorithm. The naïve techniques, including bilinear interpol-
ation and smooth hue transition interpolation, function on the basis of bands. In
vector median filtering, each pixel in an image is treated as a vector regardless of
its dimensionality. Wavelet based methods and reconstruction approaches are not
limited to colour images as well. Obviously all of the candidates are scalable in
terms of number of bands, which makes feasible the extension to spectral.

3.5.2 SFA demosaicking

Indicated by its name, bilinear interpolation is an extension of linear interpolation
for interpolating functions of two variables (e.g., x and y) on a regular 2D grid. In
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CFA demosaicking
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Directional 
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Figure 3.3: Classification of CFA demosaicking methods [120].

fact, bilinear interpolation estimates the unknown values by means of a distance
weighted average of its neighbouring pixels. The presumption is that the image
content in a vicinity of the pixel in question should vary smoothly thus sharing
similar spatial features. It is applied to each spectral band individually. As a result,
it is straightforward to apply this to SFA demosaicking. It should be sensitive to
variation of spatial correlation, however insensitive to alteration of spectral correl-
ation, thus producing unwanted colour fringes in areas of fine detail.

A series of methods take advantage of heuristics, to wit reasonable assumptions
about colour images, and prove to provide higher performance. One common as-
sumption in colour image processing is that hue, defined as the ratios or difference
between the colour components, varies more subtly than colour components. In
consequence, interpolation of hue, rather than colour planes themselves, is con-
ducted. Although the assumption of smooth hue transition only holds within the
boundary of the objects in the image, it has been extensively used for demosaick-
ing [30]. Normally the most populated green channel is interpolated before other
hue channels are evaluated. Unfortunately for spectral images, there might not be a
“green”-like band and sufficient spectral overlap between bands , and the definition
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Figure 3.4: An illustration of smooth hue transition interpolation. In this approach, a
channel is first interpolated separately prior to the interpolation of several hue channels,
formed as the ratios or difference between each remaining band and the interpolated band.
The subtracted part is then added back to complete the demosaicking.

of hue may also be equivocal. Be that as it may, it could still make sense to ex-
tend this technique to SFA interpolation considering that the objects taken might
bear similarities between spectral regions which is in line with the assumption.
Figure 3.4 demonstrates the algorithm.

Along with the SFA generation method, an accompanying generic demosaicking
algorithm is also developed by Miao et al. [124, 126] which interpolates each
band independently by tracing the same binary tree back. The interpolation is
edge directed and performed level by level following the binary tree.

To interpolate the mosaic image associated with the SFA presented in [17], Brauers
and Aach advance a demosaicking algorithm where channel difference is first
smoothed before linearly interpolated.

Following the binary-tree approach [124, 126], Baone and Qi pose demosaicking
as an image restoration problem and address it with the non-linear maximum a
posteriori probability technique using the gradient descent optimization process,
for images mosaicked by a 7-band SFA.

Lu et al. come up with the linear minimum mean square error (LMMSE) approach
to the joint demosaicking of RGB and NIR images [109], formulating demosaick-
ing as an image restoration problem. In this case, the objective of of SFA design is
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meant to provide the minimum reconstruction error in terms of LMMSE.

To reconstruct multispectral images from GAP mosaicked sensor output, Yasuma et
al. come up with a multimodal image reconstruction framework where primary
and secondary colour images are reconstructed separately [184]. The former is
demosaicked by means of low-pass filtering in the Fourier domain, since the sampling
rate is relatively high. Therefore the demosaicking of the secondary colour bands,
that are less sampled, exploit the inter-channel correlation between the most sim-
ilar primary and secondary filter pair, in the principle of constant channel differ-
ence and residual interpolation.

Having designed the 5-band SFA keeping interpolation in mind, Monno et al. in-
troduce adaptive kernel upsampling to SFA demosaicking [129]. The proposed
adaptive Gaussian upsampling (A-GU) and joint bilateral upsampling (A-JBU) are
extended from the corresponding non-adaptive methods respectively. The adaptive
kernel is estimated directly from the mosaic image, which is first used by the A-
GU to generate a guide image from the green-like band for the A-JBU. After that,
A-JBU, with the same adaptive kernel, is applied to each of four other spectral
bands. Later, Monno et al. replace the A-JBU with the guided filter [130], known
as an edge-preserving filter that also requires and depend much on guide image.
Recently Kiku et al. adapt this means to the demosaicking of the hybrid SFA pat-
tern [89]. The sparsely sampled additional band is separately interpolated with a
super-resolution technique with the sparse mixing estimators, whereas the R/G/B
channel are interpolated following basically the framework described in [130] with
a few improvements, including a newly proposed gradient based interpolation of
the green channel as well as an iterative procedure that samples the reconstructed
image as the input to the following iteration.

Aggarwal et al. put forward a series of SFA demosaicking methods. The first rep-
resents a pixel in question, also a central pixel in a given neighbourhood, as a linear
combination of neighboring intensity values from same and other bands [7, 4]. In
other words, the linear filtering is performed on the raw mosaic image with a given
kernels whose parameters may be determined by means of training [6]. Recently,
the authors attack SFA demosaicking with compressive sensing [5], where both
group-sparse reconstruction and the Kronecker compressed sensing are explored.
The results demonstrate that the latter method outperforms the former, and the ran-
dom pattern always yields better results in both approaches, except that the uniform
pattern does a better job in the Kronecker method for 3-band demosaicking.

Dealing with a SWIR sensor coupled with a 9-band SFA filled by 3 × 3 moxels,
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Kanaev et al. are confronted with two difficulties in demosaicking: first, the inter-
channel correlation in this case is not usable; second, the distribution of each band
is equal to another, so there is no comparatively oversampled channel. To over-
come these two drawbacks, the authors introduce two approaches to demosaicking.
One makes use of the multi-band edge information, while the other applies multi-
frame super-resolution to the enhancement of multi-spectral spatially multiplexed
images [85].

As can be seen, there are already a number of attempts at SFA demosaicking,
however little is known that focuses on adapting CFA demosaicking techniques
based on vector median filtering, discrete wavelet transform and linear regularisa-
tion. These methods are intrinsically adaptive to SFA. As a result, we study three
algorithms in detail in Part III.
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Part II

Simulation framework
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Chapter 4

Simulation framework

In general, filter arrays are made of layers of absorptive or interference filters,
commonly sandwiched between microlenses and photosites of a solid-state image
sensor. This implies that neither the spatial arrangement nor the spectral charac-
teristics of the filter array may alter with ease as soon as the sensor is fabricated.
And the cost of a single filter array will only be lowered to a reasonable range if
produced in large quantities. The economic and physical constraints, therefore,
motivated us to build the imaging pipeline numerically in order to vary the system
design and study the role of each component in a SFA imaging system.

A typical imaging system consists of an image taking block and an image pro-
cessing unit [107]. The former normally includes imaging optics and detectors,
which could be modelled and simulated. The latter is very often a series of routines
running on specialised or general-purpose processors, which can be simply sim-
ulated with standard software implementations. To that end, a simulation frame-
work of high efficiency and sufficient flexibility is required, and a modular design
is in line with the concept and meets our requirements for flexibility. In addition,
such a framework would not be complete without appropriate inputs and means of
evaluation. Figure 4.1 illustrates the SFA-based imaging pipeline, and Figure 4.4
presents the simulation workflow and the possible means of evaluation.

Radiometry is patently the key to a profound understanding of an optical imaging
system. Thus each component of the framework is introduced in this chapter,
coupled with radiometric analyses if necessary. Limitations of the framework are
also discussed.

53
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Figure 4.1: An illustration of the SFA-based imaging pipeline. As a signal source,
scenes (Section 4.1) are projected through the imaging optics to form optical images (Sec-
tion 4.2.1). Next, the optical images pass through the filter array (Section 4.2.2). The
resultant mosaic images are integrated by the simulated sensor, which generates stacked
sensor images (Section 4.2.3). Finally the sensor images are demosaicked (Section 4.3.1)
and utilised to reconstruct spectral or colour images (Section 4.3.2).
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4.1 Scene
The inputs to an optical imaging system are physical stimuli, i.e., the distribution
of radiance over a scene in the radiometric sense. The relation between the illu-
mination, the scene and the imaging system can be understood with a radiometric
interpretation. In a typical and simplified scenario, a scene interacts with the in-
cident radiation when illuminated by an illumination, as shown in Figure 4.1. A
scene often reflects or transmits light in an omnidirectional manner. For an ima-
ging system observing the scene at certain angle of view, therefore, radiance is an
appropriate radiometric quantity that indicates the power of light received at the
solid angle subtended by the entrance pupil of the optics. The influence of fluores-
cence, i.e., objects absorb incident radiation at certain wavelengths and emit light
at some other wavelengths, is ignored.

For a simulated imaging system, the scene shall be numerical and representat-
ive of common objects. In comparison with the optics and the sensor, it is not
straightforward to model a scene numerically. Common numerical scenes include
synthetic scenes, e.g., the Macbeth ColorChecker and spatial frequency sweep pat-
terns, and computer rendered imageries based on physical models, e.g., the Digital
Imaging and Remote Sensing Image Generation (DIRSI) model developed by the
Rochester Institute of Technology [75]. Another source of numerical scenes may
be from the usage of appropriate spectral images of sufficient spatial and spectral
resolution [47, p. 190]. In practice, the latter is easier to obtain and closer to reality.

In the simulations reported in this dissertation, both synthetic and spectral images,
in the form of spectral reflectance, are employed. A synthetic image is designed
manually and generated with a programme, and the spectral images are primarily
obtained from the databases that cover both outdoor and indoor scenes [48, 183].
Foster’s set consists of a mixture of rural scenes containing rocks, trees, leaves,
grass, and earth and urban scenes [48], as shown in Figure 4.2. The spectral span
ranges over 400-720 nm in 10 nm steps yielding 33 bands, while scene 5 has only
32 bands due to the noisy 720 nm band. Divided into 5 sections, CAVE images are
of a wide variety of real-world materials and objects, covering various colourful
stuffs, skin, hair, paints, food, drinks and fake objects mimicking the colour of
real objects mentioned [183], as seen in Figure 4.3. The spectral span ranges over
400-700 nm in 10 nm steps yielding 31 bands. Table 4.1 shows the conditions in
which the images were captured.
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Figure 4.2: An overview of Foster’s image database [48] consisting of a mixture of rural
scenes containing rocks, trees, leaves, grass, and earth and urban scenes.

4.2 Image taking module
In practice, the image taking module consists primarily of imaging optics, image
sensor coupled with filter array and readout circuits as well as additional optical
components, e.g., neutral density filters, colour conversion filters, optical low-pass
filters and infrared cut-off filters. Considering that the scenes have incorporated
influence of certain optical elements in the course of acquisition, only the key
modules of immediate relevance to our research are taken into consideration in
order to avoid unnecessary complexity and unrealistic simulation. Therefore ele-
ments considered include the optics, the filter array and the sensor, as shown in
Figure 4.1.
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Figure 4.3: An overview of CAVE image database [183] made up of a wide variety of
real-world materials and objects, covering various colourful stuffs, skin, hair, paints, food,
drinks and fake stuffs mimicking the colour of real objects.

4.2.1 Imaging optics

As optics is in itself a standalone and well researched topic that is beyond the
primary objective of this dissertation, it is considered mostly in this dissertation
idealised thin lens which means aberration-free and transparent [118, p. 245]. The
focal length and focal point of the lens is determined so that the scene is projected
on the sensor and the size of the image is consistent with that of the image sensor
located in the image plane.

In the case when optics matters, the imaging lens may be considered as diffraction-
limited optics, that is, a linear shift-invariant system [46]. Therefore it may be
represented by PSF (point spread function) that represents the spatial response of
a shift-invariant system to an impulse, and the Fourier transform of PSF gives rise
to OTF (optical transfer function) that reflects the system’s frequency response.
When necessary, shift-variant aberrations may be mimicked by applying shift-
variant PSF or model-specific transformations to the images.

Diaphragm is an integral part of a lens whose shape and size influences the PSF/OTF.
Circular apertures are quite common and assumed in the experiments. Not only
does the size of an aperture have an impact on the PSF/OTF, but it also determines
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Table 4.1: Information about Foster’s [48] and the CAVE [183] databases where the scenes
are extracted.

CAVE Foster’s
Camera CCD camera CCD camera
Resolution 512× 512 max. 820× 820

Instrument LCTF LCTF
Illuminant D65 Sunlight
Range 400-700 nm 410-710 nm
Interval 10 nm 10 nm
Num. of bands 31 31

the amount of light passing through the lens. An ideal lens of no diffraction limit
should have an infinite aperture, therefore in most experiments the size of aperture
is not considered.

The radiance of an image formed by a perfect lens equals the radiance of the ob-
ject [118, p. 114]. Conceptually the action of an image receiving surface is to
convert the spatial distribution of radiance incident on it into the irradiance of the
image. This concept of radiance invariance simplifies the computation of the irra-
diance of the image [118, p. 252], as shown in Equation 4.1

Ei = πTLo

[
1

1 + (2Fnumber)2

]
(4.1)

where Ei and Lo denote the irradiance of the image and the radiance of the object
respectively, T is the lens transmittance, here assumed to be the same for all rays,
and Fnumber, the relative aperture of the lens in question. This formula applies to
the on-axis pixels on the detector. The irradiance over the off-axis pixels ought
to be reduced by cos2θ′ where θ′ is the angle of a point in the image away from
the optical axis. The falloff assumes lesser importance when θ′ is not significant.
As the majority of the scenes chosen have already suffered from this loss in the
course of image acquisition, further application of the falloff will render the images
unnaturally. Consequently the on-axis and off-axis pixels are dealt with equally.

As a result, it is theoretically sound to neglect the radiometric conversions in the
simulation where the spatial distribution of light over the image is of higher prior-
ity. This lays a radiometric foundation for the simulation. In a real system, absolute
radiometric quantities could be obtained by proper radiometric calibration.
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A series of distortions of the optical image, known as optical aberration, is un-
avoidable in an optical imaging system. In this dissertation, we consider in partic-
ular the influence of chromatic aberration in Chapter 6.

4.2.2 Filter array - mosaicking

A spatio-spectral sampling apparatus, filter array is essentially an arrangement of
optical filter elements tessellated in a generally repeated pattern corresponding to
the array of pixels on the image sensor. Consequently the simulation of a filter
array require both spectral complexion of filters and the way they are fitted geo-
metrically.

Filters - spectral sampling

A large number of optical filters are band-pass or band-reject filters that can be
well modelled by a Gaussian function with various bandwidth settings. Measured
spectral transmittances is also of great importance and interest so that simulations
may be more realistic. As a result, we make use of both in the experiments. Filter
characteristics affect the performance of a SFA-based imaging system in terms
of sensitivity and accuracy of spectral/colour reconstruction, therefore design of
filters is often compromises between these two factors. We will look into this
issue in Chapter 5.

Mosaic - spatial sampling

A filter array comprises a number of recurrent groups and each group is a partic-
ular tessellation of a few filter elements. The term “Moxel”, multispectral macro
pixel, is used to refer to such groups in a SFA. Generally it is good practice to
ensure an even distribution of various filter elements within a group. Nevertheless,
a pseudo-random layout, in other words, non-uniform sampling pattern, may alle-
viate artefacts caused by uniform sampling. A fully randomised filter array is not
impossible, however it requires a specifically developed demosaicking algorithm.

The module filters the irrandiance image formed before the filter array on a pixel-
by-pixel basis. The optical image might need padding around the borders to ensure
size of the padded image is a multiple of the size of the moxel, for the ease of mo-
saicking and demosaicking. All of the SFAs used in the experiments are designed
to conform to the binary-tree approach [123].
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4.2.3 Sensor

As the last part of the image taking module, a sensor in simulation integrates the
radiant power at each pixel by weighting the pixel value in the incident image by
the spectral responsivity over the spectrum.

Sensor parameters are simplified so as to keep the simulation simple yet reason-
able. Pixel layout and pixel count are set to be identical to those in the scene and
the filter array, to obviate the need for spatial translation, scaling and rotation. It
is assumed that fill factor of the pixels is 100% such that no light falls on peri-
pheral circuits that are insensitive to photons. Full-well capacity defines the total
amount of charge an individual pixel can hold during integration, thus influencing
the dynamic range of a sensor. In the simulation, the full-well capacity is con-
sidered together with the exposure time to match the intensity level to which a
reference white sample would lead. Spectral responsivity, or quantum efficiency,
of the sensor remains unity constantly over the useful wavelength range if not oth-
erwise stated, for the sake of simplicity. In practice, nevertheless, the sensitivity is
determined by the light sensitive material and the hardware design.

Noise

An intrinsic property of solid-state image sensors is noise. Palmer and Grant list 11
types of noise sources [141, p. 137], and Fiete [47, p. 84] summarises four major
ones: photon noise, background noise, dark noise and quantisation noise. Back-
ground noise becomes significant when light from non-targeted objects interfere
with that from the objects of interest, as are atmospheric effects in remote sens-
ing. Quantisation noise refers to the discrepancy between the quantised signal of
discrete amplitude and the original signal of continuous amplitude in analogue-to-
digital conversion. Photon noise, often modelled by Poisson distribution, is due to
the stochastic emission and propagation of photons. As the number of photons in-
creases, photon noise closely follows a normal distribution in appearance. Photon
noise is irrelevant to frequency, therefore it is white. Dark noise refers to electrons
generated with no light incident onto the detector. It is primarily caused by read
noise coming from readout electronics [47, p. 86]. And thermal noise may con-
tribute largely to read noise and determines the noise floor of a sensor [134, p. 76],
which arises from the random motion of carriers in any electrical conductor. Dis-
covered by John B. Johnson [83] and explained by Harry Nyquist [138], thermal
noise is also referred to as Johnson-Nyquist noise. Both the amplitude and fre-
quency distribution of thermal noise are Gaussian. The sensor module is open for
any type of noise, however certain types of noise are not considered in this disserta-
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tion. For instance, as there is no scene visibly affected by stray light or atmospheric
effects, background noise is neglected, and quantisation noise is skipped as well
considering that no specific quantiser exists in the framework and the scenes are
already quantised in the course of acquisition. Noise is artificially introduced in
Chapter 5.

4.3 Image processing module
The image taking module produces raw digital images that resemble the readout
from a staring array. In the subsequent image processing module, the digital im-
age will pass through the image processing routines including demosaicking and
spectral or colorimetric reconstruction. Other image processing tasks are not con-
sidered in the framework, and we do not handle compression and storage. As
this is a computational module in practice, it is not different from that in a real
SFA-based imaging system.

