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Abstract

With the prospect of producing superhydrophobic and mechanically stable biom-

imetic surfaces, the water repellent properties of springtail cuticles are investigated

quantitatively. The analysis is based on apparent contact angle measurements on

nine springtail species and SEM and AFM images of their cuticles. It is argued

that water exists in a metastable Cassie-Baxter state on the cuticle and that three-

phase line tension of the order of 10−8 J/m contributes to high apparent contact

angles. A model is developed to assess the significance of a recently reported

re-entrant geometry of the cuticle granules and to study the resistance of the

cuticle against wetting. The model estimates that springtails resist wetting under

hydrostatic pressures up to 104 − 105 Pa, and that re-entrant granule profiles

increase the wetting resistance by 50 − 400%. To explain the low contact angle

hysteresis observed on the cuticles, new equations are proposed to include the effect

of three-phase line tension. Again, a line tension magnitude of the order of 10−8

J/m can account for the experimental findings. This work indicates that the sub-

micron size scale of the springtail cuticle granules provides an elegant approach for

achieving water repellent and mechanically stable surfaces. Two springtail species

are singled out as especially promising for biomimetic applications.
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Sammendrag

Kutikulaet til spretthaler er et lovende material i biomimetisk sammenheng,

da det b̊ade er vannavstøtende og mekanisk solid. For å forst̊a mer om hvorfor

spretthalene er vannavstøtende, utføres derfor i denne rapporten en kvantitativ

analyse av spretthalekutikulaets fuktningsegenskaper. Analysen baserer seg p̊a en

serie kontaktvinkelm̊alinger gjort p̊a ni forskjellige spretthale-arter og p̊a SEM- og

AFM-bilder tatt av disse artenes kutikula. Det argumenteres for at vann eksisterer

i en metastabil Cassie-Baxter-tilstand p̊a kutikulaet og at tre-fase-linje-spenning

i størrelsesordenen 10−8 J/m bidrar til de høye kontaktvinklene som observeres.

En modell utledes for å evaluere betydningen av en nylig rapportert overhengen-

de profil p̊a kutikulaenes granuler. Denne modellen benyttes ogs̊a til å studere

hvor stort hydrostatisk trykk som skal til før kutikulaene fuktes. Det estimeres

at kutikulaene t̊aler hydrostatiske trykk opp mot 104 − 105 Pa uten at de fuktes,

og at en overhengende profil p̊a kutikulaenes granuler øker fuktningsmotstanden

med 50 − 400%. For å forklare den lave kontaktvinkelhysteresen som observeres

p̊a spretthalenes kutikula, framsettes nye ligninger som tar høyde for effekten av

tre-fase-linje-spenning. Igjen gir en tre-fase-linje-spenning i størrelsesordenen 10−8

J/m et godt samsvar mellom teori og observasjon. Denne rapporten tyder p̊a at

størrelsen til spretthalekutikulaenes granuler, hvilket er i omr̊adet sub-mikrometer,

utgjør en elegant strategi for å oppn̊a vannavstøtende og mekanisk solide overflater.

To spretthalearter utpekes som spesielt lovende for biomimetiske anvendelser.
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1. Introduction

For over two thousand years, the self-cleaning ability of certain plant leaves has remained

a mystery to mankind [1]. This lack of understanding can not merely be ascribed to a

lack of human analytical capacity − by seeing the world through the lens of the human

eye, man was simply not equipped for the task. Indeed, it was not until secondary

electron microscopes (SEM) became commercially available in the late 1960s that the

tool necessary for obtaining such an understanding was granted. Surpassing by far the

resolution of the human eye, the introduction of the SEM revealed an essential feature

of many plants and animals − namely, that they were covered by regular structure pat-

terns, often hierarchical, at the micro- and even nanometer size scale [1]-[3] − some

examples are given in Figure 1. What advantages lie behind an evolution of such intri-

cate structural systems, and how can they translate into man-made technology? These

questions have intrigued scientists and engineers in the recent decades, and the diversity

in the answers reflects the diversity of nature itself.

In 1997, Barthlott and Neinhuis [2] discovered a peculiar effect on plant leaves with

micro-sized wax crystals on their surfaces. In contrast to their smooth counterparts,

they were, even after prolonged storage, almost completely free of contamination. An

explanation to this self-cleaning ability was finally given, and at its heart lay the micro-

and nanometer-sized sculpturing of the surface, rendering these plant leaves highly water

repellent. Among the leaves demonstrating impressive self-cleaning were the leaves of

the Lotus flower − an ancient symbol of purity in East Asian religions [3]; as a result,

the term ’Lotus Effect’ was coined. Almost concurrently, Onda et al. [8] showed −
for the first time − that extremely water-repellent surfaces could also be manufactured

artificially. During the last 15 years, these two reports have been followed by a steadily

increasing research activity in a field that has become known as ’superhydrophobicity’1

− the study and fabrication of extremely water repellent surfaces [1, 9, 10]. Fueling

this interest is the vast potential of such surfaces in so-called ’biomimetic’2 applica-

tions, of which the following accounts for only a non-exhaustive list: water repellent and

self-cleaning textiles, windows, coatings and solar cells; micro/nanoelectromechanical

systems with controllable wettability; microscale capillary engines for energy conversion

and energy conservation; anti-icing, corrosion-resistant or current-reducing surfaces; and

1A quantitative criterion for labelling a surface ’superhydrophobic’ will be given in Section 2.2.
2’Biomimetics’ refers to biologically inspired design, adaptation, or derivation from nature [6].
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Figure 1: (a) Cuticle feature [4] of the plant Equisetum arvenese (b). (d) The skin

of the bonnethead shark (Sphyrna tiburo) is covered by micro-sized den-

ticles made of enamel and dentine (c) (scale bar: 50µm), reducing drag

while swimming [5]. (e) Leaves of the lotus flower (Nelumbo nucifera) dis-

play self-cleaning behavior, due to a hierarchical structure at the micro- and

nanoscale (f) [4]. (g) The legs of the water strider (Gerris remigis) [6] con-

sist of numerous oriented microsetae (h) [6] (each of which are again cov-

ered by nanogrooves, not shown), estimated to yield a supporting force higher

than 60 times the weight of its body [7]. Image (b) and (d) are licensed

under the Creative Commons Attribution-Share Alike 2.0 Generic License

[http://creativecommons.org/licenses/by-sa/2.0/deed.en].
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ships, pipelines and microfluidic systems featuring significant reductions in hydrody-

namic drag [1, 6, 9]-[13]. Indeed, various routes for achieving superhydrophobic surfaces

have been identified experimentally in the recent years [1, 14]. Yet, large scale production

of superhydrophobic surfaces that are also mechanically durable, remains a technological

challenge [1, 14].

A natural surface that long has been known to be water repellent [15], is the cuticle

(the ’skin’) of arthropods called springtails, or Collembolas (Figure 2). Springtails are

small (0.2 to 10 mm), wingless hexapods that are abundant on every continent on earth,

including Antarctica [16]. Over 6 500 springtail species have been described, living in

remarkably divergent habitats − although most numerous in soil, leaf litter and rotting

wood, they are found even in glaciers, deserts and at altitudes above 7 700 meters in the

Himalayas [16]. When springtails are studied in electron microscopes, striking micron-

to sub-micron-sized patterns are revealed to exist on their cuticles [15]-[19] − Figure 2

presents an example of which. In combination with a wax layer covering all or part of

the cuticle, these structural features are believed to be responsible for the springtail’s

non-wettable nature. Moreover, the detailed cuticle features vary among species. This

is speculated to reflect adaptations for survival in dissimilar environments [15]-[19].

Recently, Helbig et al. [19] uncovered a notable characteristic of the granules on

springtail cuticles; when cross-sectioned and viewed in a transmission electron micro-

scope (TEM), they clearly displayed an overhanging or re-entrant profile (Figure 3).

Furthermore, the authors argued that the existence of such overhangs could play a key

role in making the springtails water repellent. Also importantly, a sand blast experiment

was performed in order to assess the mechanical properties of the cuticles. The results

suggested that springtail cuticles have a damage resistance that is clearly superior to

that of the natural superhydrophobic surfaces found on plants. In light of the above-

mentioned challenges in producing superhydrophobic surfaces that are also mechanically

stable, this finding renders the springtail cuticle an eminent candidate for technological

imitation.

Several prominent biological systems have been analyzed quantitatively in the last

decade − let alone the superhydrophobic leaves of the Lotus flower [20]-[22], examples

include the legs of the water strider, enabling it walk on water [7], the feet of the

gecko, allowing it to climb vertical walls [23], and the spider web, demonstrating unique

mechanical characteristics [24]. Drawing inspiration from these studies, we aim in the

present study to do a thorough quantitative investigation of the wetting properties of

9



(a) (b)

(c)

Figure 2: SEM images of the springtail Hypogastura viatica. (a) The full springtail body

viewed from above. (b) Magnified view of the dorsal part (its ’back’) of the

springtail. Note the existence of micro-scale hairs (also visible in (a)) and

so-called secondary granules, appearing as tiny, bright knobs in this image.

(c) When zooming further in on the springtail cuticle, a networked pattern of

smaller primary granules are revealed to exist between the secondary granules.

While all springtail species feature primary granules, only some of them display

secondary ones. See Appendix A for additional springtail images.
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(a) (b)

Figure 3: (a) TEM image of a cuticle cross-section of the springtail species Ceratophysella

denticulata [19]. (b) Magnified view of one of the primary granules present in

(a), demonstrating an overhanging granule profile.

springtail cuticles. Such an analysis is desirable on many accounts. For instance, from

a biological viewpoint, we may ask: what advantages − and disadvantages − lie in the

variations seen among cuticle features of different springtail species, and how do these

relate to their natural environments? Similarly, an engineer could restate the question

as follows: which principles guide the non-wetting properties of springtail cuticles, and

how may we employ these for technological purposes? And last, but not least − can

springtail cuticles yield new clues about the physics of wetting phenomena on micro-

and nanoscale-structured surfaces? These are questions that we wish to answer in this

report.

The investigation will be based on a set of wetting measurements performed on nine

different springtail species. SEM and AFM (atomic force microscopy) images will be

used to evaluate each species’ cuticle characteristics. Considering the finding by Helbig

et al. [19] showing overhangs on cuticle granules, an assessment of the overhangs’ alleged

significance will be emphasized. Moreover, a recent study [25] has pointed out that line

energy (in addition to surface energies) may be an important contributor to systems

involving wetting phenomena on the micro- and nanoscale; the potential relevance of

which for the case of springtails will comprise another area of focus.

The outline of the report is as follows. In Section 2, we review the most essential wet-

ting theory for our cause. Next, we begin Section 3 by presenting the results obtained in

the above-mentioned set of wetting measurements performed on nine springtail species.

In the rest of Section 3, we use and develop theory with the purpose of explaining the
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results of the wetting measurements. Finally, we draw conclusions and suggest directions

for future research in Section 4.
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2. Wetting on rough surfaces

In this section, we review wetting theory that are relevant for the discussion later in the

report. Dusting off Young’s statement from 1805 [26] is a natural starting point for that

purpose.

2.1. Young’s statement and its implications

When a small3 droplet is placed or falls onto a smooth, solid surface, it takes the shape

of a sphere that is sectioned by the surface [28]. At the three-phase contact line between

the surface and the droplet (for short, the triple line), a measurable angle θ is then

formed as portrayed in Figure 4 − this angle is termed the contact angle. In fact, this

contact angle is used to determine whether a surface is hydrophilic (water loving) or

hydrophobic (water fearing): hydrophilic surfaces form a contact angle with water below

90◦, whereas hydrophobic surfaces attain contact angles above 90◦. Young [26] stated

that the contact angle is related to the liquid-air (FLA), solid-liquid (FSL) and solid-air

(FSA) surface tensions (force per distance solid-liquid-air contact line) by a force balance

that mathematically is expressed4

FSA = FLA cos θ + FSL. (1)

Figure 4 serves as a sketch of the reasoning; Eq. (1) balances the forces acting on the

triple line in the surface plane.

Contrary to Young’s belief, however, a measurement of the contact angle θ for a given

solid-liquid-air system will generally not be reproducible. Instead, if performing the

same measurement repeatedly, one will obtain values in an interval ∆θ. In other words,

there exists a range of stable contact angles for a given real surface. This phenomenon

is also seen if the perimeter of a liquid droplet is forced to move, for example by tilting

a surface holding a droplet (see Figure 5), or by adding or removing liquid to/from a

droplet with a syringe or by condensation/evaporation. In such experiments, it turns

3A ’small’ droplet is defined here as a droplet with a height smaller than twice the capillary length of

the liquid. The capillary length of a liquid depends on the liquid’s surface tension, its density and

the gravitational acceleration. For water, the capillary length is about 2.7 mm [27].
4Often, Young’s statement is paraphrased as concerning the three phases solid, liquid and vapor, or

solid, liquid and gas. Young, however, considered the phases solid, liquid and air [26].
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Figure 4: The forces acting on a solid-liquid-air contact line. FLA = liquid-air surface

tension, FSL = solid-liquid surface tension and FSA = solid-air surface tension.

out that for a given surface, the liquid tends to advance and recede at fairly constant

contact angles − namely, with an advancing contact angle θa and a receding contact

angle θr. It also turns out, that the contact angle observed for a static droplet can

lie anywhere in between θr and θa [28]. The interval ∆θ can thus be expressed as the

difference (θa − θr). The existence of this range of measurable contact angles is termed

contact angle hysteresis (CAH) and will be discussed in greater detail in Section 2.3.

Figure 5: When the contact line of a droplet is forced to move, exemplified here by

a tilted surface, the droplet generally recedes and advances under different

contact angles. α measures the degree to which the surface is tilted. θr denotes

the receding contact angle while θa denotes the advancing.