4.3.1 Demosaicking

The main input to a demosaicking algorithm is mosaic sensor images. It is also
necessary to provide the algorithm with the exact layout of the entire filter array
and the moxel. The essence of demosaicking lies in the estimation of the missing
pixel values in the sensor output with the help of neighbouring pixels in the same
or other bands, on the assumption that there exists spatial and spectral correlations
between intra-band and/or inter-band pixels. Image borders padded previously in
the mosaicking process for the case of demosaicking ought to be cut away after
demosaicking. The methods of demosaicking implemented in this dissertation in-
clude BL (bilinear interpolation), SH (smooth hue transition based interpolation),
BT (binary-tree based demosaicking), VM (vector median filtering, see Chapter 7),
DWT (DWT based demosaicking, see Chapter 8) and LMMSE (LMMSE based
demosaicking, see Chapter 9).

4.3.2 Spectral or colorimetric reconstruction

Demosaicked image is a multi-band image at full resolution. This is the output
of a pipeline if these bands represent information of interest, e.g., band-specific
features of the object. In most cases, however, this image does not furnish enough
information meaningful and useful for visualisation or analytic purposes. Hence it
is necessary to reconstruct the spectrum or colorimetric values represented by each
pixel in the demosaicked image. Certainly it is an estimation process and requires
some a-priori information through characterising the imaging system with some
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targets of known characteristics. As a result, the input of this module include the
sensor output as well as the characterisation results. Spectral reconstruction is con-
sidered in Chapter 7) and colorimetric reconstruction is investigated in Chapter 10.

4.4 Evaluation module
As the last module in the framework, quality evaluation is independent from the
previous modules and the pipeline. However it is of great moment in the design of
an imaging system. In this circumstance, evaluation may be carried out subject-
ively by performing psychophysical experiments or conducted objectively by com-
puting scores of certain metrics. In this framework, merely objective evaluation is
done by comparing signals before and after certain processing with appropriate
quality metrics.

In the simulation workflow, evaluations may be performed in a flexible and suit-
able manner as shown in Figure 4.4. For instance, image quality assessment may
be undertaken by comparing the full-resolution image prior to mosaicking and the
demosaicked image. Similarly, metrics measuring spectra, colour and image qual-
ity can be utilised to evaluate the overall system performance by comparing the
scene and the reconstructed scene. Although there are quality metrics customised
for greyscale and colour images, there is no quality metrics widely accepted in the
field of spectral imaging. Therefore we apply the well-known metrics to each band
of the spectral images.

Common image quality metrics may be based on pure mathematical measures, like
PSNR, or advanced models incorporating low- and high-level features of human
vision, such as the SSIM. Apart from those, native and adapted colour difference
formulae, such as CIE DE2000 and S-CIELAB, may also be used as metrics when
the emphasis is placed on perceptual dissimilarity in colour.

4.5 Limitations
Now we have a brief overview of the imaging framework. In engineering a system,
it is often the easiest to limit the model initially to the simplest case, which natur-
ally leads to a departure from the truth, thus limiting to some extent the universality
of the results and the conclusions.

Among other issues, probably the most crucial one arises from the input to the
system, namely the scenes. The direct use of spectral images as scenes suffers
from three major drawbacks.
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Firstly, the limited availability and variety of spectral images present difficulties
in generalising the conclusions. Results may be good for a certain type of scenes
under certain system configurations, whilst not for other types of scenes. The
scenes might lack certain characteristics of critical importance in evaluating the
system or realising potential problems, such as high-frequency components in the
database.

Secondly, it becomes difficult to interpret the results objectively with numerical
scenes. Objects in a natural scene possess infinite spatial and spectral resolution,
unlimited radiometric signal-to-noise ratios, and textures of varying degrees and
styles, of which numerical scenes are short. It remains a question how well numer-
ical scenes resemble real scenes.

Thirdly, it is often impossible to remove the optical aberrations and electronic
aberrations from the already captured images, due to the uncertain and irreversible
nature of image acquisition. Moreover, it is problematic to determine the amplitude
of aberrations and noises artificially introduced to the numerical scenes that have
already suffered from such optical and electronic distortions. Future verifications
may be performed with the help of real sensor data [100].

That being said, we believe the simulation amply fulfils the major objective of the
research reported in this dissertation.
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Figure 4.4: An illustration of the simulation workflow and the possible means of eval-
uation of SFA imaging pipeline. The workflow is slightly different from the physical
pipeline due to the need of evaluation, e.g., spectral integration normally occurs after spa-
tial sampling, is placed in front of it in the workflow to form full resolution images for
the evaluation of demosaicking. The workflow is also flexible in that the modules may be
connected as required by the simulation.



Chapter 5

Influence of filter bandwidth on
spectral reconstruction

5.1 Introduction
In practice, a multiband image acquisition system often employs an objective lens,
a set of optical filters and an area image sensor with the aim of recording the pro-
jected image of a scene captured by the system. Each filter corresponds to one band
of the resulting multiband image, and a subsequent estimation step is commonly
required in order to retrieve the CIE tristimulus values or spectral reflectance of
the scene.

Filter design is the very first component of such a system. Spectral characteristics
of filters therefore make a direct impact on the overall performance of the sys-
tem. When simplified as a normal (Gaussian) distribution, a filter can be described
primarily by two factors, i.e., central wavelength and bandwidth. The former spe-
cifies the dominating wavelength where the transmittance of a filter achieves the
maximum, and the latter determines how the filter respond to the incident light
distributed among the remaining part of the spectrum. The bandwidth of a filter is
commonly measured by FWHM.

In a trichromatic system, three types of colour recording filters are often required.
Primary colour filters whose peak transmittances are located in the blue, green and
red region of the visible spectrum are commonplace in commercial colour cam-
eras [13]. However, there exist colour cameras that possess complementary colour
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filters in contrast to the primary colour filters commonly utilised. Complementary
colour filters intrinsically bear wider pass-band than their primary counterparts,
and it is demonstrated that the former gives rise to better colour reproduction
and signal-to-noise ratio in sufficient lighting conditions, whereas the latter of-
fers higher system responsivity and resolution [143, 142]. Similarly, the choice of
filters remains a question in spectral capture. It is stated that narrowband filters
should in theory outperform wideband ones with respect to the accuracy of spec-
tral reconstruction [78, 79], whereas the wideband filters may produce superior
results [78]. To the best of our knowledge, little research has been made so far to
investigate the influence of various filter bandwidths on spectral acquisition.

In this chapter, we focus on the impact of filter bandwidth on the accuracy of spec-
tral reflectance estimation in the context of a spectral image acquisition system, in
a comprehensive and rigorous manner.

The following parts of this section are organised as follows. Section 5.2 describes
three linear reflectance reconstruction methods that are widely adopted and used.
The procedures of and conditions in which the experiments were conducted are
introduced in Section 5.3 prior to a presentation of the results in Section 5.4. Sec-
tion 5.5 draws some conclusions.1

5.2 Spectral reflectance estimation from spectral measurements
Spectral reflectance estimation is an inverse problem aimed at an estimation of the
spectra of higher dimensions from the corresponding spectral measurements of
lower dimensions. In concrete terms, a spectral capture process can be described
in a linear form as

P = HSR (5.1)

where P refers to the spectral responses represented by a c × q matrix, H cor-
responds to system responsivities represented by a c × l matrix, S is the spectral
power distribution of the illumination represented by a l × l matrix, and R is the
set of spectral reflectance represented by a l× q matrix. c is the number of spectral
bands captured by the system, l is the number of spectral bands of incident spectra,
and q is the number of reflectance spectra in the set. For spectral image capture
c > 3, whereas trichromatic acquisition can be considered as a special case where

1Content of this chapter is adapted from a published paper [178]. Copyright c©International
Colour Association.
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c = 3. In comparison, the visible spectral range between 400 nm and 700 nm
with an interval of 10 nm would yield l = 31. As a result, c < l is common for
multispectral imaging.

Spectral reflectance estimation aims at an estimation of R from P . Equation 5.1
is solvable if HS is known and invertible, so that we have R′ = WP where
W = (HS)−1. However it is not true in the case of reflectance reconstruction.
Nevertheless W can be estimated by means of training where a collection of train-
ing spectra Rt and corresponding responses Pt are utilised to derive an approx-
imation of W . Three representative methods based on different principles were
experimented with to this end. The method of linear least squares attempts to
solve Equation 5.1 by means of least-squares which leads to Equation 5.2,

W = rtp
+
t (5.2)

where P+
t is a right pseudoinverse of Pt : P+

t = P Tt (PtP
T
t )−1.

Imai and Berns [77] proposed to employ PCA (principal component analysis) to
analyse the training spectra, which gives rise to Equation 5.3

W = UtP
+
t (5.3)

whereUt is a matrix consisting of the imost significant eigenvectors of the training
spectra by means of PCA. The parameter i is determined so that the RMSE (root
mean square error) between Rt and the estimated R′t is minimised.

Wiener estimation [152] is yet another method taking noise into consideration in
the following manner,

W = RtR
T
t (HS)T ((HS)RtR

T
t (HS)T +N)−1 (5.4)

where N is a term reflecting additive noise intrinsic to the system in form of σ2I ,
σ2 being the variance of estimated noise and I being an identity matrix. σ2 is
estimated using the method proposed by Hironaga and Shimano [73].

5.3 Experiment
The experiments were conducted on a simplified simulation framework, as shown
in Figure 5.1.
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Figure 5.1: Simulation framework. The pipeline that appears in Figure 4.4 was modified
to meet the requirements of the experiment in this chapter.

In total, 48 hyperspectral images were used in this study. 16 of them from Foster’s
database [48] and another 32 from the CAVE project [183]. Spectral reflectance
images were derived respectively and re-lit by the illuminant of CIE D65. A se-
lection of pixel was selected from each image by means of horizontal and vertical
down-sampling at the ratio of 1:5 without low-pass filtering, in order to reduce the
computational intensity.

For the ease of processing and comparison, all images were linearly interpolated
in the spectral dimension, and filters were designed accordingly, to cover the range
between 400 nm and 700 nm with an interval of 1 nm.

Six types of filter sets in three pairs were chosen. A 4-band filter set used in this
research are depicted in Figure 5.2. We were interested in narrowband and wide-
band band-pass filters as well as corresponding inverted ones as band-stop filters.
The FWHM of pass-band and stop-band was set to 10/40/160 nm respectively. In
practice, a pass-band of 10 nm simulates very narrow band-pass filters like LCTF,
a stop-band of 10 nm mimics notch filters relying on destructive interference. Sim-
ilarly, a pass-band and a stop-band of 40/160 nm resemble the spectral transmit-
tances of thin-film absorptive filters. The peak wavelengths were determined so
that the intersection between both ends of the spectrum and the 40 nm band-pass
filters correspond to the 3σ location, namely the filters cover the short end and long
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end of the spectrum with rather low transmittances. The number of filters studied
ranged from 3 to 20.
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Figure 5.2: An illustration of a 4-band filter set. Copyright c©International Colour Asso-
ciation

In Figure 5.2, the three graphs in the upper row show narrow, wide and ultra-
wide band-pass filters’ spectral transmittances with FWHM of 10, 40 and 160 nm
respectively. The three drawings in the lower row present spectral transmittances
of the corresponding band-reject filter sets.

To make the results more robust and realistic, we also introduced a certain level of
normally distributed noise to the simulated sensor responses. The ratio between
the maximum signal level to the mean noise level is set to 50 dB with the standard
deviation at 10% of the noise level.

To simplify the simulation, we also made an approximation that the sensor pos-
sesses constant quantum efficiency over the spectrum. The influence of the above
filters in terms of the spectrum estimation accuracy was evaluated by means of
RMSE (Root Mean Square Error) and GFC (Goodness of Fit Coefficient) (GFC) [150]
averaged among the 48 virtual scenes, as indicated underneath by Equation 5.5
and 5.6.
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Table 5.1: Parameters and setup of the experiments.

Spectral range 400 nm – 700 nm
Spectral interval 1 nm
Illuminant CIE D65
Type of spectra subsampled reflectance images
Number of images 48
Number of bands 3-20
Type of filters 6 sets of bandpass and bandreject filters
Reconstruction methods least-squares, Imai and Berns, Wiener
Quality metrics RMSE, GFC

RMSE =

√∑301
j=1[|r(λj)− r′(λj)|

2])

301
(5.5)

GFC =
|
∑301

j=1 r(λj)r
′(λj)|

|
∑301

j=1 [r(λj)]
2|1/2|

∑301
j=1 [r′(λj)]

2|1/2
(5.6)

where r and r′ represent the original and estimated spectral reflectance at any pixel
in an image. It is worth noting that lower RMSE scores mean higher performance
and an RMSE of zero means a perfect estimation, whereas, GFC values range from
0 to 1 and an exact reconstruction would yield 1.

5.4 Results
As depicted by Figure 5.3 and 5.4, in general, the wide band-pass filter set consist-
ently outperforms others, followed by its band-reject version. On the other hand,
the pair of ultra-wideband filter sets results in similar and comparatively lower ac-
curacy of reflectance estimation. Clearly the narrowband filters are not simply the
best on all occasions as opposed to what Imai et al. concluded [78].

Surprisingly, the performance of the narrow band-pass filter sets varies signific-
antly and decreases dramatically from 13-band onward suggested by both of the
two metrics. Otherwise results of other filter sets shift rather smoothly.

Results obtained with the first and second methods illustrate very similar tenden-
cies, whereas the Wiener estimation yields somewhat different results potentially
due to the involvement of noise in the computation. As the number of bands in-
creases, Wiener estimation tends to provide more stable results, whereas the per-
formance of the other two methods reduces gradually, except the narrow band-pass
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set.

The optimal number of filters largely depends on the methods used, and the two
metrics do not seem to make a difference, however the metrics do change the order
of performance. For instance, the narrow band-reject filter set is the worst method
in terms of GFC, while it is not the case of RMSE.

5.5 Conclusion
We evaluated the performance of 6 types of filters of varying bandwidths in terms
of the accuracy of spectral reflectance estimation with three linear estimation meth-
ods in the context of spectral image acquisition, with the help of a simulated ima-
ging framework.

The results are not fully consistent with the conclusions drawn by previous work
that narrow band-pass filters always yield higher spectral reproduction accuracy.
Nevertheless, we found that band-pass and band-reject filters of reasonably wide
band commonly seen in practice benefit spectral acquisition. Further, band-pass or
band-reject filters of extremely narrow or broad bandwidths perform unsatisfact-
orily or unsteadily.

The experiments were conducted in simulated lighting condition that is sufficient
in terms of intensity. In insufficient lighting conditions, we assume that the ad-
vantages of wider bandwidths would be more significant in the system sensitivity
as well as the signal-to-noise ratio.
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Figure 5.3: Accuracy of spectra reconstruction evaluated by RMSE. Copyright
c©International Colour Association
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Figure 5.4: Accuracy of spectra reconstruction evaluated by GFC. Copyright
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Chapter 6

Influence of chromatic aberration
on CFA demosaicking

6.1 Introduction
Optical images are commonly distorted by optical elements in form of various
types of optical aberrations, and one of them resulting in colour artefacts is de-
noted chromatic aberration (CA) [102, p. 257]. It occurs because lenses, typically
made of glass or plastic, bear different refractive indices for different wavelengths
of light, that is, the dispersion of a lens. The refractive index decreases with in-
creasing wavelength. The main consequence of CA in imaging is that rays at
different wavelengths are focused at different image distances (axial/longitudinal
CA) and at different locations in the image (transverse/lateral CA). In theory and
reality only rays at a certain wavelength are focused accurately on the image plane,
all other rays are focused before or behind the image plane, which leads to blur
when observed from the image plane. Similarly, magnification of a lens varies
from wavelength to wavelength as well. On the optical axis, there appears as axial
CA, since magnification is zero. In a plane perpendicular to the optical axis, the
difference of magnification rate turns more prominent as the distance from the op-
tical axis increases, which produces transverse CA. The problem of CA may be
corrected optically to some extent by using superior glass substrate whose refrac-
tion index varies to a lower degree and combining positive and negative lenses,
nevertheless it is not avoidable in practice where cost, compactness, and weight
matter.

75
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Figure 6.1: Formation of chromatic aberrations.

CA influences the spatial and spectral correlations of images through the artefacts,
such as blur and mis-registration, which also affect demosaicking. To the best of
our knowledge, an evaluation of the influence of CA on demosaicking has not been
performed. Therefore we will address this issue in this chapter.

The rest of the chapter begins with a description of the simulation of CA in Sec-
tion 6.2. Section 6.3 details the experimental setup. Results are demonstrated in
Section 6.4 and discussed in Section 6.5.1

6.2 Simulation of chromatic aberration
CA occurs in the formation of an optical image, therefore the best way of observing
and studying CA is through various optical design. However, this is not flexible
and convenient. In consequence, we opt to simulate CA with spectral images as an

1Content of this chapter is adapted from a published paper [174]. Copyright c©IEEE.
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alternative solution. The two types of aberrations are simulated individually and
jointly. The simulation of axial and transverse CAs are demonstrated in Fig. 6.2
and Fig. 6.4.
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Figure 6.2: Workflow for the simulation of axial CA. Copyright c©IEEE.

Keeping in mind the reason for axial CA, we suppose the rays at 550 nm are
focused on the sensor, such that green channel at about 550 nm remains in focus
and thus little changed, which is consistent with the peak in the CIE luminosity
function. Then the rays at other wavelengths will be focused at a range of planes
before and behind the intended image plane. This is seen as a blur. CA is an
optical aberration closely bound to the optical design of a lens, and the degree of
blur depends primarily on the position of the image plane for a given lens at given
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aperture size. It is often analysed in optical design and fabrication by means of ray
tracing. However it varies from one optical design to another, and there is not a
parametric model of such aberration to the best of our knowledge. To that end, we
rely on the ISETBIO toolbox [1] that makes use of an ocular CA model [164, 165].
With this reduced eye model, the chromatic refractive error, that is the dioptric
difference of refraction, can be derived by Eq. 6.1,

∆RE(λ) =
n(λ1)− n(λ2)

rcnD
(6.1)

where λ1 and λ2 refer to the wavelengths in question, and n(λ1) and n(λ2), the re-
fractive indices at these two wavelengths. nD is the refractive index for the sodium
D-line (589 nm), which is wavelength for which the model eye is emmetropic. rc
is the corneal radius of curvature, set to 5.5 mm. The refractive index is obtained
by Eq. 6.2,

n(λ) = a+
b

λ− c
(6.2)

where a = 1.320535, b = 0.004685, c = 0.214102.

Now the defocus obtained is expressed in diopters. To make it suitable for the next
step, which is the calculation of the pupil function, it is necessary to convert the
defocus expressed in diopters to that expressed in micrometres by Eq. 6.3.

Dm =
r2cDd

16
√

3
(6.3)

where Dm and Dd denote defocus in micrometres and diopters respectively. The
pupil function, or sometimes referred to as aperture function, is a complex function
of the position in the pupil or aperture (an iris in this case) that represents the
amplitude and phase of the wavefront across the pupil, also known as wavefront
aberrations. It is an important tool to study optical imaging systems and their
performance.

Optical system aberrations have historically been described, characterized, and
catalogued by power series expansions, where the wave aberration is expressed as
a weighted sum of power series terms that are functions of the pupil coordinates.
Each term is associated with a particular aberration or mode, such as spherical
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aberration, coma, astigmatism, field curvature, distortion, and other higher order
modes. Zernike polynomials form a complete set of functions or modes that are
orthogonal over a circle of unit radius and are convenient for serving as a set of
basis functions. Pupil functions are calculated here with the use of Zernike poly-
nomials [112] and pupil function at a given wavelength is demonstrated in Eq. 6.4.

PF (λ) = Ae−i2π
Z
λ (6.4)

where A represents the amplitude, calculated entirely based on the assumed prop-
erties of the Stiles-Crawford effect, and the exponential function is actually the
phase of the aberration. The Zernike polynomials, denoted by Z, may consist of a
series of modes, however, as the only aberration we are interested in this context
is defocus (4th mode), we simply neglect others.

400 nm 450 nm 500 nm 550 nm

600 nm 650 nm 700 nm

Figure 6.3: A series of PSFs at visible wavelengths. Copyright c©IEEE.

The pupil function is related to the point spread function (PSF) by the Fourier
transform [61, p. 131]. The reduced eye model simplifies the aberration and as-
sumes the axial CA is shift-invariant, the generated PSF is static for each wavelength.
An example of PSFs at a few wavelengths over the visible spectrum is demon-
strated in Fig. 6.3. It is clear that the support of the PSFs vary in size as the
wavelength increases, and achieves the minimum at 550 nm. A PSF is in fact the
impulse response of an imaging system in spatial domain, and the Fourier trans-
form of a PSF leads to the optical transfer function that integrates the modulation
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transfer function (MTF) and the phase transfer function (PhTF). A convolution of
a PSF and an image will produce the simulated image distorted by axial CA.
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Figure 6.4: Workflow for the simulation of transverse CA. Copyright c©IEEE.

The mechanism of transverse CA lies in a varying rate of geometric distortion, that
is in fact a radial operation depending on wavelengths. Therefore we first repres-
ent the images of each band in polar coordinates. Subsequently the radius can be
manipulated in such a manner that the magnification varies in radial direction, fol-
lowing the ray tracing analysis of a real lens design. In practice, the measurement
of transverse CA is often provided in form of a series of samples by the ray tracing
software, which reflects the wavelength dependent radial distortion, as shown in
Table 6.1. Accordingly, interpolation becomes essential to map and resample the
original band images in order to simulate transverse CA.

As mentioned above, the reduced eye model simulates merely axial CA, and trans-
verse CA depends on the results of ray tracing analysis. When combined, the two
types of CA may be simulated sequentially as implemented by ISET [45]. Namely,
transverse CA is applied prior to axial CA.
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Table 6.1: Positions of radial samples before and after transverse CA.

Radial samples
Distorted radial samples

400 nm 475 nm 550 nm 625 nm 700 nm
0.0518 0.0507 0.0510 0.0511 0.0512 0.0513
0.1037 0.1014 0.1019 0.1022 0.1024 0.1025
0.1555 0.1519 0.1527 0.1531 0.1534 0.1537
0.2073 0.2023 0.2033 0.2039 0.2044 0.2047
0.2591 0.2525 0.2538 0.2545 0.2551 0.2554
0.3110 0.3025 0.3040 0.3049 0.3055 0.3060
0.3628 0.3521 0.3539 0.3549 0.3557 0.3562
0.4146 0.4014 0.4034 0.4046 0.4054 0.4061
0.4664 0.4503 0.4525 0.4539 0.4548 0.4555
0.5183 0.4987 0.5012 0.5028 0.5038 0.5046
0.5701 0.5467 0.5495 0.5511 0.5523 0.5531
0.6219 0.5942 0.5972 0.5990 0.6003 0.6012
0.6737 0.6411 0.6443 0.6463 0.6477 0.6487
0.7256 0.6874 0.6909 0.6930 0.6945 0.6956
0.7774 0.7330 0.7368 0.7391 0.7407 0.7418
0.8292 0.7780 0.7821 0.7846 0.7862 0.7875
0.8810 0.8224 0.8267 0.8293 0.8311 0.8324
0.9329 0.8660 0.8705 0.8734 0.8753 0.8767
0.9847 0.9089 0.9137 0.9167 0.9187 0.9202
1.0365 0.9511 0.9561 0.9593 0.9614 0.9629

6.3 Experiment
We implemented and experimented with two representative methods, namely bi-
linear interpolation and gradient-corrected linear interpolation. The former relies
on merely spatial correlation, whereas the latter also makes use of, and thus sens-
itive to, spectral correlation.

Gradient based demosaicking solutions are aimed at reduced artefacts by avoiding
interpolating across the edges. Malvar et al. [113] advance a gradient-corrected
bilinear interpolated approach, with a gain parameter to control how much correc-
tion is applied. In other words, the results of bilinear interpolation is corrected by
a measure of the gradient for the known colour at the pixel location. To determine
appropriate values for the gain parameters, a Wiener approach is employed which
computes the values leading to minimum mean-square errors, given second order
statistics computed from the Kodak data set [2].

Evaluation of the demosaicking algorithms can be seen in general as an image
quality evaluation task.
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In the last decade when demosaicking gains much attention, the evaluation of
demosaicking also attracts the interest of the academic community. Longère et
al. conduct perceptual quality evaluation on a few demosaicking approaches, and
state that perceptual results cannot be easily predicted using an image metric [106].
Even so, there are several attempts for objective quality evaluation. Lu and Tan
propose two types of quality measures specifically for demosaicking, one com-
putes the PSNR (peak signal-to-noise ratio) and CIE ∆E∗ab for edge and smooth
regions respectively, whereas the other one deals in particular with the zipper arte-
fact [110]. Yang et al. show that low-level features (colours or edges) extracted
from demosaicked images are affected by resolution, whatever the demosaicing
method used, and therefore propose new criteria designed for low-level image ana-
lysis [182].

The most widely used criteria for the evaluation of demosaicing quality are MSE
(mean squared error) and PSNR, primarily because they are simple thus easy to
implement. However, the PSNR criterion provides a general estimation of the
demosaicking quality, but does not really reflect the human judgement. Alternat-
ives such as CIE ∆E∗ab and S-CIELAB [189] are also widely used, however they
require a-priori information like the reference white or illuminant [108].

In this section, we concern mostly the signal fidelity of each colour channel. There-
fore we base our judgement on PSNR. In comparison with PSNR, the SSIM (Struc-
tural SIMilarity) index [179] provides more structural information and tends to be
more consistent with subjective image quality assessment, which matches CA that
blurs and shifts structures. Therefore we also adopted the SSIM as a method for
measuring the similarity between the images before and after demosaicking.

In contrast to straightforward assessment of demosaicking methods or image qual-
ity, an evaluation of the influence of CA on demosaicking seems a bit more com-
plicated, as there are two types of source images, i.e., with and without CAs. In
consequence, with the two full reference quality metrics, we not only computed
the image quality between the source and demosaicked images with and without
distortions, but also cross compared the non-distorted source images and distorted
demosaicked images.

The experiment was conducted in the following manner. First, simulated CA was
applied to spectral bands separately. Then, a mosaic image is formed by filtering
the distorted spectral image with a Bayer CFA [13] and converting it to sRGB col-
our space. Next, the mosaic image was interpolated with one of the demosaicking
methods. Finally, the demosaicked images were fed into a quality metric channel
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by channel.
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Figure 6.5: Simulation framework.

Conditions and parameters in relation to the experiment are presented as follows.
and the images were cropped into square matrices by the shorter dimension. Spec-
tral range was set to 400 nm to 700 nm, with an interval of 10 nm. The CFA
conforms to the common design of Bayer. Transverse CA was simulated accord-
ing to real lens data provided by the ISET [45]. The SSIM index was computed
with the empirical formula specified on the official webpage to determine the scale
for images viewed from a typical distance [3].

6.4 Results
Experimental results are depicted below. Lines and markers in red, green and blue
represent the results for the corresponding channels, and those in black indicate
the average values. Due to the space limitation, some similar results are not shown
here. Concerning the performance with and without CAs, Fig. 6.7-6.8 show the
results in terms of PSNR, while Fig. 6.9-6.10 display the results in terms of SSIM
index. Similarly, Fig. 6.11-6.12 demonstrate the results in terms of PSNR and
SSIM respectively for the cross comparison between non-distorted sources and
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Figure 6.6: Thumbnails of the images used. Scene 1-5 were selected from the Foster
set [48] and scene 6-11 from the CAVE set [183].

distorted demosaicked images.

It can be seen from Fig. 6.7-6.8 that combined and axial CA yield higher perform-
ance, regardless of the demosaicking methods used. This is true for all red, green
and blue channels. However, in Fig. 6.7 the best result was achieved by the blue
channel under axial and combined aberrations, whereas in Fig. 6.8 for the green
channel under the same aberrations. Such findings are consistent with Fig. 6.9-
6.10. This indicates that CA surprisingly benefit demosaicking. In particular, blur
benefit both demosaicking methods by higher spatial correlation. In theory, trans-
verse CA in form of mis-registration should reduce correlation, thus decreasing
the performance. On the contrary, the figures show opposite results. Perhaps the
resampling involved blurs the images to some extent as well. In comparison with
intra-channel methods, inter-channel interpolation is more sensitive to the content
of the green channel. The drop of Image 10 in Fig. 6.9-6.10 may be because of
the specific characters of the image, i.e., oil painting as the foreground on top of
black background. Furthermore, the two distinct models of CA simulation may
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Table 6.2: Parameters and setup of the experiments.

Spectral range 400 nm – 700 nm
Spectral interval 10 nm
Illuminant CIE D65
Type of images Reflectance image
Number of images 11
Type of chromatic aberration transversal, lateral and combined
Type of filters CIE 1931 x̃(λ)ỹ(λ)z̃(λ)
Type of mosaics Bayer CFA
Demosaicking bilinear, constant-hue, gradient-corrected
Quality metrics PSNR, SSIM
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Figure 6.7: PSNR computed from straight comparisons between distorted source images
and distorted demosaicked images for R/G/B channels and the average with bilinear inter-
polation.

also affect the results.

Suggested by Fig. 6.11 and Fig. 6.12, axial CA results in higher performance in
terms of cross comparison, indicating that blur influences less the signal fidelity
and similarity. In comparison, both of the other two types of CA involve trans-
versal CA and lead to significantly worse results. Obviously CA lowers the overall
image quality by any means.
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Figure 6.8: PSNR computed from straight comparisons between distorted source images
and distorted demosaicked images for R/G/B channels and the average with gradient cor-
rected linear interpolation. Copyright c©IEEE.
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Figure 6.9: SSIM indices computed from straight comparisons between distorted source
images and distorted demosaicked images for R/G/B channels and the average with bilin-
ear interpolation. Copyright c©IEEE.
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Figure 6.10: SSIM indices computed from straight comparisons between distorted source
images and distorted demosaicked images for R/G/B channels and the average with gradi-
ent corrected linear interpolation. Copyright c©IEEE.
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Figure 6.11: PSNR computed from cross comparisons between non-distorted source im-
ages and distorted demosaicked images for R/G/B channels and the average with gradient
corrected linear interpolation. Copyright c©IEEE.
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Figure 6.12: PSNR computed from cross comparisons between non-distorted source im-
age and distorted demosaicked image for R/G/B channels and the average with gradient
corrected linear interpolation. Copyright c©IEEE.

6.5 Conclusion
In this chapter we propose a framework to investigate the influence of chromatic
aberration (CA) on demosaicking. Experimental results show that CA benefits
demosaicking to some extent, however any type of CA decreases image quality by
means of blur and mis-registration.

There is also a philosophical question, that is, which pair of images should be
compared. An image quality evaluation performed between the original image
and demosaicked image with and without CA does not reveal all mysteries. How-
ever it is also somewhat unfair to compare an original image without CA and a
demosaicked image with CA.

Certainly more demosaicking algorithms and sample images would be helpful.
And experiments in subjective assessment of image quality are desirable, which
may reveal better how human observers perceive the issue. Further, the degree of
CA may be varied to obtain more data, and ray tracing analysis of real lenses is
expected to make the simulation more realistic.
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Chapter 7

SFA demosaicking based on
vector median filtering

7.1 Introduction
Among a wide spectrum of algorithms proposed for CFA demosaicking in the last
decades, some of them might be able to be adapted to SFA demosaicking due to the
intrinsic properties that CFA and SFA share. When each pixel in an image is con-
sidered as a vector, a normal trichromatic image constitutes a three-dimensional
vector space. Clearly this concept is compatible with multispectral images, and so
are the demosaicking methods based on that. For instance, a CFA demosaicking
method that applies vector median filters to the pseudo-pixels formed in a given
neighbourhood, is devised by Gupta and Chen[66]. To reduce the artefacts in-
troduced by demosaicking, such as false colours and degraded edges, Keren and
Osadchy[87] present a post-processing step that transforms each colour vector in a
demosaicked image into an n-sphere and applies median filtering to the spherical
coordinates, for the sake of the preservation of luminance discontinuities and the
reduction of irregular chromatic variation among neighbouring pixels. As shown
in respective literature, both methods give rise to satisfactory results despite their
simplicity. As a consequence, we determined to extend and experiment with these
two approaches.

Chapter 7 is organised as follows. The two aforementioned methods are described
in Section 7.2 and 7.3, followed by the procedures and conditions of the exper-
iments presented in Section 7.4. The primary results are demonstrated and dis-
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cussed in Section 7.5 and 7.6 respectively.1

7.2 Vector median filtering for SFA demosaicking
In itself, vector median operation originally advanced by Astola et al. [9] is at
the core of the idea detailed in Gupta and Chen [66]. Different from median fil-
ters, vector median is specifically designed for vector-valued signals, for instance,
multispectral and colour images. It reduces to the scalar median when the inputs
are one-dimensional vectors, and possesses similar properties to scalar median fil-
ters, such as the capability of smoothing noisy data while retaining sharp edges.
Another basic property of the vector median, inherited from the median filter, is
that it does not introduce any new values that do not exist in the input. Therefore
the output of the vector median filter must be one of the input vectors.

According to Definition 1 provided by Astola et al. [9], the vector median VML2
of x

¯1, . . . , x
¯N is x

¯VM such that

xVM ∈ {xi|i = 1, . . . , N}, (7.1)

and for all j = 1, . . . , N

N∑
i=1

‖xVM − xi‖2 ≤
N∑
i=1

‖xj − xi‖2, (7.2)

where ‖‖2 denotes the L2-norm2.

To take advantage of vector median filtering for demosaicking, multiple input vec-
tors are necessary. Gupta and Chen [66] propose a concept of pseudo-pixel by
grouping neighbouring red, green and blue pixels within a given neighbourhood.
This leads to quite a few vectors representing all possible pseudo-pixels, each of
which consists of three types of pixels connected horizontally or vertically in a
mosaicked image.

Taking multispectral image into consideration, we extend this idea from two as-
pects. Firstly, our implementation associates the size of neighbourhood where the
pseudo-pixels are formed with the dimension of a moxel, a mosaic element cor-
responding to an elementary filter mosaic repeated across an SFA. Figure 7.1(a)
shows an example of a moxel when the filter array is composed of four types of

1Content of this chapter is adapted from a published paper [176]. Copyright c©SPIE.
2For a real number p ≥ 1, the Lp-norm of x is defined by ‖x‖p = (|x1|p+|x2|p+· · ·+|xn|p)

1
p .
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filters labelled by the numbers. Figure 7.1(b) demonstrates the neighbourhood of
(2(n− 1) + 1)× (2(m− 1) + 1) pixels and Figure 7.1(c) of (2n+ 1)× (2m+ 1)
pixels, where n and m denote the number of rows and columns of the moxel. As
can be seen, in the larger neighbourhood, there is a rectangular occurrence of 8
neighbouring pixels bearing the same label as the pixel in question situated in the
centre. Secondly, in the original work [66], only horizontally and vertically con-
nected pixels may be grouped as pseudo-pixels, whereas in this work diagonally
connected pixels were also considered. Figure 7.2(a) illustrates a case where four
pixels connected horizontally and vertically are grouped into one pseudo-pixel,
while Figure 7.2(b) displays a pseudo-pixel formed by pixels connected both hori-
zontally and diagonally.

Astola et al. [9] refers to a straightforward algorithm to find the vector median of
x1, . . . , xN as follows, which was adopted in this work.

a) For each vector xi, compute the distances to all the other vectors using either
the L1-norm or the L2-norm and add them together, resulting in

Si =

N∑
j=1

‖xi − xj‖, i = 1, . . . , N. (7.3)

b) Find min such that Smin is the minimum of Si.

c) The vector median is xmin.
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Figure 7.1: Moxel and modes of neighbourhood. Copyright c©SPIE
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(a) A pseudo-pixel formed by rectangularly
connected pixels
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(b) A pseudo-pixel formed by diagonally
connected pixels

Figure 7.2: Formation of pseudo-pixels. Copyright c©SPIE

7.3 Median filtering in n-sphere as a refinement step
As demosaicking is an operation of estimation, most methods fail in some situ-
ations of one kind or another which often results in false colour artefacts such as
blurs and zips. As known, median filtering is effective at correcting such defects.
As described in the original paper [87], median filtering in spherical space may
be used as a post processing step subsequent to demosaicking. However, the me-
dian operation should be applied to angular components of the vectors, whilst the
luminance related radius should be kept unmodified, so as to keep the luminance
to some extent. We followed the principle and carried out the procedure by ex-
tending spherical space and three-dimensional Euclidean space to n-sphere and
n-dimensional Euclidean space respectively.