Now, if we assume that a given solid-liquid-air system is experiencing a specific contact

angle θ, that may or may not be at equilibrium, we can also use the force balance in

Eq. (1) to predict in which way the triple line will move, or if it will be stationary

[29]. The range ∆θ means that the surface tensions in Eq. (1) are to some extent

adjustable. Their bounds are reached at θ = θr in the one end, and at θ = θa in the

other end. Consequently, when the contact angle θ drops below θr, or extends beyond

θa, the surface tensions are no longer able to adjust; they stay fixed. As a result, when

a system displays a contact angle lying outside the interval {θr, θa}, a net force will be

acting on the triple line. The direction of this force can be deduced from Eq. (1). By

referring to Figure 4, we can summarize this as follows:

• When θ = {θr, θa}, the triple line is stationary.

14



• When θ ≥ θa, the triple line advances (moves to the right in Figure 4).

• When θ ≤ θr, the triple line recedes (moves to the left in Figure 4).

These insights will be used extensively later in the report.

2.2. How roughness affects the contact angle

Real surfaces often exhibit roughness. Even though the contact angle locally still has to

satisfy Young’s statement (Eq. (1)), the roughness of a surface may modify the contact

angle that is experimentally measurable − that is, the macroscopic or apparent contact

angle, denoted θ∗. As indicated in the introduction, a rough surface is in fact crucial for

achieving so-called ’superhydrophobic’ surfaces − the definition of which relies on the

ability of a surface to demonstrate θ∗ > 150◦ when exposed to water [6, 10, 12]. However,

the way in which the contact angle is modified depends on the way in which the droplet

contacts the surface. Two classical equations for estimating the apparent contact angle

− each corresponding to a specific droplet-surface contacting scenario − are the Wenzel

equation and the Cassie-Baxter equation. These two equations are reviewed in the next

two sections.

2.2.1. The Wenzel equation

One may, for example, visualize that the liquid penetrates between the solid rough

asperities as such to make it completely in touch with the solid in the contact region

(Figure 6). For this case, the Wenzel equation [30] predicts the apparent contact angle

(with subscript W for ’Wenzel’) as

cos θ∗W = r
γSA − γSL

γLA
(2)

where r is the roughness coefficient, defined as the ratio between the rough area of the

surface and the area of the surface that would be projected into the surface plane, and

where γSA, γSL and γLA are the solid-air, solid-liquid and liquid-air surfaces free energies,

respectively. As has been noted by Gao and McCarthy [28], surface free energy (γ) and

surface tension (F ) are two different physical quantities, and should not be confused

conceptually. Mathematically, however, they are equivalent [28], so for calculational

purposes we may use |γ| = |F |. Then, Eq. (1) can be inserted into Eq. (2) to yield

15



cos θ∗W = r cos θ, (3)

where θ is the local contact angle, or equivalently, the contact angle that would be

observed on a perfectly smooth surface (r = 1).

Figure 6: The Wenzel wetting state, characterized by physical contact between liquid

and surface everywhere in the apparent contact area.

2.2.2. The Cassie-Baxter equation

Alternatively, one may imagine that the liquid droplet is sitting on top of the roughness

asperities, with air pockets remaining beneath it (Figure 7). In such scenarios, the

Cassie-Baxter equation can be used to predict the apparent contact angle. If f is the

solid fraction of the surface (with surface areas measured as projected into the surface

plane) and rf is the roughness coefficient for this solid fraction, the apparent contact

angle can be estimated as follows5 (subscript CB for ’Cassie-Baxter’) [31, 32]

cos θ∗CB = −1 + f (rf cos θ + 1) (4)

There has been much discussion regarding the (range of) validity of the Wenzel and

Cassie-Baxter equations [33]-[40]. Especially, it has been pointed out that only the sur-

face properties close to the droplet perimeter are important in determining the apparent

contact angle. Moreover, the droplet should be large compared to the roughness features

5Although this form of the Cassie-Baxter equation stems from Marmur [31], it is entirely equivalent

to the original Cassie-Baxter equation [32] − also the original derivation by Cassie and Baxter

considered a surface where the solid fraction was rough.
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Figure 7: A Cassie-Baxter wetting state, characterized by the existence of air pockets

between droplet and surface.

for the equations to apply. Still, the usefulness of these equations is unquestioned. As

Gao and McCarthy states it, ”they should be used with the knowledge of their faults”

[33].

2.2.3. Incorporating line tension into the Cassie-Baxter equation

Three-phase line tension (for short, line tension) refers to the energy related to the line

separating the three phases in a three-phase system. Figure 8 illustrates the concept

and shows how line tension differs from surface free energy. Although line tension is well

recognized and defined from a thermodynamic point of view (measured as energy per

distance triple line), there is little consensus with regards to its magnitude; for solid-

liquid-vapor systems (the other alternative being liquid-liquid-solid systems), values are

reported in a range from 10−9 to 10−6 J/m [41]. Moreover, the effect of line tension is

often neglected when analyzing wetting phenomena. However, for systems containing

very small structures, the amount of triple line may become so large that the resulting

line energy can not be ignored without causing serious errors in the evaluation of the

system. Recently, Zheng et al. [25] argued that this would be the case when liquid

droplets rest upon very small roughness asperities. Consequently, an estimation of the

apparent contact angle for such systems should not only consider surface free energies,

but also line tension. To achieve this, they introduced a modified Cassie-Baxter equation

written (subscript Z for ’Zheng’)

cos θ∗Z = −1 + f (cos θ + 1)

(
1− l

S

)
, (5)

where S is a roughness scale equal to the ratio between the area Asolid and the perime-
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Figure 8: The understanding of three-phase line tension, and its relationship to surface

free energy. Left circle: The well-known concept of surface free energy (γ)

[J/m2]. Molecules at a surface (or interface) neighbor less molecules identical

to themselves than the molecules in the interior of the phase do − the surface

molecules exist therefore at a higher energy level. Right circle: The often ig-

nored concept of three-phase line tension (λ) [J/m]. Liquid phase molecules

near the three-phase contact line are situated in a neighborhood that is fun-

damentally different from that of the ’ordinary’ surface molecules sketched in

the left circle − these ’three-phase molecules’ neighbor molecules from all three

phases and have a lower number of neighbors identical to themselves than the

’surface molecules’ (left circle). They are thus at a distinct energy level, giving

rise to the theory of three-phase line tension. Adapted from Amirfazli et al.

[41].
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ter L of the roughness asperities (see Figure 9), and where l is a ’chemical length’ defined

by

l =
λ

γLA + γSA − γSL
(6)

where in which λ [J/m] is the magnitude of the three-phase line tension. The author

of this report prefers to write Eq. (5) in an equivalent form6

cos θ∗Z = −1 + f

(
rf cos θ + 1− λ

SγLA

)
, (7)

to avoid the intermediate calculation of l. From either form (Eq. (5) or Eq. (7)) it

follows that a decreasing roughness scale S is accompanied by an increased apparent

contact angle θ∗. This means that small roughness asperities, leading to low values7 for

S = Asolid/L, are predicted to increase the apparent contact angle.

Figure 9: When a droplet exists in a Cassie-Baxter state, it sits upon roughness asper-

ities; one of which is shown in the figure. The droplet contacts a roughness

asperity area Asolid. The perimeter of the roughness asperities are denoted L.

To test this finding, Zheng et al. went on to fabricate a set of model surfaces featuring

gradually decreasing roughness scales S. Owing to the lack of consensus regarding the

line tension’s magnitude, they used line tension as a parameter for explaining apparent

contact angles that were measured experimentally on the fabricated surfaces. By doing

so, a line tension magnitude of 1.57 × 10−8 J/m was found to yield a good general

6In line with Eq. (4), the factor rf has been included in Eq. (7). This generalizes Eq. (5) to cases

where the solid fraction of the surface is rough.
7This follows by considering that asperity area (Asolid) scales with asperity width to the second power,

whereas asperity perimeter (L) scales with asperity width to the first power.
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agreement between experiments and theory (Eq. (5)). However, the relation did not

hold for surfaces with roughness scales S below 300 nm, for which Eq. (5) would predict

apparent contact angles to reach 180◦. Instead, a slight decrease in apparent contact

angle was observed for these surfaces. Long-range hydrophobic interaction forces were

proposed to explain this deviation.

Eqs. (3), (4) and (7) will come in handy in Section 3.2, where apparent contact angle

measurements performed on nine springtail cuticles will be analysed.

2.3. Contact angle hysteresis (CAH)

As was mentioned in Section 2.1, real surfaces generally show a range ∆θ of stable

contact angles − a phenomenon termed contact angle hysteresis. The magnitude of

CAH is related to the roll-off angle of a surface, defined as the angle to which a surface

needs to be tilted (the angle α in Figure 2.3), in order for a water droplet to roll off.

A low roll-off angle is essential in many natural and technological systems; for instance,

efficient self-cleaning abilities require a roll-off angle below 10◦ [6]. Accordingly, a low

CAH accounts for an important water repellent property. This motivates a review of

CAH theory in this section.

2.3.1. Is CAH understood?

Before discussing the origins of CAH, however, a debate in today’s research community

should be mentioned − namely, the debate on whether or not contact angle hysteresis is

in fact understood. One could ask: what counts as an ’understanding’ of CAH? Quéré

[42] states his view on this question in this way: ”The contact angle hysteresis still

remains in many cases an open problem − the problem being, for a well-characterized

substrate composed of many defects, calculating the corresponding hysteresis”. Gao

and McCarthy seems to be of a different view as to what counts as an understanding

of the subject. In their 2006 article titled ”Contact Angle Hysteresis Explained” [43],

arguments are put forth that CAH can be understood from perspectives of the three-

phase contact line and of the kinetics of the contact line’s motion. Still, no quantitative

model for calculating the hysteresis is presented in the article, rendering the objective

− as stated by Quéré − not yet accomplished. From the experimental perspective, Bor-

mashenko et al. [44] have investigated to what extent different experimental techniques

for measuring CAH produce the same results. They found that different experimen-
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tal techniques supplied very different CAH values for the same surface, and concluded

that ”the CAH phenomenon is not profoundly understood from both experimental and

theoretical points of view”. Similarly, Marmur declared in a recent review [45] that

”unfortunately, a comprehensive theory of CA hysteresis has not yet been developed,

although some initial steps have been taken”. This statement was later criticized by

Gao and McCarthy [28], who held that ”hysteresis is trivial to explain from the per-

spective of the contact line, and we do not believe that any theory will be very useful”.

In other words, the quality of the current understanding of CAH is disputed. Never-

theless, what is certain is that the efforts to increase our understanding of CAH did

not end with Gao and McCarthy. The annual output of articles concerning CAH has

increased steadily throughout the last decades, and has never been higher than in the

last few years. The rich diversity seen in the approaches employed to study CAH −
examples include phase-field models [46, 47], molecular dynamics simulations [48, 49],

lattice Boltzmann methods [50, 51], as well as numerous mechanical [42, 52]-[57] and

thermodynamic [58]-[64] analyses − illustrates the complexity of the problem. Espe-

cially interesting for our cause are two recent models [57, 62] for predicting CAH for the

special case of surfaces where water generally exists in the Cassie-Baxter state. These

two models will be reviewed in Section 2.4.

2.3.2. The origins of CAH

We now return to the question of what causes CAH. Proposed explanations can be cat-

egorized into two mechanisms [6, 65]: manifestation of the so-called adhesion hysteresis,

and mechanical pinning of the contact line by localized defects. Adhesion hysteresis

is an effect originating at the molecular level and is caused by a restructuring of the

liquid-solid interface over time. As a result, work required to separate two surfaces (re-

ceding edge of a droplet) exceeds the energy gained when the surfaces come together

(advancing edge of a droplet) [66]. This effect can explain why there usually exists some

’intrinsic’ CAH even on chemically and physically defect-free (that is, smooth and homo-

geneous) surfaces; following wetting of a solid surface, the solid-liquid interfacial tension

FLS changes to, say, F ′LS. By Young’s statement (Eq. (1)), this translates into a change

in the contact angle θ. Considering that an advancing contact line will experience the

tension FLS, whereas a receding contact line will experience the tension F ′LS, an intrinsic

contact angle hysteresis is expected [65, 67].
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Mechanical pinning of the contact line can occur either due to chemical or physical

defects. The way in which such defects lead to CAH has been qualitatively well explained

by Gao and McCarthy [43]. Consider first a moving droplet that approaches a chemical

defect at the advancing edge of the contact line. Since this chemical defect is composed

of a different material than the rest of the surface, this surface region displays (for

instance) a higher advancing contact angle θa than the rest of the surface. This means,

that for the droplet to advance over the defect, it must change shape to attain a higher

advancing contact angle near the defect. On the other hand, if the defect approached

by the advancing contact line displays a lower advancing contact angle than the rest of

the surface, no shape change is necessary; by Young’s statement (Eq. (1)), the criteria

for advancing is satisfied. Hence, defects approached by the advancing contact line of a

moving droplet will induce shape changes in the droplet that tend to increase the overall

advancing contact angle. The same reasoning, but applied to defects approached by the

receding edge of the contact line, shows that at this edge, defects will tend to decrease

the overall receding contact angle. The combined effect is then that the hysteresis

∆θ = (θa − θr) increases. Physical defects induce CAH in much the same way. When

a moving contact line approaches an inclined region of the surface (a physical defect),

the intrinsic advancing (or receding) contact angle must be satisfied locally to allow

further motion of the line. To accomplish this, local shape changes of the droplet are

(sometimes) required. By the same arguments as those presented above, there will be a

tendency for the advancing angle to increase and for the receding angle to decrease −
hence contributing to contact angle hysteresis. For both chemical and physical defects,

the corresponding kinetic energy barrier posed to a moving contact line can be deduced

from the droplet shape change necessary to allow further motion: if ∆A is the amount

of extra liquid-air surface involved in the shape change, the kinetic energy barrier can

be expressed ∆E = γLV ∆A [43].