To be specific, four steps were conducted in succession as follows.

a) Each pixel is represented by a vector x = {x1, . . . , xn} in an n-dimensional
Euclidean space, where n denotes the number of spectral bands of the demosa-
icked multispectral image.

b) Each vector x is transformed to y = {r, φ1, . . . , φn−1} in the n-sphere accord-
ing to Equation 7.4.

c) Two-dimensional median filtering is applied one by one among the n − 1 an-
gular planes {φ1, . . . , φn−1}, whilst the radial plane r remains unchanged.

d) Each vector is transformed back to x̂ = {x̂1, . . . , x̂n} in the n-dimensional
Euclidean space according to Equation 7.5.
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r =
√
x2n + x2n−1 + · · ·+ x22 + x21,

φ1 = arccot
x1√

x2n + x2n−1 + · · ·+ x22

,

φ2 = arccot
x2√

x2n + x2n−1 + · · ·+ x23

, (7.4)

...

φn−2 = arccot
xn−2√

x2n + x2n−1

,

φn−1 = 2arccot

√
x2n + x2n−1 + xn−1

xn
.

x̂1 = r cos(φ1),

x̂2 = r sin(φ1) cos(φ2),

x̂3 = r sin(φ1) sin(φ2) cos(φ3), (7.5)

...

x̂n−1 = r sin(φ1) · · · sin(φn−2) cos(φn−1),

x̂n = r sin(φ1) · · · sin(φn−2) sin(φn−1).

7.4 Experiment
8 hyperspectral reflectance images from the Foster database [48] were selected as
scenes. As little information is contained in the band of 720 nm, it was removed
from all images yielding 8 hyperspectral images of 32 bands. In order to reduce
the computational cost, a region of 200px × 200px is extracted from each image.
In addition, one artificial spectral image that comprises one circle and one line
and resembles the first publicly broadcast test card, was also created. It measures
200px× 200px and contains 32 bands with each band being a binary image. Fig-
ure 7.4 provides an overview on the 9 images. Images were rendered with the
illuminant of CIE D65.



96 SFA demosaicking based on vector median filtering

Table 7.1: Parameters and setup of the experiments.

Spectral range 400 nm – 710 nm
Spectral interval 10 nm
Illuminant CIE D65
Spectral responsivity S(λ) = 1

Type of images Reflectance image
Number of images 9
Type of filters Gaussian bandpass
Type of mosaics Bayer CFA, 4-/8-band SFAs
Demosaicking bilinear, binary-tree, the proposed
Quality metrics PSNR

A set of algorithms and parameters on which the experiments were conducted are
described below.

In each case, spectral transmittances of the filters were determined so that each of
them had a regular Gaussian shape and the centres of them were evenly distributed
over the pertinent spectrum with the overlapping point located at one sigma, as
shown in Figure 7.5.

Three filter array patterns were chosen, Bayer type 3-band setup, 4-band setup
in form of 2 × 2 moxel and 8-band in form of 4 × 4 moxel, the moxels were
repeated across the whole image. The filter arrays were executed in accordance
with the binary tree approach proposed by Miao et al. [123], a perfect binary tree
to be exact, with two levels and three levels corresponding to 4-band and 8-band
arrangements respectively, as indicated in Figure 7.6.

Two demosaicking algorithms, bilinear interpolation and Miao et al.’s binary tree
based progressive demosaicking [126], were implemented and compared with vec-
tor median technique. For the 3-band setup, vector median was conducted in ac-
cordance with the parameter specified by Gupta and Chen [66], whilst in case of
4-band and 8-band setup, two types of neighbourhood (small and large) and two
ways of connectivities for forming pseudo-pixels were combined, giving rise to 6
groups of parameters. Median filtering in n-sphere was used as a refinement step
in combination with all three demosaicking algorithms, and the size of the window
was fixed.

To visualise the images, the original hyperspectral images were transformed into
sRGB colour space, and the demosaicked multispectral images were first restored
to hyperspectral images with a spectral reconstruction method exploiting a priori
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knowledge of the imaged objects [69] and then rendered to sRGB.

In addition to subjective observations, evaluation of the performance was carried
out by means of PSNR computed between the original and reproduced multispec-
tral images, so as to avoid the error introduced by the spectrum reconstruction.

The way pseudo-pixels are formed resulted in a considerable amount of pseudo-
pixels, 4600 at most in the experiment, which makes vector median filtering pro-
cess computationally expensive. However it is highly parallelisable, as the neigh-
bourhood of any pixel does not depend on another, and 4 cores in the processor
were utilised to run 4 demosaicking threads in parallel.

The simulation framework is plotted in Figure 7.3 and the parameters are also
shown in Table 7.1.

7.5 Results
Table 7.2 compares the performance of the three demosaicking algorithms in vari-
ous conditions by means of PSNR. The best results for each type of the filter array
are in bold, while results in italic font correspond to the worst ones. The global
best results are emphasised in grey.

As seen in the tables, in general, the PSNRs decrease with the increase of number
of filters. Among the three demosaicking algorithms, the binary tree approach, in
most cases, gives rise to better results than the bilinear interpolation does. The
PSNRs yielded by vector median are generally much lower than those of the other
two methods, except for Image 9. In extreme conditions, such as binary images
akin to Image 9, vector median yields both the best and worst results, since it may
either select a vector that represents an original pixel value in the image or pick a
bizarrely formed vector. The former results in the best results, whereas the latter
leads to the worst ones.

The large neighbourhood is not beneficial to the vector median in general, never-
theless, it improves the performance significantly when pseudo-pixels do not have
to pass through the centre pixel in question in case of the 4-band set-up. The
utilisation of diagonally connected pixels is favourable to the vector median for
large neighbourhoods. The freedom from the necessity of forming pseudo-pixels
passing through the centre in the vicinity improves the performance of the vector
median in particular for large neighbourhood.

Furthermore, PSNRs shown in Table 7.3 are mostly slightly higher in comparison
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Table 7.2: The performance of the demosaicking algorithms in terms of the PSNR.
sNB/lNB denote small/large neighbourhood, PC/nPC indicates whether the pseudo-pixels
have to pass the central pixel, HV/DIAG signifies whether the pseudo-pixels are formed
by horizontally and vertically connected pixels only or diagonally connected pixels are
considered as well. The best results for each type of the filter array are in bold, while
results in italic font correspond to the worst ones. The global best results are emphasised
in grey.

SFA Methods
Image

1 2 3 4 5 6 7 8 9

3-band
Bilinear 46.06 45.97 33.01 48.80 51.85 51.56 36.16 44.86 23.87

Binary Tree 46.75 48.38 33.37 50.98 52.16 55.12 37.88 46.24 24.66
VM 40.64 41.67 28.37 44.20 46.89 45.42 31.81 40.51 32.57

4-band
Bilinear 44.48 45.87 32.82 47.51 50.99 51.35 35.97 44.50 23.62

Binary Tree 44.21 46.03 32.25 48.57 50.47 53.14 36.04 44.78 23.32
VM(sNB/PC/HV) 38.64 39.52 27.77 40.67 45.41 42.53 28.78 37.72 21.93

VM(sNB/PC/DIAG) 38.87 39.43 27.78 40.62 45.53 42.62 28.93 37.86 20.93
VM(lNB/PC/HV) 37.02 37.58 25.46 39.55 43.16 41.56 28.34 36.64 20.24
VM(lNB/nPC/HV) 39.62 40.79 28.41 42.96 46.63 44.54 31.24 39.96 39.55

VM(lNB/PC/DIAG) 37.27 38.01 25.85 40.14 43.53 41.99 28.50 37.04 20.41

8-band
Bilinear 40.58 39.90 27.73 42.81 45.91 44.90 30.12 40.10 21.34

Binary Tree 40.07 41.03 28.26 44.40 47.10 48.66 34.69 42.15 22.21
VM(sNB/PC/HV) 38.34 38.85 26.96 40.85 45.37 43.29 30.21 38.86 22.29
VM(sNB/nPC/HV) 37.22 37.90 25.98 40.64 43.98 42.46 28.80 37.96 21.57

VM(sNB/PC/DIAG) 38.09 38.62 26.71 40.86 44.84 42.71 29.01 38.17 21.37
VM(lNB/PC/HV) 35.38 35.58 24.03 37.99 41.92 40.07 26.57 35.45 18.57
VM(lNB/nPC/HV) 35.29 36.36 24.53 39.62 42.59 40.89 27.22 36.83 16.72

VM(lNB/PC/DIAG) 35.93 36.23 24.59 38.91 42.52 40.76 27.26 36.28 18.57

with those in Table 7.2. This indicates the refinement is beneficial to some extent.

Selected pictorial results are demonstrated in Figure 7.7-7.10 for visual assess-
ment. Demonstrated results of vector median was computed within large neigh-
bourhood where passing centre pixel is not a necessity and diagonally connected
pixels are not considered for the formation of pseudo-pixels. The images basically
correspond to the numerical results shown before, although the influence of the
refinement is not visible enough.

7.6 Conclusion
In this chapter, we applied vector median filtering to SFA demosaicking and made
use of median filtering in n-sphere for refinement.

As can be seen from the results, vector median filters perform reasonably in ex-
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Table 7.3: The performance of the demosaicking algorithms after refinement in terms
of the PSNR. sNB/lNB denote small/large neighbourhood, PC/nPC indicates whether the
pseudo-pixels have to pass the central pixel, HV/DIAG signifies whether the pseudo-pixels
are formed by horizontally and vertically connected pixels only or diagonally connected
pixels are considered as well. The best results for each type of the filter array are in
bold, while results in italic font correspond to the worst ones. The global best results are
emphasised in grey.

SFA Methods
Image

1 2 3 4 5 6 7 8 9

3-band
Bilinear 46.50 45.86 32.13 48.41 52.65 52.24 37.64 46.48 25.23

Binary Tree 46.70 47.36 32.18 49.74 52.60 54.45 39.37 47.49 25.69
VM 41.49 41.24 28.18 41.41 45.98 44.64 31.89 41.99 28.54

4-band
Bilinear 45.00 45.75 32.28 47.12 51.87 51.81 37.41 45.88 24.90

Binary Tree 44.41 45.59 31.62 47.70 50.98 52.82 37.22 45.68 23.93
VM(sNB/PC/HV) 40.25 41.22 28.73 42.30 47.34 44.75 30.93 39.97 23.90

VM(sNB/PC/DIAG) 41.67 41.99 29.18 43.22 48.60 46.61 32.43 41.61 23.01
VM(lNB/PC/HV) 37.93 38.38 25.87 40.52 44.03 43.17 30.05 38.05 21.27

VM(lNB/nPC/HV) 40.39 41.43 28.46 43.92 47.49 46.05 32.62 41.47 39.55
VM(lNB/PC/DIAG) 38.09 38.73 26.19 41.13 44.35 43.53 30.18 38.39 21.71

8-band
Bilinear 41.54 40.82 28.58 43.35 47.18 46.07 31.67 41.53 22.13

Binary Tree 40.44 41.30 28.47 44.34 47.53 48.80 35.30 42.72 22.58
VM(sNB/PC/HV) 39.86 40.37 28.17 42.32 47.02 45.11 32.35 40.81 22.93

VM(sNB/nPC/HV) 37.94 38.75 26.52 41.83 44.76 43.72 30.04 39.15 21.61
VM(sNB/PC/DIAG) 39.35 39.87 27.50 42.45 46.13 45.18 30.96 40.39 21.87

VM(lNB/PC/HV) 36.13 36.28 24.69 38.82 42.60 41.01 27.46 36.31 19.59
VM(lNB/nPC/HV) 35.59 36.75 24.75 40.23 42.93 41.52 27.70 37.43 16.72

VM(lNB/PC/DIAG) 36.66 36.85 25.07 39.70 43.14 41.79 28.16 37.20 19.02

treme conditions as is the case of binary images. Otherwise it does not behave as
well as bilinear and binary tree approaches, contrary to expectations. It is some-
what surprising that we failed to reproduce similar results to those shown by the
original work [66]. The results also indicate that it is necessary to bear more than
one pixel of a certain spectral band occur in the vicinity where pseudo-pixels are
formed.

It is of importance that in most cases median filtering in n-sphere reduces to some
extent the disparity between original and demosaicked images in terms of the
PSNR, and the improvement coincides with visual judgements in that less aliasing
appears in refined images. This proves that the advantages of median filtering in
angular space still holds in multispectral domain. However, the impact of variable
filter window size, remains to be seen.
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Another point of particular interest is that none of the demosaicking methods takes
advantage of inter-channel correlation directly, whereas this is one of the basic
premises of most CFA demosaicking techniques. The correlation should be util-
ised more efficiently in the demosaicking process, therefore some measures are
expected later to be introduced in this regard.

It is clear that the increased number of spectral bands significantly reduces the
spatial resolution of the image and the reproduced image quality suffers in con-
sequence, which deserves further consideration. Also the results show that median
filtering in n-sphere (n-dimensional spherical space) reduces aliasing numerically
for most test images, thus improving resulting image quality. Also the results
initially demonstrate the validity of our assumption that certain demosaicking al-
gorithms developed for trichromatic images may be useful for SFA demosaicking
purpose. In addition, some image quality metrics specific to SFA demosaicking is
reasonably expected.

In conclusion, median filtering itself for demosaicking may not be the best solu-
tion, especially when it comes to its computational cost. However a refinement in
n-sphere reduces consistently artefacts independently of the demosaicking meth-
ods tested.
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Figure 7.3: Design of the experimental framework.
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Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Image 7 Image 8 Image 9

Figure 7.4: Scenes used in the experiments. Copyright c©SPIE
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(a) 3-band filter set.
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(b) 4-band filter set.
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(c) 8-band filter set.

Figure 7.5: Filter design for 3-band, 4-band and 8-band set-up. Copyright c©SPIE
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Figure 7.6: SFA design for 3-band, 4-band and 8-band set-up. Copyright c©SPIE
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Figure 7.7: An illustration of Scene 2, processed with 3, 4 and 8-band SFAs and multiple
demosaicking methods, with and without refinement. Copyright c©SPIE
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Figure 7.8: An illustration of Scene 4, processed with 3, 4 and 8-band SFAs and multiple
demosaicking methods, with and without refinement. Copyright c©SPIE
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Figure 7.9: An illustration of Scene 7, processed with 3, 4 and 8-band SFAs and multiple
demosaicking methods, with and without refinement. Copyright c©SPIE
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Figure 7.10: An illustration of Scene 9, processed with 3, 4 and 8-band SFAs and multiple
demosaicking methods, with and without refinement. Copyright c©SPIE



Chapter 8

SFA demosaicking based on
discrete wavelet transform

8.1 Introduction
DWT (Discrete wavelet transform) transforms an image into various frequency
bands, and natural images often possess rather similar high-frequency informa-
tion among these bands. Therefore DWT provides yet another solution to CFA
demosaicking. The intrinsic similarity between colour and multispectral images in
terms of inter-band correlation makes the utilisation of DWT potentially beneficial
to SFA demosaicking.

In this chapter, we present a demosaicking algorithm making use of DWT. It begins
by a review of related work in Section 8.2. A description of the proposed method
is explained in Section 8.3. An introduction of the experiments is shown in Sec-
tion 8.4. However, we observe unexpected results in Section 8.5 and subsequently
perform brief analyses on the results in Section 8.6.1

8.2 CFA demosaicking based on DWT
In recent years, DWT is referred to and taken advantage of by a succession of
research work on CFA demosaicking. As known, DWT makes use of subband
coding in which an image is decomposed into a set of bandlimited components. A
commonly seen four-band decomposition splits an image into four quadrants con-

1Content of this chapter is adapted from a published paper [175]. Copyright c©IEEE.
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taining an approximation subband, a horizontal detail subband, a diagonal detail
subband, and a vertical detail subband, respectively. All subbands, except of the
approximation subband, represent high frequency information at a certain scale. It
is the subband coding that builds a viable foundations for DWT based demosaick-
ing by taking into account the inter-channel correlation most images bear.

To the best of our knowledge, Gunturk et al. [64] first bring the DWT in CFA
demosaicking. The algorithm begins by an initial estimation of all channels by
means of intra-channel interpolation. It then decomposes the channels with a filter
bank into four sub-bands and the high-frequency sub-bands of the red and blue
channels are updated according to some criteria. Next, the ground truth red/blue
samples are inserted back to the reconstructed channels. The last two steps are
repeated until a stopping criterion is satisfied. The initial estimates of the green
samples follow the same procedure as red/blue samples do.

Driesen and Scheunders [41] propose a similar approach. However the initial in-
terpolation is performed on the luminance image derived from the original RGB
channels, as the interpolated luminance image possess higher spatial resolution
than interpolated red, green and blue channels. Then both the luminance image
and the original RGB channels are discrete wavelet transformed resulting in wave-
let coefficients. Two merging rules are applied singly in order to benefit from the
inter-channel correlation. One of them, named “replace” rule, simply replaces at
each scale the coefficients of each band of red, green and blue band images with
the corresponding coefficients in the luminance image, whereas the other, labelled
“max” rule, compares the coefficients of each band with those of the luminance im-
age, and assigns the larger one to each band. The demosaicking is accomplished
when the updated wavelet coefficients are inversely transformed.

Chen et al. [24] introduce the concept of downsampled (DS) images. First, this
method is initiated by an estimation of missing green pixels with edge-directed
interpolation and missing red/blue pixels with bilinear interpolation, from which
the DS images are then derived and wavelet transformed. Next, the “replace” rule
is applied to the high-frequency sub-bands. The last step aims to reduce colour
artefacts by median filtering the low-frequency wavelet sub-bands and updating
high-frequency sub-bands of Red/Blue images with those of the Green images. A
simplified version of such an idea was implemented by Courroux et al. [34].

Jeong et al. [82] also use the polyphase-like downsampling prior to DWT. The
wavelet coefficients of the low frequency sub-bands are then estimated by means
of an edge adaptive interpolation method using high frequency wavelet coefficients



8.3. SFA demosaicking based on DWT 111

as the edge indicators. An estimation of the coefficients of the high frequency sub-
bands is performed in accordance with the “replace” rule.

Slightly different from the above approaches, Kim et al. [90] perform DWT on
observed DS images to obtain the missing high-frequency sub-bands by linear
estimation, and estimate the low-frequency sub-bands by wavelet transforming the
DS images that have been interpolated beforehand.

Indicated by the aforementioned literature, DWT based demosaicking methods
outperform the conventional counterparts relying merely on intra-channel correla-
tion.

8.3 SFA demosaicking based on DWT
As mentioned above, DWT decompose images into a series of sub-bands with
different frequency components. The spectral correlation, namely the inter-plane
similarities, then comes into play. In theory, the idea is also applicable to multis-
pectral images. Inspired by this, we extend the application of DWT into SFA
demosaicking.

The essence of the proposed method may be encapsulated by the concept of DS
images, the Haar wavelet (D2), the “replace” rule for the estimation of high-
frequency sub-bands and bilinear interpolation for the estimation of low-frequency
sub-bands. The workflow is summarised as follows.

1. Estimate high-frequency coefficients.

(a) Construct DS image using polyphase transform.

(b) Apply discrete wavelet transform.

(c) Estimate the coefficients of the missing DS images at high-frequency
sub-bands according to the “replace” rule, shown in Figure 8.1.

2. Estimate the low-frequency coefficients.

(a) Apply bilinear interpolation to the mosaicked image plane by plane.

(b) Construct DS image using polyphase transform.

(c) Apply discrete wavelet transform.

(d) Replace the coefficients of the missing DS images at low-frequency
sub-bands with those of the interpolated DS images, shown in Fig-
ure 8.2.
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3. Recombine the low-frequency and high-frequency components, and apply
inverse DWT.

4. Reconstruct the demosaicked image with the DS images.
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Figure 8.1: Treatment of high-frequency sub-bands. Unknown high-frequency sub-bands
(LH/HL/HH) are replaced with those of the known ones for a specific set of pixels corres-
ponding to a type of filter elements.

This method is compatible with any SFAs with regular mosaic patterns regardless
of number of channels. For the purpose of evaluation and comparison, we apply
this method to a set of RGB images in addition to multispectral images.

8.4 Experiment
In the experiment, we selected 13 images from Foster’s database et al. [48], and
another 32 hyperspectral images from the CAVE project [183]. For the ease of
processing and comparison, the spectral range between 410 nm and 700 nm is used
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Figure 8.2: Treatment of low-frequency sub-bands. Each band is interpolated individually
to obtain the low-frequency sub-bands (LL).

in this study resulting in 45 hyperspectral images of 30 bands. The framework is
illustrated in Figure 7.3.

Also employed are 24 Kodak RGB test images [2] for the sake of evaluation of the
proposed methods. These images are widely used in the realm of image related
research, and are utilised to evaluate the performance of algorithms in the majority
of aforementioned papers about DWT based CFA demosaicking.

Hyperspectral scene images were rendered with the illuminant of CIE D65. In each
case, spectral transmittances were determined so that each of them had a regular
Gaussian shape and the centres of them were evenly distributed over the pertinent
spectrum with the distance of 2×σ, as shown in Figure 7.5. Three filter array pat-
terns were chosen, Bayer type 3-band setup, 4-band setup in form of 2× 2 moxel
and 8-band in form of 4 × 4 moxel, the moxels were repeated across the whole
image, as depicted in Figure 7.6. The filter arrays were designed in accordance
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Table 8.1: Parameters and setup of the experiments.

Spectral range 410 nm – 700 nm
Spectral interval 10 nm
Illuminant CIE D65
Spectral responsivity S(λ) = 1

Type of images Reflectance image
Number of images 45 spectral and 24 colour
Type of filters Gaussian bandpass
Type of mosaics Bayer CFA, 4-/8-band SFAs
Demosaicking bilinear, binary-tree, the proposed
Quality metrics PSNR

with the binary tree approach proposed by Miao et al. [123], a perfect binary tree
to be exact, with two levels and three levels corresponding to 4-band and 8-band
arrangements respectively, as indicated in Figure 7.6. To visualise the images, the
original hyperspectral scene images were rendered in the sRGB colour space, and
the demosaicked multispectral images were first restored to hyperspectral images
with a spectrum reconstruction method exploiting a priori knowledge of the im-
aged objects [69] and then rendered to sRGB. In contrast, colour images from the
Kodak set are coupled only with the 3-band CFA.

Two additional demosaicking algorithms, bilinear interpolation and Miao et al.’s
binary tree based progressive demosaicking [126], were implemented as reference
for the purpose of comparison. Evaluation of the performance was carried out by
means of the PSNR computed between the original and reproduced multispectral
images, so as to avoid errors introduced by the spectral reconstruction.

8.5 Results
Results for Kodak and hyperspectral images are shown in Figure 8.3 – Figure8.6
respectively. As can be seen, the proposed method outperforms two other al-
gorithms for most Kodak RGB images. Surprisingly and interestingly, the order of
performance is almost inverted in case of hyperspectral images regardless of the
number of channels.

8.6 Conclusion
Indicated by the results is a seemingly obscure issue. Nevertheless, further ana-
lyses of the cross-correlation between high frequency sub-bands of the DS images
partly uncover the mystery. As shown by Figure 8.7, Kodak images represented
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Figure 8.3: Comparison of performance on Kodak images. Copyright c©IEEE.

in yellow circles possess relatively higher correlation than the multispectral im-
ages plotted in red/green/blue. Further, PSNR difference between the proposed
method and bilinear interpolation bears a somewhat linear relationship with the
cross-correlation between the DS images. That is to say, the higher the correlation
of the images is, the more we may gain from the proposed DWT demosaicking
approach. It is consistent with the basic assumption and principles of the method.

Obviously the spectral correlation of a multispectral image depends not only on
the original scene and the illumination, but also on the design of filters present
on the CFA/SFA. Tests performed have shown that the correlation increases when
degree of overlap between adjacent filters increases. In addition, Kodak images
were originally acquired by film cameras and scanned, whereas the hyperspectral
images employed in our study were captured by digital cameras and filtered with
idealised Gaussian-shaped filters. The discrepancy between the two systems might
influence the correlation in a way.

Also notable is the fact that most of the images from the Foster set appear blurred
to some extent in comparison with the CAVE set and Kodak images. This might be
pertinent to chromatic aberration or vibration in the course of acquisition, and this
also influences the spectral correlation. To verify the hypothesis, we blurred Kodak
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Figure 8.4: Comparison of performance on 3-band multispectral images. Copyright
c©IEEE.

images by means of the convolution of each plane of an image and a Gaussian
kernel and applied the same algorithms as in the previous experiment. Figure 8.8
illustrates the case when the kernel measures 5 × 5 pixels with σ of 3. Clearly
the DWT based algorithm turns the worst in contrast to the other two, contrary to
the situation shown in Figure 8.3, which again illustrates the dependence of DWT
demosaicking on the intrinsic properties of images.

Experiments and analyses indicate that the spectral cross-correlation plays an im-
portant role in determining the performance of the proposed algorithm. In other
words, the “replace” rule depends largely on the assumption that the images are
highly correlated, which explains the unexpected results.
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Figure 8.5: Comparison of performance on 4-band multispectral images. Copyright
c©IEEE.
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Figure 8.6: Comparison of performance on 8-band multispectral images. Copyright
c©IEEE.
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Chapter 9

SFA demosaicking based on
linear minimum mean square
error estimation

9.1 Introduction
When considered as an inverse problem in the mathematical point of view, demo-
saicking could be solved by statistical approaches with the help of a-priori inform-
ation. Among others, the Wiener estimation is a linear method that minimises the
mean square error, resulting in minimum mean square error. Therefore it is known
as an LMMSE (linear minimum mean square error) estimator widely used for ad-
dressing image reconstruction problems. The linear nature of the Wiener estim-
ation makes it computationally efficient and easy to implement. In the literature,
it has been considered as a suitable solution to CFA demosaicking [163, 166, 23].
Moreover, it is flexible and adaptive to filter arrays with varying classes of filters
and varied arrangements, thus being naturally a candidate for SFA demosaicking.

As a result, in this chapter, we introduce the Wiener estimation to SFA demosa-
icking. Section 9.2 presents the method in detail. Experimental setup and results
are shown in Section 9.3 and Section 9.4 respectively. Section 9.5 compares the
results yielded by the extended method with other algorithms.1

1Content of this chapter is adapted from a published paper [170]. Copyright c©Springer.
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9.2 SFA demosaicking based on LMMSE estimation
Trussell and Hartwig [166] and Taubman [163] develop stacked notation that per-
mits the use of matrix manipulation in formulating the mosaicking and demosa-
icking models. Chaix de Lavarène et al. simplify and further refine the model to
ease the computation [23], which we adopt in this chapter for SFA demosaicking.

X = PrY (9.1)

In Equation 9.1, Y is a spectral image representing a scene to capture, X is the
mosaic image, and Pr denotes a projection matrix that transforms the scene into the
mosaic image. As can be seen, this model corresponds to the mosaicking process.
A stacked version of Equation 9.1 for a 4-band SFA is illustrated in Figure 9.1
where X and Y are organised on the basis of windows (Moxels here).

Ỹ = QX (9.2)

Accordingly the reconstruction process can be expressed in Equation 9.2. The aim
of demosaicking is to evaluate Ỹ , an estimation of Y , which requires Q. Fig-
ure 9.1 indicates, however, that Q cannot simply be the inverse of Pr, as Pr is not
invertible.

e = E[‖Y − Ỹ ‖2] (9.3)

The Wiener estimation is a common solution to Equation 9.3, which functions to
find Q that minimises the mean square error between Ỹ and Y :

Q = (E[Y XT ])(E[XXT ])−1 (9.4)

Therefore, a priori information is required for the evaluation of Q. In practice, this
is carried out by means of training. A full resolution image and the corresponding
mosaic image, when expressed in stack form, may be used as Y and X respect-
ively. The resultant Q can then be used for the reconstruction from other mosaic
images.
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In the image formation model illustrated in Figure 9.1, Y is a 4-band spectral
image and X is its corresponding mosaic image resulting from a 4-band SFA.
Similarly Equation 9.5 demonstrates a stacked version of Equation 9.2. The hori-
zontal dimension of Q is equivalent to the vertical dimension of X . That is, each
column of X corresponds to a window (or a superpixel) in the mosaic image, and
each element in the column contributes to demosaicking through the correspond-
ing weights stored in the rows of Q. In the aforementioned example, the size of
the window is chosen to be the same as that of the Moxel. However, a larger win-
dow might provide more useful information for demosaicking at the cost of higher
computational cost. Q depends not only on the arrangement of filter arrays, but
also on the a priori information, i.e., sample images for training.

9.3 Experiment
With the help of the simulation framework, the experiment was designed with
most parameters remaining the same with Chapter 7 and 8. 8 reflectance images,
grouped by genre into four types, were selected from the Foster and CAVE image
database, and each group consists of 2 images. All of the images are lit by the CIE
D65 illuminant to obtain the radiance. Three filter arrays of 3, 4 and 8 bands and
the corresponding band-pass filters used in Chapter 7 are reused in this experiment,
as illustrated in Figure 7.6 and 7.5. To simplify the computation, responsivity of
the sensor is assumed to be 1 over the spectrum. Parameters are also listed in
Table 9.2 in detail.
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Table 9.1: Images used in the experiments.

Label Genre Dataset and designation
Image 1

Landscape
Scene 5 from the Foster 2004 set

Image 2 Scene 4 from the Foster 2002 set
Image 3

Buildings
Scene 6 from the Foster 2004 set

Image 4 Scene 8 from the Foster 2002 set
Image 5

Objects
“Beads” from the CAVE set

Image 6 “Pompom” from the CAVE set
Image 7

Paintings
“Oil painting” from the CAVE set

Image 8 “Water colors” from the CAVE set

Table 9.2: Parameters and setup of the experiments.

Spectral range 410 nm – 700 nm
Spectral interval 10 nm
Illuminant CIE D65
Spectral responsivity S(λ) = 1

Type of images Reflectance image
Number of images 8
Type of filters Gaussian bandpass
Type of mosaics 3-/4-/8-band SFAs
Demosaicking bilinear, binary-tree, LMMSE
Quality metrics PSNR, SSIM

Considering the requirement for training, we opted to follow the "leave-one-out"
method. Every mosaic image is demosaicked with the aid of Q trained with the
remaining spectral images. Apart from the LMMSE approach, bilinear interpola-
tion and binary tree based demosaicking [126] were also experimented with for the
purpose of comparison. Performance of the demosaicking methods were evaluated
with two metrics, PSNR and SSIM index. The former measures physical distortion
of the signal, whereas the latter reflects perceptual similarity between the original
and reconstructed images. Both of them were evaluated on a band-by-band basis,
and the averages were then computed.
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Figure 9.1: 4-band image formation model. Both of the spectral image and mosaic image
are divided into windows that are stacked to form Y and X.
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Figure 9.2: Design of the evaluation framework.
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Figure 9.3: PSNR for the 3-band filter array.

Since the “leave-one-out” method yields multiple results for each image demosa-
icked with the LMMSE estimation, they are depicted graphically in the form of
box plot. On each box, the central line in red is median, and the upper and lower
edges of the box represent the first and the third quartiles. The whiskers extended
from the edges indicate the extreme values not considered as outliers. In com-
parison, results for the other two demosaicking methods are plotted in magenta
squares and green circles respectively.

Figure 9.3-9.5 show the results in terms of PSNR. It can be seen from Figure 9.3-
9.4 that the LMMSE estimation results in lower PSNRs than bilinear interpolation
and the binary-tree demosaicking method for the 3-band and 4-band filter arrays.
In Figure 9.8, however, the LMMSE estimation achieves higher median while the
performance of the other two approaches decrease. Moreover, for most images,
markers indicating the results of the other two methods fall in the box or between
the whiskers, which means the LMMSE estimation may outperform the others two
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Figure 9.4: PSNR for the 4-band filter array.

for the 8-band SFA given proper a priori information. Figure 9.6-9.8 demonstrate
the SSIM indices. Similarly the LMMSE estimation results in comparative or even
higher median than the other two for most images in the 8-band configuration,
whereas the situation reverses for the 3-band and 4-band setup.

In general, higher number of bands in a filter array lowers spatial resolution and
intra-channel correlation, however it improves the spectral resolution and inter-
channel correlation. Therefore the performance of bilinear interpolation and the
binary-tree demosaicking which utilise the intra-channel correlation deceases with
an increasing number of bands. In comparison, the LMMSE estimation involves
all pixels in a neighbourhood, thus making use of both spatial and spectral correl-
ation. This is consistent with what is shown in the figures, and it also reveals the
advantages of larger neighbourhood for the LMMSE estimation.

In addition, it is interesting that there exist significant variations in the results for
each image and among the images. For bilinear interpolation and the binary-tree
demosaicking, the variations depend merely on the content of images. For in-
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Figure 9.5: PSNR for the 8-band filter array.

stance, Image 4 and 5 lead to low PSNRs in Figure 9.3-9.5, as they contain rich
details of wide diversity that are difficult to interpolate and such images are prone
to aliasing introduced by demosaicking. For the LMMSE estimation, the variations
are also connected with the a priori information, namely, the choice of training im-
ages.

Table 9.3: The influence of training images on LMMSE demosaicking for 8-band SFA in
terms of PSNR.

Image Label Training Image
1 2 3 4 5 6 7 8

1 (Landscape 1) N/A 49.5183 49.0595 45.9704 39.9311 48.8319 43.8885 45.4407
2 (Landscape 2) 51.3684 N/A 50.6855 47.5380 44.1280 50.7898 46.0461 47.2577
3 (Building 1) 44.0602 42.5580 N/A 44.0200 38.8260 45.7301 41.9009 44.4460
4 (Building 2) 29.0364 29.4063 30.2170 N/A 25.0997 29.0961 29.1599 30.0424
5 (Sphere 1) 27.1688 26.5177 29.0460 26.1538 N/A 29.8779 25.9420 27.2510
6 (Sphere 2) 34.6974 33.9937 37.3883 32.3890 32.8568 N/A 32.2820 33.9077
7 (Painting 1) 34.3033 34.1420 35.2789 35.2349 33.7477 34.5180 N/A 36.0892
8 (Painting 2) 35.4156 34.6189 37.0699 36.4686 31.2568 36.2725 36.0317 N/A
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Figure 9.6: SSIM scores for the 3-band filter array.

Table 9.4: The influence of training images on LMMSE demosaicking for 8-band SFA in
terms of SSIM index.

Image Label Training Image
1 2 3 4 5 6 7 8

1 (Landscape 1) N/A 0.9986 0.9984 0.9958 0.9885 0.9985 0.9945 0.9958
2 (Landscape 2) 0.9986 N/A 0.9983 0.9963 0.9926 0.9983 0.9948 0.9963
3 (Building 1) 0.9983 0.9978 N/A 0.9982 0.9958 0.9987 0.9969 0.9982
4 (Building 2) 0.9711 0.9744 0.9748 N/A 0.9578 0.9692 0.9723 0.9752
5 (Sphere 1) 0.8981 0.8902 0.9298 0.8992 N/A 0.9427 0.9063 0.9110
6 (Sphere 2) 0.9367 0.9322 0.9658 0.9375 0.9317 N/A 0.9551 0.9516
7 (Painting 1) 0.9379 0.9420 0.9507 0.9569 0.9394 0.9394 N/A 0.9617
8 (Painting 2) 0.9812 0.9774 0.9853 0.9866 0.9669 0.9829 0.9846 N/A

Table 9.3 and 9.4 reveals the influence of training images on LMMSE estimation
based demosaicking performance. Each row in the tables represents the results for
one image to demosaick, and each column corresponds to one training image. The
best and worst results in each row are emphasised in bold and italic fonts respect-
ively. In Table 9.3, 5 out of 8 images are demosaicked the best with the training
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Figure 9.7: SSIM scores for the 4-band filter array.

image of the same genre. In Table 9.4, training images in the same group gen-
erally tend to give rise to high SSIM scores. There are some exceptions, though.
For instance, the highest SSIM score for Image 8 (painting 2) is achieved with Im-
age 4 (building 2) and vice versa. Similarly, the combination of Image 6 (sphere
2) and Image 3 (building 1) achieve the highest SSIM scores and vice versa. A
closer look into the images reveals that these image pairs share similar structural
or colour information although they might not belong to the same group.

9.5 Conclusion
In this chapter, we extend the use of the Wiener estimation, yet another adaptive
demosaicking method, into the realm of filter array based spectral imaging. Exper-
iments were designed in a similar way to those in the previous chapters in order to
ensure the consistency.