2.4. CAH on composite surfaces

2.4.1. A differential Cassie model by Choi et al.

Having discussed the anticipated origins of CAH, we now consider the special case of

CAH on composite surfaces. ’Composite surfaces’ are understood here as surfaces where

water droplets generally will exist in the Cassie-Baxter state. In this state, the apparent

contact angle of the droplet have traditionally been calculated using the Cassie-Baxter

22



equation (Eq. (4)). However, the Cassie-Baxter equation does not predict the CAH

that is usually evident also in this wetting state [62]. In light of this, Choi et al. [62]

introduced in 2009 a modified Cassie-Baxter relationship, specifically tailored to explain

the CAH on composite surfaces. Their idea was that f (and hence θ∗) in the Cassie-

Baxter equation, the solid fraction of the surface, should not be calculated by considering

the surface as a whole; rather, f should be calculated by considering the solid fraction

of surface for a ’differentially small’ displacement of the contact line. The important

implication of this adjustment, is that f can attain different values at the receding and

advancing edges of a moving droplet − and hence, different apparent contact angles at

each edge. Denoting the two different solid fraction of surface parameters by fa and fr for

the advancing and receding edge, respectively, they obtained the following expressions

for the apparent contact angle at the advancing and receding edge:

cos θ∗a = rffa cos θ1 + (1− fa) cos θ2 (8)

cos θ∗r = rffr cos θ1 + (1− fr) cos θ2 (9)

It is in fact the Cassie equation for a heterogeneous surface [68], which is a general-

ization of the Cassie-Baxter equation reviewed in Section 2.2.2 (Eq. (4)), that has been

modified by Choi et al. For surfaces consisting of solid structures separated by air, which

is the situation that is relevant in our case, θ2 is equal to 180◦ (contact angle for water

in air). By setting θ1 = θ we can then write

cos θ∗a = −1 + fa (rf cos θ + 1) (10)

cos θ∗r = −1 + fr (rf cos θ + 1) (11)

which better elicits the similarity to Eq. (4). For the case of so-called ’discrete

hoodoos’ (square-shaped defects exhibiting an overhanging profile at the edges), Choi et

al. evaluated fa and fr as illustrated in Figure 10. For a differentially small advanced

distance ε, the triple line traverses a homogeneous air region (Figure 10a). Consequently,

fa is zero in this case (no solid fraction of surface). In contrast, for a differentially

small receded distance ε, the triple line traverses a region with solid fraction equal to

fr = 2W/(2W + 2D), where W is the half-width of the hoodoos and D is half the

separation between two hoodoos (Figures 10b and 10c).
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(a) (b) (c)

Figure 10: Calculation of the differential parameters fa and fr in Eqs. (10) and (11)

[62]. (a) Calculation of fa by considering a small triple line displacement at

the advancing edge. (b) Calculation of fr by considering a small triple line

displacement at the receding edge. (c) Calculation of the area traversed in

(b). TCL = Triple contact line, W = half-width of one hoodoo and D = half

the separation between neighboring hoodoos.

CAH is then predicted on the basis of the different values for fa and fr, and hence

also for θ∗a and θ∗r . To evaluate this model, microstructured composite surfaces of vari-

ous geometries were fabricated. Contact angle measurements on these surfaces showed

that the theory was in good agreement with experimental findings. For some of the

surfaces, however, including the discrete hoodoos, the measured advancing contact an-

gle was somewhat lower (164◦) than predicted by the model (180◦). This discrepancy

was ascribed to vibrational perturbations from the laboratory environment, allowing the

droplet to partially relax.

The approach to CAH presented in this section will from now on be referred to as the

Choi model.

2.4.2. A mechanical approach by Dufour et al.

A different approach to describe CAH on composite surfaces has been taken on by

Dufour et al. [57]. By building upon earlier work by Joanny and de Gennes [69] and

Reyssat and Quéré [53], and by utilizing SEM images of UV-cured polymer droplets

sitting on top of microstructures (Figure 11), they attempted to evaluate the magnitude

of the ’deformed’ liquid-air interface area (∆A) at the receding edge of a tilted droplet

(Figures 11b and 11c).

As noted earlier by Gao and McCarthy [43], the required ’deformation energy’ for a
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(a) (b)

(c)

Figure 11: (a) Microstructures fabricated by Dufour et al. [57]. The scale bar equals

5 µm. (b) SEM image of the receding edge of a tilted and cured polymer

droplet sitting on top of the microstructures shown in (a). (c) Underside of

a tilted and cured polymer droplet. Note that the microstructures have been

ripped out of the underlying substrate and appear as knobs. θ̃ denotes the

local receding contact angle.
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deformed liquid-air interface can then be calculated as ∆E = γLV ∆A. After employing

also the Furmidge equation [70], which relates the force per unit contact line length

required to move a droplet, to the droplet’s CAH, they obtained the expression

∆ (cos θ∗) =
∆A

p2
(12)

where ∆ cos θ∗ = (cos θ∗r − cos θ∗a) is an indirect measure of the CAH and where p is

the pitch between the microstructures (see Figures 11a and 12a). The challenge in using

this model is the calculation of the deformation surface area (∆A). To do this, SEM

images of tilted and UV-cured polymer droplets were captured and analyzed (Figure

11b). Based on these images, the deformation surface area caused by one single defect

was estimated by an area described by a semi-revolution of the so-called catenary curve

(Figures 12 and 13).

Figure 12: Schematics of the deformation surface area (∆A) calculation [57]. (a) Top

view of the microstructures (grey circular disks) and the droplet’s contact

line (solid line) at the receding droplet edge. (b) Side view of the liquid-

air interface at the receding edge of the droplet. θ̃ is the local receding

contact angle, whereas θ∗r is the apparent (macroscopic) receding contact

angle. (c) Seeing the droplet ’from behind’, focusing on the shape of the

liquid-air interface (solid line) between the microstructures. Compare with

Figure 11c. (d) Magnified view of (c), showing the shape of the modelled

liquid-air interface at a single defect, and highlighting the parameters used

in the calculation of ∆A.

The catenary curve can be described analytically as
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Figure 13: A numerical estimate of the area of a semi-revolved catenary curve for the

special case of θ̃ = 90◦. [57]

y = r cosh

(
x− k
r

)
, (13)

where the parameter r is the ’waist radius’ of the catenary curve and the parameter k

is the catenary center (the point on the x-axis corresponding to the minimum y value,

see Figure 12d). These two values can be computed by taking into account the boundary

conditions y(0) = b and y′(0) = tan
(
π
2
− θ̃
)

, where b refers to the half-width of each

defect and θ̃ refers to the local (intrinsic) receding contact angle (Figure 12). Following

this, the deformation surface area ∆A can be calculated as

∆A =

∫ π

0

∫ u

0

(
y(x)

√
1 + y′(x)2

)
dxdθ (14)

where u is the maximal deformation between two defects (see Figures 12 and 13) and

can be evaluated as [57]

u = k + r arccosh
( p

2r

)
. (15)

A numerical solution of Eq. (14), for the case where θ̃ = 90◦, is shown in Figure 13.

After ∆A has been calculated, Eq. (12) can be used to obtain an (indirect) prediction
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of the CAH. Dufour et al. used this approach to study how the local contact angle θ̃

affects the CAH on such surfaces. This approach will be referred to in the following as

the Dufour model.

2.5. Stability of a metastable Cassie-Baxter state

To motivate our interest in the stability of a metastable Cassie-Baxter state, it is nec-

essary to reveal a finding that will be made later in the report − namely, that water

droplets seem to exist in a metastable Cassie-Baxter state on springtail cuticles. This

means that an energy barrier is preventing the system from transitioning to a Wen-

zel state that is − in this case − lower in energy than what the Cassie-Baxter state

is. In fact, this feature is not unique for springtails − it is shared with several other

synthetic and natural wetting systems [71]. Since a Cassie-Baxter state is considered

to be required for achieving superhydrophobic properties [72, 73], the stability of such

metastable Cassie-Baxter states has received much attention in the recent years [71].

How should the energy barrier against a transition from a Cassie-Baxter state to a

Wenzel state be evaluated? The answer to this question depends on how the transition

occurs. This, again, is related to what kind of stimulus it is that drives the transition.

In a recent review on the topic, Bormashenko et al. [71] lists the following stimuli that

have been observed to cause this so-called ’Cassie-Wenzel transition’: droplet gravity,

pressure applied to the liquid phase, droplet impact, droplet evaporation, electric fields

in electrowetting experiments, and vibration of droplets. For understanding apparent

contact angle measurements performed on springtail cuticles, droplet gravity is the rele-

vant stimuli. However, for illuminating how the wetting properties of springtail cuticles

affect the springtail’s life in nature, or, analogously, for evaluating potential applications

of springtail-inspired engineered surfaces, it would also be interesting to investigate the

stability of the Cassie-Baxter state in outdoor and underwater scenarios. For this pur-

pose, the effects of droplet impact (e.g., rain) and immersion will be considered as well.

2.5.1. Cassie-to-Wenzel transition mechanisms

Droplet gravity, immersion and droplet impact is treated here as sources to an increased

hydrostatic pressure in the liquid phase, resulting in a pressure difference ∆P across

the interface separating the liquid and the air pockets beneath it (assuming a Cassie-

Baxter state). The problem can then be restated as follows: how high a hydrostatic
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pressure is the liquid-air interface able to support? This leads us back to the question

of how the transition occurs. Two transition mechanisms that are physically realistic8

and often proposed [29, 79]-[86] in the case of a hydrostatic pressure, are sag transitions

and de-pinning transitions [86]:

Sag transition If there exists a pressure difference ∆P across a liquid-air interfacial ele-

ment, the Young-Laplace equation [87] predicts the equilibrium curvature of the element

to be described by

∆P = γLV

(
1

R1

+
1

R2

)
, (16)

where γLV is the surface free energy of the liquid-air interface and where R1 and R2

are the principal radii of curvature of the element (Figure 14). When the Young-Laplace

equation is applied to a liquid droplet sitting on a composite surface, it implies that if the

hydrostatic pressure of the droplet is greater than the air pressure beneath it, the liquid-

air interface will (in equilibrium) show a net deflection down towards the bottom of the

substrate. Thus, the liquid-air interface will exhibit a sag distance (Figure 15a). When

this sag distance becomes greater than the height of the roughness features, the liquid

will touch the substrate bottom. As this happens, it has been observed [73, 88, 89] that

the system undergoes a transition from a Cassie-Baxter to a Wenzel state (assuming,

still, a metastable Cassie-Baxter state).

De-pinning transition A change in the curvature of the liquid-air interface will also

induce a change in the local contact angle θ (Figure 15b). As discussed in Section 2.1,

if θ increases such that θ ≥ θa, it follows from Young’s statement that the triple line

will advance. Hence, the triple line will no longer be pinned at its original position. If

the shape of the roughness features allows it, the triple line may advance the whole way

down to the substrate bottom. In that case, a de-pinning transition has taken place.

In many cases, both sagging and de-pinning mechanisms will be involved in a Cassie-

Wenzel transition. The relative importance of each mechanism is determined by the

chemical properties of the system (through γLV , θr and θa) and by the shape of the

roughness features that are bridged by the liquid-air interface. It should be noted that

8Indeed, many other proposed transition mechanisms [74]-[78] are in violation with Young’s statement

and/or the Young-Laplace equation (Eq. (16)).
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Figure 14: An interfacial element expanding due to a pressure difference across the in-

terface [87]. R1 and R2 are the principal radii of curvature of the element.

They are regarded as positive when the interface bends towards the air phase.

(a) Sag transition (b) De-pinning transition

Figure 15: Two general mechanisms that can lead to a Cassie-Wenzel transition, result-

ing from a hydrostatic pressure. Adapted from Patankar [86].
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these mechanisms are relevant for all kinds of roughness features, not only for straight-

walled features as those depicted in Figure 15.

2.5.2. How to estimate the Cassie-Baxter state stability

Having discussed probable mechanisms for a system to undergo a Cassie-Wenzel transi-

tion, we are now ready to analyze the stability of the Cassie-Baxter state quantitatively.

Two useful approaches for this purpose will be reviewed in the next two sections. In

these approaches, the Cassie-Baxter state stability is evaluated in terms of the maxi-

mum pressure difference that the system can sustain, without transitioning into a Wenzel

state. Indeed, this way of measuring the stability is the most appropriate in our case;

the maximum pressure difference estimates can easily be compared to the hydrostatic

pressure that arises from droplet gravity, immersion, or droplet impact.

2.5.3. De-pinning and sagging predicted by the Young-Laplace equation

As described in Section 2.5.1, a pressure difference across a liquid-air interface gives

rise to a curved liquid-air interface, and the pressure difference and the curvature of

the interface are related by the Young-Laplace equation (Eq. (16)). In fact, by em-

ploying boundary conditions specific to the surface, the Young-Laplace equation makes

it possible (at least in principle) to determine the spatial distribution of the liquid-air

interface for a given surface geometry and a given pressure difference. Both the sag

distance and the change in local contact angle, resulting from a pressure difference, are

geometrically related to the spatial distribution of the liquid-air interface. Thus, if one

is able to solve the Young-Laplace equation in the relevant spatial region, one can obtain

the sag distance and the change in contact angle for a given pressure difference. Subse-

quently, the sag distance can be compared to the height H of the roughness features of

the surface, and the changed contact angle can be compared to the advancing contact

angle θa. The former comparison will serve as a prediction of a sag transition, while the

latter will estimate the onset of a possible de-pinning transition. Luo et al. [29] have

performed a theoretical analysis in this way for the case of micro-structured striped

surfaces. By studying such a surface, they could approximate the liquid-air interface

shape well by considering only one radius of curvature − hence simplifying the problem

significantly. Experimental investigations on PDMS surfaces fabricated with a similar

structure showed good agreement with the theoretical analysis [29].
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An advantage by using this approach, is that both sag transitions and de-pinning

transitions can be predicted. A disadvantage is the need for determining the spatial

distribution of the liquid-air interface, which can be demanding for a three-dimensional

system. However, as mentioned above, if considering only a two-dimensional system,

there is only one radius of curvature that comes into play in the Young-Laplace equation

(Eq. (16)). This simplifies the problem substantially. In Section 3.3.1, such an approach

will be used to construct a two-dimensional model for determining the Cassie-Baxter

state stability on springtail cuticles.