The results disclose the benefit to make use of this approach with higher number
of bands. In certain cases, this method outperforms bilinear interpolation and the
binary-tree based demosaicking. Its performance is largely influenced by the size
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Figure 9.8: SSIM scores for the 8-band filter array.

of the window (neighbourhood) and the similarity shared between the images to
demosaick and the training images. The need for a prior information is considered
by some as one major drawback, however, it reduces the complexity of demosaick-
ing and is compatible with any mosaic pattern given proper training beforehand.

When it comes to the computational efficiency, the LMMSE estimation is based
purely on linear computation. In the experiments, it costs merely a fraction of time
spent by other two methods.

In conclusion, we believe the LMMSE estimation is a good candidate for SFA
demosaicking in particular for application-specific imaging tasks. The choice of
training images and window size merit further development to make better use of
this technique.
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Chapter 10

Colorimetric performance of SFA
imaging system

10.1 Introduction
In comparison with CFAs, SFAs often populate higher number of channels, thus
reducing the number of pixels assigned to a certain channel for a given sensor.
Obviously this lowers spatial resolution, however SFA may offer higher spectral
resolution. While the former effect generally lowers the colorimetric perform-
ance of the system, the latter should improve the accuracy of colour reproduction.
It is therefore of particular interest to evaluate the colorimetric performance of
such SFA imaging systems and investigate the trade-off between spatial resolution
and spectral resolution by comparing CFA and SFA systems utilising various filter
characteristics and demosaicking methods.

The following parts of the chapter are organised as follows. Section 10.2 intro-
duces the experimental platform and the parameters. Section 10.3 show the results,
which leads to the conclusions drawn in Section 10.4.1

10.2 Experiment
Figure 10.1 depicts the imaging pipeline. In contrast to the experimental setup in
previous chapters, colorimetry features in this framework and evaluation is carried
out on colour images. Components in the pipeline are detailed in this section.

1Content of this chapter is adapted from a published paper [173]. Copyright c©Springer.
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Among the derivatives of Bayer mosaic, some possess complementary colour fil-
ters in comparison to the primary colour filters utilised in the original patent [13].
Literature presents distinct results. It is obvious that complementary colour filters
intrinsically bear wider pass-band than their primary counterparts, and it is widely
accepted that the former gives rise to better colour reproduction and signal-to-noise
ratio in sufficient lighting conditions, whereas the latter offers higher sensitivity as
well as resolution [143, 142]. In Chapter 5, nevertheless, we show that appropriate
pass-bands outperform some narrower ones. In addition, Section 8 on SFA demo-
saicking poses the question of filter design in relation to the inter-band correlation.
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Figure 10.2: Spectral characteristics of a 4-band filter set. Copyright c©Springer.

An instance of 4-band filter set used in this research is depicted in Figure 10.2. Fol-
lowing the aforementioned findings, we are interested in narrowband and broad-
band bandpass filters as well as corresponding inverted ones such as bandstop fil-
ters. The FWHM (Full Width at Half Maximum) of passband and stopband have
been set to 10 nm and 40 nm respectively. In practice, a passband of 10 nm sim-
ulates very narrow bandpass filters like LCTF (Liquid Crystal Tunable Filter), a
stopband of 10 nm mimics notch filters relying on destructive interference. Simil-
arly, a passband and a stopband of 40 nm resemble the spectral transmittances of
thin-film filters.

In addition to the filters mentioned above, we introduced two more types. One is
based on the principle that the transmittances of filters should sample the spectrum
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evenly with their FWHM. The other is produced by a filter selection method [69]
that chooses a given number of optimal (or suboptimal) filters from a set of phys-
ically practicable candidates, on the assumption that high spectral performance is
yielded by the “brightest” filter that transmits the most light combined with other
filters which are orthogonal to each other in a vector space. Here we employed
a set of transmittance data measured from Wratten filters produced by Kodak, as
shown in Figure 10.3.
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Figure 10.3: Transmittances of a set of Wratten filters. Copyright c©Springer.
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Figure 10.4: Transmittances of three sets of Wratten filters chosen for the 3-band, 4-band
and 8-band SFAs by the filter selection algorithm [69].

Filter arrays experimented with in this project were designed with the help of a
generic binary tree based generation method of SFA spatial arrangement starting
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from a chequerboard pattern introduced by Miao et al. [123]. By manipulating
the pattern through a combination of decomposition and subsampling steps, the
method presented may generate SFAs that satisfy varied design requirements pro-
posed by the authors including probability of appearance, spectral consistency and
uniform distribution. It is shown, through case studies, that most of the CFAs
currently used by the industry can be derived as special cases.

Three demosaicking algorithm were employed in the experiment, i.e., intra-channel
bilinear interpolation, smooth-hue transition interpolation (see Section 3.5.2) and
discrete wavelet transform (DWT) based demosaicking (see Section 8.3).

Similar to spectra reconstruction, colour reconstruction is an inverse problem aimed
at an estimation of the tristimulus values of the stimuli from the corresponding
measurements obtained from sensors. In this experiment, we employed the method
of linear least squares explained in Section 5.2.

Colorimetric performance of CFA and SFA based imaging systems can be evalu-
ated by means of colour difference formula. CIEDE2000 is the latest colour dif-
ference formula developed and recommended by the CIE [28]. It further improves
perceptual uniformity in comparison with the CIE94 formula by introducing a few
revised compensation terms for lightness, chroma and hue respectively. In addi-
tion, there are three corresponding parameters that are usually set to 1:1:1 and can
be adjusted according to specific applications, as shown in Equation 10.1. For in-
stance, CIE recommended 2:1:1 for textile industry. In this work, we used 2:2:1 to
evaluate image colour difference.

∆E∗00 =

√
(

∆L′

kLSL
)2 + (

∆C ′

kCSC
)2 + (

∆H ′

kHSH
)2 +RT

∆C ′

kCSC

∆H ′

kHSH
(10.1)

In addition, considering that the targets are digital images rather than uniform
colour patches, a metric incorporating some low-level HVS features, such as S-
CIELAB, might be suitable as well and may provide more information. The S-
CIELAB metric extends the CIELAB Delta E metric to colour images by adding
a spatial pre-processing step to the standard CIE ∆Ea∗b∗ metric to account for the
spatial-colour sensitivity of the human eye [189]. It measures how accurate the
reproduction of a colour is to the original when viewed by a human observer. In
the preprocessing, the image data is transformed into an opponent-colour space.
Each opponent-colour image is convolved with a kernel whose shape is determ-
ined by the visual spatial sensitivity to that colour dimension. Then the filtered



10.3. Results 137

representation is transformed to a CIE XYZ representation, and this representation
is transformed using the CIE L∗a∗b∗ formulae. The resulting S-CIELAB repres-
entation includes both the spatial filtering and the CIELAB processing. Parameters
in the S-CIELAB formula were set to reflect the experimental conditions, e.g., the
viewing distance was set to 60 cm and the resolution was set to 95.78 dpi, so as to
mimic a 23-inch LCD monitor of 1920× 1080 pixels and an aspect ratio of 16:9.

The experiments were conducted in such conditions as follows. Spectral range
covers the spectrum between 400 nm and 700 nm with 10 nm interval. CIE D65
was used as the illuminant. Among the 48 hyperspectral images used as virtual
scenes, 16 are from Foster database [48] and 32 are from CAVE database [183].
Three types of SFA were considered, namely 3-band CFA, 4-band and 8-band,
as seen in Figure 7.6. For the least-square regression, 170 spectral reflectances
of natural objects [168] and the corresponding CIE XYZ tristimulus values were
utilised as the training targets. Tristimulus values were calculated with colour-
matching functions for the CIE 1931 standard colorimetric observer [27].

Table 10.1: Parameters and setup of the experiments.

Spectral range 400 nm – 700 nm
Spectral interval 10 nm
Illuminant CIE D65
Type of images Reflectance image
Number of images 48
Type of filters Gaussian bandpass/bandreject & Wratten
Type of mosaics Bayer CFA, 4-/8-band SFAs
Demosaicking bilinear, smooth hue, DWT
Colour reconstruction least squared
Quality metrics CIEDE2000, S-CIELAB

10.3 Results
Results are presented in Figure 10.5 and 10.6. The highest and lowest results for
each combination of number of band and demosaicking technique are emphasised
in bold and italic fonts respectively. It is of great moment to realise that the colour
difference shown here reflect the overall performance of the system consisting of
filter characteristics, spatial arrangements, demosaicking methods as well as colour
estimation techniques. However, a comparative analysis of the results reveal some
clues.

From the results we can observe that increased number of bands in general offer
lower or comparable colour difference especially when paired with 10 nm and 40
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Table 10.2: Experimental results in terms of CIE DE2000 and S-CIELAB colour differ-
ence formulae. The highest and lowest results for each combination of number of band
and demosaicking technique are emphasised in bold and italic fonts respectively.

CIEDE2000 colour difference S-CIEL*a*b* colour difference
Demosaicking Filter Type 3-band 4-band 8-band 3-band 4-band 8-band

Intra-band
bilinear
interpolation

10 nm bandpass 3.1144 2.4467 2.2065 4.1305 3.0673 2.1484
40 nm bandpass 2.7186 2.0183 1.9569 3.3927 1.9547 1.4420
10 nm bandreject 13.2315 12.9965 14.0255 10.5164 14.8141 19.2470
40 nm bandreject 6.0888 5.9170 7.0161 5.0866 4.6263 6.9980
normal bandpass 3.1257 4.5054 1.9785 4.6252 7.2437 1.6989
selected wratten 5.4936 4.9674 5.0412 8.0401 5.4206 3.1208

Inter-band
difference
bilinear
interpolation

10 nm bandpass 3.2230 2.5239 2.2574 4.1694 3.0725 2.1086
40 nm bandpass 2.8079 2.0541 1.9849 3.4259 1.9565 1.3500
10 nm bandreject 12.6060 12.9006 13.1182 11.8015 17.6517 21.7559
40 nm bandreject 5.8238 5.9354 6.4077 5.1469 5.2912 7.5383
normal bandpass 3.0884 4.4671 1.9890 4.5747 7.2073 1.5749
selected wratten 7.1457 5.9275 5.7762 9.1898 6.3239 4.5734

Wavelet
demosaicking

10 nm bandpass 3.3142 2.6207 2.8593 4.2254 3.1866 2.8348
40 nm bandpass 2.9421 2.2110 2.6320 3.5001 2.0812 2.2040
10 nm bandreject 9.6220 9.4756 10.7873 9.0688 11.4131 12.5745
40 nm bandreject 4.5303 4.2931 5.3824 4.9461 4.3156 5.3712
normal bandpass 3.3172 4.6585 2.6515 4.6595 7.2143 2.4322
selected wratten 7.1310 4.2547 5.1924 9.0337 5.9222 4.9088

nm bandpass filters and a selected range of Wratten filters. In particular, the 40
nm bandpass filters result in the lowest colour difference among all of the methods
and configurations, whereas the 10 nm bandstop filters yield larger errors.

In general, the DWT based demosaicking outperforms the other two where the
widths of passband are significantly broader, whereas bilinear interpolation car-
ried out on smooth-hue transition interpolation does not perform satisfactorily.
This is also related to insufficient high-frequency components in the image data-
bases mentioned in Chapter 8, as inter-channel demosaicking should benefit from
inter-channel correlation at high frequencies and broader passband may boost this
correlation.

In most cases S-CIELAB results coincide with CIE DE2000 ones, although the
former tends to exaggerate the discrepancy of the results between the CFA and the
SFAs.
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10.4 Conclusion
In this chapter, the colorimetric performance of a SFA imaging system was eval-
uated, in terms of the CIEDE2000 and S-CIELAB colour difference. Results of
both metrics coincide in most cases. In general, the 4-band SFA provides better
or comparable performance in comparison with the 3-band setup except the case
of 10 nm bandreject and normal bandpass filters. Similarly the 8-band SFA deliv-
ers higher colour accuracy expect the case of 10 nm and 40 nm bandreject filters.
Therefore SFA is generaly helpful for an application where colorimetric reproduc-
tion is required.

Moreover, it is obvious to see that spectral characteristics of a filter set not only
make a direct impact on the colour reconstruction, but also influence the spectral
correlation of the observed image on which some demosaicking methods depend.



140 Colorimetric performance of SFA imaging system

Sp
ec

tr
al

 
fi

lt
er

in
g 

Sp
at

ia
l 

sa
m

p
lin

g 
D

em
o

sa
ic

ki
n

g 

Ev
al

u
at

io
n

 

fi
lt

er
ed

 

sc
en

e 

Sp
ec

tr
al

 
in

te
gr

at
io

n
 

d
em

o
sa

ic
k
ed

 

im
ag

e 

fu
ll

-r
es

o
lu

ti
o
n

 

se
n
so

r 

im
ag

e 

fi
lt

er
 

sp
ec

tr
al

 

tr
an

sm
it

ta
n
ce

 

se
n
so

r 

sp
ec

tr
al

 

re
sp

o
n
se

 

S
F
A

 

m
o
sa

ic
 

p
at

te
rn

 

sc
en

e 
m

o
sa

ic
k
ed

se
n
so

r 

im
ag

e 

C
o

lo
ri

m
et

ri
c 

co
n

ve
rs

io
n

 tr
ic

h
ro

m
at

ic
 

im
ag

e 

fo
r 

ev
al

u
at

io
n

 

C
o

lo
ri

m
et

ri
c 

re
co

n
st

ru
ct

io
n

 tr
ic

h
ro

m
at

ic
 

im
ag

e 

fo
r 

ev
al

u
at

io
n

 

Figure 10.1: The imaging pipeline for the evaluation of colorimetric performance of SFA
imaging system.
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Figure 10.5: Average CIEDE2000 colour difference among test images. Copyright
c©Springer.
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Figure 10.6: Average S-CIELAB colour difference among test images. Copyright
c©Springer.



Chapter 11

Comparative study of SFA
demosaicking algorithms

11.1 Introduction
In Part III, we proposed three SFA demosaicking methods. The experimental res-
ults have demonstrated the potential and usefulness of the proposed methods as
well as the merits and drawbacks. In this chapter, we perform comparative ana-
lyses and evaluations of the proposed and basic SFA demosaicking techniques
given characteristics of 2 practical SFA-based imagers [100] and 8 scenes covering
both visible and IR bands. The performance are evaluated by means of the PSNR
and the SSIM index. Such an analysis will provide us with more comprehensive
information valuable for developing SFA-based spectral imaging devices.

The chapter is organised as follows. Section 11.2 introduces the setup and pro-
cedures for conducting the experiment. The results are presented in Section 11.3
which leads to conclusions drawn in Section 11.4.

11.2 Experiment

11.2.1 Overview of the experimental framework

The pipeline illustrated in Figure 4.4 is utilised for the purpose of this experiment.
In addition, the experiment covers a portion of the NIR region to which modern
solid-state image sensors are sensitive.

143
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Demosaicking methods are normally evaluated by means of image quality assess-
ment. In the pipeline illustrated in Figure 11.1, full reference quality metrics are
applied to the full resolution multispectral image prior to spatial sampling and the
demosaicked image. This is in line with practical single-sensor imaging systems
and serves the comparative purpose of this experiment.

Table 11.1: Parameters of the experiment.

Spectral range 420 nm – 950 nm
Spectral interval 10 nm
Illuminant indoor, outdoor illumination depending on the scenes
Number of images 8
Type of images Radiance, reflectance images
Type of filters 8 band-pass transmissive filters
Type of mosaics 2 SFAs of symmetric and asymmetric arrangement
Spectral responsivity measured from e2v sensor
Normalisation intra-channel normalisation to the maximum possible code value
Noise noise-free mode, noise-present mode (photon shot noise and read noise)
Demosaicking bilinear, smooth hue, binary-tree, vector median filtering, DWT, LMMSE
Quality metrics PSNR, SSIM
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full-resolution 
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sensor 
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Figure 11.1: Design of the experimental framework.

11.2.2 Scene

In order for a close simulation, the scenes should represent what real-life spectral
imaging systems capture. By this criterion, four categories of scenes, i.e., hu-



11.2. Experiment 145

man faces (1&2), landscape (3&4), manuscripts (5&6) and paintings (7&8), were
finally selected. Each consists of two spectral images. Scenes of the first two
categories were reproduced from the Hyperspectral Image Data set provided by
the Stanford Center for Image Systems Engineering (SCIEN) [156], and the last
two categories were captured by researchers in the Norwegian Colour and Visual
Computing Laboratory [57, 56, 29].

1 2 3 4
5 6 7 8

Figure 11.2: Preview of the cropped scenes used in the experiment that cover various
objects including human faces (1&2), landscape (3&4), manuscripts (5&6) and paintings
(7&8).

The scene images of the last two categories bear a pixel count of 500 × 500. To
make the evaluation easier, the images of the first two categories are spatially ma-
nipulated to bear the same dimension as those of the last two. To that end, the ori-
ginal images are cropped to form square regions which are then resized by means
of bicubic resampling. The x,y coordinates of the vertex pixels in the original
images and the cropped size are listed in Table 11.2 for reference.

The 8 scene images are expressed in the form of reflectance and radiance respect-
ively, each stored with the spectral power distribution of the illumination. As can
be seen in Figure 11.3, there are two types of lighting conditions. Scene 3-4 are
lit by skylight-like outdoor illumination, and the curves fluctuate considerably and
peak in the VIS range. The other scenes, however, are lit by tungsten-like indoor il-
lumination, and the curves feature smooth and nearly monotonic shape with peaks
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Table 11.2: The x,y coordinates of the cropped regions.

Scene x1 x2 y1 y2 cropped size
Face 1 (HiResFemale12) 255 936 449 1130 682× 682
Face 2 (HiResMale11) 154 935 479 1260 782× 782
Landscape 1 (SanFrancisco) 150 851 1 702 702× 702
Landscape 2 (StanfordTower) 101 901 1 801 801× 801

in the NIR region.
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Figure 11.3: Spectral radiance of the illuminants that light the scenes.

Scene 1-4 cover the spectral range between approximately 415nm and 950nm,
and scene 5-8 extend the higher end to about 993 nm. All scenes share the same
interval of about 3.64 nm. This results in 148 bands and 160 bands respectively.

11.2.3 Spectral filtering

As depicted in Figure 11.4, the filter set used in the experiment is reproduced
from the previous work [100]. Although the distinctions between the theoretical
design and the practical implementation are recognisable, we consider it appro-
priate to use the theoretical design here in this simulation-based experiment. The
set includes 8 band-pass filters, 7 of which have the peak transmittance in the VIS
range, leaving 1 that peaks in the NIR region. In particular, filter 8’s wide pass-
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Figure 11.4: Theoretical spectral transmittances of the experimental filter set.

band of high transmittance is rather noticeable. The transmittance data covers the
spectral range between 400 nm and 1100 nm with an interval of 1 nm.

11.2.4 Spatial sampling

1 5 2 6
7 3 8 4
2 6 1 5
8 4 7 3

5 1 5 8
6 5 4 5
5 8 5 2
3 5 7 5

Figure 11.5: Illustration of the SFA I (left) and SFA II (right). The design of both con-
forms to the designing philosophy of the binary-tree approach [123]. The left one consists
of 8 equally distributed channels, whereas the right one resembles the Bayer CFA arrange-
ment with 1 densely sampled channel and 7 sparsely sampled channels.
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As shown in Figure 11.5, both of the SFA arrangements proposed in the previous
work [100] can be considered as instances of the binary-tree SFA design prin-
ciple [123]. SFA I consists of 8 filter elements of equal probability of appearance,
that is, each appears twice in the mosaic pattern. SFA II comprises of 1 filter of
1/2 probability of appearance, 1 filter element of 1/8 as well as 6 filter elements
of 1/16 each. Generally speaking, SFA I is a balanced design for the majority of
scenes, whereas the oversampled channel of SFA II, i.e. the channel labelled 5
in the mosaic pattern, should yield resultant images of higher spatial resolution in
particular for scenes rich in detail around 500 nm.

11.2.5 Spectral integration
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Figure 11.6: Relative response of the sensor.

In our practical implementation [100], the CMOS image sensor from e2v, model
EV76C661, is incorporated into the prototype of an SFA-based imaging system.
The relative response of the sensor averages approximately 0.888 over the visible
spectrum (400 nm to 700 nm) and peaks at 490 nm. The high sensitivity extends
into the NIR region and the response halves at about 870 nm. Such characteristics
meet our requirements for, and are therefore employed in, this experiment. The
response data covers the spectral range between 400 nm and 1100 nm with an
interval of 1 nm.

For the purpose of spectral integration, it is necessary to unify the spectral char-
acteristics of each module, i.e. range and interval. To that end, in this experiment
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we decide to use the widest common range, to wit the region between 420nm and
950nm, that makes efficient use of the data, and an interval of 10nm to reach a
compromise between spectral accuracy and computational complexity. This con-
figuration yields 54-band spectral images as scenes and the spectral filtering re-
duces the number of band to 8. After the spatial sampling and spectral integration,
stacked multispectral images, namely mosaic images, are formed.

Nevertheless, the integration of the scenes (illumination), the filters and the sensors
causes an imbalance in power between certain channels [144], in particular between
the VIS channels and the NIR channel. Figure 11.7(a) demonstrates the substan-
tial discrepancy between channels after normalisation, especially for Scene 6. The
glaring inconsistency will add difficulties in interpreting the results and comparing
the performance of the methods in question. Therefore we normalise each band
individually according to the maximum possible value occurring when perfect dif-
fuse white is present under the same illumination as the scenes, which mimics the
white balancing operation seen in colour cameras. The effect can be seen clearly
in Figure 11.7(b) and in Table 11.3 that the inter-band variance decreases when
normalised per band.

Table 11.3: The inter-band variance resulting from the two normalisation techniques.

Normalisation Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8
per image 0.0025 0.0028 0.0022 0.0023 0.0795 0.0694 0.0415 0.0348
per band 0.0027 0.0021 0.0014 0.0021 0.0066 0.0178 0.0145 0.0068

11.2.6 Demosaicking

In order for a comprehensive comparison, six demosaicking methods are incorpor-
ated in the experiment. Apart from the three methods proposed in Part III, three
fundamental techniques that may provide a benchmark, i.e. bilinear interpolation,
the smooth-hue transition based interpolation and the binary-tree based demosa-
icking are also included. Although the methods have already been implemented in
the previous experiment, there are still a few minor yet important changes.

For the smooth-hue transition based interpolation, unlike the previous experiments,
hue is defined now as the ratio between one selected band (band 5 in the exper-
iment) and each of the remaining bands. This should reflect better the original
proposal by Cok [30], since intensity of the sensor image can be considered as
linearly proportional to radiance of the scene. To avoid division-by-zero, a small
constant is added to the dominator and subtracted subsequently from the resultant
images.
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(a) Mean of the images normalised with the peak value of the whole image.
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(b) Mean of the images normalised with the peak value of each band.

Figure 11.7: Balance of scale over the bands with two normalisation techniques.

As the tessellation of SFA II is asymmetric, for the vector median filtering based
demosaicking, it is impossible to make use of a single set of pseudopixel indices
as in the previous experiments. In other words, each location in the moxel requires
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a unique set of pseudopixel indices. Based on the findings presented in Chapter 7,
the indices are generated by constructing pesudopixels in any direction and select-
ing those passing through the central pixel only, to strike a reasonable compromise
between the computational cost and the demosaicking performance.

For the LMMSE based demosaicking, selection of the a priori information plays
a key role, as shown in Chapter 9. Considering the scenes chosen for this experi-
ment, we use the one image as the a priori information to demosaic the other image
of the same genre. Such pairs of images bear stronger similarity than other images,
and may therefore achieve better results.

11.3 Results
The combination of the parameters shown in Table 11.1 lead to copious results that
form a penteract, namely a five-dimensional hypercube with parameters including
the scenes, SFAs, demosaicking methods, bands and quality metrics. To ease the
observation and analysis of the results, we will have to reduce the dimensionality
of the hypercube by slicing the cube or averaging it along a certain dimension.

Table 11.4 and 11.5 present an in-depth overview of the results averaged over 8
bands. For each scene image, the results yielded by the 6 demosaicking methods
are compared, given one specific SFA arrangement. For each scene mosaicked
with each SFA, the highest and lowest values in the results are emphasized in bold
and italic fonts respectively. For each scene, the overall highest value is highlighted
in grey. For the ease of observation and analysis, Figure 11.8 and 11.9 show the
same results with bar graphs.
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Table 11.4: Performance of the demosaicking algorithms under evaluation in terms of the
PSNR including BL (bilinear interpolation), SH (smooth hue transition based interpola-
tion), BT (binary-tree based demosaicking), VM (vector median filtering), DWT (DWT
based demosaicking), LMMSE (LMMSE based demosaicking). For one specific SFA ar-
rangement, the maximum and the minimum results are emphasized in bold and italic fonts
respectively. For each scene, the best result is highlighted in grey.

SFA Methods PSNR (dB)
Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8

I

BL 45.0580 45.7414 36.6529 33.0698 37.6219 34.7061 33.4195 32.6282
SH 45.3837 46.2587 37.0653 33.4767 38.0652 36.4897 33.9099 33.2751
BT 46.1270 46.8100 38.0614 34.4459 37.9707 34.7827 35.0126 34.0840
VM 45.6386 46.1935 37.4070 33.8147 36.1826 31.7167 33.2588 32.4840

DWT 46.3541 48.0611 35.6784 32.4894 33.1971 32.0512 32.0318 33.3440
LMMSE 42.7437 37.7278 41.0607 39.4191 31.5179 35.6382 38.5306 38.8083

II

BL 44.6326 45.2818 36.0911 32.3174 35.9082 31.6342 32.7044 31.7318
SH 46.1109 47.0840 38.2031 34.4288 39.4826 39.1369 34.9696 34.7383
BT 45.5420 46.3655 36.9111 33.2192 36.6984 33.0979 33.4905 32.6152
VM 44.2582 45.0464 35.4666 31.7596 34.6446 29.9734 31.2031 30.5146

DWT 46.5521 48.0552 35.6046 32.2862 33.4475 31.3541 32.3851 33.2627
LMMSE 44.7859 41.2290 40.8216 39.1891 32.9932 35.1414 39.3266 39.3107

Table 11.5: Performance of the demosaicking algorithms under evaluation in terms of
the SSIM index including BL (bilinear interpolation), SH (smooth hue based interpola-
tion), BT (Binary-tree based demosaicking), VM (vector median filtering), DWT (DWT
based demosaicking), LMMSE (LMMSE based demosaicking). For one specific SFA ar-
rangement, the maximum and the minimum results are emphasized in bold and italic fonts
respectively. For each scene, the best result is highlighted in grey.

SFA Methods SSIM index
Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8

I

BL 0.9954 0.9960 0.9610 0.9449 0.9672 0.9822 0.9572 0.9543
SH 0.9961 0.9967 0.9668 0.9528 0.9695 0.9881 0.9630 0.9631
BT 0.9962 0.9966 0.9696 0.9556 0.9700 0.9813 0.9676 0.9649
VM 0.9960 0.9965 0.9705 0.9570 0.9693 0.9807 0.9667 0.9653

DWT 0.9938 0.9954 0.9454 0.9205 0.9352 0.9733 0.9467 0.9638
LMMSE 0.9887 0.9692 0.9855 0.9809 0.9375 0.9905 0.9866 0.9893

II

BL 0.9940 0.9943 0.9489 0.9258 0.9417 0.9466 0.9378 0.9307
SH 0.9969 0.9976 0.9762 0.9648 0.9697 0.9911 0.9668 0.9728
BT 0.9944 0.9946 0.9502 0.9281 0.9446 0.9577 0.9380 0.9315
VM 0.9941 0.9946 0.9508 0.9289 0.9494 0.9642 0.9405 0.9378

DWT 0.9929 0.9948 0.9410 0.9128 0.9302 0.9632 0.9357 0.9556
LMMSE 0.9805 0.9683 0.9801 0.9745 0.9469 0.9874 0.9801 0.9853
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(a) PSNR for each scene mosaicked with SFA I.
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(b) PSNR for each scene mosaicked with SFA II.

Figure 11.8: Experimental results (PSNRs) for each scene. The horizontal axis represents
the 8 scenes, and the vertical axis represents the results in terms of the PSNR. For each
scene, results produced by all of the demosaicking methods are grouped together. Results
connected with SFA I and SFA II are plotted separately.
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(a) SSIM indices for each scene mosaicked with SFA I.
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(b) SSIM indices for each scene mosaicked with SFA II.

Figure 11.9: Experimental results (SSIM indices) for each scene. The horizontal axis
represents the 8 scenes, and the vertical axis represents the results in terms of the SSIM
index. For each scene, results produced by all of the demosaicking methods are grouped
together. Results connected with SFA I and SFA II are plotted separately.
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In Table 11.4 and 11.5, the maximum and the minimum PSNRs are respectively
produced by DWT for Scene 2 and by VM for Scene 6, whereas the maximum
and the minimum SSIM indices are respectively produced by SH for Scene 2
and by DWT for Scene 4. The discrepancies are due partly to the differences
in principle between the two quality metrics. Regardless of the SFA arrangement,
LMMSE notably outperforms the other methods constantly for Scene 3/4/7/8, but
delivers lower performance than others for Scene 1/2. The polarity indicates the
dependence of LMMSE on the selection of the training data. In 11.8(a) and Fig-
ure 11.8(b), DWT shows the greatest variance over the 8 scenes, and LMMSE the
slightest. In Figure 11.9(a) and Figure 11.9(b), DWT shows the greatest variance,
whereas VM and LMMSE lead to the slightest variance for SFA I and SFA II
respectively.

When it comes to the impact of mosaic arrangement, the results show definite dis-
tinctions. As expected, SFA II results in an overall increase in the performance of
SH among all 8 scenes, accordingly the bars in relation to SH is visibly higher than
others in Figure 11.8(b) and 11.9(b) in comparison with Figure 11.8(a) and 11.9(a).
The rank order of the methods according to the PSNR is:
BT>LMMSE>SH>BL>VM>DWT for SFA I, and SH>LMMSE>BT>DWT>BL>VM
for SFA II. The order according to the SSIM index is:
LMMSE>VM>BT>SH>BL>DWT for SFA I, and SH>LMMSE>VM>BT>DWT>BL
for SFA II. The alteration of the orders show the positive advantage of SFA II to
SH, as the Bayer-like arrangement of SFA II sacrifices the spatial sampling rate of
7 channels for 1 relatively higher resolution channel. In general, however, SFA II
reduces the overall results by about 0.3 dB in terms of the PSNR, and by 0.01 in
terms of the SSIM index.

Table 11.4 and 11.5 show considerable variations among the scenes. Category 1
comfortably exceeds other categories by an average of about 10.4 dB in terms of
the PSNR and 0.033 in terms of the SSIM index. This is demonstrated more clearly
with bar graphs in Figure 11.8 and 11.9, where the discrepancies between the bars
for each scene and between the scenes are glaring, especially in Figure 11.8.
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(a) PSNR for each band of Scene 1 mosaicked with SFA I.
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(b) PSNR for each band of Scene 1 mosaicked with SFA II.

Figure 11.10: Experimental results (PSNRs) for each band of Scene 1. The horizontal axis
represents the 8 bands, and the vertical axis represents the results in terms of the PSNR.
For each band, results produced by all of the demosaicking methods are grouped together.
Results connected with SFA I and SFA II are plotted separately.
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(a) PSNR for each band of Scene 2 mosaicked with SFA I.
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(b) PSNR for each band of Scene 2 mosaicked with SFA II.

Figure 11.11: Experimental results (PSNRs) for each band of Scene 2. The horizontal axis
represents the 8 bands, and the vertical axis represents the results in terms of the PSNR.
For each band, results produced by all of the demosaicking methods are grouped together.
Results connected with SFA I and SFA II are plotted separately.
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(a) PSNR for each band of Scene 3 mosaicked with SFA I.
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(b) PSNR for each band of Scene 3 mosaicked with SFA II.

Figure 11.12: Experimental results (PSNRs) for each band of Scene 3. The horizontal axis
represents the 8 bands, and the vertical axis represents the results in terms of the PSNR.
For each band, results produced by all of the demosaicking methods are grouped together.
Results connected with SFA I and SFA II are plotted separately.
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(a) PSNR for each band of Scene 4 mosaicked with SFA I.

1 2 3 4 5 6 7 8
20

25

30

35

40

45

50

55

60

Band

P
S

N
R

 (
dB

)

 

 

BL
SH
BT
VM
DWT
LMMSE

(b) PSNR for each band of Scene 4 mosaicked with SFA II.

Figure 11.13: Experimental results (PSNRs) for each band of Scene 4. The horizontal axis
represents the 8 bands, and the vertical axis represents the results in terms of the PSNR.
For each band, results produced by all of the demosaicking methods are grouped together.
Results connected with SFA I and SFA II are plotted separately.
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(a) PSNR for each band of Scene 5 mosaicked with SFA I.
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(b) PSNR for each band of Scene 5 mosaicked with SFA II.

Figure 11.14: Experimental results (PSNRs) for each band of Scene 5. The horizontal axis
represents the 8 bands, and the vertical axis represents the results in terms of the PSNR.
For each band, results produced by all of the demosaicking methods are grouped together.
Results connected with SFA I and SFA II are plotted separately.
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(a) PSNR for each band of Scene 6 mosaicked with SFA I.
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(b) PSNR for each band of Scene 6 mosaicked with SFA II.

Figure 11.15: Experimental results (PSNRs) for each band of Scene 6. The horizontal axis
represents the 8 bands, and the vertical axis represents the results in terms of the PSNR.
For each band, results produced by all of the demosaicking methods are grouped together.
Results connected with SFA I and SFA II are plotted separately.
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(a) PSNR for each band of Scene 7 mosaicked with SFA I.
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(b) PSNR for each band of Scene 7 mosaicked with SFA II.

Figure 11.16: Experimental results (PSNRs) for each band of Scene 7. The horizontal axis
represents the 8 bands, and the vertical axis represents the results in terms of the PSNR.
For each band, results produced by all of the demosaicking methods are grouped together.
Results connected with SFA I and SFA II are plotted separately.
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(a) PSNR for each band of Scene 8 mosaicked with SFA I.
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(b) PSNR for each band of Scene 8 mosaicked with SFA II.

Figure 11.17: Experimental results (PSNRs) for each band of Scene 8. The horizontal axis
represents the 8 bands, and the vertical axis represents the results in terms of the PSNR.
For each band, results produced by all of the demosaicking methods are grouped together.
Results connected with SFA I and SFA II are plotted separately.
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(a) SSIM indices for each band of Scene 1 mosaicked with SFA I.
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(b) SSIM indices for each band of Scene 1 mosaicked with SFA II.

Figure 11.18: Experimental results (SSIM indices) for each band of Scene 1. The hori-
zontal axis represents the 8 bands, and the vertical axis represents the results in terms of
the SSIM index. For each band, results produced by all of the demosaicking methods are
grouped together. Results connected with SFA I and SFA II are plotted separately.



11.3. Results 165

1 2 3 4 5 6 7 8
0.9

0.92

0.94

0.96

0.98

1

Band

S
S

IM
 in

de
x

 

 

BL
SH
BT
VM
DWT
LMMSE

(a) SSIM indices for each band of Scene 2 mosaicked with SFA I.
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(b) SSIM indices for each band of Scene 2 mosaicked with SFA II.

Figure 11.19: Experimental results (SSIM indices) for each band of Scene 2. The hori-
zontal axis represents the 8 bands, and the vertical axis represents the results in terms of
the SSIM index. For each band, results produced by all of the demosaicking methods are
grouped together. Results connected with SFA I and SFA II are plotted separately.



166 Comparative study of SFA demosaicking algorithms

1 2 3 4 5 6 7 8
0.9

0.92

0.94

0.96

0.98

1

Band

S
S

IM
 in

de
x

 

 

BL
SH
BT
VM
DWT
LMMSE

(a) SSIM indices for each band of Scene 3 mosaicked with SFA I.
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(b) SSIM indices for each band of Scene 3 mosaicked with SFA II.

Figure 11.20: Experimental results (SSIM indices) for each band of Scene 3. The hori-
zontal axis represents the 8 bands, and the vertical axis represents the results in terms of
the SSIM index. For each band, results produced by all of the demosaicking methods are
grouped together. Results connected with SFA I and SFA II are plotted separately.
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(a) SSIM indices for each band of Scene 4 mosaicked with SFA I.
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(b) SSIM indices for each band of Scene 4 mosaicked with SFA II.

Figure 11.21: Experimental results (SSIM indices) for each band of Scene 4. The hori-
zontal axis represents the 8 bands, and the vertical axis represents the results in terms of
the SSIM index. For each band, results produced by all of the demosaicking methods are
grouped together. Results connected with SFA I and SFA II are plotted separately.
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(a) SSIM indices for each band of Scene 5 mosaicked with SFA I.
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(b) SSIM indices for each band of Scene 5 mosaicked with SFA II.