2.5.4. Direct relation between pressure difference and surface tension

A simpler approach to this problem was proposed by Zheng et al. in 2005 [79]. Their

claim was that the downward force on the liquid-air interface, produced by the pressure

difference ∆P , had to be balanced by the force represented by the vertical component

of the liquid-air surface tension FLA along the triple line (taking the surface plane as the

horizontal direction), for the liquid to remain pinned on top of the roughness features.

The situation is illustrated in Figure 16, which depicts a repetitive unit of a composite

surface. The repetitive unit contains one roughness feature and its associated space

around it. The roughness feature is partially wetted by a liquid phase that is pressed

down from above. Now, let A be the area corresponding to a horizontal cross-section of

the repetitive unit, let Asolid be the horizontal cross-section area of the roughness feature

and let L be the total triple line length contained in the repetitive unit. The balance

stated by Zheng et al. can then be expressed in mathematical terms by

∆P (A− Asolid) = −LFLA cos θ, (17)

giving

∆P =
−LFLA cos θ

(A− Asolid)
(18)

for the maximum sustainable pressure difference (note that cos θ < 0 for a hydrophobic

surface, as is considered here). By employing this simple ’force balance’, they obtained

the same maximum pressure difference as that calculated by a method similar to that

described in Section 2.5.3. Since then, several other groups have used the same argument
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[82, 83, 84]. It is interesting, however, that a proper motivation for this relation was

not given before 2010 in a study by Afferrante et al. [84]. In fact, the ’force balance’

presented by Zheng et al., and restated later by Wang et al. [83] and by Tuteja et al.

[82], can not simply be understood as a force balance − the obvious reason for this, is

that the force due to the hydrostatic pressure, acting on the liquid-air interface, and the

force resulting from the vertical component of the liquid-air surface tension, act in the

same direction − down towards the substrate. Nevertheless, the relation as stated in

Eq. (18) is correct, as was shown by Afferrante et al. as follows:

(a) (b)

Figure 16: Schematics used in the derivation of a direct relation between the pressure

difference (∆P ) and the liquid-air surface tension (FLA). (a) 3D-view of a

repetitive unit (dashed line) of a composite surface, containing one roughness

element and its associated space. The solid line corresponds to the triple line.

The liquid-air interface is not shown. (b) 2D-view of the same repetitive unit

(dashed line), highlighting the forces at play (see text for more information).

First, the vertical forces acting on one of the roughness features of the surface are

considered (Figure 16b). The hydrostatic pressure acts downwards on the roughness

feature with a force (∆P )Asolid. Moreover, the downward vertical force on the roughness

feature arising from the liquid-air surface tension is equal to −LFLA cos θ (Figure 16b)

(note again that cos θ < 0 here). Finally, there must exist a force that makes it possible

for the roughness feature to stay in place, even though it is being pushed down from

above by the liquid phase. This is the upward force F , originating from the substrate

beneath the roughness feature. In summary, we thus have the following force equation
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for the vertical forces acting on one roughness feature:

(∆P )Asolid − LFLA cos θ − F = 0 (19)

Second, we zoom out and analyze the forces acting on the entire repetitive unit (Figure

16b). From above, we now have a force from the hydrostatic pressure that equals (∆P )A.

From below, only the force F , originating from the substrate as before, is acting on the

unit. For the entire repetitive unit to be in equilibrium, it is therefore required that

F = (∆P )A. Taking this equality into account, Eq. (19) can now be written

(∆P )Asolid − LFLA cos θ − (∆P )A = 0 (20)

∆P (A− Asolid) = −LFLA cos θ (21)

∆P =
−LFLA cos θ

(A− Asolid)
(22)

which is identical to the relation posed in Eq. (18).

The calculational simplicity of this approach comes at a price: by avoiding the evalua-

tion of the spatial distribution of the liquid-air interface, one has no information available

regarding the sag distance (Figure 15a). As a result, this approach can only be used to

estimate the stability against a de-pinning transition.

In Section 3.3.4, this approach will be used to obtain a three-dimensional estimate of

the Cassie-Baxter state stability against a de-pinning transition.
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3. Wetting properties of springtail cuticles

3.1. Contact angle measurements on nine springtail species

In a study performed by our group, contact angle measurements9 involving water droplets

on nine different springtail species (Figures 20-28, Appendix A) supplied the results given

in Table 1. Two general findings are immediately noticeable from the table: 1) Apparent

contact angles are very high on springtail cuticles, and 2) With the exception of Xenilla

maritima, springtail cuticles display very low contact angle hysteresis. In the following

sections, our aim will be to use and develop theory that can account for these findings.

Table 1: Contact angle measurements on nine springtail species. (SG) signifies that the

springtail species features secondary granules.

Springtail species θ∗r θ∗a ∆θ∗

H. viatica (SG) 163.2 167.9 4.7

I. prasis 164.1 168.2 4.1

F. quadrioculata 166.5 171.0 4.5

A. septentrionalis (SG) 164.8 168.3 3.5

A. besellsi (SG) 164.5 169.6 5.0

C. clavatus 166.2 166.0 -0.2

A. laricis 161.2 157.4 -3.9

I. anglicana 158.6 154.3 -4.3

X. maritima 132.4 158.7 26.3

3.2. Explaining the high apparent contact angles

Table 1 shows that apparent contact angles are very high on springtail cuticles; indeed,

many of them meet the criterion of being labelled superhydrophobic (θ∗ > 150◦). As was

also mentioned in the introduction, this non-wettable nature of springtail cuticles has

been known for a long time. However, what causes these high apparent contact angles?

This is what we seek to understand in this section.

9The advancing and receding contact angles were measured by use of a goniometer under addition and

subtraction of water, respectively.
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3.2.1. The chemical nature of springtail cuticles

As a starting point, we need to consider the chemical nature of springtail cuticles. In-

deed, this has been paid some attention in the literature. Studies performed on the

springtail species Podura aquatica and Tomocerus flavescens indicate, in similarity with

what is found for many insects, that springtails feature a wax layer on their cuticles

[15, 17]. Moreover, upon removal of this layer, it has been shown that the springtail’s

hydrophobic properties disappear [17]. It seems likely, therefore, that such a wax layer

is present on the springtails considered in Table 1, allowing them to exhibit hydropho-

bic properties. By assuming the existence of a wax layer, a reasonable estimate for the

intrinsic contact angles (i.e., the contact angles that would be observed on a smooth sur-

face) on springtail cuticles can be obtained by considering contact angle measurements

performed on smooth, waxy insect cuticles. Holdgate [90] found that such cuticles fea-

tured receding and advancing contact angles generally in the range of 90◦ − 100◦ and

100◦−110◦, respectively (the measurements were performed using water droplets, which

is the relevant liquid also in our case). In line with this, we estimate that the springtail

cuticles exhibit intrinsic receding contact angles of 95◦ and intrinsic advancing contact

angles of 105◦. Given these estimates, the chemical nature alone does not explain the

high apparent contact angles observed on the springtail cuticles. As we saw in Section

2.2, however, the roughness of a surface does also affect the apparent contact angle.

The effect of roughness on the apparent contact angle is therefore considered in the next

section.

3.2.2. Effect of roughness on the apparent contact angles

In Section 2.2 we reviewed two classical equations for explaining how the roughness of a

surface can affect the apparent contact angle − namely, the Wenzel equation (Eq. (3)),

derived by assuming no air pockets between droplet and surface, and the Cassie-Baxter

equation (Eq. (4)), where the opposite assumption is made (air pockets exist). We now

wish to investigate whether these equations can shed light over the apparent contact

angle measurements listed in Table 1.

To do so, however, a determination of the roughness coefficient (r) and the solid

fraction of surface (f) is required for each of the springtail species10 − this has been

10The roughness coefficient of the solid fraction (rf ) has been approximated as 1.
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achieved by inspecting SEM and AFM images of the relevant springtails11 (Figures 20-

28 in Appendix A). For the springtails featuring secondary granules (denoted (SG) in

Table 2), it has been assumed that water droplets are situated on top of these when

calculating f . It should be noted that the contribution from hairs to these structure

parameters has not been considered, and that it has been assumed that water droplets

penetrate between the hairs (not sitting on top of them) when evaluating f . In fact,

the studied springtails show a great diversity in their amount of hair (compare e.g.

Isotomurus prasis (Figure 21a) and Anurophorus septentrionalis (Figure 23a)), while at

the same time rather similar wetting characteristics (Table 1). Therefore, although the

cuticle hairs are likely to affect the problem, they are not emphasized here12. Another

comment that should be made, regards the fact that the Wenzel and the Cassie-Baxter

equations do not consider contact angle hysteresis. Thus, only a single ’equilibrium’

intrinsic contact angle θ goes into these equations. As a value for this angle, we use

100◦, which is the average of the estimated receding and advancing intrinsic contact

angles. Based on these assumptions, the Wenzel and Cassie-Baxter equations13 predict

apparent contact angles as given in Table 2. The measured apparent contact angles are

repeated for comparison.

From Table 2, we first note that the Wenzel equation is not at all able to account

for the contact angle measurements performed on the springtail cuticles. Hence, water

droplets on springtail cuticles appear not to exist in a Wenzel state of wetting under

normal laboratory conditions. On the contrary, water droplets should then exist in

a Cassie-Baxter state of wetting, exhibiting air pockets between surface and droplet.

However, the Cassie-Baxter equation does not predict correct apparent contact angles

for all springtails − with the exceptions of Archisotoma besellsi and Xenilla maritima,

the apparent contact angles are notably underpredicted. Different views may be put

11AFM images were not available for all considered springtails. As a result, height measurements were

not possible to perform for all species. In these cases, average values of those obtained from other

springtails were used.
12See Blow et al. [91] for a theoretical analysis of hairy surfaces.
13Regarding the validity in using these equations for springtail cuticles (see discussion in Section 2.2):

We assume here that the surface parameters r, f and rf are the same in the vicinity of the droplet

perimeter as they are on the dorsal part of the springtail cuticles (their backs), as are imaged by

use of SEM and AFM as shown in Figures 20-28 (Appendix A). Furthermore, it is noted that the

roughness features of the cuticles are much smaller (. µm) than the water droplets used in the

measurements (∼ mm), as required.
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Table 2: Apparent contact angle predictions for nine springtail cuticles, based on the

Wenzel equation (θ∗W ) and the Cassie-Baxter equation (θ∗CB).

Springtail species r f θ∗W θ∗CB θ∗r θ∗a

H. viatica (SG) 2.19 0.16 112.4 150.2 163.2 167.9

I. prasis 1.16 0.17 101.6 149.3 164.1 168.2

F. quadrioculata 1.19 0.35 101.9 135.3 166.5 171.0

A. septentrionalis (SG) 1.71 0.31 107.3 138.1 164.8 168.3

A. besellsi (SG) 2.16 0.06 112.0 161.9 164.5 169.6

C. clavatus 1.35 0.44 103.6 129.5 166.2 166.0

A. laricis 1.18 0.64 101.8 118.1 161.2 157.4

I. anglicana 1.36 0.34 103.7 136.0 158.6 154.3

X. maritima 1.20 0.22 102.0 144.9 132.4 158.7

forward to explain these discrepancies. First of all, the approximate nature of the

surface parameters r and f should be emphasized. As mentioned in Section 2.2, it

is the surface characteristics close to the droplet perimeter that determines the wetting

state of a droplet. One can not take for granted that the cuticle region considered when

evaluating r and f in this study accurately represents the cuticle region where the droplet

perimeter is settled in a contact angle measurement. In light of this, it is interesting

to note that an experimental study performed in our group, recently showed that there

indeed exists some variance in a springtail’s cuticle features on the same animal [93].

Another complicating factor for determining surface parameters is the effect of hairs.

That being said; it is difficult to comprehend how e.g. Anurophorus laricis (Figure 26

in Appendix A) − containing only a few hairs, and displaying quite densely packed

granules − can support water droplets with a solid fraction of surface (f) below 0.08

− this would be required for the Cassie-Baxter equation to predict an apparent contact

angle equal to that measured. There seems to be more to it.

3.2.3. Effect of line tension on the apparent contact angles

A second explanation concerns the concept of line tension, which was introduced in

Section 2.2.3. The original Cassie-Baxter equation (Eq. (4)) does not take line tension

into account. Yet, given the small (micron to sub-micron) size scale of the roughness

features apparent on springtail cuticles, there will be a large total triple line length when

a droplet exists in a Cassie-Baxter state on these features − thus permitting a prominent
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role for line tension in determining the forces felt by the droplet perimeter. As described

in Section 2.2.3, line tension can be incorporated in the Cassie-Baxter equation as given

by Eq. (7). By using this equation, we now inquire what line tension magnitude is

necessary for predicting apparent contact angles as those that are measured (Table 1).

The results14 are displayed in Table 3, which also includes the estimated roughness scale

S for each species (determined, as before, by inspecting the SEM and AFM images in

Figures 20-28 in Appendix A).

Table 3: Line tension magnitudes required for Eq. (7) to explain apparent contact angle

measurements performed on nine springtail cuticles.

Springtail species S [nm] λ [J/m]

H. viatica (SG) 958 4.40× 10−8

I. prasis 576 2.67× 10−8

F. quadrioculata 463 2.61× 10−8

A. septentrionalis (SG) 1074 5.79× 10−8

A. besellsi (SG) 897 2.64× 10−8

C. clavatus 315 1.75× 10−8

A. laricis 625 3.31× 10−8

I. anglicana 350 1.49× 10−8

X. maritima 520 1.11× 10−9

Table 3 shows that a line tension magnitude of the order of 10−8 J/m makes it possible

to explain the apparent contact angle measurements performed on springtail cuticles.

This line tension magnitude is within the range of values that are reported in the liter-

ature [41], and correspond well with the magnitude recently found by Zheng et al. [25].

It is also noted that the roughness scales S are all greater than 300 nm, and are thus

within the roughness scale range in which Zheng et al. found Eq. (7) to yield a good

agreement between experiments and theory.

There is some variation in the values obtained for λ, however. This may again be

a reflection of the difficulties in retrieving accurate surface parameters based on SEM

and AFM images portraying only a very small region of the cuticle. Another possibility

14It is the averages of the measured receding and advancing apparent contact angles (
θ∗r+θ

∗
a

2 ) that have

been used to calculate the required line tension magnitude.
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is that this variation arises due to differences between the springtails regarding their

physical and/or chemical characteristics. After all, the nature of line tension is not fully

understood, and its magnitude may well have dependencies that have not yet been re-

vealed [41].

One important assumption made in this section has not been thoroughly discussed.

This is the assumption that water droplets is situated in a Cassie-Baxter state (that is,

the ’air pocket’ state) on springtail cuticles, and not in a Wenzel state. Why should

this be so? In fact, Patankar [92] has shown that the wetting state that predicts the

lowest apparent contact angle, corresponds to the wetting state of lowest global energy.

Thus, for springtail cuticles, a Wenzel wetting state yields the lowest global energy of the

system − this state is the thermodynamically stable one. As was mentioned in Section

2.5, this renders the Cassie-Baxter state only metastable. This implies the existence

of an energy barrier inhibiting the system from transitioning from the higher energy

Cassie-Baxter state to the lower energy Wenzel state. This energy barrier is the subject

of the following section.

3.3. How springtails hold water in a Cassie-Baxter state

In the case of a continuous liquid phase approaching the cuticle from above (which is

the scenario relevant for us), it is clear that the system initially will exist in a Cassie-

Baxter state, before a potential progression to a Wenzel state. But what constitutes

the energy barrier working against such a transition? As discussed in the introduction,

Helbig et al. [19] proposed − qualitatively − that the overhanging profile of the granules

(Figure 3) can give rise to such an energy barrier. This proposition will be investigated

in quantitative terms in this section.

Close to the completion of this report, however, an experimental study performed

in our group [93] showed that not all springtails exhibit overhangs on their granules.

Thus, for explaining the existence of an energy barrier, one can not rely solely on an

overhanging granule profile for all of the springtails. It will be shown, however, that

the exact same models as those that will be used and developed for an overhanging

profile, also can be used to analyze the energy barrier caused by granules not exhibiting

an overhang. Following this, it will be seen that re-entrant granules are in fact not

necessary to explain the existence of an energy barrier. Re-entrant structures do affect

40



the Cassie-Baxter state stability, however. Thus, a quantitative consideration of this

matter is still of relevance.

Interestingly, an article by Tuteja et al. [82] studies the stability of the Cassie-Baxter

state on a surface containing roughness elements that are quite reminiscent of the spring-

tail granules, and that study could potentially have served us here. However, this article

suffers from some shortcomings. First, their starting point is a so-called ”generalized

force balance”, stated without further motivation. This ’balance’ corresponds to the

direct relation between pressure difference and surface tension that was discussed in

Section 2.5.4 (Eq. (22)). As we saw, this relation is in itself not a force balance. Still,

the relation is correct, and can be used to predict the stability against a de-pinning

transition. However, the way Tuteja et al. have employed the direct relation between

pressure difference and surface tension is only valid in the limit where roughness element

separations (denoted d0 below) are infinitely larger than the radius describing the shape

of the overhang (denoted r below). Second, by using the direct relation between pres-

sure difference and surface tension, no information is available concerning the detailed

shape of the liquid-air interface penetrating between the granules for a given hydro-

static pressure. Thus, the pressure necessary for inducing a sag transition can not be

revealed easily. In an attempt to overcome this, a derivation involving several math-

ematical approximations are conducted, with the result being an approximate design

parameter to guide in the stability against a sag transition caused by gravity. Hence,

the study by Tuteja et al. can not be used to predict the Cassie-Baxter state stability

of springtail cuticles under e.g. immersion or impact by rain droplets. A more general

model is therefore required. In the following, such a model is presented, which not only

predicts the stability against a de-pinning transition, but also the stability against a

sag transition, for any source of hydrostatic pressure and without making mathematical

approximations. The model is based on the approach outlined in Section 2.5.3.

3.3.1. 2D model of the springtail cuticle overhang

From Figure 3, it is seen that an important part of the overhang has a shape that can

well be described by a circular arc. We use this observation to perform a two-dimensional

consideration of the overhang’s interplay with a liquid phase that approaches and even-

tually contacts the surface. Figure 17 sketches the situation. The liquid-air interface

is regarded as flat (zero curvature) as it approaches the granules. Considering that the
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Figure 17: Evolution of the position and curvature of the liquid-air interface (blue lines)

as it penetrates the granule pattern from above. The red part of the overhang

is approximated as a circular arc, described by the radius r. See text for more

information.
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granules are in the micron to sub-micron size scale, this simplification is reasonable for

a macroscopic liquid phase. Now, as soon as this flat liquid-air interface touches the

granule, it will (in addition to FLA) be subject to the surface tensions FSL and FSA at

the triple line. Following this, the evolution of the triple line’s position will thus be

described by Young’s statement (Eq. (1)) and its implications. At first, the contact

angle (θ) is nearly 180◦ (event (I) in Figure 17). Since the advancing contact angle (θa)

for springtail cuticles is estimated to be around 105◦, θ exceeds θa. Young’s statement

then implies that the triple line advances until θ < θa. As the triple line advances, such

a lowering of the local contact angle is naturally facilitated by the shape of the granule,

ensuring θ < θa at some point along the overhang. If no pressure difference across the

liquid-air interface exists at this point, the local contact angle may settle anywhere in the

interval {θr, θa} − say, at θ0 (event (II) in Figure 17). It is now assumed that the triple

line is situated somewhere on the circular part of the overhang (this depends on θ0, and

is reasonable for θ0 . 105◦). If imagining a circle segment as illustrated in Figure 17, we

can now describe the triple line’s position by the angle α, measured counter-clockwise

from ’three o’clock’ (by analogy to the unit circle).

For the triple line to advance further down the overhang, the criterion θ ≥ θa needs to

be satisfied again. As was noted above, the Young-Laplace equation (Eq. (16)) predicts

that if a pressure difference exists across a liquid-air interface, the interface will have a

net curvature (in equilibrium). Specifically, if the hydrostatic pressure of the liquid phase

is increased, leading to a pressure difference ∆P , the liquid-air interface will be forced to

bend downwards. This increases the local contact angle θ by an amount β (event (III) in

Figure 17). If the pressure difference becomes sufficiently high, θ will thus at some point

reach θa again, allowing further advancement of the triple line. Once more, however, an

advancement of the triple line will be associated with a decrease in the contact angle,

due to the re-entrant geometry of the granule. Consequently, an even higher pressure

difference is needed for the triple line to advance even further. The continued action of

this mechanism makes the triple line effectively pinned on the granule until the pressure

difference is so high that the triple line have advanced all along the overhang (by that

time, however, a sag transition might have occured).

To obtain a quantitative measure of the pressure difference necessary for the triple

line to advance to a given position α along the overhang, we use the Young-Laplace

equation (Eq. (16)). Figure 18 aids in the derivation, displaying two granules with a

liquid-air interface penetrating between them. As a result of a pressure difference ∆P ,
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Figure 18: Geometrical relationships between the liquid-air interface curvature R, the

sag distance ∆Z, the advancing contact angle θa and the triple line’s position

along the overhang, measured by the angle α. See text for a more detailed

description.
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the liquid-air interface is curved. In this two-dimensional consideration, the curvature

of the liquid-air interface is described by only one radius of curvature, which is denoted

here by R (perpendicular to the paper plane, the curvature is considered to be zero).

The Young-Laplace equation then reads

∆P =
γLA
R
. (23)

Now, to relate the pressure difference to the (equilibrium) triple line position, it is

noted from Figure 18 that

θa = α + 90◦ + β. (24)

Moreover, it is seen that

sin β =
d/2

R
(25)

where d is the distance between the two granules, measured from the triple line position

at each granule. By considering how this distance varies as the triple line changes position

α along the overhang, we obtain

d = d0 + ∆d(α) = d0 + 2r [1− cos(α− α0)] (26)

where d0 is the distance between the granules at α = 0 (the shortest inter-granule

distance), r is the radius of the circle describing the circular part of the overhang and α0

is the initial triple line position on the overhang (the triple line position corresponding to

θ = θ0). From Figure 17 it is noted that α0 =
(
θ0 − π

2

)
. Thus, Eq. (26) can alternatively

be written

d = d0 + 2r
[
1− cos(α− θ0 +

π

2
)
]

= d0 + 2r [1 + sin(α− θ0)] . (27)

Furthermore, by taking the two-dimensional Young-Laplace equation into account

(Eq. (23)), we can restate β as follows:
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β = arcsin
d/2

R
= arcsin

d∆P

2γLA
= arcsin

[d0 + 2r (1 + sin(α− θ0))] ∆P

2γLA
. (28)

Inserting Eq. (28) into Eq. (24) results in

θa = α + 90◦ + arcsin
[d0 + 2r (1 + sin(α− θ0))] ∆P

2γLA
. (29)

This equation can in turn be rearranged to give

∆P =
2γLA sin (θa − 90◦ − α)

d0 + 2r [1 + sin(α− θ0)]
=

−2γLA cos (θa − α)

d0 + 2r [1 + sin(α− θ0)]
, (30)

which relates the pressure difference ∆P to the triple line position α, as desired.

The maximum pressure difference predicted by Eq. (30) corresponds to the pressure

difference necessary for the triple line to slide past the entire overhang (assuming that

this pressure difference is sustained). Thus, Eq. (30) can be used to estimate the stability

of the Cassie-Baxter state against a de-pinning transition, provided values for d0, r, θ0,

θa and γLA are available. Eq. (30) also reveals clues regarding what kind of surfaces will

effectively resist de-pinning wetting transitions. For one, it is seen that small granule

separations d0 enhances the stability. Second, it is observed that the existence of an

overhang enables the factor [− cos (θa − α)] to be maximized, due to the wide range of

possible α implied by the existence of an overhang. The proposal by Helbig et al. [19]

is therefore supported by this model, in that re-entrant granule profiles contribute to a

more stable Cassie-Baxter state.

Furthermore, by using this model we can also calculate the sag distance (∆Z in

Figure 18) and predict the stability against a sag transition. For this purpose, we start

by employing the Pythagorean theorem to the triangle ABC in Figure 18 and realize

that the distance AB is equal to (R−∆Z) when 0◦ < β < 90◦ and (∆Z −R) when

β > 90◦. This allows us to express ∆Z in terms of d and R as

∆Z = R−

√
R2 −

(
d

2

)2

when 0◦ < β < 90◦ (31)

and
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∆Z = R +

√
R2 −

(
d

2

)2

when β > 90◦. (32)

From Eq. (25) we have

R =
d

2 sin β
(33)

Hence, ∆Z can be expressed further as

∆Zβ < 90◦, β > 90◦ =
d

2 sin β
∓

√(
d

2 sin β

)2

−
(
d

2

)2

=
d

2 sin β
∓ d

2

√
1

sin2 β
− 1 (34)

=
d

2 sin β
∓ d

2

√
1− sin2 β

sin2 β
=

d

2 sin β
∓ d

2

(± cos β)

sin β
(35)

=
d

2 sin β
(1− cos β) , (36)

where it is noted that the last expression for ∆Z is valid for β both below and above

90◦. Now, by inserting Eqs. (25) and (27) into Eq. (36), ∆Z can be stated as a function

of α as

∆Z(α) =
[d0 + 2r (1 + sin(α− θ0))] [1− cos (θa − 90◦ − α)]

2 sin (θa − 90◦ − α)
(37)

= − [d0 + 2r (1 + sin(α− θ0))] [1− sin (θa − α)]

2 cos (θa − α)
. (38)

With h given as in Figure 18, the sag distance measured from the top of the granule,

denoted ∆Ztop, can be calculated according to

∆Ztop(α) = h− r sinα− [d0 + 2r (1 + sin(α− θ0))] [1− sin (θa − α)]

2 cos (θa − α)
. (39)

By comparing ∆Ztop to the height of the granules (designated H), the triple line po-

sition α where a sag transition occurs can be determined. Finally, then, this value for
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α can be inserted into Eq. (30) to find the pressure difference ∆P that is necessary for

causing the sag transition. Analogous to Eq. (30) and de-pinning transitions, Eq. (39)

illuminates surface features that enhances the stability against sag transitions. Espe-

cially, it is evident that a small granule separation d0 reduces the sag distance, thereby

increasing the stability against a sag transition. Thus, a small granule separation seems

to make for an efficient route towards Cassie-Baxter state stability − this enhances the

stability against both a de-pinning transition and a sag transition.

3.3.2. Extension of the 2D model to granules without overhangs

The model developed in the previous section can easily be extended to account for

surfaces consisting of granules that do not exhibit re-entrant profiles. In Eqs. (30) and

(39), respectively, the pressure difference ∆P and the sag distance ∆Ztop (measured

from the top of the granule) are both functions of the triple line position α. When

granules exhibit overhangs corresponding to that imaged in Figure 3, the possible values

for α are seen to approximately span the range {-135◦,45◦} (when measuring α counter-

clockwise from 3 o’clock, as before). Then, the maximum sustainable pressure difference

regarding a de-pinning transition is obtained from Eq. (30) by finding the position α,

within the range {-135◦,45◦}, where ∆P is greatest. Similarly, in Eq. (39), the possible

onset of a sag transition is analyzed by determining ∆Ztop for each value α within the

range {-135◦,45◦} and comparing to the granule height. Now, for a surface consisting

of granules that do not feature overhangs, the only element that changes is the range

of possible α. For example, if the granules exhibit straight walls, the range of possible

triple line positions extends from α = 0◦ (in the direction of 3 o’clock, see Figure 18)

to, say, α = 45◦ (this depends upon the shape of the top of the granule); if the granules

exhibit slightly inclined walls, the range of possible triple line positions has its lower

end at, say, α = 5◦ − and so on. To calculate the hydrostatic pressure that leads to

a de-pinning or a sag transition, we then proceed in the exact same manner as before,

using, however, another range of possible triple line positions α.