Figure 11.22: Experimental results (SSIM indices) for each band of Scene 5. The hori-
zontal axis represents the 8 bands, and the vertical axis represents the results in terms of
the SSIM index. For each band, results produced by all of the demosaicking methods are
grouped together. Results connected with SFA I and SFA II are plotted separately.
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(a) SSIM indices for each band of Scene 6 mosaicked with SFA I.
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(b) SSIM indices for each band of Scene 6 mosaicked with SFA II.

Figure 11.23: Experimental results (SSIM indices) for each band of Scene 6. The hori-
zontal axis represents the 8 bands, and the vertical axis represents the results in terms of
the SSIM index. For each band, results produced by all of the demosaicking methods are
grouped together. Results connected with SFA I and SFA II are plotted separately.
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(a) SSIM indices for each band of Scene 7 mosaicked with SFA I.

1 2 3 4 5 6 7 8
0.9

0.92

0.94

0.96

0.98

1

Band

S
S

IM
 in

de
x

 

 

BL
SH
BT
VM
DWT
LMMSE

(b) SSIM indices for each band of Scene 7 mosaicked with SFA II.

Figure 11.24: Experimental results (SSIM indices) for each band of Scene 7. The hori-
zontal axis represents the 8 bands, and the vertical axis represents the results in terms of
the SSIM index. For each band, results produced by all of the demosaicking methods are
grouped together. Results connected with SFA I and SFA II are plotted separately.
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(a) SSIM indices for each band of Scene 8 mosaicked with SFA I.
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(b) SSIM indices for each band of Scene 8 mosaicked with SFA II.

Figure 11.25: Experimental results (SSIM indices) for each band of Scene 8. The hori-
zontal axis represents the 8 bands, and the vertical axis represents the results in terms of
the SSIM index. For each band, results produced by all of the demosaicking methods are
grouped together. Results connected with SFA I and SFA II are plotted separately.
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By far the analyses have been carried out on the basis of the results averaged among
the bands. What makes a distinction between CFA and SFA imaging systems is
largely, if not entirely, the number of bands. As a result, it is of particular interest to
look into the results for each band of the images which may reveal more valuable
information.

Figure 11.10-11.17 show the results for all scenes in terms of the PSNR. As
illustrated by the graphs, there exists varying inter-band variance that peaks at
37.02 for scene 5 mosaicked with SFA II and demosaicked with BT and reaches
the lowest value at 0.31 for scene 7 mosaicked with SFA I and demosaicked
with DWT. The inter-band variance is significantly wider for SFA II in com-
parison with SFA I, 5.86 times, to be precise. The sharp contrast is mainly at-
tributed to the increase in performance for the more densely sampled band 5 in
SFA II. However, the rank order according to the inter-band variance is not af-
fected much by the SFAs, i.e., DWT<SH<VM<BL<BT<LMMSE for SFA I, and
DWT<SH<VM<BL<LMMSE<BT for SFA II. With SFA I, the performance of the
methods are well-matched except LMMSE which leads to visibly lower PSNRs
than others for scene 1/2/5 yet results in higher PSNRs for scene 3/4/6/7. With
SFA II, the advantage of SH over other methods is ubiquitous among all bands,
and interestingly, DWT mostly outperforms other methods for Band 5, as depicted
by Figure 11.10-11.17. All methods achieve better results for Band 5 with SFA II
compared with the results with SFA I, whereas the results of most results for the
other bands decrease with varying degrees.

The results in terms of the SSIM indices are generally consistent with those in
terms of the PSNRs, as demonstrated in Figure 11.18-11.25.
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Figure 11.26: An extraction from band 1 of Scene 1 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.27: An extraction from band 2 of Scene 1 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.28: An extraction from band 3 of Scene 1 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.29: An extraction from band 4 of Scene 1 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.30: An extraction from band 5 of Scene 1 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.31: An extraction from band 6 of Scene 1 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.32: An extraction from band 7 of Scene 1 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.33: An extraction from band 8 of Scene 1 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.34: An extraction from band 1 of Scene 2 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.35: An extraction from band 2 of Scene 2 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.36: An extraction from band 3 of Scene 2 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.37: An extraction from band 4 of Scene 2 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.38: An extraction from band 5 of Scene 2 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.39: An extraction from band 6 of Scene 2 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.40: An extraction from band 7 of Scene 2 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.41: An extraction from band 8 of Scene 2 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE



11.3. Results 189

a b c d
e f g h

i j k
l m n o

Figure 11.42: An extraction from band 1 of Scene 3 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.43: An extraction from band 2 of Scene 3 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.44: An extraction from band 3 of Scene 3 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.45: An extraction from band 4 of Scene 3 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.46: An extraction from band 5 of Scene 3 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.47: An extraction from band 6 of Scene 3 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.48: An extraction from band 7 of Scene 3 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.49: An extraction from band 8 of Scene 3 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.50: An extraction from band 1 of Scene 4 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.51: An extraction from band 2 of Scene 4 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.52: An extraction from band 3 of Scene 4 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.53: An extraction from band 4 of Scene 4 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.54: An extraction from band 5 of Scene 4 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.55: An extraction from band 6 of Scene 4 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.56: An extraction from band 7 of Scene 4 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.57: An extraction from band 8 of Scene 4 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.58: An extraction from band 1 of Scene 5 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.59: An extraction from band 2 of Scene 5 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.60: An extraction from band 3 of Scene 5 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.61: An extraction from band 4 of Scene 5 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.62: An extraction from band 5 of Scene 5 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.63: An extraction from band 6 of Scene 5 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.64: An extraction from band 7 of Scene 5 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.65: An extraction from band 8 of Scene 5 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.66: An extraction from band 1 of Scene 6 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.67: An extraction from band 2 of Scene 6 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.68: An extraction from band 3 of Scene 6 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.69: An extraction from band 4 of Scene 6 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.70: An extraction from band 5 of Scene 6 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.71: An extraction from band 6 of Scene 6 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.72: An extraction from band 7 of Scene 6 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.73: An extraction from band 8 of Scene 6 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.74: An extraction from band 1 of Scene 7 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.75: An extraction from band 2 of Scene 7 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.76: An extraction from band 3 of Scene 7 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.77: An extraction from band 4 of Scene 7 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.78: An extraction from band 5 of Scene 7 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.79: An extraction from band 6 of Scene 7 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.80: An extraction from band 7 of Scene 7 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.81: An extraction from band 8 of Scene 7 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.82: An extraction from band 1 of Scene 8 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.83: An extraction from band 2 of Scene 8 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.84: An extraction from band 3 of Scene 8 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.85: An extraction from band 4 of Scene 8 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.86: An extraction from band 5 of Scene 8 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.87: An extraction from band 6 of Scene 8 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.88: An extraction from band 7 of Scene 8 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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Figure 11.89: An extraction from band 8 of Scene 8 in the absence of noise. (a) full-
resolution image, (b) SFA I mosaicked image, (c) SFA I demosaicked image with BL,
(d) SFA I demosaicked image with SH, (e) SFA I demosaicked image with BT, (f) SFA I
demosaicked image with VM, (g) SFA I demosaicked image with DWT, (h) SFA I demo-
saicked image with LMMSE, (i) SFA II mosaicked image, (j) SFA II demosaicked image
with BL, (k) SFA II demosaicked image with SH, (l) SFA II demosaicked image with BT,
(m) SFA II demosaicked image with VM, (n) SFA II demosaicked image with DWT, (o)
SFA II demosaicked image with LMMSE
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The differences in the PSNR and SSIM indices indicate distinctions in principles
of quality metrics. For imagery, it is always necessary and useful to evaluate visual
presentation subjectively. Figure 11.26-11.89 present regions extracted from the
resultant images for all scenes mosaicked with SFA I and SFA II and demosaicked
with all methods. A glimpse at the extractions show that LMMSE achieves the
most satisfactory results almost in all conditions, whereas other methods suffer
from the intrinsic artefacts, e.g., blurring, zippering, fringing, etc., which largely
degrades the subjective quality.

In principle, Band 5 reflects the distinction between SFA I and SFA II, and the res-
ults support this hypothesis. Spatial sampling rate, i.e., probability of appearance
of the filter elements in a SFA, is a determining factor in the quality of demosa-
icked images. In other words, Band 5 in SFA II is superior than that in SFA I,
whereas the bands other than Band 5 in SFA II is even worse than that in SFA I.

In addition, images of Band 8, namely the NIR band, differ from the other bands
in appearance, however, there seem still high correlations between the NIR band
and other bands.

11.4 Conclusion
In this chapter, we performed comparative analyses and evaluations of 6 proposed
and basic SFA demosaicking techniques, given characteristics of 2 practical SFA-
based imagers and 8 scenes covering both visible and NIR bands.

The objective image quality assessment indicated that the 3 proposed demosa-
icking techniques based on different assumptions perform differently. Basic tech-
niques, such as bilinear interpolation and the binary-tree approach do not make use
of the inter-band correlation, thus suffering from blurring or zippering effects. The
smooth-hue interpolation performs well if there exists a band of higher sampling
rate. SFA demosaicking on the basis of vector median filtering tends to preserve
the edges but smooth the details surrounded by the edges. DWT based SFA demo-
saicking runs fairly fast but introduces unreal high-frequency information that res-
ults in visible noise. The performance of the LMMSE approach relies primarily
on the similarity between the training data (a priori information) and the images to
be processed.

In addition, tessellation of filter elements in a SFA plays an important role in a
SFA-based imaging pipeline, and determines, to a large extent, final image quality.
For instance, SFA II sacrifices the sampling rate of other bands for the densely
sampled band 5. In the design of a practical system, it is of vital importance to
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strike a sensible balance between spatial and spectral resolution, and the way of
tessellation also influences the overall performance.

Regarding the computational complexity, the vector median filtering approach is
computationally expensive. With suitable trainings, LMMSE is the most efficient
method because of its linear property. DWT is in between these two in terms of
the complexity.

The presentation of the extractions reveal the disagreements between subjective
and objective assessment. More subjective assessments are expected in the future.
And the choice of quality metrics should be considered together with the applica-
tion of a SFA-based imaging system.



Chapter 12

Conclusion

We have presented the main content of this dissertation. In this conclusive chapter,
content of the previous chapters are first summarised, before discussions of issues
that have been realised. We also list key findings and provide our perspective as
suggestions for those interested in spectral filter array based spectral imaging.

12.1 Summary of contribution
The dissertation concerns demosaicking and issues in the design of a SFA based
spectral imaging system.

Part I provided the background information in connection with the research. In
Chapter 2 we first reviewed the early-stage development of spectral imaging from
both roots in spectroscopy and imaging, and traced its evolution and classified
a spectrum of approaches according to the fundamental. This illustrates the ad-
vantages of filter array based solutions in size, weight, cost and robustness. Sub-
sequently Chapter 3 explored the SFA based solutions of the art by reviewing lit-
erature in regard to the design, development and realisation of SFA based systems.

Part II concerned the design, implementation as well as two preliminary studies
of the simulation framework in order to facilitate the development of demosaick-
ing. Chapter 4 presented the structure of the simulated pipeline and provided a
radiometric analysis on its validity. Also introduced were the assumptions and
therefore limitations of the simulation framework. Chapter 5 evaluated the per-
formance of 6 types of filters of varying bandwidths in terms of the accuracy of
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spectral reflectance estimation with three linear estimation methods in the context
of spectral image acquisition. Chapter 6 investigated the influence of chromatic
aberration on demosaicking and proposed a simulation workflow for that purpose.
Both axial and transverse types of chromatic aberration and their combination were
simulated.

Part III probed into the core design problem by proposing three methods for SFA
demosaicking based on vector media filtering, discrete wavelet transform and lin-
ear minimum mean square error. In Chapter 7, 8 and 9, these techniques were
described in detail and the performance was evaluated with reference to other com-
mon methods.

Part IV evaluated the performance of SFA based imaging systems. Chapter 10
compared SFAs with CFAs in terms of colorimetric accuracy by assessing the
balance between spatial and spectral resolution that have opposite influence on
the colorimetric performance. Chapter 11 scrutinised the proposed demosaick-
ing methods given the characteristics and parameters of a real-world SFA sensor
design.

12.2 Discussions
The accuracy of the results obtained in the dissertation is affected by the realist-
icness of the simulation. The spectral images used as scenes bear limited variety
and resolution as well as intrinsic optical and electronic distortions, which makes it
difficult to generalise the conclusions. Although the simulation may be improved
by more complicated measures, such as optical simulation based on ray tracing
analysis of real lenses and the introduction of measured noise, simulation bears
intrinsic insufficiencies, inaccuracies and inappropriateness in itself. In a real sys-
tem, these shortcomings of simulation may very well be overcome. However,
real-world systems are not typically flexible for experimental purposes and may
not be fully consistent with the theoretical design. Moreover, in a practical system,
there would be a lack of ground truth that is essential to objective evaluations of
system performance.

In this dissertation, performance is evaluated in terms of objective image or sig-
nal quality. Image quality metrics, such as the SSIM, are generally developed to
mimic the characteristics of the human visual system, whereas signal quality met-
rics, such as the RMSE, measure simply the physical differences. Neither of them
are entirely appropriate for the assessment of spectral image quality, for spectral
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images are not necessarily meant for human observers. Therefore application-
specific quality metrics optimised for spectral images would be preferable. Sub-
jective evaluation of image quality may also be useful when the target audience is
human.

12.3 Findings
SFA Demosaicking. The assumptions on which a variety of CFA interpolation
methods are based are often inapplicable to SFA demosaicking. Among others,
the luma/chroma based colour spaces is irrelevant to spectral images. Therefore
we proposed and experimented with three adaptive techniques, and compared their
performance with some of the common methods as a benchmark.

In SFA demosaicking, median filtering in n-sphere alleviates aliasing numerically
that is often resulted from basic interpolation approaches, in particular in regions
rich in edges and details. Nevertheless, it introduces non-existent aliasing as a
result of its nature of combination, thus reducing the perceptual quality. As an
exception, it shows advantages for demosaicking binary images that possess edges
and fine details of high-contrast. Parallel computing, e.g., heterogeneous program-
ming, was exploited in implementing these methods to reduce the computational
time. The usefulness of this technique is therefore limited by its exceptionally high
computational complexity.

The performance of the DWT based SFA demosaicking method depends heavily
on the spectral cross-correlation of the mosaic image in question, as a result of the
“replace” rule for the high-pass filtered components in the wavelet-transformed im-
ages. As a result, it outperforms conventional interpolation techniques for scenes
bearing high correlation, achieves worse results for scenes lack of correlation. The
use of “replace” rule in DWT based SFA demosaicking is therefore related to the
correlation of mosaic images, which is further influenced by scenes themselves
and degree of overlap of the filters.

The proposed LMMSE approach is essentially a linear method that combine lin-
ear Wiener estimation and an interpolation on residual channels. The latter may
overcome the error introduced by the former that is prone to noise. Both steps
are of high scalability and computational efficiency, owing to its nature of linear
operation. On the other hand, performance of this method is contingent on a priori
information, i.e., training. In the experiments, scenes of the same genre were used
as training set and testing set, thus yielding good results. In practice, however, real
scenes may not be predictable.
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Given the same scenes, different SFAs, i.e., varying spectral transmittances of the
filters and spatial arrangement of filter elements, would result in filtered images
of distinct characters that subsequent demosaicking methods take as input. It is
therefore also of great moment to treat SFA and demosaicking as integral parts of
a single system.

Selection of filter bandwidth. As demonstrated by the experimental results, band-
width of filters has a profound impact on the accuracy of spectral reconstruction.
Band-pass and band-reject filters of reasonably wide band commonly seen in prac-
tice benefit spectral acquisition. Further, band-pass or band-reject filters of ex-
tremely narrow or broad bandwidths perform unsatisfactorily or unsteadily. Also
the accuracy results also depend on the reconstruction methods used, and noise
plays a role as well as the spectral metrics. The experiments were conducted in
simulated lighting condition that is sufficient in terms of intensity. In insufficient
lighting conditions, however, we assume that the advantages of wider bandwidths
would be more visible in the system sensitivity as well as the signal-to-noise ratio.

Chromatic aberration. CA benefits demosaicking to some extent, in particular,
blur benefits demosaicking by higher spatial correlation. however any type of CA
decreases image quality by means of image blur and mis-registration. In theory,
transverse CA in form of mis-registration should reduce correlation, thus decreas-
ing the performance. On the contrary, the figures show opposite results. Perhaps
the resampling involved blurs the images to some extent as well. In comparison
with intra-channel methods, inter-channel interpolation is more sensitive to the
content of the green channel. Axial CA results in higher performance in terms of
cross comparison, indicating that blur influences less the signal fidelity and simil-
arity. In comparison, both of the other two types of CA involve transversal CA and
lead to significantly worse results. Obviously CA lowers the overall image quality
by any means.

Colorimetric performance. In general, the 4-band SFA provides better or compar-
able performance in comparison with the 3-band setup except for the case of very
narrow band-reject and normal bandpass filters. Similarly the 8-band SFA delivers
higher colour accuracy expect the case of narrow bandreject filters. Therefore SFA
of certain number of bands is not harmful for colorimetric reproduction. Moreover,
it is obvious to see that spectral characteristics of a filter set not only make a direct
impact on the colour reconstruction, but also influence the spectral correlation of
the observed image on which some demosaicking methods depend.
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12.4 Perspectives
The simulation based study demonstrates the usefulness, effectiveness and feasib-
ility of a spectral image acquisition system employing a single-sensor covered by
a multi-band filter array. The design of a SFA-based imaging framework differs
from that of a CFA-based system in the requirements for the spectral range, light
sensitivity, spectral and spatial resolution, features of interest as well as observers,
etc. As a result, SFA-based systems should be specific to applications in order to
narrow down the wide variety to a small number of variables.

A SFA imaging pipeline is composed of several components. The findings reveal
that there is significant influence of some components on others. An adjustment
of one parameter may impact the subsequent steps and thus the resultant image
directly. It is therefore critical to consider the design of the pipeline as a whole by
taking into account the interrelationship of the components.

At the moment, there are few commercial spectral imagers based on SFAs, due in
part to the technical difficulties and thereby the considerable cost. The lack of sup-
porting data processing further limits their applicability. We hope this work offers
valuable information for, and contributes to, further development and wide use of
this technology, as a convenient approach to spectral imaging. The dissertation
concludes with our fervent hope that the effort will bear fruit in the foreseeable
future.
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