Moreover, the model can also be extended to overhangs that are not circular in shape.

To achieve this, an individual ’overhang radius’ r(α) needs to be assigned to each triple

line position α.

In combination, these two extensions provide means for analyzing the Cassie-Baxter

state stability for a wide range of granule profiles.
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3.3.3. Towards a 3D model for estimating the Cassie-Baxter state stability

In addition to estimates of the Cassie-Baxter state stability against both a de-pinning and

a sag transition, the two-dimensional model presented in the previous sections provides

valuable physical insight into the problem. However, in the realistic three-dimensional

case, the simplification of considering only one radius of curvature to describe the spa-

tial distribution of the liquid-air interface is no longer valid. To determine the spatial

distribution of the liquid-air interface due to a pressure difference for a general three-

dimensional surface, it is required to solve the Young-Laplace equation (Eq. (16)) for

all relevant points in space, using boundary conditions specific to the surface. By doing

so, a three-dimensional estimate of the Cassie-Baxter state stability against both a de-

pinning and a sag transition can be established. However, such calculations are difficult

and requires generally numerical methods. A calculation method for this purpose has

been presented by Lobaton et al. [94]. Although the study concerns pillar-structured

surfaces, their proposed method can also be used for a surface consisting of overhang-

shaped roughness elements. Performing such a calculation is, however, beyond the scope

of this report.

3.3.4. 3D model for estimating the stability against a de-pinning transition

Still, a three-dimensional estimate of the stability against a de-pinning transition can

be made on the basis of the direct relation between pressure difference and surface

tension (Section 2.5.4). The direct relation in Eq. (22) is derived for straight-walled

pillars. In that case, the vertical component of the liquid-air surface tension is always

equal to −FLA cos θ (the corresponding force on the roughness element is −LFLA cos θ).

Conversely, on an overhang-profiled wall, the vertical component of the liquid-air surface

tension varies as the triple line changes its position along the overhang (this can be

seen from Figure 18; the surface tension vector points in the direction of the liquid-air

interface). As a result, the vertical force on the roughness element, caused by the liquid-

air interface, also changes. When the liquid-air surface tension vector, acting on the

triple line, points straight down towards the bottom of the surface, this vertical force

is maximized and equal to LFLA. A derivation analogous to that in Section 2.5.4 then

yields the following expression for the maximum sustainable pressure difference:
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∆Pmax =
LFLA

(A− Asolid)
(40)

Eq. (40) shows that a small air pocket area (A−Asolid), or equivalently, a large solid

fraction of surface, makes for a stable Cassie-Baxter state in terms of de-pinning. This

can be seen as a three-dimensional version of the notion made from Eq. (30) regarding

the granule separation d0. Additionally, it is observed that a large total triple line length

L stabilizes the Cassie-Baxter state. This is a feature that could not have been revealed

by a two-dimensional model.

This generic approach was initially derived for straight walls (that is, not by consid-

ering an overhang), and can also be readily extended to scenarios concerning inclined

walls. What we need for deriving a correct estimate for ∆P is the magnitude of the

vertical component of the surface tension vector. As was mentioned above and can be

seen from the derivation of Eq. (22) in Section 2.5.4, for straight walls this component

equals −FLA cos θ. If the wall is inclined by, say, an angle ε, the surface tension vec-

tor changes its direction accordingly (due to the fact that the intrinsic contact angle of

the system stays the same). As a result, the vertical component of the surface tension

vector changes its magnitude from [−FLA cos θ] to [−FLA cos (θ + ε)]. ∆P can then be

calculated by replacing in Eq. (22) the former expression by the latter.

An approximation inherent in this approach should be mentioned. When the vertical

forces acting on one roughness element is analyzed, it is assumed that the liquid-air

surface tension vector points in the exact same direction everywhere along the triple

line. In reality, it is likely that this direction varies somewhat.

3.3.5. Estimates of the Cassie-Baxter state stability

We are now ready to perform estimates of the stability of the Cassie-Baxter state on

springtail cuticles. For that purpose, the pressure difference ∆P necessary to induce a

Cassie-Wenzel transition on the different springtail cuticles has been estimated from Eqs.

(30) (predicts de-pinning transition based on 2D model), (39) (predicts sag transition

based on 2D model) and (40) (predicts de-pinning transition by consideration of the

three-dimensional granule pattern). Experimental values for d0, H, L, A and Asolid have

been determined, as before, by inspection of SEM and AFM images (Figures 20-28,

Appendix A). d0 has been measured between ’diagonally’ neighboring granules. The
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radius r of the circular part of the overhang profile, and the distance h as shown in Figure

18, have been evaluated from the TEM image displayed in Figure 3. Using these two

values for all studied springtails is clearly a coarse approximation; nevertheless, Figure

3 is currently the best available description of a re-entrant granule profile. A summary

of these structural surface parameters are given in Table 4. In addition, θa has been

assumed to be 105◦ as before, θ0 has been approximated as being equal to θa, and a

value of 0.073 N/m has been used for γLA and FLA [95].

Table 4: Summary of the parameter values used in estimates of the Cassie-Baxter state

stability for nine springtails.

Springtail species d0 [nm] r [nm] h [nm] H [nm] L [nm] A [nm2] Asolid [nm2]

H. viatica, SG 3000 25 25 910 2.76×103 2.65×106 0.42×106

I. prasis 833 25 25 62 1.60×103 0.92×106 0.16×106

F. quadrioculata 944 25 25 86 2.63×103 1.22×106 0.43×106

A. septentrionalis, SG 1379 25 25 910 4.19×103 4.50×106 1.39×106

A. besellsi, SG 933 25 25 93 1.16×103 1.04×106 0.06×106

C. clavatus 375 25 25 80 2.24×103 0.71×106 0.31×106

A. laricis 542 25 25 80 6.40×103 4.00×106 2.56×106

I. anglicana 568 25 25 80 1.89×103 0.66×106 0.22×106

X. maritima 944 25 25 80 2.21×103 1.15×106 0.25×106

Regarding the existence or absence of granule overhangs, both possibilities have been

investigated when estimating the Cassie-Baxter state stability. The stability estimates

for the case of absent granule overhangs have been performed by assuming straight

granule walls15. The estimates are listed in Table 5.

Table 5 makes it clear that the Cassie-Baxter state is, indeed, very stable on springtail

cuticles; for overcoming the energy barrier working against a wetting transition to the

Wenzel state, hydrostatic pressures in the range 104 − 105 Pa are required. For com-

parison, such a stability is 2 to 3 orders of magnitude higher than what is observed on

artificial surfaces featuring micro-sized hydrophobic pillars [79]. In fact, the estimates

15It should be emphasized that granules exhibiting no overhangs are not necessarily straight; they may

well be inclined to some degree. As discussed above, this will affect the Cassie-Baxter state stability.
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Table 5: Cassie-Baxter state stability estimates for nine springtails.

2D de-pinning transition 2D sag transition 3D de-pinning transition

Overhang Straight Overhang Straight Overhang Straight

Springtail species ∆Pmax [Pa] ∆Pmax [Pa] ∆Pmax [Pa] ∆Pmax [Pa] ∆Pmax [Pa] ∆Pmax [Pa]

H. viatica (SG) 4.79×104 1.26×104 4.18×104 De-pins first 9.07×104 2.35×104

I. prasis 1.66×105 4.53×104 3.34×104 3.34×104 1.53×105 3.97×104

F. quadrioculata 1.47×105 4.00×104 4.00×104 4.00×104 2.44×105 6.32×104

A. septentrionalis (SG) 1.02×105 2.74×104 De-pins first De-pins first 9.85×104 2.55×104

A. besellsi (SG) 1.49×105 4.04×104 De-pins first De-pins first 8.66×104 2.24×104

C. clavatus 3.46×105 1.00×105 2.18×105 De-pins first 4.10×105 1.06×105

A. laricis 2.48×105 6.95×104 1.00×105 De-pins first 3.24×105 8.40×104

I. anglicana 2.37×105 6.63×104 9.16×104 De-pins first 3.14×105 8.14×104

X. maritima 1.47×105 4.00×104 3.47×104 3.47×104 1.79×105 4.65×104

given in Table 5 correspond well with an experimental study performed by King et al.

[18] on the springtails Anuridella marina and Anurida maritima. Under submersion,

these springtails were observed to be surrounded by an air film16. This air film disap-

peared when the liquid was subjected to hydrostatic pressures in the range of 5× 104 to

2× 105 Pa.

The 2D model and the 3D model are seen to yield quite similar estimates regarding

the occurrence of a de-pinning transition. This would not have been the case if the

granules displayed more intricate shapes, allowing for a significantly higher triple line

length L. By use of the 3D model (Eq. (22) or Eq. (40)), we would then obtain higher

stability estimates than those obtained in Table 5. On the other hand, the 2D model

would produce more or less the same stability estimates as in the present case.

Furthermore, it is apparent from Table 5 that some springtails would benefit from

featuring taller granules, hence making them less susceptible to sag transitions. This is

especially the case if an overhang is present (column 4). However, as has been illuminated

by Yu et al. [22], taller roughness structures (keeping their widths unchanged) are less

stable mechanically. This may limit the overall advantage in growing taller granules. In

fact, the results in Table 5 may be viewed as an argument for the existence a trade-off

between wetting transition stability and mechanical stability; the granules are just tall

enough to make the stability estimates for de-pinning transitions and sag transitions

16Such airfilms are referred to as ’plastrons’.
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comparable.

Importantly, with stability estimates in the range of 104 to 105 Pa we can show why

water droplets appear to be in a Cassie-Baxter state under goniometer contact angle

measurements as reviewed in Section 3.1. In such measurements, gravity is pulling the

droplet downwards. The water droplets used had volumes V of about 1 µl. This means

that a gravitational force ρgV ∼ 10−5 N was acting on the contact area between the

droplet and the springtail cuticles (with ρ = 997 kg/m3 being the density of water).

Assuming a contact angle of ∼ 160◦ (as measured) and a droplet shape corresponding

to a spherical cap, the size of the contact area was approximately 1.4×10−7 m2. By

assuming also that the hydrostatic pressure is homogeneous over the contact area, we

then obtain ∆P ≈ 70 Pa. This is much lower than all of the estimates for ∆Pmax.

Consequently, the appearance of a Cassie-Baxter state in a goniometer contact angle

measurement is expected − the gravitational pull on the droplet is not strong enough

to make the droplet transition to a Wenzel state.

Also evident from this analysis, is that an overhanging profile on the granules is

not necessary to explain the results reviewed in Table 1; even with straight walls, the

small surface protrusions represented by the granules present in itself an energy barrier

against a Cassie-Wenzel transition that is much larger than the energy posed by the

gravitation on a water droplet. However, if the granule height is high enough to avoid

a sag transition, which is estimated to be the case for all studied springtails except

Isotomurus prasis, Folsomia quadrioculata and Xenilla maritima, the 2D model predicts

that granule overhangs can increase the Cassie-Baxter state stability by 50 − 400% as

compared to straight granule walls. Moreover, it should be noted that an overhang

makes the Cassie-Baxter state stability much less sensitive to changes in the chemical

composition of the system; indeed, if the intrinsic advancing contact angle should drop

below 90◦, it is seen from Eq. (22) that the stability against a Cassie-Wenzel transition

vanishes completely in the case of straight walls. If overhangs are present on the granules,

such a drop in the intrinsic advancing contact angle would not affect the Cassie-Baxter

state stability much (some stability change occurs if FLV becomes lower − see e.g. Eq.

(40)).

We can now also estimate how far underwater springtails can maintain air pockets.

Under immersion in water, a body will experience a hydrostatic pressure of ∆P =

(ρ − ρair)gδ ≈ ρgδ, where δ is the immersion depth and ρ and ρair are the densities of

water and air, respectively. A hydrostatic pressure of 104−105 Pa is therefore equivalent
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to immersion depths of

δlower bound =
104 Pa

997 kg/m3 9.81 m/s2
≈ 1m (41)

δupper bound =
105 Pa

997 kg/m3 9.81 m/s2
≈ 10m (42)

Based on the estimates performed in this section, it is thus indicated that springtails

can maintain air pockets on their cuticles when being submerged down to water depths

of 1− 10 m.

Moreover, a pressure of 104−105 Pa is comparable to the impact of the water droplets

in heavy rain [96]. Accordingly, it is possible that springtails stay dry even in this case.

We end this section with a few words regarding the differences in estimated stability

across the studied species. First, we note that the (comparably) low stabilities esti-

mated for the springtails featuring secondary granules (Hypogastura viatica, Anuropho-

rus septentrionalis and Archisotoma besellsi) are probably underpredicted; it is only the

stability against penetration between the secondary granules that has been estimated

for these springtails. Due to the smaller size of their primary granules, a penetration

through this next ’layer’ is likely to require an even higher pressure. Second, we observe

that the species featuring high solid fraction of surface, like Anurophorus laricis and

Cryptopygus clavatus, are the ones that are estimated to display the highest stability

against a Cassie-Wenzel transition. Considering that these species’ low slenderness ra-

tio17 granules also should exhibit a high mechanical stability [22], this is an intriguing

result.

3.4. Explaining the low contact angle hysteresis

For a surface to be water repellent, it is not only important to exhibit and maintain a

high apparent contact angle, to which we have put our focus on so far. As discussed

in Section 2.3, it is also essential to feature a low roll-off angle, enabled again by a low

contact angle hysteresis. Table 1 shows that springtail cuticles do indeed demonstrate

low CAH − in this section, we set out to understand why. As a starting point, we

investigate the magnitude of CAH that would be predicted by the Choi and Dufour

17Defined as height divided by cross-section area.
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models, reviewed in Sections 2.4.1 and 2.4.2. We will elaborate somewhat on the Dufour

model, however, before we employ it.

3.4.1. CAH predictions using the Choi and Dufour models

As we saw in Section 2.4.2, the Dufour model evaluates only an indirect measure

∆ (cos θ∗) of the CAH (Eq. (12)). In an attempt to obtain a direct measure ∆θ∗,

we could expand Eq. (12) as follows:

∆ (cos θ∗) =
∆A

p2
(43)

cos θ∗r − cos θ∗a =
∆A

p2
(44)

cos

(
θ
∗ − ∆θ∗

2

)
− cos

(
θ
∗

+
∆θ∗

2

)
=

∆A

p2
(45)

2 sin
(
θ
∗
)

sin

(
∆θ∗

2

)
=

∆A

p2
(46)

This expression shows that ∆ (cos θ∗), used by Reyssat and Quéré [53] and Dufour et

al. [57] as a measure of CAH, is in fact not just a measure of the direct CAH (∆θ), but

also of the ’mean’ apparent contact angle, defined here as θ
∗

= θ∗a+θ
∗
r

2
. Since the mean

apparent contact angle is not known a priori, it becomes difficult to obtain an a priori

prediction of the CAH using this model. However, an a posteriori alternative is to make

use of a measurement of the apparent advancing contact angle. The CAH can then be

calculated according to

cos (θ∗a −∆θ∗)− cos θ∗a =
∆A

p2
(47)

cos (θ∗a −∆θ∗) =
∆A

p2
+ cos θ∗a (48)

θ∗a −∆θ∗ = arccos

(
∆A

p2
+ cos θ∗a

)
(49)

∆θ∗ = θ∗a − arccos

(
∆A

p2
+ cos θ∗a

)
(50)
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When evaluating the CAH predicted by the Dufour model, Eq. (50) will thus be

used in the calculations, with θ∗a taken as in Table 1. In addition, the deformation

surface area ∆A needs to be calculated. In this report, this area will be evaluated by

obtaining an analytical solution to the double integral in Eq. (14). First, however, a

matter not taken into account by Reyssat and Quéré [53] or Dufour [57] is addressed: the

deformation surface area, that is, the ’extra’ liquid-air interface area that is generated

by the presence of each defect, is equal to the area of the semi-revolved catenary curve

minus the liquid-air interface area that would exist if there was no defect present. By

inspecting Figure 13, and by considering that the apparent receding contact angle is

relatively high on the surfaces that are relevant here, this liquid-air interface area will

be estimated as 1
2
π(p/2)2. This is the area of a semi-circular disk, which is equal to the

area of the semi-revolved catenary curve’s projection into the plane of the defect tops.

An analytical solution to the double integral in Eq. (14), which calculates the area of

the semi-revolved catenary curve, can be found as follows (note that r and k are constant

parameters):

Acatenary =

∫ π

0

∫ u

0

(
y(x)

√
1 + y′(x)2

)
dxdθ (51)

= π

∫ u

0

r cosh

(
x− k
r

)√
1 +

[
d

dx

(
r cosh

(
x− k
r

))]2
dx (52)

= π

∫ u

0

r cosh

(
x− k
r

)√
1 + sinh2

(
x− k
r

)
dx (53)

= π

∫ u

0

r cosh2

(
x− k
r

)
dx (54)

=
πr

4

[
r sinh

(
2x− 2k

r

)
− 2k + 2x

]u
0

(55)

=
πr

4

[
r sinh

(
2u− 2k

r

)
+ 2u− r sinh

(
−2k

r

)]
(56)

As was mentioned in Section 2.4.2, k and r can be determined from the boundary

conditions y(0) = b and y′(0) = tan
(
π
2
− θ̃
)

. Reyssat and Quéré [53] have noted that

when θ̃ = 90◦, these two values are equal to k = 0 and r = b. Considering that the
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intrinsic receding contact angle of the springtail cuticles was estimated in Section 3.2.1

to be 95◦, which is quite near 90◦, k = 0 and r = b will be used in the subsequent

analysis. Eq. (56) can then be expressed

Acatenary =
πb

4

[
b sinh

(
2u

b

)
+ 2u

]
(57)

with the maximum deformation between two defects (Eq. (15)) now given as

u = b arccosh
( p

2b

)
. (58)

Then, the deformation surface area can be estimated as

∆A = Acatenary −
1

2
π
(p

2

)2
. (59)

Now, the CAH as modelled by the Dufour model can be evaluated from Eqs. (50),

(57), (58) and (59) by employing experimentally obtained values for b, p and θ∗a. These

values, together with the parameters fa and fr, which are required to predict CAH by

use of the Choi model (Eqs. (10) and (11)), have been determined for the springtails

shown in Figures 20-28 (Appendix A) and are summarized in Table 6. Identical to what

Choi et al. [62] assumed for their surfaces consisting of ’discrete hoodoos’, fa is assumed

here to be zero (no solid fraction experienced by the advancing edge of the contact line).

Table 6 also lists the CAH as predicted by the Choi and Dufour models and the CAH

that was determined experimentally.

An obvious result observed in Table 6 is the inability of the Choi model to predict

the CAH measured on the springtail cuticles. Indeed, the CAH modelled by Choi et

al. is significantly overpredicted for all the springtails that are studied here. Even

if assuming (as Choi et al. did) that vibrational perturbations from the laboratory

environment are responsible for observing advancing apparent contact angles somewhat

lower than 180◦, CAH is still overpredicted. For the springtail cuticles that exhibit large

solid fraction of surface, leading to a high value for fr, the overprediction is especially

severe (e.g., C. clavatus and A. laricis). Considering that the Choi model has been

successful in predicting the CAH on micro-structured surfaces [57, 62], the lack of success
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Table 6: Predicted and measured contact angle hysteresis on springtail cuticles. Note

that the Dufour model does not predict advancing apparent contact angles −
the values in column 10 are collected from the experimental values listed in

column 13.

Choi model Dufour model Measured

Springtail species b [nm] p [nm] fr fa θr [◦] θa [◦] ∆θ [◦] θr [◦] θa [◦] ∆θ [◦] θr [◦] θa [◦] ∆θ [◦]

H. viatica, SG 285 2850 0.20 0 146.6 180 33.4 161.8 167.9 6.1 163.2 167.9 4.7

I. prasis 207.5 1285 0.32 0 137.4 180 42.6 157.9 168.2 10.3 164.1 168.2 4.1

F. quadrioculata 302.5 1210 0.50 0 125.9 180 54.1 155.6 171.0 15.4 166.5 171.0 4.5

A. septentrionalis, SG 572.5 2430 0.47 0 127.7 180 52.3 154.8 168.3 13.5 164.8 168.3 3.5

A. besellsi, SG 135 865 0.31 0 138.1 180 41.9 158.9 169.6 10.7 164.5 169.6 5.0

C. clavatus 390 975 0.80 0 109.8 180 70.2 162.4 166.0 3.6 166.2 166.0 -0.2

A. laricis 765 1880 0.81 0 109.3 180 70.7 156.2 157.4 1.2 161.2 157.4 -3.9

I. anglicana 245 780 0.63 0 118.6 180 61.4 145.8 154.3 8.5 158.6 154.3 -4.3

X. maritima 260 915 0.57 0 121.9 180 58.1 148.6 158.7 10.1 132.4 158.7 26.3

in predicting CAH on the springtail cuticles is noteworthy. In the light of this finding,

a recent experimental study by Dorrer et al. [97] becomes interesting for our cause. In

that study, microstructured surfaces were fabricated in such a way that the post widths

were varied while other surface characteristics were kept unchanged. As shown in Figure

19, it was found that decreasing the post width also decreased the CAH. In other words,

the sheer size of the roughness features on a composite surface seems to be playing a

role in determining the CAH exhibited by the surface.

Figure 19: CAH measured on fluoropolymer-coated silicon posts of different widths, in

a study by Dorrer et al [97]. φ denotes the solid fraction of surface (we have

used f for this value). The dashed lines are meant as guides to the eye.
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In the study by Dorrer et al., the measured CAH decreased significantly as the mi-

cropost widths decreased from tens of micrometers down to ∼1 µm (Figure 19). By

comparison, the granules on the springtail cuticles have widths 2b ranging from 0.27

to 1.53 µm − a defect size interval ranging even below that investigated by Dorrer

et al. One may thus speculate, that the small size of the granules is a key point for

understanding the low CAH observed for the springtails.

Dorrer et al. hypothesized that their results could be explained by considering that

droplets detach sequentially from each defect, and that the energy barriers involved

in detaching from small defects are lower than those involved for larger defects. As

a result, CAH would be lowered for smaller defect widths. Recently, an experimental

study by Dufour et al. [98] observed exactly such a sequential droplet detaching on a

microstructured surface− hence giving support to such a theory. However, if this was the

whole story to CAH, one would expect a clear relationship between the springtail cuticle’s

defect widths and their measured CAH values. Such a clear relationship is not tractable

in Table 6. An explanation for this may lie in the fact that both adhesion hysteresis and

defect pinning are expected to contribute to CAH, and in that their dependence upon

defect width may prove to be different. Being a mechanism that involves interactions

between liquid and solid, the contribution of adhesion hysteresis to CAH is thought to

be proportional to the solid-liquid interfacial area [6]. Thus, as defects become smaller,

it seems well-grounded that the energy barriers relating to adhesion hysteresis should

decrease. In line with this reasoning, the contribution of adhesion hysteresis to CAH

should vanish as the defect widths become sufficiently small (assuming, still, a sequential

droplet detaching). On the other hand, the relationship between defect width and defect

pinning may be more complex. Consider for example Figure 11c. Although the droplet

detaches from each defect sequentially, the deformed liquid-air interfaces involved at

each defect are seen to be built up simultaneously. As a result, while the energy barriers

resulting from adhesion hysteresis, and hence its contribution to CAH, may vanish for

sufficiently small defects, the energy barriers relating to defect pinning may perhaps not.

Hence, one may speculate that the CAH measured in Table 6 is dominated by defect

pinning, and not by adhesion hysteresis. This could explain why no clear relationship

between CAH and defect width is observed for the springtail cuticles.

In the Dufour model, it is exactly the defect pinning contribution to CAH that is

considered. The CAH predictions by use of this approach are shown in the eleventh

column of Table 6. It is evident that the CAH predictions are generally relatively
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low, almost as low as the CAH that is observed experimentally (column 12 − 14 in

Table 6). This could reflect the fact that this model contains no contribution from

adhesion hysteresis. However, the predictions are not very accurate. This can perhaps

be explained by the approximations made in the model. As is noted by Dufour et

al. [57], for an accurate computation of the CAH, the liquid-air deformation surface

area should be modelled by a more complex function than what is used here − a more

accurate function should take into account, for instance, that the local receding contact

angle θ̃ varies along the defect perimeter (see for instance, Figure 11b). Moreover, it is

not certain that the deformed liquid-air interface takes on a shape well described by a

semi-revolved catenary curve (Figure 13) for every combination of defect size and defect

separation. Especially, one may question the assumption that the triple line settles on the

surface in the same way for a nanostructured surface as it does for a microstructured

surface. Still, an interesting notion from the eleventh column in Table 6, is that the

springtails with the highest fr, that is, those with the highest solid fraction of surface as

experienced by the receding edge of the triple line, are predicted to show the lowest CAH

(C. clavatus and A. laricis). A low CAH for these springtails is also what is observed.

It can thus be hypothesized that the Dufour model captures a phenomenon where high

solid fraction of surface leads to a low contribution to CAH from defect pinning, due to

a less deformed liquid-air interface.

3.4.2. Incorporating line tension into the Choi model

Neither the Choi model nor the Dufour model is able to predict a size effect concerning

the defects on a surface and the CAH observed on the surface − both models are scale-

independent. With the objective of obtaining a scale-dependent model, one can argue

that in the same manner as Zheng et al. [25] modified the Cassie-Baxter equation

to incorporate the contribution of line tension, so too should the differential Cassie

equations by Choi et al. (Eqs. (10) and (11)) be modified. Doing so leads to the

following ’modified Choi equations’:

cos θ∗a = −1 + fa

(
rf cos θ + 1− λ

SaγLV

)
(60)

cos θ∗r = −1 + fr

(
rf cos θ + 1− λ

SrγLV

)
. (61)
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In Eqs. (60) and (61), Sa and Sr refer, by analogy to fa and fr, to the ’differential’

roughness scale at the advancing and receding edge of a droplet. Just like the Zheng

equation (Eq. (7)) predicts that the apparent contact angle of a droplet depends on

the roughness scale S of the solid features of a surface, Eqs. (60) and (61) predict that

the CAH of a surface depends on the roughness scales Sa and Sr at the advancing and

receding edges of the droplet. This modification thus has the potential to explain why

surfaces otherwise equivalent, can exhibit lower CAH as the scale of the solid features

decreases.

To quantitatively evaluate the magnitude of these differential roughness scales for

surfaces consisting of discrete granules (or discrete posts, for that matter), the change

in line energy involved in small displacements of the contact line at the advancing and

receding edges of the droplet should be considered. For a small displacement of the

contact line at the advancing edge (Figure 10a), from the outer edge of one array of

granules to the next array of granules, no solid surface is traversed and no total triple

line length is added nor subtracted. In this case, there is no change in line energy, and

no modification to the original Choi equation for the advancing droplet edge (Eq. (10))

is necessary. On the other hand, if assuming, as Choi et al. [62], that the contact line at

the receding edge is bridging between the granules as in Figure 10b, a small displacement

of the contact line at this edge will indeed involve changes in total triple line length.

For a small displacement ε at the receding edge of the droplet, the solid surface area

traversed for each granule is equal to 2Wε. At the same time, a triple line length of

2ε is traversed for each granule (Figure 10b). Consequently, the receding differential

roughness scale is equal to

Sr =
Ar
Lr

=
2Wε

2ε
= W. (62)

For surfaces consisting of granules or posts, the modified Choi equations can thus be

written as

cos θ∗a = −1 + fa (rf cos θ + 1) (63)

cos θ∗r = −1 + fr

(
rf cos θ + 1− λ

WγLV

)
. (64)
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To analyze whether Eqs. (63) and (64) can explain the low CAH observed on spring-

tails, we use Eq. (64) to calculate the line tension magnitude λ necessary to yield a

receding apparent contact angle prediction identical to that observed18. Regarding the

calculations, it has been noted that W in Figure 10 and b in Figure 12 both denote

the half-width of one defect − hence, W = b. Moreover, θ and rf have again been ap-

proximated as 100◦ and 1, respectively. The results of the calculations are presented in

Table 7, which also lists the parameters used and the advancing apparent contact angles

predicted from Eq. (63) (these are identical to those predicted in Table 6 by using Eq.

(10), but are included here for completeness).

Table 7: Line tension magnitude (λ) required to explain the receding apparent contact

angle (θ∗r) measured on nine springtails, using a ’modified Choi model’ (Eq.

(64)).

Measured Modified Choi model

Springtail species Sr = W = b [nm] fr fa θ∗r [◦] θ∗a [◦] θ∗r [◦] θ∗a [◦] λ [J/m]

H. viatica (SG) 285 0.20 0 163.2 167.9 163.2 180 1.28×10−8

I. prasis 207.5 0.32 0 164.1 168.2 164.1 180 1.07×10−8

F. quadrioculata 302.5 0.50 0 166.5 171.0 166.5 180 1.70×10−8

A. septentrionalis (SG) 572.5 0.47 0 164.8 168.3 164.8 180 3.14×10−8

A. besellsi (SG) 135 0.31 0 164.5 169.6 164.5 180 6.99×10−9

C. clavatus 390 0.80 0 166.2 166.0 166.2 180 2.25×10−8

A. laricis 765 0.81 0 161.2 157.4 161.2 180 4.25×10−8

I. anglicana 245 0.63 0 158.6 154.3 158.6 180 1.28×10−8

X. maritima 260 0.57 0 132.4 158.7 132.4 180 4.84×10−9

Notably, Table 7 shows that incorporation of line tension into the Choi equations

may indeed explain the low CAH seen for the springtail cuticles, given that the line

tension magnitude is of the order of 10−8 J/m. This line tension magnitude is similar to

that found in Section 3.2.3. The measurements on A. besellsi and X. maritima predict

18Since Eq. (63) yields θ∗a = 180◦ for springtails, a value that may be shadowed by vibrational pertur-

bations in the laboratory, we parametrize λ by using measurements of the receding apparent contact

angle θ∗r , and not the measured contact angle hysteresis. However, it may be the case that also the

receding apparent contact angle measurements are affected by vibrational perturbations.
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somewhat lower line tension magnitudes, however. X. maritima will be discussed in

more detail in Section 3.4.3.

It is interesting that in the review ”Contact Angle Hysteresis Explained” [43], Gao and

McCarthy predict that surfaces with a high degree of ’contact line tortuosity’ will exhibit

a low contact angle hysteresis, due to increased ground-state energies of the droplet and

thereby decreased activation barriers between metastable states. The incorporation of

line tension into the Choi model, giving rise to an increased apparent contact angle at

the receding edge of a droplet’s perimeter, is a quantification of such an argument.

Line tension can also help explain an experimental finding by Öner and McCarthy

[99]. They found that changing the shape of the pillars on a microstructured surface,

from square to staggered rhombus, star, or indented square, caused increases in the

apparent receding contact angle. In the light of Eq. (61), this can be understood as

follows: as the pillar shape changes from square to more complex shapes, Lr increases

relative to Ar. Hence Sr decreases, which from Eq. (61) translates into an increased

receding contact angle.

3.4.3. The relatively high CAH observed on X. maritima

In contrast to the other springtail species studied in this report, X. maritima does not

show a very low CAH (26.3◦, Table 1). By inspecting Figure 28 (Appendix A), a quali-

tative argument for this observation can be made on the basis of the above discussion.

Figure 28 shows that the cuticle of X. maritima contains numerous ’microfolds’ − it has

a corrugated appearance on the micrometer scale. When a water droplet sits on this

surface, it will perhaps not penetrate between every microfold. Thus, in effect, the water

droplet is sitting on larger defects. This has the consequence of leading to less total line

length involved at the receding edge of the droplet. In Eq. (61), this results in a higher

Sr and hence a lower receding contact angle. At the same time, since the droplet is still

sitting on (now, micro-sized) defects, the advancing contact angle will be large because

the advancing differential solid fraction parameter fa is low (Eq. (60)). In combination,

this could result in a considerable CAH.
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3.5. The springtail’s design strategy for achieving robust water

repellency

The analysis performed in this report indicates that springtails utilize a simple and

elegant design principle for enabling a robust water repellent behavior − namely, by

sculpturing its surface with roughness features of just the right size.

When the roughness asperities of a surface have widths of a few microns or more, it is

evident from Eqs. (4), (10) and (11) that the only way to ensure high apparent contact

angles and low contact angle hysteresis is to exhibit a very small solid fraction of surface

(f). However, given asperity widths of a few microns or more, a very small solid fraction

of surface corresponds to ’large’ separations between the asperities; in Section 3.3 we saw

that this renders the Cassie-Baxter state unstable. Moreover, the mechanical stability

of sparsely distributed asperities (low f) will be low, unless the asperities are very short

[22]. On the other hand, if the asperities are short, the proneness to sag transitions will

be high (Eq. (39)), again lowering the stability of the Cassie-Baxter state. As such, a

combination of high apparent contact angles, low contact angle hysteresis, high Cassie-

Baxter state stability and high mechanical stability seems to be physically impossible if

the roughness elements of a surface have widths of a few microns or more.

However, if the roughness asperity widths become small enough (sub-micron to micron

size scale), we have seen that it is possible − mediated, perhaps, by the mechanisms of

line tension and diminished adhesion hysteresis energy barriers − to achieve both high

apparent contact angles and low contact angle hysteresis, regardless of the magnitude

of solid fraction of surface. As a result, it becomes possible to obtain both mechanical

robustness and a stable Cassie-Baxter state, by increasing the solid fraction of surface,

without lowering the apparent contact angles or escalating the contact angle hysteresis.

The cuticles of A. laricis and C. clavatus are illustrative examples of this simple, yet

effective design strategy for obtaining a robust water repellency.

We could also ask: wouldn’t it be desirable − for achieving even better water repellent

properties − to downsize the roughness elements even further, from the sub-micrometer

scale down to the ’true’ nanometer scale (below ∼100 nm)? From the analysis brought

about in this work, the answer is yes. However, experiments suggest that there exists also

a lower limit, somewhere in the nanometer scale, where a continued roughness element

downsizing will lead to a marked increase in contact angle hysteresis [100] − this is seen,

for instance, in the superhydrophobic, yet highly adhesive ’Petal Effect’ observed on rose
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petals [101, 102]. In other words, for achieving robust water repellent properties, the

roughness elements of a surface should not be too small, either − rather, there exists an

optimum size range, in which the roughness elements’ widths should lie. The granules

on springtail cuticles provide natural examples of such elements.
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4. Conclusions and outlook

In this study, we have performed a quantitative analysis of the wetting properties of

springtail cuticles. We have based our discussion on a set of contact angle measure-

ments on nine different springtail species, revealing that springtail cuticles generally

show high apparent contact angles and low contact angle hysteresis. It turned out, that

an understanding of the measured high apparent contact angles requires us to assume

that water exists in a Cassie-Baxter wetting state. Furthermore, the effect of three-phase

line tension has to be taken into account. The importance of line tension in determining

the apparent contact angle is due to the large total triple line length that exists when

water is situated on small roughness features − the micron to sub-micron size scale of

the granule pattern is thus essential to the springtails for achieving such high apparent

contact angles. The line tension’s magnitude needs to be of the order of 10−8 J/m to

explain the experimental findings, which is a magnitude that corresponds well to values

reported in the literature [41].

However, a Wenzel wetting state is found to be energetically favorable compared

to the Cassie-Baxter wetting state. Water seems therefore to exist in a metastable

Cassie-Baxter state on the springtail cuticles, experiencing an energy barrier against

transitioning from the Cassie-Baxter state to a lower energy Wenzel state. By developing

and employing a two-dimensional model, it is shown that the granules on the springtail

cuticles present such an energy barrier. Numerical estimates based on the model indicate

that the Cassie-Baxter state is stable against hydrostatic pressures up to 104 − 105 Pa.

Interestingly, the existence of overhangs on the granules is not necessary to predict

an energy barrier inhibiting water from transitioning from a Cassie-Baxter state to a

Wenzel state. Yet, arguments are put forth viewing that overhangs make the stability of

the Cassie-Baxter state less sensitive to changes in the system’s chemical composition.

In addition, they are estimated to increase the stability of the Cassie-Baxter state by

50− 400% as compared to granules featuring straight walls. Other factors suggested to

contribute to a high stability of the Cassie-Baxter state, are short granule separations,

a high solid fraction of surface, a large total triple line length and tall granules.

The low contact angle hysteresis observed on springtail cuticles can not be understood

from the quantitative CAH models that currently exist in the literature. It is argued,

however, that the small size of the granules is relevant also in this respect − a droplet

needs to overcome only a low adhesion hysteresis energy barrier, in order to detach from

66



a small granule, enabling droplet motion. By incorporating three-phase line tension into

a recent CAH model for composite surfaces [62], new equations for determining CAH

on composite surfaces are proposed. If assuming, as before, a line tension magnitude of

the order of 10−8 J/m, these equations successfully describe the low CAH on springtail

cuticles.

In summary, the sub-micron size scale of the granules is found to be the most essential

factor for rendering the springtail cuticles water repellent.

Several lines of research can be envisaged for achieving a more comprehensible un-

derstanding of the wetting properties observed on springtail cuticles. Considering the

importance of the three-phase line tension in describing apparent contact angles and pos-

sibly also contact angle hysteresis, studies illuminating the line tension’s nature would

be desirable. For example, does curvature of the triple line affect its magnitude? How is

it dependent upon the nature of the phases that are meeting at the triple line? Perhaps

might molecular modelling studies be suited for answering such questions.

Ubiquitous in the analysis presented here are the assumptions regarding the intrin-

sic contact angles on the springtail cuticle. Thus, the accuracy of this analysis would

improve if these assumptions were examined experimentally. A possibility might be to

extract the seemingly apparent top wax layer from the springtail cuticles, distribute it

on a smooth surface and subsequently perform contact angle measurements.

From a theoretical viewpoint, the potential role of hairs in determining the wetting

properties of springtails could be studied more thoroughly than what is done in this re-

port. Moreover, for a more precise estimate of the Cassie-Baxter state stability against

sag transitions, numerical methods could be employed to reveal how the liquid-air inter-

face responds to a given hydrostatic pressure. It would also be interesting to evaluate

the Cassie-Baxter state stability experimentally. This could be achieved by perform-

ing immersion experiments or experiments using impacting droplets. Such experiments

might also shed light over the proposed link between granule overhangs and increased

Cassie-Baxter state stability.

SEM inspection of curable polymer droplets presents an exciting approach for sur-

faces able to sustain liquids with low surface tension in a Cassie-Baxter state [62, 57] −
springtail cuticles featuring granules with overhangs should be capable in this respect.

Such studies could be used for gaining information about the liquid-air interface defor-

mation areas that arise when the cuticle − or, if experimentally more feasible, artificial
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surfaces modelling the cuticle − is tilted. This, in turn, could give clues for a better

understanding of the low CAH observed on the cuticles. Another means of increasing

the understanding of CAH on springtails, would be to assess the validity of the novel

equations incorporating line tension into the Choi model (Section 3.4.2). Such an assess-

ment should be viable by fabricating and performing contact angle measurements on a

set of surfaces comprising different triple line lengths, but that are otherwise equivalent.

For springtail-inspired surfaces to be employed technologically, a high degree of dura-

bility and wear resistance is required. In this light, a more thorough evaluation of the

mechanical properties of the springtail cuticles is imperative. Both experimental and

theoretical endeavours would come in hand for that purpose.

In this study, the species Anurophorus laricis and Cryptopygus clavatus have emerged

as promising candidates for inspiring man-made springtail cuticle replicas − their com-

bination of high solid fraction of surface and small granule sizes equip them with out-

standing water repellent properties. Additionally, they should possess relatively good

mechanical properties. Fabrication and assessment of surfaces mimicking these species’

cuticles present exciting possibilities for future studies.
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A. Springtail cuticle images

Images used to extract surface parameters required for the calculations above are col-

lected in this section. These comprise SEM and AFM images characterizing the cuticle

of nine different springtail species, as well as the TEM image presented in Figure 3 (the

images in Figures 2 and 3 are repeated here for completeness). The images of higher

magnification highlight the cuticle pattern on the dorsal part of the springtail bodies

(their ’backs’).

(a) (b)

(c) (d)

Figure 20: Hypogastura viatica
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(a) (b)

(c) (d)

Figure 21: Isotomurus prasis
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(a) (b)

(c) (d)

Figure 22: Folsomia quadrioculata
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(a) (b)

(c)

Figure 23: Anurophorus septentrionalis
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(a) (b)

(c)

Figure 24: Archisotoma besellsi
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(a) (b)

(c) (d)

Figure 25: Cryptopygus clavatus

(a) (b)

Figure 26: Anurophorus laricis
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(a) (b)

Figure 27: Isotoma anglicana

(a) (b)

(c)

Figure 28: Xenilla maritima
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(a) (b)

Figure 29: (a) TEM image of a cuticle cross-section of the springtail species Cerato-

physella denticulata [19]. (b) Magnified view of one of the primary granules

present in (a), demonstrating an overhanging granule profile.
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